# AN ALTERNATIVE ROUTINE METHOD TO MEASURE SERUM TOTAL CHOLESTEROL AND ITS DISTRIBUTION AMONG THE MAJOR LIPOPROTEINS

By EDRALIN AGUINALDO LUCAS Bachelor of Science University of Santo Tomas Manila, Philippines 1986

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May 1995



# AN ALTERNATIVE ROUTINE METHOD TO MEASURE SERUM TOTAL CHOLESTEROL AND ITS DISTRIBUTION AMONG THE MAJOR LIPOPROTEINS

Thesis Approved:

Thesis Adviser

lia 5

otto

arls.

Dean of the Graduate College

#### PREFACE

Serum cholesterol is one of the analytes that is frequently measured in the clinical laboratory. This is because of the established relationship between elevated serum cholesterol level and the risk of coronary heart disease (CHD). Lately, the distribution of cholesterol among the major solubilizing lipoproteins, namely, very low density lipoproteins (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) has also become important in determining CHD risks. Studies have shown that the risk of developing CHD is positively correlated with total cholesterol and LDL and negatively correlated with HDL. These findings led to an increased effort to measure not only total cholesterol but also its distribution among the lipoprotein fractions for early detection and management of CHD. Current routine methods for measuring the lipoprotein fractions involve three enzymatic tests and are not applicable to samples with triglyceride levels > 400 mg/dL. This study offers an alternative routine method for obtaining the lipid profile in a single nonenzymatic test. The applicability of the alternative method to samples that have high triglyceride levels as well as samples with lipid disorders was evaluated.

I would like to thank several people who have helped me throughout my graduate study. I am very much indebted to my research adviser Dr. Neil Purdie, who let me work under his guidance and has since looked out for me. I would also like to thank Dr. Horacio Mottola, Dr. Ziad El Rassi, and Dr. Earl Mitchell for serving in my graduate committee.

The financial support of the Oklahoma Affiliate of the American Heart Association is greatly appreciated. I would also like to thank the staff of the OSU Wellness Center, Stillwater Medical Center, Roche Biomedical Laboratories, Dr. Marais in University of Cape Town, South Africa, and Johns Hopkins University for providing us samples for this study. Thanks also go to all the faculty and staff of the OSU Chemistry Department.

I would also like to thank a lot of people who helped my adjustment away from home easier. The help of my ex-roommate Lia; without her encouragement I could just have easily gone back to the Philippines. Stan and Lu Taucer have also helped me a lot. Other Filipinos that I met here have also helped me from not missing home very much. The help of all my other friends are also appreciated. Allan and Carol Engle helped me a lot with computers. Allan together with Dr. Purdie made the lab a fun place to work. The friendship of fellow graduate students Lloyd, Tim, Mahika, Paul, Jeff, and Hu is appreciated.

The encouragement and love of my husband Mike is very much appreciated. He always cheers me up when I'm almost ready to give up. Mike and his family provided me a family away from my other family.

I would like to dedicate this accomplishment to my family and all my relatives who always inspire me to work harder. My dad would have been very happy if he had seen me finish my doctorate degree. The hard work of my mom to support our family is very much appreciated. My sisters Geraldine and Cecil's friendly advice and the loving arms of my grandmother are very much treasured.

Finally, I thank the Lord for all his blessings.

### TABLE OF CONTENTS

| Chapter |                                                                         | Page |
|---------|-------------------------------------------------------------------------|------|
| I.      | INTRODUCTION                                                            | 1    |
| II.     | THE CHEMISTRY OF CHOLESTEROL AND ITS RELATION TO CORONARY HEART DISEASE | 6    |
|         | Early Chemistry of Cholesterol                                          | 6    |
|         | Physical and Chemical Properties of Cholesterol                         | 7    |
|         | Origin and Function of Cholesterol in the Body                          | 10   |
|         | Transport of Cholesterol in the Body: The Lipoproteins                  | 11   |
|         | Chylomicrons                                                            | 12   |
|         | Very low density lipoprotein                                            | 14   |
|         | Intermediate density lipoprotein                                        | 16   |
|         | Low density lipoprotein                                                 | 17   |
|         | High density lipoprotein                                                | 18   |
|         | Other lipoproteins                                                      | 19   |
|         | Studies on the Relationship of Lipoproteins with Coronary Heart Disease | 21   |
| III.    | REVIEW OF ANALYTICAL METHODS FOR<br>CHOLESTEROL AND LIPOPROTEIN         |      |
|         | DETERMINATION                                                           | 27   |
|         | Methods to Measure Serum Total Cholesterol                              | . 27 |
|         | Colorimetric methods                                                    | 27   |
|         | Enzymatic methods                                                       | 30   |
|         | Chromatographic methods                                                 | 31   |

| Chapter                                                         | Page |
|-----------------------------------------------------------------|------|
| Mass spectrometry methods                                       | 32   |
| Other methods                                                   | 33   |
| Methods for Serum Lipoprotein Separation                        | 33   |
| Ultracentrifugation                                             | 33   |
| Selective precipitation                                         | 35   |
| Electrophoresis                                                 | 37   |
| Chromatography                                                  | 38   |
| Immunochemical methods                                          | 39   |
| Proposed alternative method provided by this study              | 40   |
| IV. EXPERIMENTAL                                                | 41   |
| Sources of Serum Samples                                        | 41   |
| Analytical Methods Used in Independent<br>Laboratories          | 43   |
| The Proposed Alternative Method                                 | 44   |
| Comparison of Data Analysis Methods                             | 48   |
| Univariate approach                                             | 48   |
| Multivariate approach                                           | 49   |
| Multiple linear regression                                      | 50   |
| Principal component analysis and principal component regression | 51   |

| Pa | ge |
|----|----|
|----|----|

| Partial least squares regression                               | 54  |
|----------------------------------------------------------------|-----|
| Data Analysis Used in the Study                                | 56  |
| V. RESULTS AND DISCUSSION                                      | 63  |
| Reagent Modification                                           | 63  |
| Color and Spectra of Products                                  | 65  |
| Calibration                                                    | 68  |
| 3x3 matrix solution                                            | 68  |
| Multivariate regression analysis                               | 69  |
| The training set                                               | 69  |
| Prediction                                                     | 73  |
| OSU Wellness Center                                            | 73  |
| Roche Biomedical Laboratories and Stillwater<br>Medical Center | 74  |
| University of Cape Town Medical School                         | 79  |
| Combined data from the four laboratories                       | 84  |
| Precision Studies                                              | 87  |
| Interference Studies                                           | 88  |
| Linearity Tests                                                | 90  |
| VI. SUMMARY AND CONCLUSIONS                                    | 92  |
| LITERATURE CITED                                               | 94  |
| APPENDIX A: CALIBRATION PARAMETERS USED                        | 108 |

Page

| APPENDIX B: RAW DATA                                                             | 109 |
|----------------------------------------------------------------------------------|-----|
| APPENDIX C: LIPID PROFILES OBTAINED FOR THE<br>PRECISION STUDIES                 | 129 |
| APPENDIX D: INSTITUTIONAL APPROVAL FOR<br>HANDLING HUMAN SUBJECTS AND BIOHAZARDS | 131 |

## LIST OF TABLES

.

| Table |                                                                                                                   | Page |
|-------|-------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Classification, properties, and composition of human serum lipoproteins                                           | 13   |
| 2.    | Measured lipid profiles for the training set                                                                      | 60   |
| 3.    | Absorbance data for the training set                                                                              | 62   |
| 4.    | Metal salts evaluated as alternative to ZnCl <sub>2</sub>                                                         | 64   |
| 5.    | Paired student's t-test of samples used in the training set analyzed by the enzymatic and the alternative methods | 73   |
| 6.    | Statistics on the lipid profiles obtained by two methods of the samples from the four laboratories                | 85   |
| 7.    | Results of student's t-test using all the data from the four external laboratories                                | 85   |
| 8.    | Correlation coefficients                                                                                          | 86   |
| 9.    | Results of the precision studies                                                                                  | 87   |
| 10.   | Results of the interference studies                                                                               | 88   |
| 11.   | Results of the linearity tests                                                                                    | 90   |

## LIST OF FIGURES

| Figure |                                                                                                                                                       | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1a.    | Flat structural representation of cholesterol                                                                                                         | 8    |
| 1b.    | Conformational representation of cholesterol                                                                                                          | 8    |
| 2.     | Proposed product of the color reaction                                                                                                                | 47   |
| 3.     | Absorption spectra for the reaction of cholesterol in<br>(a) serum, and the individual fractions: (b) VLDL-C;<br>(c) LDL-C; (d) HDL-C                 | 57   |
| 4.     | Absorption spectra for the colored product of the reaction of cholesterol with three serum samples with different TC                                  | 67   |
| 5.     | Absorption spectra for the colored product of the reaction of cholesterol from three different serum samples with the same TC but different TG levels | 67   |
| 6.     | Correlation plots between methods for TC (upper)<br>and VLDL-C (lower) for the training set                                                           | 71   |
| 7.     | Correlation plots between methods for LDL-C (upper) and HDL-C (lower) for the training set                                                            | 72   |
| 8.     | Correlation plots between methods for TC (upper)<br>and VLDL-C (lower) for the OSU Wellness Center<br>samples                                         | 75   |
| 9.     | Correlation plots between methods for LDL-C<br>(upper) and HDL-C (lower) for the OSU Wellness<br>Center samples                                       | 76   |

| Figu | ıre                                                                                                                                                                                  | Page |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 10.  | Correlation plots between methods for TC of samples<br>from Roche Biomedical Laboratory (upper) and<br>Stillwater Medical Center (lower)                                             | 78   |
| 11.  | Correlation plots between methods for TC (upper)<br>and LDL-C (lower) for all the samples from the<br>University of Cape Town                                                        | 80   |
| 12.  | Correlation plot between methods for HDL-C<br>for all the samples from the University of Cape<br>Town                                                                                | 81   |
| 13.  | Correlation plots between methods for VLDL-C<br>for the University of Cape Town samples with no<br>lipid disorder (upper) and with known Type III<br>lipid disorder (lower)          | 82   |
| 14.  | Absorbance spectra of fraction A (obtained by ultracentrifugation) of individuals that are normal or with Type III and FH lipid disorder                                             | 83   |
| 15.  | Absorbance spectra of fraction A (obtained by ultracentrifugation) of individuals that are normal and with FH lipid disorder                                                         | 84   |
| 16.  | Plots of the concentration of the lipoprotein obtained<br>by the alternative method against fraction of Serum 2<br>added to Serum 1: (A) VLDL-C, (B) LDL-C,<br>(c) HDL-C, and (D) TC | 91   |
|      |                                                                                                                                                                                      |      |

#### LIST OF SYMBOLS AND ABBREVIATIONS

CHD = Coronary heart disease

MI = Myocardial infarction

NCEP = National Cholesterol Education Program

LSP = Laboratory Standardization Panel

CDC = Center for Disease Control

VLDL = Very low density lipoprotein

IDL = Intermediate density lipoprotein

LDL = Low density lipoprotein

HDL = High density lipoprotein

TC = Total cholesterol

TG = Triglyceride

VLDL-C = Cholesterol in the very low density lipoprotein particle

IDL-C = Cholesterol in the intermediate density lipoprotein particle

LDL-C = Cholesterol in the low density lipoprotein particle

HDL-C = Cholesterol in the high density lipoprotein particle

 $[\alpha]$  = optical activity

 $\varepsilon$  = molar absorptivity

Lp(a) = lipoprotein a

Lp-X = lipoprotein X

Lp-Y = lipoprotein Y

Lp-E = lipoprotein E

LPL = lipoprotein lipase

LCAT = lecithin cholesterol acetyl transferase

FHS = Framingham Heart Study

LRCF = Lipid Research Clinics Prevalence Mortality Follow-up Study

LRC-CPPT = Lipid Research Clinics Coronary Primary Prevention Trial

MRFIT = Multiple Risk Factor Intervention Trial

ATP = Adult Treatment Panel

PEG = polyethylene glycol

L-B = Liebermann Burchard

FIA = Flow injection analysis

ID/MS = Isotope dilution / mass spectrometry

GC/MS = Gas chromatography / mass spectrometry

HPLC = High performance liquid chromatography

UWC = Oklahoma State University Wellness Center

**RBL** = Roche Biomedical Laboratories

SMC = Stillwater Medical Center

UCT = University of Cape Town Medical School

CD = circular dichroism spectropolarimeter

MLR = Multiple linear regression

PCA = Principal component analysis

PCR = Principal component regression

PLS = Partial least squares

MVRA = Multivariate regression analysis

SRM = Standard reference material

 $t_{exp}$  = result of Student's t-test

 $t_{table}$  = theoretical t value from statistical table

FH = Familial hypercholesterolemia

- r = correlation coefficients
- CV = coefficient of variation

n = sample size

 $\alpha$  = significance level

df = degrees of freedom

SD = standard deviation

#### CHAPTER I

#### INTRODUCTION

Diseases of the heart and blood vessels are still the leading cause of death in the United States and other industrialized societies. The largest groups of these deaths are associated with myocardial infarction (MI) and coronary heart disease (CHD).<sup>1</sup> Coronary heart disease is a common, life-threatening and disabling disease which can be difficult to treat and very expensive to cure. In the United States alone, about one million Americans suffer MI each year, and more than six million have symptoms of CHD. Illness due to CHD costs over \$50 billion annually for care, loss of earnings, and productivity.<sup>2</sup>

Coronary heart disease and myocardial infarction are a consequence of atherosclerosis, a disease of the arteries. Accumulation of lipids in the cytoplasm of arterial cells is an early manifestation of atherosclerosis at the cellular level. Initial deposition of intracellular lipids transported into the vessel wall by lipoprotein plays an important role in the initiation of atherosclerotic lesions.<sup>3,4</sup> Once a lesion has started, lipids, particularly cholesterol, accumulate within the extracellular space of the intima of human arteries. This process thickens the arterial wall and reduces the lumen of the artery, resulting in reduced blood flow. Reduced blood flow will decrease the supply of oxygen to the tissues and can cause injury or even death to tissues. When this happens in the coronary arteries, the result is a MI or heart attack.

Results from many studies have shown that there are a large number of factors involved in the development of atherosclerosis. The following factors seem to be the most important: hyperlipidemia, genetic factors, hypertension, cigarette smoking, type A personality, elevated blood glucose, obesity, race, age, gender, and lack of exercise.<sup>5</sup> Recently, the effects of serum levels of lipoprotein(a)<sup>6,7</sup> and fibrinogen<sup>8</sup> have been added to the list. The precise way in which these risk factors promote atherosclerosis is not clear.

Among the lipids, cholesterol is the most atherogenic. A large body of evidence<sup>9-12</sup> has shown that an elevated blood cholesterol level is one of the principal risk factors for CHD. In 1985, the United States' National Institute of Health inaugurated the National Cholesterol Education Program (NCEP) with the goal of planning strategies to reduce the prevalence of elevated blood cholesterol in the United States and thereby reduce the incidence of CHD. The NCEP strongly encourages the public to have their serum cholesterol levels examined and be aware of the implications of elevated cholesterol. This recommendation created the need for automated methods for serum cholesterol determinations that can provide results quickly in order to be able to handle the huge numbers of samples that would be analyzed in the various screening programs. Cholesterol screening outside the confines of the conventional laboratory are not at all unusual today. Physicians' offices, pharmacies, shopping malls, worksites, supermarkets, and high traffic public areas are all common venues. Even home testing of cholesterol levels is now possible. The methods used for cholesterol determination differ in complexity from simple noninstrumental card tests to sophisticated multi-analyte analyzers.

Cholesterol and other lipids play an important role in human metabolism, participating in such diverse functions as the maintenance of cellular integrity, the storage of energy, the provision of metabolic intermediates and the transmission and transduction of signals.<sup>13</sup> In order to be solubilized in the aqueous environment of the blood and be transported through the body, lipids are associated with amphipathic proteins. The complex micellar structures of lipids and proteins are called lipoproteins. Protein moieties of the lipoprotein are known as apolipoproteins or apoproteins and serve as co-factors in enzyme and receptor site reactions for synthesis and degradation of lipoprotein complexes.

Three major classes of lipoproteins in the normal fasting state of human serum are usually recognized. These are very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL). Each of these lipoproteins is heterogeneous in terms of size, lipid composition, and apoprotein composition. Very low density lipoprotein and LDL components transport lipids from the liver to the various cells in the body. Very low density lipoprotein transports mainly triglyceride, while LDL is the main carrier of cholesterol in human blood plasma. Low density lipoprotein taken up by cells lining the arteries are responsible for atherosclerosis. High density lipoprotein fractions on the other hand, facilitate removal of excess cholesterol and other lipids from the blood and body cells by returning them to the liver for degradation to bile acids and ultimate excretion.

In the last two decades, more and more attention has been focused on

the role of the different lipoprotein classes and their relative effects on CHD risks. Studies have shown that the risk of developing CHD is positively correlated with total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), and negatively correlated with high density lipoprotein cholesterol (HDL-C).<sup>14-18</sup> There has been no direct evidence to implicate the very low density lipoprotein cholesterol (VLDL-C) in CHD risk determinations, but a high triglyceride (TG) level can be a serious problem by itself. However, HDL-C and TG are said to exhibit a strong inverse association.<sup>19</sup> The NCEP concluded that lipoproteins, particularly LDL-C and HDL-C offer more precise information than TC as risk factors for predicting the chances of CHD.

The need for better criteria to characterize CHD risks in patients has led to a rapid increase in the demand for the measurement of lipoprotein classes by clinical laboratories. Assay of TC is now largely relegated to the status of a screening test. Although many methods are currently available for lipoprotein determination, the current routine method used to obtain a lipid profile is based on three independent measurements. Total cholesterol, HDL-C, and TG are measured directly by enzymatic methods. To determine HDL-C, VLDL-C and LDL-C are selectively precipitated with one of the commonly used reagents, such as manganese heparin, dextran sulfate, or magnesium phosphotungstate.<sup>20</sup> The HDL-C remaining in solution is measured by the same enzymatic method used for TC. Based on considerable evidence, the VLDL-C fraction is taken to be equal to one-fifth of the TG value as long as TG is not >400 mg/dL. Low density lipoprotein cholesterol is estimated using the Friedewald formula,<sup>21</sup>

$$LDL-C = TC - (HDL-C + TG/5)$$
 (eq. 1)

The LDL-C fraction is the one known with least accuracy because of the propagation of errors in the measurement of TC, HDL-C, and TG, and the empirical nature of the equation.

The Laboratory Standardization Panel (LSP) of the NCEP has emphasized the need to improve upon the precision and accuracy of the measurements of lipoproteins among different clinical laboratories, and has recommended that clinical laboratories should ultimately obtain a precision consistent with coefficients of variation (CV) of  $\leq 3\%$  for TC and LDL-C and  $\leq 4\%$  for HDL-C.<sup>22-23</sup> In terms of accuracy, LSP recommends a bias of  $\leq \pm 3\%$  of the result of the reference method. Despite great improvements in accuracy and precision in the measurement of TC and the lipoprotein classes, there is still a need for reliable methods for the measurement of serum LDL-C<sup>24</sup> and HDL-C<sup>25</sup> that are suitable for routine use in the clinical laboratory.

The goal of this research project was to develop an alternative method to determine the three major lipid fractions directly in a single experiment. Previous attempts<sup>26,27</sup> have been reported to measure these three lipid fractions simultaneously. Results from these studies yielded only a very good correlation between methods for LDL-C. The intent of this study was to improve the correlation for all three major lipid fractions and to surpass the LSP requirements for analytical accuracy and precision. The current routine method has a limitation in estimating LDL-C for hyper-triglyceridemic serum (TG >400 mg/dL). As a further aspiration, the applicability of the alternative method to measuring cholesterol in hyper-triglyceridemic samples was evaluated.

#### CHAPTER II

## THE CHEMISTRY OF CHOLESTEROL AND ITS RELATION TO CORONARY HEART DISEASE

#### I. Early Chemistry of Cholesterol

Cholesterol was first described towards the end of the eighteenth century by the French chemist de Fourcroy who isolated a crystalline substance from the alcohol-soluble fraction of human gallstones.<sup>28</sup> This substance was also mentioned by Poulletier de la Salle more than twenty years earlier. De Fourcroy considered that his substance was related to cetyl palmitate; but early in the next century, Chevreul showed this not to be so. Chevreul also gave de Fourcroy's substance the name cholesterine. Lecanu detected the presence of cholesterol in the blood of humans while Chevreul and Couerbe had found it in human and animal bile as well as in the brain. It was soon detected as a normal constituent of all animal cells, as well as in several secretions and pathological deposits. For instance, Vogel found it in a type of tumors which he called cholesteatomes.<sup>29</sup>

In 1859, Berthelot showed that cholesterol was an alcohol and

prepared esters of it. Other cholesterol esters like the oleate and palmitate were isolated from serum by Hurthle while the palmitate and stearate were found in normal adrenals by Rosenheim and Tebb in 1909.<sup>29</sup>

Wislecenus and Moldenhauer prepared a dibromide of cholesterol, indicating the existence of a double bond. In 1898, Reinetzer published the correct empirical formula and Windaus in 1919 proposed a tentative structural formula for cholesterol. Advances in x-ray crystallography and synthetic chemistry enabled both Windaus and Wieland and Dane to deduce the correct structural formula for cholesterol in 1932.<sup>29,30</sup>

#### II. Physical and Chemical Properties of Cholesterol

Cholesterol is the principal sterol of mammalian tissue. In humans, it occurs in particularly high concentrations in the brain, spinal cord and adrenal glands. About 17% of the solid matter of the brain is free cholesterol.<sup>28</sup>

The basic structure of cholesterol is a tetracyclic perhydrocyclopentanophenanthrene skeleton that is typical for steroid molecules. Its molecular weight is 387 g/mole. Fig.1a shows the flat structural form and Fig.1b the conformational representation of the cholesterol molecule.

Substituents are a double bond at carbon atom 5 (C-5), a saturated branched side chain of eight carbon atoms at C-17, and two  $\beta$ -oriented methyl groups at C-10 and C-13. The hydroxyl group at C-3 and the hydrogen atom at C-8 are also  $\beta$ - oriented. Hydrogen atoms at C-3, C-9, C-14, and C-17 are all situated below the plane of the molecule ( $\alpha$ oriented). The A to B, B to C, and C to D ring junctions are all in transconfigurations. Substituents at C-20 are in the R-configuration.<sup>31</sup>

The 3- $\beta$ -hydroxyl group is the only polar group in the cholesterol molecule. It is only very slightly soluble in water (solubility is about 0.2 mg / 100 mL water) and quite soluble in organic solvents. It has a melting point of 149.5-150°C.<sup>32</sup>

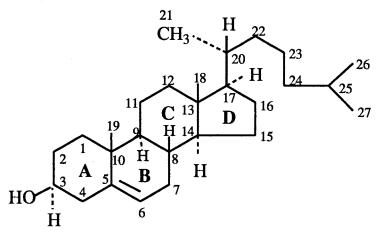



Fig.1a. Flat structural representation of cholesterol.

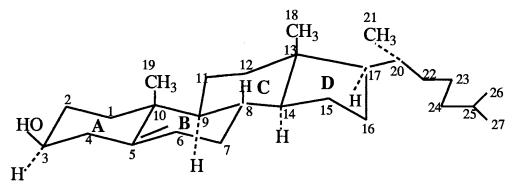



Fig.1b. Conformational representation of cholesterol.

The presence of several asymmetric carbon atoms render solutions of cholesterol optically active and this property is an aid in identifying and in ascertaining the analytical purity of cholesterol preparations. The optical activity of cholesterol is  $[\alpha]_D^{20} = -31.5^\circ$  in ether and  $[\alpha]_D^{20} = -39.5^\circ$  in chloroform.<sup>32</sup> When crystallized from anhydrous organic solvents, cholesterol forms triclinic needles, and when crystallized from 95% alcoholic solution, it separates as monohydrate, rhomb-shaped triclinic plates, which lose water at 70-80°C. The absorption maximum of cholesterol in ethanol occurs at 206 nm ( $\varepsilon_{10}^{M} = 3400$ ).<sup>33</sup>

The chemistry of cholesterol is not particularly complex. Most of the reactions occur at the hydroxyl group, at the double bond or at carbon  $7.^{29}$ 

A variable fraction of cholesterol is present in the human body as cholesterol esters formed by condensation of the alcohol group with long chain fatty acids that generally contain 16-20 carbon atoms.<sup>33</sup>

The glycoside digitonin, the saponins tigonin and gitonin, and the alkaloid tomatine interact with the  $3\beta$ -hydroxyl group of cholesterol causing it to be precipitated. The reaction is specific for sterols containing the  $3\beta$ -hydroxyl group, which provides a basis for procedures designed to measure free cholesterol in biological materials.<sup>33</sup>

The double bond between C-5 and C-6 can be hydrogenated and halogenated. The formation of halide, especially dibromide, has been of great practical use in purifying cholesterol obtained from natural sources. Interactions between cholesterol and sulfuric acid yield intensely colored compounds and this has been the basis of a number of colorimetric determinations.<sup>33</sup>

Cholesterol complexes readily with the salts CaCl<sub>2</sub>• 2H<sub>2</sub>O and

MgCl<sub>2</sub>• 6H<sub>2</sub>O. Complexes contain two cholesterol molecules and one molecule of the salt. It is probable that these salts occur at sites of cholesterol deposition.<sup>31</sup>

Cholesterol readily undergoes auto-oxidation even when stored in crystalline form. The main auto-oxidation products are 7-ketocholesterol, 7 $\alpha$ - and 7 $\beta$ - hydroxycholesterols, cholestane-3 $\beta$ , 5 $\alpha$ -, 6 $\beta$ -triol, and 25-hydroxycholesterol.<sup>31</sup>

#### III. Origin and Function of Cholesterol in the Body

Cholesterol present in human and animal tissues has a dual origin. Part originates in the diet and the remainder is synthesized in the body from acetyl CoA, the active form of acetic acid. The quantitative contributions of these two sources are highly variable.<sup>33</sup> The daily dietary intake of cholesterol ranges from 0 to 1.2 g,<sup>34-35</sup> while the total quantity synthesized in the human body averages 1.0 g/day, about 80% of which is produced by the liver.<sup>36-38</sup> Numerous studies <sup>36,39-43</sup> have shown that dietary cholesterol, absorbed from the gastrointestinal tract, can inhibit cholesterol synthesis in the liver, which appears to be the principal mechanism by which the level of cholesterol in the body is controlled.

Cholesterol is the major sterol in man and a component of virtually all cell surfaces and intra-cellular membranes. It is also a substrate for the formation of other essential substances that include: (1) the bile acids, which are synthesized in the liver and function to facilitate the absorption of dietary triglycerides and fat, (2) various steroid hormones (e.g. progesterone, corticosteroids, estrogens), which have widely different physiological properties, and (3) vitamin  $D_3$ , the only vitamin normally synthesized in sufficient quantities by the body and therefore not required in the diet.<sup>44</sup>

# IV. Transport of Cholesterol and Other Lipids in the Body: The Lipoproteins

To solubilize the hydrophobic cholesterol and other lipids in the aqueous environment of the blood and to transport them throughout the body, lipids are associated with proteins. The lipids and proteins are not covalently attached but are associated by hydrophobic interaction.<sup>45</sup> The macromolecular lipid-protein complexes are referred to as lipoproteins and have characteristic sizes, densities and compositions. Protein moieties of the lipoproteins are known as apoproteins or apolipoproteins. They are responsible for the metabolism of the lipoproteins by interacting with the different enzymes and receptors in the body. Besides lipid transport, lipoproteins also regulate lipid synthesis and metabolism.<sup>46</sup>

Plasma lipoproteins are globular, essentially spherical micelle-like particles, that consist of a nonpolar core of triglycerides and cholesteryl esters sorrounded by an amphipathic coating of protein, phospholipid, and free cholesterol.<sup>45</sup> The several classes of lipoproteins are based upon their differences in sizes, floating densities in an ultracentrifugal field, or electrophoretic mobilities. Each lipoprotein class has a characteristic composition, but the amounts of lipid and protein do not occur in fixed proportions within each class.<sup>47-49</sup> Lipoproteins are, therefore, viewed as a continuous spectrum of molecular aggregates with a changing pattern of components.<sup>48,50</sup> The different human serum lipoproteins and their properties and composition are summarized in Table 1.

#### A. Chylomicrons

The term chylomicron was first used by Gage<sup>52</sup> in 1920 to describe the luminous lipid particles observed under the dark field microscope in blood samples after ingestion of fat. Chylomicrons are the largest and lightest of the lipoproteins, with diameters ranging from 700-12000Å and a density less than 0.95 g/mL.<sup>50-51,53-54</sup> They are composed mainly of lipids (97.5-99.2%) with average percent by weight compositions that are 80-95% triglyceride, 1-3% free cholesterol, 2-4% esterified cholesterol, 3-6% phospholipids, and 1-2% protein.<sup>53</sup> On electrophoresis of lipoproteins on paper, agarose gel or polyacrylamide gel, chylomicrons remain at the origin. The major protein components are apo-C and apo-B.<sup>50-51,53-54</sup> Resemblances have been noted between the composition of the protein moiety of the chylomicrons and that of HDL. As such it has been suggested that the HDL are utilized by the intestinal cells for the synthesis of chylomicrons.<sup>55</sup>

Chylomicrons are the principal form of lipoproteins in which the absorbed triglycerides are transported from the intestines to the various organs in the body.<sup>56</sup> They are synthesized in the small intestine in response to the absorption of dietary fat. Most, but not all, of the lipid is of dietary origin. The absorbed lipid is re-esterified within the intestinal epithelial cell and then undergoes further synthetic steps involving phospholipids and apoproteins before secretion from the cell as a chylo-

| Measurement                               | Chylomicron                | VLDL                     | IDL                                               | LDL                    | HDL                          |
|-------------------------------------------|----------------------------|--------------------------|---------------------------------------------------|------------------------|------------------------------|
| Hydrated density,                         | 0.93                       | 0.97                     | 1.003                                             | 1.034                  | 1.121                        |
| Solvent density for isolation, g/ml       | <1.006                     | <1.006                   | 1.006-1.019                                       | 1.019-1.063            | 1.063-1.21                   |
| Molecular weight                          | (0.4-30) x 10 <sup>9</sup> | (5-10) x 10 <sup>6</sup> | (3.9-4.8) x 10 <sup>6</sup>                       | 2.75 x 10 <sup>6</sup> | (1.75-3.6) x 10 <sup>5</sup> |
| Diameter, nm                              | >70                        | 25.0-70.0                | 22.0-24.0                                         | 19.6-22.7              | 4-10                         |
| Electrophoretic mobility (paper, agarose) | Origin                     | Pre-β                    | Broad $\beta$ (between $\beta$ and pre- $\beta$ ) | β                      | α                            |
| Composition, % by<br>weight               |                            |                          |                                                   |                        |                              |
| Cholesterol, unesterified                 | 2                          | 5-8                      | 8                                                 | 13                     | 6                            |
| Cholesterol, esterified                   | 5                          | 11-14                    | 22                                                | 49                     | 13                           |
| Phospholipid                              | 7                          | 20-23                    | 25                                                | 27                     | 28                           |
| Triglyceride                              | 84                         | 44-60                    | 30                                                | 11                     | 3                            |
| Protein                                   | 2                          | 4-11                     | 15                                                | 23                     | 50                           |
| Synthesis                                 | Intestine                  | Liver, intestine         | Intravascular                                     | Intravascular          | Intestine, liver             |
| Apoproteins, %total                       |                            |                          |                                                   |                        |                              |
| AI                                        | 7.4                        | Trace                    | -                                                 | -                      | 67                           |
| AII                                       | 4.2                        | Trace                    | -                                                 | -                      | 22                           |
| B-100                                     | Trace                      | 36.9                     | 50-70                                             | 98                     | Trace                        |
| B-48                                      | 22.5                       | Trace                    | Trace                                             | -                      | _                            |
| CI, CII, CIII                             | 66                         | 49.9                     | 5-10                                              | Trace                  | 5-11                         |
| EII, EIII, EIV                            | -                          | 13.0                     | 10-20                                             | Trace                  | 1-2                          |
| D                                         | -                          | -                        | _                                                 | -                      | Trace                        |

Table 1. Classification, Properties, and Composition of Human Serum Lipoproteins.<sup>51</sup>

micron.

Following release from the intestinal mucosal cells into the lymph, nascent chylomicrons enter the systemic circulation via the thoracic duct, and are rapidly metabolized with a plasma half life of 5 to 15 minutes. Transfer of apo A-I and apo A-II to HDL and reciprocal transfers of C and E apoproteins from HDL serve to enhance the hydrolysis of chylomicron-triglycerides by the enzyme lipoprotein lipase (LPL), and provide a source of chylomicron surface components that act as precursors of nascent HDL particles. This process occurs predominantly in the capillary beds of muscle and adipose tissue, and results in the progressive delipidation of the chylomicron particle. Progressive hydrolysis of chylomicron, the chylomicron micron remnant.<sup>57</sup>

Plasma drawn from normal human subjects more than 12 hours after ingestion of fat contains few if any chylomicrons.<sup>58</sup> In certain disorders however, the concentration and persistence of chylomicrons may be greatly increased. In a hereditary disease known as Fredrickson type I hyperlipoproteinemia<sup>59</sup> (or hyperchylomicronemia), there is a defect in the activity of the enzyme LPL, which is responsible for the removal from plasma of the triglyceride of both chylomicrons and VLDL. Lack of LPL activity may be due either to its absence or to the lack of the activator enzyme, the protein Apo C-II.<sup>51</sup> In another disorder known as endogenous (carbohydrate induced) lipemia, chylomicrons compete with the increased VLDL for LPL induced triglyceride hydrolysis.

#### B. Very low density lipoprotein (VLDL or pre- $\beta$ )

The VLDL class of lipoproteins covers a wide spectrum of particles, having a diameters from 280-750Å, hydrated densities of 0.95-1.006g/mL and flotation values from 20-400.<sup>47</sup> From their relative mobility on electrophoresis they are sometimes referred to as pre- $\beta$  lipoproteins.<sup>53</sup> Particle sizes are directly proportional to the TG content and inversely proportional to the phospholipid and protein content.<sup>47</sup> Average percent by weight compositions of VLDL are 55% triglyceride, 20% phospholipid, 15% cholesterol (30% of which is esterified), and 10% protein.<sup>56</sup> The major apoprotein of VLDL is apo B-100 with lesser amounts of apo-C polypeptides and apo-E.<sup>57</sup>

Very low density lipoprotein particles serve to transport endogenous triglycerides from the liver to the peripheral tissues. The liver is the major site of synthesis of VLDL, for which apo B-100 is a constitutive apoprotein but the small intestine will also produce significant amounts of VLDL.<sup>60</sup> Many factors including nutrient intake, plasma concentration of free fatty acids, and levels of insulin and epinephrine in plasma, appear to modulate the hepatic secretion of VLDL, which in turn influences VLDL concentrations in plasma.<sup>57</sup>

Particles of VLDL are metabolized more slowly than chylomicrons. Under normal conditions, the half life of VLDL apo-B is 6 to 12 hours. The metabolisms of VLDL and chylomicrons show many similarities, but one important difference is that the remnant particles, which result from VLDL lipolysis, can be either taken up by the liver via apo E mediated catabolism or subsequently converted to LDL. Metabolism of VLDL to LDL is the major source of the latter lipoprotein in human plasma.<sup>57</sup>

There are many diseases and metabolic disorders in which moderate to massive increases in VLDL are observed. One such disorder is Fredrickson type IV hyperlipoproteinemia,<sup>59,61</sup> an inherited recessive disease. Increased VLDL production by the liver or reduced VLDL removal are important factors in the development of type IV hyperlipoproteinemias.<sup>51</sup>

#### C. Intermediate density lipoproteins (IDL)

The IDL's are short-lived lipoproteins derived from VLDL after the hydrolysis of the triglyceride of VLDL by the enzyme LPL.<sup>51</sup> The average percent by weight composition of IDL is 15% protein, 7% free cholesterol, 22-26% cholesteryl esters, 17% phospholipids, and 35-39% triglycerides.<sup>50</sup> It is significant that cholesterol and triglyceride contents of IDL are almost the same. The major apoproteins are apo-B and E.

During the catabolism of one VLDL particle, all constituents, except apo-B, are removed from the particle. Of the original amounts, 7% of apo-C, 20% of triglycerides, 40% of free cholesterol and phospholipids and 60% of esterified cholesterol are recovered with the IDL particle.<sup>50</sup> Each IDL particle however, retains the full complement of apo-B present in the original VLDL particle. Thus, only one IDL is formed from each VLDL particle.<sup>56</sup> Apo-E is responsible for the continued conversion of IDL to LDL for hepatic uptake and degradation.<sup>51</sup>

Disorders, known as Fredrickson type III hyperlipoproteinemia, occur where there is an abnormal accumulation of IDL because hepatic

receptors, which have high affinity for apo-E, do not bind or remove chylomicron remnants and IDL in a normal manner, due to lack of the isoform known as apo-EIV.<sup>51</sup>

#### D. Low density lipoproteins (LDL)

Low density lipoproteins range in size from 210-250Å, are isolated between densities 1.019-1.063 g/mL, and display  $\beta$ -mobility on electro-phoresis.<sup>53</sup> The major lipid constituents by weight are cholesteryl esters (47-55%), unesterified cholesterol (10-11%), phospholipids (28-30%), and triglycerides (8-10%).<sup>47</sup> The major protein content is apo-B, which comprises over 90% of the total LDL protein.<sup>47,50</sup>

Low density lipoprotein is the major cholesterol carrying particle present in plasma. It is normally formed by hepatic delipidation of IDL by hepatic protein lipase. As delipidation occurs, apo-B is unmasked, allowing LDL to bind to specific membrane receptors.<sup>51</sup>

The degradation of LDL occurs in both peripheral tissues and the liver, but the liver is responsible for the catabolism of 70% of LDL in normal human subjects. Catabolism is facilitated by both receptor mediated and non-receptor mediated pathways, but in normal human subjects, the receptor mediated pathway predominates and is responsible for the clearance of up to 75% of the plasma LDL pool.<sup>57</sup> The sequence of events of LDL degradation occur in this order: LDL interacts with high affinity receptor sites and the bound LDL is internalized and subjected to lysosomal degradation that ultimately hydrolyzes the apo-B to amino acids, and the esterified cholesterol is hydrolyzed to free cholesterol which enters the

cytoplasm.<sup>51</sup>

Certain disorders result in either the abnormal absence or abnormal accumulation of LDL. In Fredrickson type II hyperlipoproteinemia (or familial hypercholesterolemia), LDL levels increase significantly and are characterized by a strikingly high incidence of premature atherosclerosis, which tends to cause disease and death at an early age.<sup>51</sup> Patients with familial hyperlipoproteinemia have a defective gene that codes for LDL receptor. The elevated plasma levels of LDL cholesterol cause an increased uptake of LDL by macrophages and smooth muscle cells of arterial wall tissues, resulting in premature atherosclerosis. In the opposite LDL dysfunction, no LDL at all has been found in the plasma of patients with abetalipoproteinemia. The inherited defect in the disease may be the inability to combine lipid with the B protein.<sup>62</sup>

#### E. High density lipoproteins (HDL)

High density lipoproteins are ultracentrifugally isolated in the density range of 1.063-1.21 g/mL and have an average percent by weight composition of 50% protein, 30% phospholipids, and 20% cholesterol.<sup>50</sup> They are sometimes referred to as  $\alpha$ -lipoproteins because they migrate with  $\alpha$ globulins during electrophoresis. There are two subclasses based upon density differences: HDL<sub>2</sub> with densities ranging from 1.063-1.120 g/mL, and HDL<sub>3</sub> which ranges from 1.120-1.210 g/mL.<sup>47</sup> HDL<sub>2</sub> has a mean molecular weight of 360,000 and is composed of 60% lipid and 40% protein, while HDL<sub>3</sub> has a mean molecular weight of 175,000, of which 55% is attributed to the apoprotein. The major proteins are apo A-I and apo A-II which constitute about 90% of the total protein while apo-C form the minor components.<sup>50</sup>

The major function of HDL is to transport cholesterol from peripheral tissues to the liver for its catabolism and excretion. In addition, HDL plays a major role as a scavenger of lipid and apolipoprotein during the normal catabolism of chylomicrons and VLDL. It is also known to play an important part as a plasma reservoir for apo-CII.<sup>51</sup>

High density lipoproteins are derived from direct secretions by the liver and intestine, transfer from other lipoproteins, and transfer from peripheral tissues.<sup>14</sup> Little is known about the sites of HDL catabolism. The liver and kidney are probably involved.<sup>51</sup>

Several factors have been shown to increase HDL concentrations. Among these are regular exercise, moderate consumption of alcohol, and correction of hypertriglyceridemia.<sup>63-64</sup> A particular genetic disorder, called Tangier's disease, also exists in which HDL particles are entirely absent. The disease is associated with a very low serum cholesterol level and the generalized deposition of cholesterol esters in tissues. These findings led to the concept that HDL has an important function in cholesterol transport.<sup>58</sup>

#### F. Other lipoproteins

#### (1) Lipoprotein (a) ("Sinking" pre- $\beta$ -lipoprotein or Lp(a))

Lipoprotein (a) was discovered in 1963 by Berg<sup>65</sup> and became important because of its antigenic properties. It is found in human plasma

in varying amounts at the density interval of 1.055-1.085 g/mL.<sup>50</sup> Lipoprotein (a) has pre-beta mobility on electrophoresis and is composed of 27% protein, 65% lipid and 8% carbohydrates.<sup>66-67</sup> The protein moiety of Lp(a) lipoprotein was reported to be composed of 65% apoB, 20% of Lp(a) apoprotein, and albumin (less than 15% of total protein). Cholesterol makes up 41.7% and phospholipid 19.2% of the total lipid of Lp(a).<sup>67</sup> Immunochemically, Lp(a) cross reacts with LDL but it differs from LDL in both chemical composition and physical properties.<sup>50</sup>

Increased plasma concentrations of Lp(a) are associated with increased risk of atherosclerosis, but the precise physiologic function and the metabolism of Lp(a) remain unknown.<sup>68</sup> Apparently, even the near absence of Lp(a) from plasma does not cause a deficiency syndrome or any kind of disease.

(2) Lipoproteins occurring in disease states: Lp-X, Lp-Y, and Lp-E

Lipoprotein-X is an abnormal lipoprotein, composed predominantly of free cholesterol and lecithin. It appears in the LDL density range of 1.006-1.063 g/mL from patients with obstructive jaundice,<sup>50</sup> and contains about 65% lecithin, 20-30% unesterified cholesterol, and 5% protein. The protein moiety is composed of albumin (20-40% of total protein) and apo-C.<sup>50</sup> Manzato et al.<sup>69</sup> postulated that flowing back of bile into the blood stream might represent the actual pathway of Lp-X synthesis.

Lipoprotein-Y occurs in patients with cholestasis and lecithin cholesterol acetyl transferase (LCAT) deficiency.<sup>70</sup> It is a triglyceride rich LDL, which showed, in addition to apo-C, the presence of apo-B and "lipoprotein B", a lipoprotein particle with higher triglyceride and free cholesterol contents than those of normal individuals and an unusually high content of apo-C.<sup>14</sup> The mechanism of Lp-Y synthesis has not been elucidated completely but it may be related to reduced activity of hepatic lipase in liver diseases.

Lipoprotein-E is a lipoprotein which is very rich in apoE. It was first noticed in LCAT deficient plasma by Utermann et al.,<sup>71</sup> and was also reported in patients with liver disease or secondary LCAT deficiency. The mechanism of Lp-E synthesis is not yet known.<sup>14</sup>

## V. Studies on the Relationship of Lipoproteins with Coronary Heart Disease

The role of cholesterol and other lipids in the development of atherosclerosis is widely recognized. It is known that the two main processes of atherogenesis involve cell proliferation and blood lipid in-filtration.<sup>72</sup> Chemical analysis of atherosclerotic plaques from humans indicate that on the average it is composed of about one half lipid components and one half protein. Most of the cells that accumulate in the atherosclerotic plaque are modified smooth muscle cells. These have undergone changes that have made them less contractile cells in the media of the artery and enable them to divide and synthesize collagen and take up lipid.<sup>73</sup>

The relationship of the various lipids and lipoproteins to CHD and their various manifestation have been the major epidemiological objectives of the Framingham Heart Study (FHS).<sup>18,74-77</sup> It was concluded that

LDL-C is positively correlated, while HDL-C is negatively correlated to CHD risk. The study determined that VLDL-C is also positively related to CHD risk but the relationship tends to disappear when all the lipoprotein fractions are considered simultaneously. Other major study programs in the United States which include the Lipid Research Clinics Prevalence Mortality Follow-up Study (LRCF), the Lipid Research Clinics Coronary Primary Prevention Trial (LRC-CPPT), and the Multiple Risk Factor Intervention Trial (MRFIT) have also made important contributions towards understanding the roles of lipoproteins as CHD risk factors.

The FHS, started in 1949, was an epidemiological study of cardiovascular disease involving a group of 5209 men and women then aged 30 to 59 years. In 1968, 2815 men and women from the group, ages 49 to 82 years had their lipids and lipoproteins characterized after an overnight fast. The progress of all volunteers had been monitored by means of routine biennial medical examinations where possible, and from morbidity and mortality data provided by hospitals and other sources.<sup>18</sup>

Based on the FHS data, Lavie et al.<sup>78</sup> identified the importance of HDL-C in preventing CHD. The group observed that CHD is rare when HDL-C is high and LDL-C is low. Also, even when LDL-C levels are very high, CHD is fairly uncommon if HDL-C levels are 65 mg/dL or more, and it is rare when HDL-C levels are as high as 85 mg/dL. On the other hand, even when LDL-C levels are very low ( $\leq 100 \text{ mg/dL}$ ), CHD is still common when HDL-C levels are also very low ( $\leq 25 \text{ mg/dL}$ ). Using pooled data from four large prospective epidemiologic studies (FHS, LRCF, LRC-CPPT, and MRFIT), Gordon et al.<sup>79-80</sup> concluded that HDL-C represents a strong independent risk factor for CHD and that a 1 mg/dL increment in HDL-C is associated with a decrease in CHD risk of 2% men and 3% in

women.

Two major hypotheses exist to interpret the role of HDL in restricting the development of CHD.<sup>19</sup> In the first hypothesis HDL is described as a protector against atherosclerosis by its ability to trap excess cholesterol from cellular membrane by esterification and to transfer the esterified cholesterol to the triglyceride rich lipoproteins that are subsequently removed by hepatic receptors. This reverse cholesterol transport from the peripheral cells to the liver prevents the deposition of cholesterol at sites where excessive cholesterol levels produce atherosclerosis. High HDL-C levels will signify a high rate of reverse cholesterol transport. In the second hypothesis, it is proposed that HDL does not interfere directly with cholesterol deposition in the arterial wall, but instead is a measure of the rate of conversion of the TG rich lipoproteins to atherogenic remnants. High HDL-C levels then will indicate an efficient metabolism of TG-rich lipoproteins and a low production rate of atherogenic remnants.

The Lipid Research Clinics Prevalence Study, done during 1972-1976 in 10 collaborating North American centers, is another epidemiological study of lipid and other cardiovascular risk factors.<sup>79</sup> In 1977, a mortality follow-up study (LRCF) was begun by involving all participants in the Prevalence Study who were at least 30 years old at that time.<sup>81</sup> The primary objective of this study was to acquire data on the prevalence of different types of hyperlipoproteinemia in various age and ethnic groups.

The LRC-CPPT study was a multicenter, randomized double blind trial of the efficacy of lowering LDL-C levels in reducing CHD risk in 3806 asymptomatic middle-aged men with primary hypercholesterolemia  $(\geq 265 \text{ mg/dL}).^{9,82}$  Findings of the LRC-CPPT confirmed that reducing TC by lowering LDL-C levels can diminish the incidence of CHD morbidity and mortality in men whose high risk for CHD is a consequence of elevated LDL-C levels. A decrease of 22.3 mg/dL in LDL-C was associated with a 16% to 19% reduction in CHD risk.

Low density lipoprotein is the main carrier of cholesterol from the bloodstream. Elevation of plasma LDL-C therefore results in the deposition of cholesterol in extrahepatic tissues, including the arterial intima, and leads to atherosclerosis. It has been suggested that a more dense fraction of LDL is the one responsible for atherosclerosis, although this proposal is controversial.<sup>83</sup> Dense LDL is associated with a more atherogenic type of lipoprotein profile, with increased levels of TG and apo-B and lower levels of HDL-C and apoprotein-AI. One explanation for the relationship between dense LDL and atherogenesis relates to the increase susceptibility of dense LDL to lipid peroxidation. Evidence showed<sup>84</sup> that oxidized LDL is taken up more rapidly by the arterial cells. Another explanation of the atherogenic property of dense LDL is proposed by Zilversmit<sup>85</sup> and it suggests that the presence of dense LDL may be an indicator of a delay in the post prandial catabolism of potentially atherogenic, TG-rich remnant lipoprotein.

The MRFIT study was a randomized, multicenter clinical trial to test the effect of a multifactor intervention program on the mortality from CHD in 12,866 high risk men aged 35 to 57 years. The subjects were without clinical CHD manifestations but were at high CHD risk (upper 10%-15%) because of a combination of hypertension, cigarette smoking, and elevated plasma cholesterol.<sup>86</sup> Based on the analysis of the MRFIT data, Stamler et al.<sup>87</sup> demonstrated that serum TC levels of about 180 mg/dL and above are associated with increased risk for middle aged American men, and not just levels that are equal to or greater than 220 to 240 mg/dL.

In 1985, the United States' National Institute of Health inaugurated the National Cholesterol Education Program (NCEP) with the goal of planning strategies to reduce the prevalence of elevated plasma cholesterol in the United States thereby reducing the incidence of CHD. Since then, the NCEP has issued periodic reports developed by its Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel or ATP-I) and its Laboratory Standardization Panel (LSP) on the validity of measurements.<sup>88</sup> The second report (ATP-II) presents the NCEP's updated recommendation for cholesterol management. The report of ATP-II is similar to ATP-I in its outline and fundamental approach to the treatment of high blood cholesterol although it does give more attention to HDL-C as an inverse CHD risk factor.<sup>89</sup> ATP-II still continues to identify LDL-C as the primary target for cholesterol lowering therapy. Dietary therapy remains the initial and principal mode of treatment, and drug therapy is reserved for patients at high risk of CHD.90

The guidelines issued by ATP-II for cholesterol management are as follows.<sup>89</sup> All American adults 20 years of age and over should have serum TC and HDL-C measured at least once every 5 years. Further risks classifications are based on answers to a series of CHD related questions. For those without a history of CHD, non-fasting TC and HDL-C measurement is sufficient. If any of the following are observed: (1) TC  $\geq$ 240 mg/dL, (2) HDL-C  $\leq$  35 mg/dL or (3) TC between 200 to 239 mg/dL in association with two or more CHD risk factors, a fasting lipoprotein analysis is recommended. Individuals whose LDL-C levels are  $\geq$  160 mg/dL, and those having LDL-C levels between 130 and 159 mg/dL as well as two or more CHD risk factors would be candidates for dietary intervention. Those with existing CHD conditions must submit to fasting lipoprotein analysis, regardless of their blood cholesterol level. Low density lipoprotein cholesterol values greater than 100 mg/dL would be indications for dietary intervention. After an adequate trial of dietary modification, consideration might be given to drug therapy if LDL -C levels remain 30 mg/dL higher than the initial levels.<sup>89</sup>

Additional risk factors identified and expressed in ATP-II are:<sup>89</sup> (1) age; male 45 years and older; female 55 years and older or having premature menopause without estrogen replacement therapy; (2) family history of CHD; (3) cigarette smoking; (4) hypertension ( blood pressure of 140/90 mm Hg and higher) or use of antihypertensive drugs; (5) HDL cholesterol level less than 35 mg/dL; and (6) diabetes mellitus.

# CHAPTER III

# REVIEW OF ANALYTICAL METHODS FOR CHOLESTEROL AND LIPOPROTEIN DETERMINATION

## I. Methods to measure serum total cholesterol

A. Colorimetric methods

Interest in the determination of cholesterol originated in the late 19th century, and since then many methods have been developed. A comprehensive review of colorimetric methods for cholesterol determination was published by Zak and Ressler<sup>91</sup> in 1955 and by Tonks<sup>92</sup> in 1967.

The first attempt to measure cholesterol by color determination was made by Liebermann<sup>93</sup> in 1885 and applied by Burchard<sup>94</sup> in 1890. In 1910, Grigaut<sup>95</sup> introduced a procedure for the quantitative estimation of cholesterol based on the Liebermann-Burchard (L-B) reagent. At almost the same time, Windaus<sup>96</sup> employed a microgravimetric analysis for the determination of cholesterol using digitonin as the precipitating agent.

The L-B color reagents consist of a mixture of acetic anhydride and concentrated sulfuric acid, and occasionally glacial acetic acid. The color reaction was studied extensively and a number of modifications appeared which improved upon some of the drawbacks of this reaction. Among these drawbacks are its complexity and sensitivity to many variables, e.g. the composition of the mixture, the amount of water (if any) in the final reaction mixture, the solvent used, the reaction time and temperature, the effect of light, the wavelength at which the color is measured, and the occurrence of interfering substances such as bilirubin and unreacted digitonin. Neither the reagent nor the color of the final product is particularly stable.<sup>92</sup>

A series of modifications involved different extraction procedures. Autenrieth and Funk,<sup>97</sup> for instance, digested blood with a base and then extracted the cholesterol with chloroform or ether before carrying out the L-B reaction. Bloor<sup>98</sup> extracted cholesterol from the blood using an alcohol-ether mixture, evaporated the solvent, re-dissolved the residue in chloroform and ran the L-B reaction in the choloroform solution. In yet another procedure, cholesterol is extracted into an acetone-alcohol mixture and precipitated as the digitonide salt.<sup>99</sup> This is re-dissolved in acetic acid which is used as the solvent for the L-B reaction. In the Abell et al.<sup>100</sup> method, the work-up involves hydrolysis of cholesterol esters with alcoholic potassium hydroxide, extraction of the free cholesterol into petroleum ether, before measuring it by the L-B reaction.

To improve upon the reagent stability, Huang et al.<sup>101</sup> used a mixture consisting of glacial acetic acid, acetic anhydride, and sulfuric acid plus anhydrous sodium sulfate. Huang's procedure could be applied directly

28

to serum without using prior extractions. Trinder<sup>102</sup> modified the reagent to a mixture of acetyl chloride and sulfuric acid. The color produced in this reaction was said to be much more stable than the colors produced by modifications of the L-B reaction.<sup>92</sup>

Another group of color reagents for cholesterol determination uses p-toluene sulfonic acid (p-tsa) and related reagents. The reagents and the resultant colors are more stable compared to the L-B reaction.<sup>92</sup> A mixture of glacial acetic acid, p-tsa, and acetic anhydride, used by Pearson et. al.<sup>103</sup> in the direct analysis of serum cholesterol, was modified by (a) including sulfuric acid;<sup>104</sup> and (b) substitution of p-tsa with dimethylbenzene sulfonic acid<sup>105</sup> or sulfosalicylic acid.<sup>106</sup>

Salts of iron (III) in concentrated sulfuric acid were the bases for other alternative color reagents. Zlatkis et al.<sup>107</sup> chose the metal chloride plus acetic acid. Sensitivity, precision and stability were improved using phosphoric acid in dissolving ferric chloride instead of acetic acid;<sup>108</sup> using ferric chloride in a mixture of phosphoric and perchloric acid;<sup>109</sup> using ferric chloride, glacial acetic acid and citric acid;<sup>110</sup> and finally ferric perchlorate, ethyl acetate and concentrated sulfuric acid.<sup>111</sup>

Another color reagent based upon a metal salt substrate was developed in 1910 by Tschugaeff.<sup>112</sup> The reagent is more sensitive than the L-B reagent and has been used by several scientists for cholesterol determination in blood.<sup>112-116</sup> Flourometric detection was also used as an alternative to absorbance detection in the L-B <sup>117</sup> and Tschugaeff reactions.<sup>118</sup>

#### B. Enzymatic methods

The high selectivity provided by enzymes have also been used to advantage in cholesterol determinations in steps that are preliminary to absorbance detection. Cholesterol dehydrogenase was used by  $Flegg^{119}$  to oxidize cholesterol to  $\Delta^4$ - cholestenone and the absorbance was measured at 240 nm. Richmond<sup>120</sup> isolated cholesterol oxidase and applied the purified enzyme to the direct assay of cholesterol in saponified serum. The hydrogen peroxide produced in the reaction of cholesterol oxidase with serum cholesterol was reacted with xylenol orange and quadrivalent titanium and the absorbance of the complex was measured at 550 nm. The method of Allain et al.<sup>121</sup> involved the use of three enzymes to determine total cholesterol in serum. The third enzyme hydrolyzes the cholesterol esters and eliminates the saponification step.

The hydrogen peroxide produced by the action of cholesterol oxidase has been coupled with a number of co-reagents to produce a stable color. Allain et al.<sup>121</sup> used 4-amino-antipyrine and phenol with absorbances measured at 500 nm. Huang et al.<sup>122</sup> chose homovanillic acid in the presence of peroxidase to form a highly fluorescent compound. Papastathopoulos and Rechnitz<sup>123</sup> reacted the hydrogen peroxide with iodide in a molybdenum (VI) - catalyzed indicator reaction and monitored the change in iodide concentration with an ion selective membrane electrode.

Flow injection analysis (FIA) together with enzyme immobilization has been used for cholesterol determinations. Combinations of these two techniques offers several advantages that include selectivity, low cost per analysis, small sample consumption, and short analysis time. Methods have been proposed for the determination of cholesterol using FIA and immobilized enzyme with amperometric detection  $^{124-127}$  as well as photometric and fluorometric detection.<sup>128</sup> Petersson et al.<sup>129</sup> and Malavolti et al.<sup>130</sup> developed flow injection systems coupled with luminolhydrogen peroxide chemiluminescence detection. Use of a fiber optic cholesterol biosensor was reported by Trettnak and Wolfbeis<sup>131</sup> and the detection was based on immobilized cholesterol oxidase and an oxygenquenched fluorescent reaction. Krug et al.<sup>132</sup> investigated the feasibility of a photometric method using the fiber optic detection approach employing the dye 2-2'-azino-bis-(3-ethyl-benzthia-zoline-6-sulfonic acid) diammonium salt. A cholesterol sensor was also fabricated by Dong et al.<sup>133</sup> based on electrodeposition of palladium and enzyme immobilization on glassy carbon electrode. The hydrogen peroxide produced is monitored by measuring the current of peroxide oxidation electrocatalyzed by dispersed palladium particles.

## C. Chromatographic methods

Chromatographic methods have also been adapted to determine cholesterol in human serum. Kritchevsky et al.<sup>134</sup> separated the cholesterol by thin layer chromatography, scraped the cholesterol spot into a test tube, charred it with concentrated sulfuric acid and quantitated by determining the absorbance at 375 nm. Several groups have used gas-liquid chromatography.<sup>135-137</sup> Prior work-up schemes involve saponification, extraction, and sometimes derivatization of cholesterol from the serum. Duncan et al.<sup>138</sup> prepared the sample according to Abell-Kendall<sup>101</sup> and used reversed phase liquid chromatography with detection at 200 nm. Nomura et al.<sup>139</sup> determined cholesterol by supercritical fluid chromatography on an inert octadecylsilane-silica gel column using supercritical carbon dioxide as mobile phase. The eluent is monitored simultaneously with flame ionization and ultraviolet absorption detector.

#### D. Mass spectrometry methods

The use of isotope dilution-mass spectrometry (ID/MS) in the determination of cholesterol in serum was first reported by Bjorkhem et al.<sup>140</sup> in 1974. Deuterium-labelled cholesterol ( $[2,2,3,4 - {}^{2}H_{4}]$ cholesterol) was added to a fixed amount of serum. The ratio of the molecular ions (m/z 386 and 389) measured by GC-MS was used for the determination. Gambert et al.<sup>141</sup> separated cholesterol on a capillary column and used the  $[3,4 - {}^{13}C]$  isotope of cholesterol because the nonradioactive <sup>13</sup>C isotope eliminates radiolysis reactions, exchange processes or isotopic effects. Mass spectrometry was used in the chemical ionization mode leading to simple fragmentation with a greater relative abundance of the high mass ions. Cohen et al.<sup>142</sup> added cholestero-d<sub>7</sub> [cholest-5-en- $25,26,26,26,27,27,27-d_7-3-ol(3B)$  to the serum and added a derivatization step (trimethyl silyl ether derivative). The intensity ratio of molecular ions at m/z 465 and 458 was followed by GC-MS. Takatsu and Nishi<sup>143</sup> used ID/MS with high performance liquid chromatography instead of GC. The same authors developed a liquid chromatography-atmospheric ionization-MS<sup>144</sup> for serum cholesterol determination.

#### E. Other methods

A recent approach that uses near infrared reflectance spectrometry detection to measure serum cholesterol was described by Peuchant et al.<sup>145</sup> in 1987. Preliminary spectral calibration is performed using human sera whose cholesterol concentrations are measured by a reference chemical analysis. Calibration makes it possible to select wavelengths that are characteristic of the matrix and its composition. Calibration constants, obtained from regression calculations, are used to quantify serum cholesterol according to a mathematical equation. The determination is performed directly on serum without prior extraction or added reagent. Results are obtained in less than one minute.

# II. Methods for serum lipoprotein separation

# A. Ultracentrifugation

Differences in the hydrated densities among the lipoproteins make it possible to do fractionation by ultracentrifugation. The Center for Disease Control (CDC) Primary Reference Method for determining lipoprotein classes is based upon separation by ultracentrifugation. The method is time consuming, expensive, and therefore not suitable for large scale use.<sup>146</sup> Its use is restricted to specialized lipid research laboratories. Various types of ultracentrifugation have been employed in lipoprotein analysis.

The separations of lipoprotein classes by sequential differential ultracentrifugation involves repeated ultracentrifugation (depending on the desired separation) after progressively raising the solvent density. This method was first reported by Havel et al.<sup>147</sup> and De Lalla and Gofman<sup>148</sup> in the 1950's. Relatively large quantities of plasma can be processed at one time and purification of the lipoproteins from other proteins of density >1.21 g/mL is excellent.<sup>149</sup> However, sequential ultracentrifugation can cause some structural alteration perhaps due in part to long periods of exposure to the high salt concentrations and high **g** forces involved.

The beta-quantification method which has been accepted as a Reference Method,<sup>24</sup> is a combination of ultracentrifugation and precipitation steps. A single ultracentrifugation step is performed, separating the plasma at its own density of 1.006 g/mL. After spinning at 109,000 x g for 18 hours, VLDL and chylomicrons float to the top leaving IDL, LDL and HDL in the infranate. The supernatant and infranatant fractions are separated by a tube slicing technique. The cholesterol concentration of plasma, the infranate and the HDL fraction (obtained by chemical precipitation of LDL and IDL in the infranate with heparin-manganese) are measured by the Abell-Kendall method.<sup>100</sup> Very low density cholesterol is calculated as plasma cholesterol minus the total infranatant cholesterol while LDL-C is total infranatant cholesterol minus HDL-C. Additional ultracentrifugation steps are sometimes performed on the infranate to individually separate sub-classes of different densities. Density adjustment to 1.019 g/mL is used to float IDL, adjustment to 1.063 g/mL will float LDL and adjustment to 1.21 g/mL isolates HDL.<sup>24</sup>

Density gradient ultracentrifugation is a different procedure that gained widespread usage in the mid-1970's when Redgrave et al.<sup>150</sup> developed the four step density gradient technique to separate plasma lipoproteins. This technique uses solutions of different densities which are

34

carefully layered into each tube along with the sample. After ultracentrifugation to equilibrium, each of the lipoproteins will have migrated into its respective isopycnic density region. The method can separate the lipoprotein classes in a single centrifugation step but incomplete separation may introduce error.<sup>151</sup>

#### B. Selective precipitation

Precipitation methods were primarily developed in the laboratory of Burstein<sup>152</sup> whose purpose was to isolate lipoproteins from large serum sample volumes or to eliminate LDL-C and VLDL-C from small sample volume in order to determine HDL-C. These methods are fast, simple, and inexpensive which accounts for their popularity.<sup>153</sup> Various precipitating agents have been studied for the precipitation of the serum lipoproteins.

A polyanion such as heparin, either alone or associated with a bivalent cation, selectively precipitates the various lipoprotein classes. At neutral pH and in the presence of a bivalent cation, the ability to precipitate depends upon the relative lipid content. At slightly acid pH, and in the absence of bivalent cation, precipitation is related to the dominant apoprotein.<sup>154</sup> Low density lipoprotein is the major precipitate in the pH dependent procedure and the minor precipitate in the metal ion dependent procedures.

Low density lipoprotein is also precipitated by high molecular weight sulfated polysaccharides at either neutral or slightly alkaline pH. Oncley et al.<sup>155</sup> reported that dextran sulfates with molecular weights over a million, precipitate LDL and VLDL but do not precipitate either chylomicrons or HDL.

Highly charged anions precipitate LDL and VLDL fractions almost completely. Among these are sodium phosphotungstate  $(2Na_2P_2O_5$  $12WO_3,18H_2O)$ , ammonium paramolybdate  $((NH_4)_6Mo_7O_{24}, 4H_2O)$ , and two smaller monomeric bivalent anions, sodium tungstate  $(Na_2WO_4, 2H_2O)$  and sodium molybdate  $(Na_2MoO_4, 2H_2O)$ .<sup>154</sup>

One step precipitations of serum lipoproteins can also be accomplished with any of the following reagents: (a) polyphosphates and bivalent cations, (b) tetracyclines and bivalent cations, (c) anionic surfactants and bivalent cations, (d) anionic surfactants and polycations (protamine sulfate), and (e) cationic surfactants and a polyanion (heparin). In each of these associations, the reactants bear opposite charges, and the anion-cation interaction results in the formation of insoluble salts.<sup>154</sup> Nonionic linear polymers of high molecular weight that are freely soluble in water, such as polyvinylpyrrolidone, polyethelene glycol (PEG) and dextran, have also been used.<sup>154</sup>

Several studies<sup>24,146,153,156-158</sup> have assessed the performance of the different precipitating agents for lipoprotein analysis. Wiebe and Smith<sup>155</sup> compared six precipitating agents used in HDL analysis. They evaluated heparin-MnCl<sub>2</sub> at two different concentrations (46 and 92 mmol/L), dextran sulfate-MgCl<sub>2</sub> using two different molecular masses of dextran (M<sub>r</sub> 50,000 and 500,000), sodium phosphotungstate-MgCl<sub>2</sub>, and PEG 6000. Their results showed that precipitation with heparin-MnCl<sub>2</sub> (92 mmol/L) and PEG gave similar results while dextran sulfate-MgCl<sub>2</sub> (M<sub>r</sub> 500,000) had the largest proportional and constant bias. All the methods produced

comparable result in the low HDL cholesterol range (25 to 35 mg/dL) but biases were significant at high concentrations. The increased bias in the upper HDL cholesterol range may be due to increased heterogeneity of HDL and the different mechanisms involved in forming the insoluble complexes between lipoproteins and the various precipitating agents.<sup>153</sup> Warnick et al.<sup>156</sup> reported that dextran sulfate (50)-Mg<sup>+2</sup>, heparin-Mn<sup>+2</sup> (92 mmol/L) and phosphotungstate-Mg<sup>+2</sup> give similar results, while heparin-Mn<sup>+2</sup> (46 mmol/L) and PEG at two different concentrations (75 and 100 g/L final concentration) gave slightly higher values for HDL cholesterol.

# C. Electrophoresis

Differences in size and charge among the lipoproteins are the bases for separation by electrophoresis. The net charge on a lipoprotein molecule results from the balance of positive and negative charges on the terminal and side chain amino acid residues, and to a small extent from the phospholipids that are not in the zwitterionic form at electrophoretic pH.<sup>159</sup>

Electrophoretic separation of lipoproteins provides for only qualitative analysis of the particle distribution.<sup>160</sup> It is possible to quantify the bands based on the relative intensities of their stained electrophoretic bands determined by scanning densitometry. However, dye uptake by each lipoprotein is variable and correlates poorly with concentration.<sup>160</sup> Studies have also suggested that many of the electrophoretic methods do not achieve acceptable precision.<sup>161</sup>

Early electrophoretic methods used a liquid phase without supporting

media (free electrophoresis). Although this technique is no longer widely used, it gave valuable information to early investigators. The technique has been abandoned since then and has led to the development of electrophoresis on fixed media. Zone electrophoresis is considered more advantageous since it requires simpler equipment.<sup>162</sup> Media that have been used as supports include starch granules,<sup>163,164</sup> paper,<sup>165</sup> cellulose acetate,<sup>166</sup> agarose,<sup>167,168</sup> and polyacrylamide gel.<sup>169,170</sup>

# D. Chromatography

Chromatographic separations of lipoproteins are based on size differences. High performance liquid chromatography (HPLC) has been extensively used in the laboratory of Okazaki<sup>171-175</sup> in the analysis of lipoprotein classes. They developed an HPLC separation method for serum lipoprotein using columns designed for gel permeation chromatography. Quantitation of cholesterol was performed using an enzymatic reaction and absorbances were monitored at 280 nm and 550 nm for protein and cholesterol, respectively. The method successfully separated VLDL, LDL, HDL<sub>2</sub>, and HDL<sub>3</sub>. It is very simple and gives a direct determination of the fractions in less than 50 minutes without any pretreatment.<sup>171</sup> Other components of the lipoprotein can also be determined with appropriate reagents for selective detection.<sup>174,175</sup> Chromatographic methods are relatively expensive and at present are largely restricted to specialized research laboratories.<sup>160</sup>

Lipoprotein separations have also been made using agarose column chromatography.<sup>176,177</sup> The method is gentle and non-destructive, being

simultaneously preparative and analytical and capable of providing an adequate recovery of lipoproteins after separation. The major drawbacks are long analysis time (24 hours) and the inability to obtain homogeneous lipoprotein fractions.<sup>176</sup> Hydroxyapatite column chromatography<sup>178</sup> has been used for the separation of subfractions 2 and 3 from HDL isolated by preparative ultracentrifugation.

#### E. Immunochemical methods

Because of differences in the protein moieties among the lipoprotein classes, immunochemical methods have been developed for their quantitation. The ability of proteins to stimulate the production of specific antibodies enabled investigators to identify and quantify proteins in mixtures, even at very low concentrations. Immunochemical methods are more sensitive, selective, reproducible, and potentially more adaptable to automation than non-immunological procedures.<sup>51</sup> Drawbacks are the significant problems associated with producing antisera and in the standardization of lipoprotein assays. Also, immunological cross reactivity makes quantitative immunological analysis of specific lipoprotein fractions in whole plasma difficult.<sup>58</sup>

The introduction of specific antisera for the apoproteins enabled the development of various types of immunoassays leading to the quantification of the protein moieties of VLDL, LDL, and HDL, together with their subclasses. These immunochemical techniques include, radial immuno-diffusion,<sup>179</sup> electroimmunoassay in agar or agarose gel,<sup>179</sup> radio-immunoassay,<sup>180</sup> immunonephelometry,<sup>181</sup> enzyme linked immuno-

assay,<sup>182,183</sup> and fluorescence immunoassay.<sup>184</sup>

# III. Proposed alternative method provided by this study

Despite the presence of many analytical methods for cholesterol and lipoprotein determinations, the Laboratory Standardization Panel continues to encourage the development of new methods particularly for LDL-C and HDL-C determinations that is applicable for routine use in the clinical laboratories.<sup>24-25</sup> The method should pass the requirements set by LSP in terms of precision and accuracy.

This study had as a goal the development of a method that measures the three major lipoprotein fractions simultaneously with an acceptable accuracy and precision. Measuring the lipoprotein fractions simultaneously reduces the analysis time and is applicable for routine use. The applicability of the method to measuring cholesterol in hypertriglyceridemic samples was evaluated.

# CHAPTER IV

#### EXPERIMENTAL

#### <u>A. Sources of Serum Samples</u>

Serum samples for this work were provided by four different laboratories: Oklahoma State University Wellness Center (UWC); Stillwater Medical Center (SMC); Roche Biomedical Laboratories (RBL), Kansas City, Missouri; and University of Cape Town Medical School (UCT), South Africa.

Samples provided by UWC were from volunteers who requested a lipid profile from the Oklahoma State University. No attempt was made to select subjects according to demographic classification, and no demographic data were collected. Subjects were instructed to report to the Wellness Center laboratory having fasted for at least 12 hours. A venous blood sample was drawn from the arm of each subject and placed into two Vacutainer<sup>tm</sup> red stoppered serum separation tubes. Serum separation tubes have a floating gel to aid in separation of red cells from serum. After letting the serum stand at room temperature for about 30 minutes, it was centrifuged at 5,000 rpm for ten minutes in a table top clinical centrifuge (Roche Biomedical Laboratories VanGuard 6000). One separation tube was taken to the Oklahoma State University Department of Chemistry, for measurement by the alternative method. Samples were transferred into new 10 mL glass vials with a screw cap. The second separation tube was collected by Roche Biomedical Laboratories personnel for measurement at its Kansas City, Missouri regional laboratory.

Samples from SMC and RBL were exclusively high triglyceride specimens (TG >250 mg/dL). This figure is much lower than the normally accepted cut-off level of 400 mg/dL used for the Friedewald formula.<sup>21</sup> Measurements by SMC and RBL were made in-house using one of the standard routine enzymatic methods. After the serum lipids had been measured, the residuals of the samples were collected and sent to OSU Department of Chemistry.

The majority of the UCT samples were categorized as having lipid disorders (Type III and familial hypercholesterolemia) but a few were normal samples. Splits from these venous samples were shipped overnight to OSU. Lipoprotein fractions were separated in-house by ultracentrifugation, and split portions from these fractions were also shipped to OSU. Cholesterol and TG measurements were made at UCT on the fractions after separation.

The size of the sample pool is currently around 650 samples and is almost equally divided between normal and high triglyceride levels. Some samples were hemolyzed in the collection process and some were creamy in appearance, neither of which produced an observable interference in the method. Samples were not categorized according to gender, race, age, etc. Sample collection and storage conditions before receipt were not standardized, nor was the interval of time that passed between making the tests in the different laboratories. When the samples were received they were kept in the refrigerator maintained at 4°C and were equilibrated to room temperature for at least 30 minutes before analysis. Serum samples appear to be stable for at least 2-3 months when stored in the refrigerator. Replicate measurements were made in our laboratory to evaluate the imprecisions in the measured spectra that would result from the combined effects of the sampling procedure, and the chemistry of the color reaction.

# B. Analytical Methods Used in Independent Laboratories

The laboratories at Roche Biomedical and SMC regularly use one of the current routine commercial methods to measure lipid profiles. The Olympus<sup>tm</sup> AU560 and Technicon<sup>tm</sup> Chem-I clinical autoanalyzer are preferred by RBL and SMC, respectively. Three independent measurements are made in order to obtain a lipid profile. Total cholesterol, HDL-C, and TG are measured directly by enzymatic methods.

The enzymatic method for determination of cholesterol is based on the method developed by Allain et al.<sup>121</sup> and uses a color derivatization reaction described by Trinder.<sup>185</sup> The enzymatic reactions involved are as follows:

Cholesterol Esters +  $H_2O \xrightarrow{Cholesterol} Esterase$  Cholesterol + Fatty Acids

Cholesterol +  $O_2 \xrightarrow{Cholesterol}$  Cholest-4-en-3-one +  $H_2O_2$ 

 $2H_2O_2 + 4$ -Aminoantipyrine + p-Hydroxybenzenesulfonate  $\xrightarrow{Peroxidase}$ 

Quinoneimine Dye +  $4H_2O$ 

The quinoneimine dye produced is measured by its absorbance at 500 nm. Although the quinoneimine dye is not structurally related to cholesterol, the absorbance intensity of the colored product is proportional to the amount of cholesterol. For the HDL-C determinatons, the same enzymatic processes were used after VLDL-C and LDL-C were selectively removed by precipitation reaction with a prepared aliquot of dextran sulfate-Mg<sup>+2</sup>. The VLDL-C fraction is calculated as equal to one-fifth of the TG value as long as TG is not > 400 mg/dL. The routine method for TG determination also involve a four step enzymatic reaction. The LDL-C levels are estimated using the Friedewald formula,<sup>21</sup>

$$LDL-C = TC - (HDL-C + TG/5).$$
 (eq. 1)

For samples with TG > 400 mg/dL, only TC and sometimes HDL-C results would be reported by the outside laboratories.

Lipid profiles of samples from UCT were determined by sequential ultracentrifugation. Solutions of KBr were added for density adjustments. Adjustment to 1.006 g/mL is used to float VLDL-C and chylomicrons; adjustment to 1.019 g/mL is used to float IDL-C; adjustment to 1.063 g/mL will float LDL-C and adjustment to 1.21 g/mL isolates HDL-C.<sup>24</sup> Cholesterol and TG levels for each fraction were measured by the same enzymatic methods discussed earlier.

#### C. The Proposed Alternative Method

The method is based upon a color production reaction. The color reagent used in this work has evolved from that first described by Chugaev and Gastev.<sup>112</sup> In its original form, the reagent was a 2:1 mixture of a solution of 20% w/v ZnCl<sub>2</sub> in glacial acetic acid combined with 98% acetyl chloride. The reagent was used succesfully to measure only total cholesterol levels.<sup>113-116</sup> This reagent was also used in trials to measure the cholesterol distribution among the lipoprotein fractions using circular dichroism (CD) spectropolarimeter as the detector.<sup>26</sup> In the CD study, a 2-ml aliquot of the reagent was added to 50  $\mu$ L of serum. After 8 minutes of incubation at 67°C, the solution was cooled to room temperature and 1 mL of chloroform was added followed by CD measurements from 625-325 nm. Results of the CD study showed that while CD is capable of discriminating HDL-C from the low density fractions, distinction between VLDL-C and LDL-C was not possible.

In a subsequent study,<sup>186</sup> CD was replaced by absorption detection. The ZnCl<sub>2</sub> concentration was increased to 35% w/v and the volume ratio of the solvents was inverted so that acetyl chloride was in a 100:1 excess over acetic acid. This modification produced signals of increased intensity and eased some of the problems with protein precipitations when reagent and serum were mixed. Incubation conditions remained the same but, because of the increased sensitivity, the sample size was decreased to 20  $\mu$ L. Two reagents are kept separate before being added to the serum, which is inconvenient for routine screening work. Experimental conditions still require an 8 minute incubation period at 67°C, which is 14°C higher than the boiling point of acetyl chloride, which is now the solvent in excess.

The reagent that has evolved during this study is a one reagent system. Glacial acetic acid was eliminated altogether and the metal salt was changed to  $Zn(ClO_4)_2 \cdot 6H_2O$  (Johnson-Matthey or G. Frederick Smith).

The perchlorate salt dissolves in 98% acetyl chloride (Sigma or Aldrich) directly and is used at a concentration of 0.50 M. Traces of insoluble material, probably ZnO, are conveniently removed by centrifugation for 10 minutes. The reagent is prepared when needed and stored in a tightly sealed amber glass container. A major advantage of these modifications is that color is produced at room temperature which significantly reduces the hostility of the reaction conditions.

The reagent to serum volume ratio was maintained at 100:1. Tests are conveniently done on samples as little as 10-µL, making the method applicable, in principle, to a serum sample as small as a finger-stick. Serum and reagent are added, in that order, to a glass vial and shaken by hand for 15-30 seconds. Proteins precipitated on adding the reagent are removed by centrifugation (Fisher Microcentrifuge Model 59A; speed setting at 9.0) for 3 minutes. Color begins to develop at ambient temperatures immediately after mixing. The supernatant is transferred to a cuvet with a pathlength of 1 cm. Absorbance spectra are measured after 15 minutes from the time of mixing by making five spectral passes from 350-750 nm using a Hewlett-Packard 8452A diode-array spectrophotometer equipped with a temperature controller ( $25.0 \pm 0.1^{\circ}$ C). The wavelength range is wider than it was in prior work<sup>186</sup> which facilitates the measurement of lipid profiles, especially for those with high TG levels.

A kinetic study of the color reaction shows it to be 98% complete after a period of 15 minutes, which is the time used for routine measurements. The ultimate color is stable for at least an hour. The function of the Chugaev reagent is not atypical of Friedel-Crafts reagents. Most likely, therefore, the mechanism will involve dehydration and dehydrogenation steps. Friedel-Crafts reagents generally consist of an acid halide and a Lewis acid catalyst. We found that the zinc chloride, acetate, and perchlorate salts, in combination with acetyl chloride will produce the colored product, as will perchloric acid. Acetic acid, needed to solubilize the zinc chloride for the original Chugaev reagent, appears to retard the reaction rate which accounts for the higher incubation temperature when it is present. Like zinc perchlorate, zinc acetate dissolves directly in acetyl chloride eliminating the need for glacial acetic acid. The perchlorate salt was chosen over the acetate because the latter formed a yellow solution with acetyl chloride after several hours.

From a mechanistic study of the Chugaev reagent,<sup>187</sup> it was proposed that the color is a product of extended conjugation. Similar mechanisms were proposed for the Liebermann-Burchard<sup>188</sup> and Zak<sup>189</sup> reactions. The Chugaev reaction was also run on a number of structurally related steroids.<sup>190</sup> Those that produce color were also found to have antirachitic activity, implying a structural similarity between the product and vitamin D. In other words, the B-ring of the cholesterol template would open at C-10, Figure 2, stimulating dehydrogenation throughout rings C and D.

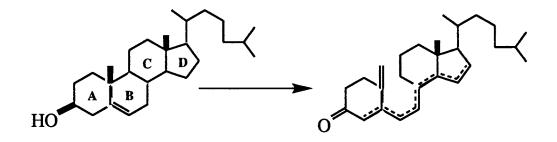



Figure 2: Proposed product of the color reaction.<sup>187</sup>

#### D. Comparison of Data Analysis Methods

Determining the concentration of an analyte involve two steps: a calibration step and a prediction step. In the calibration step, a mathematical equation is developed that define the relationship between instrument response, A, and the analyte concentrations, C.<sup>191</sup> The calibration equation vary in complexity depending upon the extent of linearity or non-linearity of the correlation. Once the calibration equation has been established, it will be used to predict the concentration of future samples. There are several approaches in obtaining the calibration equation.

# Univariate Approach

This approach to calibration typically uses just one A variable (e.g. absorbance at one wavelength) to determine the calibration equation. The calibration equation is obtained by measuring the absorbances of a series of solutions of known concentrations for a standard reference material. In many instances, the entire spectra is obtained but in univariate data analysis only one absorbance (usually the maximum absorbance) will be used. The additional information contained in the spectrum remains unused. The absorbance data are then plotted against concentration to construct a typical Beer's law working curve. Simple linear regression is used to find the statistically best straight line and the corresponding linear calibration equation.

The univariate approach assumes that the measurement method is specific or selective and that no other matrix constituents influence the measurement signal. These conditions are not always fulfilled unless the samples are purified and stabilized prior to analysis. Interferences may affect the measurements and make them unsuitable for univariate prediction.<sup>192</sup> For complex mixtures, separation of the desired analyte from the interferences is a pre-requisite for successful calibration and prediction.

# Multivariate Approach

Multivariate calibrations, in contrast, combine several different variables (e.g. light absorbance at different wavelengths) in developing the calibration equation. As a consequence interferences can be modelled and/or eliminated and outliers detected.<sup>193</sup> One does not necessarily need the reference materials for calibration. Instead, one reverts to making a broad selection of real samples. The emergence of microcomputer in the laboratory has led to the increased usage of multivariate calibration in data analysis, and it has provided the analytical chemist with the ability to accumulate vast amounts of data in a relatively short period of time.

Multivariate calibration can reduce the need for sample preparation in chemical analysis because various interferences can be accounted for in establishing the calibration equation. Complete separation of the interferences is not a prerequisite compared to the univariate approach. After calibration, one is able to replace cumbersome, slow chemical analysis methods by simple, fast instrumental measurements, provided that the unknown samples belong to the same type of samples used for calibration.<sup>194</sup>

Direct or indirect calibration can be used for multivariate data

analysis. Direct multivariate calibration involves prior measurements of the spectra for pure forms of the individual constituents. In the indirect approach, one foregos the need for the spectra of the pure components. A "representative" set of "reference samples" with measured values for both spectrum and concentration is used for the estimation of the calibration coefficients.<sup>193</sup>

Several multivariate methods are encountered in the literature.<sup>191-196</sup> Only multiple linear regression (MLR), principal component analysis (PCA), principal component regression (PCR), and partial least squares regression (PLS) are discussed in subsequent sections.

# Multiple Linear Regression (MLR)

Multiple linear regression is the simplest of the multivariate calibration method. The goal of MLR is to find the linear combinations of the response variable  $(a_j)$  in the response matrix A such that the model estimates ( $\hat{e}_i$ ) of the values in the concentration matrix C in the calibration set, given by,

$$\hat{\mathbf{e}}_{i,k} = \sum_{j=1}^{j} \mathbf{a}_{ij} \cdot \mathbf{s}_{jk} \qquad (eq. 2)$$

are as close to the known values of C as possible.<sup>195</sup> The regression coefficients,  $s_{jk}$  are estimated by linear regression with the error term, expressed as

Error = 
$$\sum_{k=1}^{k} \sum_{i=1}^{i} (c_{ik} - c_{i,k})^2$$
 (eq. 3)

is kept to a minimum. The general relationship between the concentration matrix C and response matrix A given by MLR is

$$\mathbf{C} = \mathbf{A} \, \mathbf{S} \, + \mathbf{E} \tag{eq. 4}$$

where S is a matrix of regression coefficients and E is a matrix of errors associated with the MLR model.

Multiple linear regression is reasonable when dealing with well defined systems (responses are linear, no interfering signals, no analyteanalyte interactions, low noise and no collinearities).<sup>195</sup> All the information in the response matrix A is used to establish the mathematical relationship between A and C regardless of whether or not it is relevant in describing the true relationship.

# Principal Component Analysis (PCA) and Principal Component Regression (PCR)

The first step in PCR is PCA. The American Society for Testing and Materials define PCA as "a mathematical procedure for resolving sets of data into orthogonal components whose linear combinations approximate the original data to any desired degree of accuracy. As successive components are calculated, each component accounts for the maximum possible amount of residual variance in the set of data. In spectroscopy, the data are usually spectra, and the number of components is smaller than or equal to the number of variables or the number of spectra, whichever is less."<sup>196</sup>

Principal component analysis searches for a few uncorrelated linear combinations of the original variables that capture most of the information in the original variables.<sup>197</sup> Geometrically, the first principal component is the line of closest fit to the n observations in the p dimensional variable space. It minimizes the sum of the squared distances of the n observation from the line in the variable space representing the first principal component. The second principal component is a line of closest fit to the residuals from the first principal component.<sup>197</sup> The process goes on until all the variations in the variables are accounted for, but the first few components account for most of the variation.

Algebraically, the first principal component  $U_1$  (also known as scores or factors) for a given measured variables A, is a linear combination of the variables in A given by

$$U_1 = Y_{11} \cdot A_1 + Y_{12} \cdot A_2 + \dots + Y_{1p} \cdot A_p = \sum_{i=1}^{p} Y_{1i} \cdot A_i \quad (eq. 5)$$

such that the variance of the first principal component is maximized. The coefficients Y are referred to as "weights" and are always scaled so the sum of the squared weights is equal to one<sup>198</sup>

$$\sum_{i=1}^{p} (Y_{1i})^2 = 1.$$
 (eq. 6)

Since the variance of U<sub>1</sub> is maximized, the sum of the squared correlations  $\sum_{i=1}^{p} (r_{U,Ai})^2$  is also maximized.

The second principal component  $U_2$  involves finding a second weight vector  $Y_2$  such that the variance of

$$U_{2} = Y_{21} \cdot A_{1} + Y_{12} \cdot A_{2} + \dots + Y_{1p} \cdot A_{p} = \sum_{i=1}^{p} Y_{2i} \cdot A_{i}$$
 (eq. 7)

is maximized subject to the constraints that it is uncorrelated with the first

principal component and  $\sum_{i=1}^{p} (Y_{1i})^2 = 1.^{197}$  This process can be continued

until as many components as variables have been calculated.

The main parameters resulting from a principal component analysis are the matrix of the weighted vector **Y** that is associated with each principal component U and its associated variance  $\lambda$ . The correlations (loadings) of the measured variables with a particular component, can be obtained by multiplying all the elements in the weight vector by the square root of the variance  $\lambda$  of the associated principal component.<sup>197</sup>

The second step of PCR uses MLR to fit the concentration matrix C of the calibration samples onto the scores or principal component matrix U.<sup>195</sup> This can be represented by

$$\mathbf{U} \mathbf{S} = \mathbf{C} \qquad (eq. 8)$$

where S is the matrix of regression coefficients obtained by MLR.

For predicting the concentration of unknown solution, one uses the **Y** and **S** matrix. The response of the unknown sample  $A_{unk}$  is multiplied by **Y** to obtain  $U_{unk}$  and then  $U_{unk}$  is multiplied by **S** to yield  $\hat{c}_{unk}$ , the estimate of the concentration of the analytes in the unknown samples.<sup>195</sup>

# Partial Least Squares Regression (PLS)

The pioneering work in PLS was done in the late sixties by H. Wold in the field of econometrics. Chemical applications were pioneered by the group of S. Wold and H. Martens in the late seventies.<sup>199</sup> Partial least squares regression is based on H. Wold's general PLS principle in which complicated, multivariate problems are solved by a sequence of simple least-squares regressions.<sup>200</sup> The purpose of using PLS in multivariate calibration is to obtain a good insight and good predictive ability at the same time.

Partial least-squares regression is a modelling procedure that simultaneously estimates the underlying factors in both the response matrix A and the concentration matrix C.<sup>195</sup> The approach used by PLS is very similar to PCA, the difference being that factors are chosen to describe the variables in C as well as in A. This is done by using the columns of the C matrix to estimate the factors of A and at the same time, the columns of A are used to estimate the factors for C. The resulting models are summarized by

$$\mathbf{A} = \mathbf{U} \mathbf{P} + \mathbf{E} \tag{eq. 9}$$

and

$$\mathbf{C} = \mathbf{T} \quad \mathbf{Q} + \mathbf{F} \tag{eq. 10}$$

where the elements of U and T are called the scores of A and C, respectively, and the elements P and Q are called the loadings.<sup>195</sup> The errors associated with modelling A and C with the PLS model are represented by the terms E and F. In PLS, the U factors are not optimal for estimating the columns of A as in PCA, but are rotated so as to simultaneously describe the C matrix. The factors for the A and C matrices have the following relationship

$$\mathbf{T} = \mathbf{B} \ \mathbf{U} + \ \mathbf{\varepsilon} \qquad (\text{eq. 11})$$

where **B** is the inner relationship between the score matrix **T** and **U**. Partial least-squares regression will compromise the ability of the factors to describe the samples in the individual spaces to increase the correlation of **U** to **T**. It is this compromise that allows for the determination of a factor model that simultaneously describes **A** and **C**.<sup>195</sup>

Two types of approach to PLS calibration have been developed depending on how many of the components of the C matrix are considered during calibration. When the calibration and prediction analysis are performed one component at a time, the method is called PLS1. Other concentrations, even if known, are not included in the analysis. Two or more components can be calibrated or analyzed simultaneously by using the PLS2 algorithm.<sup>201</sup>

#### E. Data Analysis Used in the Study

Since pure reference standard forms for the cholesterol lipid fractions are not available, neither are the absorbance spectra for the individual products of the color reaction. Except for possible competing color reactions with additives included with the samples to enhance the separation processes, the spectra for the fractions separated by ultracentrifugation or precipitation would be considered to be close approximations to reference spectra, Figure 3. Using the fact that the spectra obtained for reactions with standard reference material (SRM) forms of cholesterol and its esters are identical, we have presumed that the same molecular derivatives are produced in the color reaction with serum cholesterol, and that the spectral variations among the cholesterol fractions are due to the different cholesterol compositions and different matrix effects. Matrices in this case are the lipoprotein carriers used to transport cholesterol in serum. A model has to be developed, therefore, that will resolve the spectrum for the whole serum into the contributions from the different parts.

In the original mathematical model,<sup>186</sup> absorbances A(i) were measured at three chosen wavelengths and lipid profiles were calculated by the simultaneous solution of a set of three equations of the form:

$$A(i) = \varepsilon_{VLDL-C(i)} \cdot [VLDL-C] \cdot b + \varepsilon_{LDL-C(i)} \cdot [LDL-C] \cdot b + \varepsilon_{HDL-C(i)} \cdot [HDL-C] \cdot b$$
(eq.12)

where b is the cell pathlength which is equal to 1-cm in all the measurements. Molar absorptivity coefficients  $\varepsilon$ , were evaluated in a

totally empirical manner and were subject to investigator bias and oversimplifications in the model. One over-simplification, that limited the range of TC over which the model could be applied, was that  $\varepsilon$  values were presumed to be equal for all three of the lipid fractions at the wavelength of the major maximum (520 nm). There are zero degrees of freedom in this model, making it impossible to use it to predict the composition of every sample with equal precision.

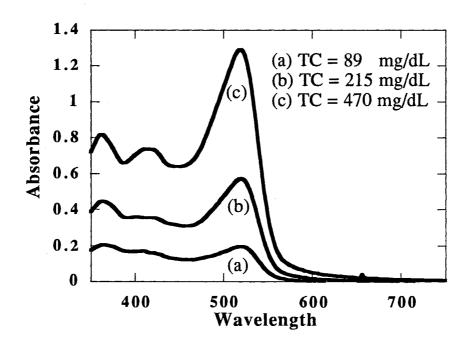



Figure 3. Absorption spectra for the reaction of cholesterol in (a) serum, and the individual fractions: (b) VLDL-C; (c) LDL-C; (d) HDL-C.

To improve upon the mathematical model, more sophisticated multivariate calibration and prediction analyses were used. The multivariate calibration approach used was PLS2 which is a part of the spectroscopic analysis software package available in UNSCRAMBLER II (CAMO A/S, Trondheim, Norway). Spectral resolution in the spectrophotometer is 2 nm so a full spectrum data set consists of 200 points, which represent an enormous increase in the number of degrees of freedom compared to the simpler analysis.

As a basis for the multivariate calibration model, a training set was chosen that consisted of 35 samples in which there is a wide distribution in TC, as well as in the various lipid fractions in a conscious effort to approximate the ranges encountered in the entire population. The lipid profiles for these samples had been measured enzymatically at one or other of the external laboratories. As is usual, VLDL was taken to be 0.2xTG and numbers for LDL were calculated using the Friedewald formula. Ranges in values were as broad as we could access (Table 2) using the source laboratories.

Background and weighting corrections were not applied. Other calibration parameters used are shown in Appendix A. The optimum fit to the spectral data for the training set was obtained using four factors. The percent residual variance was about 25% with just the first factor, and less than 0.05% for all four.

As a test to determine if analysis using the full spectrum data set was really necessary, the multivariate regression analysis subroutines were used to identify the optimum wavelengths, i.e. those that are most sensitive to variations of each fraction. Alternative models were tested using reduced data sets that were limited to 100, 30, 14, 6, and 4 wavelengths respectively. Differences in the percent residual variances were minimal from full spectrum through 6 wavelengths, and 4 wavelengths could be used with little loss in the quality of the fit. The primary model used in the work was based on 6 wavelengths. Measured absorbances for the samples in the training set are given in Table 3.

A justifiable criticism of the computational model is that calibration of the absorbance data to the lipid profiles of the training set is confined by the limitations set by the enzymatic method, namely that VLDL-C is taken to be 0.2xTG, and LDL-C is calculated from the Friedewald formula.<sup>21</sup> Four samples in the training set had values for TG >400 mg/dL, for which HDL-C values had been measured while VLDL-C and LDL-C values calculated. In spite of the risk that the Friedewald formula does not apply to the high TG levels, their inclusion in the training set is crucial so the mathematical model could approximate the entire population. The 6wavelength calibration model was used to predict lipid profiles for all the sera in the current sample pool. The color reaction was done on high triglyceride samples in precisely the same way, and it was assumed that the same model could be extrapolated to include them.

| Sample<br>Number | VLDL-C<br>(b) | VLDL-C<br>(c) | LDL-C<br>(b) | LDL-C<br>(c) | HDL-C<br>(b) | HDL-C<br>(c) | TC<br>(b) | TC<br>(c) |
|------------------|---------------|---------------|--------------|--------------|--------------|--------------|-----------|-----------|
| 1                | 27            | 31            | 128          | 157          | 73           | 53           | 229       | 241       |
| 2                | 43            | 55            | 91           | 82           | 27           | 28           | 162       | 165       |
| 3                | 44            | 40            | 187          | 161          | 31           | 55           | 263       | 256       |
| 4                | 23            | 29            | 96           | 84           | 33           | 38           | 152       | 151       |
| 5                | 20            | 23            | 110          | 94           | 30           | 46           | 161       | 163       |
| 6                | 15            | 31            | 101          | 122          | 89           | 51           | 206       | 204       |
| 7                | 12            | 30            | 132          | 116          | 51           | 41           | 196       | 187       |
| 8                | 10            | 8             | 116          | 122          | 48           | 44           | 175       | 174       |
| 9                | 11            | 14            | 121          | 147          | 75           | 52           | 212       | 213       |
| 10               | 47            | 44            | 159          | 146          | 19           | 40           | 225       | 230       |
| 11               | 6             | 5             | 127          | 135          | 55           | 49           | 189       | 189       |
| 12               | 18            | 17            | 125          | 139          | 65           | 49           | 209       | 205       |
| 13               | 9             | 5             | 92           | 88           | 39           | 44           | 141       | 137       |
| 14               | 59            | 58            | 162          | 154          | 36           | 43           | 257       | 255       |
| 15               | 8             | 10            | 145          | 137          | 49           | 53           | 203       | 200       |
| 16               | 10            | 1             | 136          | 145          | 55           | 60           | 201       | 206       |
| 17               | 52            | 64            | 221          | 218          | 55           | 57           | 329       | 339       |
| 18               | 32            | 43            | 106          | 113          | 61           | 42           | 200       | 198       |
| 19               | 40            | 28            | 173          | 176          | 42           | 60           | 256       | 264       |
| 20               | 98            | 94            | 152          | 152          | 35           | 30           | 285       | 276       |
| 21               | 82            | 73            | 147          | 161          | 33           | 37           | 262       | 271       |
| 22               | 80            | 80            | 177          | 170          | 42           | 41           | 299       | 291       |
| 23               | 87            | 62            | 87           | 115          | 34           | 39           | 208       | 216       |
| 24               | 89            | 83            | 115          | 134          | 42           | 31           | 246       | 248       |
| 25               | 32            | 37            | 132          | 156          | 66           | 44           | 230       | 237       |
| 26               | 34            | 13            | 98           | 110          | 32           | 42           | 165       | 165       |
| 27               | 51            | 47            | 222          | 200          | 39           | 60           | 313       | 307       |
| 28               | 15            | 13            | 114          | 116          | 47           | 45           | 177       | 174       |
| 29               | 22            | 23            | 111          | 97           | 31           | 34           | 165       | 154       |
| 30               | 33            | 32            | 157          | 138          | 38           | 50           | 228       | 220       |

Table 2. Measured lipid profiles for the training set (mg/dL).<sup>a</sup>

| Sample<br>Number | VLDL-C<br>(b) | VLDL-C<br>(c) | LDL-C<br>(b) | LDL-C<br>(c) | HDL-C<br>(b) | HDL-C<br>(c) | TC<br>(b) | TC<br>(c) |
|------------------|---------------|---------------|--------------|--------------|--------------|--------------|-----------|-----------|
| 31               | 27            | 47            | 207          | 170          | 42           | 50           | 277       | 267       |
| 32               | 34            | 44            | 155          | 167          | 78           | 53           | 268       | 264       |
| 33               | 24            | 23            | 184          | 170          | 49           | 57           | 258       | 250       |
| 34               | 68            | 64            | 103          | 102          | 29           | 38           | 201       | 204       |
| 35               | 35            | 22            | 122          | 123          | 35           | 42           | 192       | 187       |

Table 2. Continued

- <sup>a</sup> The time interval between (b) and (c) determinations was variable, sometimes as much as several days.
- (b) TC and HDL-C measured enzymatically, VLDL-C calculated as 0.2x TG, and LDL-C calculated from the Friedewald equation. All measurements were made only once.
- (c) VLDL-C, LDL-C and HDL-C measured spectroscopically, TC calculated as the sum. Multiple independent measurements were made for all samples.

| Sample | A <sub>362</sub> | A <sub>388</sub> | A <sub>420</sub> | A <sub>456</sub> | A <sub>520</sub> | A <sub>546</sub> |
|--------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1      | 0.553            | 0.461            | 0.442            | 0.373            | 0.631            | 0.250            |
| 2      | 0.459            | 0.369            | 0.332            | 0.271            | 0.414            | 0.164            |
| 3      | 0.522            | 0.432            | 0.431            | 0.362            | 0.650            | 0.242            |
| 4      | 0.330            | 0.273            | 0.251            | 0.204            | 0.337            | 0.126            |
| 5      | 0.319            | 0.266            | 0.246            | 0.200            | 0.348            | 0.124            |
| 6      | 0.378            | 0.312            | 0.305            | 0.253            | 0.467            | 0.164            |
| 7      | 0.425            | 0.353            | 0.335            | 0.282            | 0.475            | 0.185            |
| 8      | 0.349            | 0.302            | 0.303            | 0.255            | 0.446            | 0.176            |
| 9      | 0.460            | 0.384            | 0.372            | 0.316            | 0.555            | 0.219            |
| 10     | 0.484            | 0.395            | <b>0.403</b>     | 0.343            | 0.623            | 0.233            |
| 11     | 0.337            | 0.289            | 0.302            | 0.254            | 0.477            | 0.181            |
| 12     | 0.432            | 0.362            | 0.353            | 0.300            | 0.529            | 0.206            |
| 13     | 0.281            | 0.237            | 0.215            | 0.176            | 0.299            | 0.116            |
| 14     | 0.568            | 0.461            | 0.460            | 0.387            | 0.681            | 0.257            |
| 15     | 0.365            | 0.308            | 0.316            | 0.262            | 0.489            | 0.184            |
| 16     | 0.421            | 0.358            | 0.335            | 0.288            | 0.507            | 0.199            |
| 17     | 0.821            | 0.677            | 0.655            | 0.566            | 0.961            | 0.379            |
| 18     | 0.373            | 0.303            | 0.312            | 0.251            | 0.464            | 0.163            |
| 19     | 0.472            | 0.389            | 0.411            | 0.346            | 0.671            | 0.243            |
| 20     | 0.762            | 0.628            | 0.594            | 0.505            | 0.789            | 0.315            |
| 21     | 0.581            | 0.463            | 0.480            | 0.407            | 0.747            | 0.273            |
| 22     | 0.652            | 0.525            | 0.536            | 0.449            | 0.795            | 0.297            |
| 23     | 0.488            | 0.397            | 0.378            | 0.314            | 0.531            | 0.193            |
| 24     | 0.580            | 0.468            | 0.463            | 0.391            | 0.670            | 0.247            |
| 25     | 0.488            | 0.403            | 0.415            | 0.354            | 0.647            | 0.244            |
| 26     | 0.351            | 0.296            | 0.285            | 0.238            | 0.410            | 0.161            |
| 27     | 0.678            | 0.561            | 0.554            | 0.472            | 0.826            | 0.320            |
| 28     | 0.389            | 0.327            | 0.304            | 0.258            | 0.436            | 0.173            |
| 29     | 0.365            | 0.300            | 0.282            | 0.236            | 0.396            | 0.157            |
| 30     | 0.471            | 0.390            | 0.377            | 0.316            | 0.550            | 0.210            |
| 31     | 0.549            | 0.448            | 0.459            | 0.387            | 0.708            | 0.265            |
| 32     | 0.538            | 0.451            | 0.461            | 0.384            | 0.680            | 0.257            |
| 33     | 0.455            | 0.376            | 0.401            | 0.334            | 0.642            | 0.238            |
| 34     | 0.566            | 0.465            | 0.412            | 0.338            | 0.500            | 0.200            |
| 35     | 0.403            | 0.338            | 0.331            | 0.280            | 0.486            | 0.189            |

Table 3. Absorbance data<sup>a</sup> for the training set.

<sup>a</sup> Average absorbance from multiple measurements of each sample.

#### CHAPTER V

#### **RESULTS AND DISCUSSION**

#### **Reagent** Modification

The original Chugaev reagent consisted of a 2:1 mixture of a solution of 20%  $ZnCl_2$  (w/v) in glacial acetic acid and 98% acetyl chloride.<sup>112</sup> The experimental conditions called for incubation at 67°C for 20 minutes. In an effort to find more convenient experimental conditions, various modifications to the reagent were tried.

The first modification involved changing the relative composition of the reagent mixture. Zinc chloride was increased to 35% (w/v) and the acetyl chloride was increased to be in excess of the acetic acid by 100:1. These modifications increased the intensity of the absorbance signal but the reaction rate was not affected significantly. Incubation at  $67^{\circ}$ C was still required. The function of glacial acetic acid is as the solvent for the ZnCl<sub>2</sub> but it appears to retard the reaction rate. In order to eliminate it, a variety of other salts were evaluated which were dissolved directly into acetyl chloride. Results are summarized in Table 4. The acetate and perchlorate salts of zinc had the best potential as substitutes for ZnCl<sub>2</sub>. A number of solvents were also evaluated as alternatives to acetyl chloride. Among these solvents were acetone, chloroform, acetic anhydride, methanol, and dichloromethane. When mixed with zinc perchlorate either the salt did not dissolve or no color was produced when incubated with cholesterol.

| Salts                                                | Solubility in<br>acetyl chloride | Color of the solution | Gave color when<br>reacted with<br>cholesterol |
|------------------------------------------------------|----------------------------------|-----------------------|------------------------------------------------|
| ZnCl <sub>2</sub>                                    | not soluble                      | <u></u>               | -                                              |
| $Zn(ClO_4)_2 \cdot 6H_2O$                            | soluble                          | colorless             | yes                                            |
| $Zn(CH_3COO)_2$ .                                    | soluble                          | turned yellow after   | yes                                            |
| 2H <sub>2</sub> O                                    |                                  | about 2 hours         |                                                |
| [CH <sub>3</sub> COCH=C(O)-                          | soluble                          | turned yellow         | -                                              |
| CH <sub>3</sub> ] <sub>2</sub> Zn· xH <sub>2</sub> O |                                  | immediately           |                                                |
| $Zn(SO_4)_2 \cdot H_2O$                              | soluble                          | colorless             | no                                             |
| $Zn(NO_3)_2 \cdot 6H_2O$                             | soluble                          | turned yellow         | -                                              |
|                                                      |                                  | immediately           |                                                |
| ZnCO <sub>3</sub>                                    | not soluble                      | -                     | -                                              |
| CdCl <sub>2</sub>                                    | not soluble                      | -                     | -                                              |
| AgNO <sub>3</sub>                                    | not soluble                      | -                     | -                                              |
| $Cd(ClO_4)_2 \cdot 6H_2O$                            | not soluble                      | -                     | -                                              |
| $Ca(ClO_4)_2 \cdot 6H_2O$                            | not very soluble                 |                       | -                                              |
| Mg(ClO <sub>4</sub> ) <sub>2</sub>                   | soluble                          | colorless             | no                                             |
| $Ba(ClO_4)_2 \cdot 3H_2O$                            | not very soluble                 | colorless             | yes but very small                             |
|                                                      |                                  |                       | signal                                         |
| NaClO <sub>4</sub>                                   | not soluble                      | -                     | -                                              |
| KClO <sub>4</sub>                                    | not soluble                      | -                     | -                                              |

Table 4. Metal salts evaluated as alternative to ZnCl<sub>2</sub>.

The properties of acetyl chloride were studied extensively by Paul and Sandhu.<sup>202</sup> They found that strongly ionic chlorides are insoluble in acetyl chloride and the development of color when substances are dissolved in acetyl chloride indicates the formation of complexes. Compounds that are capable of acting as Lewis acids are soluble. Acetyl chloride has a dielectric constant of 15.9 at 20°C, low compared to water, which may be a factor responsible for the insolubility of strongly ionic compounds. Solvation plays an important role in the dissolution of Lewis acids and bases in these non-aqueous media.<sup>202</sup>

With zinc perchlorate dissolved directly in acetyl chloride the rate of color production is much faster and signal intensities much higher. One possible explanation is that the perchlorate ion is a stronger base compared to the acetate ion in abstracting hydrogen from the cholesterol molecule making the rate of color formation faster. A kinetic study of the reaction done in our laboratory showed that the reaction is 98% complete in 15 minutes under room temperature conditions. The rate equation is first order in cholesterol and probably first order in zinc perchlorate but because the reagent is present in very large excess compared to cholesterol the order is reduced to pseudo-zero order. Taking the average cholesterol concentration to be 200 mg/dL, the mole ratio  $[Zn^{+2}]$ : [cholesterol] is approximately 10,000:1.

#### **Color and Spectra of Products**

Products of the reactions between the modified Chugaev reagent and standard reference material (SRM) forms of cholesterol and cholesterol esters dissolved in chloroform are pink in color. With serum, the color is a fluorescent orange, the ultimate shade of orange being a function of the amount of serum cholesterol and its distribution among the lipoprotein fractions. Individual colors for the reactions with the subfractions. separated either by ultrafiltration (Sigma Chemical Co.), or by ultracentrifugation (Lipids Research Laboratory, Oklahoma Medical Research Foundation) are pink, orange, and yellow for VLDL-C, LDL-C, and HDL-C, respectively. Considering the lipoprotein particles as the local "solvents" for cholesterol in the concurrent reactions, the VLDL-C particles, having the highest proportion of TG and the lowest protein, are the least polar of the lipoproteins and would behave most like chloroform in the test with cholesterol. Colors for the VLDL-C and the SRM of cholesterol are the most alike. The spectral shift from pink to yellow in going from VLDL-C through LDL-C to HDL-C, parallels the relative increase in polarity. Absorbance spectra for the SRM of cholesterol and its esters cannot be used to calibrate the analyses of serum cholesterol because of the environmental effects of the lipoprotein matrices on the electronic absorbance spectra for cholesterol in the various sub-fractions (Figure 3). In contrast, the Liebermann-Burchard reagent, reacted with the lipoprotein subfractions, gives the same spectrum for all three fractions. It cannot, therefore, be used for the discrimination of the lipoprotein fractions.

Absorption spectra for the colored products from the reactions of three serum samples with different TC levels are shown in Figure 4. The absorbances at  $\lambda_{max}$  (520 nm) do not obey Beer's Law and the overall shape of the spectra depends upon the distribution of cholesterol among the lipid fractions. In Figure 5, on the other hand, absorption spectra are compared for the colored products of the reactions of cholesterol in three different serum samples which had the same TC but different lipid profiles.

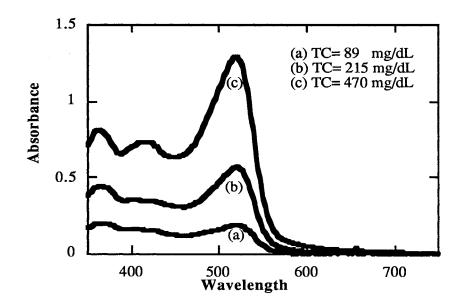



Figure 4. Absorption spectra for the colored product of the reaction of cholesterol with three serum samples with different TC.

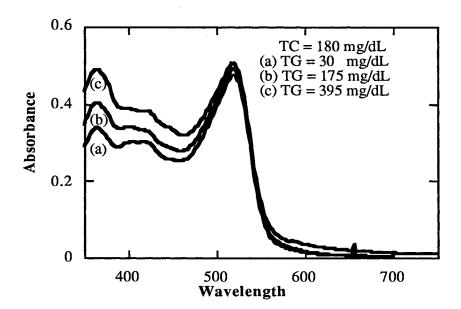



Figure 5. Absorption spectra for the colored product of the reaction with three serum samples with the same TC but different TG levels.

All three have similar absorbance at the 520 nm maximum, representative of the fact that they have the same TC values, 180 mg/dL, as measured enzymatically. This part of the spectrum is dominated by the LDL-C fraction, Figure 3, which, from population averages accounts for as much as 65% of the total serum cholesterol.<sup>52</sup> The critical part of the spectrum for discrimination among LDL-C and other lipid fractions is clearly in the range 360-480 nm. More specifically, absorbances in the 360-430 range are seen to increase as TG increases, Figure 5. The increase in absorbance in the 362 nm absorbance maximum, however, does not correlate linearly with the increase in TG. A linear dependence would only occur if the band was due exclusively to the absorption by VLDL-C, and the approximation was true that VLDL-C = 0.2 x TG at all levels of TG, which it is not. The transition with increasing TG, however is monotonic and smooth which might imply that the mathematical model used to analyze the spectral data will, in fact, be applicable to samples with high TG levels.

## **Calibration**

Since pure forms of the cholesterol lipid fractions are not available, neither are the spectra for the individual products of the color reaction. Therefore, a mathematical model has to be developed that will resolve the whole spectrum into the contribution from the parts.

(a) **3x3 Matrix Solution:** In the original work,<sup>186</sup> absorbances  $A_i$ , were measured at three chosen wavelength and the lipid profiles were calculated by solving a set of three simultaneous equations of the form:

$$A_{(i)} = \varepsilon_{VLDL-C(i)} \cdot [VLDL-C] \cdot b + \varepsilon_{LDL-C(i)} \cdot [LDL-C] \cdot b + \varepsilon_{HDL-C(i)} \cdot [HDL-C] \cdot b$$
(eq. 12)

where b is the sample pathlength. The nine  $\varepsilon$  coefficients were evaluated in a totally empirical manner and are subject to investigator bias and oversimplification in the model. The model is also seriously limited by having zero degrees of freedom in the data. Using this method of data analysis, good correlation between methods was obtained only for LDL-C and TC.

(b) *Multivariate Regression Analysis (MVRA):* Lipid profile and TC results for the work reported here were determined using MVRA techniques. The use of six data points increased the degrees of freedom.

#### The training set:

The mathematical model that describes the relationship between absorbance and the concentration of the three major lipoprotein fractions was established by creating a training set or calibration set. The training set consisted of samples that were chosen to have as wide a distribution of TC as well as all the lipid fractions as possible such that it would approximate the distributions in the entire population. This would make the mathematical model predict better the concentration of future samples.

In this study, thirty five samples were chosen for the training set. They included 21 samples from UWC and 4 high TG samples from RBL. Lipid profiles used in the calibration had been measured enzymatically, VLDL-C was taken to be 0.2 x TG, and the numbers for LDL-C were calculated using the Friedewald formula. Ranges in the values of the lipid fractions were as wide as we could access (Table 2). Using the linear PLS2 algorithm, with six absorbance measurements for each sample, the following calibration equations were obtained

$$[VLDL-C] = 870.4 \cdot A_{362} - 1702.0 \cdot A_{388} + 415.5 \cdot A_{420} + 1779.0 \cdot A_{456} - 145.81 \cdot A_{520}$$
  
- 1682.0 \cdot A\_{546} (eq. 13)

$$[LDL-C] = -786.5 \cdot A_{362} + 1569.0 \cdot A_{388} - 17.9 \cdot A_{420} - 1846.0 \cdot A_{456} + 594.6 \cdot A_{520} + 758.0 \cdot A_{546}$$
(eq. 14)

$$[\text{HDL-C}] = -690.5 \cdot A_{362} + 1659.0 \cdot A_{388} + 6.0 \cdot A_{420} - 1935.0 \cdot A_{456} + 509.4 \cdot A_{520} + 271.8 \cdot A_{546}$$
(eq. 15)

and were used to predict the concentrations of the fractions in all of the samples in the training set as well as future samples. Lipid profiles for the members of the training set, predicted using the multivariate analysis, are compared with the results from the independent sources in Table 2.

Between-methods correlation plots and correlation equations for TC and the various fractions of the samples that form the training set are shown in Figures 6 and 7. The y-intercepts are all positive, a result that can be expected when comparing between methods that have quite different experimental uncertainties. The TC correlation is excellent. Because TC is measured by the enzymatic method, but calculated in the spectroscopic method from the sum of the fractions, the validity of the multivariate method is substantiated. Correlations are also very good for VLDL-C and LDL-C. The poorest correlation is seen for HDL-C, but there is a significant improvement over the results from earlier work.<sup>187</sup> Results from paired Student's t-test of the training set showed that correlations

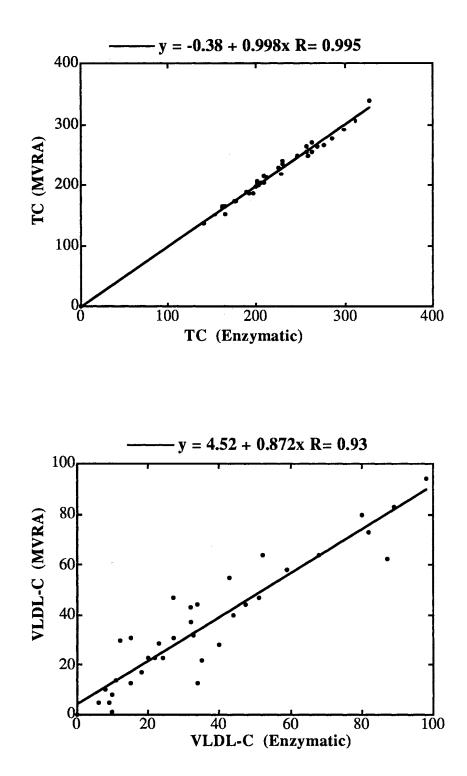



Figure 6. Correlation plots between methods for TC (upper) and VLDL-C (lower) for the training set. Concentrations are in mg/dL.



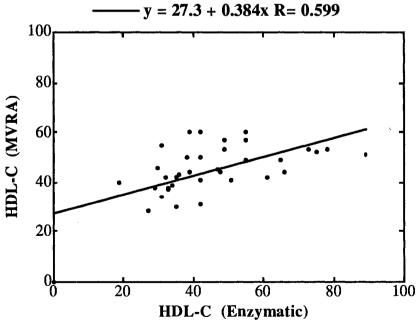



Figure 7. Correlation plots between methods for LDL-C (upper) and HDL-C (lower) for the training set. Concentrations are in mg/dL.

between the enzymatic and the spectroscopic methods do exist, Table 5.

| (N=35)<br>Fraction  | Mean<br>difference      | SD difference | t <sub>exp</sub> |
|---------------------|-------------------------|---------------|------------------|
| VLDL-C              | 0.11                    | 9.80          | 0.066            |
| LDL-C               | -0.17                   | 16.23         | -0.062           |
| HDL-C               | 0.20                    | 14.48         | 0.082            |
| TC                  | 0.94                    | 6.21          | 0.896            |
| at $\alpha = 0.05;$ | $t_{table} = \pm 2.042$ |               |                  |
| df = 34             |                         |               |                  |

Table 5. Paired student's t-test of samples used in the training set analyzed by the enzymatic and the alternative methods.

## **Prediction**

Calibration equations (eq. 13-15) obtained from data for the training set were subsequently used to predict the concentrations of all the other samples tested. There were several sources of the serum samples as described earlier. The results are discussed independently then collectively in the following sub-sections.

## I. OSU Wellness Center (UWC)

The most extensive comparison was made with samples obtained from the UWC (n=304). Some samples were only analyzed by our laboratory, so comparisons are incomplete. Individual results are shown in Appendix B-I. For samples with TG < 400 mg/dL, the VLDL-C fraction was calculated as TG/5 and LDL-C by the Friedewald formula. For samples with TG > 400 mg/dL, precipitation of HDL-C is usually not done so only TG and TC would be reported by the other laboratory. For some samples, HDL-C values were reported even when TG > 400 mg/dL. The VLDL-C and LDL-C fractions for these samples were estimated using the Friedewald formula although the limit of the formula is exceeded. Very good correlations were obtained for both TC and LDL-C, Figures 8 and 9. The correlation coefficient is much smaller for VLDL-C which can be attributed in part to the empirical way that VLDL-C is calculated in the enzymatic method and the fact that for some samples the upper TG limit was exceeded. The current model indicates that there is no correlation for HDL-C. It is difficult to apportion the relative errors between methods but since VLDL-C and LDL-C are obtained empirically in the enzymatic method, and high TG samples are included in the training set, some of the error is associated with the reference method. Until these have been reduced, the errors in measuring HDL-C by the alternative method cannot be evaluated. The differences between methods appear to be greatest when HDL-C levels are high, > 60 mg/dL, suggesting the absorbance may change non-linearly for this fraction. The only way to resolve the problem is to use ultracentrifugation data as the reference method.

#### II. Roche Medical Laboratories and Stillwater Medical Center

Samples from these two laboratories were exclusively high TG (>250 mg/dL). These samples were of interest because they represent a

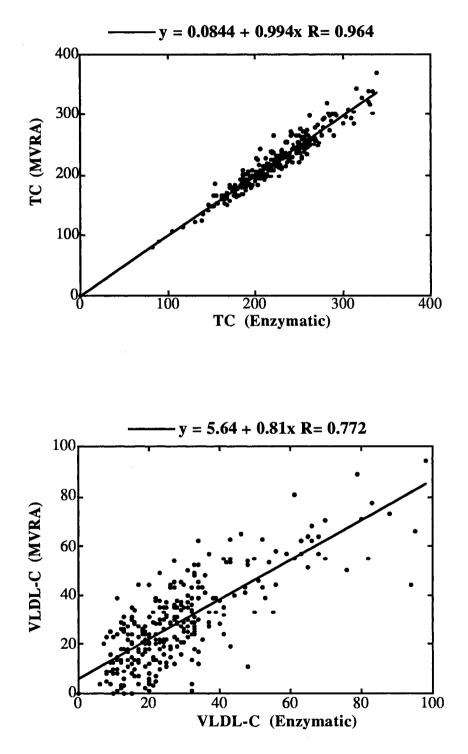
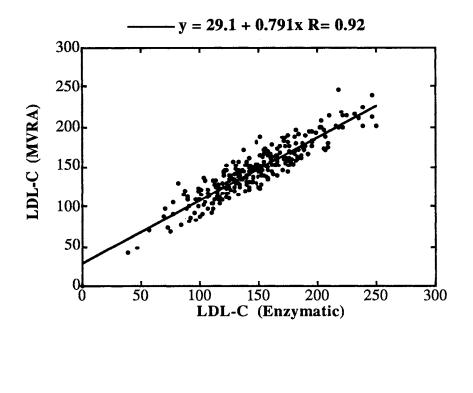




Figure 8. Correlation plots between methods for TC (upper) and VLDL-C (lower) for the OSU Wellness Center samples. Concentrations are in mg/dL.



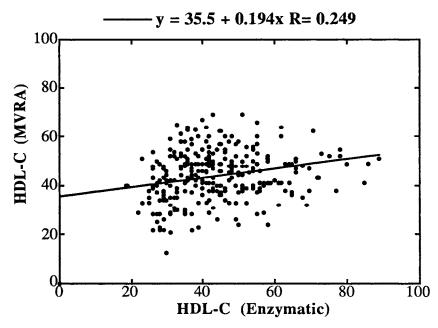
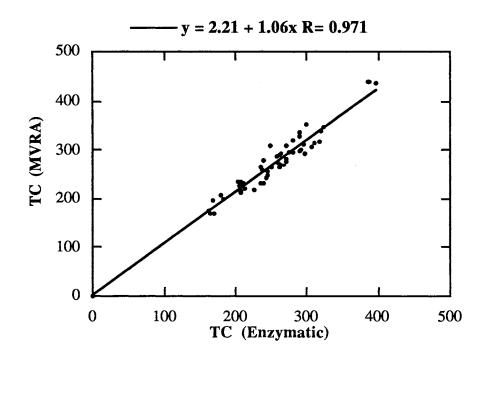




Figure 9. Correlation plots between methods for LDL-C (upper) and HDL-C (lower) for the OSU Wellness Center samples. Concentrations are in mg/dL.

population with any of a number of lipid disorders. Having a routine method for measuring their lipid fractions would be helpful in the early detection and management of the disorders. Current routine methods fail for these samples. Ultracentrifugation is the only way to obtain the information.

Absorbances in the 360-430 nm range increase dramatically with increasing TG (Figure 5). The increase in the maximum absorbance at 362 nm is non-linear with the amount of TG.

Comparisons of the lipid profiles of samples from RBL (n=53) and SMC (n=251) obtained with the enzymatic method and the alternative method are shown in Appendices B-II and III. Correlation plots of TC between the enzymatic and the alternative methods for these samples are shown in Figure 10. The correlations are very good. The VLDL-C obtained by MVRA is generally smaller in comparison to the value obtained by TG/5 for high TG samples. This is consistent to the limitations set by the Friedewald formula. Comparisons between methods for the lipid fractions for the majority of these high TG samples cannot be made. However, HDL-C of some of these high TG samples were reported by the other laboratories (n=21 for RBL and n=4 for SMC) and the values obtained by MVRA were comparable to those obtained for UWC. The LDL-C for these samples obtained by MVRA are greater than those approximated from the Friedewald formula. One possible explanation for the higher LDL-C values is that VLDL-C is underestimated making the LDL-C higher. The obvious failure of the calibration model to predict the lipid profiles of these abnormal samples, even when TC values correlate, suggests that there is an essential factor missing from the model which would redistribute the cholesterol over the fractions.



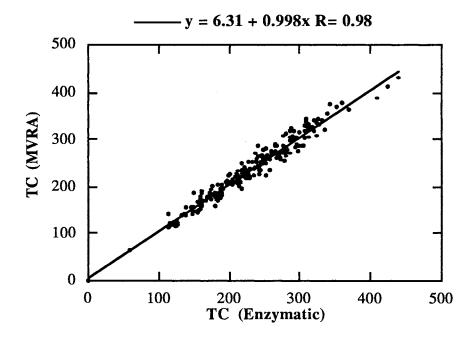



Figure 10. Correlation plots between methods for TC of samples from Roche Biomedical Laboratory(upper) and Stillwater Medical Center (lower). Concentrations are in mg/dL.

#### III. University of Cape Town Medical School (UCT)

The UCT lipids laboratory is involved with research into lipid dysfunctionalities, particularly Type III lipid disorder and familial hypercholesterolemia (FH). Individuals with FH have significantly high LDL-C levels and are at a very high risk for atherosclerosis. In Type III lipid disorders, the level of IDL-C is increased indicating a defect in the metabolism of the lipoproteins. Detection and management of these disorders requires ultracentrifugation which is both labor and financially intensive. Our collaboration is to evaluate the spectrophotometric method as a potential alternative. Samples from UCT were separated using the preparative ultracentrifuge and lipid profiles obtained by this method can also provide a check on the validity of the current model which is based on the routine enzymatic method.

There are no obvious differences in the spectra for reactions with the plasma of normal, Type III, and FH individuals. Comparison of the lipid profiles of samples from UCT are shown in the Appendix B-IV. Considering the possible effects of lipid dysfunctionalities on both the separation and photometric technologies, correlation plots between the methods are very good for TC and LDL-C for both normal and Type III samples, Figure 11. Once again, the HDL-C correlation is not good (Figure 12). For VLDL-C, there is a good correlation between the two methods if comparing normal samples (Figure 13). The current model is predicting the VLDL-C concentration lower than the one obtained by ultracentrifugation method for Type III individuals (Figure 13), as it did for high TG samples in the RBL subset.

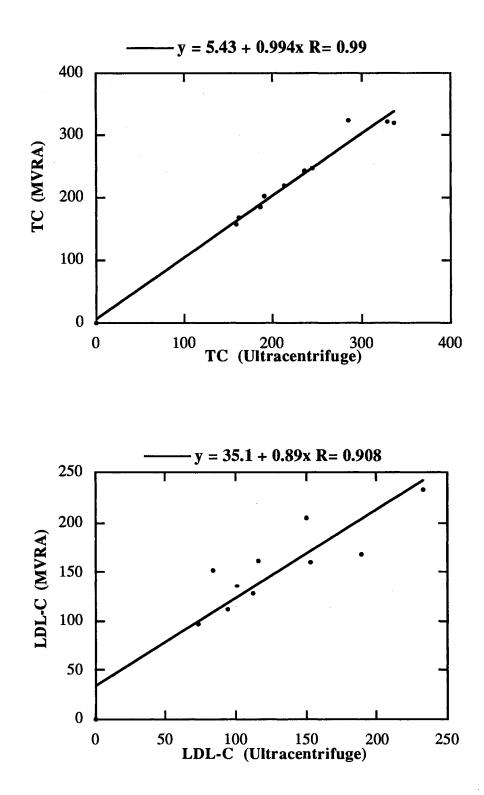



Figure 11. Correlation plots between methods for TC (upper) and LDL-C (lower) for all the samples from the University of Cape Town. Concentrations are in mg/dL.

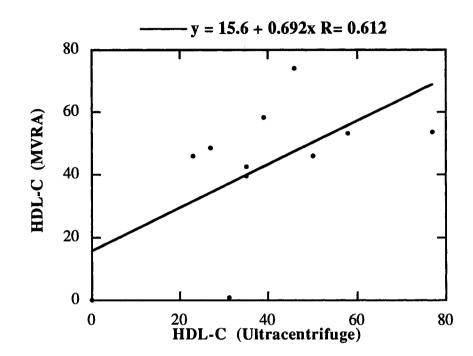



Figure 12. Correlation plot between methods for HDL-C for all the samples from University of Cape Town. Concentrations are in mg/dL.

A significant factor in lipid dysfunctionalities that is not measured in the routine enzymatic screening is the IDL-C fraction. This fraction is described to be VLDL-C like in structure but with a cholesterol loading similar to LDL-C. The IDL-C levels are high in Type III and low in normal and FH cases. A calibration model that includes the IDL-C fraction would be desirable to evaluate the abnormal samples and would probably help improve the correlations among the other lipid fractions particularly HDL-C. An obvious difference can be seen on the spectra of type III and FH or normal individual (Figure 14) using the first fraction (fraction A)

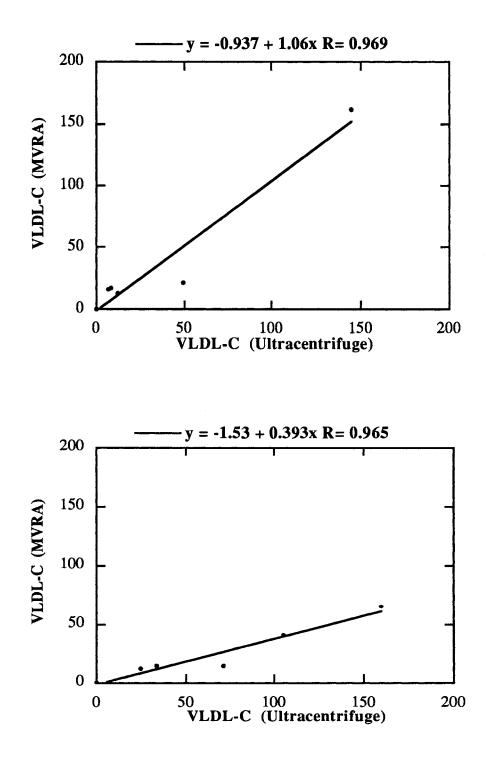



Figure 13. Correlation plots between methods for VLDL-C for the University of Cape Town samples with no lipid disorder (upper) and with known Type III lipid disorder (lower). Concentrations are in mg/dL.

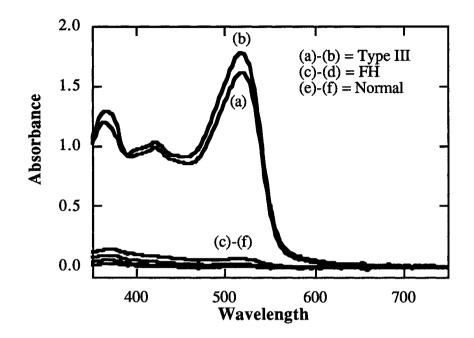



Figure 14. Absorbance spectra of fraction A (obtained by ultracentrifugation) of individuals that are normal or with Type III and FH lipid disorder.

after ultracentrifugation. It is hard to distinguish between the spectra of FH and normal individuals (Figure 15). The A fraction was obtained using a density=1.006 g/mL cushion to float the A layer which is mostly VLDL-C. The spectra of fraction A of Type III individuals show a large absorbance at 520 nm compared to the absorbance at 362 nm. The spectra for fraction A for FH and normal individuals are similar to each other having a very low intensity and the absorbance at 362 nm is greater than the absorbance at 520 nm. More samples having a confirmed Type III and FH conditions need to be analyzed to check if the spectra of the A fraction really correlates with a lipid disorder.

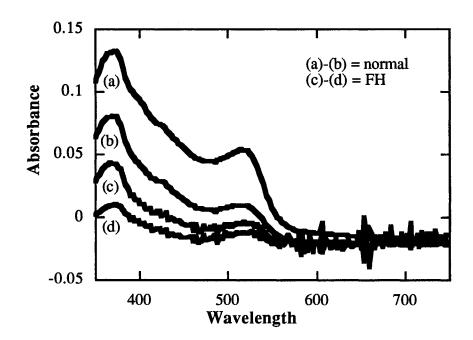



Figure 15. Absorbance spectra of fraction A (obtained by ultracentrifugation) of individuals that are normal and with FH lipid disorder.

## Combined data from the four laboratories

Some statistics on the raw data of the combined results from the four different laboratories are shown in Table 6. The result of the Student's t-test comparing the alternative method and the method used by the external laboratories are shown in Table 7 while the correlation coefficients are shown in Table 8.

The correlation coefficients in Table 8 show that a linear correlation exists between the alternative method and the method used by the external

| Statistic                               | VLDL-C |      |      | LDL-C      |      | HDL-C |      | TC   |  |
|-----------------------------------------|--------|------|------|------------|------|-------|------|------|--|
|                                         | (a)    | (b)  | (a)  | <b>(b)</b> | (a)  | (b)   | (a)  | (b)  |  |
| minimum                                 | 6      | -8   | 39   | 42         | 19   | 1     | 58   | 63   |  |
| maximum                                 | 98     | 107  | 250  | 246        | 89   | 74    | 439  | 439  |  |
| number<br>of points                     | 469    | 469  | 327  | 327        | 327  | 327   | 611  | 611  |  |
| mean                                    | 43     | 37   | 146  | 147        | 43   | 43    | 228  | 231  |  |
| median                                  | 35     | 35   | 145  | 146        | 41   | 43    | 226  | 228  |  |
| population<br>standard<br>deviation(SD) | 24.3   | 21.8 | 39.0 | 32.0       | 13.0 | 11.1  | 53.6 | 56.2 |  |

Table 6. Statistics on the lipid profiles obtained by two methods of the samples from the four laboratories.

- (a) Method used by external laboratories.
- (b) Alternative method using MVRA.

Table 7. Results of Student's t-test using all the data from the four external laboratories.

| Statistic                         | VLDL-C | LDL-C | HDL-C | TC   |
|-----------------------------------|--------|-------|-------|------|
| minimum difference                | -37    | -70   | -32   | -57  |
| maximum difference                | 81     | 49    | 44    | 31   |
| number of points                  | 469    | 327   | 327   | 611  |
| mean difference                   | 5.5    | -0.86 | -0.05 | -3.5 |
| S.D difference                    | 15.7   | 17.8  | 14.7  | 14.0 |
| t <sub>exp</sub> (calculated)     | 7.59   | -0.87 | -0.06 | 6.18 |
| $t_{critical}$ at $\alpha = 0.05$ | 1.96   | 1.96  | 1.96  | 1.96 |

Table 8. Correlation coefficients (r).

| Alternative method VLDL-C vs. External laboratories VLDL-C (n=469) |                                         |       |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------|-------|--|--|--|--|
| Alternative method LDL-C                                           | vs. External laboratories LDL-C (n=327) | 0.893 |  |  |  |  |
| Alternative method HDL-C                                           | vs. External laboratories HDL-C (n=327) | 0.285 |  |  |  |  |
| Alternative method TC                                              | vs. External laboratories TC (n=611)    | 0.969 |  |  |  |  |
| Critical value of r ( $\alpha$ = 0.05) = 0.195                     |                                         |       |  |  |  |  |

laboratories. The weakest of the correlations is for HDL-C. The model is unable to predict high concentrations of HDL-C suggesting that the response might not be linear at high HDL-C concentrations. Also, it would appear that a model that is based on ultracentrifugation or betaquantification of the lipoprotein fractions with the IDL-C fraction accounted for would be desirable for proper calibration and prediction. Although a correlation exists between the two methods on TC and the lipid fractions, results of the t-test show a significant difference in TC and VLDL-C. This is possible if there were a constant determinate error in one method making the differences significant even though a good correlation between the methods exist. The estimation of VLDL-C by TG/5 may be a source of error contributing to the significant difference in VLDL-C between these two methods which subsequently affect the TC. Another source of the discrepancy might relate to the fact that in the alternative method the test is done in duplicate but in the external laboratories tests are done only once.

# **Precision Studies**

To assess the precision of the alternative method, analyses were done several times for one serum. Three serum samples were chosen that have different values of their total cholesterol. Table 9 summarizes the results of the precision studies while the lipid profiles obtained for each analysis is

|                   |         | and the second sec |         |         |
|-------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
|                   | VLDL-C  | LDL-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HDL-C   | TC      |
|                   | (mg/dL) | (mg/dL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mg/dL) | (mg/dL) |
| Sample 1          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| (a) Enzymatic     | 32      | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42      | 234     |
| (b) Spectroscopic | 25      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47      | 238     |
| n=10              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| SD                | 2.6     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9     | 3.1     |
| %CV               | 10.2    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0     | 1.3     |
| Sample 2          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| (a) Enzymatic     | 7       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37      | 89      |
| (b) Spectroscopic | 19      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23      | 91      |
| n=6               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| SD                | 3.4     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9     | 1.9     |
| %CV               | 17.9    | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0     | 2.0     |
| Sample 3          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| (a) Enzymatic     | 20      | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33      | 157     |
| (b) Spectroscopic | 8       | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40      | 155     |
| n=10              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |
| SD                | 4.5     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4     | 3.1     |
| %CV               | 58.4    | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5     | 2.0     |

Table 9. Results of the precision studies.

shown in Appendix C. Since outside laboratories make one measurement for each serum, comparisons of the precisions cannot be made.

Results obtained from the precision studies showed that the alternative method passes the requirements set by LSP for TC. The requirement of the LSP for CV of  $\leq 3\%$  for LDL-C and  $\leq 4\%$  for HDL-C is not completely fulfilled particularly at low levels of this lipid fractions.

## **Interference Studies**

To test the effects of other endogenous substances on the alternative method, weighed amount of various solid substances were added to 1 ml aliquots taken from two pooled samples prepared by mixing serum from nine individuals. Spectra and data were analyzed the usual way. Results are shown in Table 10. Initial amounts added to the serum (column 4) were equal to the highest test levels encountered in practice. It should be understood that these amounts are in excess of the "normal" high values (column 2).

| Compound<br>added | High<br>"normal"<br>concen-<br>tration<br>(mg/dL) | High test<br>levels<br>(mg/dL) | Amount<br>added<br>to serum<br>(mg/dL) | VLDL-C<br>(mg/dL) | LDL-C<br>(mg/dL) | HDL-C<br>(mg/dL) | TC<br>(mg<br>/dL) |
|-------------------|---------------------------------------------------|--------------------------------|----------------------------------------|-------------------|------------------|------------------|-------------------|
| serum 1           | -                                                 | -                              | -                                      | 18                | 110              | 46               | 174               |
| urea              | 38                                                | 500                            | 500                                    | 16                | 109              | 42               | 167               |
| creatinine        | 1.5                                               | 30                             | 30                                     | 15                | 108              | 44               | 166               |
| fructose          | 7.5                                               | 30                             | 30                                     | 18                | 108              | 43               | 169               |
| citrate           | 3.0                                               | 30                             | 30                                     | 21                | 103              | 40               | 164               |
| d-glucose         | 110                                               | 1200                           | 1200                                   | 22                | 107              | 39               | 168               |

Table 10. Results of the interference studies.

| Compound<br>added | High<br>"normal"<br>concen-<br>tration<br>(mg/dL) | High test<br>levels<br>(mg/dL) | Amount<br>added<br>to serum<br>(mg/dL) | VLDL-C<br>(mg/dL) | LDL-C<br>(mg/dL) | HDL-C<br>(mg/dL) | TC<br>(mg<br>/dL) |
|-------------------|---------------------------------------------------|--------------------------------|----------------------------------------|-------------------|------------------|------------------|-------------------|
| serum 1           | -                                                 | -                              | -                                      | 18                | 110              | 46               | 174               |
| hemoglobin        | 2.5                                               | 500                            | 500                                    | 34                | 118              | 53               | 205               |
|                   |                                                   |                                | 250                                    | 36                | 92               | 33               | 161               |
|                   |                                                   |                                | 125                                    | 34                | 90               | 42               | 167               |
|                   |                                                   |                                | 62.5                                   | 32                | 94               | 44               | 170               |
|                   |                                                   |                                | 31.25                                  | 24                | 105              | 48               | 177               |
| serum 2           | -                                                 | -                              | -                                      | 22                | 98               | 40               | 160               |
| albumin           | 5000                                              | 6000                           | 6000                                   | 32                | 85               | 33               | 150               |
|                   |                                                   |                                | 3000                                   | 29                | 86               | 34               | 149               |
|                   |                                                   |                                | 1500                                   | 24                | 94               | 37               | 155               |
|                   |                                                   |                                | 750                                    | 18                | 100              | 40               | 158               |
| γ–globulin        | 5000                                              | 6000                           | 6000                                   | 21                | 94               | 38               | 153               |
|                   |                                                   |                                | 3000                                   | 29                | 85               | 35               | 149               |
|                   |                                                   |                                | 1500                                   | 29                | 85               | 35               | 149               |
|                   |                                                   |                                | 750                                    | 28                | 97               | 38               | 163               |

| Table 10 | (continued) | . Results | of the | interference | studies. |
|----------|-------------|-----------|--------|--------------|----------|
|----------|-------------|-----------|--------|--------------|----------|

Results of the interference studies showed that only hemoglobin, albumin and globulin have an effect on the measurement if they are present in very high concentrations. Quantities of the interferences were progressively decreased to determine the treshold level for the interference. These levels are also shown in Table 10. The interference that is of primary concern is hemoglobin because very often in the collection of venous blood some rupture of the red cells will occur. The interference treshold is 15 times greater than the "normal" high serum value.

## **Linearity Tests**

A linear Beer's Law dependence for TC is observed when the SRM of cholesterol is dissolved in chloroform, an isotropic solvent. Correlation tests made by spiking serum with SRM were non-linear because of changing matrix effects. A test was made by mixing two serums which had different TC and different lipoprotein levels in varying proportions and analyzing the spectra the usual way. Results are given in Table 11 and correlation plots are shown in Figure 16.

| Serum 1 | Serum 2 | VLDL-C | LDL-C | HDL-C | TC  |
|---------|---------|--------|-------|-------|-----|
| 100%    |         | 21     | 93    | 37    | 151 |
| 75%     | 25%     | 17     | 109   | 38    | 164 |
| 50%     | 50%     | 22     | 131   | 40    | 193 |
| 25%     | 75%     | 20     | 151   | 48    | 219 |
| _       | 100%    | 13     | 165   | 50    | 228 |

Table 11. Results of the linearity tests.

Results of the linearity tests showed that the alternative method is sensitive to the increase in concentration in LDL-C, HDL-C and TC. The response was linear over the concentration ranges that were studied. The limits to the ranges need to be evaluated in further work. The majority of the normo-lipid serum measured by the external laboratories are covered by the ranges expressed for TC, LDL-C, and HDL-C in Table 11, which further substantites the linearity correlations between methods for LDL-C and TC, Figures 8-11.

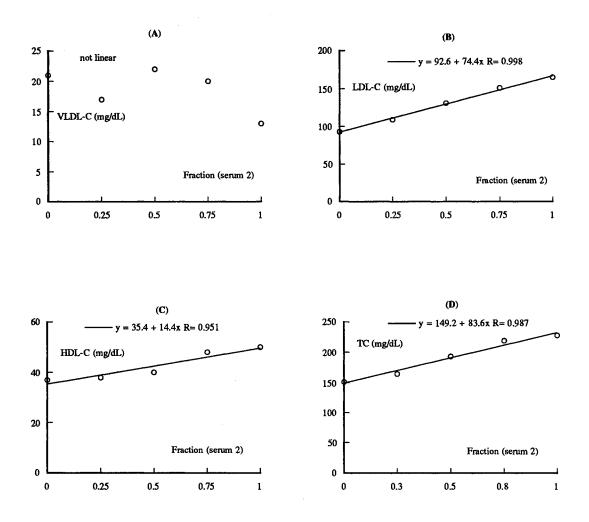



Figure 16. Plots of the concentration of the lipoprotein obtained by the alternative method against fraction of Serum 2 added to Serum 1: (A) VLDL-C, (B) LDL-C, (C) HDL-C, and (D) TC.

## CHAPTER VI

## SUMMARY AND CONCLUSIONS

The most significant result that has emerged from this study is that, the amount of cholesterol in the major lipoprotein fractions has been measured routinely and directly without resorting to any fractionation step(s). The good correlation between TC values, measured by distinctly different procedures, validates both the physical interpretation of the spectrum for whole serum, and the mathematical model that is used to fit the data. Correlations between the alternative method and current routine methods for all the fractions and TC were better than reported in previous studies.<sup>26-27,186</sup> Also, the experimental conditions are much simpler than the previous studies using a one-reagent system with the reaction occurring at room temperature. The precision of the alternative method for TC is very good and passes the requirement of the Laboratory Standardization Panel.

In the process a method has been developed for the direct determination of LDL-C which is independent of empirical approximations such as the Friedewald equation. Reducing the number of steps needed for profiling from three to one, and eliminating an intermediate selective precipitation that separates low from high density fractions, should have the effect of improving upon the overall accuracy in the measurements for all fractions.

A third advantage offered by the alternative method is that lipid distributions for high TG samples can be measured. These data might now be considered in assigning risk factors for CHD. Quite often the evidence for failure of the Friedewald approximation in high TG samples are negative values for LDL-C and HDL-C. This will happen because VLDL-C is larger than 0.2xTG in these cases.

Preliminary studies have shown that a spectral difference can be seen in the A fraction of Type III individuals. More samples with confirmed lipid disorders need to be tested to see if the alternative method can provide an easy way to detect the various lipid disorders.

One critique of the method is that it is based on a lipid profile provided by a certified test laboratory but not a primary resource laboratory. The next development step is to prepare a training set using lipid profile data that were obtained using primary reference methods developed and recommended by the Center for Disease Control such as ultracentrifugation data. A training set based on ultracentrifugation which also includes the IDL-C fraction in the training set is the recommended next step. With these as the basis, there should be a significant improvement in the correlation and slope for all the lipid fractions.

### LITERATURE CITED

- (1) "1986 Heart Facts" American Heart Association, Dallas, 1986, 1-19.
- (2) *Facts About Blood Cholesterol*; National Institute of Health., NIH Publication No. 90-2696, 1990.
- (3) Smith, E. B. Adv. Lipid Res. 1986, 12, 1-49.
- (4) Schonfeld, G. Artery 1979, 5, 305-329.
- (5) Seidel, D.; Cremer, P.; Nagel, D. In Atherosclerosis Reviews;
   Gotto, A. M.; Paoletti, R., Eds.; Raven Press: New York, 1991;
   Vol.23, pp 243.
- (6) Brown, M. S.; Goldstein, J.L. Nature 1987, 330, 113-114.
- (7) Utterman, G. Science **1989**, 246, 904-910.
- (8) Smith, E. B. Eur. Heart J. 1990, 11 (Suppl. E), 72-81.
- (9) Lipids Research Clinics Program JAMA 1984, 251, 365-374.
- (10) Intersociety Commission for Heart Disease Resources
   (Atherosclerosis Study Group nd Epidemiology Study Group)
   Circulation 1970, 42, A55-A95.
- (11) Carlson, L. A.; Bottiger, L. E. Lancet 1972, 1, 865-868.
- (12) Bondurant, S. Circulation 1970, 41, 1-2.
- (13) Wilhelmsen, L.; Wedel, H.; Tibblin, G. Circulation **1973**, 48, 950-958.

- (14) Shepherd, J.; Fruchart, J. C. In *Human Plasma Lipoproteins*;
   Fruchart, J. C.; Shepherd, J., Eds. Clinical Biochemistry, Principles Methods, Applications; Walter de Gruyter: Berlin, 1989; Vol.3, pp 1-20.
- (15) Kannel, W. B. Am. Heart J. 1985, 110, 1100-1106.
- (16) Zemel, P. C.; Sowers, J. R. Am. J. Cardiol. 1990, 66, 71-121.
- (17) Castelli, W. P.; Doyle, J. T.; Gordon, T.; Hames, C.G.; Hjortland, M. C.; Hulley, S. B.; Kagan, A.; Zukel, W. J. *Circulation* 1977, 55, 767-772.
- Gordon, T.; Castelli, W. P.; Hjortland, M. C.; Kannel, W. B.; Dawber, T. R. The American Journal of Medicine 1977, 62, 707-714.
- Patsch, J. R.; Braunsteiner, H. In Atherosclerosis Reviews; Gotto, A. M.; Paoletti, R., Eds.; Raven Press: New York, 1991; Vol.23, pp 85.
- (20) Superko, H. R.; Bachorik, P. S.; Wood, P. D. JAMA 1986, 265, 2714-2717.
- (21) Friedewald, W. T.; Levy, R. I.; Frederickson, D. S. Clin. Chem. **1972**, 18, 449-501.
- (22) NCEP- Laboratory Standardization Panel *Clin. Chem.* **1988**, 34, 193-201.
- (23) "Pre-Analytical Variation and Analytical Error in Lipid and Lipoprotein Testing", AACC Workshop #211, 44th National Meeting: Chicago, Ill., 1992.
- (24) Rifai, N.; Warnick, G. R.; McNamara, J.; Belcher, J. D.; Grinstead, G. F.; Frantz, I. *Clin. Chem.* **1992**, 38, 150-160.
- (25) Warnick, G. R. "HDL Cholesterol: Methodological Considerations and Laboratory Performance"; Proceedings International Symposium on Multiple Risk Factors in Cardiovascular Disease: Washington, D. C., 1990.

- (26) Murphy, L. H. M. Sc. Thesis, Oklahoma State University, July 1991.
- (27) Talley, M. B. M. Sc. Thesis, Oklahoma State University, May 1992.
- (28) Sabine, J. R. *Cholesterol*; Marcel Dekker: New York, 1977.
- (29) Kritchevsky, D. Cholesterol ; John Wiley & Sons, Inc.: New York, 1958.
- (30) Cook, R. P. Cholesterol; Academic Press, Inc.: New York, 1958.
- Lopukhin, Y. M.; Archakov, A. I.; Vladimirov, Y. A.; Kogan, E.
   M. In *Cholesterosis*; Skulachev, V. P., Ed. Physicochemical Biology, Harwood Academic Pub.: Switzerland, 1984.
- (32) The Merck Index of Chemicals and Drugs, 7th ed.; Stetcher, P. G.; Finkel, M. J.; Siegmund, O. H.; Szafranski, B. M., Eds.; Merck & Co., Inc.: Rathway, N. J., 1960.
- (33) Sodhi, H. S.; Kudchodkar, B. J.; Mason, D. T. In Clinical Methods in Study of Cholesterol Metabolism, Kritchevsky, D.; Pollak, O. J., Eds.; Monographs on Atherosclerosis, Vol. 9, S. Karger AG: Basel, 1979.
- (34) Hardinge, M. G.; Stare, F. J. J. Clin. Nutr. 1954, 2, 83-90.
- (35) Connor, W. R. J. Am. Diet. Assoc. 1968, 52, 202-208.
- (36) Dietschy, J. M.; Siperstein, M. D. J. Lipid Res. 1967, 8, 97-104.
- (37) Dietschy, J. M.; Wilson, J. D. J. Clin. Invest. 1968, 47, 166-174.
- (38) Michenen, T. A. Circulation **1971**, 44, 842-850.
- (39) Turley, S. D.; Dietschy, J. M. J. Biol. Chem. 1981, 256, 2438-2446.
- (40) Bhattacharyya, A. K.; Eggen, D. A. J. Lipid Res. 1981, 22, 16-23.
- (41) Dietschy, J. M.; Wilson, D. J. New Engl. J. Med. 1972, 1128-

1138, 1179-1183, 1241-1249.

- (42) Rodwell, H. Y. W.; McNamara, D. J.; Shapiro, D. J. Adv. Enzymol. 1973, 38, 373-412.
- (43) Len, T. C. J. Biol. Chem. 1967, 242, 990-993.
- (44) Nutritional Biochemistry and Metabolism With Clinical Applications; Linder, M. C., Ed., Elsevier Publ. Co. Inc.: New York, 1985.
- (45) Voet, D.; Voet, J. G., John Wiley & Sons Inc.: New York, 1990.
- (46) Smith, L. C.; Pownall, H. J.; Gotto, A. M. Ann. Rev. Biochem. 1978, 47, 751-757.
- (47) Morrisett, J. D.; Jackson, R. L.; Gotto, A. M. Ann. Rev. Biochem. 1975, 44, 183-208.
- (48) Shore, V. G.; Shore, B. *Biochem.* **1973**, 12, 502-507.
- (49) Levy, R. I.; Fredrickson, D. S. J. Clin. Invest. 1965, 44, 426-441.
- (50) Eisenberg, S.; Levy, R. I. Adv. Lipid Res. 1975, 13, 2-80.
- (51) Tietz, N. W. Fundamental of Clinical Chemistry; 3rd ed.; W. B. Saunders Co.; Philadelphia, PA, 1987.
- (52) Gage, S. H. Cornell Vet. 1920, 10, 154-155.
- (53) Herbert, P. N.; Gotto, A. M.; Fredrickson, D. S. In *The Metabolic Basis of Inherited Disease*, Stanbury, J. B.; Wyngaarden, J. B.; Fredrickson, D. S., Eds., McGraw Hill Co.: New York, 1978.
- (54) Zilversmit, D. B. J. Clin. Invest. 1965, 44, 1610-1622.
- (55) Cantarow, A.; Trumper, M. *Clinical Biochemistry*, 6th ed., W. B. Saunders Co.: Philadelphia, 1962.
- (56) Skipski, V. P. In Blood Lipids and Lipoproteins: Quantitation, Composition, and Metabolism; Nelson, G., Ed.; John Wiley & Sons

Inc.: New York, 1972; pp 471-584.

- (57) Illingworth, D. R. Amer. J. of Kidney Disease 1993, 22(1), 90-97.
- (58) Hatch, F. T.; Lees, R. S. In Advances in Lipid Research; Volume 6, Paoletti, R.; Kritchevsky, D., Eds., Academic Press, Inc.: New York, 1968; pp 1-68.
- (59) Fredrickson, D. S.; Levy, R. F. In *The Metabolic Basis of Inherited Disease*; Stanbury, J. B.; Wyngaarden, J. B.; Fredrickson, D. S., Eds.; McGraw Hill Co.: New York, 1972; pp 545-614.
- (60) Ockner, R. K.; Hughes, F. B.; Isselbacker, K. J. J. Clin. Invest. 1969, 48, 2079-2088.
- (61) Fredrickson, D. S.; Lees, R. S. Circulation 1965, 31, 321-327.
- (62) Lees, R. S. J. Lipid Res. 1967, 8, 396-405.
- (63) Krauss, R. M. Med. Clin. North Am. 1982, 66, 403-417.
- Williams, P. J.; Krauss, R. M.; Wood, P. D.; Albers, J. J.; Dreon, D.; Ellsworth, N. *Metabolism* 1985, 34, 524-529.
- (65) Berg, K. Acta Pathol. Microbiol. Scand. 1963, 59, 369-382.
- (66) Albers, J. J.; Hazzard, W. R. Lipids 1974, 9, 15-26.
- (67) Ehnholm, C.; Garroff, H.; Renkonen, O.; Simons, K. *Biochemistry* **1972**, 11, 3229-3232.
- (68) Kostner, G. M.; Krempler, F. Curr. Opin. Lipidol. 1992, 3, 279-284.
- (69) Manzato, E.; Fellin, R.; Baggio, G.; Neubeck, W.; Seidel, D. J. Clin. Invest. 1976, 57, 1248-1260.
- (70) Kostner, G. M.; Laggner, P.; Prexl, W.; Holasek, A. *Biochem. J.* **1976**, 57, 1248-1260.
- (71) Utermann, G.; Menzel, H. J.; Langer, K. K. FEBS Lett. 1974, 45,

29-32.

- Wissler, R. W. In *Heart Disease: A Textbook of Cardiovascular Medicine*, Braunwald, E., Ed., W. B. Saunders: Philadelphia, 1984.
- (73) Wissler, R.W. In Atherosclerosis Reviews; Vol.23, Gotto, A. M.; Paoletti, R., Eds.; Raven Press: New York, 1991.
- (74) Kannel, W. B.; Castelli, W. P.; Gordon, T. et. al. Ann. Intern. Med. **1971**, 74, 1-12.
- (75) Kannel, W. B.; Garcia, M. J.; McNamara, P. M. et.al. *Human*. *Pathol.* **1971**, 2, 129-151.
- (76) Kannel, W. B. Am. J. Clin. Nutr. 1971, 24, 1074-1081.
- (77) Kannel, W. B.; Dawber, T. R.; Friedman, G. D.et.al. Ann. Intern. Med. 1964, 61, 888-899.
- (78) Lavie, C. J.; O'Keefe, J. H.; Blonde, L.; Gau, G. T. Postgrad. Med. **1990**, 87(7), 36-51.
- (79) Gordon, D. J.; Probstfield, J. L.; Garrison, R. J.; Garrison, R. J.; Neaton, J. D.; Castelli, W. P.; Knoke, J. D.; Jacobs, D. R.; Bangdiwala, S.; Tyroler, H. A. *Circulation* 1989, 79, 8-15.
- (80) Gordon, D. J.; Rifkind, B. M. N. Engl. J. Med. 1989, 321, 1311-1316.
- (81) Green, M. S.; Heiss, G.; Rifkind, B. M.; Cooper, G. R.; Williams,
   O. D.; Tyroler, H. A. *Circulation* 1985, 72, 93-104.
- (82) Lipid Research Clinics Program Epidemiology Committee. *Circulation* **1979**, 60, 427-439.
- (83) Slyper, A. H. JAMA **1994**, 272, 305-308.
- (84) Steinberg, D. In Atherosclerosis Reviews; Vol.23, Gotto, A. M.; Paoletti, R., Eds.; Raven Press: New York, 1991.

- (85) Zilversmit, D. B. Circulation 1979, 60, 473-485.
- (86) Multiple Risk Factor Intervention Trial Research Group. JAMA 1982, 248, 1465-1477.
- (87) Stamler, J.; Wentworth, D.; Neaton, J. D. *JAMA* **1986**, 256, 2823-2828.
- (88) National Cholesterol Education Program. Report of the Expert Panel on Population Strategies for Blood Cholesterol Reduction; Executive Summary, National Institute of Health., NIH Publication No. 90-3047, 1990.
- (89) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. JAMA 1993, 269, 3015-3023.
- (90) Sampos, C. T.; Cleeman, J. I.; Carroll, M. D.; Johnson, C. L.;
  Bachorik, P. S.; Gordon, D. J.; Burt, V. L.; Briefel, R. R.; Brown,
  C. D.; Lippel, K.; Rifkind, B. M.JAMA 1993, 269, 3009-3014.
- (91) Zak, B.; Ressler, N. Am. J. Clin. Pathol. 1955, 25, 433-446.
- (92) Tonks, D. B. Clin. Biochem. J. 1967, 1, 12-29.
- (93) Liebermann, N. C. Ber. 1885, 18, 1803-1809.
- (94) Burchard, H. Chem. Zentralbl. 1890, 61(1), 25-27.
- (95) Grigaut, A. Compt. Rend. Soc. de Biol. 1910, 68, 791-793.
- (96) Windaus, A. Ztschr. f. Physiol. Chem. 1910, 65, 110-117.
- (97) Autenrieth, W.; Funk, A. Munchen. Med. Wehnschr. 1913, 60, 1243-1248.
- (98) Bloor, W. R. J. Biol. Chem. 1916, 24, 227-231; Bloor, W. R.; Knudson, A. J. Biol. Chem. 1916, 27, 107-112; Bloor, W. R.; Pelkan, K. F.; Allen, D. M. J. Biol. Chem. 1922, 52, 191-205.
- (99) Schoenheimer, R.; Sperry, W. M. J. Biol. Chem. **1934**, 106, 745-760.

- (100) Abell, L. L.; Levy, B. B.; Brodie, B. B.; Kendall, F. E. J. Biol. Chem. **1952**, 195, 357-366.
- (101) Huang, T. C.; Chen, C. P.; Wefler, J.; Raftery, A. Anal. Chem. **1961**, 33, 1405-1407.
- (102) Trinder, P. Analyst 1952, 77, 321-328.
- (103) Pearson, S.; Stern, S.; Mcgavack, T. H. Anal. Chem. 1954, 25, 813-814.
- (104) Jamieson, A. Clin. Chim. Acta. 1964, 10, 530-535.
- (105) Watson, D. Clin. Chim. Acta. 1960, 5, 637-643.
- (106) Wright, L. A.; Tonks, D. B.; Allen, R. H. Clin. Chem. 1960, 6, 243-256.
- (107) Zlatkis, A.; Zak, B.; Boyle, A. J. Lab. Clin. Med. 1953, 41, 486-492.
- (108) Rosenthal, H. L.; Pfluke, M. L.; Buscaglia, S. J. Lab. Clin. Med. **1957**, 50, 318-322.
- (109) Momose, T.; Ueda, Y.; Yamatmoto, K.; Masumura, T.; Ohta, K. *Anal. Chem.* **1963**, 35, 1751-1753.
- (110) Boutwell, J. H. Clin. Chem. 1964, 10, 1039-1049.
- (111) Wybenga, D. R.; Pileggi, V. J.; Dirstine, P. H.; DiGiorgio, J. *Clin. Chem.* **1970**, 16, 980-984.
- (112) Chugaev, L.; Gastev, A. Chem. Ber. 1910, 42, 4631-4634.
- (113) Bernoulli, A. L. Helv. Chim. Acta. 1932, 15, 274-286.
- (114) Gortz, S. Biochem. Z. 1937, 289, 313.
- (115) Hanel, H. K.; Dam, H. Acta. Chem. Scand. 1955, 9, 677-682.
- (116) Hauge, J. G.; Nicolaysen, R. Acta. Physiol. Scand. 1958, 43, 359-

364.

- (117) Albers, R. W.; Lowry, O. H. Anal. Chem. 1955, 27, 1829-1831.
- (118) Tishler, F.; Bathish, J. N. J. Pharm. Sci. 1965, 54(12), 1786-1789.
- (119) Flegg, H. M. Ann. Clin. Biochem. 1973, 10, 79.
- (120) Richmond, W. Clin. Chem. 1973, 19, 1350-1356.
- (121) Allain, C. C.; Poon, L. S.; Chan, C. S. G.; Richmond, W.; Fu, P. C. *Clin. Chem.* **1974**, 20, 470-475.
- (122) Huang, H.; Kuan, J. W.; Gilbaut, G. G. Clin. Chem. 1975, 21, 1605-1608.
- (123) Papastathopoulos, D. S.; Rechnitz, G. A. Anal. Chem. 1975, 47, 1792-1796.
- (124) Massom, M.; Townshend, A. Anal. Chim. Acta. 1985, 174, 293-298.
- (125) Yao, T.; Kobayashi, Y. Bunseki Kagaku 1983, 32, 253-259.
- (126) Yao, T.; Sato, M.; Kobayashi, Y.; Wasa, T. Anal. Biochem. 1985, 149, 387-392.
- (127) Karube, I.; Hara, J.; Matsouka, H.; Suzuki, S. Anal. Chim. Acta. **1982**, 139, 127-136.
- (128) Fernandez-Romero, J. M.; Luque de Castro, M. D.; Valcarcel, M. *Clin. Chim. Acta.* **1987**, 167, 97-104.
- (129) Petersson, B. A.; Hansen, E. H.; Ruzicka, J. Anal. Lett. 1986, 19, 649-665.
- (130) Malavolti, N. L.; Pilosof, D.; Nieman, T. A. Anal. Chim. Acta. 1988, 170, 199-207.
- (131) Trettnak, W.; Wolfbeis, O. S. Anal. Biochem. 1990, 184, 124-

127.

- (132) Krug, A. A.; Suleiman, A. A.; Guilbault G. G.; Kellner, R. *Enzyme. Microb. Technol.* **1992**, 14, 313-316.
- (133) Dong, S.; Deng, Q.; Cheng, G. Anal. Chim. Acta. **1993**, 279, 235-240.
- (134) Kritchevsky, D.; Davidson, L. M.; Kim, H. M. Anal. Chim. Acta. 1973, 46, 63-68.
- (135) Driscoll, J. L.; Aubuchon, D.; Descoteaux, M.; Martin, H. F. *Anal. Chem.* **1971**, 43(10), 1196-1200.
- (136) Lillienberg, L.; Svanborg, A. Clin. Chim. Acta. 1976, 68, 223-233.
- (137) Watts, R.; Carter, T.; Taylor, S. Clin. Chem. 1976, 22(10), 1692-1676.
- (138) Duncan, I. W.; Culbreth, P. H.; Burtis, C. A. J. Chromatogr. 1979, 162, 281-292.
- (139) Nomura, A.; Yamada, J.; Takatsu, A.; Horimoto, Y.; Yarita, T. Anal. Chem. **1993**, 65, 1994-1997.
- (140) Bjorkhem, I.; Blomstrand, R.; Svensson, L. Clin. Chim. Acta. 1974, 54, 185-193.
- (141) Gambert, P.; Lallemant, C.; Archambault, A. J. Chromatogr. Biomedical Applications **1979**, 162, 1-6.
- (142) Cohen, A.; Hertz, H. S.; Mandel, J.; Paule, R. C.; Schaffer, R.; Sniegoski, L. T.; Sun, T.; Welch, M. J.; White, E. *Clin. Chem.* 1980, 26, 854-860.
- (143) Takatsu, A.; Nishi, S. *Clin. Chem.* **1987**, 33, 1113-1117.
- (144) Takatsu, A.; Nishi, S. Anal. Chem. 1988, 60, 2237-2239.
- (145) Peuchant, E.; Salles, C.; Jensen, R. Anal. Chem. 1987, 59, 1816-

1819.

- (146) Demacker, P.; Hijman, A. G.; Brenninkmeijer, B.; Jansen, A. P.; Van't Laar, A. Clin. Chem. **1984**, 30, 1797-1800.
- (147) Havel, R. J.; Elder, H. A.; Bragdon, J. H. J. Clin. Invest. 1955, 34, 1345-1353.
- (148) De Lalla, O. F.; Gofman, J. W. *Methods of Biochemical Analysis* Interscience Press: New York, Vol.1, 1954, pp. 459-478.
- (149) Schumaker, V. N.; Puppione, D. L. Methods. Enzymol. 1986, 128, 155-170.
- (150) Redgrave, T. G.; Roberts, D. C. K.; West, C. E. Anal. Biochem. 1975, 65, 42-49.
- (151) Kelly, J. L.; Kruski, A. Methods Enzymol. **1986**, 128, 170-181.
- (152) Burstein, M.; Scholnick, H. R.; Morfin, R. J. Lipid Res. 1970, 11, 583-595.
- (153) Wiebe, D.; Smith, J. Clin. Chem. **1985**, 31, 746-750.
- Burstein, M.; Legman, P. In *Lipoprotein Precipitation*, Clarkson,
   T. B., Kritchevsky, D., Pollak, O. J., Eds.; Monographs on
   Atherosclerosis; S. Karger: Switzerland, 1982; Vol. 11
- (155) Oncley, J. L.; Walton, K. W.; Cornwell, D. G. J. Am. Chem. Soc. **1956**, 79, 4666-4671.
- (156) Warnick, G. R.; Nguyen, T.; Albers, A.A. Clin. Chem. 1985, 31, 217-222.
- (157) Penttila, I. M.; Voutilainen, E.; Laitinen, P.; Juutilainen, P. Scand. J. Clin. Invest. 1981, 41, 353-360.
- (158) Kohl, H. H.; Johnson, W.; Rogers, L. L. Clin. Chem. 1980, 26, 672-673.
- (159) Lindgren, F. T.; Jensen, L. C.; Hatch, F. T. In Blood Lipids and

Lipoproteins: Quantitation, Composition, and Metabolism; Nelson, G., Ed.; John Wiley & Sons Inc.: New York, 1972; pp 181-274.

- (160) Fruchart, J. C.; Marcovina, S.; Puchois, P. In *Human Plasma Lipoproteins*; Fruchart, J. C.; Shepherd, J., Eds. Clinical Biochemistry, Principles, Methods, Applications; Walter de Gruyter: Berlin,1989; Vol.3, Chapter 4, pp 79-107.
- (161) Wieland, H.; Seidel, D. Inn. Med. 1978, 5, 290-300.
- (162) Searcy, R. L.; Bergquist, L. M. Lipoprotein Chemistry in Health and Disease; Kugelmass, I. N., Ed.; Charles Thomas Pub.: Ill, 1962.
- (163) Dietrich, F. Z. Physiol. Chem. 1955, 302, 227.
- Bierman, E. L.; Porte, D.; O'Hara, D. D.; Scwartz, M.; Wood, F. C. J. Clin. Invest. 1965, 44, 261-270.
- (165) Lees, R. S.; Hatch, F. T. J. Lab. Clin. Med. 1963, 61, 518-528.
- (166) Fletcher, M. J.; Styliou, M. H. Clin. Chem. 1970, 16, 362-365.
- (167) Noble, R. P. J. Lipid. Res. 1968, 9, 693-700.
- (168) Papadopoulas, N. M.; Kintzios, J. A. Anal. Biochem. 1969, 30, 421-426.
- (169) Muniz, N. Clin. Chem. 1977, 23, 1826-1833.
- (170) Raymond, S.; Mile, J. L.; Lee, J. C. *Biochem. Sci.* **1966**, 151, 346.
- (171) Hara, I.; Okazaki, M.; Ohno, Y. J. Biochem. **1980**, 87, 1863-1865.
- (172) Okazaki, M.; Hara, I. J. Biochem. 1980, 88, 1215-1218.
- (173) Okazaki, M.; Ohno, Y.; Hara, I. J. Biochem. 1981, 89, 879-887.

- (174) Okazaki, M.; Hagiwara, N.; Hara, I. J. Biochem. 1982, 91, 1381-1389.
- (175) Hara, I.; Shiraishi, K.; Okazaki, M. J. Chrom. 1982, 239, 549-557.
- (176) Rudel, L. L.; Lee, J. A.; Morris, M. D.; Felts, J. M. Biochem. J. 1974, 139, 89-95.
- (177) Quarfordt, S.; Nathans, A.; Dowdee, M.; Hilderman, H. L. J. Lipid Res. 1972, 13, 435-444.
- (178) Kostner, G. M.; Holasek, A. *Biochim. Biophys. Acta.* **1977**, 488, 417-431.
- (179) Curry, M. D.; Gustafson, A.; Alaupovic, P.; McConathy, W. J. *Clin. Chem.* **1978**, 24, 280-288.
- (180) Karlin, J. B.; Juhn, D. J.; Goldberg, R.; Rubenstein, R. H. Ann. Clin. Lab. Sci. 1978, 8, 142-154.
- (181) Weinstock, N.; Bartholome, M.; Seidel, D. *Biochim. Biophys. Acta* **1981**, 663, 279-288.
- (182) Rosseneu, M.; Vercaemst, R.; Steinberg, K. K.; Cooper, G. R. *Clin. Chem.* **1983**, 29, 427-433.
- (183) Schaefer, E. J.; Eisenberg, S.; Levy, R. I. J. Lipid Res. 1978, 19, 667-687.
- (184) Lee, K. K.; Carrico, R. T. In Proceedings of the Workshop on Apolipoprotein Quantification; Lippel, K., Ed. US Dept. Of Health and Human Services, NIH Publication No. 83-1266, 1983, 332- 342.
- (185) Trinder, P. Ann. Clin. Biochem. 1969, 6, 24.
- (186) Purdie, N.; Lucas, E. A.; Talley, M. B. Clin. Chem. 1992, 38, 1645-1646.
- (187) Cox, R. H.; Spencer, E. Can. J. Chem. 1951, 29, 217-222.

- (188) Burke, W.; Diamondstone, B. I.; Velapoldi, R. A.; Menis, O. Clin. Chem. 1974, 20, 794-801.
- (189) Zak, B. Amer. J. Clin. Path. 1957, 27, 583-588.
- (190) Eck, J. C.; Thomas, B. H. J. Biol. Chem. 1939, 128, 257-278.
- (191) Workman, J.; Mark, H. Spectroscopy **1992**, 7(3), 20-23.
- (192) Martens, H.; Naes, T. Tr. Anal. Chem. 1984, 3(8), 204-210.
- (193) Naes, T.; Martens, H. Tr. Anal. Chem. 1984, 3(10), 266-271.
- (194) Martens, H.; Naes, T. In Chemometrics: Mathematics and Statistics In Chemistry; Kowalski, B. R., Ed.; D. Reidel Pub. Co.: Holland, 1984; pp 147-157.
- (195) Beebe, K. R.; Kowalski, B. R. Anal. Chem. **1987**, 59(17), 1004A-1017A.
- (196) Mark, H. In Handbook of Near-Infrared Analysis; Burns, P. A.; Ciurczak, E. W., Eds.; Marcel Dekker, Inc.: New York, 1992; Vol. 13, pp 107-158.
- (197) Dunteman, G. H. *Principal Component Analysis*, Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-069; Sage Publications, Inc.: CA, 1989.
- (198) Cowe, I. A.; Mcnicol, J. W. Appl. Spec. 1985, 39(2), 257-266.
- (199) Geladi, P.; Kowalski, B. R. Anal. Chim. Acta. 1986, 185, 1-17.
- Bjorsvik, H.; Martens, H. In Handbook of Near-Infrared Analysis; Burns, P. A.; Ciurczak, E. W., Eds.; Marcel Dekker, Inc.: New York, 1992; Vol. 13, pp 107-158.
- (201) Haaland, D. M.; Thomas, E. V. Anal. Chem. 1988, 60, 1193-1202.
- (202) Paul, R. C.; Sandhu, S. S. In The Chemistry of Non-aqueous Solvents; J. J. Lagowski, Ed.; Academic Press Inc.: New York NY, 1970; Vol. 3, pp 187-216.

# Appendix A

## Calibration Parameters Used

| Model Center:       | Origin                  |            |
|---------------------|-------------------------|------------|
| Default weights:    | 1/ Standard Deviation   |            |
| Outlier Detections: | On                      | Limit: 3.0 |
| Leverage Detection: | On                      | Limit: 0.9 |
| Calibration Method: | Partial Least Squares 2 |            |
| Validation Method:  | Cross Validation        |            |
| Add Start Noise?:   | Yes                     |            |
| Segment Selection:  | Random                  |            |
| Number of Segments: | 35                      |            |

## Appendix B

## Raw Data

## I. Lipid profiles of samples from OSU Wellness Center.

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 1           | 280 | 56                | 58                | 101              | 108              | 28               | 42               | 185       | 208       |
| 2           | 55  | 11                | 39                | 133              | 140              | 62               | 64               | 206       | 243       |
| 3           | 130 | 26                | 19                | 143              | 161              | 50               | 58               | 219       | 238       |
| 4           | 95  | 19                | 11                | 129              | 134              | 38               | 42               | 186       | 187       |
| 5           | 354 | 70                | 55                | 182              | 189              | 28               | 49               | 280       | 293       |
| 6           | 70  | 14                | 24                | 97               | 109              | 57               | 29               | 168       | 162       |
| 7           | 140 | 28                | 28                | 69               | 88               | 50               | 24               | 147       | 140       |
| 8           | 150 | 30                | 25                | 223              | 214              | 38               | 63               | 291       | 302       |
| 9           | 110 | 22                | 5                 | 130              | 140              | 35               | 48               | 187       | 193       |
| 10          | 60  | 12                | 2                 | 147              | 153              | 42               | 52               | 201       | 207       |
| 11          | 105 | 21                | 3                 | 173              | 186              | 40               | 67               | 234       | 256       |
| 12          | 65  | 13                | 3                 | 90               | 109              | 43               | 39               | 146       | 151       |
| 13          | 135 | 27                | 12                | 196              | 182              | 26               | 54               | 249       | 248       |
| 14          | 120 | 24                | 30                | 120              | 108              | 37               | 28               | 181       | 166       |
| 15          | 275 | 55                | 33                | 86               | 115              | 29               | 34               | 170       | 182       |
| 16          | 552 |                   | 105               |                  | 118              |                  | 8                | 234       | 231       |
| 17          | 215 | 43                | 19                | 177              | 175              | 40               | 55               | 260       | 249       |
| 18          | 195 | 39                | 39                | 118              | 112              | 31               | 29               | 188       | 180       |
| 19          | 40  | 8                 | 23                | 85               | 76               | 39               | 23               | 132       | 122       |
| 20          | 280 | 56                | 44                | 141              | 143              | 38               | 40               | 235       | 227       |
| 21          | 250 | 50                | 33                | 148              | 152              | 41               | 41               | 239       | 226       |
| 22          | 115 | 23                | 18                | 248              | 240              | 51               | 69               | 322       | 327       |
| 23          | 85  | 17                | 23                | 73               | .74              | 49               | 26               | 139       | 123       |

| Sam-<br>ple | TG        | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 24          | 165       | 33                | 26                | 217              | 201              | 50               | 58               | 300       | 285       |
| 25          | 160       | 32                | 36                | 132              | 157              | 66               | 45               | 230       | 238       |
| 26          | 50        | 10                | 8                 | 117              | 122              | 48               | 43               | 175       | 173       |
| 27          | 440       |                   | 91                |                  | 133              |                  | 18               | 241       | 242       |
| 28          | 55        | 11                | 14                | 126              | 146              | 75               | 52               | 212       | 212       |
| 29          | 1710      |                   | 276               |                  | 41               |                  | -61              | 236       | 256       |
| 30          | 524       |                   | 113               |                  | 133              |                  | 14               | 253       | 260       |
| 31          | 235       | 47                | 43                | 159              | 146              | 19               | 40               | 225       | 229       |
| 32          | 30        | 6                 | 4                 | 128              | 135              | 55               | 49               | 189       | 188       |
| 33          | 170       | 34                | 12                | 99               | 109              | 32               | 42               | 165       | 163       |
| 34          | 85        | 17                | 23                | 177              | 152              | 43               | 49               | 237       | 224       |
| 35          | 135       | 27                | 31                | 129              | 156              | 73               | 53               | 229       | 240       |
| 36          | 255       | 51                | 46                | 223              | 199              | 39               | 60               | 313       | 305       |
| 37          | 215       | 43                | 55                | 92               | 82               | 27               | 28               | 162       | 165       |
| 38          | 105       | 21                | 15                | 137              | 134              | 39               | 52               | 197       | 201       |
| 39          | 75        | 15                | 12                | 115              | 116              | 47               | 45               | 177       | 173       |
| 40          | 250       | 50                | 55                | 123              | 111              | 25               | 35               | 198       | 201       |
| 41          | 60        | 12                | 29                | 133              | 115              | 51               | 40               | 196       | 184       |
| 42          | 175       | 35                | 22                | 122              | 123              | 35               | 41               | 192       | 186       |
| 43          | 110       | 22                | 22                | 112              | 97               | 31               | 35               | 165       | 154       |
| 44          | 135       | 27                | 30                | 182              | 168              | 34               | 53               | 243       | 251       |
| 45          | 90        | 18                | 16                | 126              | 139              | 65               | 49               | 209       | 204       |
| 46          | 295       | 59                | 57                | 162              | 154              | 36               | 43               | 257       | 254       |
| 47          | 45        | 9                 | 4                 | 93               | 87               | 39               | 43               | 141       | 134       |
| 48          | 165       | 33                | 31                | 157              | 137              | 38               | 49               | 228       | 217       |
| 49          | 40        | 8                 | 9                 | 146              | 137              | 49               | 52               | 203       | 198       |
| 50          | 135       | 27                | 45                | 208              | 170              | 42               | 50               | 277       | 265       |
| 51          | 205       | 41                | 35                | 173              | 163              | 36               | 55               | 250       | 253       |
| 52          | 165       | 33                | 24                | 152              | 150              | 46               | 54               | 231       | 228       |
| 53          | 65        | 13                | 6                 | 133              | 146              | 71               | 62               | 217       | 214       |
| 54          | 488       | 98                | 94                | 152              | 151              | 35               | 29               | 285       | 274       |
| 55          | 50        | 10                | 0                 | 136              | 145              | 55               | 60               | 201       | 205       |
| 56          | 260       | 52                | 63                | 222              | 219              | 55               | 57               | 329       | 339       |
| 57          | 115       | 23                | 13                | 189              | 173              | 41               | 58               | 253       | 244       |
| 58          | <u>65</u> | 13                | 18                | 135              | 139              | 56               | 46               | 204       | 203       |

| Sam-<br>ple | TG         | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 59          | 125        | 25                | 31                | 166              | 165              | 58               | 51               | 249       | 247       |
| 60          | 305        | 61                | 55                | 127              | 139              | 41               | 33               | 229       | 227       |
| 61          | 135        | 27                | 36                | 160              | 136              | 37               | 43               | 224       | 215       |
| 62          | 170        | 34                | 30                | 191              | 175              | 32               | 54               | 257       | 259       |
| 63          | 115        | 23                | 22                | 204              | 200              | 45               | 62               | 272       | 284       |
| 64          | 210        | 42                | 53                | 160              | 166              | 38               | 53               | 240       | 272       |
| 65          | 170        | 34                | 43                | 156              | 166              | 78               | 52               | 268       | 261       |
| 66          | 130        | 26                | 29                | 113              | 109              | 37               | 46               | 176       | 184       |
| 67          | 7 <u>5</u> | 15                | 15                | 131              | 130              | 42               | 48               | 188       | 193       |
| 68          | 95         | 19                | 22                | 153              | 144              | 46               | 51               | 218       | 217       |
| 69          |            |                   | 22                |                  | 116              |                  | 43               |           | 181       |
| 70          | 160        | 32                | 43                | 107              | 112              | 61               | 41               | 200       | 196       |
| 71          | 160        | 32                | 34                | 220              | 199              | 41               | 64               | 293       | 297       |
| 72          | 120        | 24                | 22                | 185              | 170              | 49               | 57               | 258       | 249       |
| 73          | 100        | 20                | 12                | 155              | 146              | 47               | 58               | 222       | 216       |
| 74          | 200        | 40                | 38                | 163              | 158              | 48               | 49               | 251       | 245       |
| 75          | 325        | 65                | 64                | 122              | 152              | 66               | 47               | 253       | 263       |
| 76          | 130        | 26                | 15                | 165              | 154              | 34               | 58               | 225       | 227       |
| 77          | 200        | 40                | 28                | 174              | 176              | 42               | 60               | 256       | 264       |
| 78          | 185        | 37                | 29                | 135              | 125              | 45               | 57               | 217       | 211       |
| 79          | 2995       |                   | 243               |                  | 77               |                  | -23              | 263       | 297       |
| 80          | 120        | 28                | 35                | 153              | 123              | 45               | 40               | 226       | 198       |
| 81          | 220        | 44                | 40                | 188              | 161              | 31               | 55               | 263       | 256       |
| 82          | 115        | 23                | 28                | 96               | 83               | 33               | 37               | 152       | 148       |
| 83          | 115        | 23                | 21                | 187              | 164              | 46               | 60               | 256       | 245       |
| 84          | 100        | 20                | 23                | 111              | 93               | 30               | 46               | 161       | 162       |
| 85          | 75         | 15                | 30                | 102              | 121              | 89               | 51               | 206       | 202       |
| 86          |            |                   | 22                |                  | 142              |                  | 52               |           | 216       |
| 87          | 465        |                   | 97                |                  | 118              |                  | 25               | 246       | 240       |
| 88          | 340        | 68                | 64                | 104              | 102              | 29               | 38               | 201       | 204       |
| 89          | 75         | 15                | 8                 | 134              | 137              | 54               | 55               | 203       | 200       |
| 90          | 80         | 16                | 14                | 211              | 174              | 45               | 62               | 272       | 250       |
| 91          | 155        | 31                | 37                | 178              | 144              | 26               | 40               | 235       | 221       |
| 92          | 155        | 31                | 35                | 203              | 173              | 36               | 49               | 270       | 257       |
| 93          | 90         | 18                | 24                | 118              | 103              | 35               | 30               | 171       | 157       |

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 94          | 75  | 15                | 35                | 183              | 158              | 58               | 50               | 256       | 243       |
| 95          | 75  | 15                | 24                | 144              | 143              | 64               | 49               | 223       | 216       |
| 96          | 50  | 10                | 23                | 103              | 91               | 43               | 39               | 156       | 153       |
| 97          | 85  | 17                | 18                | 179              | 155              | 42               | 54               | 238       | 227       |
| 98          | 160 | 32                | 33                | 184              | 160              | 36               | 43               | 252       | 236       |
| 99          | 205 | 41                | 32                | 156              | 156              | 36               | 42               | 233       | 230       |
| 100         | 205 | 41                | 24                | 166              | 172              | 54               | 50               | 261       | 246       |
| 101         | 115 | 23                | 30                | 138              | 120              | 33               | 35               | 194       | 185       |
| 102         | 150 | 30                | 25                | 193              | 166              | 37               | 44               | 260       | 235       |
| 103         | 75  | 15                | 20                | 116              | 114              | 45               | 37               | 176       | 171       |
| 104         | 135 | 27                | 31                | 148              | 147              | 50               | 37               | 225       | 215       |
| 105         | 215 | 43                | 63                | 167              | 172              | 65               | 37               | 275       | 272       |
| 106         | 50  | 10                | 13                | 145              | 144              | 47               | 48               | 202       | 205       |
| 107         | 476 |                   | 86                |                  | 201              |                  | 34               | 329       | 321       |
| 108         | 80  | 16                | 29                | 154              | 163              | 80               | 49               | 250       | 241       |
| 109         | 95  | 19                | 27                | 127              | 136              | 62               | 41               | 208       | 204       |
| 110         | 315 | 63                | 62                | 117              | 109              | 28               | 28               | 208       | 199       |
| 111         | 90  | 18                | 21                | 190              | 170              | 48               | 47               | 256       | 238       |
| 112         | 55  | 11                | 24                | 112              | 103              | 57               | 40               | 180       | 167       |
| 113         | 55  | 11                | 15                | 138              | 144              | 66               | 50               | 215       | 209       |
| 114         | 80  | 16                | 34                | 162              | 143              | 42               | 49               | 220       | 226       |
| 115         | 140 | 28                | 31                | 240              | 201              | 36               | 64               | 304       | 296       |
| 116         | 160 | 32                | 34                | 111              | 104              | 27               | 40               | 170       | 178       |
| 117         | 60  | 12                | 26                | 89               | 98               | 64               | 41               | 165       | 165       |
| 118         | 125 | 25                | 37                | 167              | 157              | 49               | 48               | 241       | 242       |
| 119         | 180 | 36                | 48                | 178              | 152              | 35               | 48               | 249       | 248       |
| 120         | 110 | 22                | 38                | 180              | 160              | 52               | 52               | 254       | 250       |
| 121         | 65  | 13                | 31                | 153              | 128              | 43               | 50               | 209       | 209       |
| 122         | 45  | 9                 | 25                | 140              | 128              | 57               | 41               | 206       | 194       |
| 123         | 100 | 20                | 31                | 141              | 131              | 40               | 41               | 201       | 203       |
| 124         | 150 | 30                | 35                | 160              | 150              | 47               | 42               | 237       | 227       |
| 125         | 130 | 26                | 28                | 169              | 152              | 41               | 49               | 236       | 229       |
| 126         | 315 | 63                | 57                | 164              | 151              | 30               | 41               | 257       | 249       |
| 127         | 110 | 22                | 39                | 126              | 134              | 70               | 38               | 218       | 211       |
| 128         | 115 | 23                | 35                | 143              | 124              | 27               | 41               | 193       | 200       |

| Sam-<br>ple | TG  | VLD<br>L-C | VLD<br>L-C | LDL-<br>C  | LDL-<br>C | HDL-<br>C  | HDL-<br>C | TC<br>(a) | TC<br>(b) |
|-------------|-----|------------|------------|------------|-----------|------------|-----------|-----------|-----------|
|             |     | (a)        | (b)        | <b>(a)</b> | (b)       | <b>(a)</b> | (b)       | ····      |           |
| 129         | 215 | 43         | 53         | 135        | 127       | 30         | 34        | 208       | 214       |
| 130         | 45  | 9          | 9          | 154        | 144       | 53         | 45        | 216       | 198       |
| 131         | 85  | 17         | 14         | 143        | 121       | 29         | 43        | 189       | 178       |
| 132         | 95  | 19         | 20         | 158        | 134       | 41         | 45        | 218       | 199       |
| 133         | 195 | 39         | 33         | 251        | 201       | 23         | 51        | 313       | 285       |
| 134         | 125 | 25         | 37         | 210        | 179       | 55         | 49        | 290       | 265       |
| 135         | 190 | 38         | 39         | 175        | 161       | 34         | 44        | 247       | 244       |
| 136         | 95  | 19         | 24         | 179        | 157       | 43         | 41        | 241       | 222       |
| 137         | 80  | 16         | 28         | 163        | 140       | 51         | 44        | 230       | 212       |
| 138         | 105 | 21         | 14         | 121        | 142       | 68         | 35        | 210       | 191       |
| 139         | 155 | 31         | 27         | 183        | 170       | 37         | 43        | 251       | 240       |
| 140         | 160 | 32         | 29         | 184        | 163       | 30         | 44        | 246       | 236       |
| 141         | 205 | 41         | 55         | 154        | 143       | 42         | 29        | 237       | 227       |
| 142         | 125 | 25         | 35         | 181        | 166       | 50         | 45        | 256       | 246       |
| 143         | 70  | 14         | 14         | 130        | 124       | 40         | 41        | 184       | 179       |
| 144         | 145 | 29         | 36         | 168        | 139       | 29         | 37        | 226       | 212       |
| 145         | 165 | 33         | 52         | 172        | 145       | 49         | 33        | 254       | 230       |
| 146         | 235 | 47         | 41         | 166        | 164       | 38         | 44        | 251       | 249       |
| 147         | 120 | 24         | 35         | 151        | 153       | 60         | 42        | 235       | 230       |
| 148         | 240 | 48         | 52         | 157        | 150       | 42         | 34        | 247       | 236       |
| 149         | 110 | 22         | 28         | 117        | 112       | 40         | 36        | 179       | 176       |
| 150         | 85  | 17         | 44         | 150        | 147       | 56         | 41        | 223       | 232       |
| 151         | 155 | 31         | 25         | 133        | 156       | 37         | 47        | 201       | 228       |
| 152         | 100 | 20         | 8          | 122        | 145       | 43         | 47        | 185       | 200       |
| 153         | 135 | 27         | 54         | 126        | 125       | 58         | 24        | 211       | 203       |
| 154         | 330 | 66         | 68         | 163        | 177       | 39         | 33        | 268       | 278       |
| 155         | 240 | 48         | 54         | 140        | 131       | 22         | 29        | 210       | 214       |
| 156         | 100 | 20         | 44         | 162        | 161       | 65         | 36        | 247       | 241       |
| 157         | 130 | 26         | 44         | 178        | 169       | 54         | 40        | 258       | 253       |
| 158         | 120 | 24         | 19         | 123        | 116       | 31         | 28        | 178       | 163       |
| 159         | 165 | 33         | 27         | 189        | 179       | 45         | 46        | 267       | 252       |
| 160         | 402 | 80         | 71         | 104        | 133       | 28         | 23        | 212       | 227       |
| 161         | 90  | 18         | 26         | 116        | 112       | 55         | 37        | 189       | 175       |
| 162         | 70  | 14         | 18         | 75         | 68        | 29         | 26        | 118       | 112       |
| 163         | 180 | 36         | 41         | 150        | 137       | 29         | 37        | 215       | 215       |

| Sam-<br>ple | TG   | VLDL-<br>C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 164         | 170  | 34                | 39                | 108              | 98               | 26               | 28               | 168       | 165       |
| 165         | 170  | 34                | 45                | 166              | 161              | 43               | 38               | 243       | 244       |
| 166         | 140  | 28                | 38                | 190              | 173              | 39               | 46               | 257       | 257       |
| 167         | 150  | 30                | 44                | 174              | 155              | 35               | 38               | 239       | 237       |
| 168         | 969  |                   | 135               |                  | 89               |                  | -8               | 214       | 216       |
| 169         | 65   | 13                | 26                | 176              | 158              | 54               | 46               | 243       | 230       |
| 170         | 80   | 16                | 34                | 162              | 157              | 56               | 39               | 234       | 230       |
| 171         | 185  | 37                | 57                | 149              | 130              | 33               | 30               | 219       | 217       |
| 172         | 155  | 31                | 50                | 152              | 146              | 46               | 34               | 229       | 230       |
| 173         | 55   | 11                | 10                | 130              | 119              | 40               | 36               | 181       | 165       |
| 174         | 115  | 23                | 38                | 196              | 181              | 32               | 31               | 251       | 250       |
| 175         | 265  | 53                | 39                | 132              | 142              | 28               | 22               | 213       | 203       |
| 176         | 230  | 46                | 65                | 233              | 215              | 51               | 38               | 330       | 318       |
| 177         | 175  | 35                | 43                | 196              | 176              | 32               | 35               | 263       | 254       |
| 178         | 85   | 17                | 27                | 247              | 212              | 43               | 69               | 307       | 308       |
| 179         | 185  | 37                | 33                | 101              | 88               | 26               | 43               | 164       | 164       |
| 180         | 130  | 26                | 43                | 200              | 193              | 52               | 56               | 278       | 292       |
| 181         | 415  | 83                | 77                | 152              | 164              | 25               | 33               | 260       | 274       |
| 182         | 350  | 70                | 107               | 154              | 145              | 31               | 21               | 255       | 273       |
| 183         | 170  | 34                | 52                | 125              | 110              | 44               | 38               | 203       | 200       |
| 184         | 1146 |                   | 183               |                  | 126              |                  | -15              | 309       | 294       |
| 185         | 150  | 30                | 26                | 194              | 195              | 33               | 51               | 257       | 272       |
| 186         | 45   | 9                 | 16                | 90               | 111              | 63               | 38               | 162       | 165       |
| 187         | 115  | 23                | 49                | 134              | 142              | 69               | 32               | 226       | 223       |
| 188         | 135  | 27                | 35                | 147              | 146              | 40               | 39               | 214       | 220       |
| 189         | 521  |                   | 97                |                  | 155              |                  | 16               | 241       | 268       |
| 190         | 80   | 16                | 10                | 183              | 196              | 48               | 60               | 247       | 266       |
| 191         | 120  | 24                | 33                | 121              | 144              | 59               | 41               | 204       | 218       |
| 192         | 125  | 25                | 32                | 183              | 178              | 41               | 46               | 249       | 256       |
| 193         | 145  | 29                | 45                | 205              | 208              | 54               | 47               | 288       | 300       |
| 194         | 100  | 20                | 24                | 197              | 195              | 35               | 58               | 252       | 277       |
| 195         | 90   | 18                | 25                | 139              | 152              | 45               | 49               | 202       | 226       |
| 196         | 350  | 70                | 70                | 128              | 134              | 32               | 30               | 230       | 234       |
| 197         | 140  | 28                | 35                | 177              | 181              | 35               | 49               | 240       | 265       |
| 198         | 105  | 21                | 29                | 198              | 184              | 31               | 52               | 250       | 265       |

| Sam-<br>ple | TG  | VLDL-<br>C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 199         | 85  | 17                | 23                | 191              | 190              | 43               | 53               | 251       | 266       |
| 200         | 145 | 29                | 34                | 211              | 214              | 44               | 55               | 284       | 303       |
| 201         | 700 |                   | 133               |                  | 176              |                  | 11               | 283       | 320       |
| 202         | 55  | 11                | 15                | 162              | 166              | 46               | 55               | 219       | 236       |
| 203         | 135 | 27                | 43                | 117              | 123              | 45               | 36               | 189       | 202       |
| 204         |     |                   | 43                |                  | 138              |                  | 37               |           | 218       |
| 205         | 305 | 61                | 81                | 130              | 147              | 29               | 37               | 220       | 265       |
| 206         | 442 | 88                | 73                | 218              | 246              | 32               | 52               | 338       | 371       |
| 207         | 170 | 34                | 62                | 240              | 225              | 42               | 56               | 316       | 343       |
| 208         | 155 | 31                | 40                | 156              | 139              | 26               | 39               | 213       | 218       |
| 209         | 60  | 12                | 18                | 114              | 114              | 42               | 38               | 168       | 170       |
| 210         | 70  | 14                | 27                | 100              | 100              | 47               | 33               | 161       | 160       |
| 211         | 165 | 33                | 49                | 138              | 171              | 85               | 41               | 256       | 261       |
| 212         | 95  | 19                | 18                | 114              | 125              | 44               | 40               | 177       | 183       |
| 213         | 330 | 66                | 62                | 99               | 119              | 27               | 25               | 192       | 206       |
| 214         | 155 | 31                | 40                | 217              | 201              | 37               | 57               | 285       | 298       |
| 215         | 100 | 20                | 20                | 114              | 132              | 58               | 41               | 192       | 193       |
| 216         | 65  | 13                | 9                 | 160              | 169              | 54               | 50               | 227       | 228       |
| 217         | 395 | 79                | 89                | 226              | 214              | 29               | 36               | 334       | 339       |
| 218         | 120 | 24                | 26                | 140              | 157              | 54               | 56               | 218       | 239       |
| 219         | 70  | 14                | 17                | 123              | 129              | 48               | 46               | 185       | 192       |
| 220         | 105 | 21                | 33                | 106              | 121              | 56               | 38               | 183       | 192       |
| 221         | 65  | 13                | 28                | 142              | 151              | 68               | 48               | 223       | 227       |
| 222         | 85  | 17                | 13                | 136              | 134              | 41               | 51               | 194       | 198       |
| 223         | 155 | 31                | 30                | 152              | 148              | 34               | 47               | 217       | 225       |
| 224         | 160 | 32                | 24                | 160              | 165              | 42               | 48               | 234       | 237       |
| 225         | 65  | 13                | 25                | 148              | 147              | 52               | 48               | 213       | 220       |
| 226         | 160 | 32                | 39                | 150              | 124              | 25               | 38               | 207       | 201       |
| 227         | 165 | 33                | 48                | 188              | 174              | 37               | 49               | 258       | 271       |
| 228         | 120 | 24                | 21                | 115              | 111              | 28               | 34               | 167       | 166       |
| 229         | 75  | 15                | 21                | 154              | 139              | 36               | 43               | 205       | 203       |
| 230         | 40  | 8                 | 5                 | 125              | 133              | 50               | 44               | 183       | 182       |
| 231         | 100 | 20                | 6                 | 186              | 192              | 62               | 60               | 268       | 258       |
| 232         | 115 | 23                | 10                | 108              | 117              | 44               | 38               | 175       | 165       |
| 233         | 65  | 13                | 0                 | 146              | 146              | 43               | 47               | 202       | 193       |

| Sam-<br>ple | TG         | VLDL-<br>C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 224         | 120        |                   |                   |                  | 160              | 29               | 48               | 226       | 224       |
| 234<br>235  | 120<br>100 | 24<br>20          | 16<br>8           | 173<br>104       | 100              | 33               | 39               | 157       | 153       |
|             |            |                   |                   |                  |                  |                  |                  |           | 214       |
| 236         | 115        | 23                | 28                | 159              | 146              | 31               | 40               | 213       |           |
| 237         | 100        | 20                | 21                | 151              | 145              | 47               | 42               | 218       | 208       |
| 238         | 412        | 82                | 55                | 145              | 150              | 29               | 35               | 256       | 240       |
| 239         | 165        | 33                | 18                | 112              | 127              | 46               | 38               | 191       | 183       |
| 240         | 70         | 14                | 22                | 173              | 182              | 86               | 49               | 273       | 253       |
| 241         | 60         | 12                | 13                | 120              | 116              | 54               | 39               | 186       | 168       |
| 242         | 100        | 20                | 12                | 140              | 139              | 43               | 49               | 203       | 200       |
| 243         | 145        | 29                | 21                | 142              | 143              | 40               | 49               | 211       | 213       |
| 244         | 40         | 8                 | 8                 | 91               | 101              | 52               | 39               | 151       | 148       |
| 245         | 85         | 17                | 17                | 236              | 211              | 34               | 61               | 287       | 289       |
| 246         | 50         | 10                | 8                 | 148              | 151              | 63               | 49               | 221       | 208       |
| 247         | 150        | 30                | 21                | 140              | 154              | 51               | 44               | 221       | 219       |
| 248         | 140        | 28                | 19                | 197              | 181              | 35               | 52               | 260       | 252       |
| 249         | 125        | 25                | 22                | 78               | 106              | 61               | 32               | 164       | 160       |
| 250         | 55         | 11                | 1                 | 146              | 135              | 40               | 46               | 197       | 182       |
| 251         | 75         | 15                | 8                 | 146              | 146              | 51               | 48               | 212       | 202       |
| 252         | 110        | 22                | 14                | 163              | 163              | 42               | 51               | 227       | 228       |
| 253         | 110        | 22                | 20                | 131              | 152              | 72               | 43               | 225       | 215       |
| 254         | 80         | 16                | 7                 | 143              | 140              | 39               | 49               | 198       | 196       |
| 255         | 135        | 27                | 23                | 134              | 139              | 47               | 42               | 208       | 204       |
| 256         | 110        | 22                | 22                | 157              | 172              | 66               | 51               | 245       | 245       |
| 257         | 125        | 25                | 13                | 208              | 188              | 31               | 59               | 264       | 260       |
| 258         | 49         | 10                | 10                |                  | 114              |                  | 43               | 167       | 167       |
| 259         | 100        | 20                | 18                | 123              | 116              | 30               | 41               | 173       | 175       |
| 260         | 160        | 32                | 14                | 179              | 168              | 27               | 50               | 238       | 232       |
| 261         |            |                   | 29                |                  | 167              |                  | 49               |           | 245       |
| 262         | 70         | 14                | 11                | 127              | 122              | 48               | 50               | 189       | 183       |
| 263         |            |                   | 5                 |                  | 113              |                  | 52               |           | 170       |
| 264         |            |                   | 11                |                  | 164              |                  | 64               |           | 239       |
| 265         | 100        | 20                | 4                 | 111              | 132              | 55               | 66               | 186       | 202       |
| 266         | 470        | 94                | 44                | 204              | 208              | 36               | 51               | 334       | 303       |
| 267         | 145        | 29                | 16                | 167              | 160              | 54               | 46               | 250       | 222       |
| 268         | 45         | 9                 | 13                | 145              | 131              | 58               | 52               | 212       | 196       |

| Sam-<br>ple | TG  | VLDL-<br>C<br>(a) | VLD<br>L-C<br>(b) | LDL-C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|--------------|------------------|------------------|------------------|-----------|-----------|
| 269         | 260 | 52                | 43                | 181 -        | 154              | 26               | 47               | 259       | 244       |
| 270         | 140 | 28                | 29                | 70           | 98               | 54               | 40               | 152       | 167       |
| 271         | 155 | 31                | 23                | 145          | 131              | 29               | 43               | 205       | 197       |
| 272         | 340 | 68                | 57                | 157          | 151              | 27               | 37               | 252       | 245       |
| 273         | 75  | 15                | 0                 | 207          | 197              | 33               | 65               | 255       | 262       |
| 274         | 145 | 29                | 27                | 178          | 161              | 29               | 47               | 236       | 235       |
| 275         | 270 | 54                | 53                | 140          | 136              | 31               | 32               | 225       | 221       |
| 276         | 110 | 22                | 24                | 132          | 130              | 43               | 43               | 197       | 197       |
| 277         | 165 | 33                | 25                | 149          | 149              | 31               | 42               | 213       | 216       |
| 278         |     |                   | 10                |              | 108              |                  | 38               |           | 156       |
| 279         |     |                   | 2                 |              | 143              |                  | 48               |           | 193       |
| 280         |     |                   | 16                |              | 116              |                  | 35               |           | 167       |
| 281         |     |                   | 7                 |              | 202              |                  | 56               |           | 265       |
| 282         |     |                   | 3                 |              | 152              |                  | 45               |           | 200       |
| 283         |     |                   | 0                 |              | 142              |                  | 44               |           | 186       |
| 284         |     |                   | 0                 |              | 120              |                  | 36               |           | 156       |
| 285         | 275 | 55                | 33                | 142          | 148              | 32               | 30               | 229       | 211       |
| 286         | 85  | 17                | 7                 | 141          | 152              | 51               | 50               | 209       | 209       |
| 287         |     |                   | 4                 |              | 160              |                  | 56               |           | 220       |
| 288         |     |                   | 3                 |              | 108              |                  | 44               |           | 155       |
| 289         |     |                   | 8                 |              | 129              |                  | 42               |           | 179       |
| 290         | 95  | 19                | 17                | 99           | 123              | 77               | 38               | 195       | 178       |
| 291         | 215 | 43                | 19                | 137          | 154              | 35               | 41               | 215       | 214       |
| 292         |     |                   | 9                 |              | 120              |                  | 39               |           | 168       |
| 293         |     |                   | 6                 |              | 112              |                  | 41               |           | 159       |
| 294         |     |                   | 7                 |              | 139              |                  | 48               |           | 194       |
| 295         | 125 | 25                | 11                | 155          | 139              | 30               | 42               | 210       | 192       |
| 296         | 95  | 19                | 2                 | 156          | 170              | 78               | 55               | 253       | 227       |
| 297         |     |                   | 17                |              | 128              |                  | 55               |           | 200       |
| 298         |     |                   | 16                |              | 110              |                  | 50               |           | 176       |
| 299         | 160 | 32                | 1                 | 153          | 150              | 26               | 48               | 211       | 199       |
| 300         |     |                   | 0                 |              | 132              |                  | 46               |           | 178       |
| 301         |     |                   | 101               |              | 94               |                  | 5                |           | 200       |
| 302         |     |                   | 24                |              | 141              |                  | 45               |           | 210       |
| 303         |     |                   | 7                 |              | 141              |                  | 45               |           | 193       |

| Sam-<br>ple | TG  | VLDL-<br>C<br>(a) | VLD<br>L-C<br>(b) | LDL-C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|--------------|------------------|------------------|------------------|-----------|-----------|
| 304         | 145 | 29                | 37                | 102          | 115              | 23               | 33               | 154       | 185       |
| 305         | 35  | 7                 | 20                | 45           | 48               | 37               | 22               | 89        | 90        |
| 306         | 110 | 22                | -7                | 169          | 176              | 36               | 50               | 227       | 233       |
| 307         | 325 | 65                | 51                | 99           | 120              | 26               | 22               | 190       | 193       |
| 308         | 85  | 17                | 4                 | 148          | 180              | 55               | 53               | 220       | 237       |
| 309         | 165 | 33                | 29                | 121          | 139              | 42               | 41               | 196       | 209       |
| 310         | 110 | 22                | 7                 | 88           | 120              | 46               | 39               | 156       | 166       |
| 311         | 240 | 48                | 11                | 176          | 190              | 37               | 59               | 261       | 260       |
| 312         | 100 | 20                | 4                 | 205          | 199              | 36               | 63               | 261       | 266       |
| 313         | 100 | 20                | <sup>′</sup> 1    | 83           | 130              | 70               | 47               | 173       | 178       |
| 314         | 110 | 22                | 14                | 150          | 143              | 34               | 52               | 206       | 209       |
| 315         | 105 | 21                | 15                | 121          | 124              | 40               | 42               | 182       | 181       |
| 316         | 60  | 12                | 3                 | 116          | 128              | 52               | 48               | 180       | 179       |
| 317         | 380 | 76                | 50                | 153          | 189              | 49               | 40               | 278       | 279       |
| 318         | 60  | 12                | 14                | 40           | 42               | 29               | 22               | 81        | 78        |
| 319         | 100 | 20                | 5                 | 130          | 132              | 34               | 48               | 184       | 185       |
| 320         | 150 | 30                | 29                | 108          | 113              | 37               | 37               | 175       | 179       |
| 321         | 95  | 19                | 25                | 96           | 93               | 52               | 33               | 167       | 151       |
| 322         | 140 | 28                | 22                | 120          | 129              | 51               | 39               | 199       | 190       |
| 323         | 170 | 34                | 17                | 126          | 134              | 43               | 31               | 203       | 182       |
| 324         | 130 | 26                | 18                | 114          | 124              | 44               | 26               | 184       | 168       |
| 325         | 475 | 95                | 66                | 103          | 136              | 30               | 12               | 228       | 214       |
| 326         | 160 | 32                | 4                 | 172          | 186              | 45               | 46               | 249       | 236       |
| 327         | 55  | 11                | 8                 | 58           | 70               | 35               | 28               | 104       | 106       |
| 328         | 75  | 15                | 31                | 78           | 91               | 55               | 28               | 148       | 150       |
| 329         | 185 | 37                | 27                | 170          | 167              | 38               | 49               | 245       | 243       |

(a) Lipid profile reported by the external laboratory.(b) Lipid profile obtained by the alternative method.

| Sam-<br>ple | TG   | VLD<br>L-C | VLD<br>L-C | LDL-<br>C    | LDL-<br>C    | HDL-<br>C | HDL-<br>C    | TC<br>(a) | TC<br>(b) |
|-------------|------|------------|------------|--------------|--------------|-----------|--------------|-----------|-----------|
| рю          |      | (a)        | (b)        | ( <b>a</b> ) | ( <b>b</b> ) | (a)       | ( <b>b</b> ) | (4)       | (~)       |
| 1           | 842  |            | 69         |              | 116          |           | 29           | 208       | 214       |
| 2           | 406  |            | 81         |              | 148          |           | 39           | 268       | 268       |
| 3           | 511  |            | 99         |              | 104          |           | 14           | 227       | 219       |
| 4           | 518  |            | 102        |              | 194          |           | 43           | 321       | 339       |
| 5           | 416  |            | 85         |              | 69           |           | 16           | 169       | 170       |
| 6           | 631  |            | 132        |              | 155          |           | 20           | 308       | 307       |
| 7           | 709  |            | 137        |              | 188          |           | 26           | 300       | 351       |
| 8           | 433  |            | 74         |              | 153          |           | 37           | 251       | 264       |
| 9           | 544  |            | 109        |              | 107          |           | 14           | 235       | 230       |
| 10          | 435  | 87         | 63         | 87           | 115          | 34        | 39           | 208       | 217       |
| 11          | 1110 |            | 185        |              | 229          |           | 22           | 396       | 436       |
| 12          | 537  |            | 121        |              | 139          |           | 23           | 271       | 283       |
| 13          | 1305 |            | 202        |              | 119          |           | -11          | 272       | 310       |
| 14          | 443  | 89         | 83         | 115          | 134          | 42        | 31           | 246       | 248       |
| 15          | 409  |            | 83         |              | 194          |           | 49           | 291       | 326       |
| 16          | 459  |            | 86         |              | 71           |           | 18           | 163       | 175       |
| 17          | 436  |            | 106        |              | 95           |           | 19           | 214       | 220       |
| 18          | 632  |            | 113        |              | 137          |           | 27           | 272       | 277       |
| 19          | 610  |            | 103        |              | 122          |           | 18           | 244       | 243       |
| 20          | 411  | 82         | 73         | 147          | 161          | 33        | 37           | 262       | 271       |
| 21          | 562  |            | 83         |              | 149          |           | 32           | 262       | 264       |
| 22          | 419  | 84         | 79         | 123          | 140          | 38        | 38           | 245       | 257       |
| 23          | 474  |            | 111        |              | 170          |           | 33           | 311       | 314       |
| 24          | 411  | 82         | 95         | 183          | 180          | 53        | 41           | 318       | 316       |
| 25          | 391  | 78         | 79         | 126          | 121          | 36        | 32           | 240       | 232       |
| 26          | 398  | 80         | 80         | 177          | 171          | 42        | 41           | 299       | 292       |
| 27          | 416  | 83         | 93         | 122          | 143          | 30        | 28           | 235       | 264       |
| 28          | 429  | 86         | 78         | 89           | 126          | 30        | 22           | 205       | 226       |
| 29          | 412  | 82         | 71         | 175          | 187          | 33        | 39           | 290       | 297       |
| 30          | 420  | 84         | 80         | 51           | 77           | 29        | 15           | 164       | 172       |
| 31          | 413  | 83         | 96         | 101          | 118          | 27        | 17           | 211       | 231       |
| 32          | 459  | 92         | 131        | 196          | 200          | 36        | 14           | 324       | 345       |
| 33          | 1239 |            | 226        |              | 57           |           | -49          | 204       | 234       |
| 34          | 895  |            | 151        |              | 100          |           | -16          | 207       | 235       |

II. Lipid profiles of samples from Roche Biomedical Laboratory.

| Sam-<br>ple | TG   | VLD<br>L-C | VLD<br>L-C | LDL-<br>C | LDL-<br>C | HDL-<br>C | HDL-<br>C | TC<br>(a) | TC<br>(b) |
|-------------|------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
|             |      | (a)        | (b)        | (a)       | (b)       | (a)       | (b)       |           |           |
| 35          | 681  |            | 133        |           | 74        |           | -9        | 183       | 198       |
| 36          | 3280 |            | 504        |           | 109       |           | -174      | 387       | 439       |
| 37          | 515  |            | 79         |           | 184       |           | 32        | 281       | 295       |
| 38          | 585  |            | 149        |           | 130       |           | -4        | 260       | 275       |
| 39          | 537  | 107        | 111        | 129       | 163       | 27        | 17        | 263       | 291       |
| 40          | 436  | 87         | 110        | 68        | 95        | 25        | 3         | 180       | 208       |
| 41          | 440  | 88         | 94         | 60        | 120       | 59        | 17        | 207       | 231       |
| 42          | 558  | 112        | 96         | 125       | 168       | 28        | 27        | 265       | 291       |
| 43          | 432  | 86         | 67         | 138       | 193       | 51        | 34        | 275       | 294       |
| 44          | 957  |            | 137        |           | 196       |           | 3         | 291       | 336       |
| 45          | 681  |            | 104        |           | 147       |           | 7         | 238       | 258       |
| 46          | 1413 |            | 266        |           | 88        |           | -66       | 259       | 288       |
| 47          | 759  |            | 128        |           | 112       |           | -5        | 204       | 235       |
| 48          | 481  | 96         | 89         | 176       | 188       | 20        | 22        | 292       | 299       |
| 49          | 401  | 80         | 49         | 120       | 190       | 39        | 41        | 239       | 280       |
| 50          | 466  | 93         | 74         | 178       | 203       | 25        | 35        | 296       | 312       |
| 51          | 842  |            | 141        |           | 163       |           | 3         | 250       | 307       |
| 52          | 692  |            | 151        |           | 157       |           | 10        | 281       | 318       |
| 53          | 587  |            | 126        |           | 76        |           | -6        | 168       | 196       |

(a) Lipid profile reported by the external laboratory.(b) Lipid profile obtained by the alternative method.

| Sam-<br>ple | TG   | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 1           | 1110 |                   | 168               |                  | 37               |                  | -16              | 172       | 189       |
| 2           | 910  |                   | 102               |                  | 112              |                  | 9                | 198       | 223       |
| 3           | 1450 |                   | 257               |                  | 12               |                  | -68              | 213       | 201       |
| 4           | 420  |                   | 62                |                  | 131              |                  | 27               | 217       | 220       |
| 5           | 990  |                   | 146               |                  | 122              |                  | 0                | 272       | 268       |
| 6           | 1350 |                   | 197               |                  | 148              |                  | -15              |           | 330       |
| 7           | 325  | 65                | 34                |                  | 199              |                  | 77               |           | 310       |
| 8           | 330  | 66                | 51                |                  | 149              |                  | 54               |           | 254       |
| 9           | 358  | 72                | 64                |                  | 59               |                  | 25               |           | 148       |
| 10          | 388  | 78                | 66                |                  | 138              |                  | 44               |           | 248       |
| 11          | 472  |                   | 67                |                  | 116              |                  | 31               |           | 214       |
| 12          | 306  | 61                | 55                | 117              | 150              | 40               | 44               | 218       | 249       |
| 13          | 202  | 40                | 12                |                  | 97               |                  | 32               | 147       | 141       |
| 14          | 253  | 51                | 16                |                  | 214              |                  | 73               | 308       | 303       |
| 15          | 268  | 54                | 24                |                  | 144              |                  | 48               | 212       | 216       |
| 16          | 1710 |                   | 182               |                  | 219              |                  | 10               | 425       | 411       |
| 17          | 297  | 59                | 21                |                  | 209              |                  | 57               | 300       | 287       |
| 18          | 322  | 64                | 32                |                  | 137              |                  | 34               | 203       | 203       |
| 19          | 327  | 65                | 40                |                  | 105              |                  | 25               | 184       | 170       |
| 20          | 364  | 73                | 51                |                  | 76               |                  | 15               | 154       | 142       |
| 21          | 366  | 73                | 86                |                  | 98               |                  | 13               | 219       | 197       |
| 22          | 417  |                   | 60                |                  | 143              |                  | 34               | 258       | 237       |
| 23          | 641  |                   | 63                |                  | 178              |                  | 34               | 298       | 275       |
| 24          | 1542 |                   | 208               |                  | 186              |                  | -4               | 410       | 390       |
| 25          | 666  |                   | 58                |                  | 201              |                  | 48               | 325       | 307       |
| 26          | 557  |                   | 2                 |                  | 90               |                  | 35               | 125       | 127       |
| 27          | 543  |                   | 74                |                  | 164              |                  | 28               | 260       | 266       |
| 28          | 539  |                   | 70                |                  | 70               |                  | 7                | 157       | 147       |
| 29          | 436  |                   | 71                |                  | 126              |                  | 28               | 229       | 225       |
| 30          | 376  | 75                | 91                | 184              | 168              | 44               | 27               | 303       | 286       |
| 31          | 630  |                   | 62                |                  | 98               |                  | 20               | 189       | 180       |
| 32          | 493  |                   | 52                |                  | 185              |                  | 44               | 281       | 281       |
| 33          | 420  |                   | 48                |                  | 151              |                  | 39               | 236       | 238       |
| 34          | 373  | 75                | 34                |                  | 188              |                  | 49               | 260       | 271       |

III. Lipid profiles of samples from Stillwater Medical Center.

| Sam-<br>ple | TG  | VLD<br>L-C | VLD<br>L-C | LDL-<br>C | LDL-<br>C | HDL-<br>C | HDL-<br>C | TC<br>(a) | TC<br>(b) |
|-------------|-----|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
|             |     | (a)        | (b)        | (a)       | (b)       | (a)       | (b)       |           |           |
| 35          | 273 | 55         | 17         |           | 186       |           | 55        | 252       | 258       |
| 36          | 325 | 65         | 37         |           | 111       |           | 29        | 172       | 177       |
| 37          | 337 | 67         | 46         |           | 152       |           | 36        | 212       | 234       |
| 38          | 349 | 70         | 17         |           | 158       |           | 52        | 218       | 227       |
| 39          | 355 | 71         | 41         |           | 165       |           | 41        | 250       | 247       |
| 40          | 398 | 80         | 43         |           | 227       |           | 55        | 316       | 325       |
| 41          | 400 |            | 33         |           | 173       |           | 45        | 248       | 251       |
| 42          | 402 |            | 23         |           | 161       |           | 48        | 223       | 232       |
| 43          | 405 |            | 44         |           | 131       |           | 36        | 209       | 211       |
| 44          | 429 |            | 78         |           | 142       |           | 23        | 237       | 243       |
| 45          | 443 |            | 67         |           | 239       |           | 51        | 339       | 357       |
| 46          | 264 | 53         | 28         |           | 109       |           | 39        | 158       | 176       |
| 47          | 278 | 56         | 56         |           | 179       |           | 41        | 260       | 276       |
| 48          | 280 | 56         | 46         |           | 95        |           | 21        | 159       | 162       |
| 49          | 284 | 57         | 50         |           | 138       |           | 29        | 213       | 217       |
| 50          | 293 | 59         | 19         |           | 76        |           | 27        | 115       | 122       |
| 51          | 306 | 61         | 37         |           | 112       |           | 31        | 185       | 180       |
| 52          | 343 | 69         | 44         |           | 155       |           | 47        | 245       | 246       |
| 53          | 316 | 63         | 46         |           | 188       |           | 50        | 281       | 284       |
| 54          | 322 | 64         | 50         |           | 170       |           | 43        | 258       | 263       |
| 55          | 590 |            | 67         |           | 193       |           | 45        | 297       | 305       |
| 56          | 267 | 53         | 47         |           | 162       |           | 43        | 245       | 252       |
| 57          | 332 | 66         | 60         |           | 130       |           | 37        | 209       | 227       |
| 58          | 461 |            | 83         |           | 163       |           | 29        | 267       | 275       |
| 59          | 476 |            | 81         |           | 131       |           | 25        | 259       | 237       |
| 60          | 261 | 52         | 41         |           | 124       |           | 36        | 215       | 201       |
| 61          | 295 | 59         | 48         |           | 96        |           | 27        | 174       | 171       |
| 62          | 311 | 62         | 36         |           | 171       |           | 53        | 274       | 260       |
| 63          | 315 | 63         | 57         |           | 133       |           | 35        | 229       | 225       |
| 64          | 320 | 63         | 33         |           | 111       |           | 38        | 184       | 182       |
| 65          | 325 | 65         | 13         |           | 74        |           | 33        | 119       | 120       |
| 66          | 327 | 65         | 29         |           | 214       |           | 64        | 314       | 307       |
| 67          | 358 | 72         | 51         |           | 112       |           | 32        | 191       | 195       |
| 68          | 379 | 76         | 56         |           | 144       |           | 38        | 231       | 238       |
| 69          | 382 | 76_        | 54         |           | 206       |           | 57        | 320       | 317       |

| Sam-<br>ple | TG   | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 70          | 399  | 80                | 71                |                  | 155              |                  | 36               | 270       | 262       |
| 71          | 420  |                   | 61                |                  | 116              |                  | 29               | 211       | 206       |
| 72          | 412  |                   | 91                |                  | 153              |                  | 30               | 281       | 274       |
| 73          | 443  |                   | 68                |                  | 173              |                  | 38               | 284       | 279       |
| 74          | 443  |                   | 46                |                  | 151              |                  | 48               | 243       | 245       |
| 75          | 451  |                   | 48                |                  | 133              |                  | 36               | 225       | 217       |
| 76          | 525  |                   | 68                |                  | 172              |                  | 43               | 295       | 283       |
| 77          | 577  |                   | 78                |                  | 160              |                  | 35               | 271       | 273       |
| 78          | 766  |                   | 166               |                  | 36               |                  | -28              | 182       | 174       |
| 79          | 255  | 51                | 37                |                  | 133              |                  | 41               | 214       | 211       |
| 80          | 254  | 51                | 27                |                  | 112              |                  | 36               | 184       | 175       |
| 81          | 265  | 53                | 54                |                  | 108              |                  | 31               | 191       | 193       |
| 82          | 1540 |                   | 181               |                  | 42               |                  | -36              | 188       | 187       |
| 83          | 310  | 62                | 71                |                  | 120              |                  | 20               | 215       | 211       |
| 84          | 286  | 57                | 56                |                  | 158              |                  | 48               | 252       | 262       |
| 85          | 267  | 53                | 31                |                  | 87               |                  | 43               | 161       | 161       |
| 86          | 280  | 56                | 37                |                  | 88               |                  | 25               | 156       | 150       |
| 87          | 283  | 57                | 53                | 112              | 135              | 53               | 32               | 222       | 220       |
| 88          | 299  | 60                | 49                |                  | 174              |                  | 48               | 278       | 271       |
| 89          | 314  | 63                | 42                | 183              | 181              | 32               | 52               | 278       | 275       |
| 90          | 332  | 66                | 37                |                  | 172              |                  | 49               | 273       | 258       |
| 91          | 336  | 67                | 50                |                  | 192              |                  | 49               | 297       | 291       |
| 92          | 341  | 68                | 61                |                  | 142              |                  | 34               | 246       | 237       |
| 93          | 344  | 69                | 38                |                  | 98               |                  | 33               | 163       | 169       |
| 94          | 345  | 69                | 39                |                  | 157              |                  | 42               | 244       | 238       |
| 95          | 368  | 74                | 51                |                  | 175              |                  | 44               | 286       | 270       |
| 96          | 294  | 59                | 7                 |                  | 75               |                  | 35               | 115       | 117       |
| 97          | 376  | 75                | 66                |                  | 160              |                  | 36               | 247       | 262       |
| 98          | 302  | 60                | 49                |                  | 126              | ļ                | 37               | 215       | 212       |
| 99          | 297  | 59                | 38                |                  | 133              |                  | 43               | 204       | 214       |
| 100         | 404  |                   | 51                |                  | 168              |                  | 47               | 260       | 266       |
| 101         | 409  |                   | 43                | L                | 159              |                  | 49               | 246       | 251       |
| 102         | 640  |                   | 89                | <br>             | 50               |                  | 12               | 158       | 151       |
| 103         | 634  |                   | 83                |                  | 128              |                  | 36               | 252       | 247       |
| 104         | 552  |                   | 95                |                  | <u>110</u>       |                  | 21               | 243       | 226       |

| Sam-<br>ple | TG   | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|------|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 105         | 422  | -                 | 74                |                  | 69               |                  | 16               | 159       | 159       |
| 106         | 430  |                   | 81                |                  | 145              |                  | 39               | 282       | 265       |
| 107         | 678  |                   | 99                |                  | 116              |                  | 5                | 231       | 220       |
| 108         | 374  | 75                | 67                |                  | 98               |                  | 19               | 187       | 185       |
| 109         | 350  | 70                | 46                |                  | 108              |                  | 25               | 183       | 179       |
| 110         | 1209 |                   | 135               |                  | 5                |                  | -23              | 122       | 117       |
| 111         | 780  |                   | 98                |                  | 81               |                  | 8                | 172       | 187       |
| 112         | 617  |                   | 102               |                  | 59               |                  | -10              | 147       | 151       |
| 113         | 485  |                   | 87                | ·                | 103              |                  | 14               | 197       | 204       |
| 114         | 466  |                   | 82                |                  | 149              |                  | 25               | 258       | 256       |
| 115         | 460  |                   | 68                |                  | 47               |                  | 12               | 125       | 127       |
| 116         | 402  |                   | 61                |                  | 153              |                  | 39               | 228       | 253       |
| 117         | 283  | 57                | 69                |                  | 190              |                  | 46               | 286       | 305       |
| 118         | 290  | 58                | 49                |                  | 94               |                  | 31               | 168       | 174       |
| 119         | 259  | 52                | 39                |                  | 96               |                  | 32               | 154       | 167       |
| 120         | 687  |                   | 123               |                  | 107              |                  | 9                | 235       | 239       |
| 121         | 600  |                   | 87                |                  | 96               |                  | 15               | 189       | 198       |
| 122         | 551  |                   | 77                |                  | 119              |                  | 21               | 230       | 217       |
| 123         | 511  |                   | 85                |                  | 120              |                  | 7                | 211       | 212       |
| 124         | 432  |                   | 90                |                  | 106              |                  | 12               | 200       | 208       |
| 125         | 389  | 78                | 63                |                  | 67               |                  | 10               | 136       | 140       |
| 126         | 364  | 73                | 59                |                  | 140              |                  | 30               | 223       | 229       |
| 127         | 346  | 69                | 70                |                  | 225              |                  | 45               | 321       | 340       |
| 128         | 339  | 68                | 62                |                  | 125              |                  | 22               | 195       | 209       |
| 129         | 329  | 66                | 58                |                  | 215              |                  | 50               | 289       | 323       |
| 130         | 326  | 65                | 60                |                  | 95               |                  | 30               | 149       | 185       |
| 131         | 304  | 61                | 54                |                  | 117              |                  | 29               | 176       | 200       |
| 132         | 839  |                   | 125               |                  | 151              |                  | -4               | 264       | 272       |
| 133         | 557  |                   | 72                |                  | 172              |                  | 22               | 268       | 266       |
| 134         | 484  |                   | 42                |                  | 163              |                  | 30               | 243       | 235       |
| 135         | 455  |                   | 58                |                  | 111              |                  | 5                | 187       | 174       |
| 136         | 406  |                   | 43                |                  | 215              |                  | 29               | 306       | 287       |
| 137         | 395  | 79                | 68                |                  | 86               |                  | 6                | 180       | 160       |
| 138         | 370  | 74                | 58                |                  | 177              |                  | 26               | 268       | 261       |
| 139         | 370  | 74                | 65                |                  | 135              |                  | 15               | 227       | 215       |

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a)                     | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|---------------------------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 140         | 368 | 74                                    | 63                |                  | 217              |                  | 42               | 336       | 322       |
| 141         | 362 | 72                                    | 66                |                  | 135              |                  | 28               | 226       | 229       |
| 142         | 357 | 71                                    | 56                |                  | 210              |                  | 53               | 292       | 319       |
| 143         | 328 | 66                                    | 70                |                  | 98               |                  | 15               | 177       | 183       |
| 144         | 327 | 65                                    | 51                |                  | 111              |                  | 25               | 179       | 187       |
| 145         | 302 | 60                                    | 60                |                  | 98               |                  | 19               | 168       | 177       |
| 146         | 276 | 55                                    | 30                |                  | 99               |                  | 28               | 146       | 157       |
| 147         | 266 | 53                                    | 48                |                  | 55               |                  | 12               | 125       | 115       |
| 148         | 253 | 51                                    | 62                |                  | 312              |                  | 56               | 439       | 430       |
| 149         | 632 |                                       | 134               |                  | 143              |                  | -8               | 254       | 269       |
| 150         | 444 |                                       | 54                |                  | 145              |                  | 28               | 222       | 227       |
| 151         | 272 | 54                                    | 33                |                  | 23               |                  | 6                | 58        | 62        |
| 152         | 775 | · · · · · · · · · · · · · · · · · · · | 90                |                  | 102              |                  | 6                | 187       | 198       |
| 153         | 636 |                                       | 110               |                  | 184              |                  | 15               | 291       | 309       |
| 154         | 551 |                                       | 97                |                  | 185              |                  | 21               | 295       | 303       |
| 155         | 431 |                                       | 95                |                  | 172              |                  | 22               | 266       | 289       |
| 156         | 426 |                                       | 82                |                  | 122              |                  | 10               | 197       | 214       |
| 157         | 387 | 77                                    | 82                |                  | 168              |                  | 19               | 248       | 269       |
| 158         | 387 | 77                                    | 68                |                  | 145              |                  | 21               | 217       | 234       |
| 159         | 368 | 74                                    | 67                |                  | 206              |                  | 34               | 278       | 307       |
| 160         | 309 | 62                                    | 61                |                  | 86               |                  | 9                | 138       | 156       |
| 161         | 624 |                                       | 80                |                  | 164              |                  | 25               | 265       | 269       |
| 162         | 419 |                                       | 49                |                  | 201              |                  | 31               | 253       | 281       |
| 163         | 413 |                                       | 71                |                  | 212              |                  | 35               | 308       | 318       |
| 164         | 392 | 78                                    | 64                |                  | 166              |                  | 23               | 250       | 253       |
| 165         | 388 | 78                                    | 61                |                  | 103              |                  | 16               | 171       | 180       |
| 166         | 359 | 72                                    | 65                |                  | 125              |                  | 18               | 208       | 208       |
| 167         | 383 | 77                                    | 67                |                  | 214              |                  | 43               | 319       | 324       |
| 168         | 354 | 71                                    | 58                |                  | 163              |                  | 31               | 234       | 252       |
| 169         |     |                                       | 190               |                  | 75               |                  | -60              |           | 205       |
| 170         | 648 |                                       | 79                |                  | 135              |                  | 8                | 236       | 222       |
| 171         | 490 |                                       | 96                |                  | 170              |                  | 19               | 267       | 285       |
| 172         | 429 |                                       | 58                |                  | 79               |                  | 8                | 153       | 145       |
| 173         | 398 | 80                                    | 63                |                  | 136              |                  | 24               | 253       | 223       |
| 174         | 365 | 73                                    | 61                |                  | 164              |                  | 30               | 279       | 255_      |

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 175         | 398 | 80                | 68                |                  | 122              |                  | 18               | 204       | 208       |
| 176         | 338 | 68                | 62                |                  | 84               |                  | 13               | 160       | 159       |
| 177         | 670 |                   | 93                |                  | 205              |                  | 33               | 329       | 331       |
| 178         | 610 |                   | 115               |                  | 194              |                  | 20               | 307       | 329       |
| 179         | 604 |                   | 112               |                  | 110              |                  | 0                | 220       | 222       |
| 180         | 539 |                   | 87                |                  | 138              |                  | 18               | 241       | 243       |
| 181         | 496 |                   | 39                |                  | 68               |                  | 11               | 120       | 118       |
| 182         | 458 |                   | 88                |                  | 38               |                  | -13              | 114       | 113       |
| 183         | 391 | 78                | 76                |                  | 159              |                  | 23               | 250       | 258       |
| 184         | 363 | 73                | 66                |                  | 142              |                  | 27               | 225       | 235       |
| 185         | 318 | 64                | 71                |                  | 224              |                  | 44               | 333       | 339       |
| 186         | 338 | 68                | 79                |                  | 184              |                  | 34               | 287       | 297       |
| 187         | 278 | 56                | 75                |                  | 188              |                  | 37               | 295       | 300       |
| 188         | 360 | 72                | 67                |                  | 146              |                  | 24               | 222       | 237       |
| 189         | 355 | 71                | 86                |                  | 167              |                  | 26               | 250       | 279       |
| 190         | 329 | 66                | 49                |                  | 179              |                  | 43               | 237       | 271       |
| 191         | 297 | 59                | 75                |                  | 222              |                  | 41               | 310       | 338       |
| 192         | 309 | 62                | 62                |                  | 207              |                  | 44               | 282       | 313       |
| 193         | 322 | 64                | 50                |                  | 113              |                  | 29               | 161       | 192       |
| 194         | 436 |                   | 77                |                  | 160              |                  | 29               | 244       | 266       |
| 195         | 407 |                   | 62                |                  | 150              |                  | 28               | 222       | 240       |
| 196         | 510 |                   | 84                |                  | 248              |                  | 43               | 344       | 375       |
| 197         | 350 | 70                | 63                |                  | 120              |                  | 22               | 183       | 205       |
| 198         | 353 | 71                | 46                |                  | 151              |                  | 34               | 221       | 231       |
| 199         | 521 |                   | 86                |                  | 89               |                  | 10               | 171       | 185       |
| 200         | 279 | 56                | 41                |                  | 102              |                  | 25               | 166       | 168       |
| 201         | 327 | 65                | 32                |                  | 114              |                  | 32               | 170       | 178       |
| 202         | 404 |                   | 30                |                  | 114              |                  | 34               | 180       | 178       |
| 203         | 527 |                   | 76                |                  | 202              |                  | 37               | 300       | 315       |
| 204         | 532 |                   | 65                |                  | 116              |                  | 21               | 189       | 202       |
| 205         | 758 |                   | 135               |                  | 107              |                  | -4               | 219       | 238       |
| 206         | 610 |                   | 82                |                  | 164              |                  | 39               | 241       | 285       |
| 207         | 585 |                   | 78                |                  | 174              |                  | 33               | 268       | 285       |
| 208         | 570 |                   | 72                |                  | 128              |                  | 22               | 212       | 222       |
| 209         | 556 |                   | 55                |                  | 166              |                  | 37               | 240       | 258       |

| Sam-<br>ple | TG  | VLD<br>L-C | VLD<br>L-C | LDL-<br>C | LDL-<br>C | HDL-<br>C  | HDL-<br>C | TC<br>(a) | TC<br>(b) |
|-------------|-----|------------|------------|-----------|-----------|------------|-----------|-----------|-----------|
|             |     | (a)        | (b)        | (a)       | (b)       | <b>(a)</b> | (b)       |           |           |
| 210         | 492 |            | 43         |           | 209       |            | 54        | 290       | 306       |
| 211         | 492 |            | 87         |           | 144       |            | 21        | 240       | 252       |
| 212         | 455 | _          | 72         |           | 115       |            | 22        | 217       | 209       |
| 213         | 394 | 79         | 62         |           | 169       |            | 32        | 242       | 263       |
| 214         | 366 | 73         | -8         |           | 211       |            | 69        | 238       | 272       |
| 215         | 258 | 52         | 41         |           | 235       |            | 55        | 310       | 331       |
| 216         | 269 | 54         | 53         |           | 107       |            | 22        | 171       | 182       |
| 217         | 271 | 54         | 35         |           | 111       |            | 39        | 160       | 185       |
| 218         | 537 |            | 57         |           | 54        |            | 9         | 119       | 120       |
| 219         | 421 |            | 43         |           | 73        |            | 25        | 114       | 141       |
| 220         | 917 |            | 122        |           | 18        |            | -15       | 120       | 125       |
| 221         | 375 | 75         | 49         |           | 85        |            | 21        | 150       | 155       |
| 222         | 318 | 64         | 40         |           | 240       |            | 63        | 310       | 343       |
| 223         | 337 | 67         | 45         |           | 96        |            | 33        | 159       | 174       |
| 224         | 845 |            | 172        |           | 151       |            | -1        | 314       | 322       |
| 225         | 702 |            | 88         |           | 39        |            | -4        | 118       | 123       |
| 226         | 575 |            | 84         |           | 211       |            | 33        | 318       | 328       |
| 227         | 467 |            | 38         |           | 102       |            | 26        | 159       | 166       |
| 228         | 401 |            | 84         |           | 120       |            | 22        | 200       | 226       |
| 229         | 389 | 78         | 49         |           | 215       |            | 54        | 287       | 318       |
| 230         | 368 | 74         | 71         |           | 125       |            | 23        | 208       | 219       |
| 231         | 349 | 70         | 27         |           | 186       |            | 51        | 260       | 264       |
| 232         | 295 | 59         | 72         |           | 214       |            | 46        | 314       | 332       |
| 233         | 291 | 58         | 46         |           | 112       |            | 33        | 173       | 191       |
| 234         | 742 |            | 112        |           | 21        |            | -11       | 127       | 122       |
| 235         | 674 |            | 94         |           | 242       |            | 32        | 353       | 368       |
| 236         | 484 |            | 67         |           | 117       |            | 22        | 197       | 206       |
| 237         | 398 | 80         | 58         |           | 217       |            | 51        | 312       | 326       |
| 238         | 380 | 76         | 42         |           | 172       |            | 44        | 250       | 258       |
| 239         | 342 | 68         | 32         |           | 210       |            | 57        | 289       | 299       |
| 240         | 262 | 52         | 35         |           | 105       |            | 33        | 159       | 173       |
| 241         | 250 | 50         | 25         |           | 72        |            | 23        | 126       | 120       |
| 242         | 375 | 75         | 31         |           | 82        |            | 24        | 137       | 137       |
| 243         | 413 |            | 55         |           | 81        |            | 19        | 147       | 155       |
| 244         | 769 |            | 185        |           | 189       |            | -10       | 370       | 364       |

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 245         | 449 | ·                 | 68                |                  | 104              |                  | 24               | 190       | 196       |
| 246         | 440 |                   | 38                |                  | 236              |                  | 59               | 324       | 333       |
| 247         | 415 |                   | 46                |                  | 205              |                  | 51               | 294       | 302       |
| 248         | 364 | 73                | 35                |                  | 197              |                  | 55               | 277       | 287       |
| 249         | 329 | 64                | 11                |                  | 253              |                  | 78               | 326       | 342       |
| 250         | 302 | 60                | 19                |                  | 282              |                  | 77               | 361       | 378       |
| 251         | 250 | 50                | 33                |                  | 74               |                  | 30               | 133       | 137       |

(a) Lipid profile reported by the external laboratory.(b) Lipid profile obtained by the alternative method.

IV. Lipid profiles of samples from University of Cape Town.

| Sam-<br>ple | TG  | VLD<br>L-C<br>(a) | VLD<br>L-C<br>(b) | LDL-<br>C<br>(a) | LDL-<br>C<br>(b) | HDL-<br>C<br>(a) | HDL-<br>C<br>(b) | TC<br>(a) | TC<br>(b) |
|-------------|-----|-------------------|-------------------|------------------|------------------|------------------|------------------|-----------|-----------|
| 1           | 142 | 33                | 14                | 94               | 111              | 35               | 43               | 162       | 168       |
| 2           | 212 | 71                | 14                | 84               | 151              | 58               | 53               | 213       | 218       |
| 3           | 389 | 105               | 40                | 116              | 161              | 23               | 46               | 244       | 247       |
| 4           | 912 | 145               | 162               | 153              | 160              | 31               | 1                | 329       | 323       |
| 5           | 204 | 24                | 12                | 112              | 127              | 50               | 46               | 186       | 185       |
| 6           | 460 | 159               | 65                | 150              | 205              | 27               | 49               | 336       | 319       |
| 7           | 186 | 49                | 21                | 74               | 97               | 35               | 40               | 158       | 158       |
| 8           | 80  | 12                | 13                | 101              | 136              | 77               | 54               | 190       | 203       |
| 9           | 230 | 7                 | 16                | 233              | 233              | 46               | 74               | 286       | 323       |
| 10          | 88  | 8                 | 17                | 189              | 168              | 39               | 58               | 236       | 243       |

(a) Lipid profile reported by the external laboratory.(b) Lipid profile obtained by the alternative method.

## Appendix C

## Lipid Profiles Obtained for the Precision Studies

### A. Sample 1

|                   | VLDL-C<br>mg/dL | LDL-C<br>mg/dL | HDL-C<br>mg/dL | TC<br>mg/dL |
|-------------------|-----------------|----------------|----------------|-------------|
| (a) Enzymatic     | 32              | 160            | 42             | 234         |
| (b) Spectroscopic |                 |                |                |             |
| 1                 | 25              | 170            | 48             | 243         |
| 2                 | 28              | 167            | 43             | 238         |
| 3                 | 28              | 165            | 45             | 238         |
| 4                 | 22              | 169            | 49             | 240         |
| 5                 | 26              | 163            | 47             | 236         |
| 6                 | 30              | 157            | 46             | 233         |
| 7                 | 23              | 169            | 48             | 240         |
| 8                 | 25              | 161            | 47             | 233         |
| 9                 | 24              | 164            | 49             | 237         |
| 10                | 23              | 167            | 48             | 238         |
| mean              | 25              | 165            | 47             | 238         |
| S.D.              | 2.6             | 4.1            | 1.9            | 3.1         |
| %C. V.            | 10.2            | 2.5            | 4.0            | 1.3         |

## B. Sample 2

|                   | VLDL-C<br>mg/dL | LDL-C<br>mg/dL | HDL-C<br>mg/dL | TC<br>mg/dL |
|-------------------|-----------------|----------------|----------------|-------------|
| (a) Enzymatic     | 7               | 45             | 37             | 89          |
| (b) Spectroscopic |                 |                |                |             |
| 1                 | 19              | 49             | 24             | 92          |
| 2                 | 18              | 50             | 25             | 93          |
| 3                 | 14              | 53             | 25             | 92          |
| 4                 | 18              | 51             | 24             | 93          |
| 5                 | 23              | 45             | 21             | 89          |
| 6                 | 23              | 45             | 21             | 89          |
| mean              | 19              | 49             | 23             | 91          |

| S.D.  | 3.4  | 3.2 | 1.9 | 1.9 |
|-------|------|-----|-----|-----|
| %C.V. | 17.9 | 6.7 | 8.0 | 2.0 |

## C. Sample 3

|                   | VLDL-C<br>mg/dL | LDL-C<br>mg/dL | HDL-C<br>mg/dL | TC<br>mg/dL |
|-------------------|-----------------|----------------|----------------|-------------|
| (a) Enzymatic     | 20              | 104            | 33             | 157         |
| (b) Spectroscopic |                 |                |                |             |
| 1                 | 5               | 112            | 41             | 158         |
| 2                 | 8               | 105            | 39             | 152         |
| 3                 | 8               | 106            | 41             | 155         |
| 4                 | 6               | 110            | 41             | 157         |
| 5                 | 1               | 112            | 42             | 155         |
| 6                 | 17              | 101            | 37             | 155         |
| 7                 | 4               | 108            | 40             | 152         |
| 8                 | 12              | 102            | 41             | 155         |
| 9                 | 6               | 105            | 41             | 152         |
| 10                | 10              | 112            | 40             | 162         |
| mean              | 8               | 107            | 40             | 155         |
| S.D.              | 4.5             | 4.1            | 1.4            | 3.1         |
| %C.V.             | 58.4            | 3.8            | 3.5            | 2.0         |

Appendix D

Institutional Approval for Handling Human Subjects and Biohazards

#### OKLAHOMA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD HUMAN SUBJECTS REVIEW

Date: 10-25-94

**IRB#:** AS-93-001C

**Proposal Title:** SERUM CHOLESTEROL MEASUREMENTS IN HYPERLIPOPROTEINEMIAS

**Principal Investigator(s):** Neil Purdie, Edralin Lucas

Reviewed and Processed as: Continuation

Approval Status Recommended by Reviewer(s): Approved

APPROVAL STATUS SUBJECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD AT NEXT MEETING. APPROVAL STATUS PERIOD VALID FOR ONE CALENDAR YEAR AFTER WHICH A CONTINUATION OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL. ANY MODIFICATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPROVAL.

Comments, Modifications/Conditions for Approval or Reasons for Deferral or Disapproval are as follows:

Continuation extends through 11/01/95.

Signature:

Chair of Institutional Review

Date: October 26, 1994

)klahoma State University

DEPARTMENT OF MICROBIOLOGY & MOLECULAR GENETICS COLLEGE OF ARTS AND SCIENCES 306 LIFE SCIENCE EAST STILLWATER. OKLAHOMA 74078-0289 405-744-6243 FAX: 405-744-6790

2 November, 1992

Dr. Neil Purdie Professor Department of Chemistry Oklahoma State University <u>CAMPUS</u>

RE: Institutional Approval for Biohazards Handling "Serum Cholesterol Measurements in Hyperlipoproteinemias"

Dear Professor Purdie:

This is to inform you that your research project as proposed in your letter of 19 October, 1992 to me has been registered with the Biosafety Officer. This letter constitutes approval to conduct the research in accordance with the OSHA Regulations (1992), US Department of Health and Human Services Regulations (1987), and Centers for Disease Control Regulations (1987) for the safe handling of blood with special attention to bloodborne pathogens.

Sincerely,

Robert V. Miller OSU Biosafety Officer

### 2

#### VITA

#### Edralin Aguinaldo Lucas

#### Candidate for the Degree of

#### Doctor of Philosophy

### Thesis: AN ALTERNATIVE ROUTINE METHOD TO MEASURE SERUM TOTAL CHOLESTEROL AND ITS DISTRIBUTION AMONG THE MAJOR LIPOPROTEINS

Major Field: Chemistry

**Biographical:** 

- Personal Data: Born in Manila, Philippines, on January 22, 1965, the daughter of Virgilio and Aida Aguinaldo.
- Education: Graduated from Philippine Science High School, Quezon City, Philippines, March 1981. Bachelor of Science in Chemistry, University of Santo Tomas, Manila, Philippines, March, 1986. Completed requirements for the Doctor of Philosophy in Chemistry at Oklahoma State University in May 1995.
- Professional Experience: Graduate Teaching and Research Assistant, Department of Chemistry, Oklahoma State University, August 1989 to present. Assistant Researcher, Analytical Research Department, United Laboratories, Inc., Manila, Philippines, April 1987 to July 1989. Research Trainee, Food and Nutrition Research Institute, Manila, Philippines, April 1986 to March 1987.

Professional Membership: American Chemical Society Phi Lambda Upsilon Honor Society