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ABSTRACT

Based on the Enskog theory of transport in a dense rigid sphere 
fluid expressions are developed for the prediction of infinite 
dilution diffusivities in liquid systems. Two expressions are 
presented. Uie first development utilizes approximations for the 
size, mass, and radial distribution function factors in the Enskog 
development. The resulting relationship is shown to be a function 
of the critical volumes of the constituent species. During the course 
of this analysis it was demonstrated that the quantity M . / p  ,T 

is constant with temperature. Good agreement with data is obtained; 
a slight modification allows the use of the expression with water 
or alcoholic solvents. The second procedure involves the development 
of accurate expressions for the size and mass of constituent species. 
This method utilizes the concept of equilibrium between associated 
species to develop average parameters for the diffusing species. 
Excellent agreement with data is achieved. Experimental data at 25°C 
is presented for binary systems at infinite dilution conditions. 
Cyclohexane is either solute or solvent in all cases.
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INFINITE DILUTION DIFFUSION COEFFICIENTS IN LIQUIDS

CHAPTER I 

INTRODUCTION

Molecular diffusion is defined as the motion of molecules, 
in the absence of external forces, which tends to dissipate the 
concentration gradients within the fluid. At infinite dilution 
conditions this motion may be considered to be the movement of a 
solute molecule in a medium composed entirely of solvent molecules.
If the solute molecule is simply a radioactive species of the solvent 
molecule the self-diffusion coefficient may be measured. Thus 
infinite dilution diffusion in a binary system differs from self
diffusion only in the size and mass of the solute molecule and in the 
applicable solute-solvent interaction. The purpose of this work is to 
obtain accurate binary infinite dilution data for molecules for which 
there is accurate self-diffusiou data available and to develop 
expressions for the prediction of these diffusion coefficients by 
accounting for the molecular properties such as size, mass and 
interactions.

The interest in diffusion processes has existed for over a century. 
The first significant result was obtained by Pick (25) who reasoned 
that mass transfer by molecular diffusion was analogous to heat 
conduction in solids. Pick proposed that diffusional flow was the 
result of a concentration gradient and that the flow was proportional 
to the driving force. This may be written as

^i = grad (1)

This relation is also valid for the second component in a binary mixture.

Jj = -Dj grad Cj (2)
Por a process in which a plane is defined such that no net volume

1



transfer occurs it may be shown (10) that

»i - »j = ®ij (3)
where D. . is the mutual diffusion coefficient, ij

In a binary system the concentration gradient may be maintained 
in a thermodynamic equilibrium condition by the application of a 
force (75), which is

F = 9/i/ôx (4)

where /i is the chemical potential. The rate of transfer by diffusion 
due to this force is then

= F iC ./P jq  = (C./CT.TÏ) (5)

From the definitions of the chemical potential and the activity it can
be shown that Equation (5) may be written as

= (RT/a^T?) Bln a./Bln C. (6)
In these expressions Ô T) is a resistance coefficient. At infinite
dilution conditions the activity term reduces to unity and the 
diffusivity is simply a function of the molecular parameters of the 
constituent species.



CHAPTER II 

LITERATURE SURVEY

There have been many approaches presented in the literature for 
the calculation of infinite dilution diffusion coefficients in binary 
systems. In this chapter the major theoretical and empirical results 
will be discussed.

Theoretical
In 1858 Wiedeman (82) observed that the diffusivity of dilute 

solutions was inversely proportional to the viscosity of the solvent. 
Walden (80) combined these findings with the Exner Rule (23), the 
liquid equivalent of Graham's Law, to obtain

(DJ7M)̂  = constant (7)
This relationship was supported to some extent by the experimental 
results of Thovert (74).

In this same period, Einstein (21) and Sutherland (70), in 
completely independent studies, suggested that diffusional flow is 
a balance between a driving force and a resistance to flow. They 
proposed that the driving force was osmotic pressure. Sutherland 
and Einstein considered only ideal solutions and consequently the 
diffusion coefficient was represented by

Djj = kT/C (8)
Stokes (69), from hydrodynamic considerations showed that for a 
spherical particle of radius r. moving in a solvent with viscosity 
the viscous resistance to flow may be given as

Ç = (1 + 2r̂ j//3r̂ )/(l + 3»7j//3r.) (9)
where is the coefficient of sliding friction between the solute 
molecule i and the surrounding medium j. For the case of a large 
spherical molecule diffusing through a solvent of small molecular size 
and mass, Sutherland reasoned that little slip would occur and 
consequently

3



)3 - “ and Ç = 67JT?̂ r̂  (10)

Combination of Equation (8) with Equation (10) yields the familiar 
Stokes-Einstein equation

= RT/(6m7jr^) (11)

Sutherland also considered the case of similar sized solute and solvent 
molecules as in the case of self-diffusion. In this situation it was 
assumed that there were free spaces in the solvent medium through which the 
solute molecule could move at will. Therefore

^ = 0; C = 4ffTJ.r. and D . = RT/(4m?.r.) (12)J 1 ^ J J ^
In this case the solute molecule is no longer in motion in a
continuous medium.

In 1922, in an attempt to describe dense gas and liquid behaviour,
Enskog (22) developed expressions for dense fluid transport properties.
Enskog considered a dense medium composed of rigid spherical molecules
of diameter O’. For this model two body collisions are considered.
Through this assumption and by taking into account the finite size of
the molecules, Enskog was able to superimpose a dense fluid theory
onto the previously developed dilute gas theory. In this theory the
coefficient of self-diffusion is given as

pD = (0«)°/X (13)
where the superscript o denotes dilute gas conditions and X is a 
correction factor for the probability of collisions. The dilute gas 
value (63) has the form

(P^)° = (3/8)(mcT/m)^(l/Nmr^) (14)
For rigid spheres the correction factor X is directly related to the 
rigid sphere compressibility, z, by

X = (z - l) /lp  (15)
3where b is the molecular covolume equal to (2/3)NTOr . Thus, the 

self-diffusion coefficient is given as

D = ((T/4)(ffkT/m)^/(z - 1) (16)

The Enskog theory in effect corrects for the finite volume of the



molecules and the increased frequency of molecular collisions. A 
similar expression has been developed by Longuet-Higgins and Pople (41) 
from a consideration of the exponential decay of the autocorrelation 
function. This theory has been extended to the binary case by 
Thome (16) and to the multicomponent case by Tham and Gubbins (72).

Eyring and coworkers (24,27) have applied the theory of rate 
processes in conjunction with the cell model concept of a liquid to 
develop a general theory of fluids. In this theory the diffusivity is 
given by

= ¥X^/i (17)
where X is the distance between equilibrium positions of i, & is 
a geometrical configuration parameter, and K is the rate constant for 
a unimolecular rate process. From absolute rate theory

K = (kT/h)(F:,/F ) exp(-E /RT) (18)
i j  J-J 1/,1J

Fĵ j and F^^ are the partition functions in activated and equilibrium 
states respectively and Ep is the diffusional activation energy.
The viscosity of a fluid is given by

ri. = (hX^j/XgjXgAj) (Fjj/Fjj) exp(E^ 7RT) (19)
where the X ' s  denote distances between molecules and E„ . is the 
activation energy for viscosity. Combining these results gives

®ij ^ (kT/(n j) (^j j^lj^^j j^ij^ '
exp((E^ j - Eg^j)/RT) (20)

Assuming that X^^ = X^^ = X^j = (V^/N)^^^ and that FjjF|j/F^jF^^ = 1 
Equation (20) reduces to

= (kT/(nj)(N/Vj)^/^ exp((E;^ j - Eg^j)/RT) (21)

Eyring, et al. (24) have assumed that the diffusional and viscous 
activation energies are equivalent. This is true for the case of 
self-diffusion, but not for a binary system. Several estimates for the 
quantity (E - E ) have been proposed by dander (51) and byTJ,J
Gainer and Metzner (26).

Olander suggested that an estimate for (E , - E ) may be
tl f J



given by

f is the fraction of the activation energy associated with the motion 
of the molecule from one equilibrium position to another similar 
position. In a similar development, Gainer and Metzner (26) have 
proposed the following relationship

CC jw/Z) ( f j j / * i j )

where the r's represent Intermolecular spacings and the subscripts 
H and D designate contributions due to hydrogen bonding and dispersive 
forces respectively.

In order to predict the temperature dependence of self-diffusivitles 
Eyring used the following expression which was based on the activation 
energy (ÛH) and the activation entropy (AS)

D = eX^(kT/h) exp(As*/R) exp(- Ah*/KT) (24)
Walls and Upthegrove (81) presented a similar expression which 
contains diree parameters; a configuration constant y ; a 
geometrical parameter which relates interparticle spacing to particle 
size, b; and the enthalpy and entropy of activation which are 
assumed to be equal for viscous and diffusional flow,

D = My^^\xp(AS*/R)exp(- AH*/RT)/(2fbh(2b + 1))(V^^^/S) (25)

or in terms of viscosity
D = My^^^!T^/(23J7jy b(2b + 1)) (26)m

It should he noted that this model does not consider interatomic 
potentials and as such is not strictly applicable to binary diffusion,

Cohen and Tumb-rll (17), considering a fluid composed of rigid 
spheres, postulated that the dlffasisitL process occurs by the motion of 
molecules into holes in the surrounding medium. The hole size is 
somewhat greater than a critical value, Swalln (71) developed



expressions for self-diffusion by considering Che motion of a group 
of five atoms. These motions result in a time dependent density 
fluctuation with respect to a given group of atoms. The jump 
distance is no longer discrete, but is a continuous distribution of 
distances. These two methods have been applied with some success 
to liquid metals.

Thomaes and Van Itterbeek (73) have attempted to establish a 
theorem of corresponding states for the diffusivities of pure 
liquids based upon the Prigogine theory of liquid solutions. The 
assumptions in this development are: simple, spherical molecules;

*ic "icthe potential energy is represented by e(r) «= C <p(r /r ) where ̂
* *is a universal function and; the parameters C , r , amd m completely 

characterize the molecular species. The resulting expression

D.(T.) = D^(T^€*/e*)(m^/m.)^(e*/C*)^(r*/r*) (27)

has been shown to be in fair agreement with experimental data.
In recent years the various statistical mechanical approaches 

to the prediction of diffusion coefficients have been discussed 
in great detail. McLaughlin and coworkers (1,40,46,47 ) have
presented several papers which represent a detailed application of 
the results of statistical mechanical theory. McLaughlin (47) in 
1969 utilized the extension of the rigid sphere theory as presented 
by Thome (16) to develop an expression for the binary mutual 
diffusion coefficient as a function of composition. Hie expression

(28)

was used as the basis for further work. For a mixed sphere fluid 
Lebowitz ( 3^ obtained

^ij ^^jj®ii ^ii®jj^^^ij
where

and

gii = C(1 + %C) + (ff/4)nja^j(cr^^ - (7jj)}(l - f)-2 (30)

( = (31)



At infinite dilution conditions the result may be expressed as
njD.j =: n°8°j/{ajj[(l + g/2) + (W/4)n^a (CT.. - a„)

+ CTiid + €/2)](l - (32)
It can be seen that the principle parameters are the number density 
and the rigid sphere diameters.

Loflin and McLaughlin (40), using the Rice-Allnatt extension of 
the Rice-Kirkwood theory, also presented expressions for the concentration 
dependence of the diffusivity. In applying these results to infinite 
dilution the following relationship was obtained

2a^/a + 1 = + mu)! (33)
00 COwhere a = This result has been shown to be in fair agreement

with data. McConalogue and McLaughlin (46), as well as Al-Chalabi and 
McLaughlin ( 1 ), further point out the various applications of these 
theories.

Tham and Gubbins (72) extended the Enskog theory of a dense rigid 
sphere fluid to the multicomponent case. These equations reduce to 
Equation (28) for the binary case. A further improvement is that the 
binary radial distribution function as developed by Mansoori et al. (44) 
is utilized. Raveche and Meyer (58) have presented a method for 
obtaining the diffusion coefficient for a liquid system of monatomic 
molecules near equilibrium. However the resulting equation is in 
integral form and cannot be used for direct calculations.

At the present time statistical mechanical approaches must use 
the rigid sphere model to simplify the resultant integral forms or to 
solve the integral equations directly through the use of numerical 
methods. In applying the former to diffusion in real fluids the 
assumptions made may lead to calculational errors; the latter requires 
large computers to solve the equations.

Mir and Stein (50) proposed that two modes of diffusion are 
present in liquids. The first mode results from the movement of 
solvent molecules and is the only one available to macromolecules 
in solution. Smaller molecules may use this mode but also move by 
activated diffusion within the lattice of the solvent matrix. The
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resulting relationship has the form

D = Djj exp(- Ej^/RT) + exp(- E^/RT) (34)
o o

The parameters in this equation must be obtained semiempirically, 
thereby reducing the effectiveness of the result.

In summary, it may be said that since there is not yet an 
accurate description of the liquid state in general, the prediction of 
binary infinite dilution diffusion coefficients by theoretical means 
is not practical. The theoretical approaches presented here will 
yield only fair agreement with experiment; many of the approaches are 
further limited by being applicable only to particular cases.

Empirical
The lack of a truly accurate liquid state model has left the 

accurate prediction of infinite dilution diffusion coefficients to 
the realm of empiricism. There have been many approaches presented in 
the literature; the most successful of which will be discussed in 
detail here. Other correlations will be discussed briefly.

In 1936 Herzog (33) proposed that
D = 2RT/6irN®*^^77(V - b)®'^^ (35)

where b is the van der Waals' volume. This relationship was shown to 
restricted to use in the Stokes-Einstein region.

Arnold (6) proposed an equation for liquid diffusion that resulted 
from an extension of a modified gaseous kinetic theory. The 
resultant relationship is

= 0.01{(M^ + (V^ ̂ + V^^)^ (36)

where A^ and A^ are abnormality factors which account for association 
and intermolecular attractions. These factors are essentially 
empirical and the relationship is further limited to a temperature 
of 20°C, to very dilute solutions, and to relatively low boiling 
solvents.

At dilute concentrations Olson and Walton (52) related the diffusivity 
for aqueous solutions of organic liquids to the slope of the surface



10
tension lowering-concentration plot. The final correlation presented

CDwas a plot of (D^^ ?)/T) vs. (f io/C^). Due to a lack of adequate data 
this result has not been extensively tested. These authors also 
showed that the ratio of an unknown diffusion coefficient of a 
given compound in a solvent to a known coefficient for another 
molecule in the same solvent is approximately equal to the ratio 
of the diffusivities of the same solutes in water, or

GD OD CD 00 <37)

This is commonly referred to as the common solvent effect.
Based on the Stokes-Einstein equation and the Eyring theory of 

absolute reaction rates Wilke (83) proposed a general equation 
for infinite dilution diffusivities. It was asserted that the group, 
T/Drj, was essentially constant with temperature for a particular 
solute-solvent system. It was also found that T/DT?, for a given 
solvent, is a function of the solute molar volumes. The results 
of this work were curves of T/DT) vs. the molal volume of the 
solvent. In general it was assumed that T/Df] was identical to the 
Stokes-Einstein result at large solute molal volumes.

Wilke and Chang (84), in 1955, on the basis of new data, 
extended this work by developing an explicit empirical function to 
describe the effect of solvent properties as well as association 
effects. The result may be written as

d“  ̂= 7.4 X 10"®C\M)^T/î7jVJ-^ (38)

where X is an association parameter. For non-associated solvents 
X = 1. X differs from according to the solvent under study.

Othmer and Thakar (54), by considering the Eyring expression 
in conjunction with the Clausius-Clapeyron equation showed that

In D = (E^/L)ln P° + C (39)

where L is the latent heat of vaporization. Thus if In D is plotted 
versus In for a reference fluid a straight line results with a
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slope of E^/L. It was further shown that

In D = - (Ejj/E^)ln T) +  C' (40)

and that

Combining these results and comparing with data led to the following 
result

d“ . = 14.0 X 10"^/»)^(1.1 (42)

where the subscript w indicates water and is the viscosity of any 
solvent at 20°C.

Scheibel (65) was the first of several authors to develop 
explicit formulations for the curves of T/DH presented by Wilke.
He presented the empirical relation

F = T/DTÎ = 1.22 X 10^ V^^^/(l + (3V^/V^)^^^) (43)

From this the diffusivity is given by

= 8.2 X 10'® T(1 + (3Vj/V^)2/3)/njVj/3 (44)

%is equation was found to represent diffusivity data for solvent 
volumes up to one-half the solute volume.

Sitaraman, Ibrahim and Kuloor (68) interpreted the association 
parameter in the Wilke-Chang equation in terms of determinable 
properties. In this development the original expression of Wilke and 
Chang was empirically modified in order to obtain a best fit of the 
data. The association parameter, X> was replaced by the latent heat 
to obtain the final result, which is

= 5.4 X 10"® (M^iy®T/T?jVV' 3 ) ° ' ( 4 5 )

This equation was shown to be as accurate as the original Wilke- 
Chang expression.

Based on the empirical fact that DT)/T is nearly constant for 
self-diffusion King, Hsueh and Mao (37) presented a correlation for
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the prediction of diffusivities. They observed that in comparision 
to self-diffusion in a particular solvent mutual diffusion differs 
only by the solute species under study. It was stated that the 
diffusivity should be a function of the solute to solvent size ratio 
and to the ratio of solute-solvent tc solvent-solvent interactions.
Their final result is

= 7.37 X 10"* T(V (46)

This equation was shown to be significantly better than previous 
correlations for selected cases.

Reddy and Doraiswamy (59) presented the following modifications 
for the Wilke-Chang equation 

for V j V ^  ^ 1.5

d". = 10 X 10"® M^T/T^.vy^vV® (47)ij 3 i 3
for V./V^ > 1.5

= 8.5 X 10"® (48)

The association parameter has again been replaced without any 
significant improvement in results.

On the basis of absolute reaction rates as well as hydrodynamic 
theory Lusis and Ratcliff (42) showed that

D T j/D jj = F(V^/V j) (49)

The following empirical relation was found to describe this 
functionality

F(V^/V^) = C i(C 2(V ./V^)l/®  + C^(VyV^)) (50)

It was further shown that

Combining these expressions and least squares fitting for the constants 
yields

d“ jT)j/T = 8.52 X 10"^® (Vj)"^^^{l.40(Vj/V^)^^^ + (V7V^)}
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This equation described the tested data as well as previously 
published correlations.

These same authors (43) presented an expression for 
diffusivities in complex forming mixtures. It was assumed that 
complexes were formed according to the following equilibrium 
relations

Ai + Bg A.Bg (53)

B i + B g = J B g ^ l  (54)

A diffusivity was then calculated for each A.B -B , combination.1 g S + 1
The binary diffusivity was then then to be a concentrÆion average of 
the individual diffusivities. Errors of less than 10 per cent 
resulted for test cases involving alcohols.

Hayduk and Cheng (32) stated that, in general, diffusivity and 
solvent viscosity are not inversely related but that the infinite 
dilution diffusivity was related to the solvent viscosity raised to 
some power, i.e.

00 T>D.j - (55)

The constants in this formula must be calculated for each individual 
diffusing molecule thus limiting the use of this equation.

Based on a simplification of the relationship between viscosity 
and tracer diffusion in mixtures Dullien presented the following 
relationship for self-diffusivities (20)

D*jT)jVj/RT = 0.124 x lO"^® (V^j)^^^ (56)

This result, which directly relates the diffusivity to a molecular 
length parameter squared, accurately reproduces self-diffusion data for 
many substances.

Summary of Prior Correlations
In a comparision of correlations for the prediction of infinite 

dilution diffusion coefficients Reid and Sherwood (60) have presented 
percentage deviations for two cases; for aqueous solutions - Wilke 
and Chang, Scheibel, and Othmer and Thakar, 11 per cent, Sitaraman et



14
al., 12 per cent, and Kamal and Canjar (35), 20 per cent; for 
organic solutions - Wilke and Chang, 27 per cent, Othmer-Thakar,
28 percent, Sitaraman et al., 26 per cent, and Scheibel, 25 per 
cent. In a similar type compararision Lusis and Ratcliff (42) 
presented the following deviations: Wilke-Chang, 20 per cent; 
Othmer-Thakar, 33 per cent; Sitaraman et al., 32 per cent;
Scheibel, 23 per cent; and Lusis-Ratcliff, 16 per cent. From 
these figures it can be seen that no one correlation can accurately 
predict infinite dilution diffusivities. Accurate relations are 
needed for use in multicomponent predictive techniques which are 
usually based on self and infinite dilution diffusion coefficients, 
as well as for industrial design techniques.



CHAPTER III

EXPERIMENTAL

Experimental Basis
The experimental apparatus used in this study is based on the 

so-called free diffusion model. "Hie mathematical basis for the 
diffusion process is Pick's second law

8c^/8t = div grad C^) (57)

For unidirectional flow and in conjunction with the following 
boundary conditions

t = 0 dC^/ôx = 0 for all x 0 (58)

t > 0 ^i " ^il * (59)
t > 0 C. = X - - ® (60)

the solution to Equation (57) is

(C.(x,t) - C^o^/(C.j - C^q) = %[1 + erf(x//4D]y)] (61)

Thus the concentration at any point and at any time may be 
calculated.

In order to approximate these conditions the following must be 
valid. There must exist at zero time and at x = 0 a step function in 
concentration; this step function must be sufficiently small to allow 
the validity of Pick's law. At x = ± ®, for the duration of the 
experiment, the concentrations must remain at and C^^ 
respectively. Since an infinite diffusion field is not possible 
the apparatus used must have sufficient length to ensure these 
conditions.

Experimental Apparatus
The apparatus used in this work was developed by Merliss (48) 

and modified by Haluska (29) and Alimadadian (2)- Since this 
apparatus has been described in great detail elsewhere only a brief 
description will be given here.

15
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Hie flowing junction test cell, used to simulate the 
mathematical model, was designed by Alimadadian (2). A 
schematic diagram of the cell is given in Figure 1. The cell was 
made of two 316 stainless steel plates and held together with 
two bolts. The cell cavity was 3% inches high, % inch wide and 
3 inches in depth. The slits, at the junction, were 0.006 inch 
wide. These slits, through which fluid was withdrawn, were 
connected by a series of five perpendicular holes to a manifold 
which collected the withdrawal fluid. The manifolds were then connected 
to the drain line. TVo cell windows, fabricated of high quality 
optical glass, were held in place by adjustable plates. These 
windows allowed the passage of a light beam, without distortion, 
through the test cell.

In order to follow the diffusion process a double Savart plate 
biréfringent interferometer was utilized and is illustrated in Figure 
2. Its' operation is explained as follows : a spatially and
temporally coherent light beam from a helium-neon gas laser is 
expanded and collimated by meshing the focal points of the lenses 

and L^. It then passes through the test cell. After passing 
through the test cell the beam is reconverged, demagnified and 
recollimated by meshing the focal points of lenses and L^. The 
beam then passes through the first Savart plate, S^, and is converged 
before passing through the second Savart plate, Sg- The fringe 
patterns are then formed on film after passing through a polarizer.

In order to maintain a constant temperature in the test cell an 
air bath was utilized. It consisted of a double wall box, with 
perlit insulation between walls. Windows constructed of two glass 
plates with internal air spaces were mounted in the walls to align 
with the optical path. Additional equipment consisted of heater 
elements, baffles, a fan and temperature sensing elements. The bath 
temperatures were controlled to within 0.01°C. by a Thermotrol. The 
temperature in the bath was measured with a calibrated platinum 
resistance thermometer used with a Mueller Temperature Bridge and a 
D.C. null voltmeter.
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The camera used in this study was a Nikkormat FT 35 nan camera 
without a lens. Kodak Plus-X Panchromatic film (ASA 125) was 
utilized.

Experimental Technique
In this section the experimental procedure used throughout this 

work will be discussed. Prior to obtaining any experimental data 
the diffusion cell as well as the lens system were thoroughly 
cleaned. The lens system was then carefully aligned with the test 
cell in place. Immediately before the start of each diffusion run 
fresh test solutions were prepared. Since this Investigation is 
primarily concerned with infinite dilution diffusion coefficients 
one solution consisted entirely of pure solvent. The second solution 
was prepared by adding sufficient solute to ensure a refractive index 
difference of 5 x 10 between the two solutions. This difference was 
established as the practical operating limit of the interferometer. 
Smaller differences resulted in poor interface formation as well as 
short run times. The heavier solution was then placed in the 
reservoir inletting to the bottom of the cell; the lighter solution 
was placed in the upper reservoir. The temperature bath cover was 
then put in place and both the auxilliary and control heaters were 
turned on. The input to the auxilliary heater was decreased until the 
control heater controlled the temperature exclusively. At this point 
the test cell and the reservoir contents were allowed to come to 
temperature equilibrium; this procedure took about three hours. At the 
end of this period the entire cell was filled with fluid from the 
bottom reservoir. The side withdrawal valve was then opened and fluid 
was allowed to drain from the withdrawal slits. This procedure 
removed all the air pockets in the slits and in the manifold. After 
this was completed the cell was refilled with heavy solution. The air 
vent was then closed. At this point the test cell was completely 
sealed off. The valve to the light reservoir was then opened and the 
withdrawal valve was opened slightly. This allowed light solution 
to replace heavy solution in the top half of the cell. The 
withdrawal of fluid continued until light fluid reached the slits.
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The heavy solution was then allowed to flow again and the process of 
interface sharpening began. When a sharp interface was achieved all 
valves were closed and the timer was started. Photographs of the 
spreading diffusion pattern were taken at various times during the 
run until sufficient photographs were obtained. At this time the run 
was stopped and the test cell and the reservoirs were drained. The 
cell and reservoirs were then cleaned with acetone and dried with air. 
Before the next run the alignment of the system was again checked.
The resulting photograghs were developed in Microdol-X and 
measured.

Chemical Specifications and Properties
In Table 1 the manufacturers' specifications for the chemicals 

used are presented. All chemicals were used without further puri
fication. Table 2 represents a tabulation of the physical properties 
of the materials studied as found in the literature.

Data Analysis and Reduction
The optical path length, z, is defined as the product of the 

refractive index, n, and the length, a, through the test cell.
If small concentration ranges are considered then

z(x,t) = an aCn^ + nĵ (Cĵ (x,t) - C^q)3 (62)

Substituting this result into Equation (61) yields
(z(x,t) - ZQ)/(z^ - Zq) = %[l + erf(x//4D^jt)1 (63)

where and z^ are the optical path lengths which correspond to C^^ 
and respectively. To obtain the optical path gradient Equation (63) 
is differentiated, or

dz(x,t)/dx = [(z^ - z^)/2/7n)^jtj exp[- (2x)^/16D^jt] (64)

This equation then represents the interference patterns photographed 
during a run. Now any perpendicular to the interface and in the same 
direction as the light beam represents a constant value of the 
optical path gradient. Therefore Equation (64) produces equal values 
of dz/dx provided the width of the fringe is measured at the same plane
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Table 1, Chemical Specifications

Chemical(Grade) Impurities Source

Acetone (Spec trophotüï^tecric) < 0.03 % J.T. Baker
Aniline(A.R.) < 0.02 % J.T. Baker
Bromobenzene (A. R. ) < 0.002 % J.T. Baker
Chlorobenzene(A.R.) < 0.003 % J.T. Baker
Chloroform(A.R.) < 0.76 % J.T. Baker
Methanol(Spectrophotometric) < 0.004 % J.T. Baker
Ethanol(A.R.) - U.S.I. Chem.
n-Propanol (A. R. ) < 0.002 % J.T. Baker
n-Butanol(A.R.) < 0.04 % J.T. Baker
n-Amyl Alcohol(A.R.) < 0.01 % J.T. Baker
Cyclohexane(Pure) < 0.05 % Phillips

Table 2. Chemical Properties

Molecule D X 10^ 
cm^/sec

P 3gm/cm
M

gm/mole
%
cp

Vc
cc/mole

Acetone 4.77 0.78508 58.08 0.316 211
Aniline 0.486 1.01750 93.13 3.71 274
Bromobenzene 1.14 1.48824 157.01 1.055 324
Chlorobenzene 1.758 1.10037 112.56 0.6883 308
Chloroform 2.58 1.47985 119.38 0.3635 240
Methanol 2.27 0.7871 32.04 0.547 118
Ethanol 1.01 0.78404 46.07 1.101 167
n-Ptopanol 0.646 0.7998 60.09 1.938 218.2
n-Butanol 0.504 0.800 74.12 2.624 274.6
n-Amyl Alcohol 0.478 0.810 88.15 3.55 333
Cyclohexane 1.42 0.7743 84.16 0.93 308
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for all times. Mathematically, this is

(l//tT)exp[- (2x)^/16D .t.] = (l//t~)exp[- (2x)^/16D .t ] (65)1 ij 1 m ij m
The time of maximum fringe width, 2x , is denoted by t . At t 

0 m ■ ' m m
Ô z/ôx = 0 and

Substituting Equation (66) into Equation (65) and rearranging yields
(2x^)^ = BD.jt^Cl + ln(t^/t^)] (67)

Since an infinitely sharp interface is not possible experimentally 
a time correction factor must be employed. Haluska (29) showed that 
Equation (67) may be rewritten as

(2x,)2 = 8D,,(t, + t )[l + ln{(t^ + t )/(t. + t )} (68)1 i j i o  m o l o
Ihis equation was then used as the model for the calculational
procedure used to determine the diffusivity. As can be seen from
these equations the data obtained from the photographs consists of
2x. as a function of time.1

The method used in this work to extract the diffusivity was a 
pattern search procedure. The method is composed of two parts. The 
first consists of making small steps in the vicinity of a basepoint, 
calculated from initial guesses, to determine the trend of the 
function at that point. Each parameter is incremented by a set amount
and the value of the function is calculated at the new value. Only
those increments which improve the function are allowed. After these 
local explorations are completed a pattern move is made. This consists 
of changing all the parametric values simultaneously; the changes are 
based on the local explorations. The procedure is repeated with the 
length and direction of each pattern move dependent on the previous 
local exploration. If no improvement is made the step size is reduced. 
The search is ended when the step size reaches a desired minimum. In
this work the parameters are D.,, t and t . The calculated function2 2 J ® o
is (2x.) , - (2x.) . The program used in this work was developed1 calc 1 exp
by Rlmner (62) and is shown in Table 3.
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Experimental Results
The systems studied in this work were chosen for several 

reasons. One of these is that each binary pair must be composed 
of on associated molecule and one unassociated molecule. The 
premise leading to this choice is this; if a normally associated 
molecule is infinitely dilute in an unassociated solvent, the measured 
diffusion coefficient represents the motion of an associated 
molecule in an unassociated state. The unassociated molecule 
chosen for study was cyclohexane. The second reason is that self- 
diffusion coefficients for these molecules are readily available 
in the literature. A suomary of the experimental data obtained 
is given in Table 4.



Table 4. Experimental Diffusion Coefficients With Cyclohexane As Component j.

Molecule
(i)

Initial 
Mass Fraction i

00 5 . 10
cm /sec

Initial 
Mass Fraction j

00 5 
X 10

cm®/sec

Acetone 0.000723 2.745 0.000712 3.564
Aniline 0.000316 1.758 0.000183 0.478
Bromobenzene 0.000461 1.458 0.000125 1.286
Chlorobenzene 0.000568 1.620 0.000281 1.772
Chloroform 0.003049 1.936 0.000836 2.184
Methanol 0.000620 4.876 0.000551 2.425
Ethanol 0.000826 2.950 0.000789 1.706
n-Propanol 0.001238 2.504 0.001160 1.193
n-Butanol 0.001815 2.242 0.001701 0.907
n-Amyl Alcohol 0.002885 1.765 0.002669 0.878

N>■P>



CHAPTER IV

THE PREDICTION OF INFINITE DILUTION DIFFUSION COEFFICIENTS

The use of statistical mechanical approaches in the prediction 
of diffusion has provided much insight into the analysis of 
experimental data. Enskog and subsequent extensions to binary 
systems, have analyzed the transport properties of dense fluids 
in terms of a rigid sphere model (see Chapman and Cowling (16)).
Loflin and Mclaughlin (40), by an application of the Rice-Allnatt 
theory (61), have descibed diffusion in a mixture of Lennard-Jones 
fluids. In these approaches the diffusion coefficient is described 
in terms of the size and mass of the diffusing species, as well as 
the interactions encountered by the species under study. However, 
these theories have been shown to provide only qualitative 
agreement with data and, as such, are of only limited value.

In this work the rigid sphere model of a dense fluid will be 
utilized as a basis for the development of a predictive equation 
for diffusion in binary systems at infinite dilution. The rigid 
sphere molecule exhibits infinite repulsion at collision and zero 
interaction at all other intermolecular distances. A description 
of diffusion in pure fluids exhibiting this type of interaction 
was provided by Enskog. Thome (see Chapman and Cowling (16)) 
extended this work to binary systems; Tham and Gubbins (72) 
provided a description of diffusion in a multicomponent mixture.
The primary dependent variables in the present treatment will 
be shown to be the size and mass of the diffusing species.

Equation Development
The general expression for diffusion in a mixture of rigid spheres 

has been presented by Tham and Gubbins (72) as

°ij = ^ V l l  - V l 2 ^ / ^ V l  + njP2).(n°A°j/gj_j) (69)

25
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where is the dilute gas value, is the radial distribution
function and the P's and E's descibe the interactions of the species 
i and J as a function of composition with

= «hi + 2pl>ihghi + Ç  (70)

and

where 6 is the Kronekker delta and

P'-ih = (72)
R is the reduced molecular diameter and Ç is the reduced density of the 
mixture. An accurate expression for the radial distribution function 
of rigid sphere mixtures has been developed by Carnahan (15) and is

8ij(f^ij) = 1/(1 - O
+ [3/(1 - C)^3{[R.R./(R. + R.)](Çy /Y )}1 J 1 J c J

+ [2/(1 - C)3][[R.Rj/(FL + Rj)](EY2/Yg)]2 (73)

where Y^ = S  ̂ i®l’ lh®se then are the general equations which describe 
diffusion in a rigid sphere mixture.

At infinite dilution the diffusion process is described by a single
solute molecule, isolated from all other such molecules, in a medium
of solvent molecules. For this condition the descriptive equations 
reduce to

"Ij = ("ij) = "Xj/CjSlj) (7«)

The radial distribution function reduces to

g"j = 1/(1 - C) + [3/(1 - Ç)^][Ça^^/((T^^ + Ojj)]
+ [2/(1 - (75)

The dilute gas value for a binary mixture is given by
= (3/2) (NkT/2lT)^[ (Mĵ  + Mj)/M^Mj]^/(a^^ + Ojj)^ (76)

As can be seen by these equations, the infinite dilution diffusion
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coefficient of a rigid sphere fluid is described in terms of the size 
and mass of the diffusing species.

A particular application of these equations is for identical 
size and mass of solute and solvent species, as in the case of self
diffusion. Equations (74), (75), and (76) reduce to

(i = j) = (77)

g]j = 1/(1 - C) + [3/(1 - Ç)^][Ç/2]
+ [2/(1 - ()3][C/2]2 (78)

" (3/8)(NkT/lTMj)^(l/a_)^ (79)

Thus, an expression for the deviation from the self-diffusion value due
to a change in solute may be developed

+ Mj)/2M.]^[gjj/g^j ] (80)

The diffusion ratio is seen to be dependent only on size, mass and
radial distribution functions of the species involved.

In order to provide a more tractable form, several simplifying
assumptions for liquid systems may be made. In Figure 3 the radial
distribution function ratio is plotted versus the length parameter
ratio a../a., for the solvent cyclohexane. This represents a typical ii J J
plot for liquids. For most organic molecules the molecular diameter 
is in the range of 5 to 7 Angstroms. Assuming an average diameter of 
6 Angstroms the length ratio should fall in the range of 0.8 to 1.2.
In this region the radial distribution function ratio may be 
represented by

g“j/gj j = j) + P (81)

However, it may be shown that

Bij/Sjj = (82)

introduces an average error of less than 5 per cent over the range 
0.8 < < 1.2.

In Figure 4 the quantity Is plotted versus the
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length ratio . It is immediately apparent that in the range
0 .8 <a../CT.. < 1.2 the length quantity [2a../(a.. + or. .)]̂  is JJ JJ
approximately a linear function of (T../a... The use of the relationJJ 11

(83)

introduces almost no error in the region in which most liquid mixtures 
occur. Thus, Equation (80) may be rewritten as

oTj/Djj = (ajj/â ĵ )̂ [(M̂  + Mj)/2M^]^ (84)

Here it is seen that the ratio of the coefficients of infinite dilution 
diffusion to self-diffusion is reduced to simply a function of size 
and mass.

A major drawback in the use of Equation (16) is that the molecular 
lengths are not generally known. Numerous authors, including Ashcroft 
and Lekner (7) and Vadovic and Colver (76) have related the molecular 
length parameter to the volume at the melting point, or

"ii = “ (85)

Where a is a constant for a given class of compounds. Dullien (20) has 
suggested that the critical volume be used to obtain the length 
parameter, that is

®ll ' ^ (88)

It has further been shown by Vadovic and Colver (77) that for most 
organic compounds, the following relationship holds

V  - 8 318 ’cl (87)

Thus the choice of or depends entirely on the availability of
critical or melting point data.

Several accurate expressions for the self-diffusivity of liquids 
have recently been presented in the literature. For example,
Dullien (20) presented an expression which may be written as 

00 2/3DjjT)jMj/PjT = 0.103 X 10 * Vgj (88)

Alternately, Vadovic and Colver (78), from a consideration of the rigid
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sphere theory of Longuet-Higgins and Pople (41), have presented the 
following equation

d” .77.M./p .T = 0.219 X 10"® V (89)JJ J J J mj
Both these equations have been shown to accurately predict self-diffusion 
in liquids.

Substituting these results into Equation (84) yields

= 0.103 X 10"®(V^j/V^^)2/3[(M^ + Mj)/2M^]^(V^^)^^^ (90)

or
D* 1? M /p T = 0.219 X 10"®(V /V )^/^[(M + M )/2M ]^(V )^^^ (91)

i j  J J J m j m i  1 J 1  m j

00It is immediately apparent that the quantity should be a
constant with temperature for a particular binary mixture. This is 
indeed the case as shown in Table 5 for the data of Haluska and 
Colver (29) and that of Sanni, Fell and Hutchison (64).

In order to test the developed relationship. Equation (90) was 
tested with the data for binary mixtures of n-alkanes at 25°C. The 
molecules in this series are normally considered to be non-associated 
and undergo uniform interaction with other members of the series.
This interactions are somewhat ideal and, as such, a rigid sphere 
approach would be expected to yield at least qualitative results. In 
Table 6 the calculated results are compared to the literature values.
The proposed equation reproduces both the infinite dilution diffusionœ a>coefficient and the ratio of dlffusivities, with good
accuracy. Also presented in the table are the results as calculated 
by the Wilke-Chang (84) equation

= 7.4 X 10"* (^Mj)^T/T?jV^° * (92)

The average errors produced by Equations (90) and (92) are 5.86 and 
10.02 per cent respectively. Also it should be noticed that 
Equation (90) reproduces the data for the solvents dodecane and 
hexadecane with good agreement whereas the Wilke-Chang equation does not.
The Wilke-Chang result predictes a much lower dependence upon solute 
properties than that which is experimentally observed. It is 
interesting to note that the equation presented by Lusis-Ratcliff (42)



Table 5. Diffusion Coefficient Group For Associated Systems

œ oo 00 001 j T "ji DjiTJjMj/PjT Reference

C,H..CH 298 1.65 4.63 2.21 4.40 290 3 J 0 11 J 318 2.18 4.66 3.09 4.70
333 2.73 4.63 3.66 4.78

C.H CH C,H NHL 298 0.478 5.45 2.10 4.22 290 0 J 0 0 Z 318 0.880 5.30 2.78 4.50
333 1.27 5.24 3,60 4.68

C,H._ CftHçCH, 298 2.420 4.82 1.569 5.16 640 iZ 0 0 j 313 3.069 4.73 1.913 4.75
328 3.800 5.04 2.409 4.76

C,H C*H., 298 1.896 6.25 2.090 3.81 640 0 0 iZ 313 2.450 6.09 2.650 3.78
333 3.285 6.14 3.445 3.33

CCI, C^H.. 298 1.486 4.90 1.275 3.78 640 iZ 313 1.915 4.79 1.611 3.76
328 2.415 4.72 1.979 3.76

n-C_H_, CaH, 298 1.785 3.26 3.915 7.60 64/ 14 0 0 313 2.279 3.33 4.744 7.78
328 2.795 3.29 5.616 7.90



Table 6. Dlffusivities in Paraffinic Systems

00 CO CO

Solute Solvent (»ij)e Ref. Equa.(90) Wilke-Chang Exp. Equa.(84) Wilke-Chang

4 5.45 11 5.62 5.07 1 1 1

^6 4 4.21 19 4.08 3.73 1 1 1

4 2 2.73 9 2.27 2.67 0.608 0.556 0.718
4 6 2.19 8 1.80 2.30 0.498 0.442 0.618

4 4 3.12 11,19 3.06 2.86 1 1 1

4 e 1.78 9 1,52 1.89 0.543 0.497 0.662

4 4 2.368 79 2.28 2.17 1 1 1

4 2 1.719 79 1.61 1.77 0.732 0.705 0.816
4 4 1.70 19 1.72 1.66 1 1 1

4 o 4 o 1.31 19 1.32 1.29 1 1 1

4 4 2 1.45 9 1.51 1.14 2.05 1.91 1.39
4 1.143 79 1.15 1.00 1.53 1.45 1.23
4 2 0.809 79 0.795 0.817 1 1 1

4 e 0.67 36 0.618 0.70 0.796 0.777 0.857

4 4 e 0.869 8 0.847 0.59 2.71 2.53 1.64
4 0.760 9 0.729 0.55 2.47 2.18 1.53

4 2 0.49 36 0.435 0.42 1.53 1.30 1.17

4 e 0.32 79 0.334 0.36 1 1 1

u>
ts>
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results in an average error of 13.96 per cent for these binary pairs.

To further test the proposed equation the results were compared 
with the data given in Table 5. In these systems either one or both 
of the mixture constituents have associative properties. As such 
these molecules are non-ideal and can be expected to ejdiibit 
irregular interactions. It should be noted that for these systems 
and similar systems the mass factor is expected to be negligible due 
to the small differences in mass between the solute and solvent 
species. As shown in Figure 5 the mass factor of the mixture is very
nearly unity for mixtures with species of similar mass. As a further
consideration, in associated systems the effect of association are 
most likely to be much greater than the effect of mass. Consequently,
Equation (90) may be rewritten as

/p T r-. 0.103 X 10"®(V /V + M )/2M (93)^ J J J J C  J U i  1  J 1  C J

where N = 1 for non-associated systems and N = 0 for a system where one 
or both of the species exhibits associative tendencies. Hence, for 
associative systems Equation (93) is rewritten as

d"̂ T?̂ M̂ /P̂ T = 0.103 X 10'G(v^j/V^^)2/3(V2j)2/3 (94)

Ihe results of this equation vdien compared with the data given in 
Table 5 are plotted in Figure 6 . As can be seen good agreement with 
experiment is achieved over a wide range of variables. The average 
error resulting from the use of Equation (94) is less than 9 per cent.
Use of the Wilke-Chang and Lusis-Ratcliff expressions results in errors 
of 13 and 15 per cent respectively. Thus the proposed equation is 
significantly better than the previously published correlations for the 
data tested.

To further test the developed result the expression 
00 2/3 “

was used to calculate mixture dlffusivities when the solvent 
self-diffusion coefficient is known. The results of this test are 
shown in Table 7. Again good results are achieved.

In this work the correlating parameter used was the critical
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Table 7. Calculated Mixture Diffusivity With Known Solvent
Self-Diffusion Coefficient at 25°C.

Solute Solvent <30 Ref. % error

Benzene Acetone 4.15 45 4.16 0.24
Bromoform 3 23 57 3.76 16.40
CCl^ 3.54 4 3.99 12.71
Chloroform 3.63 45 4.38 12.71
Cyclohexane 3.564 3.49 2.07
Benzene Aniline 0.54 56 0.50 6.85
CCI4 0.52 56 0.48 7.11
Cyclohexane 0.478 0.45 5.85
Toluene 0.478 29 0.44 9.25
Acetone Benzene 2.75 45 2.46 10.54
Aniline 1.96 56 2.08 6.12
CCI4 1.912 85 2.08 8.78
Chlorobenzene 2.11 31 1.93 8.53
Cyclohexane 2.09 45 1.93 7.65
Toluene 1.847 64 1.90 2.86

Chlorobenzene Bromobenzene 1.342 13 1.17 12.81
Cyclohexane 1.286 1.19 7.46
Toluene(30°C) 1.41 13 1.27 9.92

Acetone CCI4 1.69 4 1.58 6.50
Aniline 1.58 56 1.33 15.82
Benzene 1.419 85 1.37 3.59
Chloroform 1.505 85 1.49 0.99
Cyclohexane 1.275 64 1.23 3.52
Methyl Ethyl Ketone 1.552 3 1.35 13.01

* Equation (95)



Table 7 Continued.
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Solute Solvent CD

(°lj>e Ref, CD *

' <®lj>c % error

Benzene Chlorobenzene 1.869 31 0.97 5.40
Bromobenzene 1.342 13 1.17 12.81
Cyclohexane 1.772 1.76 0.68
Toluene 1.70 13 1.73 1.76
Acetone Chloroform 2.35 45 2.81 19.57
n-Butyl Acetate 1.85 57 1.71 8.18
CCI4 1.945 85 2.35 20.80
Cyclohexane 2.184 2.37 8.51
Diethyl Ether 2.13 64 2.36 10.79
Ethyl Acetate 2.29 57 2.02 13.36
Methyl 1-Butyl Ketone 1.89 57 1.92 2.11
Methyl Ethyl Ketone 2.13 57 2.40 12.67
Acetone Cyclohexane 2.745 1.85 32.60
Aniline 1.758 1.57 10.69
Benzene 1.88 45 1.59 15.42
Bromobenzene 1.458 1.38 5.34
CCI4 1.486 64 1.53 2.93
Chlorobenzene 1.620 1.42 12.34
Chloroform 1.936 1.66 14.26
Toluene 1.57 64 1.39 11.46

Aniline Toluene 2.10 29 2.46 14.76
Benzene 2.545 64 2.49 2.16
Bromobenzene(30°C) 2.27 13 2.24 0.99
Chlorobenzene(30°C) 2.23 13 2.23 0.00
Cyclohexane 2.42 64 2.23 7.85
Methylcyclohexane 2.21 29 2.07 6.29

Average Absolute Error 8.87 !

* Equation (95)
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volume. It was used merely for convenience as the critical volumes 
are tabulated for many organic compounds in Reid and Sherwood ( ).
However, for systems in which the critical volumes are not available 
the liquid volume at the melting point may be used with little loss 
in accuracy.

Conclusion
It has been demonstrated that the results of statistical 

mechanical developments can be successfully applied to diffusion in 
liquid systems. In particular the rigid sphere Enskog approach may 
be modified to yield good results. Further the molecular length 
parameter may be characterized in terms of either the critical volume
or the liquid volume at the melting point. It has also been shown00
that for a particular system the quantity D, .TJ.M./p.T is a constant*J J J Jwhen plotted as a function of temperature. Consequently, if the 
diffusivity is known at one temperature it may be calculated at any 
other temperature. For unassociated systems, such as n-alkanes, the 
mass of the diffusing species is an important factor. For associated 
molecules the mass effect is overshadowed by molecular interactions.
Finally, the result

= 0.103 X (96)

has been shown to represent both binary and self-diffusion data with 
good precision.



CHAPTER V

THE PREDICTION OF DIFFUSIVITIES WITH ALCOHOL AND WATER AS SOLVENTS

In the preceding chapter a basis for the prediction of 
diffusivities has been developed. Hie binary Enskog dense fluid 
transport model was modified and simplified by applying approximations 
for the liquid state. For associative systems it was shown that

This equation was tested with the data for numerous organic molecules
and was found to yield good agreement with data. However, in some
cases, most notably for the alcohol solvents and water as solvent,
the predicted values of the diffusivities were found to be much lower
than those observed experimentally. It was also found that the

2/3parameter reproduced the qualitative trend of the data.
Consequently, the following formulation was developed to aid in the 
prediction of diffusivities in these cases

(98)

where F is a constant characteristic of the class of compounds being 
considered.

In the consideration of the primary alcohols as solvents it was 
found that Equation (97) i*en applied to the prediction of the 
diffusivity of organic non-alcoholic solutes was approximately 
50 per cent lower than the experimentally observed values. It was 
found that the use of a value of F = 2.08 gave much closer agreement 
with the experimental data. A tabulation of experimental and 
calculated values is found in Table 8. For the data tested a deviation 
of 10.17 per cent was calculated. It should be noted that the 
experimental self-diffusivities, as listed by Dullien, were utilized in 
the calculations.

A similar situation was found for water as a solvent. The 
predicted values, however, were only 20 per cent lower than those

38
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Table 8. Diffusivities of Organic Solutes In Alcohols

Solute Solvent T œ
( % ) e Ref. 00 *

Benzene Methanol 300 2.76 14 2.79
Bromobenzene 288 1.75 34 2.03
CCI4 298 2.30 30 2.68
Cyclohexane 298 2.425 2.49
Ethyl Bromide 288 2.40 34 2.66
Toluene 298 2.56 66 2.45

Benzene Ethanol 298 1.81 4 1.56
CCI4 298 1.50 30 1.50
Cyclohexane 298 1.706 1.40
Toluene 288 1.60 39 1.04

Benzene n-Propyl Alcohol 298 1.28 43 1.20
Cyclohexane 298 1.193 1.08
Toluene 298 1.35 67 1.05

Benzene n-Butyl Alcohol 298 0.988 43 1.09
Cyclohexane 298 0.907 0.97

Benzene n-Amyl Alcohol 298 0.985 43 1.17
Cyclohexane 298 0.878 1.05

* Equation (98), F - 2.06
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measured experimentally. From a consideration of the data the 
following relationship was found to be valid

. 1.165 (V^j/V^/" (99)

To facilitate the calculation of the binary diffusivity it was found 
that the self-diffusivity of water could be calculated to within 
2 percent through the use of the following equation

®  -8 2/1= 0.0926 x 10 ° (V^^) (100)

Equation (100) is valid from the normal melting point of water to 
the normal boiling point. Equation (99) with Equation (100) was 
tested with the data of Bonoli and Witherspoon (12) and for data 
cited in Reid and Sherwood (60). The data of Bonoli and Witherspoon 
was for cyclic hydrocarbons in water in the temperature range of 
2 to 60 °C. Hie proposed equation reproduced this data to within 
5.5 per cent and all of the data tested to within 6.5 per cent. This 
deviation is significantly lower than those produced by previously 
published correlations; the Wilke-Chang equation, for example, yields 
an average error of 11 per cent. A comparision of the results as 
calculated in this work with the experimental values is found in 
Table 9.

In the consideration of these systems it must be remembered 
that they exhibit conditions which are outside the range of validity 
of the original assumptions used in the derivation of Equation (97).
As such the F-factor may be considered to be a correction factor 
which allows the use of Equation (97) in a much wider sense. It 
may be said, however, that Equation (98) does provide a good 
description of experimental behaviour for the two cases tested here.
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Table 9. Diffusivities With Water As Solvent

Solute T CD ^
(»ij)e

CD ^

Data of Bonoli and Witherspoon (12)

Benzene 275 0.58 0.52
283 0.75 0.70
293 1.02 0.94
313 1.60 1.47
333 2.55 2.22

Toluene 275 0.45 0.45
283 0.62 0.62
293 0.85 0.83
313 1.34 1.29
333 2.15 1.95

Ethylbenzene 275 0.44 0.40
283 0.61 0.55
293 0.81 0.74
313 1.30 1.15
333 1.95 1.74

Cyclopentane 275 0.56 0.52
283 0.64 0.70
293 0.93 0.94
313 1.41 1.46
333 2.18 2.22

Methylcyclopentane 275 0.48 0.45
283 0.59 0.61
293 0.85 0.82
313 1.32 1.28
333 1.92 1.94

* Equation (98), F = 1.165
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Table 9 Continued.

Solute T 00
(»ij)e

00 * 
(»ij)c

Data of Bonoli and Witherspoon (12)

Cyclohexane 275 0.46 0.46
283 0.57 0.63
293 0.84 0.84
313 1.31 1.31
333 1.93 1.98

Data cited in Reid and Sherwood (60)

Methanol 288 1.26 1.40
Ethanol 283 0.84 0.94

288 1.00 1.11
298 1.24 1.44

n-Propyl Alcohol 288 0.87 0.93
n-Butyl Alcohol 288 0.77 0.79
Benzyl Alcohol 293 0.82 0.93
Acetic Acid 293 1.19 1.24
Ethyl Acetate 293 1.00 0.88
Acetone 293 1.16 1.08

298 1.28 1.24
Aniline 293 0.92 0.91
Acetonitrile 293 1.26 1.08
Allyl Alcohol 288 1.04 0.97

* Equation (98), F = 1.165



CHAPTER VI

THE PREDICTION OF BINARY INFINITE DILUTION DIFFUSION COEFFICIENTS 
IN ORGANIC NON-ALCOHOLIC SYSTEMS

In the measurement of a diffusivity in a binary system the 
diffusivity is normally taken to be that which results from the 
diffusion of a pure solute in a pure solvent. For non-associated 
systems this is indeed the case. A single solute molecule is 
diffusing in a medium ccmposed entirely of solvent monomers. For 
an associated system this condition is net necessarily valid. The 
measured diffusivity is the result of the diffusion of an average 
solute molecule in a medium composed of average solvent molecules.
The characteristics of these average molecules are determined by 
the properties of the individual solute and solvent species as well 
as the interactions between them. In this study a procedure will 
be developed for the determination of average parameters as well 
as for the effect that association has on infinite dilution 
diffusion coefficients.

Equation Development
The basis for this approach is the Ensfcog theory of the transport 

of dense rigid spheres as applied to diffusion. For self-diffusion 
the Enskog result is

Djj . (101)

where the dilute gas value is

n°«°j = (3/8)(NkT/lTMj)^(l/ajj^) (102)

and the radial distribution function is

= 1/(1 - C) + [3/(1 - C)2](C/2) + [2/(1 - ()3]((/2)2 (103)

Ihome (See Chapman and Cowling (16)) has extended this result to the 
binary case to yield
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D.j = (104)

where
n°&° = (3/2)(NkT/2Tr)^[l/(0 + Cr )]^[ (M + M )/M M.]^ (105)

I j  H  JJ  ^ J ^ J

and the radial distribution function for a binary system of rigid 
spheres is given by

g%j = 1/(1 - C) + [3/(1 - C)2][[Ojj/(a.. +
+ [2/(1 - C)^]{[a^^/(a^^ + Pjj)]C]^ (106)

3where Ç = (tr/6)njff̂  ̂ . It can be seen that the principle dependent 
parameters are the mass and diameter of the solute and solvent species.
These then are the descriptive equations for diffusion in either a 
pure fluid or for a binary mixture at infinite dilution.

There are four general cases of diffusion in binary systems. The 
first of these is the diffusion of an unassociated solute in an 
unassociated solvent. In this case there are neither solvent-solvent 
interactions or solute-solvent interactions. This corresponds to 
diffusion in mixtures of n-alkanes. The second case involves the 
diffusion of a normally associated molecule in a non-associated 
system. Infinite dilution conditions imply that the solute molecule is 
isolated from interaction with similar molecules. Consequently, the 
solute behaves as if it were noninteracting. Again there are no 
solvent-solvent interactions. An exanple of this type of diffusion is 
aniline in cyclohexane. Diffusion of an unassociated molecule in 
an associated solvent represents the next case. In this instance 
there are solvent-solvent interactions and the diffusion process is 
characterized by the diffusion of unassociated molecule in a medium 
composed solvent complexes. These complexes behave as larger, heavier 
species. Cyclohexane in aniline is this type of system. The last 
case represents the most complex. Solute-solvent as well as 
solvent-solvent association occurs. The result is the diffusion of 
an average solute molecule, composed of solute-solvent complexes, 
into a medium composed of solvent-solvent complexes. Examples of this



45

type of diffusion are aniline-toluene and chloroform-carbon 
tetrachloride. Each case will be discussed Individually in the 
following paragraphs.

The most simple type of diffusion is represented by the motion 
of an unassociated solute in an unassociated solvent. "Hie diffusion 
of the paraffin hydrocarbons is a good example of this case. For 
these species the diameter of the molecule under study may be 
calculated from the self-diffusion value as represented by Equation 
(lOl). The calculated values for several hydrocarbons are presented 
in Table 10. These values may then be used to calculate the infinite 
dilution diffusivity for any binary pair. It is found, however, that 
the calculated values are slightly lower than the experimental values. 
Therefore the use of a correction factor is suggested. This factor 
is to be multiplied by the diffusivity as calculated by Equation (104) 
and is

Cf = (l + (107)

A comparision of calculated and experimental values is also given in 
Table 10. For the n-alkane pairs considered the average deviation is 
less than 4 per cent. Ihus the result 

" .0^0 (108)

represents an excellent means for calculating the diffusivities in 
non-associating systems.

For an associated molecule diffusing in an unassociated medium 
the defining equation is identical to Equation (108). In this case 
the normally associated solute species can not associate with itself 
or with solvent monomers. It therefore behaves as an unassociated 
molecule, enabling the calculation of the size of an associated monomer. 
In Table 11 the calculated diameters of several species are presented.
In each case the unassociated solvent is cyclohexane and the temperature 
is 25°C. Also presented are the diameters as calculated from the 
dilute gas viscosity where available.

Now that the diameter of an associated monomer in known the 
self-diffusion coefficient of an associated species may be considered.
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Table 10. Length Parameters and Diffusivities For n-Âlkanes

Solute (i) Solvent (j) GO
(»ij)e Ref.

CD *

s G5 5.4y 5.45 11 5.44

^6 Gg 5.86 4.21 19 4.18
^12 2.73 9 2.53
Cl6 2.19 8 2.08

Cy Gy 6.25 3.12 11,19 3.11

^16 1.78 9 1.69

Gg 6.60 2.368 79 2.28
^12 1.719 79 1.74

S Gg 6.69 1.70 19 1.69

4 o GlO 7.30 1.31 19 1.30

^6 Gi2 7.90 1.45 9 1.63
Gg 1.143 79 1.22

Gi2 0.809 79 0.795

Gi6 0.670 36 0.632

Gg Gi6 8.90 0.869 8 0.914
Gy 0.760 9 0.776

Gi2 0.49 36 0.433

Gi6 0.32 79 0.320

* Equation (108)
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Table 11. Length And Association Parameters For Organic Molecules

Molecule CD Ref. V j l

Acetone 4.77 45 4.28 4.600 0.260
Aniline 0.486 5 5.22 0.316
Benzene 2.16 18 5.14 5.628 0.146
Bromobenzene 1.14 49 5.47 0.191

CCI4 1.32 18 5.36 5.881 0.147
Chlorobenzene 1.758 31 5.34 0.175
Chloroform 2.58 45 4.76 5.430 0.156

Toluene 2.20 53 5.27 5.932 0.221
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The coefficient of self-diffusion is simply representative of the
motion of a solute in an identical medium. If the solvent is
associative the solute will also complex. From a consideration of
the continuous asssociation model of Prigogine and Defay (55) the
following solute-solvent relations hold

k.
+ Jg Jg ̂  1 g = 1,2,...." (109)

and ,k. .
I l  +  J g  -  V g  g  =  1,2,...,= ( 110)

The assumptions made are that all degrees of association are possible 
for the solvent species, J, and that the solute. I, may interact with 
any of the solvent complexes. Also only two subspecies may interact at 
at any time, k^ and k^^ are assumed to be the same for each particular 
interaction. For the case of self-diffusion I is experimentally a 
radioactive species of J, with the same size and mass of J.
Consequently, Equations (109) and (110) are identical. As previously 
stated the size and mass are the principle dependent parameters in the 
present approach. In an associative system the size and mass are some 
value which is different from the monomer value. In order to calculate 
these parameters, at least in an average sense, let the total number 
density be the sum of the monomer, dimer, trimer, etc. number densities, 
or

Tn, = n._ + n - + n _ + ... + n. (Ill)

Noting that
j jl " J2 " “j3

n,| = k /  " ^n./ (112)J-e "jl
Equation (111) may be reduced to

nT = "ji/(l - kjUj^) (113)

Now the average solute and solvent parameters may be calculated by

P = Ç  X P^ (114)•ji‘i 
?or t

of the associating molecules are assumed to be additive or

Twhere x^^ = n^^/n^. For the size of the average molecule the volumes
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Therefore the average molecular size is

P..3 = Z  i k /  " ^n./ ■ ^(1 - k.n.,)P. (116)JJ i J Jl J Jl JJ
or

Thus Pjj represents the average solvent diameter. In the case of 
self-diffusion it also represents the average solute diameter. A 
similar expression may be developed for the mass of the complex

iC = Mj/(1 - (118)
Thus the average solute and solvent parameters have been established 
for the self-diffusion coefficient of an associated species. Using 
these expressions in Equations (101), (102), and (103) the solvent 
interaction parameter, k^n^^, may be calculated. In Table 11 the 
interaction parameters are presented. The number density in 
Equation (101) is taken to be the number of monomers available for 
complexirg.

Once the interaction parameters for a solvent have been established 
the calculation of a diffusivity for an unassociated solute in an 
associated solvent is relatively simple. Equations (104), (105), and 
(106) are utilized; the mass and diameter of the solute are used and 
Equations (117) and (118) are used to represent the solvent parameters.

For the case of an associated solute diffusing in an associated
solvent an additional parameter is necessary to characterize the 
diffusion process. The solvent parameters may still be calculated 
through the use of Equations (117) and (118). However, the properties 
of an average solute molecule must be defined. Recalling that

h  + -̂ g - V g  8 = 1,2 ,...,= (119)

the following relation may be developed 
T

”i " ^il ”i2 ■*' “i3 ''' + "i® (120)

Now

’*im " "ij"il"j “jl= k, ,n^k ™"^n, m =  2,3,.../° (121)
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Thus Che cacal number density of I is

"i = *ilLt +  k_.n.^/(l - k.n.^)l (122)

The number fraction of each salute subagecies is then.
m - 2 m - L

-im -
nr = 2y2,»»

with = 1/El + k^^Uj^/Cl - Front these results the average
solute diameter and mass may be calculated

‘’’ii ' ̂ ii
[l + (fc,̂ n̂ ĵ /fcjXjj_)[fcjn̂ /̂(l - (124>

A similar expression may be developed for the mass of the solute, tn 
Che presenc study the solute-solvent interaction parameter was taken 
CO be

^ij"jl " ̂ ^i°’il̂ j°'jl

Thus Che diffusion of an associated solute in an associated solvent
is completely characterized. A comparision of calculated results is
made with experiment in Table 12. Both fc. .n., = 0  and k. .n., =i-J Jl iJ Jl
/k^n^^klnjY are considered. Good agreement widi the data is 
obtained.

Discussion of Results
The method presented here provides an extremely useful method for 

the evaluation of diffusion data and also for the examination of 
solute-solvent interactions. From the particular molecules studied 
several statements may be made. Carbon tetrachloride as well as 
bromobenzene act as if unassociated in tiie solute state. However 
both these molecules tend to act as if associated in the solvent state. 
Aniline, as expected, exhibited A e  highest degree of association of 
the molecules tested and was associating as both solute and solvent. 
Toluene interacted with all benzene derivative solvents. Moet solutes 
tended not to associate with the solvents acetone and chloroform. The 
solute results are presented in slaiplified form in Table 13. In
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Table 12. Calculated Diffusivities For Associated Systems

Solute Solvent 00
®lj>e

QD
(»ij)c
ki. = o

GO
Oij>c

^ij"jl"^\“il^j"jl

Benzene Acetone 4.15 4.01 3.78
CCI4 3.54 3.31 3.14
Chloroform 3.63 3.98 3.70
Cyclohexane 3.49 3.28 -

Benzene Aniline 0.54 0.669 0.554
Cyclohexane 0.478 0.496 -
Toluene 0.478 0.604 0.493
CCI4 0.520 0.514 0.433
Acetone Benzene 2.75 3.44 2.90
Aniline 1.96 2.18 1.97
Bromobenzene - 1.81 1.71
CCI4 1.912 1.88 1.76
Chlorobenzene 2.11 2.02 1.89
Cyclohexane 2.09 1.87 -
Toluene 1.847 2.15 1.99
Benzene Bromobenzene 1.79 1.57
Chlorobenzene 1.342 1.48 1.31
Cyclohexane 1.286 1.35 -
Toluene 1.36 1.64 1.42

Acetone CCI, 1.69 2.85 2.37
Aniline 1.58 1.76 1.54
Benzene 1.419 1.92 1.73
Chloroform 1.505 1.89 1.59
Cyclohexane 1.275 1.47 -

Benzene Chlorobenzene 2.11 2.33 2.09
Bromobenzene 1.708 1.73 1.58
Cyclohexane 1.76 1.80 -
Toluene 1.70 2.11 1.87
Acetone Chloroform 2.35 4.21 3.65
CCI4 1.945 2.25 2.15
Cyclohexane 2.184 2.33 -

Aniline Toluene 2.10 2.58 2.21
Benzene 2.545 2.79 2.46
Bromobenzene 2.08 2.10 1.89
Chlorobenzene 2.23 2.37 2.10
Cyclohexane 2.42 2.15 —
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Table 13. General Summary Of Solute Interactions

Solute Normal State Comments

Acetone Associated Acetone-CHClg Is non- 
assoclatlng.

Aniline Associated All cases

Benzene Associated All cases except Benzene- 
Acetone

Bromobenzene Unassociated No non-Benzene derivative 
data

CCI,4 Unassociated All cases except CCI,- 
CHClj ‘

Chlorobenzene Associated All cases
Chloroform Associated No Benzene derivative data
Toluene Associated No non-Benzene derivative 

data
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general similar type molecules tend to interact with each other.
Hie method also provides an excellent means for calculating 

diffusivities. For the systems studied an average deviation of 5.28 
per cent was calculated. Excluded from this analysis were the acetone 
as solute points which produced large deviations. For pairs 
composed of benzene derivatives the average deviation was less than 
4.3 per cent. It is interesting to note that for aniline as solute 
and solvent an average error of 2.74 per cent was achieved. All 
previous correlations have been noticeable in their failure to 
predict the diffusivity of aniline in solution.



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS

From the results of this research it is concluded that the 
rigid sphere model for a dense fluid is extremely useful in the 
development of predictive equations for diffusion at infinite 
dilution conditions. The Enskog approach and subsequent extensions 
have been utilized as the basis for these developments. Two 
courses of action were followed and both were found to yield good 
results. The first of these was the development of a predictive 
equation in which the rigid sphere diameter was replaced by the 
cube root of the critical volume. This approach resulted in an 
expression which is explicit in readily available parameters.
During the course of this analysis it was found that the quantity
00D^/UjMj/pjT is invariant with temperature over the temperature ranges 
studied. The second method involved the calculation of average 
parameters for associated systems. It was found that these parameters 
were not identical to size and mass of the monomer species.
It was further shown that the diffusity of an associated system 
could be characterized by the size and mass of the monomer 
constituents as well as two association parameters. This approach 
provides an excellent insight into the diffusion process as well as 
to the effects of association on diffusion.

For future work it is recommended that additional binary 
diffusivity data be taken with one component being non-associated 
and one component associated. There is a noticeable lack of this 
type of data in the literature. It is also suggested that a facility 
for the measurement of self-diffusion coefficients be established.
The understanding of self-diffusion is intrinsic to the development 
of expressions for the diffusivities of mixtures. It is further 
recommended that the k-value approach be extended to the concentration 
dependence of the diffusivity. It is possible, through this means, 
to develop expressions which do not rely on the thermodynamic factor 
to predict the concentration dependence.
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