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PREFACE 

The problem addressed in this research paper involves the impact of measurement error on 

the disposition of a homogeneous batch of product from a continuous process. 

Disposition is based on a single variable characteristic relative to a single specification 

limit. A newly-developed sequential sampling procedure is proposed which minimizes the 

expected total cost of sampling for a maximum number of observations. Motivation for 

this research is provided by industry situations in which a single observation of a quality 

characteristic is utilized to determine conformance of a homogenous batch of product. 

This topic has not previously been explored in the quality control literature. 

Sequential sampling models and procedures are developed based on, alternatively, 

statistical and economic principles. The proposed economic model provides the optimal 

sequential sampling plan as determined by the minimum expected total cost. A 

comprehensive computer program is presented which implements both the statistical and 

economic models. The alternative approaches are compared on the basis of expected 

costs through the use of a computer simulator. 
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CHAPTER I 

THE RESEARCH PROBLEM 

1.1 INTRODUCTION 

Overview 

The subject of this research paper is the development of a decision method for disposition 

of a single homogeneous batch from a continuous process by variables characteristics in 

the presence of measurement error. The decision method dictates acceptance, rejection or 

re-measurement of the batch; disposition is based on a cumulative sequence of 

measurements. The study considers consequences and costs of measurement and 

conformance misclassification as decision criteria. A comparison of economic criteria with 

statistical criteria is performed. Cases of known and unknown measurement error 

distribution variance are treated, as well as measurement systems with and without bias. 

Practical implementation of the decision method is accomplished through a comprehensive 

computer program, relieving the operator of complex mathematical calculations and 

decisions. Effectiveness of the proposed system is demonstrated through simulation. 

General Discussion 

Measurement system error has received widespread attention in consideration of impact 

on lot-by-lot acceptance sampling and control charting. However, literature is scarce with 

regard to quality dispositions which are based on a single dimensional measurement which 

is subject to inherent measurement system errors. Such single-measurement dispositions 

are performed frequently in industrial situations of batch inspection of a continuous 

process. Single batches are viewed independently of others, and decisions. are made based 

on a single measurement iteration without regard to inherent inspection system errors. 
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Errors of measurement are unfamiliar to, and largely ignored by, the majority of shop-floor 

personnel, yet misclassification as a result of such errors involves real costs to the 

organization and its customers. Previous research has focused on compensating 

adjustment of specification limits to provide a cushion for measurement uncertainty and 

associated misclassification risks. However, establishment of such statistical decision 

limits creates inconsistencies among design documents (reflecting functional tolerances) 

and quality criteria documents (showing decision limits). 

Non-formalized decision procedures which exist in industry utilize arbitrary decision limits 

(not specification limits) in conjunction with unsophisticated decision criteria dictating 

final disposition or re-measurement. As a fundamental example, an unsatisfactory initial 

reading may simply prompt re-measurement of the characteristic until the desired result is 

obtained. More formalized (yet still, arbitrary) systems may call for such criteria as a 

majority of five measurements, two.out of three, etc. Such systems have received little 

attention in the literature. If the ultimate decision outcome dictates acceptance, no 

consideration is given to previously-observed measurements which fell beyond tolerance 

bounds. 

This research utilizes functional tolerances in the development of statistical and economic 

decision criteria for homogeneous batch disposition. Existing literature on measurement 

error, variables sampling in the presence of measurement uncertainty, sequential analysis 

and quality cost modeling provides a firm base for approaching the problem and 

developing a sound, practical operations tool. 
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1.2 STATEMENT OF THE PROBLEM 

Introduction 

As presented in the previous section, this research effort focuses on quality dispositions 

which are based on a single measurement of a variable characteristic. Single measurement 

dispositions are common in bulk release of product from continuous processes. 

Neglecting to account for measurement system errors in such an inspection configuration 

may lead to inappropriate disposition and unnecessary quality costs incurred by the 

producer. No .decision methodology has been developed which specifically addresses the 

problem of single batch disposition based on a variable characteristic subject to 

measurement error. Economic modeling of this type of quality disposition has not been 

treated. 

The problem is illustrated in Figure 1.1. Two batches are shown, with the measurement 

error distribution (normal, no bias) centered on the actual, unknown value of the variable 

characteristic being measured. Although the true value of the characteristic for each batch 

lies below the upper specification shown, the tail area of the measurement error 

distribution around Batch B falling above the tolerance is, obviously, greater than that of 

Batch A. On a single measurement iteration, the probability of observing an out-of

tolerance reading is greater for Batch B than for Batch A. In any case, a non-conforming 

reading and subsequent rejection of the batch for either A or B would be erroneous. 

The following discussion highlights areas of quality control and sampling inspection theory 

which are pertinent to the research problem. 
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Batch A Batch B 

Figure 1.1 Illustration of the Problem. 

Measurement System Error 

Upper 
Spec 

True Value 

Measurement system error is inherent in all industrial quality control/assurance operations. 

In the case of variable characteristics, the true measurement value is often confounded by 

human error and/or instrument test error [37]. This measurement error may be 

characterized in terms of bias and imprecision. Bias is the difference between the true 

value of a product characteristic and the average of a series of repeated measures on that 

characteristic using a fixed inspection system (same gage, operator, etc.). Bias appears as 

a fixed displacement from the true value, either in the positive ( observed greater than true) 

or negative ( observed less than true) direction. Imprecision is the inability to repeat 

observed results of measuring a characteristic using a fixed inspection system in a series of 

measurements. Imprecision can be expressed as the standard deviation of the 

measurements, giving a picture of the measurement dispersion around the averaged 

measured value of the characteristic. 

In attribute inspections, variability between inspectors contributes to inconsistencies in 

. part quality assessment. Additionally, variation is evidenced in judgments made by the 

same inspector on similar parts at different times and under varying inspection conditions. 
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Such inconsistencies are often dealt with by introducing visual standards for non

conformities to reduce subjectivity of the inspection process. 

In the case of a variable part characteristic inspection, a specific characteristic is physically 

measured with a mechanical gage; the resultant gage reading is then compared to 

dimensional tolerances specified on part drawings or in quality assurance documents. The 

introduction of standard measurement tools removes much of the subjectivity from the 

process. However, measurement system error remains, as evidenced by an inability to 

reproduce gage readings in successive measurements, for various operators, different 

measurement tools, etc. The physical characteristic, measurement gage, inspector, 

physical environment and inspection technique all contribute to the numerical value 

assigned to the batch/part which serves to characterize the product. The true value of the 

characteristic is unknown and unknowable, yet, tolerances must be met in order to ensure 

a functional end-product. 

For variable measurements, inspection system error can be characterized through gage 

repeatability and reproducibility studies. Such studies involve repeat measurements on a 

single product for various inspectors (no change in physical characteristic). Study results 

are analyzed through Analysis of Variance techniques to discover the sources of variation 

in the measurement process. When the measurement system is in control, variation is due 

only to random errors and the measurement distribution approximates a normal curve. 

Acceptance Sampling 

In lot acceptance sampling schemes, a group (lot) of parts is subjected to a cumulative 

decision criterion. The observations obtained from a random sample of the lot provide an 

estimate of the population parameters. By characterizing the lot through sampling, 
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judgments can be made concerning the conformity of the lot to dimensional specifications 

and percent defective requirements. 

Variables sampling plans may be one-sided or two-sided with respect to specification 

limits. One-sided plans are exact in the treatment of single specification limits. One-sided 

plans may also be used for double specification limits, but effectively treat each limit 

separately in estimating the proportion of product which is non-conforming. Two-sided 

plans address both tail areas jointly in judging conformance to the predetermined 

acceptable level of proportion non-conforming. 

The most important consideration, as identified by Schilling [50] in applying variables 

sampling plans is the requirement that the underlying distribution is known and stable. 

Well-known variables sampling plans, such as MIL-STD-414, assume normality of the 

population. 

When the standard deviation is known, an estimate of the population proportion non

conforming is straightforward using the normal distribution. The case of unknown 

standard deviation may be solved using a normal approximation, as suggested by Wallis 

[60]; exact solution involves the non-central t-distribution. In sampling from a normal 

population, the t statistic, t = JN (U - X) , follows a Student's t-distribution only for 50% 
s 

non-conforming. In general ( all values of proportion non-conforming), t follows the non

central t-distribution. 

MIL-STD-414, Sampling Procedures and Tables for Inspection by Variables for Percent 

Defective [38], presents two methods for treating the case of unknown standard deviation. 

The "s-method" utilizes the sample standard deviation as an estimate of the population 
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parameter. Alternatively, a procedure is provided which estimates the standard deviation 

from a sample value for the average range ("R-method"). However, both methods are 

based on the non-central t-distribution in estimating the proportion of product non

conforming. 

In consideration of inherent inspection system error, lot-by-lot acceptance sampling plans 

may be adjusted in terms of acceptance criteria. Such compensating adjustments have 

been treated in the literature. To allow for variation in measurements, percentage non

conforming limits are moved to ensure that lot quality requirements are not violated. This, 

effectively, tightens the quality requirements for the lot. Obviously, such plan 

compensations motivate attempts to reduce inspection error. 

Although the relevance of variables acceptance sampling to the problem being addressed 

may not be readily apparent, the two topics are closely related. Just as sampling inspection 

attempts inferences about a lot (population), so does single characteristic measurement 

support inferences about the unknown true value of the characteristic. The assumption of 

normality in variables sampling plans (such as MIL-STD-414) is comparable to an 

assumption of normally distributed measurement imprecision in the problem at hand. 

Single Measurement Disposition 

Single batch inspections have received little attention in the literature, yet are prevalent in 

practical application. In a broad sense, even lot-by-lot acceptance inspections by variables 

involve a series of single part inspections in which each part is numerically characterized 

based on a single measurement iteration. Some techniques developed to address 

measurement error associated with lot-by-lot plans do address the use of multiple 

measurement of parts (primarily to estimate the meas.urement syste_m variance) ... 
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However, single iteration inspections are not always associated with lot acceptance plans. 

Bulle release of a quantity of product from a continuous process is often based on a single 

measurement of a quality characteristic. In single trial inspection, a single characteristic is 

inspected independently of all other products. and characteristics for the purpose of 

classification against dimensional inspection criteria. 

It is important to note that, in a single measurement iteration, the true value of a measured 

characteristic is impossible to separate from measurement system error [23]. In 

recognition of measurement error, non-formalized decision systems (not, necessarily, 

firmly based on statistical and/or economic criteria) have emerged in practice. Such 

systems frequently call for repeated measurement iterations to verify or discount original 

observations. Upon observing an undesirable outcome on the first measurement, the 

. inspector may simply measure again (perhaps, more carefully) to verify the previous result. 

Ifthe·second outcome is desirable, yet contradicts the first, very often it alone will dictate 

part disposition. More dramatically, a characteristic may be measured and re-measured 

until the desired outcome is achieved and all prior observations are discarded. Clearly, 

such procedures do not properly address the problem nor provide an objective system for 

batch or part classification. 

Multiple Measurement Sampling 

Repeating measurements on a characteristic provides a better estimate of the true value of 

the quality characteristic than a single measurement iteration. Through multiple 

measurements, it is possible to approximately distinguish the true value from the inherent 

measurement error. Indeed, Gage Repeatability and Reproducibility studies which serve 

to characterize the measurement error distribution are based on multiple part 

· measurements. 
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If information is available on the parameters of the measurement error distribution, it is 

possible to specify a fixed iteration number which will adequately compensate for 

measurement imprecision. The average of the multiple measurements then serves as the 

estimator of the true value of the characteristic used for product disposition. However, a 

fixed iteration number may impose unnecessary inspection costs; all product, regardless of 

its "goodness" relative to the quality specification ofinterest, is subjected to the same 

number of measurements (hence, the same inspection costs). If measurement iterations 

are costly and/or time-consuming, the inspection "overkill" incurred by product lying well

within specifications can represent a substantial expense to the producer. 

An alternative to multiple-iteration (fixed) measurement is sequential sampling. The 

literature on sequential techniques is broad and deep. In sequential sampling, observations 

are made only until enough evidence exists to decide in favor of the specified null or 

alternative hypothesis. Such systems, have been successfully applied to lot-by-lot 

acceptance sampling and parameter estimation. However, sequential statistical I_Jrinciples 

have not been applied to the problem of measuring a single variable characteristic in the 

presence of measurement error. Predictably, practical implementation of sequential 

techniques is more complicated than its fixed-iteration counterpart. All available data is 

examined following each iteration and subjected to the decision criteria. 

The difficulty of designing a sequential plan for measurement of a single variable 

characteristic depends heavily on prior knowledge of the measurement error distribution. 

Under the assumption of a normal error distribution function, a sample of observations 

taken from a single part will represent the non-central t-distribution. If a variance 

estimator is available (from a repeatability and reproducibility study) the problem 

represents an application of a likelihood ratio test for simple hypotheses. A lack of 

knowledge about the variance makes the problem one of composite hypotheses and 
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complicates the application of a likelihood ratio test [59]. On the shop-floor, such 

sequential plans are best-implemented through the use of a computer program. 

Quality Costs 

Any incorrect decision in a quality inspection carries an associated quality cost. The cost 

of misclassifying a conforming product as unacceptable may simply be the cost of 

scrapping or reworking the batch. Alternatively, non-conforming product, characterized 

as acceptable, travels further through the process and gains value. If the misclassification 

is discovered before leaving the producer, the ultimate scrapping of the product carries a 

larger cost than it would have had it occurred earlier in the production process. If the 

non-conforming batch leaves the producer and is ultimately discovered by the customer, 

the potential for additional ( often prohibitive) costs is varied. These costs are often 

difficult to quantify, but may represent the greatest potential costs to the producer. A 

non-conforming product which reaches the customer may perpetuate costs due to return, 

replacement, warranty, recall, injury, loss oflife, etc. 

There are also real costs associated with the physical inspection system. Fixed costs of 

inspection include paperwork, product handling and inspection setup. In a multiple

iteration inspection scheme (fixed or sequential), there are also costs associated with each 

measurement iteration, such as labor and gage depreciation. 

Product disposition following inspection may involve fixed and variable costs, depending 

on the plant layout and disposition procedures. Material handling costs may be quantity

dependent. Paper-handling costs may be dependent on the material disposition (additional 

documentation may be required for a rejected product). 
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Cost models continue to appear in the literature treating lot-by-lot acceptance sampling, 

both by attributes and variables [6, 7, 8, 9, 11, 37, 51, 52]. Measurement system error has 

been explored in this area [6, 11, 17, 37, 58]. However, the case of sequential single 

product inspection, the focus of this research problem, has not been addressed. 

Problem Summary 

Given a single, independent variable batch characteristic with costs of associated 

classification/disposition, the problem becomes one of improving the disposition decision 

method. By integrating the principles of sequential sampling with the economics of quality 

costing, a method can be developed for product disposition based on a single variable 

characteristic. Multiple measurements improve the estimate of the true dimension; by 

sequentially analyzing observations, excess sampling (hence, cost) is not incurred. 

This research paper addresses the problem of dispositioning a batch of product from a 

continuous process in the presence of measurement system error. Conditions of known 

and unknown measurement error variance are considered. The research addresses the 

problem from, alternatively, economic and statistical standpoints. 

1.3 OBJECTIVES OF THE RESEARCH 

The outcome of the research is a comprehensive decision system to ensure statistically and 

economically correct batch disposition based on a single variable characteristic in the 

presence of measurement error. Models are developed and presented for both statistical 

and economically optimal sequential sampling procedures. Practical implementation of the 

sampling theory is facilitated through a comprehensive computer program. 
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Consideration is given to: 

i) Measurement variation with and without bias. 

ii) Known and unknown measurement system variance. 

iii) Economic decisions versus statistical decisions. 

Research efforts are based on the following assumptions: 

I) The measurement error is normally distributed. 

2) Disposition is based on a single variable quality characteristic. 

3) The quality characteristic is judged relative to a single specification limit, 

beyond which the product is considered non-conforming. 

4) Dimensional Tolerances are given; all assessments are made based on specified 

tolerances. 

5) Decision risks (a and f3) are given (statistical case). 

6) Quality costs of misclassification are known. 

7) The batch is homogeneous with respect to the characteristic being measured. 

The research effort may be logically subdivided into the following sub-objectives: 

I) Known Measurement Variance Sequential Model (Statistical) 

a) Without bias 

b) With bias 

Given the measurement distribution parameters, tolerance limit and acceptable risk 

levels, the model accepts observed measurements, sequentially, and recommends 
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acceptance, rejection or re-measurement of the characteristic. The basis of this 

sub-section is the Wald [59] Sequential Probability Ratio Test (SPRT) for simple 

hypotheses. 

2) Unknown Measurement Variance Sequential Model (Statistical) 

a) Without bias 

b) With bias 

Given the measurement distribution mean (bias), tolerance limit and acceptable risk 

levels, the model accepts observed measurements, sequentially, and recommends 

acceptance, rejection or re-measurement of the characteristic. The methodology 

follows that of Rushton [ 49] in treating tests of composite hypotheses using 

likelihood ratios (ratio of two non-central t-distributions). Because the 

measurement error variance is unknown and must be estimated with sample data, 

no decisions are recommended prior to the second sample measurement. 

3) Develop Cost Model 

A cost model appropriate to batch measurement of a characteristic from a 

continuous process, subject to measurement error, is developed. For total cost 

modeling, a prior normal distribution of batch measurements is assumed. Costs 

included are measurement iteration costs, costs incurred due to acceptance of a 

non-conforming batch and costs associated with rejection of a batch which is 

acceptable. The case of known measurement system variance is treated. 
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The sequential economic model is based on decision cutoff values which are 

iteration-specific and are compared with the average of the sequential 

observations. The cost model is also a function of the maximum number of 

allowable observations taken for batch disposition. 

4) Optimize Cost Model 

Optimization of the cost model developed in item (3) integrates prior knowledge 

of the process distribution in minimizing the expected total cost of the sequential 

sampling plan. The expected cost associated with an additional measurement 

iteration involves subsequent costs of acceptance, rejection, and re-measurement in 

(possible) future iterations, up to and including nmax (the maximum number of 

observations allowed). 

5) Computer Modeling of Decision Theory 

The decision methods as specified in items (1)-(4) are coded in the FORTRAN 

computer language in a comprehensive program. The user of the program is 

presented the option of utilizing the statistical procedure or optimizing the 

sequential plan based on cost parameters. A module is also provided which 

accepts user-specified economic decision cutoff values and estimates the expected 

cost of the plan. 
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The statistical module prompts for and accepts required parameters of the 

inspection plan (specification, risk level, costs, etc.) and the observation sequence 

commences. At each sequential iteration, the program prompts the user for the 

observed measurement, and recommends either acceptance, rejection or additional 

measurement. Truncation of the sequential sampling plan is performed at the nmax 

value which is specified by the user. 

The economic optimization module prompts for and accepts parameters of the 

inspection plan, including sampling costs. The optimal decision cutoff values are 

presented as output. Values of nmax in the range 1 to 3 are allowed by the 

computer program. 

6) Comparison of Models Through Simulation 

A computer simulator is written in FOR TRAN for comparing the sequential and 

economic models. Various runs are conducted using data which simulates 

inspection data obtained in the presence of measurement error. Product 

dispositions dictated by the decision methods for the simulated data are compared 

to the desired (correct) result. 

The statistical decisions which are dictated in sections (1) and (2) are evaluated 

based on the total cost of the sampling plans which is developed. The costs 

specified as input to the optimal economic_ plan are used to assess the performance 

of the statistical plans. 
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1.4 SUMMARY AND DOCUMENT ORGANIZATION 

The research addresses the problem of homogeneous batch disposition based on a 

single variable characteristic relative to a specification limit in the presence of 

measurement error. Product disposition is often based on a single measurement 

observation. Sequential plans are proposed which implement statistical and 

economic theory in improving the disposition process. The optimal economic 

model provides the minimal expected total cost of sampling, and is implemented 

for maximum observation values of 1 through 3 through a comprehensive 

computer program; the program also allows product inspection using the 

statistical theory which is presented. The upper limit of three observations is 

widely applicable in industrial situations which historically allow only a single 

measurement observation. 

Chapter 1 presents the research problem and a discussion of the objectives of the 

research. Existing literature which relates to the research problem is highlighted in 

Chapter 2. Pertinent topics which are presented are: 1) Measurement Bias and 

Imprecision, 2) Variables Sampling and the Non-Central t-Distribution, 3) 

Economic Analysis of Variables Acceptance Schemes, and 4) Sequential Analysis. 

The statistical theory and proposed solution to the problem are developed in 

Chapter 3, including the known and unknown variance cases. The statistical cases 
'i 

utilize sequential probability ratio theory in model development. Chapter 3 also 
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contains FORTRAN program·subroutine summaries. A user guide to program 

operation for the statistical solutions are given in Chapter 4. 

Development of the economic model for the known variance case is presented in 

Chapter 5. The logic behind the economic computer program operation is 

presented, as are summaries of the pertinent subroutines utilized in the FORTRAN 

program. Chapter 6 contains the user guide to the economic computer program 

operation. 

Results of the research, including comparison of the optimal economic model with 

the statistical approach, are given in Chapter 7. The computer simulation program 

used for model comparisons is also presented in this chapter. Chapter 8 gives a 

summary of research findings and contributions. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The following chapter contains a formal discussion of the literature related to variables 

inspection in the presence of measurement error. The review is sub-divided into four 

pnmary areas: 

Measurement Bias and Imprecision 

Variables Acceptance Sampling and Applications of the Non-Central t-Distribution 

Sequential Analysis 

Economic Analysis of Variables Acceptance Schemes 

Each of the above topics has been covered extensively in available literature. An attempt 

is made in this chapter to present only those works which have relevance to this research 

effort. 

The section covering economic analysis also cites several sources which address Bayesian 

and decision theoretic analyses. The economic decision system proposed in this research 

effort requires application of Bayesian and decision theoretic techniques. The literature 

which is reviewed is limited to that which is relevant to economic analysis of the research 

problem. 
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2.2 MEASUREMENT BIAS AND IMPRECISION 

Several early articles focus on inspection of individual parts in the presence of 

measurement error. More recent works address the effects of measurement bias and 

imprecision on variables acceptance sampling plans. 

Grubbs [23] first identifies a measurement as being composed of two components: one 

being the true (unknown) value of the characteristic, and the other an error in 

measurement. In a single measurement, these two components are inseparable. He 

develops a statistical method for estimating and comparing product variation and errors of 

measurement. The analysis assumes independence and normality of the true characteristic 

and measurement variation. 

As an allowance for the inherent errors of measurement as identified by Grubbs, Eagle 

[21] creates "test specifications" set inside functional tolerances by an amount sufficient to 

ensure that non-conforming product is not accepted due to measurement error. The test 

limits are based on tradeoffs between producer and consumer risks. Error system 

estimates are obtained through the method of Grubbs [23]. Eagle identifies the two types 

of errors which are possible when measuring in the presence of inspection error: 

Consumer's Loss (CL), which is the probability that non-conforming product units will be 

accepted and Producer's Loss (PL), which is the probability that conforming product will 

be rejected. 

In consideration of the test specifications proposed by Eagle, Grubbs and Coon [24] 

explore the proper placement of these limits. The authors deal with three criteria for 

placement: 1) Ensuring that producer and consumer risks are equal, 2) Minimizing the 

sum of producer and consumer risks and, 3) Minimizing the cost of making wrong 
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decisions. The authors also address the use of multiple measures (constant n) on each 

sample part in order to ensure that risks are kept to some arbitrary minimum. 

Lotti [3 3] discusses the tradeoffs involved with the placement of test limits relative to 

functional specifications. He concentrates on the concepts of False Acceptance Rates 

(FAR) and False Rejection Rates (FRR) in determining the consequences of locating 

"pseudo" tolerance limits. 

Consideration of the effects of inspection error on variables acceptance sampling schemes 

is first presented by David, Fay and Walsh [17]. The authors propose a variables 

acceptance sampling plan which compensates for inherent errors of measurement. They 

deal with the case of no bias and a product distribution which is centered relative to 

specifications. The compensating plan, which considers only one of the tolerance limits, 

utilizes a constant number of repeat measurement made on each part in the sample. 

Owen and Weisen [ 46] extend the method of David et al [ 17]. by considering cases of 

one-sided specification limits and non-centering of the product distribution. They utilize 

the bivariate normal distribution to develop inspection criteria which are based on 

inspection costs. Bias, as well as imprecision in measurement, is considered. 

In a technical note, Diviney and David [20] summarize the problems introduced by 

measurement error when attempting to properly disposition product through variables 

acceptance sampling. They illustrate the performance of an acceptance sampling plan by 

variables in the presence of inspection error by imposing a "shadow" Operating 

Characteristic (OC) curve reflecting true plan performance on the OC curve defined by the 

inspection plan. 

20 



To compensate for the shift in OC curve due to measurement bias and imprecision, Mei, 

Case and Schmidt [3 7] propose adjustments in sample size and acceptance criteria. The 

result is a sampling plan which overlays the desired OC curve without inspection error. 

The authors give excellent definitions of measurement bias and imprecision. Bias is given 

as the "difference between the true dimension of a product and the average of a long series 

of repeated measurements on that unit." Imprecision is the "dispersion of repeated 

measurements on the same unit of product." 

Hahn [25] presents a practical, numerical example of assessing the percentage of product 

conforming to a single specification in the presence of measurement and process 

variability. The first method presented places binomial confidence bounds on the observed 

percentage non-conforming. This is, essentially, the treatment of variables data as 

attributes data, representing an undesirable loss of information. The second method 

utilizes the estimators Jl.meas and & meas and the assumption of normality of the measured 

values in placing confidence limits on the percentage non-conforming. The third method 

is approximate and places confidence bounds on the percentage of actual values which 

satisfies specification limits. It utilizes an estimate of & actual and uses tabled values of the 

non-central t-distribution in placing bounds on the percentage of non-conforming product. 

This method treats the actual standard deviation of the product as if it were observed in 

obtaining degrees of freedom for bounding the percentage. 

A paper by Jaech [27] extends the practical example presented by Hahn in making 

statistical statements about the lot quality. The author examines the third method by Hahn 

and the appropriateness of neglecting sampling error when constructing confidence 

intervals utilizing small sample sizes. The proposed solution given by Jaech utilizes an 

approximation to the degrees of freedom for & actual . A simulation study supports the 

method proposed by the author. 
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Owen and Chou [45] examine the effect of measurement error on one-sided variables 

acceptance plans such as given in MIL-STD-414. They show effects on the plan OC 

curve in terms of the ratio of the standard deviation of the measuring instrument to the 

standard deviation of the object being measured. They also give error effects on the 

producer's and consumer's risks of a specified plan. 

Again, extending the problem presented by Hahn, Mee [35] proposes a solution to the 

problem of placing confidence bounds on percentage non-conforming by utilizing existing 

tables for the tail area of a normal distribution. The three cases examined are: 1) Ratio of 

Variances (R = cr2 meas I cr2 actual) known, 2) Measurement error unknown, and 3) 

Variance Ratio Estimated from Repeated Measurements. In case 3, a fixed number of 

measurements is performed on each of the sample parts. 

To supplement the research performed by Hahn, Jaech and Mee, a paper by Mee, Owen 

and Shyu [36] gives methods for computing confidence bounds on the proportion of 

product that is accepted through acceptance sampling by variables but actually fails to 

meet the performance specification. Again, the true product values and measurement 

errors are assumed to be independently distributed normal variates. Procedures are given 

for both known and unknown measurement variance. In the case of unknown 

measurement variance, repeated measurements are taken in order to obtain an estimate. 

The authors utilize existing tables of the non-central t-distribution and retabulate the tail 

area as a function of the ratio of the measurement and observed sample standard 

deviations. 

Tang and Schneider [58] treat the effects ofinspection error on a complet~ inspection 

plan. In complete inspection, each incoming item is inspected for conformance and 
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reworked toa target value if found non-conforming. The authors use the Taguchi loss 

function in three cases for treating quality costs: 1) No inspection error, 2) Non

conforming product is reworked, then perfect inspection is performed, and 3) Non

conforming product is reworked, and no further inspection occurs. 

2.3 VARIABLES SAMPLING AND THE NON-CENTRAL t-DISTRIBUTION. 

Johnson and Welch [29] present practical applications of the non-central t-distribution. 

One application of this distribution is the case in which objects are classified as effective or 

defective according to whether values of a characteristic exceed or fall short of a fixed 

standard. The parent population of the objects must be normal. When the standard 

deviation is unknown, the non-central t-distribution provides information about the 

proportion of product falling beyond the standard. This distribution differs from the 

familiar Student's t-distribution in the additional non-centrality parameter, 8, representing 

the offset of the population mean from the fixed standard. In the case of Student's t

distribution, 8=0.0, representing equal division between effective and defective product. 

The authors provide tables of the non-central t-distribution in a form useful for solving 

practical problems. 

The first formalized plans for acceptance sampling by variables characteristics are 

presented by Lieberman and Resnikoff [32]. They present plans for a single quality 

characteristic, measurements of which are independent, identically distributed normal 

random variables. The plans are one-sided, in that tails of the distribution are controlled 

independently. The plans are indexed by code letter and AQL, each combination of which 

represents an OC curve in the collection. The probability of acceptance at the AQL varies 

from 0.89 to 0.99, following the practice of the published MIL-STD-lOSA (acceptance 

sampling by attributes, now in revision E). Plans are presented for known standard 
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deviation, sample standard deviation used to estimate unknown standard deviation (s

method) and average range used to estimate unknown standard deviation (R-method). 

The presentation by Lieberman and Resnikoff is the basis ofMIL-STD-414 Sampling 

Procedures and Tables for Inspection by Variables for Percent Defective, published by the 

U.S. Department ofDefense [38]. The form of this document closely follows MIL-STD-

105x; the variables plan was issued to take advantage of the considera~le savings in 

sample size realized by utilizing a variables plan rather than an attribute plan. The 

statistical principles underlying MIL-STD-414 and the Lieberman and Resnikoff paper are 

presented in a reference document published as a U.S. DOD Technical Report [34]. 

Tables of the non-central t-distribution require a triple entry since the distribution depends 

on the degrees of freedom (f) and the non-centrality parameter (6); tables are found in 

various forms throughout the literature. Early tables presented by Johnson and Welch 

[29] do not deal directly with the probability integral, nor is it possible to obtain from them 

values of the density function. Resnikoff and Lieberman [48] use as an argument x = ff 
to make the tables more compact. The authors also address the use of the non-central t

distribution in applying the W AGR sequential test for variables measurements. This 

sequential procedure is discussed in more detail in a later section of this document. 

Owen [43] identifies a bivariate non-central t-distribution which may be utilized to model 

two-sided tolerance limits and two-sided acceptance sampling plans in which the tail 

proportions are controlled. The joint probability of interest is that the mean sample 

measurement is above the lower specification and below the upper specification limit. The 

authors present tables of the constants required to specify parameters of the sampling 

schemes. 
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Owen [ 44] also documents a method of addressing two-sided variables sampling plans 

which utilize the univariate non-central t-distribution. The proposed method controls the 

sum of the tail probabilities by reducing the problem to the two extreme cases of a band of 

OC curves ( maximum at one-half of non-conformities in each tail, minimum at all of the 

non-conformities in a single tail). The two-sided case presented is for unknown mean and 

standard deviation of a normal population. Corrections are also given to previous works 

by Owen which describe application of the two-sided tables to the one-sided case. 

Kirkpatrick [30] examines the problem of placing confidence limits on percent non

conforming in a one-sided sampling plan by variables characteristics. His work closely 

follows the statistical principles used by Lieberman and Resnikoff and MIL-STD-414 in 

obtaining point estimates of the percent non-conforming in a single tail of a normal 

distribution. Given the point estimates, tables are provided which bound the proportion 

with 90, 95 and 99 percent confidence limits from the non-central t-distribution. The 

procedure given is exact for one-sided plans; for two-sided plans, tabular values are 

approximate. 

In a departure from the exact solution of unknown standard deviation methods ( s-method) 

for variables sampling using the non-central t-distribution, Hamaker [26] proposes that the 

normal approximation is adequate for OC curve derivation. His objective is to compute 

variables sampling plans which are equivalent to well-known attributes plans (MIL-STD-

105x). The author presents straightforward adjustments to apply to all cases of attributes 

acceptance sampling plans (standard deviation known, s-method, R-method) in order to 

achieve equivalent variables plans. Consideration is also given to the setting of fictitious 

limits in order to reduce sample size while maintaining OC curve performance. 
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Hamaker also makes an interesting point concerning the practicality of known standard 

deviation sampling plans. The author notes that, even if a large sample estimate of the 

standard deviation is available, it must still be demonstrated that a does not vary from lot 

to lot. If a is constant, but unknown, application of the appropriates-method may require 

3 to 4 times the sample size dictated by the known a method. 

Weingarten [61] also proposes a normal approximation for the case of unknown variance. 

The author gives a general procedure for obtaining confidence limits on percent non

conforming which is applicable for any sample size and confidence level in one-sided 

sampling plans. The method is based on a procedure due to Duncan which is based on a 

normal approximation instead of the appropriate non-central t-distribution. The author 

indicates that the approximation is excellent as long as the sample size exceeds ten. 

The problem of constructing confidence limits on simultaneous (two-sided) sampling plans 

by variables is addressed by Chou and Owen [10]. The authors propose a method for 

bounding the percentage non-confor,ming for the unknown standard deviation case ( s

method). Tables are given for various values of sample size, normalized specification 

limits and confidence level. The method is exact in utilizing the bivariate non-central t

distribution. 

In general consideration of placing confidence bounds on an underlying normal 

distribution, Odeh, Chou and Owen [ 41] examine the effects of sample size. The authors 

look at two types of confidence intervals: 1) The f3-expectation tolerance interval which 

contains 100f3% of the underlying distribution, and 2) The f3-content tolerance interval 

which contains at least 100f3% of the population with confidence level y. The general 

problem is in defining a Student's t-distribution confidence interval. 
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2.4 ECONOMIC ANALYSIS OF VARIABLES ACCEPTANCE SCHEMES 

Wetherill and Campling [63] examine both attributes and variables acceptance sampling 

inspection in terms of decision theory. Decision theory considers the consequences of 

decisions in assessing the appropriateness of specific sampling plans. For the variables 

case, the authors assume a normally distributed process with a constant, known variance. 

In their opinion, the most difficult utility to estimate in evaluating consequences is the 

profit accruing from accepting conforming items. The authors investigate the effects of 

errors in formulation of the sampling model and errors in estimating parameters of the 

model. They also investigate improvement in utility using double and sequential sampling 

plans, rather than single sampling. 

Schmidt, Case and Bennett [52] assess the use of economic criteria in selecting a variables 

sampling plan. The authors develop a total cost model which considers fixed and variable 

costs associated with inspection, acceptance, screening and scrapping of a lot of product. 

The model developed is distributionally general ( assuming known variance of the product 

distribution) with an example presented which is specific to a normal product distribution. 

In contrasting Bayesian and Decision Theoretic methods, Barnett [3] notes that both 

activities aim to extend the concept of "relevant information" beyond that obtained from 

sampling. Bayesian techniques augment sample data with prior information about the 

situation under study. Decision theory recognizes that actions imply consequences, and 

qualitatively combines assessments of these consequences with sample results to arrive at 

a sensible choice of action. Each action is assigned a particular loss ( or cost) so that a loss 

function may be defined over the entire realm of possible actions. By combining prior 

process knowledge, classical statistics and consequences of any action taken, it is possible 

to arrive at an informed decision concerning the sample at hand. In one hypothetical 
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example from industry, Barnett illustrates the Bayesian approach using a normal prior 

distribution. The normal distribution is a conjugate prior, in that it yields a posterior 

within the same (normal) family. 

Ladany [31] examines the effects of changing economic conditions on a Bayesian 

acceptance plan for attributes. The model utilizes a prior binomial distribution, 

subsequently approximated by a normal distribution for ease of use. The author performs 

a "reverse analysis" by modifying economic conditions and then examining the implications 

of the change on the statistical parameters specifying the sampling plan. The model 

equates the expected cost oflot acceptance with the expected cost oflot rejection using 

Bayesian techniques, then finds the corresponding value of lot percent defective for a 

single sample acceptance plan. 

By integrating variables acceptance sampling, measurement error and economic 

considerations, Case and Bennett [7] illustrate the adverse monetary effects of imperfect 

measurement in variables acceptance plans. The authors assume normal distribution of the 

measurement error, with mean (bias) and variance (imprecision) known. Additionally, lot 

and measurement error distributions are assumed independent. Cost concepts are 

developed generally, with no assumption of product distribution. The authors note that 

high bias and/or imprecision cause the cost model to be dominated by specific terms and 

take the cost of the plan to some upper limit. 

In illustrating the unfavorable cost consequences associated with errors of measurement in 

an acceptance sampling plan by attributes, Collins, Case and Bennett [ 11] note that any 

error at all results in economic loss. They use a basic Guthrie-Johns cost model and show 

incremental costs which result from neglecting inspection error in selecting an acceptance 

sampling plan. The authors present arguments with which to convince practicing Quality 
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Control managers of the significant costs which may be incurred by ignoring inspection 

error. 

Schmidt, Bennett and Case [ 51] present a three-action cost model which may be used in 

selecting appropriate lot disposition in acceptance sampling by variables. The decision 

criteria given in the model may call for lot acceptance, lot screening or lot scrapping. The 

model considers the estimated quality of the lot in determination of the most cost effective 

method of lot disposition following sampling results. The authors present an optimal 

solution and an approximation which is dependent on sample size in approaching the 

optimal solution. 

Chen [9] examines economically-based acceptance double sampling by attributes. The 

author redevelops the Guthrie Johns model for single sampling into a model appropriate 

for double sampling. Fixed costs associated with inspection, acceptance and rejection are 

also included in the economic model. The double sampling plan considered by Chen is 

Bayesian in nature~ in the case in which two samples are required, information obtained 

from the first sample is combined with results of the second sample to make inferences 

about the lot quality. 

Using a decision theoretic approach to the variables acceptance sampling problem, Fertig 

and Mann [22] explore the savings in sample size achievable by accounting for finite lot 

size. The economic cost of making a disposition decision is measured by a loss function. 

The model assumes that any non-conforming items found in the sample are replaced by 

conforming items and that rejected lots are screened for non-conforming items which are 

replaced by conforming ones. The accept/reject costs are balanced by assuming that there 

are average costs that the producer is willing to incur if the process is operating at either 

extreme of the OC curve (acceptable quality level and rejectable quality level). The 
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authors assume a normally distributed process with mean and standard deviation 

unknown. 

Boucher and Jafari [6] derive an economic optimal solution to the problem of selecting a 

process level when subjecting lots to variables acceptance sampling per MIL-STD-414. 

The authors treat only the case in which process variance is known. The cost model 

developed assumes that a variable cost per unit relative to the unit measure of the quality 

characteristic is incurred in addition to a fixed unit cost. Conversely, rejected lots 

represent a fixed unit revenue and a penalty cost proportional to the deficit in the quality 

characteristic. 

Moskowitz and Tang [39] utilize the three-action cost structure as proposed by Schmidt 

et al. [52] in performing Bayesian analysis of known variance acceptance sampling by 

variables. The authors recognize three ways of obtaining a prior sampling distribution: 

empirically (past events), subjectively, or some combination of these two. They consider a 

prior normal distribution, with the performance variable subjected to two-sided 

requirements. Both the quadratic and step-loss functions are examined in reaching the 

optimal total cost model. The Bayes optimal sampling plan, as obtained by the authors, is 

robust with respect to the form of the prior distribution, as well as to mis-specification of 

the mean and variance, as long as the tail specification reasonably approximates that of a 

normal distribution. 

2.5 SEQUENTIAL ANALYSIS 

In his definitive work on sequential analysis, Wald [59] explains that the number of 

observations required by the sequential procedure depends on the observations, and is not 

predetermined, but a random variable. The Sequential Probability Ratio Test (SPRT) for 
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testing the mean of a normal distribution with known variance, credited to Wald, utilizes a 

likelihood ratio which is computed following each sequential sample. The likelihood ratio 

used in the Waid SPRT is simply the probability that the alternative hypothesis is true 

(given the current sample outcome) over the probability that the null hypothesis is true 

(given the current sample). Based on the value of the likelihood ra:tio, one of three 

possible decisions is made following each sample taken: 1) the hypothesis is not rejected, 

2) the hypothesis is rejected, or 3) another sample is drawn. 

In the case of simple hypotheses, the Wald sequential test effects the greatest possible 

savings in the average number of observations over other sequential and non-sequential 

tests. A hypothesis is said to be simple if it determines, uniquely, the values of all 

unknown parameters of the distribution. This is the case in tests concerning the mean of a 

normal distribution with known variance. _Wald gives the hypotheses of this test as, 

H o : 8 = 8 o and H 1 : 8 = 8 1 

where 8 is the unknown mean of the distribution, So is a value of the mean below which 

rejection of the lot is considered to be an error of practical consequence and 81 is a value 

of the mean above which rejection of the lot is considered to be a practical error. The 

author suggests that the interval between So and 81 is a zone of indifference, in which 

mean values occur for which there is no particular preference between decisions to accept 

and reject the lot. 

For the case of composite hypotheses, as in a normal distribution with unknown variance, 

Wald proposes a system of weight functions by which the composite hypotheses 

( dependent of the variance) are transformed to simple hypotheses (independent of the 

variance). The composite nature of the hypotheses arises due to the fact that the variance 

is a nuisance parameter in assessing hypotheses concerning the parameter of interest, the 

mean. Unknown variance problems, also termed sequential t-tests, typically perform a 
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transformation to eliminate the nuisance parameter from the likelihood ratio. However, a 

problem arises in calculating the OC curve and the Average Sample Number (ASN) in the 

composite case. Wald proposes that the Average Sample Number (ASN) for the 

unknown variance case is bounded ( on the low side) by the ASN for the known variance 

case. 

In a classic book compiled by the Columbia Statistical Research Group, Wallis [60] notes 

that sequential is superior to non-sequential analysis whenever 1) the data becomes 

available serially and 2) the cost of the data is approximately proportional to the amount of 

data. He defines superiority in terns of minimizing the set of quantities (N, a, f3), where N 

is the number of observations, a is the risk of erroneously rejecting the hypothesis and f3 is 

the risk of erroneously accepting the hypothesis. 

Sobel and Wald [54] extend the known variance sequential problem to a multi-decisional 

case. The problem is to choose one of three mutually exclusive hypotheses: 

H1:0 < a1 H2:a1 :s:: 0 :s:: a2 Hf0 > a2, 

where e is the unknown mean of the distribution and a1 and a2 are the lower and upper 

specifications, respectively. In order to deal with this problem, the authors divide the 

parameter space into five mutually exclusive and exhaustive zones. They define 

indifference zones around a1 in which there is no strong preference between H1 and H2, 

and around a2 in which there is no real preference between H2 and H3. The problem then 

proceeds as the Wald SPRT for simple hypotheses in treating a1 and a2 simultaneously. 

A publication by the National Bureau of Standards [57] provides tables with which to 

perform sequential t-tests (unknown variance). The tables make use of the confluent 

hypergeometric function, F(n/2, 1/2;x). The likelihood ratio targeted by the tables is that 

of a non-central t-distribution to at-distribution (Student's). This method is appropriate 
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when the nun hypothesis is such that it specifies the offset of the distribution mean relative 

to some fixed specification as zero, rather than a non-zero offset. The more general case, 

as described in the next paragraph, is less restrictive in utilizing a likelihood ratio of two 

non-central t-distributions. 

A sequential t-test (unknown variance) given by Rushton [49] specifies a likelihood ratio 

of two non-central t-distributions. The null hypothesis tested states that Xis normally 

distributed with unspecified standard deviation cr and mean µ=ocr, o being specified; the 

alternative hypothesis states that X is normally distributed with unspecified standard 

deviation cr and mean µ=8 'cr, 8' being specified. The author presents the exact formula 

for the likelihood ratio which involves the Hh function tabulated by Airey [ 1]. Rushton 

gives an approximate solution which he states is satisfactory except in the case that 

hypotheses are far apart and the sample size is in consequence small. He notes that, due 

to non-linearity of the test, it is not possible to calculate an estimate of the ASN. Rushton 

suggests that the Wald ASN approximation for unit variance may be appropriate for 

sample size greater than 30. 

Cox [16] develops a method analogous to Rushton's in treating tests of composite 

hypotheses other than that for the mean of a normal distribution, variance unknown. The 

procedure may be used in many problems in which a jointly sufficient set of estimators can 

be found for the unknown parameters. The author presents examples for sequential test of 

variance (normal distribution, mean unknown), sequential analysis of variance, variance 

ratio test and test for correlation coefficient. Cox also illustrates that all methods he 

presents (and Rushton's procedure) can be obtained by Wald's method of weight functions 

in treating composite hypotheses. 
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David and Kruskal [18] provide a proof that the WAGR sequential t-test (known 

variance) terminates with probability one. The test, named for Wald, Arnold, Goldberg 

and Rushton, tests that the proportion of a normal population greater than a given 

constant is Po (given) versus Pl (given). The author notes that this probability condition 

must be met in order to apply the standard Wald SPRT in testing the two hypothesis 

points. 

The Waid SPR T procedure for simple hypotheses (known variance) is further explored by 

DeGroot and Nadler [19]. They indicate that the optimal properties of the QC and ASN 

make the test very appealing. However, due to the need to know the population variance 

exactly, the SPRT procedure has limited applicability in practice. The authors indicate 

that, often, the variance is approximated in order to utilize the straightforward Wald SPR T 

procedure. They look at problems of testing means and proportions defective; 

additionally, they examine the sensitivity of the SPRT to departures of the variance from 

its assumed value. A procedure is given for an SPR T test when the variance can be 

restricted to a finite interval a priori. 

A comprehensive review of literature relevant to sequential analysis is presented by 

Johnson [28]. He indicates that part of the appeal in the standard Wald SPRT is in that it 

does not require special tables for application. In regards to tests of composite 

hypotheses, the author notes that there are no approximate formulae for the operating 

characteristic or ASN for the test. He also discusses sequential estimation, curtailed 

sampling and two-sample procedures as presented in the literature. 

Schneiderman and Armitage [53] present approximate procedures for use in sequential t

tests (variance unknown) .. The methods are modeled after so-called "wedge plans!! for 

testing the mean of a population with known variance. Wedge plans provide a bridge 
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between open (unlimited) plans such as Wald and restricted (truncated) plans. The 

authors' approximation utilizes boundaries derived for known variance problems based on 

studentization of the t-distribution for large sample sizes. They note that the 

approximating procedure is necessarily somewhat arbitrary and the argument heuristic. 

The authors term the argument the PVK ("pseudo-variance known") conjecture. 

A series of FORTRAN subroutines is provided by Cooper [12, 13, 14, 15] for use in 

calculating tail integrals of the normal, Student's t- and non-central t-distributions. The 

numerical method of the non-central t-distribution subroutine closely follows that given by 

Owen [43]. 

Billard and Vagholkar [5] provide an alternative procedure for the multi-decision method 

as provided by Sobel and Wald. For the known variance case, their method provides an 

ASN function in addition to the OC function which was previously derived. The new 

procedure specifies that a "few" observations be taken before any serious comparison of 

the hypotheses is undertaken. This is justified due to the authors' observation that few 

experimenters would be content to terminate the testing process very early (say, n=2), 

especially when the difference between the values of the mean for the null and alternative 

hypotheses is very small. Following the initial sample, the Wald SPRT procedure is 

followed. 

Wetherill [ 62] makes the distinction between two kinds of composite hypotheses: 1) those 

involving ranges of the parameters of interest, and 2) those involving nuisance parameters, 

as in the sequential t-test. In the second case, the author indicates that it is generally 

desirable to use methods given by Cox or Rushton rather than the weight functions given 

by Wald. Cox and Rushton utilize methods which construct a test statistic having a 
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distribution not dependent on the nuisance parameter; Wald's method of weighting 

essentially integrates out the nuisance parameter with a seemingly arbitrary function. 

2.6 SUMMARY 

The four areas which are covered in the literature review all have relevance to the research 

topic. It is widely acknowledged that measurement error can distort product conformance 

to engineering specifications. Methods for measurement error compensation have been 

applied in the areas of acceptance sampling and control charting. However, the problem 

of accounting for measurement error in single batch ( or item) disposition has not been 

treated. 

Sequential sampling techniques have been extensively developed and are well-known in 

application to lot-by-lot acceptance plans by attributes and by variables. The problem of 

single item disposition in the presence of normally distributed measurement error bears a 

resemblance to lot sampling by variables from a normal population. The application of 

sequential methods in the single item situation, the subject of the research effort, has 

received little attention in the literature. 

The decision system which is proposed utilizes accepted techniques of sequential sampling 

in addressing the problem of single item disposition by variables in the presence of 

measurement error. Consideration of economic inspection criteria in assessing 

performance of the decision system develops an additional area which has not been 

addressed in the literature. 
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CHAPTER3 

THEORETICAL DEVELOPMENT 

OF THE STATISTICAL SOLUTION TO THE PROBLEM 

3.1 INTRODUCTION 

This chapter addresses the statistical solution of the problem of homogeneous batch 

disposition on the basis of a single variable characteristic subject to measurement error. 

Solutions are presented for the cases of known and unknown measurement error variance. 

Tolerable risks of errors in acceptance and rejection are considered in the statistical model; 

explicit economic consequences of disposition errors are neglected in reaching a decision 

for batch disposition. 

The case of known measurement error variance implements the Sequential Probability 

Ratio Test (SPRT) first introduced by Wald [59]. This sequential theory has not 

previously been applied to the problem of homogeneous batch disposition subject to 

measurement error. 

Solution of the problem of unknown measurement system variance involves the non

central t-distribution. Problems of this nature are known as sequential t-tests. Previous 

solutions to these problems utilizing SPRT theory have involved ratios of non-central to 

central t-distributions and require extensive table searches for application. Alternatively, 

approximations have been developed which treat sequential t-tests. The solution 

presented in this chapter applies SPRT theory in the exact solution of the sequential t-test 

problem, utilizing the ratio of two non-central t-distributions. In addition to this 
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development, this sequential theory has not previously been applied to the problem of 

homogeneous batch disposition subject to measurement error. 

3.2 SEQUENTIAL SAMPLING 

A sequential test of statistical hypothesis involves making a calculation following each 

sequential observation ( or group of observations) and determining a course of action. 

Rather than making a determination on a random sample of n observations, as in non

sequential methods, the sample size is a random variable and unknown prior to beginning 

inspection. After any single observation ( or group of observations), the hypothesis may be 

rejected, the hypothesis may fail to be rejected or data collection may continue. The 

criteria for decision-making are pre-determined and a decision is reached as soon as 

enough data is available to satisfy specified risk levels. 

Sequential tests in statistics offer several advantages over non-sequential tests. Sequential 

methods prove superior when, 1) data becomes available serially, and 2) the cost of the 

data is proportional to the amount of data. When data becomes available in fixed quantity 

and the cost of collection is fixed ( overhead), non-sequential methods prove superior in 

minimizing the parameters of interest N, a and f3 (respectively, the sample size, the 

tolerable risk of rejection when the null hypothesis is true, and the tolerable risk of 

acceptance when the null hypothesis is false). Unlike non-sequential tests, the number of 

sequential observations, N, is variable; for fixed a. and f3, the average number of 

observations ( N) is minimized. 

The fundamental quantity computed after each observation in a sequential test is the 

"likelihood ratio". Given all observations available, probabilities of observing the 

accumulated data ( composed of n observations) are calculated assuming the null 
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hypothesis is true (Pon) and the alternative hypothesis is true (Pin). The ratio of these two 

probabilities, Pln /pon, is the likelihood ratio (An) at that point in the sampling sequence. If 

this ratio ever exceeds a certain level, A, the testing stops and the null hypothesis is 

rejected. If the likelihood ratio falls below a given level, B, data observation stops and 

the null hypothesis is not rejected. In the case that the calculated ratio falls between the 

two values, A and B, evidence is insufficient to support either hypothesis based on 

predetermined risk levels (a and f3) and the experiment continues. The testing thresholds, 

A and B, are completely determined from the specified risk levels. 

Assuming that successive observations are independent, the likelihood ratio for a set of 

observations can be found by taking the likelihood ratio of the most current observation 

and simply multiplying it by the ratio obtained from all preceding observations. By 

utilizing the natural logarithm of the likelihood ratio, the sequential mathematics reduces 

to simple addition and subtraction. 

When first presented, practical sequential testing procedures relied heavily on graphical 

procedures. In the graphical analysis, parallel lines are calculated and plotted on a graph 

of Ex vs. n which define the acceptance, rejection and continuation regions for each 

sequential n. These lines incorporate the natural logarithms necessary for carrying out the 

testing and remove any heavy mathematics from the operator. With the graphical testing 

description in-hand, the operator need only measure the characteristic of interest and 

calculate the summation of the measurements (over n). The operator then plots this 
' 

quantity on the chart and determines the proper course of action based on the region of 

the chart in which the value falls. Details of the graphical procedure are provided in 

Wald's book on Sequential Analysis [59]. 
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The use of computers in testing and measurement has further removed underlying 

mathematics from the responsibility and view of the inspector. Complex calculations are 

carried out behind-the-scenes, and the need for the simplifying (but, still, time-consuming) 

graphical procedures is eliminated. Due to the widespread availability of computers at the 

time of this writing, graphical procedures as they relate to the research topic are omitted 

from this research. 

Although the SPRT terminates with probability one, in any single experiment the number 

of required observations may be very large. In many cases, it may be desired to establish a 

maximum number of samples to be taken in the experiment. Truncation of the SPRT 

changes the risk probabilities ( a and f3) associated with the procedure. This research 

addresses the truncated SPRT for simple hypotheses (applicable to the problem of known 

measurement error variance) in order to provide a valid basis for comparison with the 

economic sequential problem, as developed. 

3.3 TESTS OF SIMPLE HYPOTHESES 

Sequential Probability Ratio Test 

In the case of testing a simple hypothesis Ho against a single alternative Hi, Wald [59] 

defines the Sequential Probability Ratio Test (SPRT) for application following each 

observation. A hypothesis is said to be simple if it determines, uniquely, the values of all 

unknown parameters of the subject distribution. Parts of the following discussion are 

taken from Wald [59]. 

Let ft:X,8) represent the distribution of the random variable X under consideration, with 8 

the only unknown parameter of the distribution. Let Ho be the hypothesis that 8=80 and 

H1 the hypothesis that 8=81. The Sequential Probability Ratio Test for testing Ho against 
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H1 proceeds as follows: Positive constants A and B (B<A) are chosen. After each (nth) 

trial of the experiment the likelihood ratio is computed as 

If 

B< Pin <A 
' Pon 

another sample is drawn and the experiment continues. If 

Pin ~A 
Pon 

the process terminates with the rejection of Ho. If 

Pin::;; B 
Pon 

the process terminates with the failure to reject Ho. 

(1) 

(2) 

The sequential nature of the computations makes it practically convenient to compute the 

natural logarithm of the likelihood ratio p1nf Pon rather than the raw ratio. This is because 

ln(p1Jpon) can be written as the sum of n terms: 

In practice, the expression zi = In f(xi 'e 1) is calculated following each sequential 
f(xi,0o) 

iteration. If 
n 

lnB < LZi < lnA 
i=I 
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the testing continues with an additional observation. If 
n 

LZi ~lnA. 
i=l 

the process terminates with the rejection of Ho. If 
n 

LZi ~lnB 
i=l 

the process terminates with the failure to reject Ho. 

The constants A and B required for the described testing are determined such that the 

specified test has prescribed strength (a., J3). Given inequality (1) which dictates rejection 

of Ho, the probability of obtaining a sample which meets the specified criterion is clearly at 

least A times as large under hypothesis H1 as under hypothesis Ho. Thus, the probability 

measure of the totality of all such samples is also at least A times as large under H 1 as 

under hypothesis Ho. The probability measure of the totality of all samples meeting this 

criterion is the same as the probability that the sequential test will terminate with the 

failure to reject Ho. But this latter probability is equal to a. when Ho is true and to l-J3 

when H1 is true. This yields 1- J3 ~ Aa., also written as 

A lower limit for Bis derived in a similar manner utilizing equation (2). The probability of 

failing to reject Ho is at most B times as large when H1 is true as when Ho is true. The 

probability of failing to reject Ho is 1-a. when Ho is true and J3 when H1 is true, yielding 

J3 ~ (1 - a. )B, also written as 

Thus, J3/(1-a.) is a lower limit for B. 

B~-J3-. 
1-a. 

42 



These limiting equalities for A and B are derived under the assumption that successive 

observations are independent observations of X. 

Truncation of the SPRT involves establishment of a definite upper limit, nmax, for the 

number of allowed observations. A straightforward, general rule for truncation of the 

sequential test is proposed by Wald [59] and verified by Baker [2]. It proceeds as follows: 

If the SPRT does not lead to a final decision for any n<nmax, fail to reject Ho on the nmaxth 

trial when 

and reject Ho on the nmaxth trial when 

n 
lnB < l:Zi :::; 0 , 

i=l 

n 

0 < ~:Zi < lnA. 
i=l 

Truncation of the process at nmax affects the probabilities of types I and II errors. The 

relative effect of truncation on these error probabilities depends on the value of nmax; the 

larger nmax, the smaller is the effect of truncation on a and~- Upper bounds on the error 

risks, given by Wald [59], assume that nmax is large enough such that z1, ... ,z0 can be max 

regarded as normally distributed. Bounding the error risks requires consideration of cases 

in which the truncated and non-truncated process lead to conflicting conclusions about the 

null hypothesis. 
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Known Measurement Distribution Variance 

The situation of known measurement system variance follows directly from Wald's 

treatment of simple hypotheses using SPRT methods. SPRT theory has not previously 

been applied to the problem of homogeneous batch disposition based on a single variable 

characteristic subject to measurement error. The true value of the variable characteristic 

being measured is the only unknown parameter; for the case of no measurement bias, the 

(normal) measurement error distribution is centered about the unknown mean. In the case 

of a single, upper specification limit, the hypothesis may be stated as Ho: The unknown 

batch characteristic, µ, is less than or equal to the specified upper limit, U. Alternatively, 

H1 states that the unknown parameter exceeds the specification, U (the batch is non

conforming). 

Ifµ is equal to U, the upper specification limit, there is an indifference as to the disposition 

of the batch. Asµ becomes increasingly greater than U, the preference favors rejection of 

the batch; as µ decreases from U, it is preferred to accept the batch based on the variable 

characteristic being measured. The relative closeness ofµ to U greatly influences the 

degree of preference for each alternative disposition option. Generally, it is possible to 

define some "indifference" limits, Uo and U1 (Uo < U < U1), about U such that rejection of 

the batch is an error of practical consequence ( as judged by the experimenter) when 

µ :::; U O and acceptance of the batch is a practically significant error when µ ?". U 1 . The 

. range of values which fall between Uo and U1 defines the region of indifference for batch 

disposition. Selection of this zone is not a statistical problem; the indifference region is 

selected on the basis of practical considerations concerning the consequences of a wrong 

decision. 

The risks to be tolerated, a and f3, are chosen after definition of the indifference limits, Uo 

and U 1 and relate to these limits, rather than the specification. 
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Let Xi denote the ith observed measurement on the current batch. It is assumed that Xi is 

a random variable given as 

Xi=µ +ei, 

where µ is the true value of the batch characteristic and 8i denotes a random measurement 

error component. The measurement errors are assumed to be distributed independently as 

N(µme,crm/), so that the observations are distributed normally as N(µ+µme,crm/). The 

mean of the measurement error distribution, µme, is the bias of the measurement system, 

considered to be known and fixed. 

Given: 

Xi=random variable of observation on µ, trial i 

µ=true value of the batch characteristic, unknown 

xi=observed value ofµ, sequential trial i (i=l, ... ,n) 

µme=mean of the measurement error distribution (bias) 

O"me=standard deviation of the measurement error distribution 

U=upper specification limit for the variable characteristic of interest 

Uo=lower indifference limit for the variable characteristic of interest 

U 1 =upper indifference limit for the variable characteristic of interest 

f3=tolerable risk of acceptance when the true value is greater than U 1 

a=tolerable risk of rejection when the true value is less than Uo 

A=lower decision limit for the likelihood ratio, given approximately as (l-f3)/a 

B=upper decision limit for the likelihood ratio, given approximately as f3/(l-a) 

For initial development of the SPRT procedure as it applies to the research problem, 

measurement system bias, µme,· is assumed to be zero. The case of non-zero bias is 

considered following the zero bias case. 
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In applying the SPR T procedure, successive observations are made on µ, the variable 

batch characteristic of interest. If µ=Uo, the probability density of the sample of 

observations (x1, ... ,xn) is given by 

-1 ~ 2 
--2 k.J (xi -Uo) 

Pon =--nl __ e2crme i=l 

(21t)2 crm/ 
and if µ=U1, the probability density function (p.d.f) is given by 

The probability ratio p1nf Pon is calculated following each sequential observation. The 

inspection continues as long as 

The batch is accepted if p1nf Pon::;;B; the procedure terminates in rejection of the batch if 

the ratio ~ A. 

As previously suggested, practical implementation of the decision procedure is facilitated 

by taking advantage of natural logarithms of the inequalities. Simplifying, equation (3) 

may be rewritten as 

The decision test limits of inequality (4) may be calculated prior to beginning the 

inspection procedure. The current observation is then simply added to the sum of all 
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previous observations and the log of the likelihood ratio is tested against the decision 

limits. Decision criteria for disposition remain as previously indicated in equation (3). 

In consideration of a measurement error distribution with non-zero mean (bias), the mean 

is simply subtracted from the observed value of the characteristic of interest. Recall that 

positive bias implies observed value greater than true value; negative bias produces an 

observation which is less than the true value of the characteristic. Rewriting equation (4) 

in consideration of non-zero bias gives 

(5) 

Equation ( 5) is general and applies for both zero and non-zero measurement system bias. 

The testing theory for the specific situation involving a single, upper variable specification 

extends directly to the case of a lower specification, L. Let the null hypothesis, Ho, be 

expressed as: The unknown batch characteristic, µ, is greater than or equal to the 

specified lower limit, L. Alternatively, H1 states that the unknown parameter falls short of 

the specification, L (the batch is non-conforming). The indifference limits may then be 

given as Lo, the cutoff for batch acceptance and, L 1, the lower indifference limit beyond 

which the preference is for batch rejection. 

With these parameter definitions, the theory previously developed is directly applied to the 

lower specification limit case. The inequality expression, including non-zero measurement 

error bias, is expressed as 

( P ) L1 -Lo~ n 2 2 (1-P) 
In 1-a < 2 ~(xi-µme)+ 2(Lo -Li )<In 7. 

CTme 1=1 2crme 
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The testing procedure for the case of known measurement system variance ( upper 

specification limit) is shown in flowchart form in Figure 3.1. This is the logic utilized for 

practical solution of the problem via the FORTRAN program discussed in the following 

chapter. The case of a single lower specification limit is solved using the exact same logic 

with the appropriate substitution of limit (specification and indifference) variables. 

3.4 TESTS OF COMPOSITE HYPOTHESES 

General Discussion 

A dominant, attractive feature of SPRT theory is its generality. However, application of 

the SPRT procedure is limited to those cases in which Ho and H1 are simple hypotheses. 

Many practical statistical procedures, such as t-tests and most analysis of variance tests, 

involve composite hypotheses in which the values of certain parameters are not completely 

specified. Tests of the mean of a normal distribution with unknown variance, also called 

sequential t-tests, involve such composite hypotheses. For practical application of SPRT 

theory in approaching the complex, composite problem, Wald [59] proposes a method of 

weighting the simple hypotheses included in a given composite hypothesis by defining 

prior distributions for the undefined (nuisance) parameters. 

When published, Wald's system of weighting was not felt to be unequivocally satisfactory 

[28] and received little practical application to the problems of sequential t-tests. For a 

period of time, the only practical way in which sequential analysis could be applied to 

these problems was by replacing the composite hypotheses with simple hypotheses, 

thereby neglecting some available information. In the case of testing a variable dimension 

against one or more specification limits, this could be accomplished by approaching the 
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n=n+l 

Calculate Decision 
Limits lnA and lnB 

Observe Xn 

Calculate 
n L (Xi-µme) 

i=l 

Calculate the log of the likelihood ratio, "-n= 
(U1 -Uo )f 

crm/ i=l 2crme2 

Accept Batch 

No 
.__ ________ Reject Batch 

Figure 3.1. Procedure Flowchart for the Case of Known Measurement System Variance, 
Upper Specification. 
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problem in terms of the percentage of defective product. Wald [59] presents the practical 

procedure of such a problem. 

An acceptable extension of the SPRT problem to the sequential t-test utilizes a sufficient 

statistic for the unknown mean (8) which depends only on that mean [see references 16, 

49 and 57]. Essentially, given the statistic Tn (x1, ... ,xn), which depends only on 8, it is 

acceptable to use the ratio p(Tnl81)/p(Tnl80) in testing sequentially. The testing procedure 

must terminate with probability one in order to be valid. 

The composite problem treated in this research is the sequential t-test, in which the mean 

of a normal distribution with unknown variance is tested against a fixed limit. Details of 

the sequential solution of this problem ( which integrates SPR T theory and treatment of 

composite hypotheses) are presented in the following section of this paper. 

Unknown Measurement Distribution Variance 

Exact solution of the sequential problem with unknown variance through application of 

likelihood ratios involves the non-central t-distribution. Procedures exist which solve, 

through tabular methods, the problem involving a ratio of a non-central to a central t

distribution. However, no such methods exist for solving the general case represented by 

the ratio of two non-central t-distributions. The following procedure utilizes SPRT theory 

in solving the exact, general case of the sequential t-test. In addition to this contribution, 

application of this theory to the problem of homogeneous batch disposition by a single 

variable characteristic in the presence of measurement error has not previously been 

explored. 
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Application of Wald's SPRT theory allows the variable nature of the characteristic to be 

retained. The general theory of sequential tests, as previously described, dictates to take 

observations sequentially and calculate, at each stage, the likelihood ratio An (pin/Pon} If 

B< Pln <A 
' Pon 

another sample is taken and the experiment continues. Failure of the inequality on the 

right leads to rejection of Ho; failure on the left leads to a failure to reject Ho. 

Rushton [49] presents the sequential solution for the composite case of testing the mean 

of a normal distribution with unknown variance against a specified upper limit. However, 

he stops short of practical implementation of the exact solution and presents an 

approximation which utilizes the Hh function tabled by Airey [ 1]. Because existing tables 

of the Hh function are practically limiting, Rushton checks his approximation by utilizing 

the confluent hypergeometric function which is closely related to the Hh function. The 

following procedure represents exact solution of the sequential t-test problem by 

implementing SPRT theory. 

The solution procedure for the case of unknown variance is general as to the nature of the 

single specification limit (upper or lower); the FORTRAN computer program which is 

subsequently presented accommodates both situations. As in the case of known variance, 

the testing theory is first developed for the case of zero bias (µme=O) and extended to 

cover the general bias case. Let 

Xi=random variable of observation on µ, trial i 

·µ=true value of the batch characteristic 

xi=observation onµ, trial i (i=l, ... ,n) 
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- . 1 n 
xn =average of n observations, - L xi 

n i=l 

si=standard deviation of i observations, i=l, ... ,n 

µme=known mean of the measurement error distribution (bias) 

2 
O"me =unknown true variance of the measurement error distribution 

oo=null hypothesis ratio, µo/crome 

01=alternative hypothesis ratio, µ1/cr1me 

U=upper specification limit for the variable characteristic of interest 

L=lower specification limit for the variable characteristic of interest 

a=tolerable risk of error when Ho is true 

~=tolerable risk of error when H 1 is true 

Pon=probability of observing accumulated n observations assuming Ho is true 

P1n=probability of observing accumulated n observations assuming H1 is true 

An=likelihood ratio, P1nf Pon 

Prior to making a single observation, the probability of interest may be expressed as 

or 

P(Xi < U) = <l>((U - µ)\ 
O"me ) 

P(Xi > L) = <l>((L- µ)\ 
O"me ) 

(Upper Specification) 

(Lower Specification) 

where <l>(x) is the cumulative distribution function for the standard normal distribution. 

Shifting the origin of all measurements by subtracting the specification limit allows the 

probabilities to be written as 

and 

P(Xi<O)=<l>(-o) 

P(Xi>O )=<1>(-o) 

(Upper Specification) 

(Lower Specification) 

where o=µ/crme· Note that the probabilities shown are general for both lower and upper 

specification limits. 
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For a single trial, Ho states that Xi is normally distributed with unspecified standard 

deviation crme and mean µ=8ocrme (80 specified) and H1 states that Xi is normally 

distributed with unspecified standard deviation crme and mean µ=81crme (81 specified). By 

considering po=<l>(-80) and PI =<l>(-81), the question becomes whether µ/cr=8o or µ/cr=81. 

In practice, the equalities shown in the hypothesized equations behave as inequalities in 

defining a band of indifference for the location of Xi (just as do the upper and lower 

indifference limits in the known variance case). Because it is not strictly defined which 

value of hypothesized 8 is greater ( or less) than the other, the hypotheses are shown as 

equalities for the general case. 

If n observations Xi (i=l,2, ... ,n) have been taken, a sequential test of Ho against H1 may be 

obtained by considering only the distribution of the ratio t = xnFn. For Ho, t has the 
Sn 

non-central t-distribution with ( n-1) degrees of freedom and parameter 80, the probability 

density function [29] being 

r(n)exp[kn(n -1)8a2 {n -1 + t 2 )] ( n- l ) fn 
<j>(t18o, n) = I 2 Hhn-1 (-8ou) 

-(n-2) ( 1 ~ n - 1 + t 
22 r 2(n - l)yJrc(n -1) 

where u = t~ n/ (n - 1 + t2 ) ,and 

00
(znJ [ 1 2 J Hhn(x) = l ~ exp 2(z+x) dz 

is the Rh-function tabulated by Airey [l]. 
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For H1, t has the probability density function <l>(tl81,n), so that the likelihood ratio is given 

as 

A (ti8 8 ) = <l>(ti81,n) . 
n o, I <l>(t18o, n) 

As before, it is easier to run the sequential test procedure in terms of the natural logarithm 

of the likelihood ratio. Thus, the quantity ln11.n(tl80,81) is calculated following each 

observation, and if 

(6) 

another observation is taken. If the right inequality is broken, Ho is rejected; if the left 

inequality is broken, Ho is not rejected. 

In consideration of the research problem, 80 and 81 may be viewed in terms of the 

indifference limits discussed in the case of known measurement distribution variance. That 

is, each delta may be considered a hypothesized distance, µ/cr, from the upper 

specification, representing a limit of"practical significance" for the batch disposition 

problem. It is assumed that the smaller of the two ratios represents a lower indifference 

limit, below which acceptance of the batch should occur. Conversely, the greater ratio 

represents the upper limit, beyond which the batch should be rejected. For solution of the 

problem, 80 and 81 are unrestricted in value. This implies that the null hypothesis may be 

either that the actual value of the batch is above the specification or that the value is below 

the specification. 

In practice, it is easier to work with u than with t, since 
n 

L(xi -Spec.) 
i=l u n = -;:::======== 
n 

L (xi~ Spec.) 2 

i=l 
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This is easily calculable at each step of the sequential procedure by keeping track of the 

cumulative sum and cumulative sum of squares. 

Making the substitution ofu fort in calculating the log ofthe likelihood ratio gives 
2 2 

lnA.n=gn(01 Un)-gn(Ooun)-0.5(81 -Oo ) 

where 
2 

gn(x)=0.5x +ln[yn(x)] 

and Yn(x)=Hhn-1 (-x)!Hhn-1 (0). 

As an alternative to the Hh function, the confluent hypergeometric function may be used in 

calculating gn(x). This substitution is presented in a practical procedure at the end of this 

section. 

When the measurement error distribution mean is zero (no bias), the above equations may 

be used directly as presented. When the mean, µme, is non-zero, it is simply subtracted 

from each observation prior to the calculation ofu. That is, generally, u is written as 

n 
L(xi - µme - Spec.) 
i=l 

Un = -;::======== 
n 
L (xi - µme -Spec.)2 
i=l 

This is, of course, valid for any measurement error distribution mean and either 

specification limit. Given this general ratio, the sequential test proceeds using the Hh 

function or confluent hypergeometric function to calculate the likelihood ratio following 

each observation. The likelihood ratio is tested against the probability bounds as shown in 

inequality ( 6). 
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In practice, the non-central t-distribution probabilities which are required for the likelihood 

ratios may be calculated using the Hh function shown, above, or the confluent 

hypergeometric function. The Hh function tables of Airey [ 1] are limiting in sample size 

(n) and achievement of precision in interpolation due to the range of table values. A 

procedure which utilizes the confluent hypergeometric function [56] in treating the 

unknown variance case follows. This is the logic which is implemented in the FORTRAN 

computer program which is discussed in Chapter Four and presented in Appendix A. 

Unknown Variance Procedure 

1) 

2) 

3) 

Calculate decision limits lnA = l-J.3 and lnB = _J.3_ 

Observe Xn. 

Calculate 

a 1-a 

n 

L(Xi - µme -Spec.) 
i=l 

Un = ---;::.========== 
n 

L (xi - µme - Spec. )2 
i=l 

4) Calculate the log of the likelihood ratio, 

where 

2 2 
ln1..n=gn(o1un)-gn(ooun)-0.5(01 -oo) 

{ (
n I 1 2) r;:: ( 1 3 I 2) r(f (n + 1)) 

gn(x)=ln M -,-,-x +v2xM -(n+ 1),-,-x --(--)-
2 2 2 2 2 2 r _!_n 

2 
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d M( ) -- ~ r(y)r(a+ j)xj . h 
an a, y, x LJ 1s t e confluent hypergeometric which is closely 

j=o r(a)r(y + j)j ! 

related to the Hh function. 

5) Compare the log of the likelihood ratio to the decision limits found in step 1. If 

ln1..n<InB, don't reject Ho. If 60<81, this leads to acceptance of the batch; if 61<60, it 

leads to batch rejection. Ifln1..n>lnA, reject Ho. If 6o<o1, exceeding the upper limit leads 

to rejection of the batch; if 61<60, it leads to acceptance. If the sequential ratio falls 

between the two decision limits, repeat steps 2-5. 

3.5 PROGRAM DESCRIPTION 

The comprehensive FORTRAN program which implements the statistical and economic 

theories as presented in the current chapter and Chapter 5 is presented in Appendix A. 

Both models are accessible from a common main module (shown below as MAIN). The 

FORTRAN subroutines which implement the statistical sequential theory as discussed in 

this chapter are summarized in the following paragraphs. Each heading represents the 

actual subroutine name as given in the FORTRAN code (without arguments). Further 

information on program operation and a description of subroutine arguments is contained 

within the body of the code (Appendix A) in the form of program comments. 

The general hierarchy of the program modules is shown in Figure 3.2. There are five 

subroutine branches which are accessible from the main program module. Subroutine 

names are shown in parentheses in the figure. The interaction of these subroutines with 

the remainder of the program code is further-detailed in the subroutine summaries which 

follow (statistical branch) and in Chapter 5 (economic branch). 
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Verification of computer program logic is accomplished through redundant runs using 

hand calculations, FORTRAN simulators (Appendix D), Microsoft Excel 5.01 and 

Mathcad 4.0. 2 

MAIN 

I I 

Economic Statistical 
Branch Branch 

I I I 
Optimize User-Design Knowncr Unknowncr 

(CALCST) (KNOWN) (UNKN) 

I 

Enter nmax 

I 
nmax=l nmax=2 nmax=3 
(A2NIMGT) (A2N2MGT) (A2N3MGT) 

Figure 3.2 Hierarchy of Subroutines, Comprehensive FORTRAN Program. 

MAIN 

Provides access to the statistical and economic sequential models through menu options. 

Calls subroutines: CALCST, A2NIMGT, A2N2MGT, A2N3MGT, KNOWN, UNKN. 

1 Microsoft Office Professional v. 4.3 (1993), Microsoft Corporation, USA. 

2 Mathcad 4.0 User's Guide Windows Version (1993), Mathsoft, Inc, Cambridge, MA. 
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KNOWN 

Implements the known variance statistical sequential model as described in Section 3.3. 

Accepts inspection information and measurement observations and makes a disposition 

decision based on Wald SPRT theory. Calls subroutines: none. Called from: MAIN. 

UNKN 

Implements the unknown variance statistical sequential model as described in Section 3.4. 

Accepts inspection information and measurement observations and makes a disposition 

decision based on likelihood ratio theory. Calls subroutines: SUMCH, GAMN. Called 

from: MAIN. 

SUM CH 

Evaluates the confluent hypergeometric function (M(a, y ,x) = I: I'(y)I'(a + j!~j) for 
j=O r(a)r(y + J)J! 

the purpose of finding the non-central t-distribution likelihood ratio. Calls subroutines: 

none. Called from: UNKN. 

GAMN 

Evaluates the gamma function for use in the likelihood ratio calculation (unknown 

variance case). Cans subroutines: none. Called from: UNKN. 

3.6 SUMMARY 

The statistical treatment of the problem of homogeneous batch disposition based on a 

single variable characteristic subject to measurement error involves application of 

sequential statistics. The Sequential Probability Ratio Test ( SPRT) requires that 

observations are accumulated until enough evidence is available to reach a decision based 
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on pre-specified risk tolerances, a and fl The decision ratio which is calculated following 

each observation is the likelihood ratio. Economic consequences of the disposition 

decision are not explicitly considered. 

The case of known measurement system variance ( distribution normal) can be treated 

directly with Wald's SPRT for simple hypotheses, previously not applied to the research 

problem. The simple case requires the definition of indifference limits around the 

specification limit. Beyond these indifference limits, decision errors are determined (by the 

insp~ctor or plan designer) to be of practical consequence. Observations are repeated 

until the likelihood ratio falls outside the statistical decision limits. 

When the measurement system variance is unknown (normality assumed), the problem is 

one of composite hypotheses and is termed a sequential t-test. Previous attempts to apply 

simple hypothesis SPRT theory to the case of unknown variance have used tables and 

approximations in order to handle the non-central t-distribution probabilities which 

compose the likelihood ratio. The research solution implements simple hypothesis SPRT 

theory in exact treatment of the problem; the non-central t-probability likelihood ratios 

are calculated directly using a computer solution presented later in this paper. The 

solution treats cases of both upper and lower specification limits. 

Practical implementation of the case of unknown variance requires calculation ofnon

central t-distribution probabilities in order to obtain the likelihood ratio after each 

iteration. These probabilities are complicated and require the Hh function, tabled by Airey 

[1], or the confluent hypergeometric function [56]. As in the simple hypothesis situation, 

the likelihood ratio is tested against statistical decision limits following each observation. 

The unknown variance case is general as to the nature of the specification limit (upper or 

lower). 
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CHAPTER4 

OPERATION OF THE INTERACTIVE COMPUTER ROUTINES 

FOR THE STATISTICAL SOLUTION 

4.1 INTRODUCTION 

This chapter details the operation of the interactive computer program modules which . 

implement the solutions of the known and unknown measurement variance statistical 

problems. The solution methodology is presented in the preceding chapter. The actual 

FORTRAN program containing these modules (composed and executed on an IBM

compatible personal computer using Microsoft FORTRAN version 5.1) appears in 

Appendix A. 

The computer routines are interactive and prompt the user for the required input 

parameters. Sequential batch data is entered as it becomes available via the computer 

keyboard ( code may be easily modified to accept entry directly from a measurement gage 

through a computer input port). Prior to beginning data entry, the operator is asked to 

specify a maximum number of measurement iterations; if a statistical decision is not 

determined prior to reaching this operator-designated maximum, the current log of the 

likelihood ratio is displayed and data entry stops. If this maximum is reached, it is left to 

the user to determine batch disposition. A general rule for making a decision upon 

reaching the maximum number of iterations is provided in references [28] and [59]. This 
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sampling situation, known as the truncated SPRT, is described in Chapter 3. The 

disposition decision recommended by the truncated plan is displayed for the user's 

information. 

Error checks are performed for user-provided input parameters. All input values are 

presented for operator verification prior to beginning execution of the sequential data 

collection. 

4.2 KNOWN MEASUREMENT VARIANCE 

Program Operation 

As with other program modules presented in later chapters, access to the statistical 

routines is provided through a common main menu interface. The main menu appears as 

follows: 

Sequential Testing Program 

Please select one of the following options: 

1 Economic Testing 
* Plan Optimization 
* Expected Cost Calculation 

2 Statistical Testing 
* Known Measurement Error Variance 
* Unknown Measurement Error Variance 

3 Exit Program 

2 
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The user has entered a "2" in order to access the statistical routines. If anything other 

than the valid options of 1-3 is entered in response to the menu, the following message 

appears: 

**** Invalid Entry. Please Reenter. **** 

In response to the selection of the second option from the main menu, the statistical plan 

menu is presented: 

Statistical Testing Plans 

Please select one of the following options: 

1 

1 Known Measurement Error Variance 
Sequential Data Entry and Batch Disposition 

2 Unknown Measurement Error Variance 
Sequential Data Entry and Batch Disposition 

3 Return to Main Menu 

The user entry of" I" begins execution of the known variance routine for statistical 

testing. An invalid entry in response to this menu brings up the error message which was 

previously presented. 

The known measurement variance option of the FORTRAN program begins by requesting 

the iteration maximum. This is the number of individual measurements which the program 

user is willing to make in order to reach a disposition decision ( a decision may be reached 

prior to this maximum). 

What is the maximum number of iterations which 
you wish to make (cannot exceed 50)? 

6 
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The user has entered a "6", indicating that the measurement process should not exceed 6 

iterations. A response that does not fall in the range of 1-50 produces an error message 

and the entry prompt reappears on the screen. This maximum iteration value is utilized to 

set up a DO LOOP for data entry. If a statistical decision is reached prior to reaching the 

maximum, the user is informed of the appropriate batch.disposition and data entry stops. 

The first inspection system parameter which is entered is the measurement error standard 

deviation: 

Enter the standard deviation of the measurement 
error distribution . 

• 5 

The value of the standard deviation may not be less than zero. 

The module next requests the value of the measurement error distribution mean. This is 

often referred to as the measurement bias and follows the following sign convention: if 

the observed reading is greater than the true value by the fixed error mean, the bias is 

positive; if the observed reading is consistently less than the actual value by the amount of 

the bias, it is considered negative. The prompt appears with a reminder of this convention: 

Enter the measurement error bias. 
Sign Convention: If the instrument reads higher 
than the true value, this bias should be positive. 

1. 

The user has entered a value of" 1.". The program routine will subtract this fixed bias 

from each observation entered prior to calculating probabilities for the likelihood ratio. 
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The next three pieces of information specify the inspection system decision limits. In 

addition to the specification limit (upper or lower), the user enters the upper and lower 

indifference limits (previously explained) around the specification limit. Either one of 

these limits may coincide with the actual specification limit, but all three limits cannot be 

the same. An error check is performed to ensure that the indifference limits are 

appropriately located relative to the specification limit. The first prompt is: 

Enter the Specification Limit. 

102 

Because it is the first limit which is entered, the value of the specification is unrestricted. 

The user has entered a value of" 102". In addition to specifying the parameter value, the 

user must also indicate if this specification is an upper or lower limit. The program 

prompt is 

Is this an Upper (1) or Lower (2) Spec? 

Enter 1 or 2. 

1 

The user has entered a "1" for an upper specification. As explained, the indifference limits 

must be located in proper relation to this specification. 

Following entry of the specification, the next prompt appears: 

Enter the Acceptance Indifference Limit. 
(Beyond which acceptance is preferred) 

99 
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In the above example, the user has entered a value of "99". An entered value greater than 

the upper specification produces an error message and a request for reentry. The final 

limit prompt then appears: 

Enter the Rejection Indifference Limit. 
(Beyond which rejection is preferred) 

102 

In this case, an entered value less than the upper specification brings up an error and the 

user is prompted for reentry of all three of the limits ( specification, acceptance indifference 

and rejection indifference). The user has entered "102" (also the upper specification limit) 

indicating an aversion to false acceptance. 

The next items of information required by the program module are the statistical risks of 

incorrect batch disposition which the program user is willing to incur. In coming to a 

decision concerning the conformity of the batch being inspected, the possibility exists for 

two types of error. A Type I error is said to have occurred if the lot is rejected as non-

conforming when it actually is acceptable in regard to the characteristic of interest. The 

acceptable risk level associated with a Type I error is given as alpha (a.). The other error, 

Type II, involves acceptance of the batch when the batch characteristic does not conform 

to the specification. Beta (13) represents the acceptable risk level associated with the 

occurrence of a Type II error. The first prompt given is 

Enter Alpha, Type I Error Probability (0 to 1) . 

. 1 
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An entry value which is out of range brings an error message. The request for Beta 

follows alpha entry: 

Enter Beta, Type II Error Probability (0 to 1) . 

. 01 

Again, an entry that is not within the range O. 0-1. 0 produces an error message and a 

prompt for reentry of the beta level. The relatively low value entered by the user in the 

illustration (". 0 I") indicates that the penalty for a false batch acceptance is more severe 

than that for a false batch rejection. 

Following this last parameter entry, the program values are displayed for review. The user 

is given the opportunity to change any of the parameters, although only one parameter 

may be changed at a time. In the following illustration, the user takes the opportunity to 

modify the acceptance indifference limit. 

1 Error Standard .50 
Deviation= 

2 Upper 102.0 
Specification= 0 

3 Accept 99.00 
Indifference 
Limit= 

4 Reject 102.0 
Indifference 0 
Limit= 

5 Alpha= .10 
6 Beta= .01 

Is the above information correct? 
Enter to accept, or# of parameter to reenter. 

3 

The program then prompts for reentry of the parameter specified by the user: 

Enter Accept Indifference Limit 
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100 

The user has entered "100" as a correction to the previously entered value of the 

acceptance indifference limit. The same error checks which were previously described are 

also performed for any parameter modifications. Following any corrections, the 

parameters are displayed in summary form and corrections may again be made. 

Once all of the parameter information is entered correctly (per the user), data entry begins: 

Enter measurement observation# 1 

102. 

Enter measurement observation# 2 

101.2 

Observation entry continues until a disposition decision is reached or the maximum 

number of iterations expires. After entry of the second observation in the example, above, 

the following message appears: 

Ln of likelihood ratio, -6.4000, less than 
ln of B, -4.4998. 
******** Accept Batch ******** 

In this particular example, an "accept" disposition decision was reached in two iterations. 

A similar message appears with the corresponding lower decision limit (In of A) if the data 

leads to a "reject" decision within the maximum iterations allowed. 

In the event that the user-specified maximum number of iterations is reached without 

leading to an appropriate disposition decision, the following message appears (values 

shown correspond to entry values of 102, 102, 101.9, 102, 101.8, 102.1): 
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Maximum number of iterations reached. 
Log of likelihood ratio= -1.600000 
Acceptance limit= -4.499810 
Rejection Limit= 2.292535 
Wald Truncation Rule calls for Acceptance. 

This is the truncated SPRT decision rule as proposed by Wald [59] and discussed in 

Chapter 3. If the data suggests that the batch should be rejected based on the relative 

location of the log of the likelihood ratio (following maximum observations), a similar 

message appears so-indicating. 

Display of these values with the decision dictated by the Wald truncation rule is intended 

to give the user the relative location of the likelihood ratio for an informed disposition 

decision. However, this message indicates that the program was unable to reach a batch 

disposition decision based on the Waid SPR T theory within the desired number of 

measurement iterations. 

To return to the main menu from the statistical testing menu, the third option ("3 Return 

to Main Menu") is selected. An entry of"3" at the main menu prompt causes termination 

of the entire sequential testing program. 
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4.3 UNKNOWN MEASUREMENT VARIANCE 

Program Operation 

As in the known variance case discussed in section 4.2, the program module for the 

statistical solution case of unknown measurement error variance is accessed from the main 

menu. At the secondary menu, option number "2" is selected by the user: 

Statistical Testing Plans 

Please select one of the following options: 

2 

1 Known Measurement Error Variance 
Sequential Data Entry and Batch Disposition 

2 Unknown Measurement Error Variance 
Sequential Data Entry and Batch Disposition 

3 Return to Main Menu 

This begins execution of the unknownvariance statistical routine. The first input 

requested by this program option is the maximum number of iterations (observations) 

which the program user is willing to make. 

What is the maximum number of iterations which 
you wish to make? (cannot exceed 50) 

4 

In this case, the user has indicated that a disposition decision is desired within four 

iterations. If the number entered is less than two or greater than fifty, the entry is flagged 

as invalid and the user must try again. Unlike the known variance decision method, this 

scenario does not allow a statistical disposition decision with a single trial. 
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The routine then begins a series of prompts which request entry of measurement system 

parameters. The first parameter required is the specification limit: 

Enter the Specification Limit. 

102 

In this example, the user has entered a value of"l02" for the specification. This program 

module does not require that the user distinguish between upper and lower specification 

limits. This is because the solution is general and everything is left in terms of testing a 

null hypothesis against an alternative, regardless of relative location to the specification 

limit. Relation to the specification is indicated by the signs of the respective ratios (mean 

to standard deviation) which constitute the tested hypotheses. The program prompts for 

the null hypothesis ratio: 

Enter the ratio of mean/standard deviation to be 
tested for the null hypothesis. 

0 

The above prompt refers to the ratio 80 as defined in the previous chapter. The value 

entered in the example, "O", indicates that the hypothesized value includes the upper 

specification as the mean. There is no sign restriction on this value; a negative value is 

used for a hypothesized value which is to the left of the specification limit. A similar 

prompt then appears which addresses the mean to standard deviation ratio to be tested for 

the alternative hypothesis: 

Enter the ratio of mean/standard deviation to be 
tested for the alternative hypothesis. 

-1 
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In terms of the theoretical description presented in the previous chapter, the ratio shown 

above is ch. Because the example entry is negative ("-1"), it defines a hypothesized 

position below the specification limit and the previously defined 80. 

Enter Alpha, acceptable Type I error probability, 
associated with a true null hypothesis 
( O to 1) . 

. 1 

Alpha, the type I error probability, is as previously defined and must be between 0.0 and 

1.0. The last parameter entry follows: 

Enter Beta, acceptable Type II error probability, 
associated with a true alternative hypothesis 
( O to 1) . 

. 01 

This is the acceptable Type II error risk. As in the known variance example, the user has 

entered a beta value of".01", indicating a relatively strong aversion to a false batch 

rejection. 

The module next requests the value of the measurement error distribution mean (bias). 

The sign convention described in section 4.2 applies in this case, and is displayed for 

information purposes: 

Enter the measurement error bias. 
Sign Convention: If the instrument reads higher 
than the true value, this bias should be positive. 

0 

The user-entered value of"O" indicates that there is no consistent measurement offset 

which must be accounted for in the inspection system. 
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After all parameters are entered, they are displayed for user review and verification: 

1 Specification Limit= 102. 
00 

2 Null Hyp. Ratio of 0.00 
Mean/Std. Dev.= 

3 Alt. Hyp. Ratio of 
Mean/Std. Dev.= 1. 00 

4 Alpha= .10 
5 Beta= .01 
6 Measurement Bias= 0.00 

Is the above information correct? 
Enter to accept, or # of parameter to reenter. 

By pressing the carriage return (ENTER), the user indicates that all of the information 

displayed is correct. If any of the information is changed, it is subjected to the original 

error checks and all data is, again, displayed for user approval. 

Upon acceptance of all input parameters, data entry begins. Recall that, in the example, 

the user has indicated that no more than four batch measurement iterations are allowed. 

Enter measurement observation# 1 

102.6 

Enter measurement observation# 2 

102.2 

Enter measurement observation# 3 

102.5 

Enter measurement observation# 4 

102.6 
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Observation entry continues until a disposition decision is reached or the maximum 

number of iterations is attained. In the example, a statistical decision is achieved after the 

fourth observation, and appears with the following message: 

Ln of Likelihood ratio, -4.86, less than 
ln of B, -4.50. 
************************************ 
****** Reject Null Hypothesis****** 
************************************ 

In the event that the maximum number of iterations is reached without coming to a 

decision concerning the batch, the statistical information is displayed for the user's 

consideration: 

No decision reached. 
Log of likelihood ratio= 1.397299 
Accept limit= 2.292535 
Reject limit= -4.499810 

The example information shown, above, is consistent with the following sequential data 

entry: 102.6, 100.4, 100.1, 100.4. If the user applies the truncation rule for simple 

hypotheses which was previously presented, the null hypothesis will fail to be rejected. 

To return to the main menu from the statistical testing menu, the third option ("3 Return 

to Main Menu") is selected. An entry of"3" at the main menu prompt causes termination 

of the entire sequential testing program. 
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4.4 SUMMARY 

The interactive FORTRAN program routines for the known variance cases of the 

economic solution proceed in similar manners. Both program solutions are accessed from 

the main menu which manages the statistical and economic solutions. In each statistical 

case, the user provides inspection system parameters and specifies the maximum number 

of measurement iterations which are to be taken. The program then prompts sequentially 

for measurement data. If a statistical disposition decision is not achieved within the user

specified number of iterations, the current decision ratio and decision limits are provided 

for the user's consideration. The Wald SPRT solution, used in the case of known 

measurement system variance, uses a truncated SPRT rule in making a disposition 

recommendation upon reaching the observation maximum. Error checks are performed on 

all input parameters to ensure consistency with theoretical solution constraints .. 

The procedures of the computer program are consistent with the sequential statistical 

solutions as presented in the previous chapter. 
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CHAPTERS 

THEORETICAL DEVELOPMENT 

OF THE ECONOMIC SOLUTION TO THE PROBLEM 

5.1 INTRODUCTION 

The statistical sequential assessment of a batch of known measurement error variance 

subjectively incorporates the consequences involved with the incorrect disposition of 

product. Risks are included in the statistical model through the quantification of alpha and 

beta and through the establishment of a subjective indifference zone for batch assessment. 

All of these parameters, which attempt to quantify the risks involved with incorrect 

dispositions, are strictly subjective as established by the plan designer or inspector. 

Although cost may be a consideration in designating the risk levels associated with the 

statistical case, cost components are implicit and are not required for development and 

solution of the problem. 

The economic sequential assessment of a homogeneous batch of product involves 

objective quantification of the costs associated with the inspection and disposition of the 

product. These costs are explicit and reflect the true risks and cost consequences 

associated with an incorrect batch disposition decision. Predictably, these costs of quality 

are not typically known and may be very difficult to estimate. The economic model 

requires that these costs be assessed and used as the basis for the inspection system 

design. 
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There are two costs to consider when executing an acceptance sampling plan for lot or 

batch disposition. These costs are identified and discussed in a writing by Case and Keats 

[8] on attributes sampling plans. The first cost is that incurred while gathering data by 

which to make a decision. In the case of a sequential plan, this cost may be viewed as an 

iteration cost, involving operator labor, gage depreciation, gage cleaning or resetting, and 

any other actions associated with performing a single measurement of the batch 

characteristic. The second cost is incurred through disposition of the lot or batch, as 

indicated by the sampling plan. In the current problem, only two possible disposition 

decisions are considered: acceptance of the batch and rejection of the batch. 

When subjecting a batch to any acceptance sampling plan, two errors are possible in the 

disposition of a specific batch of product. A Type I error is committed when a 

conforming batch is classified as non-conforming and rejected as unsuitable for use. In the 

specific problem treated in this paper, a Type I error occurs when the true batch value 

does not exceed the upper specification limit, U, and the batch is erroneously rejected. A 

Type II error is committed when a non-conforming batch is classified as conforming and 

accepted for use. Specifically, a Type II error occurs when the true batch value exceeds 

U, and the batch is wrongfully deemed acceptable. 

Both of these errors, Types I and II, have associated costs. Typically, costs incurred 

through the commission of a false acceptance far exceed those associated with a false 

rejection. In the event that a conforming batch of product is rejected (Type I error), the 

cost incurred is only the cost of the batch of product. That is, upon rejection, the batch of 

product is scrapped at current worth and no other costs are incurred. If the process is 

such that the batch of product is reworked, there may also be additional costs added to the 

product prior to being submitted to further testing. In the case of a Type II error and the 

associated acceptance of a non-conforming batch of product, costs are often greater by 

77 



orders of magnitude, but are also very difficult to identify and quantify. Costs to consider 

are those due to loss of customer goodwill, warranties, returns, repairs, lawsuits resulting 

from non-conformities, loss of return customers and, in the extreme case, loss of life due 

to the non-conformity. Non-conformities passed on through the commission of a Type II 

error continue through the manufacturing process and run the ultimate risk of reaching the 

customer if not detected prior to final inspection. 

In assessing the expected total cost associated with a particular sequential inspection plan, 

consideration is given to the history of similar batches which have been inspected prior to 

the current batch. Prior history of batch inspection is incorporated into the economic 

model through Bayesian decision theory methods. Past batch history is used to predict 

batch quality prior to making observations on the current batch. Each measurement 

iteration performed on the batch is used to update the past history and make further 

predictions about the batch conformity to specifications and corresponding expected costs 

associated with erroneous rejection and acceptance. 

The model which is developed assumes that the batch inspector ( or designing engineer) 

perceives a practical limit to the number of measurement iterations which he/she is willing 

to conduct. This is an assumption based on the practical aspects of product inspection and 

the understandable limits of patience and perseverance of a product inspector. In practical 

applications which normally utilize a single measurement observation for purposes of 

homogeneous batch disposition, an upper limit of three iterations seems reasonable and 

realistic. An explicit maximum for the number of observations made is also assumed in the 

statistical solution to the problem and implemented through truncation of the SPRT (see 

Chapter 3). 
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5.2 NOTATION 

In order to facilitate model development, the following notation is defined: 

nmax = the maximum number of iterations that the inspector is willing to conduct on a 

given batch 

Xi = the ith observation/iteration on the batch characteristic, µ ( i ~ nmax ) 

- 1 n 
Xn =average of n observations, - L xi 

n i=l 

U = upper specification, differentiating acceptable and non-conforming product 

L = lower specification, differentiating acceptable and non-conforming product 

Cn,L = the lower cutoff limit for use after n iterations 

Cn,H = the upper cutoff limit for use after n iterations 

Cn = the single cutoff limit for nmax (Cn =Cn L =Cn H) max max max, max , 

S = the cost per iteration for measurement inspection 

A = the cost of accepting a batch which is actually non-conforming 

R = the cost of rejecting a batch which is actually conforming 

µ = unknown value of the batch characteristic of interest 

to= the standard deviation of the prior distribution of batch values 

'ti= the standard deviation of the updated prior distribution of batch values prior to the 

i+ 1 iteration 

80 = the mean of the prior distribution of batch values 

ei = the mean of the updated distribution of batch values prior to the i+ I iteration 

O"me = the standard deviation of the measurement error distribution 

µme= the mean of the measurement error distribution (bias) 

f(µ) = continuous prior distribution of batch values - N(8o,-ra2) 
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l(xilµ) = sampling distribution describing the probability of observing a measurement, Xi, 

given an actual value, µ - N(µ+µme,O'e 2) 

g(x1) = marginal ( or unconditional) distribution describing the probability of observing an 

observation, x1, on the first iteration - N(8o+µme,ta2+cr/) 

g(xnlx1, ... ,Xn-1) = conditional distribution ofxn, describing the probability of drawing an 

observation Xn, given all prior observations on the current batch 

- N(8n-1+µme,tn-I 2+cr/) 

h(µlx1, ... ,xn) = posterior distribution describing the probability of the batch having an 

actual value, µ, given that observations x1 through Xn have been observed -

N(8n,tn2) 

5.3 ECONOMIC MODEL DEVELOPMENT 

Sampling Procedure 

The economic model is based on inspection parameters which dictate the subsequent 

action following a given measurement iteration. At any iteration prior to the designated 

maximum in the sequential measurement procedure, any of three actions may be taken. 

These actions, as described previously in the development of the statistical decision case, 

are: 1) Batch acceptance, 2) Batch rejection and, 3) Continuation of the sequential 

measurement procedure. Whereas the statistical model provides decision limits which are 

based on subjective risk levels defined by the inspector or plan designer, the economic 

model optimizes the plan decision limits based on explicit costs associated with disposition 

decision and prior batch history. The decision limits which are utilized in the economic 

analysis are termed cutoff values as defined in the following discussion. 

The model which is developed is general for the case of a single upper specification limit. 

Extension to the situation of a lower specification follows readily from the upper 
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specification model development; a change in signs for the inequalities when testing the 

observation mean against the appropriate cutoff values represents the only procedural 

change in executing the inspection plan. Practical solution of the lower limit problem is 

easily inferred through symmetry from a complementary upper solution. The computer 

solution which is subsequently presented accepts either an upper or lower limit in 

designing an optimum economic solution to the single specification problem. 

The optimal inspection plan is dependent on the maximum number of measurement 

iterations, nmax, designated by the inspector. If the measurement sequence is carried to 

nmax (implying all previous measurements dictated an additional iteration), a disposition 

decision is required upon the nmaxth iteration. Because a decision will be made based on 

the single iteration, a cutoff value of CO =C O L =C O H is defined as the only max max, max , 

decision limit. At nmax, if 

X >C Dmax Dmax 

then the batch is rejected. Alternatively, if 

X <C Dmax - Dmax 

the batch is accepted. The cutoff value C0 is determined such that the total cost max 

equation is minimized. 

Following any n iterations, prior to nmax, x0 may dictate acceptance, rejection or 

disposition deference through continuation of the iteration process. In this case, two 

cutoff values (Cn,L and Cn,H) are specified, such that, for 

x0 s Cn,L 

the batch is accepted following the nth iteration. If 

Xn > Cn,H 

the batch is rejected following the nth iteration. In the case that 

C·L <x· sC·H I, I I, 
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no disposition decision is made following the nth iteration and the procedure continues 

with an additional iteration (at n+ 1). 

The sampling procedure for any n max ~ 1 in testing against an upper specification limit is 

summarized in Figure 5 .1. Implementation of the logic requires specification of all known 

measurement system parameters and the set of decision cutoff values 

(C1 L,C1 H,···,Cn )to be utilized for batch disposition. , , max 

In the case of a single, lower specification limit, only the directions of the inequalities 

change in testing the observation mean against the cutoff limits for the plan. That is, an 

xi which falls under the lower cutoff limit dictates rejection, rather than acceptance of the 

batch. Acceptance is indicated if the observation mean exceeds the upper cutoff limit. 

For any designated nmax, the total cost of the inspection sequence is a function of several 

variables: 

TC(nmax;µ,xl,···,xn ;C1L,C1H,···,Cn -IL,Cn -IH;Cn ;UorL) max , , max , max , max 

Some of these parameters (nmax and cutoff values) are decision variables under the control 

of the user or designer. Others are random variables (µ;xl,···,xn ) over which the max 

user has no control. As shown in subsequent total cost equation developments, for any 

designated nmax, the total cost equation may be expressed as the sum of (nmax:)*3 terms. 

Impact of Measurement Bias on Plan Design 

The effect of bias on the sampling plan design depends on the nature of the prior 

distribution. It is assumed that all historical data represents actual batch values and all 

82 



Observe xi 

i=i+l 
y 

Accept Batch 

Reject Batch 

Accept Batch 

Figure 5.1. Flowchart of Economic Sequential Sampling Plan, Upper Specification Limit. 

measurement system bias has been removed from the prior distribution of values. Under 

this assumption, compensation for measurement system bias must be made in one of two 

ways: 

I) The cutoff values are chosen based on observations with zero bias and each 

measurement, Xi, is bias-adjusted prior to using the decision system. 

2) The cutoff values are chosen to include the bias adjustment and each observation, 

Xi, is used directly in cutoff comparisons to determine batch disposition. 
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To free the system operator of any extraneous calculations, the second compensation 

method is most desirable. That is, the operator wishes to use the observations directly in 

calculating the mean value for comparison to the applicable cutoffvalue(s). In order to 

build the bias into the decision cutoff limits, it is not necessary to carry the measurement 

error mean completely through the economic optimization and system design. Because 

the bias is a constant offset from the actual value, the system may be designed with zero 

bias, and the measurement error mean simply added to the chosen cutoff limits following 

system design. This is the approach of the theoretical development included in this 

chapter. 

The FORTRAN computer routines which make application of the theoretical 

developments also make bias adjustments following a zero-bias system design. The zero

bias cutoffs are provided as program output in addition to the cutoffs which include the 

bias as provided as input by the operator. By providing the zero-bias system parameters, 

any change in the measurement error offset is easily incorporated into the sampling plan 

design without running the optimization program. The computer code for the FORTRAN 

programs described in this chapter is provided in Appendices A and B. 

Distributional Properties 

It is assumed that the unknown batch characteristic, µ, follows a normal distribution 

according to historical batch information available. In terms of the prior distribution 

parameters, f(µ) is distributed as Normal with mean 80 and variance ii. Additionally, the 

measurement error is assumed to be distributed as Normal with mean µme and variance 

crm/ It follows that the sampling distribution of the first observation onµ, l(x1Iµ), is 

centered at mean (µ+µme) with variance O"me2. In order to evaluate the other distributions 

involved in the sequential sampling plan, the following Bayesian equation is given: 
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J(x1,µ)=l(x1lµ)f(µ)=g(x1)h(µlx1) 

or 

Joint = Sampling x Prior = Marginal x Posterior 
Dist. Dist. Dist. Dist. · Dist. 

To facilitate the distributional development, the measurement error bias is neglected 

(assumed zero). Because each measurement observation is offset from the actual batch 

value by this constant, known value, the bias may be omitted and reintroduced at a later 

stage without loss of model integrity. 

The joint distribution (µme=O) is given as 

l [( )2 ( )2]) 1 . 1 µ-0 X -µ 
J(x1,µ)= exp -- . / + 1 2 . 

21t·O'me'to · 2 'to O'me 

This is a bivariate normal distribution. To find the marginal distribution ofx1, shown 

above as g(x1), first define 
2 2 

1 1 'to +O'me 
p=-2-+ 2 = 2 2 

'to O'me 'to ·O'me 

and complete the squares for the exponential portion of the joint distribution as follows 

[8]: 

=_!_p[µ2- 2(~+ x1 Jµ]+.!.(el + xi2 J 
2 p't2 cr 2 2't2 0 2 0 me O me 
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Therefore, 

{ [ ( J]2} { 2 } 1 1 · 1 80 x1 . (80 - x1) 
J(xi,µ) = exp --p µ-- 2+--2 exp - ( 2 2) . 

21t·CTmeto 2 P to CTme 2 to +crme 

The marginal distribution ofx1, shown above as g(x1), is found by the definition: 

_ OOJ _ 1 { ( 80 - X1)2 } g(x1) - J(x1, µ)dµ - r;;:::: exp - ( 2 2) . 
_ 00 ,; 21tpcr me to 2 to + cr me 

By examination, the marginal distribution ofx1 is N(8o,ta2+crm/). 

The posterior distribution, h(µlx1), is given as 

{ [ ]2} J(x1,µ) p 1 1 80 X1 
h(µjx1) = = IP exp --p µ--[-+ J , 

g( x 1 ) V ~ 2 p to 2 cr m/ 

and is distributed as Normal with mean 

81 =_!_[ 802 + x12J = CTme2 tl 2 2 80 + 2 2 x1 
P to CTme CTme +to CTme +to 

and variance 

Note that all distributions involved in the Bayesian equation are Normally distributed. 

This is because the class of normal priors is a conjugate family for the class of normal 
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densities. That is, because the prior distribution and the measurement error density are 

both normal, the resulting posterior is also normal. 

Subsequent observations onµ (x2, ... , Xn ·, if applicable) yield similar results in terms of max · 

the properties of the conditional and posterior distributions. 

Generally, for any iteration i, the posterior distribution is Normal with mean 
Xi 8i-l 

( J 

. 2 2 --2 +--2 
8 _ I ei-1 Xi _ Orne 8· 'ti-1 . _ Orne 'ti-1 

i - - -2-+ 2 - 2 2 l-1 + 2 2 Xi -
P to Orne Orne +ti-1 . Orne +ti-1 (~+~J 

o me 'ti-1 

and variance 

2 2 
2 I 'ti-1 ° me 1 

'ti =-= 2 2-( J. P Orne +ti-1 I I 

.• om/ + 'ti_/ 

Specific distributional parameters of subsequent iterations are supplied and discussed in 

later sections of this paper. 

5.4 APPLICATION OF THE MODEL 

Dmax=l Development 

For the case ofnmax=I, it is desired to make an economic disposition decision based on a 

single measurement observation. Recall that at nmax, C n L = C n H = C n (in this max, max, max 

case,= C1) is the only cutoff value utilized for the decision. This simple case of a single 

observation may be compared to a fixed sample size of I. If it were desired to fix the 

sample size at a single measurement, the same economic method could be used to set a 
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"sampling specification limit" for decision-making. This decision limit would be identical 

to the maximum economic sequential cutoffvalue, C1. 

The batch is either accepted or rejected based on the single observation x1 and its relation 

to the designated cutoff, C1. For a single upper specification limit, if 

X1 ~ C1 

the process terminates with batch acceptance; if 

XI> C1 

the batch is rejected. The appropriateness of this disposition decision depends on the 

actual value (unknown) of the batch characteristic being examined. The four possible total 

cost outcomes associated with disposition decisions for the nmax = 1 case can be 

described, as follows: 

TC(nmax=l,µ,U,x1,C1) 

=S 

=S 

=S+A 

=S+R 

if X1~C1;µ~U 

(batch appropriately accepted) 

if X1>C1;µ>U 

(batch appropriately rejected) 

if 

(batch erroneously accepted) 

if X1>C1;µ~U 

(batch erroneously rejected). 

All four of these possible outcomes must be considered in the determination of the optimal 

cutoff, Ci, which minimizes the expected total cost of the procedure. Becauseµ is not a 

decision variable and is out of the user's control, it may be expected out of the cost 
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equation. Additionally, U is assumed fixed and is dropped from the variable list. This will 

reduce the four cost outcomes shown, above, to two cost equations, as follows: 

E(TC(nmax=l,xI,CI)) 

= S + AP(µ>U) 

= S +RP(µ::;; U) 

if 

if 

It is also desirable to remove the observation variable, XI, from the expected total cost 

equation. The two possible disposition outcomes can now be combined into an expected 

total cost equation which considers the probable locations ofµ and XI: 

The two probability terms in the expected total cost equation involve the joint probability 

distribution function ofµ and XI. The joint distribution is bivariate normal and was 

previously shown in the Bayesian development of the posterior distribution as J(xI,µ). 

This joint probability term leads to two possible Bayesian approaches for the 

determination of the decision limit, CI. As previously shown in the discussion of Bayesian 

decision theory: 

J(xI,µ)=l(xilµ)f(µ)=g(xI)h(µlxI) 

or 

Joint = Sampling x Prior = Marginal x Posterior 
Dist. Dist. Dist. Dist. Dist. 

The middle product term deals with the prior distribution and the rightmost product term 

involves the posterior distribution. The use of either of the product terms in place of the 

joint probability will lead to the exact same expected total cost. In the first approach, the 
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expected cost of inspection is derived from the product expression which involves the 

prior distribution and may be considered to be a prior cost; the second approach utilizes 

the posterior distribution and determines a posterior cost based on the observation ofx1. 

Dmax=l: Approach 1 (Prior Costing) 

This approach assesses the expected total cost of the sampling sequence based on the 

expected cost prior to observing x1. The expected total cost for the procedure of nmax= 1 

1s given as 

E(TC(nmax = l,C1) = S+AP(µ > U, x1 ~ C1)+RP(µ ~ U,x1 > C1) 
C1 oo oo U 

=S+A J JJ(µ,x1)dµdx1 +R J JJ(µ,x1)dµdx1. 
-ooU C1 -oo 

In this solution, the product of the prior and sampling distributions is substituted for the 

joint distribution in the above equation; 

E(TC(nmax=l,C1)) 
C100 oo U 

=S+A J Jl(x1lµ)f(µ)dµdx1 +R J Jl(x1lµ)f(µ)dµdx1 
-ooU C1 -oo 

- S+A ff~ exp[-_!_(x1 -µ)
2

] ~ exp[-_!_(µ-So)
2

Jdµdx1 
-oo u 21tcr me 2 cr me 21tto 2 to 

+Rn~ exp[-_!_(x1 -µ)
2
]~ exp[-_!_(µ-So)

2
]dµdx1 

C 21tcrme 2 O"me 21tto 2 to 
1 -00 

This is the expected total cost equation to be minimized through optimization of the single 

unknown C 1. The optimal decision cutoff ( appearing only in the integral limits) may be 

found by using a unidimensional search procedure. The FORTRAN optimization program 

which is a product of the research utilizes a step search (on x1) in locating the C1 value 
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which results in minimum expected total cost. Note that the cost equation is expressed as 

the sum of(nmax=1)*3 = 3 terms. 

Dmax=l: Approach 2 (Posterior Costing) 

This solution method examines the expected total posterior cost based on an observed 

value of x1. Recall that this approach makes a substitution for the joint distribution 

function which involves the posterior (updated) distribution of batch values. Again, the 

expected total cost equation may be shown in terms of the joint function: 

E(TC(nmax=l,C1)) 

=S+AP(µ> U,x1 ~C1)+RP(µ~U,x1 >C1) 
C1 oo oo U 

=S+A J JJ(µ,x1)dµdx1 +RJ JJ(µ,x1)dµdx1. 
-ooU C1-oo 

Making the substitution of the product of posterior and marginal distributions gives 

E(TC(nmax=l,C1)) 
Ciao oo U 

=S + A J J h(µlx1)g(x1)dµdx1 + R J J h(µlx1)g(x1)dµdx1 
-ooU C1-oo 
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The posterior parameters 81 and t1 are as given in the development of the posterior 

distribution of batch values. The expected posterior cost equation shown, above, is 

similar in form to the previous equation for expected prior cost. However, the fact that 

only one of the exponential terms shown in the posterior cost involves the unknown actual 

value, µ, provides the opportunity for a more straightforward solution to cost 

minimization. The alternative and more practicable approach is described in the following 

section. 

In assessing the location ofx1 relative to the nmax=l cutoff value, two possible expected 

total costs are considered: 

E(TC(nmax= I ,xi, C 1)) 

= S+AP(µ> U) 

= S+RP(µ::;;U) 

if 

if 

Note that the first expected cost is incurred when x1 dictates batch acceptance and the 

second expected cost is a consequence of batch rejection. When dealing with the 

posterior cost of sampling, these two cost consequences may be rewritten as 

Acceptance Cost = S + AP(µ > Vix 1 ) 

Rejection Cost = S + RP(µ ::;; Vix 1 ) 

if 

if 

x1 ::;; C1, and 

x1 > Ci. 

It is logical to assume that, when x1=C1, there is a disposition indifference as to 

acceptance and rejection. When considering the equality condition as a point of 

indifference, it is appropriate to set the acceptance and rejection costs equal and solve for 

the conditional probability, P(µ > Ulx1). 
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Acceptance Cost= Rejection Cost 

AP(µ > Ulx1) = RP(µ ~ Ulx1) 

AP(µ> UJx1) = R(l-P(µ > UJx1)) 

AP(µ > UJx1) = R-RP(µ > UJx1) 
- R 

P(µ > UJx1) = -
R + A 

This cost ratio represents the point of indifference for the accept/reject decision. The 

sampling procedure dictates batch acceptance when 

R 
P(µ > UJx1) ~ -

R + A 

and rejection if this condition is not met. The x1 value at which the inequality just holds 

represents the optimal value of C 1 which minimizes the expected total cost of the single 

measurement iteration procedure. This value of C 1 may be found through a 

unidimensional search procedure. 

The probability P(µ > UJx1) is found by integration of the posterior distribution, h(µJx1). 

As previously shown, the posterior distribution is distributed as Normal with mean 81 and 

variance ti2. Explicitly, 
00 

P(µ > UJx1) = Jh(µlx1)dµ. 
u 

The optimal value ofC1 is found through solution of this integral for values ofC1=x1, 

searching for the cutoff value which yields a probability of meeting the cost ratio condition 

as described. Specifically, 

P(µ>Ulx1)- j ~ exp[-_!_(µ-S 1)
2}µ, 

U 21tt1 2 t1 

and with the substitution of C 1 for the first observation, the equation may be written 
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2 

µ. 

The search for optimal C1 continues until this probability falls just short of the cost ratio, 

R/(A+R). 

Modification of the Model for Lower Specification 

As noted, the only inspection procedural difference when dealing with a lower limit 

involves a change in inequality direction when assessing the observation mean relative to 

the appropriate cutoff value. Modifying the expected total cost equation to reflect a lower 

limit involves only the limits of the integrals ofµ and Xi, indicating a change in criteria in 

assessing the conformity of the batch and the proximity of the observation mean relative to 

the cutoff, Ci,L or Ci,H· In explanation, the model for nmax=l in the case of a lower 

specification limit is given as 

Assessing this expected total cost by both prior and posterior costing approaches requires 

only a change in integral limits for the upper specification equations presented in the 

previous section. Specifically, the prior costing equation becomes 

E(TC(nmax=l,C1)) 
oo L C1 oo 

=S + A f f l(x1lµ)f(µ)dµdx1 +Rf f l(x1lµ)f(µ)dµdx1 
C 1 -oo -oo L 
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- S+A n ~ exp[-_!_(xi -µ)
2

] ~ exp[-_!_(µ-So)
2
]dµdx1 

C 21tome 2 Orne 21tt0 2 to 
1-00 

C1 
00 

1 [ 1 ( )
2

] 1 [ 1 ( 9 )
2

] + R J J .Jiro exp -- xi-µ Jfrr, exp -- µ- 0 dµdx1. 
_ 00 L 21tome 2 Orne 21tto 2 to 

Note that the distributions involved are exactly the same as those presented in the upper 

limit case. Similarly, the posterior costing approach is given as 

E(TC(nmax=l,C1)) 
oo L C1 oo 

=S+A J Jh(µlx1)g(x1)dµdx1 +R J Jh(µlx1)g(x1)dµdx1 
C1 -oo -ooL 

For nniax> 1, modifications for the lower specification case follow logically from the 

nmax= 1 situation. 

Dmax=2 Development 

The case for nmax=2 ( and, indeed, for any nniax> 1) builds upon the development presented 

for nmax= 1. As was indicated, the expected total cost term is logically expressed as the 

sum of (nmax=2)*3 = 6 terms. The cost components for the nmax=l procedure which 

involve the single C1 value now require either C1,1 or C1,H as a decision limit at iteration 
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n=l. The region between C1,L and C1,H defines the continuation interval which dictates 

observation of the second measurement. If the second observation is made, the single 

limit Cn = C2 provides the disposition decision limit for comparison with the average max 

ofx1 and x2, designated x2 . If x2 > C2, the batch is rejected; otherwise, the batch is 

accepted. 

As in the development ofnmax=l, it is informative to show the possible cost consequences 

of the sequential measurement process for nmax:=2: 

TC(nmax=2,µ,U,x1,x2,C1,L,C1,H,C2) 

= s if 

=S 

=S+S if 

=S+S if 

=S+A if 

=S+R if 

= S+S+A if 

= S+S+R if 

(batch appropriately accepted on n= 1) 

if 

(batch appropriately rejected on n=l) 

C1L <x1 ::;;C1H;x2 ::;;C2;µ::;;U 
' ' 

(batch appropriately accepted on n=2) 

C1L <x1 ::;;C1H;x2 >C2;µ> U 
' ' 

(batch appropriately rejected on n=2) 

x1::;;C1L;µ>U 
' 

(batch erroneously accepted on n= 1) 

X1 >C1H;µ::;;U 
' 

(batch erroneously rejected on n= 1) 

C1L <x1 ::;;C1H;x2 ::;;C2;µ> U 
' ' 

(batch erroneously accepted on n=2) 

C1L <x1 ::;;C1H;x2 >C2;µ::;;u 
' ' 

(batch erroneously rejected on n=2) 
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By combining terms, as before, the costs may be consolidated into a comprehensive 

equation for the expected total cost of the nmax=2 procedure: 

E(TC(nmax=2,C1,1,C1,H,C2)) 

=S+AP(µ> U;x1 ::;;C1L)+RP(µ::;;U;x1 >C1H) , , 

The expected total cost equation is logically given in terms of six cost components (two 

each of iteration, false acceptance and false rejection). 

If the outcome of observation x1 dictates a second iteration onµ, the posterior distribution 

ofµ given x1 becomes the prior distribution for x2. The Bayesian decision theory 

relationship which was previously specified for the case of nmax= 1 may be modified to 

reflect this situation, as shown below. Note that both sides of the Bayesian equation must 

be multiplied by the marginal distribution ofx1 to·inaintain the integrity of the 

relationships. 

As before, the nmax=2 situation may be solved through Approach 1 (prior costs) or 

Approach 2 (posterior costs). Examination of the prior and posterior equivalents of the 

joint distribution ofx1, x2 andµ indicates that the solution will involve triple integrals. 

The posterior approach (2) provides the more straightforward solution, as explained in a 

subsequent section of this paper. 
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Dmax=2: Approach 1 (Prior Costing) 

Solution of the nmax=2 problemusing the prior costing approach requires a multivariate 

search for the three required disposition cutoff values (C1,1, C1,H and C2). 

Substitutions for the joint distributions in the expected total cost equation are made from 

the left side of the Bayesian decision theory equation, as presented. Note that the second 

and third terms in the total cost equation involve only the joint distribution between µ and 

x1. These terms are very similar to the terms involving the single cutoff, Ci, found in the 

expected cost for the case ofnmax=l. The only difference in these costs at n=2 associated 

with incorrect disposition on the first iteration is in the existence of the interval between 

C 1,L and C 1,H which allows for the possibility of continuation of the measurement 

procedure. Restating the cost equation using the prior equations yields 

E(TC(nmax=2,C1,L,C1,H,C2)) 

= S+AP(µ > U;x1 ~ C1L)+RP(µ ~ U;x1 > C1H) ' , 

Cuoo oo U 

=S + A J JJ(µ,x1)dµdx1 + R J JJ(µ,x1)dµdx1 
-oo U C1 H -oo , 

C1H 

+S J g(x1)dx1 

C1L , 
C1,H 2C2 -x1 oo 

+A J J JJ(µ,xi,x2)dµdx2dx1 
C1,L -oo U 

C1 H oo U 

+R J J JJ(µ,x1,x2)dµdx2dx1 
C1,L 2C2-X1 -<Xl 
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In the prior costing approach, substitution for the joint distribution is made from the left 

side of the Bayesian decision relationships which were previously presented. 

E(TC( nmax=2, C 1,1, C l,H, C2)) 
~~00 00 U 

. = S + A J Jl(x1lµ)f(µ)dµdx1 + R J Jl(x1lµ)f(µ)dµdx1 
-oo U C1 H-oo 

' 
C1H 

+S J g(x1)dx1 

C11 , 

C1,H2C2-x1 oo 

+ A J J Jl(x2lµ,x1)h(µlx 1)g(x1)dµdx2dx1 

C1,1 -oo U 

C1H oo U 

+ R J J Jl(x2lµ,x1)h(µlx1)g(x1)dµdx2dx1 
C1,1 2C2 -x1 -oo 

Substituting the normal distributional parameters puts the.expected total cost equation in a 

form suitable for minimization. 
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+A f, f f 1 1 X2 - µ 1 1 µ-8 1 C1H2C2-x100 [ ( J21 [ ( J21 exp -- exp -- x 
C1,L -oo U.f'iii.crme 2 CTme .f'iii.t1 2 t1 

An apparent problem is presented in that the value of the first observation, x1, is imbedded 

within the prior distributional mean for µ, specified as 81. This implies that an optimal C2 

is dependent on the observed x1 and must be found for every possible x1 in the interval 

CI,L to C1,H- However, search for the C2 value which minimizes the equation for any 

observation, XI, yields a single value for the C2 cutoff Development of a method to 

locate the single optimal C2 is shown in the next section for posterior costing (Approach 

2). Existence of the single optimal C2 cutoff implies that the total cost equation is 

reducible to a form which does not indicate an XI dependence. However, this 

simplification is not provided in this paper and is unavailable in the literature. 

Utilizing the knowledge that there exists a single optimum for C2, it is possible to execute 

a multivariate search to minimize the expected total cost equation for all three required 

cutoff values (CI,L, CI,H and C2). 

Dmax=2: Approach 2 (Posterior Costing) 

In the posterior costing approach, the components of the total cost equation present, as in 

approach 1, triple integrals which are required for cost minimization and parameter 
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optimization. However, the use of the cost ratio R/(R+A) allows a shortcut for searching 

for the cutoff values involved in the nmax=2 sequential procedure. This method (which 

may be used for the location of any Cn ) is presented in this section in lieu of a more max 

complicated method requiring simultaneous search for the three cutoff values Ci,L, Ci,H 

and C2. 

The expected total cost of the procedure after reaching the second iteration can be 

expressed in terms of the location of x2 relative to the C2 cutoff Associated costs 

( conditional on reaching n=2) are identified as either acceptance or rejection costs: 

Acceptance Cost = S + AP(µ> Ulx1,x2) 

Rejection Cost = S + RP(µ s Ulx1,x2) 

if 

if 

x2 s C2, and 

x2 > C2. 

As in the case ofnmax=l, when x2 =C2, there is an assumed indifference as to the 

disposition of the batch. This economic indifference point is located by equating the 

acceptance and rejection costs as follows: 

Acceptance Cost = Rejection Cost 

AP(µ > U1x1,x2) = RP(µ s Ulx1,x2) 

AP(µ> Ulx1,x2) = R(l-P(µ > Ulx1,x2)) 

AP(µ> Ulx1,x2) = R-RP(µ > Ulx1,x2) 
R 

P(µ > Ulx1,x2) = --
A+ R 

This economic indifference point is identical to that found for the case of nmax= 1; indeed, 

the cost ratio R/(R+A) holds for any nmax-
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This cost ratio represents the point of indifference for the accept/reject decision. The 

sampling procedure dictates batch acceptance when 
R 

P(µ > Ulx1,x2) ::; --
A+ R 

and rejection if this condition is not met. The x2 (average ofx1 and x2) value at which 

the inequality just holds represents the optimal value of C2 which minimizes the expected 

total cost of the measurement iteration procedure given that it has reached the second 

observation. This value of C2 may be found through a unidimensional search procedure. 

The probability P(µ > U1x1,x2) is found by integration of the posterior distribution, 

h(µlx1,x2). This posterior distribution ofµ is distributed as Normal with mean 82 and 

variance -cl. Explicitly, 
00 

P(µ > Ulx1,x2) = f h(µJx1,x2)dµ. 
u 

The optimal value of C2 is found through solution of this integral for values of x 2 =C2, 

searching for the cutoff value which yields a probability meeting the cost ratio condition as 

described. Because the posterior distribution parameter, 82, is given in terms ofx1 and x2, 

the indifference point is actually expressed as the point at which x2=2C2-x1. Specifically, 

P(µ > Ulx1,xi)- J ~ exp[-_!_(µ- 82)
2

] dµ, 
U 21tt2 2 t2 

where 

x2 81 --+-2 2 
8 _ O'me t1 

2 - ' 

( 0 ~2 + t:2J 

Xl 80 --+--
2 2 

81 = (crme to J, 
a:. 2 + t:2 
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and 

At the point of interest, x2=2C2-xI, and the posterior mean, 82 is given as 

Making this substitution eliminates x2 from the probability and leaves the integral in terms 

of the single observation, XI. With the probability integral in this form, the entire 

expression is simplified and XI drops out of the expression. The reduced form is given as: 

The optimum value of C2 is found through unidimensional search of this integral 

expression until the probability value falls just short of the economic indifference ratio, 

R/(R+A). 

With this optimal C2 value in-hand, the cutoff decision values, CI,1 and CI,H are found 

through an appropriate multivariate search procedure utilizing the full expected total cost 

equation. This equation is obtained by substituting the posterior product term presented 

in the Bayesian relationship for the joint distribution ofµ, XI and x2. The required terms 

are found on the right side of the Bayesian decision theory relationship. 
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E(TC(nmax=2, C 1,1, CI ,H, C2)) 

C1,L oo oo U 

= S + A J fh(µjx1)g(x1)dµdx1 + R J J h(µjx1)g(x1)dµdx1 
-oo U C1 H -oo 

' 
C1H 

+S J g(x1)dx1 

C1L 
' 

C1,H2C2-x1 oo 

+ A J J J h(µlx1, x2)g(x2)g(x1)dµdx2dx1 
C1,L -oo U 

C1 H oo U 

+ R J J J h(µjx1,x2)g(x2)g(x1)dµdx2dx1 
C1,L 2C2-x1 -oo 

Substitution of the appropriate Normal distribution parameters leaves this cost equation in 

the form required for minimization and optimal parameter search, 

E(TC(nmax=2,C1,1,C1,H,C2)) 

=S 

C1,L 00 
[. ( )2] . ( ]

2 J J 1 1 µ - e1 1 1 x 1 - 90 
+A exp -- -.======exp -- dµdx1 

-oo u.fiir.'to 2 ame ~21t('to2 +am/) 2 ~('to2 +am/) 
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The optimal value of C2 (known from the economic indifference point) is substituted in 

this equation and a multivariate search procedure is used to locate C1,L and C1,tt. The 

search procedure used in the research optimization program is that proposed by Nelder 

and Mead [40]. 

General nmax>2 Development 

For any incremental increase in nmax, three cost components are added to the expected 

total cost model of nmax-1: one each for sampling, false acceptance and false rejection. 

All cost components which are found in the model of nmax-1 are retained, with the 

substitution of Cn L for Cn -1 in the false acceptance component involving the max, max 

single cutoff value and Cn H for Cn _ 1 in the corresponding false rejection max, max 

component. 
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Dmax>2: Approach 1 (Prior Costing) 

The additional sampling component gives the probability that the observation at nmax-1 

will fall between Cn L and Cn H, requiring an observation at nmax· It may be max, max, 

expressed as 

C1,H 2C2,H -x1 

s J J ..... . 
C1,L 2C2,L -x1 

Dmax-2 
(nmax -l)Cnmax -1,H - L Xi 

i=l 

J g(xnmax-1) ... g(x2 )g(x1)dxnmax -1··· dx2dx1 
Dmax-2 

(Dmax-l)Cnmax-1,L- LXi 
i=l 

Recall that all relevant distributions are distributed as normal. In this component, any 

marginal, g(xn), is normal with mean Sn-1 and variance {tn-i2+crme2>. 

The other two terms express the probable cost of making a wrong disposition decision 

based upon the culmination of all observed values through nmax-1. The expected cost of 

false acceptance is given as 

C1 H2C2 H-X1 

A J ·s 
C1 L 2C2 ,L-x1 

' 

nmax-1 
(Dmax)Cnmax - LXi 

i=l 00 

J J l(xn lµ,xl,···,Xn _1) x . max max 
-00 u 

f(µlx1,···,Xn -1)g(xn -1) ... g(x2)g(x1)dµdxn -l···dx2dx1 max max max 

and the expected cost of false rejection is written 

00 U 

J Jl(xnmaxlµ,xl,···,Xnmax-1) x 
Dmax-1-oo 

(nmax)Cnmax - L Xi 
i=l 
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The sampling distribution l(xnmaxjµ,x1, ... ,Xnmax-1) is distributed normal(µ,crm/). Note 

that previous observations on µ do not affect the fact that the actual batch value is µ. The 

function shown as f(µlx1,···,xn -1), is in the notation of a prior distribution, but is also max 

the posterior h(µlx1,···,xn -2 ). It is distributed as normal with mean Sn _1 and max max 
. 2 

vanance "C nmax _ 1 . 

Optimization of all cutoff values ((C1,L, C1,H), ... , Cnmax) is achieved through a 

multivariate search [40] for the minimum expected total cost. 

Dmax>2: Approach 2 (Posterior Costing) 

As in the specific application examples shown for nmax=l and 2, the posterior costing 

approach is easier to utilize than the prior approach due to the ability to locate Cn max 

(independent of other variables) through a unidimensional search. The economic 

indifference ratio, R/(R+A) is calculated and compared with the posterior probability 

P(µ > Ulx1, ... ,xn ) for various values of Xn = Cn . This probability is given as max max max 
00 

P(µ > qxl,···,Xnmax) = f h(µlx1,···,XnmmJdµ. 
u 

The posterior distribution h(µlx1,···,Xn ) is distributed as normal with mean Sn max max 

and variance 'tn 2 . Specifically, max 

oo [ ( S J2
} 

_ 1 1 µ- nmax 
P(µ>Ulx1, ... ,Xn )-f.fin: exp-- . µ. 

max 27t"C 2 "C 
U nmax nmax 

The search for the point at which this probability falls just short of the cost ratio actually 
nmax-1 

involves substitution of Xn = (nmax)Cn - """'xi (rather than a direct substitution max max L.J 
i=l 
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of Xn = Cn ). After substitution is made for Xn , the integrand is reducible to a 
max max max 

term which is independent of all observations on µ. 

Location of Cn through this unidimensional approach simply reduces the scope of the 
max 

subsequent multivariate search. All remaining optimal cutoff values must be found 

through minimization of the expected total cost equation. 

As indicated in the discussion of the prior costing approach, the expected total cost model 

for any nmax simply builds on the cost components from the (nmax-1 model). The terms 

which involved the single cutoff value Cn -1 are modified through substitution of 
max 

Cn -1 L (false acceptance term) and Cn -1 H (false rejection term) for the single max , max , 

value. An additional three terms are then appended to the expected total cost equation to 

reflect iteration, false acceptance and false rejection costs associated with the additional 

measurement observation. 

The additional sampling cost term is identical to the term in the prior costing approach; 

this iteration cost reflects the probability that an additional measurement observation ( at 

nmax) will be required. It is given as 

Again, any marginal, g(xn), is normal with mean 0n-l and variance (tn-i2+crme\ 

The posterior expected cost of false acceptance is given as 
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nmax-1 
(Dmax)Cnmax - LXi 

i=I oo 

J J h(µlx1,···,xn )g(xn ) ... · max max 
-00 u 

and the expected cost of false rejection is written 

00 U 
J Jh(µlx1, .. ,,Xnmax)g(xnmax) ... 

nmax-1-ao 
(nmax)Cnmax - LXi 

i=I 

The posterior distribution h(µlx1, ... ,Xn ) is distributed as normal(Sn , tn 2 ), max max max 

and the marginal, g(x0 ), is also normal with mean Sn-I and variance (t0 _/+crme\ 

5.5 COMPUTER OPTIMIZATION OF THE ECONOMIC MODEL 

Computer solution of the economic problem is, of course, possible through a variety of 

computer languages, logic flows and search procedures. The FORTRAN programs which 

are presented in the Appendices are but examples of many possible solution approaches. 

The computer program from which research results are generated is presented in 

Appendix A. This comprehensive FORTRAN program uses the posterior costing 

approach in solution of the economic problem; it also contains logic which allows the user 

to model the problem statistically, as presented in chapters Three and Four. Appendix B 

provides the code for the prior costing solutions for nmax=l and 2. The code of Appendix 

B is provided for the user's information and is not used to generate any of the results 

presented in subsequent sections of this paper. 
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The search procedure which is used in all parameter optimizations is that developed by 

Nelder and Mead [ 40] and discussed by Olsson [ 42]. As previously indicated in this 

chapter, compensation for measurement system bias is made following a zero-bias 

sampling plan design. Cutoff values for the optimal economic sampling plan with and 

without bias are presented as output from the programs (see next chapter). 

The general logic for the FORTRAN solutions presented as a piece of this research is 

provided in this section. As indicated in previous discussions, each incremental increase in 

nmax builds on the economic model of nmax-1. The programming methods for each of the 

Bayesian costing approaches (prior and posterior) are discussed in the following sections 

of this paper. 

The programming logic which is presented is general for the case of a single upper 

specification limit. However, because the lower limit expected total cost equations differ 

from the upper only in the limits of the integrals, the practical solution of the lower limit 

case can actually be performed using the upper specification logic. The FORTRAN code 

which is discussed and is presented in Appendix A (posterior economic costing) utilizes 

upper specification equations in solving both the upper and lower limit cases. This is 

accomplished by utilizing the logical symmetry of the solution procedure around the 

specification limit. That is, the optimal cutoffs for an upper specification limit, U, and a 

prior distribution mean, 80 ( a distance, -~, from U), are easily translated into the optimal 

cutoffs for a lower limit, L (=U), and a prior distribution mean+~ from L. These cutoffs 

are simply translated symmetrically around the specification limit, modifying lower cutoff 

limits into higher cutoffs as logically required. 

Practically, an input lower limit to the computer program is treated as an upper limit with 

a modified, symmetrical 80 around the specification, and the resulting optimal cutoffs are 
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translated into lower limit cutoffs through symmetry around the limit prior to presentation 

to the program user. Given this simple solution to the lower limit problem, the following 

programming solution addresses only the upper specification case. As indicated in the 

following chapter, solutions for both upper and lower limits are provided through the 

FORTRAN program. 

Approach 1 (Prior Costing) 

The prior costing approach, as presented, requires a multivariate search in all but the basic 

(nmax=l with a single cutoff value, C1) case. For each incremental increase in nmax, two 

additional variables are added to the expected total cost equation. In general, the number 

of search variables for the prior costing methodology is given by [ (nmax-1 )*2 + I]. 

At the heart of the prior costing equation to be minimized is the bivariate normal 

distribution given by the product of the prior and sampling distributions. This function is 

not cost dependent and is uniquely determined by the prior distribution, the measurement 

error distribution variance and the upper specification limit. On the first observation 

( regardless of nmax), this function is within a double integral and is used to find the 

probabilities of false acceptance and rejection on n= I: 

1 1 x1 - µ 1 1 µ-0o [ ( )2] [ ( )2] exp -- exp -- dµdx1 ff F2ncrme 2 crme J2xT.o 2 T.o · 

The limits of the integrals depend on the cost term under consideration (false acceptance 

or false rejection). Using Mathcad 4.01 , µ is integrated out of the function, appropriate 

limits are substituted, and the expression reduces to a single integral over x1. The reduced 

1 Mathcad 4.0 User's Guide Windows Version (1993), Mathsoft, Inc, Cambridge, MA. 
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expression is a conditional probability of false disposition given the actual location ofµ 

relative to U. The conditional probability of false rejection is given as 

B 2 2 92 2 2 J -.19947 erf .70711 -Uto - Ucrme + O 0 me +x1to 

C1,H [ O'me( toJto2 +crme 2) J 

exp[-.5 (x1 -eo)2 ] 
t2+0' 2 0 me 

-1 dx1 
~t 2+0' 2 0 me 

and the corresponding probability of false acceptance if the batch is non-conforming is 

[ . l [ (x1 -00)
2 

] exp -5~-~-
Ci,L 2 2 2 2 2 . 't 2 + cr 2 J -.19947 erf .70711 -U-ro - Ucrme +0o crme + x1-ro -1 o me dx 

A [crme(-ro~-ro2 +crme2)] ~-ra2+crme2 1 

Note that both of these false disposition expressions are general for n=l, regardless of 

nmax (for nmax=l, C1,L = C1,H= C1). The error function erlt) in the above equations is 

defined as: 

2 V 

erf(v)= r=Jexp[-t2 ]dt. 
"V 1C 0 

The FORTRAN subroutine which solves this expression is taken from Stegun and Zucker 

[55]. 

In addition to the two costs of false disposition on the first observation, there is also the 

sampling component, S. The probability of incurring this iteration cost on the first 

observation is 1.0. 
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In order to optimize the n=l cutoff variables, the conditional probability curves are 

considered. These are simply the bivariate normal probability function (ofx1 andµ) 

conditioned over ranges ofµ from U to +/- infinity. The probabilities of observing a given 

x1 are considered for (µ>U) and (µ:s;U). ff these two curves overlap, then a search for 

C 1,1 and Cl ,H ( =C 1 for nmax= 1) is required to find the economic optimal tradeoff point. If 

the two curves do not intersect, there is an interval wherein both functions are essentially 

zero, and any cutoff chosen in that region yields a minimum expected cost for n= 1 

(involving only the sampling cost, S). The points at which the functions approach zero are 

located through a step search and compared. 

The zero points for x1 located for each conditional probability plot may be considered as 

the infinity limits ( +/-) for integration. In the code provided, these are identified as the A 

and B limits of integration. "A" is the lower limit for the probability of observing x1 given 

µ>U, while "B" is the upper limit for the probability of observing x1 ifµ :s; U. An 

illustration of the nmax= 1 situation in which the probability plots overlap is shown in 

Figure 5.2. 

~ 
Cl 
C 
·~ (µ<=U) 

I 
.Cl 
0 
it" 

Figure 5.2 Example Curves for Conditional Probabilities of Observing 
x1. 
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Location of the x1 values for which the probability plots first approach zero is critical to 

operation of the FORTRAN routines provided, since actual solution of these probabilities 

is accomplished through ten-point Gaussian quadrature as described by Press, et al. [47]. 

Because the Nelder and Mead search routine may generate cutoff values outside of the 

practical limits A and B, a check is provided to kick any such values back and generate 

new ones within range. 

The logic flow for the prior costing solution when nmax=l is shown in Figure 5.3. This 

flowchart tracks the FORTRAN computer solution which is given in Appendix B. The 

programming logic for the Nelder and Mead subroutine is omitted from this discussion. 

Interested readers should see references [40] and [42]. 

When the tolerable nmax is increased from one to two, an additional cutoff value enters 

into the expected cost equation. Recall that the incremental step in nmax introduces an 

additional three terms into the cost equation ( one each for sampling, false acceptance and 

false rejection). The false disposition probabilities for n=2 (regardless of nmax) require 

triple integrals since they must now also reflect the probability of requiring the second 

trial. Note, that in subsequent iterations, the acceptance and rejection terms closely 

resemble the base case of n= 1. That is, the core function is bivariate normal, with the 

parameters of the sampling and prior sampling distributions changing to reflect the 

iteration number and previous observation information, respectively. 

The probability that the second sampling cost is incurred is simply the probability that the 

first observation falls within the continuation interval (C1,1 to C1,H). 
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Figure 5.3 

N 

Accept parameters 
(U,~e,O"me, 'to,80,A,R,S) 

Find integration limits (A 
B) for conditional false 
disposition functions. 

(A+B)/2 is starting C1 

Nelder-Mead generates 
C1 

Find Conditional Probs 
through 10 point Gaussia 
Quadrature 

Calculate Expected total 
cost for C1 

Adjust Cutoff for bias 

(A+B)/2 is optimum C1 

STOP 

N 

STOP 

FORTRAN Flowchart for nmax=l, Prior Costing. 
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Sampling: 

The false disposition probabilities are in the form given, below. 

Again, the limits of the second and third integral ( over µ and x2) depend on the specific 

disposition probability being considered. Because the marginal distribution on x1 does not 

involve µ or x2, it may treated separately. By doing so, the inner bivariate normal 

distribution (involving µ and x2) may be reduced by integration over µ as in the n= I case, 

and the double integral expression reduces to a single integral over x2. The reduced 

expression is a conditional probability of false disposition on the second iteration given the 

actual location ofµ relative to U. 

The probability of false rejection on n=2 when the batch is conforming is given as 

-1 X 

and the corresponding probability of false acceptance for a non-conforming batch is 
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~ dx2. . 2 2 
t1 +crme 

For the sake of further development, the cutoff values associated with the second iteration 

are left in the general notation of C2,L and C2,H (rather than C2 for nmax=2). Note that 

these two conditional probabilities are in the exact same form as those previously shown 

for n=l and may be solved through the same FORTRAN subroutine calls. However, the 

fact that the expressions involve a specific x1 value (and they must be integrated over the 

x1 continuation interval) appears to present a problem. 

By making use of information obtained through the second solution approach (posterior 

costing) the problem is greatly simplified. As shown in the theoretical development 

section for the second approach, the probable location ofx2 is actually independent ofx1. 

This means that the values of the C2 cutoffs are not dependent on the first observation, as 

is implied by the probability expressions; a single, optimal pair of ( C2,L, C2,H) values ( =C2 

for nmax=2) exists which optimize the expected total cost equation. 

The additional, outer integration over x1 presents an additional challenge. For the purpose 

of this research, a brute-force integration which simply steps through the (C1,1,C1,H) 

interval and uses a midpoint approximation is used to accomplish the outer leg of the 

double integral. The programming logic for the prior costing approach to the nmax=2 

problem is shown in Figure 5. 4. 
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Figure 5.4 

Accept parameters (U, 

J.l.me,crme, 'to,80,A,R,S) 

Find integration limits (A, B) 
for false disposition functions 
(n=l). 

Starting Values:CI,L = A, 

CI.H=B, C2=(A+B)/2 

Nelder-Mead generates 
Cutoffs 

Find n= I Conditional Probs by 
Quadrature 

Find n=2 Conditional Probs for 
~----x1 through 10 point Quadrature 

Increment XI 

N 

Approx. integral for this and 

last XI 

dge adjustment; find expected 
otal cost. 

Adjust Cutoffs for bias 

Y (A+B)/2 is opt. C1 

STOP 

N 

STOP 

FORTRAN Flowchart for nmax:=2, Prior Costing. 
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The limit checks which are performed also involve the integration limits on x2, (2C2 ± x1). 

Because finite values (A, B) are used as substitutes for ± infinity for practical solution of 

the problem, it is possible that the limits involving C2 may overstep these bounds. In order 

to avoid negative probabilities being generated by the quadrature subroutine, limit checks 

are performed prior to making the routine call. 

Further increases in nmax compound very similarly to the n= 1 and n=2 cases. That is, 

additional cost components (S, A and R) are introduced which reflect the probabilities of 

requiring the additional iteration(s). The core bivariate normal function is modified to 

reflect updated parameters, but continues to be solved through quadrature. However, the 

probability which is solved through quadrature involves early observations which are 

imbedded within the conditional functions. If the method used for nmax=2 is carried 

forward, this will require additional integration loops for early observations. Again, the 

knowledge gained from the posterior approach concerning independence of 

future and early observations allows the specification of all cutoff values prior to finding 

the expected total cost. That is, in the nmax=3 case, all five cutoffs (C1,L, C1,H, C2,1, C2,H, 

C3) may be hypothesized prior to beginning the optimization search (rather than making a 

higher level cutoff dependent on early observations). 

Approach 2 (Posterior Costing) 

Due to the shortcut available for locating Cn provided by the economic indifference 
max 

ratio, the posterior costing approach provides an advantage over the prior approach. The 

ability to locate Cn through a unidimensional search reduces the number of cutoff max 

values which must be located through multivariate means. This reduces the runtime for 

the optimization computer program for a given nmax. For this reason, the posterior 

costing approach is utilized in the program of Appendi~ A.to generate the research results. 
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In general, the number of search variables which must be found through the multivariate 

routine for the posterior costing methodology is given by [(nmax-1)*2]. 

For any Cn , the economic indifference point may be expressed as: max 

P(µ > Ulxn = Cn ) = max max 

Ilmax-1 2 

(n )C - '°'x· max Ilmax ~ I 8 
_______ 1_=0_+ Ilmax-1 

2 
O"me tnmax-1 µ - ----,-------~------"'=-

[ 1 1 J --2+ 2 
00 1 1 O"me tn -1 f exp -- _________ m_a_x ____ _ 

U 5.tnmax 2 tnmax 
µ, 

where xo may be considered as a null observation (in order to make the form general for 

the nmax=l case). The normal distribution parameters Si and ti are as previously given in 

this writing. 

The posterior function h(µlx1, ... , Xn ), given within the integral, may be simplified to a max 

form which does not involve any of the previous observations, x1 through Xn -1 · This max 

reduced form is 

P(µ > Ujxn = Cn ) = max max 

Jnmaxto2 +crm/ -~-----x 
5.(crme · to) 

[
(nmaxµti +µcrm/-nmaxtiCnmax -8ocrm/)2 ·. -1 . J 

exp 2 2 2 2· 
. to · crme . . 2(nmaxto +crme 

120 



The final iteration cutoff value, Cnmax, is located through a unidimensional search using 

IO-point gaussian quadrature to solve the integral [47]. The search for optimal Cn 
max 

continues until this probability falls just short of the indifference cost ratio, R/(A+R). 

An alternative solution method is taken in the FORTRAN programs in Appendix A which 

use the posterior costing approach. Leaving the probability equation in terms of the 

previous observations (although independent of them) and integrating overµ gives a 

closed-form solution for which limit substitution is straightforward (and quadrature is 

unnecessary). For any nmax, the probability may be written: 

P(µ > Ujxn = Cn ) = max max 

Ilmax-1 
( nmax)Cn - L Xi 8 

max i=O + Ilmax-1 
O' 2 t 2 

me Ilmax-1 

_!_ I- erf O.?O?ll U - 0.707ll-----,,,------,---

2 'tnmax ( I I J 
'tnmax -0'-2 +-'t---2 

me nmax-1 

where, again, xo is a null observation. The error function erf() is as previously defined in 

the section describing the prior costing approach [55]. 

Because this probability is independent of all previous observations, any Xi values may be 

substituted into the equation to obtain a probability for comparison with the cost ratio. In 

the FORTRAN routines of Appendix A, the value of the upper specification is used for all 

prior observations. The use of this method avoids the utilization of a quadrature routine 
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for integration. However, the value of Cn is still located through the use of a max 

unidimensional search. 

Note that, regardless of the solution method used, optimization of C 1 for nmax= I does not 

require the minimization of~ expected total cost equation through search methods. The 

single cutoff value may be found through the described unidimensional search and 

substituted into the expected total cost equation previously presented for the nmax= I 

solution. 

The posterior function which is integrated for the Cn shortcut is also at the heart of max 

the expected total cost equation for any nmax> I. The false disposition probabilities at any 

iteration, i, are in the form 

where the limits of the integrals depend on the disposition being considered (acceptance or 

rejection). These probabilities are general in that they are conditional upon reaching 

iteration i. In the actual expected total cost equation, the false disposition probabilities at 

iteration i must be multiplied by the probability of reaching that iteration. Recall that the 

integration limits for Xi involve the Ci,1 and Ci,H cutoffs in addition to the previous 

observations x1 through Xi-I· 

Just as µ was integrated out of the expression for location of a given C n , it may be 
max 

eliminated from this conditional double integral expression. Making this simplification and 

substituting the appropriate limits for Xi gives the following general expression for the 

probability of false rejection at iteration i 
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+1 X 

with the corresponding probability of false acceptance· on the ith measurement observation 

gtven as 

X 

The limits A and B are the practical limits ( ± infinity, respectively) of the false disposition 

probabilities for the n= 1 case. As in the prior costing approach, they are located through a 

unidimensional function search for the points at which the two conditional probability 

functions approach zero. Refer to Figure 5.2 and the accompanying discussion for a more 

detailed explanation of the A and B limits. 

The solution procedure for the posterior approach is similar to the prior approach which 

was previously presented. That is, solution of double integrals is accomplished through a 

brute-force outer step integral, with the inner integral solved through 10-pt. gaussian 

quadrature. All cutoff values are hypothesized prior to beginning the Nelder and Mead 
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search process, with appropriate boundary checks to ensure that the search routine has 

provided valid cutoffs prior to calculating the associated expected total cost. 

A general computer logic flowchart is shown in Figure 5.5 which covers the computer 

solution provided in Appendix A which uses the posterior costing approach. FORTRAN 

routines are included for the specific cases of one, two and three maximum iterations 

(nmax). As previously indicated, the single observation case of nmax=l utilizes only a step 

search using the economic indifference ratio as a probability comparison. For greater 

iteration thresholds, the required multiple integrations are performed through nested loops 

which step through the possible observation values defined by the various cutoff limits. 

In explanation, for the case ofnmax=3, the posterior approach integrates over observations 

xi, x2 and x3. This is because the only way in which the third observation will be 

necessary is if the first two observations result in means which fall within the continuation 

regions defined by (C1,L, C1,H) and (C2,L, C2,H). However, cutoff values are compared to 

the mean of all observations, and cutoff values are put in terms of single observations for 

costing and integration purposes. Therefore, for expected costs incurred on the final 

iteration, an outer integration loop steps through x1 values from C1,L to C1,H, and an inner 

integration loop steps through x2 values from 2C2,L-x1 to 2C2,wx1. The third and 

innermost integral, involving the single cutoff value C3 (=C0 ), is solved through ten-
. max 

point quadrature. Each time that the inner stepping loop completes a circuit, the inner 

loop reinitializes and the outer loop is incremented by a unit (as defined in the program). 

The nested integrals which are called-out in the flowchart involve solving for the 

conditional false disposition probabilities at each iteration. The probabilities for all 

possible prior observations (point values) are accumulated into an integral for estimating 

the total cost of the sampling plan. 
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Find integration limits (A, B) 
for false disposition functions 
(n=l). 

N (A+B)/2 is opt. C1 

Find max Cutoff using step search. 
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(C1,1,C1,H), ... 
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elder-Mead generates Cutoffs 

N 
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Set x1, ... , Xn -1 · max 
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Figure 5.5 Flowchart for Approach 2; Posterior Costing. 
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Although the specific cases of nmax in the range one to three are presented in Appendix A 

(and in subsequent results provided in this paper), this same procedure may be 

extrapolated to greater values ofnmax- The flowchart is intended to depict the general 

programming logic required to carry this approach to greater iteration thresholds. 

For specific techniques utilized in the FORTRAN routines, please refer to the code 

provided in Appendix A. Embedded documentation is included in the FORTRAN code. 

5.6 PROGRAM DESCRIPTION 

The comprehensive FORTRAN program which implements the statistical and economic 

theories as presented in the current chapter and Chapter 3 is presented in Appendix A. 

Both models are accessible from a common main module (shown below as MAIN). The 

FORTRAN subroutines which implement the economic sequential theory as discussed in 

this chapter are summarized in the following paragraphs. Each heading represents the 

actual subroutine name as given in the. FORTRAN code (without arguments). Further 

information on program operation and a description of subroutine arguments is contained 

within the body of the code (Appendix A) in the form of program comments. 

The program module summaries which are presented in the following paragraphs pertain 

only to the economic branch of the computer program (see Figure 3.2). For information 

on the statistical branch of the program, the user is directed to Section 3 .5 of this 

document. 
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As previously indicated, verification of program logic is accomplished through redundant 

runs using hand calculations, the FORTRAN simulators (Appendix D), Microsoft Excel 

5.02 and Mathcad 4.0.3 

CALCST 

Calculates the expected costs associated with a user-designed economic sequential 

sampling plan. Accepts user-specified decision cutoff values and gives all expected cost 

components. Calls subroutines: V ARDEF, ERRCHKI, ERRCHK2. Called from: 

MAIN 

VARDEF 

Accepts all measurement system and prior distribution parameters and returns them to the 

parent module. Calls subroutines: none. Called from: CALCST, A2NIMGT, 

A2N2MGT, A2N3MGT. 

A2NIMGT 

Optimizes the economic decision cutoff value C 1 for the case of nmax= 1. Calls 

subroutines: VARDEF, SETABX, CMAXNI, COST. Called from: MAIN. 

A2N2MGT 

Optimizes the economic decision cutoff values C1,L, C1,H and C2 for the case ofnmax=2. 

Calls subroutines: VARDEF, POST, SETABX, CMAXN2, NELMINI. Called from: 

MAIN. 

2 Microsoft Office Professional v. 4.3 (1993), Microsoft Corporation, USA. 

3 Mathcad 4.0 User's Guide Windows Version (1993), Mathsoft, Inc, Cambridge, MA. 
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FUNC 

Evaluates the bivariate normal probability ofµ and x, over a given range ofµ relative to 

the specification. Calls subroutines: PCMU. Called from: QGAUS, SET ABX, 

SETMOR. 

A2N3MGT 

Optimizes the economic decision cutoff values C1,L, C1,H, C2,1, C2,H and C3 for the case 

ofnmax=3. Calls subroutines: VARDEF, SETABX, CMAXN3, NELMINl, CLG30UT. 

Called from: MAIN. 

CLG2A2 

Performs the integration of false disposition probabilities and calculates expected costs 

between C11 and C1 H for nmax=2. Calls subroutines: POST, SETABX, QGAUS, 
. ' ' ' 

NORMAL. Called from: NELMINl. 

CLGIN 

Performs the integration of false disposition probabilities and calculates costs between 

C2,1 and C2,H for nmax=3. Calls subroutines: POST, SETABX, QGAUS, NORMAL. 

Called from: CLG30UT. 

CLG30UT 

Performs the integration of false disposition probabilities and calculates costs between 

C11 and C1 H for nmax=3. Calls subroutines: POST, SETABX, QGAUS, CLGIN, , , 

NORMAL. Called from: NELMINl, A2N3MGT. 
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CMAXNI 

Optimizes C1 for the case ofnmax=l by stepping through C1 values in the interval (A, B) 

and evaluating the cost indifference ratio R/(R+A). Calls subroutines: PCMU. Called 

from: A2NIMGT. 

CMAXN2 

Optimizes C2 for the case ofnmax=2 by stepping through C2 values in the interval (A, B) 

and evaluating the cost indifference ratio R/(R+A). Calls subroutines: PCMU. Called 

from: A2N2MGT. 

CMAXN3 

Optimizes C3 for the case ofnmax=3 by stepping through C3 values in the interval (A, B) 

and evaluating the cost indifference ratio R/(R+A). Calls subroutines: PCMU. Called 

from: A2N3MGT. 

NORMAL 

Computes normal areas and ordinates for an array ofx values. Taken from [12]. Calls 

subroutines: none. Called from: ERRCHK.2, ERRCHK.3, CLG2A2, CLGIN, 

CLG30UT. 

PCMU 

Evaluates the expected total cost equation using observations passed from the parent 

module. Type of false disposition (accept or reject) is specified through a flag passed as 

the second argument. Calls subroutines: ERRINT. Called from: FUNC, CMAXNl, 

CMAXN2, CMAXN3. 

129 



Calculates the mean of a normal posterior distribution, given the prior distribution 

parameters. Calls subroutines: none. Called from: ERRCHK.2, ERRCHK3, A2N2MGT, 

CLGIN, CLG30UT, CLG2A2. 

OGAUS 

Performs IO-point Gaussian quadrature. Taken from [47]. Calls subroutines: FUNC. 

Called from: COST, ERRCHKI, ERRCHK.2, ERRCHK3, CLG2A2, CLGIN, CLG30UT. 

SET ABX 

Finds the practical infinity limits for the conditional probability curves in order to evaluate 

probabilities by Gaussian quadrature. Calls subroutines: FUNC. Called from: 

ERRCHKI, ERRCHK.2, ERRCHK3, A2NIMGT, A2N2MGT, A2N3MGT, CLG2A2, 

CLGIN, CLG30UT. 

SETMOR 

Finds practical infinity limits for the conditional probability curves in order to evaluate 

probabilities by Gaussian quadrature. These are the other extremes of the curves as 

located by SETABX. Calls subroutines: FUNC. Called from: ERRCHKI, ERRCHK.2, 

ERRCHK3. 

ERRINT 

2 V 
Evaluates the error function erf(v) = c J exp[-t2 ]dt. Taken from [55]. Calls 

'\/1C 0 

subroutines: none. Called from: PCMU. 
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COST 

Evaluates the expected cost components for the economic case of nmax= 1. Calls 

subroutines: QGAUS. Called from: A2N1MGT. 

NELMINl 

Searches for economic cutoff values through multivariate simplex search procedure given 

in [40]. Calls subroutines: CLG2A2, CLG30UT. Called from: A2N2MGT, 

A2N3MGT. 

ERRCHKl 

Calculates expected costs for the economic case ofnmax=l. Checks bounds for user

specified cutoff parameters. Calls subroutines: SETABX, SETMOR, QGAUS. Called 

from: CALCST. 

ERRCHK2 

Calculates expected costs for the economic case ofnmax:=2. Checks bounds for user

specified cutoff parameters. Calls subroutines: POST, SETABX, SETMOR, QGAUS, 

ERRCHK3, NORMAL. Called from: CALCST. 

ERRCHK3 

Calculates expected costs for the economic case of nmax=3. Checks bounds for user

specified cutoff parameters. Calls subroutines: POST, SETABX, SETMOR, QGAUS, 

ERRCHK3, NORMAL. Called from: ERRCHK2. 
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5.7 SUMMARY 

The economic optimization of the batch inspection problem requires explicit definition of 

the cost consequences associated with the sampling plan. Costs of the plan fall into two 

categories: 1) sampling costs associated with the measurement process, and 2) costs 

incurred as a result of disposition of the batch. 

Disposition costs are assessed as a consequence of false acceptance or false rejection of 

the batch. Inappropriate acceptance of a non-conforming batch is the greater of the evils 

and may carry large, hard to quantify costs such as loss of repeat customers and customer 

goodwill. 

In designing the economically optimal sampling plan, consideration is given to prior batch 

history. Bayesian decision theory methods are utilized to incorporate available data into 

the sampling design. The distribution of prior batches ( assumed to be normal) is updated 

following each sequential measurement observation. Because the measurement error 

distribution and the prior batch distribution are assumed normal, all required distributions 

are also normal. This is because the normal is a family of conjugate priors. 

The economic model is designed with a maximum allowable iteration number, designated 

by the user. At each step of the sequential process, the mean of all previous observations 

is compared to a pair of decision cutoffs for that observation. For the upper specification 

problem, if the mean is less than the low cutoff, the batch is accepted and the process 

terminates. If the mean is greater than the high cutoff, the batch is rejected. Inequality 

signs are reversed for the lower specification case. A mean observation value which falls 

between the two disposition cutoffs dictates. continuation of the inspection procedure. If 

the process reaches the designated maximum·number of iterations, the two decision limits 
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are replaced by a single cutoff ( the two limits are equal), forcing a disposition decision at 

that step. For practical applications addressed in the research problem, a maximum 

iteration value of three is reasonable and will prove to be widely applicable. 

Compensation for measurement system bias is made following a zero-bias system design. 

Because a non-zero measurement error mean represents a constant average offset of 

observed values from actual values, it may be added to zero-bias cutoffs following 

optimization. In this way, it is possible to avoid carrying the bias through analysis. 

Additionally, the zero-bias system which is provided as computer output is easily updated 

for any change in the bias. 

Given the costs, prior distribution, measurement error distribution, specification (upper) 

and maximum number of iterations acceptable, the economic approach optimizes the 

cutoff variables at each iteration such that the expected total cost equation is minimized. 

Two approaches may be taken in designing the plan and defining the expected total cost 

equation. The first approach looks at costs in terms of the Bayesian prior distribution; the 

second approach takes a posterior costing view. Both analysis alternatives lead to the 

same plan design. 

The solution for a lower specification limit may be found through symmetry from an 

appropriate upper specification limit solution. By treating the lower limit as an upper limit 

and translating the prior distribution mean symmetrically around the specification, optimal 

cutoffs are found which can then be translated, by symmetry, into optimal cutoffs for the 

lower limit solution. 
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For any maximum n (nmax) greater than one, economic optimization using either approach 

requires a multivariate search for the cutoff values. The FORTRAN programs written for 

this research utilize the Nelder and Mead direct search routine for finding the minimum of 

the function. The posterior costing approach provides a slight advantage over the prior 

design in that the final iteration cutoff value, Cn , may be found by unidimensional max 

search prior to beginning expected cost equation minimization. This reduces the number 

of cutoff values which must be located through the multiple search routine by one, saving 

some computer run time. Research results are generated using the posterior costing logic 

as given in Appendix A. 

Programming examples (FORTRAN) are provided in the appendices for each approach to 

the economic design problem. Prior cost programs are included in Appendix B for values 

ofnmax designated as one and two. The comprehensive program in Appendix A contains 

an additional FORTRAN routine for the case ofnmax=3 using the posterior costing 

approach. The logic which is utilized in the programs is representative of a single solution 

approach to the economic design problem, and is not necessarily the most efficient. The 

programs utilize ten point gaussian quadrature and a step-through integration routine in 

solving the multiple integral terms which the expected total cost equation comprises. 

Compensation for measurement system bias is performed by the program following zero

bias cutoff optimization. 
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CHAPTER6 

OPERATION OF THE INTERACTIVE COMPUTER ROUTINES 

FOR THE ECONOMIC SOLUTION 

6.1 INTRODUCTION 

This chapter details the operation of the interactive computer program modules which 

implement the solution of the known measurement variance economic problem for various 

values ofiteration maxima. The comprehensive program (Appendix A) provides two 

separate options for examining economic sampling plans for the homogeneous batch 

disposition by a single variable characteristic relative to a single specification limit. The 

first option provides the optimal economic cutoff values for the economic sampling 

procedure as described in Chapter 5. This optimization routine utilizes the posterior 

costing approach as previously presented and is available for maximum observation values 

(nmax) of one, two and three. The posterior approach is utilized due to increased 

efficiency and reduced computer runtime associated with this costing solution as presented 

in the previous chapter. The second economic option takes specific cutoff values from the 

user (again, nmax= 1 to 3) and returns the expected total cost of the user-input sampling 

plan. It also uses the posterior costing approach to the problem. Each of the modules is 

executable for both a single upper and a single lower specification limit. The solution 

logic and methodology is as presented in the preceding chapter. The actual FORTRAN 
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program ( composed and executed on an IBM-compatible personal computer using 

Microsoft FORTRAN version 5 .1) appears in Appendix A. 

The computer routines are interactive and prompt the user for the required input 

parameters. Output from the programs includes all cutoff decision values and expected 

cost components of the plan. In all cases, program output is provided on-screen with 

optional output to a user-specified computer file. 

The same input subroutine is used for all nmax values and both costing options 

( optimization and cost estimation). Therefore, all routines present themselves in exactly 

the same manner to the user. The output format is also very similar, with differing nmax 

programs varying only in the number of cost components and cutoff values which are 

presented. 

Error checks are performed for user-provided input parameters. All input values are 

presented for operator verification prior to beginning execution of the FORTRAN 

routines. 

6.2 PROGRAM OPERATION 

Each of the optional economic programs ( optimization and cost estimation) is accessed 

from the main menu. The user enters the first option ("I") as shown, below. 

136 



Sequential Testing Program 

Please select one of the following options: 

1 Economic Testing 
* Plan Optimization 
* Expected Cost Calculation 

2 Statistical Testing 
* Known Measurement Error Variance 
* Unknown Measurement Error Variance 

3 Exit Program 

1 

The secondary menu for economic testing presents the following options: 

Economic Testing Plans 

Please select one of the following options 

1 Economic Parameter Optimization 
(Maximum Iterations Limited to Three) 

2 Expected Costs Calculation for 
User-Entered Plan 

(Maximum Iterations Limited to Three) 

3 Return to Main Menu 

Access to the two economic options is provided through entry of a "l" or "2" at the 

prompt. An invalid entry brings up the following error message: 

**** Invalid Entry. Please Reenter. **** 
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A user entry of" 1" begins execution of the optimization routine for economic analysis of 

the sequential problem. This program operation is described in the following section of 

the chapter. 

The alternative entry of"2" initiates the expected cost calculation routine which is 

described in the chapter section entitled "Expected Costs Calculation for User-Entered 

Plan (Option 2)". 

Economic Parameter Optimization (Option 1) 

This portion of the sequential testing program provides the optimal economic testing plan, 

based on the user-input distribution and cost parameters. Optimal plans are available for 

maximum observation values of 1 to 3, as requested by the program user. A prompt first 

appears requesting the maximum number of iterations (observations) which the user 

wishes to analyze: 

What is the maximum number of measurement 
iterations which you are willing to make? 
Enter 1, 2 or 3 

2 

The user has entered a "2", indicating that he/she wishes an optimal plan for which a 

disposition decision is reached in a maximum of two measurement observations. 

The next series of prompts request entry of the testing system distribution and cost 

parameters. This portion of the computer program is identical in all cases ofnmax (= 1 to 
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3). The first prompt is for the specification limit which defines conformance of the 

variable batch characteristic being examined. 

Enter the Specification Limit. 

102. 

The user has entered the value "102.". There are no restrictions on this input testing 

parameter. The user is then asked to indicate if this specification limit is an upper or lower 

specification. The following prompt is presented: 

Is this an Upper (1) or Lower (2) Spec? 
Enter 1 or 2. 

1 

The user has entered a "l" in the example, defining the specification entry of"l02." as an 

upper specification limit. 

The program then proceeds with the entry of parameters of the prior distribution of actual 

batch values. The request for the prior mean is: 

Enter the value of the prior distribution mean. 

100.5 

This is followed by a prompt for the prior standard deviation: 

Enter the value of the prior standard deviation . 

. 5 

As inputted by the user, the prior distribution (assumed normal) has a mean of"l00.5" 

and a standard deviation of".5". There are no restrictions on the prior distribution mean, 

. but the standard deviation must be positive. 
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The next section of code requests information concerning the measurement error system 

parameters. Again, this distribution is assumed to be normal. The mean of the error 

distribution, also termed the bias, is requested in the first prompt: 

Enter the value of the measurement error 
distribution mean (bias). 
Sign Convention: If the instrument reads higher 
than the true value, this bias should be positive . 

. 08 

This is followed by the prompt for the measurement error standard deviation: 

Enter the value of the measurement error 
distribution standard deviation . 

. 5 

The value of the bias is unrestricted, but a negative entry for the measurement error 

standard deviation produces the error message which was previously shown. 

The last program entries which are required for each module concern the costs which are 

associated with the measurement of the batch characteristic and disposition of the batch. 

As a matter of convention, all costs are required to be positive ( or zero). 

Enter the cost associated with a single measurement 
iteration (S) . 

. 25 

Enter the cost associated with a false acceptance of 
a batch of product (A). 

100 
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Enter the cost associated with false rejection of 
a batch of product (R). 

20 

The user has entered values of".25", "100" and "20" for the iteration, false acceptance 

and false rejection costs, respectively. As explained in the theoretical development of the 

economic case, the acceptance of non-conforming product is generally much more costly 

than the rejection of a conforming batch. A negative entry for any one of the three 

sampling system costs produces an error message, 

and the cost prompt is displayed, again. 

Following this last parameter entry, the program values are displayed for review. The user 

is given the opportunity to change any of the parameters, although only one parameter 

may be changed at a time. In the following illustration, the user takes the opportunity to 

modify the bias. 

1 Upper Specification Limit= 
2 Prior Distribution Mean= 
3 Prior Standard Deviation= 
4 Error Distribution Mean (Bias)= 
5 Error Distribution Std. Dev.= 
6 Iteration Cost (S)= 
.25 
7 False Acceptance Cost (A)= 
8 False Rejection Cost (R)= 

Is the above information correct? 

102.0000 
100.5000 

1. 5000 
.0800 

.5000 

100.00 
20.00 

Enter to accept, or# of parameter to reenter. 
4 

The program then prompts for reentry of the parameter specified by the user: 

Enter the value of the measurement error 
distribution mean (bias). 
Sign Convention: If the instrument reads higher 
than the true value, this bias should be positive. 
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.06 

The user has entered ". 06" as· a correction to the previously entered value of the 

measurement error mean (bias). The same error checks which were previously given are 

also performed for any parameter modifications. Following any corrections, the 

parameters are displayed in summary form and corrections may again be made. 

After all parameters are entered correctly (per the user), the program begins optimization 

of the sampling plan which was requested (based on the nmax value which was entered). 

The runtime required for execution varies, of course, among the differing values of nmax

As previously indicated, the posterior costing approach provides an advantage over the 

prior approach in the location of the cutoff value at the iteration maximum. This reduces 

the computer time required for the multivariate search routine. However, the program 

sequence executed for the case ofnmax=3, although programmed using the posterior 

economic theory, requires a relatively large interval of time for economic optimization of 

plan parameters. As a benchmark value, a typical run requires approximately 68 minutes 

on a Pentium 60. Execution messages are displayed for the integration loops for the case 

of an observation maximum of three message to restrain the user from slipping into a panic 

and contemplating a reboot. 

The sampling system design is presented in summary form on-screen as soon as the 

optimization is complete. As an example of program output, following are the results 
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generated by the entry of the above input examples into the posterior approach program 

for the case ofnmax=2. 

Zero-Bias C2 = 101. 73191545 
101.67191545 
Zero-Bias Cl,L = 101.03840890 
100.97840891 
Zero-Bias Cl,H = 102.48857274 
102.42857275 
Expected Plan Costs: 

Sampling on 1 = 
False Accept on 1 
False Reject on 1 = 
Sampling on 2 = 
False Accept on 2 
False Reject on 2 = 

Expected Total Cost= 

Send output to file? (Y/N) 

y 

.2500 

.0744 

.1609 

.0656 

.5905 
1. 0361 
2.1776 

Bias Adj C2 = 

Bias Adj Cl,L 

Bias Adj Cl,H 

After the output display, a prompt is provided which allows the measurement system 

= 

= 

design to be written to a hard-disk file. This provides an opportunity to save and/or print 

the sampling plan following the program utilization. The output which is sent to file is 

similar to, but more complete than, the output which is displayed on the monitor. It also 

includes the input parameters in the form of header information. The user entry of "Y" 

brings up the following prompt for the file name to be used: 

File name missing or blank - please enter file name 
UNIT 2? 
nrnx2.op 

The file name shown, "nmx2.op", is entirely at the user's discretion and must conform 

only to the naming conventions of the operating system being utilized. The following 
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example file represents program output from the prior approach program for the case of 

nmax=2. 

Prior Mean= 100.50000000 
Prior Std. Dev= 1.50000000 
Upper Specification= 102.00000000 
Measurement Erior Std. Dev.= .50000000 
Measurement Error Mean (Bias) = .06000000 
Input Costs: 

Iteration (S) = 
False Accept (A) = 
False Reject (R) = 

.2500 
100.0000 

20.0000 
************************************** 
Zero-Bias C2 = 101.73191545 
101.67191545 
Zero-Bias Cl,L = 101.03840890 
100.97840891 
Zero-Bias Cl,H = 102.48857274 
102.42857275 
Expected Plan Costs: 

Sampling on 1 = .2500 
False Accept on 1 = .0744 
False Reject on 1 = .1609 
Sampling on 2 = .0656 
False Accept on 2 = .5905 
False Reject on 2 = 1. 0361 

Expected Total Cost= 2.1776 

Bias Adj 

Bias Adj 

Bias Adj 

C2 = 

Cl,L = 

Cl,H = 

The summary header information is the only additional material which is provided to an 

output file ( as opposed to the screen output). The measurement system parameters ( the 

cutoff values C2, C1,1 and C1,H) are as previously defined in Chapter 5. These are the 

decision limits which are compared to the average value of the measurement observations 

in order to determine disposition of the batch (the procedure is fully described in Chapter 

5). The cost components are broken down into sampling, false acceptance and false 

rejection costs for each observation stage of the plan. This allows the user to examine at 

which point in the sampling procedure the brunt of the cost is likely to be incurred, based 

on ~he optimal.cutoff values presented .. This cost breakdown is useful for comparison 
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purposes if the user also intends to experiment with various cutoff value combinations of 

his/her own design as described in the section of this chapter devoted the calculation of 

expected costs for user-entered plans (option "2" from the economic testing menu). 

The program presentation for plan optimization for other values of maximum observation 

value (nmax of I or 3) is exactly the same as presented for nmax=2. The only difference 

appears with the change in output as cutoff values and cost components are 

added/dropped for changing nmax. As an example, the following output represents the 

hard-disk file which is created for the above parameter entry ( distribution, costs, etc.), 

requesting a single observation plan ( nmax= 1) rather than the example plan of nmax=2 

which was detailed in the previous paragraphs. 

Prior Mean= 100.50000000 
Prior Std. Dev= 1.50000000 
Upper Specification= 102.00000000 
Measurement Error Std. Dev.= .50000000 
Measurement Error Mean (Bias= .06000000 
Input Costs: 

Iteration (S) = 
False Accept (A) = 
False Reject (R) = 

.2500 
100.0000 

20.0000 
************************************** 
Zero-Bias Cl= 
101.59680177 

101.65680177 

Expected Plan Costs: 
Sampling on 1 = 
False Accept on 1 = 
false Reject on 1 = 

Expected Total Cost= 
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.9896 
1. 6688 
2.9083 

Bias Adj Cl= 



Note the identical format and header information. The difference appears only in the 

change in cutoff value( s) given and the breakdown of cost components as dictated by the 

change in maximum observation value between plans. 

To return to the main menu from the economic testing menu, the third option ("3 Return 

to Main Menu") is selected. An entry of"3" at the main menu prompt causes termination 

of the entire sequ:ential testing program. 

Expected Costs Calculation for User-Entered Plan (Option 2) 

The purpose of this program module is to allow the user to examine the expected cost 

consequences of any measurement plans which he/she designs. That is, rather than 

selecting the optimal cutoff plan, the user may desire to select and enter alternative cutoff 

values and examine the changes in expected costs. This option is useful in the situation 

that alternative cutoff values may be easier to implement than those specified in the 

optimal plan. Additionally, it may be a practical matter to round the optimal cutoff values 

prior to implementation of the plan; this program option allows the user to examine the 

cost consequences of the rounding of cutoff values. 

Although the measurement system bias (mean of the error distribution) is requested as 

input in this program module, it is not utilized in the cost calculations. This is due to an 

assumption that all of the cutoff values which are entered by the user have the 

measurement bias built into them, as will the measurement observations to which they are 
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compared. The bias is requested as standard entry by the parameter routine which is used 

by this and other program modules. 

From the economic testing menu, the cost calculation routine is accessed by specifying 

option "2". An explanatory header appears to introduce the program module and signal 

the start of parameter entry. 

This program module calculates the expected 
total cost of a given sequential sampling 
plan. The user must supply the sequential 
decision cutoff values. 

Measurement System Parameter Entry: 

The program proceeds with the user entry of the specification limit (upper or lower), prior 

mean, prior standard deviation, bias, measurement error standard deviation, and all costs 

as presented in the previous section of this chapter (not repeated, here). Following entry 

of all necessary parameters and verification by the user, the following prompt appears: 

What is the maximum number of iterations' 
for the plan? (1, 2 or 3)' 

3 

This request is for the observation maximum (nmax), and is limited to 1, 2 or 3. In the 

example, the user has specified that a disposition decision is desired within three 

measurement observations. Specification of nmax also determines the number of cutoff 

values which are required as entry for cost estimation. That is, because the user has 
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specified an nmax of three, he/she will be required to enter values for C1 L, C1 H, C2 L C2 H 
' ' ' ' ' 

and C3. A maximum observation value other than 1, 2 or 3 is flagged as an invalid entry. 

The program then begins the prompt/entry sequence for the cutoff values. 

Enter the value of Cl,L 

101.2 

Enter the value of Cl,H 

103.1 

Enter the value of C2,L 

101.5 

Enter the value of C2,H 

102. 

Enter the value of C3 

102. 

Error checks are performed throughout this entry sequence to ensure that Ci L ::S: Ci H for , , 

all i. Although the example sequence additionally conforms to the inequality relationship 

C1 L ::S: C2 L ::S: C3 ::S: C2 H ::S: C1 H, this is not necessary for calculation of plan cost 
' ' ' ' 

components. That is, it is allowable for C2,L to be less than C1,L or C3 to be the lowest of 

all cutoff values (as examples). 
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After all required cutoff values are entered, the information is displayed for user review 

and corrections, if required. The following data reflects entry of the cutoff values given in 

the input sequence, above. 

Maximum 
Cl,L = 
C2,L = 

C3 = 

iterations= 3 
101. 2000 
101.5000 
102.0000 

Cl,H = 
C2,H = 

103.1000 
102.0000 

Is the above information correct? 
Y to accept or N to reenter cutoff values. 

y 

The user has entered a "Y'', indicating that the entries shown are correct. An entry of ''N' 

reinitiates entry of all cutoff parameters with the associated error checks for inequality 

relationships. 

The program then begins the calculation of all cost components associated with the user-

input sampling plan. As in the optimization case, output is displayed on-screen with the 

option of sending the cost information with all header data to a file located on the 

computer hard-disk. The following output data represents the output written to a user-

specified file. For this example, the distribution parameter and cost data are as given in 

the economic plan optimization section of the chapter, with the user-specified cutoff 

values given, above. 

Prior Mean= 
Prior Std. Dev= 
Upper Specification= 
Meas. Error Std. Dev. 
Meas. Error Mean (Bias) = 
Input Costs: 

Iteration (S) = 
False Accept (A) 
False Reject (R) 
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1.50000000 

102.00000000 
.50000000 
.06000000 

.2500 
100.0000 

20.0000 



*************************************** 
Cutoff C3 = 102.00000000 
Cutoff C2,L = 101.50000000 
Cutoff C2,H = 102.00000000 
Cutoff Cl,L = 101.20000000 
Cutoff Cl,H = 103.10000000 
Expected Plan Costs: 

Sampling on 1 = .2500 
False Accept on 1 = .1643 
False Reject on 1 = .0087 
Sampling on 2 = .0697 
False Accept on 2 = .1224 
False Reject on 2 = .5098 
Sampling on 3 = .0214 
False Accept on 3 = .9996 
False Reject on 3 = .0971 

Expected Total Cost = 2.2430 

The format for both other cases of maximum observations ( one or two) is the same as the 

nrnax:=3 situation shown. 

Following display of the program output and optional writing to a user-specified hard-disk 

file, the program asks if further plans are to be examined. The literal prompt is: 

Would you like to input another set of cutoffs? 
Enter Y or N. 

N 

The user has entered "N', indicating that no further analysis is desired. An entry of"Y" 

takes the user back to entry of the maximum desired number of measurement observations 

and cutoff values. The entry of further cutoff values is assumed to be for the same 

parameter system (prior, measurement error, costs, etc.) which was previously analyzed. 

If an entirely different disposition situation is to be examined, the user must return to the 

economic testing menu and reenter the expected cost calculation routine to prompt 

P!:tnun~ter input. _ 
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To return to the main menu from the economic testing menu, the third option ("3 Return 

to Main Menu") is selected. An entry of"3" at the main menu prompt causes termination 

of the entire sequential testing program. 

6.3 SUMMARY 

Two separate options are provided in the form of interactive FORTRAN program routines 

for the economic solution of the known measurement error variance sequential testing 

problem. The first option allows the user to solve for the optimal cutoff values which 

minimize the expected total cost of the measurement plan. The second option allows the 

user to pick his/her own set of cutoff values and obtain a breakdown of the expected total 

cost. Both options are available for a single upper or lower specification limit and 

maximum observation values (nmax) of 1 to 3. In each case, the user provides inspection 

system parameters and specifies the maximum number of measurement iterations which 

are to be taken. Expected costs are presented in component form by sampling, false 

acceptance and false rejection at each iteration ( observation) stage. Upon user request, 

the resultant cost and sampling plan output from either FORTRAN routine is written to a 

hard-disk file (in addition to appearing on-screen). Error checks are performed on all 

input parameters to ensure consistency with theoretical solution constraints. The 

procedures of the computer programs are consistent with the sequential statistical 

solutions as presented in the previous chapter. 
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CHAPTER7 

COMPARISON OF RESULTS 

7.1 INTRODUCTION 

The economic modeling of the sequential sampling problem provides distinct cost 

advantages over the statistical modeling of the situation. Whereas the statistical case 

utilizes subjective, nebulous tolerable risks ( ex. and 13) to assess the consequences of 

making an incorrect disposition decision, the economic model forces the 

inspector/designer to explicitly assign monetary consequences to the plan in terms of 

sampling, false acceptance and false rejection costs. The costs which are incurred through 

utilization of the statistical sampling procedure are not treated explicitly in designing the 

plan. 

Within the economic modeling problem, additional observations carry some sampling cost, 

S, but provide a return in the form of increased confidence in the resulting disposition 

decision (and reduced expected costs of incorrect disposition of the batch of product). If 

the testing is costly and S outweighs the cost(s) of an incorrect decision, the optimal 

economic plan will simply dictate that no additional observations be made. 

The differences between the two sampling methods ( statistical and economic) make it 

difficult to conduct a direct comparison of results. The two approaches to the problem 
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carry differing assumptions and, essentially, use different sets of rules by which to assess 

the batch of product. The economic model explicitly treats the costs of the plan and also 

considers prior batch information in the determination of the optimal sampling plan. The 

statistical model requires that the user designate indifference limits which are used, instead 

of the specification limit, for batch disposition. 

The statistical theory addresses the risks of false batch disposition by requiring 

specification of risk levels, a and p. However, recall that these risk levels are associated 

with indifference limits (subjectively specified by the inspector or plan designer) which 

cannot be equal and may or may not coincide with the specification limit against which the 

batch is being tested. Therefore, it is practically meaningless to compare these designated 

risk values to calculated risk levels of the economic plan which are relative to the 

specification limit. In a sense, the indifference limits specified in the statistical plan also 

must be considered as indicative of a level of risk which the user is willing to assume. 

The most logical comparison to conduct when contrasting the two theoretical methods 

involves the assessment of the explicit economic costs to the statistical disposition. That 

is, although the statistical plan does not consider the sampling costs a priori, it is 

reasonable to assign these costs of false disposition to the statistical decision after the fact 

in assessing the performance of the statistical decision. Recall that the sampling costs 

which determine the optimal economic plan are explicit and represent the true risks of the 

inspection system. 
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In the following presentation and discussion, the modeling results are shown within the 

economic and statistical approaches. The various impacts of changing system parameters 

are explored for each theoretical case. In addition, an attempt is made to contrast the two 

methods of sequential batch inspection and disposition through computer simulation. 

Verification of FORTRAN program optimization output is accomplished through parallel 

use of simulation (Appendix D), MathCad 4.01, Microsoft Excel 5.02 and hand 

calculations. 

7.2 ECONOMIC MODEL 

Economic Methodology 

In order to assess the performance of the economic model, several different factors must 

be considered. The expected total cost of a given economic sequential sampling plan 

varies with the prior distribution, sampling and false disposition costs and the maximum 

number ofiterations specified by the designer. 

To illustrate the changes in cost components, the following example is utilized in all results 

presented in this section. The sampling system parameters are consistent with those 

1 Mathcad 4.0 User's Guide Windows Version (1993), Mathsoft, Inc, Cambridge, MA. 

2 Microsoft Office Professional v. 4.3 (1993), Microsoft Corporation, USA. 
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utilized in previous sections of this paper to illustrate the operations of the various 

computer program modules presented. Units on all measurement system parameters and 

inspection costs are omitted. 

Consider a batch production operation in which a single variable characteristic is utilized 

to dictate batch disposition. The characteristic is judged against a single upper 

specification limit. Given: 

Upper Specification= 102.0 
Prior Standard Deviation = 1. 5 
Measurement Error Standard Deviation= 0.5 
Measurement Error Mean (Bias)= 0.0 

Three sets of inspection system costs are examined in assessing the plan performances. 

Cost Set # 1 may be considered the most realistic of the three in that the largest cost is 

incurred upon acceptance of a non-conforming batch. As discussed in a previous section 

of this paper, costs associated with false acceptance of a batch are often difficult to 

quantify and may include warranty costs, repair/replacement costs, loss of customer 

goodwill, lawsuits, etc. The three cost sets are shown in Table 7 .1. 

For purposes of comparison, the influence of the prior distribution is examined by varying 

the prior mean (80) over a range around the upper specification. Values of the prior mean 

in the range 96.0 to 108.0 are used for optimization of the economic sampling parameters. 

Note that in all three cases, the costs of false disposition far outweigh the costs of making 

an additional observation. 
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Table 7.1 
Three Cost Sets Used for Economic Program Comparisons. 

Cost Set Cost Set Cost Set 
1 2 3 

Sampling Cost (S) 0.25 0.25 0.25 

False Acceptance Cost (A) 100.00 100.00 20.00 

False Rejection Cost (R) 20.00 100.00 100.00 

Economic Results 

The Tables of Appendix C give summaries of results for the economic optimization runs 

for all three cases of nmax (integer valued from one to three). Included in these appendix 

tables are the various optimal cutoff values for each set of parameters. The data shown in 

Appendix C is utilized in the graphs which are discussed in this section. 

For a given set of sampling costs and observation maximum (nmax), the expected total cost 

of sampling decreases as the prior mean moves away from the specification limit. That is, 

expected costs are expectedly (relatively) high when the mean of the prior distribution falls 

close to the specification. In the worst case, when the prior mean coincides with the 

specification limit ( and half of the batches may be assumed non-conforming), the 

probabilities of false disposition are high and drive up the expected total cost. As the prior 

mean moves away from the specification, the chance of false disposition lessens, reducing 

the expected total cost of the plan. 
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This influence of the prior distribution on the expected total cost is evident in Figures 7 .1 

through 7.8. The expected total cost is shown in each figure as well as the individual 

expected cost components (false disposition and sampling) which comprise the totals. 

Note that this pattern is consistent among cost sets (1-3), with the changes in costs 

reflected only in the component makeup of the expected total cost. 

Predictably, for cost set #1, the expected costs of false acceptance dominate the total. 

When the acceptance and rejection costs are reversed in cost set #3, the results 

symmetrically mirror those of the first cost set, with the expected costs of false rejection 

dominating the total cost. The optimal cutoff values of cost sets 1 and 3 are actually 

symmetrical around the specification, leading to this symmetry of results. In the second 

cost set, with equal costs of false rejection and acceptance, the cost components are 

symmetrical around the specification limit, with the false rejection costs dominating for 

prior mean values greater than the specification and false acceptance costs having the 

greatest influence for lesser values. 

Due to the cost set symmetry (between #1 and #3) evident in the plans for nmax values of 1 

and 2, the third cost set for nmax=3 is not presented in the Appendix or in chart form. 
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Figures 7.9 through 7.11 show the influence of increasing the acceptable maximum 

number of observations for a given cost set and prior distribution mean. In the case of the 

example data which carries a relatively low iteration cost (S), an increase in nmax lowers 

the expected total cost for the sampling plan in each case examined. This trend is evident 

for each of the three cost sets (sampling cost constant). In a complicated inspection 

procedure in which the iteration cost is dominant and overshadows the false disposition 

costs (due to gage reset, cleaning, calibration, etc.), an optimal plan could indicate that it 

is not cost effective to increase the number of observations. For example, if the optimal 

plan for nmax=2 gives equal cutoff values. for Cl ,L and C 1,H, this indicates that a decision is 

made on the first iteration due to the dominant sampling (measurement) costs. Logically, 

this cutoff value is also the C 1 value obtained for the optimal nmax= 1 plan. 

These data figures also illustrate the effect which the prior mean has on expected total cost 

of the plan. The highest expected cost ( over all nmax)occurs at prior mean values equal 

and close to the upper specification. As the prior mean moves away from the 

specification, the expected cost decreases for any nmax-

Note the overlap which occurs in Figure 7.10 for equal costs of erroneous acceptance and 

rejection ( cost set #2). Prior means which are equidistant from the upper specification 

yield identical expected total costs. For example, the data lines for prior means of96.0 (-

6.0 from the specification) and 108.0 (+6.0) are overlaid in this chart. 
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7.3 COMPARISON OF STATISTICAL AND ECONOMIC MODELS 

Comparison Methodology 

Unlike the economic results which are developed theoretically, results presented for the 

statistical case are generated through simulation. Using the SPRT theory discussed in 

Chapter three, FORTRAN simulators (given in Appendix D) are utilized to implement the 

batch disposition logic for each value of nmax (1-3). In order to facilitate a comparison 

with the economic sampling approach, a cap is placed on the maximum observation 

number for the statistical case. Recall that a truncated SPRT effectively limits the number 

of iterations and provides a vehicle for consistent disposition within the desired number of 

observations. 

In order to create a basis for comparison among various statistical scenarios and also 

between the statistical and economic approaches, the simulator uses the same computer

generated random numbers (which yield identical simulated batch observations) in 

assessing the batch by both the statistical and economic sampling approaches. That is, the 

exact same observation values, in the same sequence, are treated using each of the 

sequential sampling plans and the optimal economic plans. This facilitates meaningful 

comparisons between statistical cases for various sampling parameters, and also between 

the statistical and economic models. The statistical approach utilizes the truncated SPRT 

as presented in Chapter 3, while the economic approach examines the batch using the 

optimal sampling plan as generated by the computer program presented in Appendix A 

and discussed in Chapter 5. 
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Although separate simulators are used for each of the three nmax values, the logic behind 

the batch assessment is the same. Figure 7 .12 depicts, in flowchart form, the simulation 

logic utilized in the FORTRAN program for any particular nmax- The logic shown is for a 

single trial of the simulator ( examination of a single batch). 

For each set of sampling parameters examined, 50,000 batch trials are conducted using the 

simulator. In each case, an average cost, probability of false acceptance and probability of 

false rejection are computed over the total number of trials. Recall that the false 

disposition probabilities calculated for the statistical sampling method are not directly 

comparable to the input values of alpha and beta (which relate to the indifference limits, 

not the specification). The economic results which are presented from the simulation runs 

are comparable to the theoretical values presented in the previous section. Additional 

information is provided as program output on the nature of the decisions made (correct or 

incorrect) and the outcome of the Wald SPRT truncation rule when nmax is encountered. 

Given this simulation method of sampling plan assessment, results are presented for 

several cases of input parameters. Statistical results are examined for various 

combinations of alpha and beta. Additionally, the statistical indifference limits (necessary 

for SPR T usage) are varied in order to determine their relation to average plan costs. A 
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Figure 7.12 

Initialize Parameters 

Generate Actual Batch Value from 
Prior Distribution. 

Generate Measurement Error 
component from ME Distribution. 

Using Actual Value and ME 
component, create observation i. 

Subject cumulative observations to the 
statistical and economic disposition 
tests. 

y 

N 

Use Truncated SPR T rule for 
statistical disposition, if necessary. 

Determine if the correct decision 
was made in each case, assess 
economic costs, if required. 

Simulation Logic for Sequential and Economic Batch Assessment. 
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single cost set ( # 1, the most realistic, as shown in Table 7 .1) is examined in comparing the 

two decision systems. The values of a, '3, and indifference limits which are selected for 

statistical analysis represent reasonable user estimates, assuming that the economic costs 

are real, yet explicitly unknown to the statistical plan user. The experimental parameter 

values used in the simulation runs are presented in Table 7.2, below. 

Table 7.2 

Statistical Parameters Used in Simulation Runs. 

a, f3 Lower Indifference 
Limit, Upper 
Indifference Limit 

0.05, 0.05 101.0, 102.0 

0.05, 0.01 101.5, 102.0 

0.1, 0.01 101.0, 102.5 

101.5, 102.5 

101.0, 103.0 

101.5, 103.0 

102.0, 102.5 

102.0, 103.0 

All combinations of the above parameter sets are tested through simulation. Note that the 

Indifference limit combination of (102.0, 102.0) (the upper specification limit) is not 

explored ( or even, allowed) using the statistical sampling procedure. 
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The test program simulates actual batch values from the prior distribution specified for the 

optimum economic plan. Although this distribution is actually unknown to the statistical 

model user at the time of plan design, it, as well as the economic costs of sampling are 

used following simulated batch disposition to assess the plan performance relative to the 

optimal economic plan. A single prior distribution mean is used in all experimental runs. 

The value chosen is equal to the upper specification limit (102.0) and represents the 

scenario which is the most difficult to correctly judge and is, predictably, the most costly 

to conduct. Other parameters of the sampling system are as given in the previous section, 

and below: 

Upper Specification= 102.0 
Prior Mean= 102.0 
Prior Standard Deviation = 1. 5 
Measurement Error Standard Deviation= 0.5 
Measurement Error Mean (Bias)= 0.0 

These parameters are used consistently throughout the simulated sampling runs. 

Statistical vs. Economic Model Results 

Figures 7.13 through 7.21 show the results of the simulation runs for all cases of 

maximum allowable iterations (nmax=l-3). For each particular set of parameters, the 

statistical expected total cost and probabilities of false disposition are give as functions of 

the selected (a, f3) and indifference pairs. For comparison, the simulation results of 

conducting economic sequential sampling using the optimum cutoff values are included on 

these graphs. In all cases, the cost performance of the economic plan surpasses statistical 

plan results. 
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Note that, in the case of nmax=l, costs and probabilities are unchanging for all (a., f3) pairs 

within any given indifference·limits. This, indeed, is the result of identical statistical 

disposition simulation results from set to set over all 50,000 simulation trials. This is not 

so hard to swallow when recalling that a decision is required based upon a single iteration 

(or subsequent application of the truncated SPRT disposition rule). 

Figures 7.22 through 7.29 provide graphical comparison of the economic and statistical 

expected total cost results across the three possible values of nmax within a chosen set of 

statistical indifference limits. Again, the unchanging statistical case results for nmax= I are 

evident. 

For nmax values greater than 1, the effects of changing values of a. and f3 vary among sets 

of indifference limits for the statistical case. That is, the low cost ( a.,f3) pair depends on 

the indifference limit pair under consideration and is not universally optimal. In all cases, 

the optimal economic cases outperform the statistical disposition combinations. 

Some discussion must be dedicated to the choices made of risk parameters for the 

statistical runs. The various risk parameters are subjectively selected with consideration 

given to the explicit costs used in the optimal economic scenario. It may be assumed that 

the statistical plan user, although unaware of the exact costs of false batch disposition, has 

a "feel" for the relative magnitude of the consequences of mistakes and estimates a. and f3 

based on this knowledge. 
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Figure 7.23 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference Limits 
(101.0, 102.0) 

Prior Mean=102.0 
Bias=O.O 
ME Std. Dev.=0.5 
PriorStd. Dev.=1.5 
Upper Spec.=102.0 
S=0.25 
A=100.00 
R=20.00 

c:i a1p=o.os10.os 
El a1p=o.os10.o 1 

mwp=o.1010.01 

Cl Economic 



20 

18 

16 

14 

12 

i' ·o 10 0 w 
..... 
00 
-....:, 8 

6 

4 

2 

0 

Prior Mean=102.0 
Bias=O.O 
ME Std. Dev.=0.5 
Prior Std. Dev.=1.5 
Upper Spec.=102.0 

+------------------------------------~ S=0.25 

2 

Nmax 

Figure 7.24 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference Limits 
(101.0, 102.5) 

3 

A=100.00 
R=20.00 

m a.1p=o.os10.os 
El a.1p=o.os10.o 1 

III a.!P=0.1010.01 

Cl Economic 



20 

18 

16 

14 

12 

i' 
0 10 !:2.. w -00 

00 8 

6 

4 

2 

0 

Prior Mean=102.0 
Bias=O.O 
ME Std. Dev.=0.5 
Prior Std. Dev.=1.5 
Upper Spec.=102.0 
S=0.25 

-t-------------------------------------1 A=100.00 

2 3 

Nmax 
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Figure 7 .26 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference Limits 
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Figure 7.27 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference Limits 
(101.5, 103.0) 
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Figure 7.28 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference 
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Figure 7.29 Economic & Statistical Cases: E(Cost) vs. nmax for Given Indifference 
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The selection of the indifference limits, though somewhat indicative of decision risk, must 

be viewed slightly differently from the user's perspective. In Chapter 3, it is explained that 

the indifference limits define a zone between conforming and non-conforming batch values 

within which the user is indifferent as to the disposition of the batch. These limits define 

the null and alternative hypotheses values for the SPR T test and actually take the place of 

the specification limit. So, although th,e indifference limits reflect some of the false 

disposition risk, they are selected by the user to more practically differentiate the 

acceptable and unacceptable batch values. The use of these surrogate specifications is an 

intrinsic part of Wald's SPRT theory; the practically of their usage is left for the user's 

consideration. 

For the test case in which the prior distribution centers exactly on the specification, the 

indifference limit values of (101.5, 102.0) provide the lowest expected costs for nmax 

values of 2 and 3. Taking nmax=2, a tighter search in this region gives the lowest expected 

total cost for the indifference limit pair of (101.3, 102.0). However, the economic optimal 

simulated ( and theoretical) expected total cost is also less than this statistical case value. 

The instances in which SPRT truncation is effected in the simulation runs are summarized 

in Table 7 .3. This table shows the percentage of simulated batches (50,000 total for each 

nmax) for which a statistical disposition decision is not reached within the designated 

maximum number of observations ( nmax). The Waid truncation rule, as discussed in 

Chapter 3, is used to make a quality determination in each of these cases. Note that the 
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percentages decrease, for a given set of ( a,J3) and indifference limits, with increasing nmax-

Also, wider indifference bands appear to result in less instances of no decision within the 

designated maximum iterations. 

Table 7.3 

Percentages of Simulation Trials Using the Wald Truncation Rule 

a and J3 Pairs 
Ilmax=l Ilmax=2 Ilmax=3 

Indifference cx=0.05 cx=0.05 cx=0.10 cx=0.05 cx=0.05 cx=0.10 cx=0.05 cx=0.05 cx=0.10 

Limits p=o.05 p=o.01 p=o.01 p=o.05 p=o.01 p=o.01 p=o.05 p=o.01 p=o.01 

101.0,102.0 0.3436 0.4154 0.3691 0.1673 0.2158 0.1882 0.0984 0.1346 0.1136 
101.5,102.0 0.6473 0.7335 0.6612 0.3633 0.4453 0.4002 0.2459 0.3083 0.2734 
101.0,102.5 0.2441 0.3026 0.2718 0.1012 0.1408 0.1209 0.0518 0.0805 0.0653 
101.5,102.5 0.3628 0.4481 0.4045 0.1784 0.2348 0.2083 0.1044 0.1473 0.1259 
101.0,103.0 0.1864 0.2356 0.2122 0.0664 0.0973 0.0821 0.0261 0.0464 0.0376 
101.5,103.0 0.2424 0.3094 0.2801 0.1006 0.1429 0.1236 0.0478 0.0768 0.0627 
102.0, 102.5 0.6448 0.7700 0.7148 0.3610 0.4582 0.4154 0.2434 0.3168 0.2844 
102.0,103.0 · 0.3448 0.4452 0.4082 0.1629 0.2221 0.1978 0.0962 0.1389 0.1192 

Information on the appropriateness of the disposition decision dictated by SPRT 

truncation is given as output of the simulation program. Any incorrect decisions incur 

false disposition costs (A or R) which contribute to the costs of simulated statistical 

sampling. 

7.4 SUMMARY 

The economic model is assessed, using a practical upper specification example for various 

values of prior mean and economic plan cost components. The expected total cost of the 

economic sampling plan is greatest when the prior mean is equal to the specification, with 

decreasing expected costs as the mean moves from the specification in both the positive 
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and negative directions. The makeup of the expected total cost ( composed of sampling, 

false acceptance and false rejection components) varies depending on the relative location 

of the prior mean to the specification. 

For a given set of sampling plan parameters, the economic model expected total cost 

decreases with increasing nmax (maximum number of observations allowed). This is 

because all cost sets which are examined in the research assume a relatively low iteration 

( observation) cost. In a practical case in which the iteration cost dominates false 

disposition costs, the optimum economic model will dictate, through the cutoff values, 

that an early decision is made (before nmax) and the expected total cost will be unchanging 

for all values of nmax-

Because the economic and statistical problem models are based on differing assumptions, 

it is difficult to conduct a direct comparison of results. The economic model assumes a 

prior batch distribution and makes use of explicit sampling costs associated with 

observation and incorrect batch disposition. Comparison of the two theoretical methods is 

accomplished through simulation, with known economic costs assessed to the statistical 

plan following the batch disposition decision. The two models are compared for a single 

cost set and a prior distribution mean equal to the upper specification limit. 

The simulated expected total cost associated with the statistical decision model is 

examined for various values of tolerable risk (a and f3) and for various indifference limit 
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pairs (as required by the Wald SPRT sampling method). The expected statistical plan cost 

which results is compared to the optimal economic plan cost for disposition of the exact 

same simulated batch observation values. In all cases, the optimum economic sampling 

plan gives an expected total cost which is less than the statistical scenarios examined. 

Within the various statistical scenarios which are simulated, expected total cost decreases 

with increasing nmax for a given set of plan parameters. In the case of single observation 

disposition (nmax=l), the values of a. and B which are assumed do not affect the expected 

cost for a given set of indifference limits. Risk values which yield the lowest expected 

cost vary, depending on the pair of indifference limits which are utilized for the sampling 

scenario. 
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CHAPTERS 

SUMMARY AND CONCLUSION 

8.1 SUMMARY 

The primary objective of this research is to develop a sequential decision method for the 

situation of homogeneous batch disposition based on a single variable characteristic 

subject to measurement error relative to a single specification limit. In designing such a 

sampling plan, statistical and economic theoretical models are explored and compared. 

The original research objective specified a single upper specification; this writing and the 

computer program provided (Appendix A) also allow for the situation of a single lower 

specification limit. 

Through exploration and development of the research problem, several original 

contributions are offered to the body of quality control literature pertinent to this problem. 

These are: 

1) Investigation of the economic consequences of measurement error on the 

disposition of a homogeneous batch of product by a single variable 

characteristic relative to a single specification limit. 
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2) Application of SPRT theory to the known variance situation of homogeneous 

batch disposition based on a single variable characteristic subject to 

measurement error. 

3) Exact application of the likelihood ratio test using the non-central t-distribution 

in the case of unknown measurement error variance. This is accomplished 

through the FORTRAN program provided. 

4) Economic modeling of the sequential sampling of a single variable 

characteristic in the presence of measurement error for the purpose of 

disposition (either acceptance or rejection). 

5) Economic optimization of sequential sampling plans and application of classical 

sequential statistical theory through a comprehensive FORTRAN program; 

expected cost analysis of user-designed sequential plans via the same program. 

6) Comparison of sequential sampling plans based on economic parameters with 

plans derived from classical sequential statistical theory (founded on perceived 

levels of Types I and II error) through a computer simulation program ( coded 

in FORTRAN). 

These areas are highlighted and discussed in the following paragraphs. 

Economic Consequences of Measurement Error 

In practice, batch disposition as targeted in the research problem is often accomplished 

based on a single measurement observation. Although the economic effects of 
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measurement error have been widely explored in regard to lot-by-lot sampling by 

attributes and variables, the area has been neglected in the batch sampling scenario. 

SPRT Application 

The statistical SPRT (Sequential Probability Ratio Test) method [59] is used in examining 

the known measurement variance inspection scenario. This sampling procedure has not 

previously been applied to the research problem. 

Likelihood Ratio of Non-Central t-Distributions 

In the case of unknown measurement system variance (representing composite 

hypotheses), exact solution of the problem using SPRT theory requires utilizing 

probabilities of the non-central t-distribution. Previous applications of sequential t-tests 

require table searches and/or approximations. The computer program provided as a 

product of this research effort represents an exact solution of the problem through the use 

of SPRT theory. This contribution is in addition to the previously unexplored application 

of the sequential statistical sampling theory to the research problem. 

Economic Modeling of the Problem 

The economic modeling of the research problem represents the single most significant 

contribution of this research writing. Through explicit definition of the costs associated 

with sampling and erroneous disposition decisions and application of Bayesian decision 

theory in consideration of batch historical data, optimal economic plans are developed. 

The economic· plan design also requires a priori designation of a maximum number of 
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observations which are to be tolerated in making the batch disposition decision. The 

economic model is developed using prior and posterior costing approaches of Bayesian 

Decision Theory. 

Comprehensive Computer Program 

The end-product of the research effort is a comprehensive computer program which 

applies the statistical and economic optimization models to the decision problem. The 

program also provides expected cost data for sequential economic plans which the user 

designs (rather than the optimal plan provided by the program). 

Simulation Program 

In order to assess the economic-based sampling plan against a plan based on statistical 

SPRT theory, a FORTRAN simulator is provided. The simulator draws observations from 

the prior product distribution and applies both the economic and statistical plans in 

reaching separate disposition decisions. The decisions are compared on economic and 

statistical bases. 

8.2 RESULTS AND CONCLUSION 

The optimum economic plan design provided as output from the computer program yields 

lowest expected total cost in all situations examined. Statistical scenarios are explored for 

various levels of error risk (a and~) and indifference limits as required by the simple 

hypothesis SPR T. In the economic case, expected costs are found for differing prior batch 
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distributions and various input cost combinations. The statistical plans are compared to 

the optimum economic plans through the use of computer simulation programs which 

examine both models in terms of resulting costs. 

An increase in maximum number of allowed observations produces decreasing expected 

costs in both the statistical and economic cases. All cost data used in the analysis assumes 

that the cost of an additional observation is low relative to the costs associated with 

incorrect decisions. 

Within the statistical model, variations among risk levels have differing impacts on 

expected costs depending on the indifference levels which are specified by the user. That 

is, the specified levels of a and f3 must be considered in conjunction with the indifference 

limits to minimize the expected cost of the plan. 

Economic expected costs are explored for various values of the mean of the prior 

distribution. Additionally, various economic input costs are examined. Expected plan 

costs are highest when the prior batch distribution mean is close to the specification limit. 

Around the pivot point of the specification, expected costs of erroneous disposition are 

symmetrical, as are the economic decision limits selected for economic sampling. 

The comprehensive FORTRAN computer program which is presented as an end-product 

of this research facilitates economic plan optimization and statistical plan implementation. 

Economic plans may be designed for a maximum of three measurement observations. The 
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statistical routine accepts a maximum of fifty observations in dictating a disposition 

decision. The statistical routine uses truncated SPRT theory in the event that no decision 

is reached prior to the observation maximum (as specified by the user, up to fifty 

iterations). An additional program module allows the user to create his/her own economic 

sampling plan and view expected cost information based on user inputs. 

8.3 FUTURE RESEARCH OPPORTUNITIES 

This research effort exposes several additional research opportunities existing in this area. 

Specifically, 

1) Consideration of two-sided specifications in the case of homogeneous batch 

disposition by a single variable characteristic in the presence of measurement 

error. 

2) Further increases in maximum allowable observations in further optimizing the 

economic problem for all nmax. 

3) Theoretical optimization of risk levels and indifference limits specified in the 

statistical problem. Although expected statistical costs (simulated) exceeded 

the optimum economic situation in all cases explored, it is believed that an 

optimal statistical plan will produce expected costs which approach the optimal 

economic plan. 

4) Modification of the computer program to provide application of the optimal or 

user-specified economic plan. The current program identifies the optimal plan 
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but does not accept observation input and dictate the appropriate disposition 

decision. 

5) Consideration of the known measurement error variance case in which 

truncation is accomplished through the use of"Wedge Plans" rather than the 

Wald truncation rule [2, 59] utilized in the research. 

There are other related areas in which the problem may be extended to provide additional 

research opportunities. It is hoped that the information presented in this research effort 

represents a significant contribution to the area of quality control. 
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APPENDIX A 

COMPREHENSIVE COMPUTER PROGRAM FOR 

ECONOMIC PLAN OPTIMIZATION AND STATISTICAL 

BATCH DISPOSITION (FORTRAN Code Listing) 
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c*************************************************** 
c main for overseeing economic and statistical program 
c modules 
c*************************************************** 

igo=O 
5 continue 

print* 
print*,' Sequential Testing Program' 
print* 
print*,'Please select one of the following options:' 
print* 
print*,' 1 Economic Testing' 
print*,' * Plan Optimization' 
print*,' * Expected Cost Calculation' 
print* 
print*,' 2 Statistical Testing' · 
print*,' * Known Measurement Error Variance' 
print*,' * Unknown Measurement Error Variance' 
print* 
print*,' 3 Exit Program' 
print* 
read(* ,21 O,err=5)igo 
if(igo.lt. l.or.igo.gt.3)then 

print*,'**** Invalid Entry. Please Reenter. ****' 
print* 
goto 5 

endif 
print* 
if(igo.eq.3)goto 200 
if(igo.eq. l )then 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
50 continue 

print* 
print*,' Economic Testing Plans' 
print* 
print*,'Please select one of the following options:' 
print* 
print*,' 1 Economic Parameter Optimization' 
print*,' (Maximum Iterations Limited to Three)' 
print* 
print*,' 2 Expected Costs Calculation for' 
print*,' User-Entered Plan' 
print*,' (Maximum Iterations Limited to Three)' 
print* 
print*,' 3 Return to Main Program' 
print* 
read(* ,210 ,err=5)igo 
if(igo.lt. l .or.igo.gt.3)then 

print* ,'Invalid Entry. Please Reenter.' 
print* 
goto 50 

endif 
if(igo.eq.3)goto 5 
if(igo.eq.2)then 
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call calcst(igo) 
goto 50 

endif 
60 print* 

print*, 'What is the maximum number of measurement' 
print*, 'iterations which you are willing to make?' 
print* ,'Enter 1, 2 or 3' 
print* 
read(*, *,err=60)nmx 
if(nmx.lt.1.or.nmx.gt.3)then 

print*,'**** Invalid Entry. Please Reenter. ****' 
print* 
goto 60 

endif 
if(nmx.eq.1 )call a2nlmgt(nmx) 
if(nmx.eq.2)call a2n2mgt(nmx) 
if(nmx.eq.3)call a2n3mgt(nmx) 
goto 50 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
endif 
if(igo.eq.2)then 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
100 continue 

print* 
print*,' Statistical Testing Plans' 
print* 
print*,'Please select one of the following options:' 
print* 
print*,' 1 Known Measurement Error Variance' 
print*,' Sequential Data Entry and Batch Disposition' 
print* 
print*,' 2 Unknown Measurement Error Variance' 
print*,' Sequential Data Entry and Batch Disposition' 
print* 
print*,' 3 Return to Main Program' 
print* 
read(* ,210,err= 1 OO)igo 
if(igo.lt.1.or.igo.gt.3)then 

print*,'**** Invalid Entry. Please Reenter. ****' 
print* 
goto 100 

endif 
if(igo.eq.3)goto 5 
if(igo.eq. l )then 

call known(igo) 
goto 100 

endif 
if(igo.eq.2)then 

call unkn(igo) 
goto 100 

endif 
endif 

200 continue 
print* 
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print* ,'Exiting Program ... ' 
print* 

210 format(il) 
return 
end 

C ***************************************************** 
C ************************************~*'************** 
C ***************************************~************* 
c sub for the economic case of nmax=l 
c called from main 
C 

C ***************************************************** 
subroutine a2nlmgt(n) 
dimension thta(4),tau(4),pcs{3) 
real*8 a,b,tcnewlo,xmin(2) 
character iopt 
character* 5 spec 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
spec='Upper' 

c call routine to input parameters 
call vardef(u,thta(l),tau(l),bias,sme,sl,a2,r2,nspc) 

&~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c Use given spec, but find for symmetrical prior mean 

if(nspc.eq.2)then 
thta( 1 )=2 *u-thta(l) 
spec='Lower' 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

C 

n=l 

tau(2)=sqrt(l ./(l ./sme**2. + I ./tau( 1 )**2.)) 
j=l 

c j is the iteration number 
c set limits for the conditional error curves 

call setabx(a,bj) 
if(b.le.a)then 

tcnewlo=sl 
pcs(l)=sl 
pcs(2)=0 
pcs(3)=0 
xmin(l )=b+( .5 *( a-b)) 
goto 200 

endif 
call cmaxnl(a,b,xmin(l)) 
call cost(xmin(l),tcost,pcs) 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c change prior mean back before print 
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c find cl by symmetry around the specification 
if(nspc.eq.2)then 

xmin(l )=2 *u-xmin(l) 
thta( I )=2 *u-thta(l) 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

write(*,610):xmin(l),xmin(l)-bias · 
write(*,612) 
write(* ,614)pcs(l) 
write(* ,616)pcs(2) 
write(* ,618)pcs(3) 
write(* ,620)tcost 

90 print*,'Send output to file? (YIN)' 
read(* ,500)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N'.and.iopt.ne. 'y'.and. 

&iopt.ne. 'n')goto 90 
if(iopt.eq.'n'.or.iopt.eq.'N')goto 200 
write(2,510)thta(l) 
write(2,520)tau(l) 
write(2,530)spec,u 
write(2,540)sme 
write(2,550)bias 
write(2,560) 
write(2,570)sl 
write(2,580)a2 
write(2,590)r2 
write(2,600) 
write(2,610)xmin(l),xmin(l)-bias 
write(2,612) 
write(2,614)pcs(l) 
write(2,616)pcs(2) 
write(2,618)pcs(3) 
write(2,620)tcost 

200 continue 
500 format(al) 
510 format('PriorMean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Measurement Error Std. Dev.= ',fl3.8) 
550 format(' Measurement Error Mean (Bias= ',fl3.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A)= ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' **************************************') 
610 format(' Zero-Bias Cl= ',fl6.8,5x,'Bias Adj Cl= ',fl6.8) 
612 format(' Expected Plan Costs:') 
614 format(' Sampling on 1 = ',fl2.4) 
616 format(' False Accept on I= ',fl2.4) 
618 format(' false Reject on 1 = ',fl2.4) 
620 format(' Expected Total Cost= ',fl2.4) 

return 
end 
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C ***************************************************** 
C ***************************************************** 
C *****************************~*********************** 
c sub which evaluates the conditional probability 
c at a point, x 
c flg=flag indicating type i or ii error 
c j=iteration number 
c ffunc=function value which is returned 
c functions obtained from mead 
C 

c calls sub errint from stegun and zucker 
c must bring in a x to this sub, which is obtained 
c from gaussian quadrature 
c******************************************************* 
C 

C 

C 

C 

C 

subroutine func(j,flg,x,ffunc) 

common /parms/ tau,sme,thta 

real*8 x,ffunc,from,pcdx,pi 
dimension tau(4),thta(4) 

c eqn common to both errors (type I and II) 
C 

C 

pi=3.141592654d0 
c call to pcmu simply gets another part of the function 

call pcmu(x,flg,from) 
pcdx=l.dO/(sqrt(2.dO*pi)*sqrt(tau(j)**2.+sme**2.))* 

&exp(-.5dO*((x-thta(j))/sqrt(tau(j)**2. +sme**2. ))**2.) 
ffunc=from*pcdx 

25 continue 
return 
end 

c******************************************************* 
C 

C 

C 

C 

************************************************** 
************************************************** 
sub for solution of the nmax=2 problem using 
approach 2 (posterior costs). 

c******************************************************* 
c nmx= maximum iteration requested 
C 

C 

subroutine a2n2mgt(nmx) 

dimension thta(4),tau(4) 
real*8 start(IO),step(IO),xmin(20),xsec(20),tcnewlo, 

&tcsec,reqmin,a,b,xl,c2,pcs(9),xtmp,tcst 
character iopt 
character* 5 spec 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
common /cult/ c2 
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spec='Upper' 
c call sub to initialize input parameters 
c nspc returned as the type of spec (upper or lower) 

call vardef(u,thta(l),tau(l),bias,sme,sl,a2,r2,nspc) 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c Use given spec, but find for symmetrical prior mean 

if(nspc.eq.2)then 
thta(l )=2 *u-thta(l) 
spec='Lower' 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

n=l 
nmx=2 
xl=u 

C 

.c calculate posterior parameters based on xl=u 
c purpose is to find c2 (which does not vary with xl, 
c so the value ofxl used is irrelevant 
C 

do 30 i=2,nmx+ I 
tau(i)=sqrt(l ./(l./sme**2. + l./tau(i-1)**2.)) 

30 continue 
c find posterior di~tribution parameters at u 
c j=iteration number 

call post(nmx,xl) 
j=l 
call setabx(a,b,j) 

c ifb<a, this implies that the two conditional error curves 
c do not intersect (appreciably) and the cost will simply be 
c that of an iteration 

if(b.le.a)then 
tcnewlo=sl 
pcs(l)=sl 
pcs(2)=0.d0 
pcs(3)=0.d0 
pcs(4)=0.d0 
pcs(5)=0.d0 
pcs(6)=0.d0 
xmin(l)=b+(.5*(a-b)) 
goto 200 

endif 
c store the value of c2 in the variable xmin(3) 
c should be between a and b 
c set xl =u to locate c2 (shouldn't matter) 

j=2 
call cmaxn2(a,b,xl,xmin(3)) 
c2=xmin(3) 

c n=2 unknowns for nelder-mead search, cll(l) and clh(2) 
n=2 
start(l )=(a+c2)/2.d0 
start(2)=(b+c2)/2.d0 
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step( I )=(b-a)/2.dO 
step(2 )=step( I) 
reqmin=.OOOOOldO 
icount=200 
call nelminl(n,start,xmin,xsec,tcnewlo, 

&tcsec,reqmin,step,icount,pcs) 
call clg2a2(xmin,tcst,pcs) 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c change prior mean back before print 
c find cl by symmetry around the specification 

if(nspc.eq.2)then 
xtmp=xmin(l) 
xmin(l)=2*u-xmin(2) 
xmin(2)=2*u-xtmp 
xmin(3)=2*u-xmin(3) 
thta( I )=2 *u-thta(l) 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%o/~~%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

write(*, 61 O)xmin(3 ),xmin(3 )-bias 
write(*,614)xmin(l),xmin(l)-bias 
write(* ,616)xmin(2),xmin(2)-bias 
write(*,618) 
write(* ,620)pcs(l) 
write(*,622)pcs(2) 
write(* ,624 )pcs(3) 
write(* ,626)pcs( 4) 
write(* ,628)pcs(5) 
write(* ,630)pcs(6) 
write(* ,650)tcnewlo 

90 print*,'Send output to file? (YIN)' 
read(* ,500)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N' .and.iopt.ne. 'y' .and. 

&iopt.ne. 'n')goto 90 
if(iopt.eq. 'n' .or.iopt.eq. 'N')goto 200 
write(2,510)thta(l) 
write(2,520)tau( I) 
write(2,530)spec,u 
write(2,540)sme 
write(2,550)bias 
write(2,560) 
write{2,570)sl 
write(2,580)a2 
write(2,590)r2 
write{2,600) 
write(2,6 l O )xmin(3 ),xmin(3 )-bias 
write(2,614)xmin(l),xmin(l)-bias 
write(2, 6 l 6)xmin(2 ),xmin(2)-bias 
write(2, 618) 
write(2,620)pcs(l) 
write{2, 622 )pcs(2) 
write(2,624 )pcs(3) 

217 



write(2,626)pcs( 4) 
write(2,628)pcs(5) 
write(2,630)pcs(6) 
write(2,650)tcnewlo 

200 continue 
500 format(al) 
510 format(' Prior Mean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Measurement Error Std. Dev. = ',fl3.8) 
550 format(' Measurement Error Mean (Bias) = ',fl3.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A)= ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' **************************************') 
610 format(' Zero-Bias C2 = ',fl6.8,5x,'Bias Adj C2 = ',fl6.8) 
614 format(' Zero-Bias Cl,L = ',fl6.8,5x,'Bias Adj Cl,L = ',fl6.8) 
616 format(' Zero-Bias Cl,H = ',fl6.8,5x,'Bias Adj Cl,H = ',fl6.8) 
618 format(' Expected Plan Costs:') 
620 format(' Sampling on 1 = ',fl2.4) 
622 format(' False Accept on 1 = ',fl2.4) 
624 format(' False Reject on 1 = ',fl2.4) 
626 format(' Sampling on 2 = ',fl2.4) 
628 format(' False Accept on 2 = ',fl2.4) 
630 format(' False Reject on 2 = ',fl2.4) 
650 format(' Expected Total Cost= ',fl2.4) 

return 
end 

c******************************************************* 
C 

C 

C 

C 

************************************************** 
*******************************~****************** 
sub for solution of the nmax=3 problem using · 
approach 2 (posterior costs). 

c******************************************************* 
C 

C 

subroutine a2n3mgt(nmx) 

dimension thta( 4 ),tau( 4) 
real*8 start(lO),step{lO),xmin(20),xsec(20),tcnewlo, 

&tcsec,reqmin,a,b,xl ,x2,c3,pcs(9),xtmp,tcst 
character iopt 
character*5 spec 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
common /cult/ c3 
spec='Upper' 

c call sub to initialize input parameters 
c nspc returned as the type of spec {upper or lower) 

call vardef{u,thta(l),tau(l),bias,sme,sl,a2,r2,nspc) 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
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c Use given spec, but find for symmetrical prior mean 
if(nspc.eq.2)then · 

thta(l)=2*u-thta(l) 
spec='Lower' 

endif 
&lo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

C 

nmx=3 
xl=dble(u) 
x2=dble(u) 

c calculate posterior parameters based on xl =u, x2=u 
c purpose is to find c3 (which does not vary with xl or x2 
c so the value ofxl used is irrelevant 
C 

do 30 i=2,nmx+ 1 
tau(i)=sqrt(l ./(1./sme**2. + 1./tau(i-1 )**2.)) 

30 continue 
c find posterior distribution parameters at u 

call post(nmx-1,xl) 
call post(nmx,x2) 
j=l 
call setabx(a,bj) 
if(b.le.a)then 

tcnewlo=sl 
pcs(l)=sl 
pcs(2)=0.d0 
pcs(3)=0.d0 
pcs(4)=0.d0 
pcs(5)=0.d0 
pcs(6)=0.d0 
pcs(7)=0.d0 
pcs(8)=0.d0 
pcs(9)=0.d0 
xmin(l)=b+(.5*(a-b)) 
print*,'Single iteration required; cl= ',xmin(l) 
goto 200 

endif 
c store the value of c2 in the variable xmin(3) 
c should be between a and b 
C 

C 

C 

set xl =u to locate c2 (shouldn't matter) 
j=3 
call cmaxn3(a,b,xl,x2,xmin(5)) 
c3=xmin(5) 
n=4 unknowns for nelder-mead search, cll(l) and clh(2) 
c21(3) and c2h(4). 
n=4 
start(l)=(a+c3)/2.d0 
start(2)=(b+c3 )/2.dO 
start(3 )=( a+c3)/2.d0 
start( 4 )=(b+c3)/2.d0 
step( 1 )=(b-a)/2.dO 
step(2)=step(l) 
step(3 )=step( 1) 
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step( 4 )=step( 1) 
reqmin=.00000 ldO 
icount=200 
call nelminl(n,start,xmin,xsec,tcnewlo, 

&tcsec,reqmin,step,icount,pcs) 
call clg3out(xmin,tcst,pcs) 

~lo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmet:Iy, only 
c change prior mean back before print· 
c find cl by symmet:Iy around the specification 

if(nspc.eq.2)then 
xtmp=xmin(l) 
xmin(l)=2*u-xmin(2) 
xmin(2)=2 *u-xtmp 
xtmp=xmin(3) 
xmin(3)=2*u-xmin( 4) 
xmin( 4 )=2*u-xtmp 
xmin(5)=2*u-xmin(5) 
thta( I )=2 *u-thta(l) 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

write(* ,602)xmin(5),xmin(5)-bias 
write(* ,604 )xmin(3 ),xmin(3 )-bias 
write(* ,61 O)xmin( 4 ),xmin( 4 )-bias 
write(*,614)xmin(l),xmin(l)-bias 
write(* ,616)xmin(2),xmin(2)-bias 
write(* ,618) 
write(* ,620)pcs(l) 
write(* ,622)pcs(2) 
write(*,624)pcs(3) 
write(* ,626)pcs( 4) 
write(* ,628)pcs(5) 
write(*,630)pcs(6) 
write(* ,632)pcs(7) 
write(* ,634)pcs(8) 
write(* ,636)pcs(9) 
write(* ,650)tcnewlo 

90 print*,'Send output to file? (YIN)' 
read(* ,500)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N'.and.iopt.ne. 'y' .and. 

&iopt.ne. 'n')goto 90 
if(iopt.eq. 'n' .or.iopt.eq. 'N')goto 200 
write(2,510)thta(l) 
write(2,520)tau(l) 
write(2,530)spec,u 
write(2,540)sme 
write(2,550)bias 
write(2,560) 
write(2,570)sl 
write(2,580)a2 
write(2,590)r2 
write(2,600) 

220 



write(2,602)xmin(5),xmin(5)-bias 
write(2,604 )xmin(3 ),xmin(3 )-bias 
write(2,610)xmin(4),xmin(4)-bias 
write(2,614)xmin(l),xmin(l)-bias 
write(2,6 l 6)xmin(2),xmin(2)-bias 
write(2,618) 
write(2,620)pcs(l) 
write(2,622)pcs(2) 
write(2,624)pcs(3) 
write(2,626)pcs( 4) 
write(2,628)pcs(5) 
write(2,630)pcs(6) 
write(2,632)pcs(7) 
write(2,634 )pcs(8) 
write(2,636)pcs(9) 
write(2,650)tcnewlo 

200 continue 
500 format(al) 
510 format(' Prior Mean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Measurement Error Std. Dev.= ',fl3.8) 
550 format(' Measurement Error Mean (Bias)= ',fl3.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A)= ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' **************************************') 
602 format(' Zero-Bias C3 = ',fl6.8,5x,'Bias Adj C3 = ',fl6.8) 
604 format(' Zero-Bias C2,L = ',fl6.8,5x,'Bias Adj C2,L = ',fl6.8) 
610 format(' Zero-Bias C2;H = ',fl6.8,5x,'Bias Adj C2,H = ',fl6.8) 
614 format(' Zero-Bias Cl,L = ',fl6.8,5x,'Bias Adj Cl,L = ',fl6.8) 
616 format(' Zero-Bias Cl,H = ',fl6.8,5x,'Bias Adj Cl,H = ',fl6.8) 
618 format(' Expected Plan Costs:') 
620 format(' Sampling on I= ',fl2.4) 
622 format(' False Accept on I = ',fl2.4) 
624 format(' False Reject on I = ',fl2.4) 
626 format(' Sampling on 2 = ',fl2.4) 
628 format(' False Accept on 2 = ',fl2.4) 
630 format(' False Reject on 2 = ',fl2.4) 
632 format(' Sampling on 3 = ',fl2.4) . 
634 format(' False Accept on 3 = ',fl2.4) 
636 format(' False Reject on 3 = ',fl2.4) 
650 format(' Expected Total Cost= ',fl2.4) 

return 
end 

c******************************************************* 
C 

C 

C 

C 

C 

************************************************** 
************************************************** 
sub that performs the cluged integration of the cost 
components between ell and clh (in array cl) 

c pcs array holds the various cost components 
c I =sampling on I 
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c 2=false accept on 1 
c 3=false reject on 1 
c 4=sampling on 2 
c 5=false accept on 2 
c 6=false reject on 2 ... 7-9 for iteration 3 
c******************************************************* 

C 

C 

subroutine clg2a2(cl,tctot,pcs) 
dimension thta(4),tau(4),x(2),p(2) 
real*8 cl(2),tc4int,tc5int,tc6int,tctot,pcs(9) 
real *8 tc4pre, tc5pre, tc6pre,delx,bignum 
real*8 acc,rej,acc2,rej2,a,b,cll,clh,c2,xl,xlpre 
real*8 al,bl 
real*8 alo,blo,ahi,bhi 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,al,bl 
common Incur/ j 
common /cult/ c2 

print*, 'Working ... ' 
cll=cl(l) 
clh=cl(2) 

c this sequence finds the+/- infinity limits for the 
c conditional false dispositions at n=2, based on the 
c possible ex1reme values ofxl ==>Cll and Clh 
C 

C 

nmx=2 
j=2 
call post(nmx,cll) 
call setabx(alo,blo,j) 
call post(nmx,clh) 
call setabx(ahi,bhi,j) 
a=dminl(alo,ahi) 
b=dmaxl (blo,bhi) 

bignum=9. 99d+55 
tctot=O.dO 
tc4int=O.d0 
tc5int=O.d0 
tc6int=O.d0 
istp=O 
delx=(bl-al)/100.dO 

ccccccccccccccccccc 
C 

xl=cll 
C 

j=l 
call setabx(al,bl,j) 

C 

c compare clh, ell to a,b from n=l to see if they were 
c at all probable 
C 

if(cll.gt.clh)then 
rej=lOO.dO 
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acc=lOO.dO 
goto 50 

endif 
if(clh.gt.bl)then 

rej=lOO.dO 
else 

flg=l. 
call qgaus(i,flg,clh,bl,rej) 

endif 
if(cll.lt.al)then 

acc=lOO.dO 
else 

flg=2. 
call qgaus(i,flg,al,cll,acc) 

endif 
50 continue 

pcs(l)=dble(sl) 
pcs(2)=dble(a2)*acc 
pcs(3)=dble(r2)*rej 
if(cll.gt.clh)goto 80 
j=2 

70 continue 
c compare 2c2-xl limits to extremes to determine if prob is 
c nonzero 

call post(nmx,xl) 
if(2.d0*c2-xl.lt.a)then 

acc2=0.d0 
else 

flg=2. 
call qgaus(i,flg,a,2.d0*c2~xl,acc2) 

endif 
if(2.dO*c2-xl.gt.b)then 

rej2=0.d0 
else 
flg=l. 
call qgaus(i,flg,2.d0*c2-xl,b,rej2) 

endif 
cost4=sl 
costa5=acc2 *a2 
costr6=rej2 *r2 

c***************************************************** 
if (istp.eq.O)then 

tc4pre=cost 4 
tc5pre=costa5 
tc6pre=costr6 
xlpre=xl 
istp=l 

else 
c marginal on xl is N(thetal,sme"2+taul"2) 

x(l )=(xl pre-thta( I ))/sqrt(tau( I )**2. +sme**2.) 
x(2)=(xl -thta(l) )/sqrt(tau(l )**2. +sme**2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc4int=tc4int+prob*((cost4+tc4pre)/2.d0) 
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tc5int=tc5int+prob*( ( costa5+tc5pre )/2.dO) 
tc6int=tc6int+prob*( ( costr6+tc6pre )/2.dO) 
tc4pre=cost4 
tc5pre=costa5 
tc6pre=costr6 
xlpre=xl 

endif 
c***************************************************** 

xl=xl+delx 
c this next chunk of code attempts to account for the 
c slack between the last xl and clh 

if (xl.gt.clh)then 
tc4int=tc4int+((clh-xlpre)/delx)*prob*((cost4+tc4pre)/2.d0) 
tc5int=tc5int+( ( c 1 h-xl pre )/delx)*prob*( ( costa5+tc5pre )/2. dO) 
tc6int=tc6int+((clh-xlpre)/delx)*prob*((costr6+tc6pre)/2.d0) 

goto 80 
endif 
goto 70 

80 continue 
tctot=pcs( 1 )+pcs(2)+pcs(3 )+tc4 int+tc5int+tc6int 
pcs( 4 )=tc4 int 
pcs(5)=tc5int 
pcs(6)=tc6int 

200 continue 
return 
end 

c******************************************************* 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

************************************************** 
************************************************** 
sub that performs the cluged integration of the cost 
components between c2l and c2h 

xl is the 1st observation value at which the 
integration is performed 
tc7-9int are the cost components for the third 
iteration passed back to the outer intgral loop 
(integrating between ell and clh). 

c******************************************************* 
subroutine clgin(c21,c2h,xl,tc7int,tc8int,tc9int) 

C 

dimension thta(4),tau(4),x(2),p(2) 
real*8 xl,tctot,delx2,c21,c2h 
real *8 tc7 int,tc8int, tc9int, tc7pre,tc8pre, tc9pre 
real*8 acc3,rej3,alst,blst,c3,x2,x2pre,a,b 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 
common /infl/ alst,blst 
real*8 alo,blo,ahi,bhi 
common Incur/ j 
common /cult/ c3 

print*,' Inner Integral Loop' 
tctot=O.dO 
tc7int=O.d0 
tc8int=O.d0 
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C 

tc9int=O.d0 
istp=O 
delx2=(blst-alst)/100.d0 

c this sequence finds the +/- infinity limits for the 
c conditional false dispositions at n=2, based on the 
c possible extreme values of xl =>Cll and Clh 
C 

nmx=3 
call post(nmx,2.dO*c21-xl) 
call setabx(alo,blo,nmx) 
call post(nmx,2.dO*c2h-xl) 
call setabx(ahi,bhi,nmx) 
a=dminl(alo,ahi) 
b=dmaxl(blo,bhi) 

ccccccccccccccccccc 
x2=2.d0*c21-xl 

50 continue 
j=3 

70 continue 
call post(nmx,x2) 

ccccccccc call setabx(a,bj) 
x31im=3 .d0*c3-xl-x2 
if(x31im.lt.a)then 

acc3=0.d0 
else 

flg=2. 
call qgaus(j,flg,a,3 .dO*c3-xl-x2,acc3) 

endif 
if(x31im.gt.b )then 

rej3= O.dO 
else 

flg=l. 
call qgaus(j,flg,3 .dO*c3-xl-x2,b,rej3) 

endif 
cost7=sl 
costa8=acc3*a2 
costr9=rej3 *r2 

c***************************************************** 
if (istp.eq.O)then 

tc7pre=cost7 
tc8pre=costa8 
tc9pre=costr9 
x2pre=x2 
istp=l 

else 
c marginal on x2jxl is N(theta2,sme"2+tau2"2) 

x( 1 )=(x2pre-thta(2) )/sqrt(tau(2)* *2. +sme* *2.) 
x(2)=(x2-thta(2) )/sqrt(tau(2)* *2. +sme* *2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc7int=tc7int+prob*((cost7+tc7pre)/2.d0) 
tc8int=tc8int+prob*( ( costa8+tc8pre )/2.dO) 
tc9int=tc9int+prob*( ( costr9+tc9pre )/2.dO) 
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tc7pre=cost7 
tc8pre=costa8 
tc9pre=costr9 
x2pre=x2 

endif 
c***************************************************** 

x2=x2+delx2 
c this next chunk of code accounts for the 
c slack between the last xl and clh 

if (x2.gt.2.*c2h-xl)then 
tc7int=tc7int+((2. *c2h-xl-x2pre )/delx2)*prob* 

& ((cost7+tc7pre)/2.d0) 
tc8int=tc8int+((2. *c2h-xl-x2pre)/delx2)*prob* 

& ((costa8+tc8pre)/2.d0) 
tc9int=tc9int+((2. *c2h-xl-x2pre)/delx2)*prob* 

& ((costr9+tc9pre)/2.d0) 
goto 80 

endif 
goto 70 

80 continue 
return 
end 

c***************************************************** 
C 

C 

C 

C 

C 

C 

************************************************ 
************************************************ 
sub that performs the cluged integration of the cost 
components between ell and clh (in array c) 
array c also contains current values of c21 and c2h 

c cost components carried in array pcs 
c I =sampling on I 
c 2=false accept on I 
c 3=false reject on I 
c 4=sampling on 2 
c 5=false accept on 2 
c 6=false reject on 2 ... 7-9 for iteration 3 
c***************************************************** 

C 

subroutine clg3out(c,tctot,pcs) 
dimension thta(4),tau(4),x(2),p(2) 
real*8 c(4),xl,tctot,delxl,cll,clh,xlpre,c21,c2h 
real*8 tc4pre,tc5pre,tc6pre,tc4int,tc5int,tc6int 
real *8 tc7int,tc8int, tc9int,tc7pre, tc8pre,tc9pre 
real *8 acc,rej,a,b,c3 ,bignum,acc2,rej2,tc7, tc8, tc9 ,pcs(9) 
real*8 alo,blo,ahi,bhi 
real*8 al,bl 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,al,bl 
common /infl/ a,b 
common Incur/ j 
common /cult/ c3 

print*, 'Outer Integral Loop' 
bignum=9.99d+55 
tctot=O.dO 
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C 

C 

costl=O. 
costa2=0. 
costr3=0. 
tc4int=O.d0 
tc5int=O.d0 
tc6int=O.d0 
tc7int=O.d0 
tc8int=O.d0 
tc9int=O.d0 

cll=c(l) 
clh=c(2) 
c2l=c(3) 
c2h=c(4) 

c sequence that checks if tested cutoff values are beyond 
c the "infinity" limits that have been found at n= 1 

if(clh.gt.bl)then 

C 

tctot=bignum 
goto 100 

endif 
if(cll.lt.al)then 

tctot=bignum 
goto 100 

endif 
if(c21.lt.cll)then 

tctot=bignum 
goto 100 

endif 
if(c2h.gt.clh)then 

tctot=bignum 
goto 100 

endif 
if( c21.gt.c3 )then 

tctot=bignum 
goto 100 

endif 
if( c2h.lt. c3 )then 

tctot=bignum 
goto 100 

endif 

istp=O 
c delxl is the step size of integration 

delxl =(clh-cll)/100.dO 
C 

c this sequence finds the+/- infinity limits for the 
c conditional false dispositions at n=2, based on the 
c possible extreme values ofxl ==>Cll and Clh 
C 

j=2 
call post(i,cll) 
call setabx(alo,bloj) 
call post(j,clh) 
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call setabx(ahi,bhij) 
a=dminl(alo,ahi) 
b=dmaxl(blo,bhi) 

ccccccccccccccccccc 
xl=cll 
j=l 

flg=l. 
call qgaus(j,flg,clh,bl,rej) 
flg=2. 
call qgaus(j,flg,al,cll,acc) 

50 continue 
costl=sl 
costa2=a2 *ace 
costr3=r2*rej 

70 continue 
j=2 

C 

call post(j,xl) 

if(2.dO*c21-xl.lt.a)then 
acc2=0.d0 

else 
flg=2. 
call qgaus(j,flg,a,2.d0*c21-xl,acc2) 

endif 
if(2.d0*c2h-xl.gt.b)then 

rej2=0.d0 
else 

flg=l. 
call qgaus(j,flg,2.d0*c2h-xl,b,rej2) 

endif 
cost4=sl 
costa5=a2 *acc2 
costr6=r2*rej2 
call clgin(c21,c2h,xl,tc7,tc8,tc9) 

c***************************************************** 
if (istp.eq.O)then 

tc4pre=dble(cost4) 
tc5pre=dble( costa5) 
tc6pre=dble( costr6) 
tc7pre=tc7 
tc8pre=tc8 
tc9pre=tc9 
xlpre=xl 
istp=l 

else 
c marginal on xl is N(thetal,sme/\2+taul /\2) 

x(l)=(xlpre-thta(l))/sqrt(tau(1)**2.+sme**2.) 
x(2)=(xl-thta(l ))/sqrt(tau(l )**2. +sme**2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc4 int=tc4 int+prob*( ( dble( cost4 )+tc4pre )/2.dO) 
tc5int=tc5int+prob*( ( dble( costa5)+tc5pre )/2 .dO) 
tc6int=tc6int+prob*( ( dble( costr6)+tc6pre )/2 .dO) 
tc7int=tc7int+prob*((tc7+tc7pre)/2.d0) 

228 



tc8int=tc8int+prob*( (tc8+tc8pre )/2.dO) 
tc9int=tc9int+prob*( (tc9+tc9pre )/2.dO) 
tc4pre=dble( cost4) 
tc5pre=dble( costa5) 
tc6pre=dble( costr6) 
tc7pre=tc7 
tc8pre=tc8 
tc9pre=tc9 
xlpre=xl 

endif 
c***************************************************** 

xl=xl+delxl 
c this next chunk of code accounts for the 
c slack between the last xl and clh 

if (xl.gt.clh)then 
tc4int=tc4int+((clh-xlpre)/delxl)*prob* 

& ((dble(cost4)+tc4pre)/2.d0) 
tc5int=tc5int+( ( c lh-xl pre )/delxl )*prob* 

& ((dble(costa5)+tc5pre)/2.d0) 
tc6int=tc6int+( ( c lh-xl pre )/delxl )*prob* 

& ((dble(costr6)+tc6pre)/2.d0) 
tc7int=tc7int+( ( c I h-xl pre )/delx I )*prob* 

& ((tc7+tc7pre)/2.d0) 
tc8int=tc8int+((clh-xlpre)/delxl)*prob* 

& ((tc8+tc8pre)/2.d0) 
tc9int=tc9int+( ( c I h-xl pre )/delxl )*prob* 

& ((tc9+tc9pre)/2.d0) 
goto 80 

endif 
goto 70 

80 continue 
tctot=dble( costl +costa2+costr3 )+tc4 int+tc5int+tc6int+ 

&tc7int+tc8int+tc9int 
pcs( I )=dble( cost I) 
pcs(2)=dble( costa2) 
pcs(3 )=dble( costr3) 
pcs( 4 )=tc4 int 
pcs(5)=tc5int 
pcs( 6)=tc6int 
pcs(7)=tc7int 
pcs(8)=tc8int 
pcs(9)=tc9int 

100 continue 
return 
end 

c***************************************************** 
C 

C 

************************************************ 
************************************************ 

c sub to calculate cl 
c by step search (a and bare+/- infinity) 
c conv is convergence check size 
c***************************************************** 

subroutine cmaxnl(a,b,c) 
C 
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real*8 a,b,c,ratchk 
common /costs/ sl,a2,r2 
c=a 
cpre=c 
conv=.00001 

c del is step size from a to b 
c rat is the cost indifference ratio 

del=(b-a)/100.dO 
rat=r2/(r2+a2) 
flg=2. 
n=l 

c pcmu evaluates the function at c 
c returns ratio ratchk to compare to rat 
c sgn used to see if rat has been overstepped 
c then reduce del and come at it again 
C 

call pcmu(c,flg,ratchk) 
delchk=rat-ratchk 
print* 
sgn=delchk/abs( delchk) 
if(abs(delchk).le.conv)goto 200 
c=c+del 

20 continue 
C 

C 

call pcmu(c,flg,ratchk) 
delchk=(rat-ratchk) 
if (abs(delchk).gt.conv)then 

if( delchk/abs( delchk).ne. sgn)then 
del=del/10. 
c=cpre+del 
goto 20 

endif 
cpre=c 
c=c+del 
goto 20 

endif 

200 continue 
return 
end 

c***************************************************** 
C 

C 

C 

C 

C 

************************************************ 
************************************************ 
sub to calculate c2 
by step search (a and b are +/- infinity) 
function evaluated at observation xl 

c conv is convergence check size 
c***************************************************** 

subroutine cmaxn2(a,b,xl,c) 
C 

real*8 a,b,c,ratchk,xl 
common /costs/ sl,a2,r2 
common Incur/ j 
c=a 
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cpre=c 
conv=.000010 

c del is step size from a to b 
c rat is the cost indifference ratio 

del=(b-a)/100.dO 
rat=r2/(r2+a2) 
flg=2. 
n=l 

c pcmu evaluates the function at c 
c returns ratio ratchk to compare to rat 
c sgn used to see if rat has been overstepped 
c then reduce del and come at it again 
C 

call pcmu(2*c-xl,flg,ratchk) 
delchk=rat-ratchk 
sgn=delchk/abs( delchk) 
if(abs(delchk).le.conv)goto 200 
c=c+del 

20 continue 
call pcmu(2*c-xl,flg,ratchk) 
delchk=(rat-ratchk) 
if ( abs( delchk) .gt. conv)then 

if( delchk/abs( delchk).ne.sgn)then 
del=del/10 
c=cpre+del 
goto 20 

endif 
cpre=c 
c=c+del 
goto 20 

endif 
200 continue 

return 
end 

c***************************************************** 
C 

C 

C 

C 

C 

C 

************************************************ 
************************************************ 
subrou°tine to calculate c3 

by step search (a and bare +/- infinity) 
function is evaluated at xl and x2 (observations) 
conv is convergence check size 

c***************************************************** 
C 

C 

subroutine cmaxn3(a,b,xl,x2,c) 

real*8 a,b,c,ratchk,xl,x2 
common /costs/ sl,a2,r2 
common Incur/ j 
c=a 
cpre=c 
conv=.000010 

c del is step size from a to b 
c rat is the cost indifference ratio 

del=(b-a)/100.dO 
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rat=r2/(r2+a2) 
flg=2. 
n=l 

c pcmu evaluates the function at c 
c returns ratio ratchk to compare to rat 
c sgn used to see if rat has been overstepped 
c then reduce del and come at it again 
C 

call pcmu(3 *c-xl-x2,flg,ratchk) 
delchk=rat-ratchk 
sgn=delchk/abs( delchk) 
if(abs(delchk).le.conv)goto 200 
c=c+del 

20 continue 
call pcmu(3*c-xl-x2,flg,ratchk) 
delchk=( rat-ratchk) 
if (abs(delchk).gt.conv)then 

if( delchk/abs( delchk) .ne. sgn)then 
del=del/10 
c=cpre+del 
goto 20 

endif 
cpre=c 
c=c+del 
goto 20 

endif 
200 continue 

return 
end 

c***************************************************** 
C 

C 

C 

************************************************ 
************************************************ 
subroutine normal(x,p) 

c algorithm as 2 j.r.statist.soc. c,(1968) v.17,no.2 
c by B. E. Cooper 
C 

c computes normal areas and ordinates for an array of x values 
c***************************************************** 
C 

C 

C 

C 

dimension x(2),p(2),q(2),z(2) 
dimension a(5) 

dimension connor(l 7) 
data connor 
1/ 8.0327350124e-l 7, l.4483264644e-15, 2.4558270103e-14, 
2 3.9554295164e-13, 5.9477940136e-12, 8.350702795le-ll, 
3 l.0892221037e-9, l.3122532964e-8, l.4503852223e-7, 
4 l.458916900le-6, l.3227513228e-5, l.0683760684e-4, 
5 7.5757575758e-4, 4.6296296296e-3, 2.38095238le-2, 0.1, 
6 3.3333333333e-l/ 

data rrt2pi /0.3989422804/ 
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C 

C 

C 

C 

n=2 

ifault=O 
if(n) 1,1,2 

1 ifault=l 
go to 100 

2 do 31 i=l,n 
s=x(i) 
y=s*s 
if (s) 10, 11, 12 

11 z(i)=rrt2pi 
p(i)=0.5 
q(l)=0.5 
goto 31 

c print* ,'series approximation' 

C 

C 

C 

10 s=-s 
12 z(i)=rrt2pi*exp(-.5*y) 

if (s-2.5)13,14,14 
13 y=-.5*y 

p(i)=connor(l) 
do 151=2,17 

15 p(i)=p(i)*y+connor(l) 
p(i)=(p(i)*y+ l.O)*x(i)*rrt2pi+0.5 
q(i)=l .0-p(i) 
goto 31 

14 continue 
a(2)=1.0 
a(5)=1.0 
a(3)=1.0 
y=l.0/y 
a(4)=1.0+y 
r=2.0 

19 do 171=1,3,2 
do 18j=l,2 
k=l+j 
ka=7-k 
a(k)=a(ka)+a(k)*r*y 

18 continue 
r=r+l.O 

17 continue 
atst=(a(2)/a(3))-(a(5)/a(4)) 
if(abs(atst).gt.(.OOOOOl))goto 19 

20 p(i)=(a(5)/a(4))*z(i)/x(i) 
if(x(i))2 l, 11,22 

21 p(i)=-p(i) 
q(i)=l.0-p(i) 
goto 31 

22 q(i)=p(i) 
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p(i)= 1.0-p(i) 
31 continue 
100 continue 

return 
end 

c***************************************************** 
C ************************************************ 
C ************************************************ 
c called from nelmin 
c takes care of the accounting in solving 
c each leg of the tc equation (using qgaus) with 
c estimates provided by nelmin. 
c should receive the array of unknowns, must pass a 
c function value back to nelmin 
C 

c calls sub errint which evaluates the erf function 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
subroutine pcmu(pcarg,flg,from) 
real*8 pcarg,from,a,b 
real*8 erfarg,erf,erfc,erfrat 
dimension tau(4),thta(4) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
erfrat=((pcarg/sme**2.)+(thta(j)/tau(j)**2.))/ 
&( ((1./sme**2. )+(1./tau(j)**2.dO))*tau(j+ 1)) 
erfarg=. 7071067811865475244d0/tau(j+ l)*u

&. 7071067811865475244dO*erfrat 
call errint( erfarg,erf,erfc) 
if (flg.eq.2.)then 

from=.5d0*(1.d0-erf) 
else 
from= .5d0*( erf+ 1.dO) 

endif 
return 
end 

c***************************************************** 
C 

C 

C 

************************************************ 
************************************************ 
sub to calculate the posterior mean 

c***************************************************** 
subroutine post(ix,xl) 
real*8 xl 
dimension thta( 4 ),tau( 4) 
common /parms/ tau,sme,thta,u,a,b 
thta(ix)=(xl/sme**2.d0+thta(ix-l )/tau(ix-1 )**2.dO)/ 

&(l ./sme**2.d0+ l ./tau(ix-1)**2.dO) 
40 continue 

return 
end 

c***************************************************** 
C 

C 

************************************************ 
************************************************ 
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c ten pt gaussian quadrature 
c taken from Press, Flannery, Teukolsky and Vetterling 
c (1986), Numerical Recipes, Cambridge Univ. Press, NY. 
c***************************************************** 
C 

C 

C 

subroutine qgaus(j,flg,a,b,ss) 
real*8 x(5),w(5),ss,xm,xr,dx,tl,t2,a,b 
data x/.1488743389d0,.433395394ld0,.6794095682d0, 

&.8650633666d0,.9739065285d0/ 
data w/.2955242247d0,.2692667193d0,.2190863625d0, 

&.149451349ld0,.0666713443d0/ 
xm=0.5dO*(b+a) 
xr=0.5dO*(b-a) 
ss=O.dO 
do 11 k=l,5 

dx=xr*x(k) 

c the 2nd arg is simply the flag for error type 
c for the cost probability component 
C 

C 

C 

call func(j,flg,xm+dx,tl) 
call func(j,flg,xm-dx,t2) 
ss=ss+w(k)*(tl +t2) 

11 continue 
ss=xr*ss 
return 
end 

c***************************************************** 
C 

C 

C 

C 

C 

C 

C 

C 

C 

************************************************ 
************************************************ 
subroutine to set a (-infinity) and b (infinity) 
practical limits for the function used in order 
to utilize gaussian quadrature 
argj defines which n (not nmax) is current 
j passes from management program 
stores high value in pk, low value in trof 
checks for trof as a fraction of pk to quit 

c***************************************************** 
subroutine setabx(a,bj) 
real*8 x,:ffunc,pk,trof,a,b,liml,lim2 
dimension thta(4),tau(4) 
common /parms/ tau,sme,thta,u 

c reject probability 
c must set b (upper), unknown involving c is lower limit 
c start at u, work up 
c lims 1 and 2 account for the sign of the spec and 
c cutoff values 
C 

liml=O.dO 
lim2=2.*u 
if(u/abs(u).lt.O.dO)then 
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lim1=2.*u 
lim2=0.d0 

endif 
sgn=l. 
irev=O 

8 continue 
flg=l. 
x=dble(u) 
call func(j,flg,x,ffunc) 

9 continue 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O.dO)then 

x=x-sgn*dble(sme) 
goto 12 

endif 
x=x+sgn*dble(sme) 

10 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.pk)then 

pk=ffunc 
endif 
if(ffunc.lt. trof)then 

trof=ffunc 
b=x 
if(trofle.(.00000 ldO*pk))then 

goto 20 
endif 

endif 
x=x+sgn*dble(sme) 
goto 10 

12 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.O.dO)then 

b=x 
if(irev.eq.O)goto 20 
goto 9 

else 
if(irev.eq.0.and.x.lt.liml)then 

irev=l 
sgn=-1. *sgn 
goto 8 

endif 
if(irev.eq. l .and.x.gt.lim2)then 

b=liml 
goto 20 

endif 
x=x-sgn*dble(sme) 
goto 12 

endif 
20 continue 

irev=O 
sgn=.5 

22 continue 
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c accept probability 
c need a, unknown involving c is upper limit 
c start at u, work way down 

flg=2. 
x=dble(u) 

27 continue 
call func(i,flg,x,ffunc) 

28 continue 
pk=ffunc 
trof=ffimc 
if(ffimc.eq.0.dO)then 

x=x+sgn*dble(sme) 
goto 32 

endif 
x=x-sgn*dble(sme) 

30 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt.pk)then 

pk=ffunc 
endif 
if(ffunc.lt. trof)then 

trof=ffunc 
a=x 
if(trof.le.(.00000 ldO*pk))then 

goto 40 
endif 

endif 
x=x-sgn *dble( sme) 
goto 30 

32 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt.O.dO)then 

a=x 
if(irev.eq.O)goto 40 
goto 28 

else 
if(irev.eq.0.and.x.gt.lim2)then 

irev=l 
sgn=-1. *sgn 
goto 22 

endif 
if(irev.eq. l .and.x.lt.liml)then 

a=lim2 
goto 40 

endif 
x=x+sgn*dble(sme) 
goto 32 

endif 
40 continue 

return 
end 

c***************************************************** 
C 

C 

************************************************ 
************************************************ 
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c this sub created from the necessity of covering 
c all possible values of cutoffs which a user may 
c give in requesting an expected value of his/her 
c inspection program.Must known all limits of the 
c conditional false disposition curves. 
c j is observation number from management program 
c stores high value in pk, low value in trof 
c checks for trof as a fraction of pk to quit 
c***************************************************** 

subroutine setmor(ap,bpj) 
real*8 x,ffunc,pk,trof,ap,bp,liml,lim2 . 
dimension thta(4),tau(4) 
common /parms/ tau,sme,thta,u 

c type i error 
c must set bp, looking for the curve's lower limit 
c start at u, work down (to start) 
C 

c irev is the flag which tells if I have to look in 
c both directions 
c lims 1 and 2 account for the sign of the spec and 
c cutoff values 

liml=O.dO 
lim2=2.*u 
if(u/abs(u).lt.O.dO)then 

liml=2.*u 
lim2=0.d0 

endif 
irev=O 
sgn=.5 

5 continue 
flg=l. 
x=dble(u) 
call func(i,flg,x,ffunc) 

8 continue 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O.dO)then 

x=x+sgn*dble(sme) 
goto 12 

endif 
x=x-sgn *dble( sme) 

10 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt. pk)then 

pk=ffunc 
endif 
if(ffunc.lt. trof)then 

trof=ffunc 
bp=x 
if(trofle.(.OOOldO*pk))then 

goto 20 
endif 

endif 
x=x-sgn*dble(sme) 
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goto 10 
12 continue 

call func(j,flg,x,ffunc) 
if(ffunc.gt.O.dO)then 

bp=x 
if(irev.eq.O)goto 20 
goto8 

else 
if(irev.eq.O.and.x.gt.lim2)then 

irev=l 
sgn=-1. *sgn 
goto5 

endif 
if(irev.eq. l.and.x.lt.liml)then 

bp=lim2 
goto 20 

endif 
x=x+sgn*dble(sme) 
goto 12 

endif 
20 continue 

irev=O 
sgn=.5 

25 continue 
C type ii 
c need ap, looking for upper limit 
c start at u, work way up (to start) 

flg=2. 
x=dble(u) 

27 continue 
call func(j,flg,x,ffunc) 

28 continue 
pk=ffunc 
trof=ffunc 
if(:ffunc.eq.O.dO)then 

x=x-sgn*dble(sme) 
goto 32 

endif 
x=x+sgn*dble(sme) 

30 continue 
call func(j,flg,x,:ffunc) 
if(ffunc.gt. pk)then 

pk=ffunc 
endif 
if(ffunc.lt. trof)then 

trof=ffunc 
ap=x 
if(trof.le.(.OOOldO*pk))then 

goto 40 
endif 

endif 
x=x+sgn*dble(sme) 
goto 30 

32 continue 
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call func(j,flg,x,ffunc) 
if(ffunc.gt.O.dO)then 

ap=x 
if(irev.eq.O)goto 40 
goto 28 

else 
if(irev.eq.O.and.x.lt.liml)then 

irev=l 
sgn=-1. *sgn 
goto 25 

endif 
if(irev .eq.1.and.x.gt.lim2)then 

ap=liml 
goto 40 

endif 
x=x-sgn*dble(sme) 
goto 32 

endif 
40 continue 

return 
end 

c**************************************************** 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

************************************************ 
************************************************ 
input subroutine for all plan parameters 
passes back nspc as the fig for uppernower limit 
u=limit 
thta=prior mean 
tau=prior std.dev. 
bias=measurement error dist mean 
sme=measurement error dist std.dev. 
s 1 =sampling cost 
a2=false acceptance cost 
r2=false rejection cost 

C 

c**************************************************** 
subroutine vardef(u, thta, tau,bias,sme,s 1,a2,r2,nspc) 

ccccccccccccccccccc 
character iopt 
character*5 spec 
spec='Upper' 
iflg=O 

10 print* 
print*, 'Enter the Specification Limit.' 
print* 
read(*,* ,err= 1 O)u 
if(iflg.eq. l)goto 90 

15 print* 
print*,'Is this an Upper (1) or Lower (2) Spec?' 
print*,'Enter 1 or 2.' 
print* 
read(*, *,err=l5)nspc 
if(nspc.ne. l.and.nspc.ne.2)then 

write(*,*)'**** Invalid Entry. Please Reenter. ****' 
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goto 15 
endif 
if(nspc.eq.2)spec='Lower' 

20 print* 
print*, 'Enter the value of the prior distribution mean.' 
print* 
read(*,* ,err=20)thta 
if(iflg.eq. l)goto 90 

30 print* 
print*, 'Enter the value of the prior standard deviation.' 
print* 
read(*,* ,err=30)tau 
if(tau.le.O)then 

print* 
print*,'**** Standard Deviation must be positive****' 
goto 30 

endif 
if(iflg.eq. l)goto 90 

40 print* 
print*,'Enter the value of the measurement error' 
print*,'distribution mean (bias).' 
print*,'Sign Convention: lfthe instrument reads higher' 
print*, 'than the true value, this bias should be positive.' 
print* 
read(*,* ,err=40)bias 
if(iflg.eq. l )goto 90 

50 print* 
print*, 'Enter the value of the measurement error' 
print*, 'distribution standard deviation.' 
print* 
read(*,* ,err=50)sme 
if(sme.le.O)then 

print* 
print*,'**** Standard Deviation must be positive****' 
goto 50 

endif 
if(iflg.eq.l)goto 90 

60 print* 
print*, 'Enter the cost associated with a single measurement' 
print*, 'iteration (S).' 
print* 
read(*,* ,err=60)sl 
if(sl.lt.O)then 

print* 
print*,'**** Cost must be positive****' 
goto 60 

endif 
if(iflg.eq.l)goto 90 

70 print* 
print*, 'Enter the cost associated with a false acceptance of 
print*,'a batch of product (A).' 
print* 
read(*,*,err=70)a2 
if(a2.lt.O)then 
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print* 
print*,'**** Cost must be positive****' 
goto 70 

endif 
if(iflg.eq. l)goto 90 

80 print* 
print*, 'Enter the cost associated with .a false rejection of 
print* ,'a batch of product (R).' 
print* 
read(*,* ,err=80)r2 
if(r2.lt.O)then 

print* 
print*,'**** Cost must be positive****' 
goto 80 

endif 
90 print* 

write(* ,300)spec,u 
write(* ,31 O)thta 
write(*,320)tau 
write(* ,330)bias 
write(*,340)sme 
write(*,350)sl 
write(* ,360)a2 
write(* ,370)r2 
print* 
print*, 'Is the above information correct?' 
print* ,'Enter to accept or parameter # to reenter.' 
print* 
read(*,380)iopt 
print* 
if(iopt.eq.' ')goto 1000 
if(iopt.lt.' l '.or.iopt.gt. '8')then 

print*,'**** Invalid Entry. Please Reenter. ****' 
goto 90 

endif 
iflg=l 
if(iopt.eq.' l ')then 

goto 10 
endif 
if(iopt.eq. '2 ')then 

goto 20 
endif 
if(iopt. eq .'3 ')then 

goto 30 
endif 
if(iopt.eq.'4')then 

goto 40 
endif 
if(iopt. eq. '5')then 

goto 50 
endif 
if(iopt.eq. '6')then 

goto 60 
endif 
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if(iopt.eq. '7')then 
goto 70 

endif 
if(iopt. eq. '8')then 

goto 80 
endif 

300 format(lx,'l ',a5' Specification Limit= ',fl0.4) 
310 format(' 2 Prior Distribution Mean= ',fl O .4) 
320 format(' 3 Prior Standard Deviation= ',fl0.4) 
330 format(' 4 Error Distribution Mean (Bias)= ',fl0.4) 
340 format(' 5 Error Distribution Std. Dev.= ',fl0.4) 
350 format(' 6 Iteration Cost (S)= ',f8.2) 
360 format(' 7 False Acceptance Cost (A)= ',f8.2) 
370 format(' 8 False Rejection Cost (R)= ',:f8.2) 
380 format(al) 
1000 continue 

return 
end 

c**************************************************** 
C 

C 

C 

C 

************************************************ 
************************************************ 
error function evaluation ( erf) 
modified from Stegun and Zucker 

c**************************************************** 
C 

C 

C 

C 

subroutine errint (x,erf,erfc) 
real*8 an,bn,cons,cl,dn,erf,erfc,f,fn,fnml, 
1 fnm2,four,gn,gnml ,gnm2,one,prev,pwr,mbc,scf,sum, 
2 tn,toler,trrtpi,two,ulcf,ulps,wn,x,y,ysq 

data nbc,nbm/11,60/ 
data one,two,four,ulps,cons/1.d0,2.d0,4.dO, l .d0,.83d0/ 
data trrtpi/1.128379167095512574d0/ 

mbc=nbc 
toler=two**(-nbm) 

c test on zero 
C 

C 

C 

C 

if(x) 2,1,2 
1 erf=O.dO 

erfc=one 

return 

2 y=dabs(x) 
ysq=y**2.d0 
if(y-ulps) 3,3,4 

c maximum argument 
C 

C 

4 cl=two**((mbc-one)/two) 
ulcf=cons*cl 
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if(iopt.eq. '7')then 
goto 70 

endif 
if(iopt. eq. '8')then 

goto 80 
endif 

300 format(lx,'l ',a5' Specification Limit= ',fl0.4) 
310 format(' 2 Prior Distribution Mean= ',fl O .4) 
320 format(' 3 Prior Standard Deviation= ',fl0.4) 
330 format(' 4 Error Distribution Mean (Bias)= ',fl0.4) 
340 format(' 5 Error Distribution Std. Dev.= ',fl0.4) 
350 format(' 6 Iteration Cost (S)= ',f8.2) 
360 format(' 7 False Acceptance Cost (A)= ',f8.2) 
370 format(' 8 False Rejection Cost (R)= ',:f8.2) 
380 format(al) 
1000 continue 

return 
end 

c**************************************************** 
C 

C 

C 

C 

************************************************ 
************************************************ 
error function evaluation ( erf) 
modified from Stegun and Zucker 

c**************************************************** 
C 

C 

C 

C 

subroutine errint (x,erf,erfc) 
real*8 an,bn,cons,cl,dn,erf,erfc,f,fn,fnml, 
1 fnm2,four,gn,gnml ,gnm2,one,prev,pwr,mbc,scf,sum, 
2 tn,toler,trrtpi,two,ulcf,ulps,wn,x,y,ysq 

data nbc,nbm/11,60/ 
data one,two,four,ulps,cons/1.d0,2.d0,4.dO, l .d0,.83d0/ 
data trrtpi/1.128379167095512574d0/ 

mbc=nbc 
toler=two**(-nbm) 

c test on zero 
C 

C 

C 

C 

if(x) 2,1,2 
1 erf=O.dO 

erfc=one 

return 

2 y=dabs(x) 
ysq=y**2.d0 
if(y-ulps) 3,3,4 

c maximum argument 
C 

C 

4 cl=two**((mbc-one)/two) 
ulcf=cons*cl 
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if(iopt.eq. '7')then 
goto 70 

endif 
if(iopt. eq. '8')then 

goto 80 
endif 

300 format(lx,'l ',a5' Specification Limit= ',fl0.4) 
310 format(' 2 Prior Distribution Mean= ',fl O .4) 
320 format(' 3 Prior Standard Deviation= ',fl0.4) 
330 format(' 4 Error Distribution Mean (Bias)= ',fl0.4) 
340 format(' 5 Error Distribution Std. Dev.= ',fl0.4) 
350 format(' 6 Iteration Cost (S)= ',f8.2) 
360 format(' 7 False Acceptance Cost (A)= ',f8.2) 
370 format(' 8 False Rejection Cost (R)= ',:f8.2) 
380 format(al) 
1000 continue 

return 
end 

c**************************************************** 
C 

C 

C 

C 

************************************************ 
************************************************ 
error function evaluation ( erf) 
modified from Stegun and Zucker 

c**************************************************** 
C 

C 

C 

C 

subroutine errint (x,erf,erfc) 
real*8 an,bn,cons,cl,dn,erf,erfc,f,fn,fnml, 
1 fnm2,four,gn,gnml ,gnm2,one,prev,pwr,mbc,scf,sum, 
2 tn,toler,trrtpi,two,ulcf,ulps,wn,x,y,ysq 

data nbc,nbm/11,60/ 
data one,two,four,ulps,cons/1.d0,2.d0,4.dO, l .d0,.83d0/ 
data trrtpi/1.128379167095512574d0/ 

mbc=nbc 
toler=two**(-nbm) 

c test on zero 
C 

C 

C 

C 

if(x) 2,1,2 
1 erf=O.dO 

erfc=one 

return 

2 y=dabs(x) 
ysq=y**2.d0 
if(y-ulps) 3,3,4 

c maximum argument 
C 

C 

4 cl=two**((mbc-one)/two) 
ulcf=cons*cl 
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c********************************************************** 
c modified from: 
c Olsson, D. M., "A Sequential Simplex Program for 
c Solving Minimization Problems," JQT, V. 6, No. 1, 
C pp. 53-57, Jan. 1974. 
c andfrom 
c Ho, C., "The Economic Design and Evaluation of Three 
c Variables Control Charts", Ph.D. Dissertation, O.S.U 
C July, 1992. 
c********************************************************** 

real*8 start(n),step(n),xmin(n),xsec(n),ynewlo, 
&ysec,reqmin,p(20,2 l ),pstar(20),p2star(20), 
&pbar(20),y(20),z,ylo,rcoeff,ystar,ecoeff, 
&y2star,ccoeff,f,dabit,dchk,coordl,coord2,pclo(9),pcs(9) 
data rcoeff/1.0d0/,ecoeff/2.0d0/,ccoeff/0.5d0/ 
kcount=icount 
icount=O 

c********************************************************** 
c initialization 
c********************************************************** 

do 60 i=l,n 
xmin(i)=O.OdO 
xsec(i)=O.OdO 

60 continue 
ynewlo=O.OdO 
ysec=O.OdO 
if (reqmin.le.O.OdO) icount=icount-1 
if (n.le.0) icount=icount-10 
if (n.gt.20) icount=icount-10 
if (icount.lt.O)then 

print*, 'iterations expired' 
return 

endif 
dabit=2. 04607 d-3 5 
bignum=l.Od30 
konvge=5 
xn=float(n) 
nn=n+l 

c*********************************************************** 
c construction of simplex 
c*********************************************************** 
1001 do 1 i=l,n 

C 

1 p(i,nn)=start(i) 

if(n.eq.2)call clg2a2(start,f,pcs) 
if(n.eq.4)call clg3out(start,f,pcs) 

c print* ,'nm f= ',f 
y(nn)=f 
icount=icount+ 1 
do 2j=l,n 

dchk=start(j) 
start(j)=dchk+step(j) 
do 3 i=l,n 

3 p(ij)=start(i) 
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C 

if(n.eq.2)call clg2a2(start,f,pcs) 
if(n.eq.4)call clg3out(start,f,pcs) 

c print* ,'nm f= ',f 
YG)=f 
icount=icount+ 1 

2 startG)=dchk 
c*********************************************************** 
c simplex construction complete 
c*********************************************************** 
c find highest and lowest y value 
c ynewlo indicates the vertex of the 
c simplex to be replaced 
c*********************************************************** 
1000 ylo=y(l) 

ynewlo=ylo 
ilo=l 
ihi=l 
do 5 i=2,nn 
if (y(i).ge.ylo) go to 4 
ylo=y(i) 
ilo=i 

4 if (y(i).le.ynewlo) go to 5 
ynewlo=y(i) 
ihi=i 

5 continue 
c*********************************************************** 
c perform convergence checks on function 
c*********************************************************** 

dchk=(ynewlo+dabit)/(ylo+dabit )-1. OdO 
if (dabs(dchk).lt.reqmin) go to 900 
konvge=konvge-1 
if (konvge.ne.0) go to 2020 
konvge=5 

c*********************************************************** 
c check convergence of coordinate 
c only every 5 simplex 
c*********************************************************** 

do 2015 i=l,n 
coordl=p(i,1) 
coord2=coordl 
do 2010 j=2,nn 
if (p(i,j).ge.coordl) go to 2005 
coord 1 =p(ij) 

2005 if (p(i,j).le.coord2) go to 2010 
coord2=p(ij) 

2010 continue 
dchk=(coord2+dabit)/(coordl+dabit)-l.Od0 
if (dabs(dchk).gt.reqmin) go to 2020 

2015 continue 
go to 900 

2020 if (icount.ge.kcount) go to 900 
c*********************************************************** 
c calculate pbar, the centroid of the simplex 
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c vertices except thjat with y value ynewlo 
c********************************************************** 

do 7 i=l,n 
z=O.OdO 
do6j=l,nn 
z=z+p(i,j) 

6 continue 
z=z-p(i,ihi) 

7 pbar(i)=z/float(n) 
c*********************************************************** 
c reflection through the centroid 
c*********************************************************** 

C 

do 8 i=l,n 
8 pstar(i)=( 1. OdO+rcoeff)*pbar(i)-rcoeff*p(i,ihi) 

if(n.eq.2)call clg2a2(pstar,f,pcs) 
if(n.eq.4)call clg3out(pstar,f,pcs) 

c print* ,'nm f= ',f 
ystar=f 
icount=icount+ I 
if (ystar.ge.ylo) go to 12 
if (icount.ge.kcount) go to 19 

c********************************************************** 
c successful reflection, so extension 
c********************************************************** 

C 

do 9 i=l,n 
9 p2star(i)=ecoeff*pstar(i)+( 1. OdO-ecoeff)*pbar(i) 

if(n.eq.2)call clg2a2(p2star,f,pcs) 
if(n.eq.4)call clg3out(p2star,f,pcs) 
y2star=f 
icount=icount+ I 

c********************************************************** 
c retain extension or contraction 
c********************************************************** 

if (y2star.ge.ystar) go to 19 
10 do 11, i=l,n 
11 p(i,ihi)=p2star(i) 

y(ihi)=y2star 
go to 1000 

c********************************************************** 
c no extension 
c********************************************************** 

12 l=O 
do 13 i=l,nn 
if (y(i).gt.ystar) l=l+ I 

13 continue 
if (I.gt. I) go to 19 
if (1.eq.O) go to 15 

c********************************************************** 
c contraction on the reflection side of the centroid 
c********************************************************** 

do 14 i=l,n 
14 p(i,ihi)=pstar(i) 

248 



y(ihi)=ystar 
c********************************************************** 
c contraction on the y(ihi) side of the centroid 
c********************************************************** 

15 if (icount.ge.kcount) go to 900 
do 16 i=l,n 

16 p2star(i)=ccoeffl'p(i,ihi)+(l.Od0-ccoefl)*pbar(i) 
C 

if(n.eq.2)call clg2a2(p2star,f,pcs) 
if(n.eq.4)call clg3out(p2star,f,pcs) 

c print* ,'nm f= ',f 
y2star=f 
icount=icount+ 1 
if (y2star.lt.y(ihi)) go to 10 

c********************************************************** 
c contract the whole simplex 
c********************************************************** 

C 

do 18j=l,nn 
do 17 i=l,n 

p(ij)=(p(i,j)+p(i,ilo) )*O .5d0 
17 xmin(i)=p(ij) 

if(n.eq.2)call clg2a2(xmin,f,pcs) 
if(n.eq.4)call clg3out(xmin,f,pcs) 

c print* ,'nm f= ',f 
Y(j)=f 

18 continue 
icount=icount+nn 
if (icount.lt.kcount) go to 1000 
go to 900 

c********************************************************* 
c retain reflection 
c********************************************************* 

C 

19 continue 
do 20 i=l,n 

20 p(i,ihi)=pstar(i) 
y(ihi)=ystar 
go to 1000 

900 do 23 j=l,nn 
do 22 i=l,n 

22 xmin(i)=p(ij) 

if(n.eq.2)call clg2a2(xmin,f,pcs) 
if(n.eq.4)call clg3out(xmin,f,pcs) 

c write(*, *)"nm f= ",f 
y(i)=f 

23 continue 
ynewlo=bignum 
do 24 j=l,nn 
if (y(i).ge.ynewlo) go to 24 
ynewlo=y(i) 
pclo(l )=pcs(l) 
pclo(2)=pcs(2) 
pclo(3)=pcs(3) 
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pclo( 4 )=pcs( 4) 
pclo(5)=pcs(5) 
pclo( 6)=pcs( 6) 
pclo(7)=pcs(7) 
pclo(8)=pcs(8) 
pclo(9)=pcs(9) 
ibest=j 

24 continue 
y(ibest)=bignum 
ysec=bignum 
do 25 j=l,nn 
if (y(j).ge.ysec) go to 25 
ysec=y(j) 
isec=j 

25 continue 
do 26 i=l,n 

xmin(i)=p(i,ibest) 
xsec(i)=p(i,isec) 

26 continue 
c write(*,*)"ynewlo= ",ynewlo 

return 
end 

c*************************************************** 
C 

C 

C 

C 

C 

************************************************ 
************************************************ 
this program to calculate expected total cost of a 
sampling plan, given user inputted cutoff values 

c NOTE: Do not handle bias in this program module 
c (although it is entered as a param) because I assume 
c that the measurements and cutoffs will have bias built 
c into them (if existing). 
c igo=selection from main 
c*************************************************** 
C 

C 

subroutine calcst(igo) 

real*8 cl (2),c2(2),c3 ,cmax,pcs(9),ctmp,tcst 
character* 1 iopt 
character* 5 spec 
dimension thta( 4 ),tau( 4) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 
common /cult/ cmax 
spec='Upper' 

5 continue 
iopt='' 
print* 
print* 
write(*, *)'This program module calculates the expected' 
write(*, *)'total cost of a given sequential sampling' 
write(*, *)'plan. The user must supply the sequential' 
write(*, *)'decision cutoff values.' 
write(*,*) 
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write(*, *)'Measurement System Parameter Entry:' 
write(*,*) 
call vardef(u,thta,tau,bias,sme,sl,a2,r2,nspc) 
write(*,*) 

10 write(*,*) 
tcst=O.dO 
write(*, *)'What is the maximum number of iterations' 
write(*, *)'for the plan? (1, 2 or 3)' 
write(*,*) 
read(*,*,err=lO)nmx 
print* 
if(nmx.lt. l.or.nmx.gt.3)then 

print*,'**** Iteration Limit out of range. 
& Please Reenter.****' 

print* 
goto 10 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c Use given spec, but find for symmetrical prior mean 

if(nspc.eq.2)then 
thta(l)=2*u-thta(l) 
spec='Lower' 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/~/o%%% 
%%%%%%%%%% 

if(nmx.eq. l )then 
20 print* ,'Enter the value of Cl' 

print* 
read(*, *,err=20)cl(l) 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

c1(2)=cl(l) 
goto 200 

endif 
30 print* ,'Enter the value of Cl,L' 

print* 
read(*, *,err=30)cl(l) 
print* 

40 print*, 'Enter the value of Cl ,H' 
print* 
read(*, *,err=40)cl(2) 
print* 
if(cl(2).le.cl(l))then 

print*,'**** Cl,L cannot exceed Cl,H ****' 
print* 
goto 30 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

if(nmx.eq.2)then 
50 print* ,'Enter the value of C2' 

print* 
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read(*, *,err=50)c2(1) 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

c2(2)=c2(1) 
goto 200 

endif 
60 print*, 'Enter the value of C2,L' 

print* 
read(*,*,err=60)c2(1) 
print* 

70 print*, 'Enter the value of C2,H' 
print* 
read(*,* ,err=70)c2(2) 
print* 
if(c2(2).le.c2(l))then 

print*,'**** C2,L cannot exceed C2,H ****' 
print* 
goto 60 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/~/o%%%%%%%%%%%%%% 
%%%%%%%%%% 
80 print*, 'Enter the value of C3' 

print* 
read(*,* ,err=80)c3 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

print* 
200 continue 
C 

print* 
write(* ,400)nmx 
write(*,*) 
if(nmx.eq. l )then 

write(*, 410 )c 1 ( 1) 
goto 210 

endif 
write(*,420)cl(l),cl(2) 
if(nmx.eq.2)then 

write(* ,430)c2(1) 
goto 210 

endif 
write(* ,440)c2(1 ),c2(2) 
write(*,450)c3 

210 continue 
print* 
print* ,'Is the above information correct?' 
print*, 'Y to accept or N to reenter cutoff values.' 
print* 
read(*,460)iopt 
print* 
if(iopt.ne. 'y' .and.iopt.ne. 'Y' .and.iopt.ne. 'n'. 
& and.iopt.ne. 'N')then 

print*,'**** Invalid Entry. Please Reenter. ****' 
print* 
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goto 200 
endif 
if(iopt.eq. 'N' .or.iopt.eq. 'n')goto 10 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c Use given spec, but find for symmetrical prior mean 

if(nspc.eq.2)then 
ctmp=cl(l) 
cl(l)=2. *u-cl(2) 
cl(2)=2. *u-ctmp 
ctmp=c2(1) 
c2(1)=2. *u-c2(2) 
c2(2)=2. *u-ctmp 
c3=2.*u-c3 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
C 

C 

220 continue 
call errchkl(cl,pcs) 
if(nmx.gt.l)then 

call errchk:2(nmx,cl,c2,c3,pcs) 
endif 
if(nspc.eq.2)then 

thta(l)=2*u-thta(l) 
ctmp=cl(l) 
cl(l)=2. *u-cl(2) 
cl(2)=2. *u-ctmp 
ctmp=c2(1) 
c2(1)=2. *u-c2(2) 
c2(2)=2. *u-ctmp 
c3=2.*u-c3 

endif 
print* 
print*,'Expected Costs of Sampling Plan:' 
write(*,*) 
do 300 i=l,nmx 
write(* ,470)i,pcs(3.d0*(i-l)+ 1) 
write(* ,4 75)i,pcs(3 .dO*(i-1 )+ 2) 
write(* ,480)i,pcs(3 .dO*(i-1 )+ 3) 
tcst=tcst+pcs(3 *(i-1 )+ 1 )+pcs(3 *(i-1 )+2)+pcs(3 *(i-1 )+ 3) 

300 continue 
write(*,*) 
write(*,650)tcst 
print* 

305 iopt='' 
310 print*,'Send output to file? (YIN)' 

read(* ,460)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N' .and.iopt.ne. 'y' .and. 

&iopt.ne.'n')goto 310 
if(iopt.eq. 'n'.or.iopt.eq. 'N')goto 315 
write(2,510)thta(l) 
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write(2,520)tau(l) 
write(2,530)spec,u 
write(2,540 )sme 
write(2,550)bias 
write(2,560) 
write(2,570)sl 
write(2,580)a2 
write(2,590)r2 
write(2,600) 
if(nmx.eq.2)goto 311 
if(nmx.eq.l)goto 312 
write(2,602)c3 
write(2,604 )c2( 1) 

311 continue 
write(2,610)c2(2) 
write(2,614)cl(l) 

312 continue 
write(2,616)cl(2) 
write(2, 618) 
write(2,620)pcs(l) 
write(2,622)pcs(2) 
write(2,624 )pcs(3) 
if( nmx.eq .1 )goto 313 
write(2,626)pcs( 4) 
write(2,628)pcs(5) 
write(2,630)pcs(6) 
if(nmx.eq.2)goto 313 
write(2,632)pcs(7) 
write(2, 634 )pcs(8) 
write(2,636)pcs(9) 

313 continue 
write(2,650)tcst 

315 iopt=' I 

print* 
print*,'Would you like to input another set of cutoffs?' 
print* ,'Enter Y or N.' 
print* 
read(*, 460 )iopt 
if(iopt.eq. 'Y' .or.iopt.eq. 'y')goto 10 
if(iopt.eq. 'n'.or.iopt.eq. 'N')goto 390 
goto 315 

390 continue 
400 format(' Maximum iterations= ',il) 
410 format(' Cl= ',fll.4) 
420 format(' Cl,L = ',fl l.4,5x,'Cl,H = ',fl 1.4) 
430 format(' C2 = ',fll.4) 
440 format(' C2,L = ',fl 1.4,5x,'C2,H = ',fl 1.4) 
450 format(' C3 = ',fll.4) 
460 format(al) 
470 format(' Sampling on ',il,' = ',fl2.4) 
475 format(' False Accept on ',il,' = ',fl2.4) 
480 format(' False Reject on ',il,' = ',fl2.4) 
510 format(' Prior Mean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
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530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Meas. Error Std. Dev.= ',fl3.8) 
550 format(' Meas. Error Mean (Bias)= ',fl3.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A) = ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' ***************************************') 
602 format(' Cuto:ffC3 = ',fl6.8) 
604 format(' Cuto:ffC2,L = ',fl6.8) 
610 format(' Cuto:ffC2,H = ',fl6.8) 
614 format(' Cuto:ffCl,L = ',fl6.8) 
616 format(' Cuto:ffCl,H = ',fl6.8) 
618 format(' Expected Plan Costs:') 
620 format(' Sampling on 1 = ',fl2.4) 
622 format(' False Accept on 1 = ',fl2.4) 
624 format(' False Reject on 1 = ',fl2.4) 
626 format(' Sampling on 2 = ',fl2.4) 
628 format(' False Accept on 2 = ',fl2.4) 
630 format(' False Reject on 2 = ',fl2.4) 
632 format(' Sampling on 3 = ',fl2.4) 
634 format(' False Accept on 3 = ',fl2.4) 
636 format(' False Reject on 3 = ',fl2.4) 
650 format(' Expected Total Cost= ',fl2.4) 

igo=3 
return 
end 

c*************************************************** 
C 

C 

C 

C 

********************************************** 
********************************************** 
error checking and cost calculating for the 
case of user-input Cl and program cost request 

c*************************************************** 
C 

subroutine errchkl(cl,pcs) 
real*8 pcs(9),a,b,ap,bp,cl(2),rej,acc 
real*8 xl,cll,clh 
dimension thta(4),tau(4) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 
common Incur/ j 
cll=cl(l) 
clh=cl(2) 
j=l 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
tau(2)=sqrt( 1./( l ./sme**2. + 1./tau( 1 )**2. )) 

c these routines set the infinity limits for the functions 
call setabx(a,b,j) 
call setmor(ap,bpj) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
4 continue 

tau(3)=sqrt(l./(l./sme**2. + l ./tau(2)**2.)) 
c start xl at a, work up 
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xl=a 
c sequence that checks if cutoffs are beyond inf limits 

if(b.lt.a)then 
if( cll.lt.a)then 

flg=l. 
acc=O.dO 
if( clh.lt.bp )then 

call qgaus(i,flg,bp,b,rej) 
goto 300 

endif 
if(cll.gt.b)then 

rej=O.dO 
goto 300 

endif 
call qgaus(i,flg,clh,b,rej) 

else 
flg=2. 
rej=O.dO 
if( c 11.gt.ap )then 

call qgaus(i ,flg,a,ap,acc) 
goto 300 

else 
call qgaus(i,flg,a,cll,acc) 

endif 
endif 
else 
if(cll.lt.a)then 

flg=l. 
acc=O.dO 
if(clh.lt.bp)then 

call qgaus(i,flg,bp,b,rej) 
goto 300 

endif 
if(clh.lt.b)then 

call qgaus(i,flg,clh,b,rej) 
c print*,'region 2 clh= ',clh 
C print*,'b= ',b 

goto 300 
endif 
rej=O.dO 

else 
if(clh.lt.b)then 

flg=l. 
call qgaus(i,flg,clh,b,rej) 

else 
rej=O.dO 

endif 
flg=2. 
if( c 11.gt.ap )then 

call qgaus(i,flg,a,ap,acc) 
else 

call qgaus(i,flg,a,c 11,acc) 
endif 

endif 
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endif 
300 continue 

pcs(l )=dble(sl) 
pcs(2)=dble(a2)*acc 
pcs(3)=dble(r2)*rej 
return 
end 

c*************************************************** 
C ********************************************** 
C ********************************************** 
c error checking and cost calculating for the 
c case of user-input Cl and program cost request 
c cl array carries ell and clh 
c c2 array carries c21 and c2h 
c pcs carries cost components 
c*************************************************** 
C 

subroutine errchk2(nmx,cl,c2,c3,pcs) 
real*8 a,b,ap,bp,cl(2),c2(2),c3,rej,acc 
dimension thta( 4 ),tau( 4 ),x(2),p(2) 
real*8 tc4int,tc5int,tc6int,pcs(9),tc7,tc8,tc9 
real*8 tc7int,tc8int,tc9int,bignum 
real *8 tc4 pre, tc5pre,tc6pre, tc7pre, tc8pre, tc9pre 
real*8 cll,clh,c21,c2h,delx,xl,xlpre 
real*8 alo,blo,ahi,bhi 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 
common /iilf'l/ a,b 
common Incur/ j 
bignum=9. 99d+55 
tc4int=O.d0 
tc5int=O.d0 
tc6int=O.d0 
tc7int=O.d0 
tc8int=O.d0 
tc9int=O.d0 
istp=O 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
tau(2)=sqrt(l ./(l ./sme**2. + 1./tau( I )**2.)) 
tau(3)=sqrt( 1./( l ./sme**2. + l ./tau(2)**2. )) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
cll=cl(l) 
clh=cl(2) 
c2l=c2(1) 
c2h=c2(2) 

c delx is step size 
c j is iteration number 

delx=(clh-cll)/100.dO 
j=2 

C 

c this sequence finds the+/- infinity limits for the 
c conditional false dispositions at n=2, based on the 
c possible extreme values ofxl ==>CU and Clh 
C 
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C 

call post(j,cll) 
call setabx(alo,bloj) 
call post(j,clh) 
call setabx(ahi,bhij) 
a=dminl(alo,ahi) 
b=dmaxl(blo,bhi) 

call post(j,cll) 
call setmor(alo,blo,j) 
call post(j,clh) 
call setmor(ahi,bhi,j) 
ap=dmaxl(alo,ahi) 
bp=dminl(blo,bhi) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

xl=cll 
20 continue 

j=2 
print*,'******* working ... ' 
call post(j,xl) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

if(b.lt.a)then 
if(2. *c21-xl .lt.a)then 

flg=l. 
acc=O.dO 
if(2*c2h-xl.lt.bp)then 

call qgaus(j,flg,bp,b,rej) 
goto 70 

endif 
if(2. *c21-xl.gt.b)then 

rej=O.dO 
goto 70 

endif 
call qgaus(j,flg,2*c2h-xl,b,rej) 

else 
flg=2. 
rej=O.dO 
if(2. *c21-xl .gt.ap )then 

call qgaus(j,flg,a,ap,acc) 
goto 70 

else 
call qgaus(j,flg,a,2*c21-xl,acc) 

endif 
endif 
else 
if(2*c21-xl.lt.a)then 

flg=l. 
acc=O.dO 
if(2. *c2h-xl.lt.bp)then 

call qgaus(j,flg,bp,b,rej) 
goto 70 

endif 
if(2. *c2h-xl .lt.b )then 
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call qgaus(j,flg,2. *c2h-xl,b,rej) 
goto 70 

endif 
rej=O.dO 
goto 70 

else 
if(2. *c2h-xl .lt.b )then 

flg=l. 
call qgaus(j,flg,2. *c2h-xl,b,rej) 

else 
rej=O.dO 

endif 
flg=2. 
if(2. *c21-xl.gt.ap)then 

call qgaus(j,flg,a,ap,acc) 
goto 70 

else 
call qgaus(j,flg,a,2. *c21-xl,acc) 
goto 70 

endif · 

endif 
endif 

70 continue 
cost4=sl 
costa5=acc*a2 
costr6=rej *r2 
if(nmx.gt.2)then 

call errchk3(c2,xl,c3,tc7,tc8,tc9) 
endif 

c***************************************************** 
if (istp.eq.O)then 

tc4pre=cost4 
tc5pre=costa5 
tc6pre=costr6 
tc7pre=tc7 
tc8pre=tc8 
tc9pre=tc9 
xlpre=xl 
istp=l 

else 
c marginal on xl is N(thetal,sme"2+taul "2) 

x( 1 )=(xl pre-thta( 1 ))/sqrt(tau( 1)**2. +sme**2.) 
x(2)=(xl-thta(l) )/sqrt(tau( I )**2. +sme**2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc4 int=tc4 int+prob*( ( cost4+tc4pre )/2 .dO) 
tc5int=tc5int+prob*( ( costa5+tc5pre )/2.dO) 
tc6int=tc6int+prob*( ( costr6+tc6pre )/2 .dO) 
tc7int=tc7int+prob*((tc7+tc7pre)/2.d0) 
tc8int=tc8int+prob*( ( tc8+tc8pre )/2.dO) 
tc9int=tc9int+prob*( ( tc9+tc9pre )/2.dO) 
tc4pre=cost4 

· tc5pre=costa5 
tc6pre=costr6 
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tc7pre=tc7 
tc8pre=tc8 
tc9pre=tc9 
xlpre=xl 

endif 
c***************************************************** 

xl=xl+delx 
c this next chunk of code attempts to account for the 
c slack between the last xl and clh 

if (xl.gt.clh)then 
tc4int=tc4int+((clh-xlpre)/delx)*prob*((cost4+tc4pre)/2.d0) 
tc5int=tc5int+( ( c lh-xl pre )/delx) *prob*( ( costa5+tc5pre )/2.dO) 
tc6int=tc6int+((clh-xlpre)/delx)*prob*((costr6+tc6pre)/2.d0) 
tc7int=tc7int+( ( c lh-xl pre )/delx)*prob* 

& ((tc7+tc7pre)/2.d0) 
tc8int=tc8int+( ( c lh-xl pre )/delx)*prob* 

& ((tc8+tc8pre)/2.d0) 
tc9int=tc9int+( ( c lh-x I pre )/delx) *prob* 

& ((tc9+tc9pre)/2.d0) 
goto 80 

endif 
goto 20 

80 continue 
pcs( 4 )=tc4 int 
pcs( 5)=tc5int 
pcs( 6)=tc6int 
pcs(7)=tc7int 
pcs(8)=tc8int 
pcs(9)=tc9int 
return 
end 

c*************************************************** 
C 

C 

C 

C 

C 

C 

C 

********************************************** 
********************************************** 
error checking and cost calculating for the 
case of user-input Cl and program cost request 
c2 carries c21 and c2h 
pcs carries cost components 
xl is obs I value at which function is evaluated 

c*************************************************** 
C 

subroutine errchk3( c2,xl ,c3, tc7int,tc8int, tc9int) 
real*8 a,b,ap,bp,alst,blst,c2(2),rej,acc 
dimension thta(4),tau(4),x(2),p(2) 
real*8 tc7int,tc8int,tc9int 
real*8 tc7pre,tc8pre,tc9pre,delx2,xl,x2 
real*8 c21,c2h,c3,x2pre 
real*8 alo,blo,ahi,bhi 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 
common /inf2/ alst,blst 
common Incur/ j 
tc7int=O.d0 
tc8int=O.d0 
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tc9int=O.d0 
istp=O 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
tau(4)=sqrt(l./(l./sme**2.+ l./tau(3)**2.)) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c2l=c2(1) 
c2h=c2(2) 

c delx2 is step size 
c j is iteration number 

delx2=(blst-alst)/100.d0 
j=3 

C 

c this sequence finds the+/- infinity limits for the 
c conditional false dispositions at n=2, based on the 
c possible extreme values ofxl -->Cll and Clh 
C 

C 

call post(j,2.d0*c21-xl) 
call setabx(alo,blo,j) 
call post(j,2.d0*c21-xl) 
call setabx(ahi,bhi,j) 
a=dmin 1 ( alo,ahi) 
b=dmaxl(blo,bhi) 

call post(j,2.d0*c21-xl) 
call setmor(alo,blo,j) 
call post(i,2.dO*c21-xl) 
call setmor(ahi,bhi,j) 
ap=dmaxl(alo,ahi) 
bp=dminl (blo,bhi) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

x2=2.dO*c21-xl 
20 continue 

call post(3,x2) 
if(c3.lt.a)then 

acc=O.dO 
else 
flg=2. 
if( c3 .gt.ap )then 

call qgaus(i,flg,a,ap,acc) 
else 
call qgaus(j,flg,a,3 .d0*c3-xl-x2,acc) 

endif 
endif 
if( c3. gt. b )then 

rej= O.dO 
else 
flg=l. 
if( c3 .It. bp )then 

call qgaus(j,flg,bp,b,rej) 
else 
call qgaus(j,flg,3 .dO*c3-xl-x2,b,rej) 

endif 
endif 
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cost7=sl 
costa8=acc*a2 
costr9=rej*r2 

c***************************************************** 
if (istp.eq.O)then 

tc7pre=dble( cost7) 
tc8pre=dble( costa8) 
tc9pre=dble( costr9) 
x2pre=x2 
istp=l 

else 
c marginal on x2jxl is N(theta2,smeA2+tau2A2) 

x(l)=(x2pre-thta(2))/sqrt(tau(2)**2.+sme**2.) 
x(2)=(x2-thta(2))/sqrt(tau(2)**2.+sme**2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc7int=tc7int+prob*( ( cost7+tc7pre )/2.dO) 
tc8int=tc8int+prob*( ( costa8+tc8pre )/2.dO) 
tc9int=tc9int+prob*( ( costr9+tc9pre )/2.dO) 
tc7pre=cost7 
tc8pre=costa8 
tc9pre=costr9 
x2pre=x2 

endif 
c***************************************************** 

x2=x2+delx2 
c this next chunk of code accounts for the 
c slack between the last xl and clh 

if (x2.gt.2. *c2h-xl )then 
tc7int=tc7int+((2. *c2h-xl-x2pre )/delx2)*prob* 

& ((cost7+tc7pre)/2.d0) 
tc8int=tc8int+((2. *c2h-xl-x2pre )/delx2)*prob* 

& ((costa8+tc8pre)/2.d0) 
tc9int=tc9int+( (2. *c2h-xl-x2pre)/delx2)*prob* 

& ((costr9+tc9pre)/2.d0) 
goto 80 

endif 
goto 20 

80 continue 

C 

C 

C 

C 

return 
end 
********************************************** 
********************************************** 
********************************************** 

c decision sub to disposition batch of unknown sige 
C 

c bias=measurement error mean 
c beta=prob of being wrong when actual>thel 
c alpha=prob of being wrong when actual<theO 
c del=mu/sig=upper indiff limit 
c delp=mu'/sig=lower indiff limit 
c xobs()=array of observed measurements, limit=50 
c bias subtracted from xobs() prior to calculating 
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c xadj()=array of adjusted measurements (by USpec),limit=lO 
C dlna=lnA 
C dlnb=lnB 
c dllr=ln of the likelihood ratio 
c sumx=sum of the xadj array, from 1 ton 
c sumx2=sum of the sqs of the xadj array, from 1 ton 
c*************************************************** 
C 

C 

subroutine unkn(igo) 

real*8 sumx,sumx2,thep,xobs(50),xadj(50), 
&un,gdelu,gdelpu,dllr 
real*8 delu,delpu,fdul,fdu2,fdpul,fdpu2,gaman2,gamnl 
character iopt 
character*28 tag 
un=O.dO 
nsgs=l 

2 print* 
write(*, *)'What is the maximum number of iterations which' 
write(*, *)'you wish to make ( cannot exceed 50)?' 
print* 
read(*,*,err=2)nunk 
if(nunk.le. l.or.nunk.gt.50)then 

print* 
write(*,*)'**** Invalid Entry. Please Reenter. ****' 
goto 2 

endif 
do 10 j=l,nunk 

xobs(j)=O. OdO 
xadj(j)=O.OdO 

10 continue 
iopt='O' 
sumx=O.OdO 
sumx2=0.0d0 
print* 
write(*, *)'Enter the Specification Limit.' 
print* 
read(*,* ,err=500)thep 
print* 

12 write(*, *)'Enter the ratio of mean/standard deviation to be' 
write(*,*) 'tested for the null hypothesis.' 
print* 
read(*,* ,err=500)del 
print* 

14 write(*, *)'Enter the ratio of mean/standard deviation to be' 
write(*, *)'tested for the alternative hypothesis.' 
print* 
read(*,* ,err=500)delp 
print* 
write(*, *)'Enter Alpha, acceptable Type I error probability,' 
write(*, *)'associated with a true null hypothesis' 
write(*, *)'{O to 1 ).' 
print* 
read(*,* ,err=500)alpha 
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if(alpha.lt.0.or.alpha.gt. l.)goto 500 
print* 
write(*, *)'Enter Beta, acceptable Type II error probability,' 
write(*, *)'associated with a true alternative hypothesis' 
write(*,*)'(O to I).' 
print* 
read(*,* ,err=500)beta 
if(beta.lt.O.or.beta.gt. l.)goto 500 
print* 
print*, 'Enter the measurement error bias.' 
print*,'Sign Convention: If the instrument reads higher' 
print*, 'than the true value, this bias should be positive.' 
print* 
read(*, *,err=500)bias 
print* 

20 continue 
print* 
write(*, IOO)thep 
write(*, 11 O)del 
write(*, 120)delp 
write(*, 130)alpha 
write{*,140)beta 
write(*, l 45)bias 
write{*,*) 
write(*, *)'Is the above information correct?' 
write(*, *)'Enter to accept, or # of parameter to reenter.' 
print* 
read(*, 150)iopt 
if(iopt.eq.' ')goto 40 
if(iopt.gt.'6')goto 600 

if(iopt.eq.' l ')tag='Specification Limit' 
if(iopt.eq.'2')tag='Null Hyp. Ratio of Mean/Std. Dev.' 
if(iopt.eq.'3')tag='Alt. Hyp. Ratio of Mean/Std. Dev.' 
if(iopt.eq. '4 ')tag='Alpha' 
if(iopt.eq. '5')tag='Beta' 
if(iopt.eq. '6')tag='Measurement Bias' 

goto 700 

40 continue 
dlna=log((l.0-beta)/alpha) 
dlnb=log(beta/(1.0-alpha)) 
do 80 n=l,nunk 

print* 
write(*, *)'Enter measurement observation #' ,n 
print* 
read{*,*)xobs(n) 
xobs(n)=xobs(n)-bias 
xadj(n)=xobs(n)-thep 
sumx=sumx+xadj(n) 
sumx2=sumx2+xadj(n)**2.d0 
if(sum.x2.gt.O.)then 

un=sumx/dsqrt(sumx2) 
endif 
delpu=delp*un 
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delu=del*un 
C 

c sub calls 
C 

C 

C 

C 

call sumch(n, l.d0,.5dO*delu**2.dO,fdul) 
call sumch(n,l.d0,.5dO*delpu**2.dO,fdpul) 
call sumch(n+ l,O.d0,.5d0*delu**2.d0,fdu2) 
call sumch(n+ l,O.d0,.5dO*delpu**2.dO,fdpu2) 
call gamn(n,gamnl,gaman2) 

gdelu=dlog(fdul+dsqrt(2.dO)*delu*fdu2*gamnl/gaman2) 
gdelpu=dlog(fdpul +dsqrt(2.dO)*delpu*fdpu2*gamnl/gaman2) 

dllr=gdelpu-gdelu-.5d0*n*((delp**2.d0)-(del**2.0d0)) 
if( dllr.lt.dlnb )then 

print* 
write(*, l 60)dllr 
write(*, l 70)dlnb 
write(*,*)'*******************************************' 
write(*,*)'****** Do Not Reject Null Hypothesis******' 
write(*,*)'*******************************************' 
print* 
goto 1000 

endif 
if( dllr .gt.dlna)then 

print* 
write(*, 180)dllr 
write(*,190)dlna 
write(*,*)'************************************' 
write(*,*)'****** Reject Null Hypothesis ******' 
write(*,*)'************************************' 
print* 
goto 1000 

endif 
80 continue 

print* 

C 

C 

write(*, *)'No decision reached. ' 
write(*, 155)dllr 
write(*, 157)dlna 
write(*,158)dlnb 
goto 1000 

100 format(' I Specification Limit= ',f6.2) 
llO format(' 2 Null Hyp. Ratio of Mean/Std. Dev.= ',f6.2) 
120 format(' 3 Alt. Hyp. Ratio of Mean/Std. Dev.= ',f6.2) 
130 format(' 4 Alpha= ',f4.2) 
140 format(' 5 Beta= ',f4.2) 
145 format(' 6 Measurement Bias= ',f6.2) 
150 format(al) 
15 5 format(' Ln of likelihood ratio= ',fl I. 4) 
157 format(' Upper limit (lnA) = ',fll.4) 
158 format(' Lower limit (lnB) = ',fl 1.4) 
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160 format(' Ln of Likelihood ratio, ',fl 1.4,', less than') 
170 format(' In ofB, ',fll.4,'.') 
180 format(' Ln of Likelihood ratio, ',fl 1.4,', greater than') 
190 format(' In of A, ',fll.4,'.') 
C 

C 

500 print* 
write(*,*)'**** Invalid Entry. Please Reenter Parameters. ****' 
goto2 

600 print* 
write(*,*)'**** Invalid Entry. Please Reenter.****' 
goto 20 

700 print* 
write(*,*)'Enter ',tag,'.' 

print* 
read(*, *)crct 
if(iopt.eq.' l ')thep=crct 
if(iopt.eq. '6')bias=crct 
if(iopt.eq. '2')del=crct 
if( iopt.eq. '3 ')delp=crct 
if(iopt.eq.'4')then 

if(crct.ge.0.and.crct.le. l.)then 
alpha=crct 

else 
goto 700 

endif 
endif 
if(iopt.eq. '5')then 

if( crct.ge.O.and.crct.le. l. )then 
beta=crct 

else 
goto 700 

endif 
endif 

goto 20 
1000 continue 

igo=3 
print*, 'Enter to continue' 
read(*, 150)iopt 
return 
end 

c*************************************************** 
C ********************************************** 
C 

C 

C 

C 

C 

********************************************** 
summation program for con hyp 
both odd and even n 
if ginc=l., then gamrna=l/2 
if ginc=O., then gamma =3/2 

c*************************************************** 
subroutine surnch(n,ginc,x,f) 
real*S jfct,garng,gamgj,garna,garnaj,f,x,fold,ginc 
if(ginc.eq.OdO)then 

garng=.5dO*dsqrt(3.141593dO) 
else 
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gamg=dsqrt(3.141593d0) 
endif 

2 gamgj=gamg 
jfct=l.dO 
ia=n/2 
if(mod(n,2).eq.O)then 

gama=l.dO 
do 10 i=l,ia-1 

gama=gama*i 
10 continue 

else 
gama=dsqrt(3.141593d0) 
do 15 i=l,ia 

gama=(i-.5dO)*gama 
15 continue 

C 

endif 
gamaj=gama 

c for j=O, f=x 
C 

f=l.dO 
fold=f 
do 20 j=l,100 
jfct=jfct*j 
gamgj=gamgj*(j+.5d0-ginc) 
if(mod(n,2).eq.O)then 

gamaj=gamaj*(ia+j-1) 
else 

gamaj=gamaj*(ia+j-.5d0) 
endif 
f=f+(gamg*gamaj*x**j)/(gama*gamgj*jfct) 
if( dabs(f-fold).le. l .e-8)then 

goto 22 
endif 
fold=f 

20 continue 
22 continue 

return 
end 

c*************************************************** 
C 

C 

********************************************** 
********************************************** 

c subroutine to solve the gamma function 
c*************************************************** 
C 

subroutine gamn(n,gamnl,gaman2) 
real*8 gamnl,gamano2,gamane2,gaman2 

2 gamano2=dsqrt(3.141593d0) 
gamane2= l .dO 
ia=n/2 
do 5 i=l,n 

if(mod(i,2).eq.0.and.i.gt.2)then 
gamane2=gamane2*(i/2.d0-l .d0) 

endif 

267 



if(mod(i,2).gt.O.and.i.gt. l)then 
gamano2=gamano2*(i/2.d0-1.d0) 

endif 
5 continue 

if( mod(n,2).eq.O)then 
gamnl=(ia-.5dO)*dsqrt(3.141593dO) 
gaman2=gamane2 
do 10 i=l,ia-1 

c gamnl is for unk2 --(n+l)is odd 
gamnl=gamnl *(i-.5d0) 

10 continue 
else 

c gamnl for unk2 -- (n+ 1) even 
gamnl=l.dO 
gaman2=gamano2 
do 15 i=l,ia 

gamnl =gamnl *i 
15 continue 

endif 
C 

return 
end 

c*************************************************** 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

********************************************** 
********************************************** 
program known 
decision sub to disposition batch of known sige 

sige=measurement error standard deviation 
bias=measurement error mean 
theO=accept indifference limit, thetaO 
thel=reject indifference limit, theta! 
thep= specification limit, thetaprime 
beta=prob of being wrong when actual>thel 
alpha=prob of being wrong when actual<theO 
xobs()=array of observed measurements, limit=50 

this array of observations is adjusted for bias 
dlna=lnA 
dlnb=lnB 
dllr=ln of the likelihood ratio 
sumx=sum of the xobs array, from I ton 

c*************************************************** 
subroutine known(igo) 

C 

dimension xobs(50) 
character iopt 
character*25 tag,tagl,tag2 
character*5 tag3 
bias=O. 
iflg=O 
nsgn=l 
tagl ='less ' 
tag2='greater' 
tag3='Upper' 
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2 print* 
write(*, *)'What is the maximum number of iterations which' 
write(*, *)'you wish to make (cannot exceed 50)?' 
print* 
read(*,*,err=2)k 
if(k.le.0.or.k.gt.50)then 

print* 
write(*,*)'**** Invalid Entry. Please Reenter. ****' 
goto2 

endif 
do 3 j=l,k 
xobs(j)=O.O 

3 continue 
4 iopt='O' 

sumx=O.O 
print* 

IO write(*, *)'Enter the standard deviation of the measurement' 
write(*, *)'error distribution.' 
print* 
read(*,* ,err= 130)sige 
if(sige.le.0.)then 

print* 
write(*,*)'**** Standard Deviation must be positive. ****' 
goto4 

endif 
if(i:flg.eq. l )goto 50 
print* 
print*, 'Enter the measurement error bias.' 
print*,'Sign Convention: If the instrument reads higher' 
print*, 'than the true value, this bias should be positive.' 
print* 
read(*,* ,err= 130)bias 
print* 

20 print* 
write(*, *)'Enter the Specification Limit.' 
print* 
read(*,* ,err= 130)thep 
print* 

30 write(*, *)'Is this an Upper (1) or Lower (2) Spec?' 
print* 
write(*, *)'Enter I or 2.' 
print* 
read(*,* ,err=30)nspc 
if(nspc.ne. l.and.nspc.ne.2)then 

print* 
write(*,*)'**** Invalid Entry. Please Reenter. ****' 
print* 
goto 30 

endif 
if(nspc.eq.2)then 

nsgn=-1 
tag I ='greater' 

· tag2='less' 
tag3='Lower' 
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endif 
thep=nsgn*thep 

34 print* 
write(*, *)'Enter the Acceptance Indifference Limit.' 
write(*, *)'(Beyond which acceptance is preferred)' 
print* 
read(*,* ,err= 130)the0 
theO=nsgn*theO 
if(theO .gt. thep )then 

print* 
write(*,84)tagl 
goto 20 

endif 
print* 

36 write(*, *)'Enter the Rejection Indifference Limit.' 
write(*, *)'(Beyond which rejection is preferred)' 
print* 
read(*, *,err=l30)thel 
thel =nsgn*thel 
if( the 1.lt. thep )then 

print* 
write(* ,85)tag2 
goto 20 

endif 
print* 

40 print* 
write(*, *)'Enter Alpha, Type I Error probability (0 to 1).' 
print* 
read(*, *,err=l30)alpha 
print* 
if( alpha.It. 0. or.alpha.gt. I. )then 

print* 
write(*,*)'**** Invalid Entry. Please Reenter. ****' 
goto 40 

endif 
print* 
if(iflg.eq.1 )goto 50 

45 print* 
write(*, *)'Enter Beta, Type II Error probability (0 to 1).' 
print* 
read(*,* ,err= 130)beta 
print* 
if(beta.lt.0.or.beta.gt.1. )then 

print* 
write(*,*)'**** Invalid Entry. Please Reenter. ****' 
goto 45 

endif 
print* 
if(iflg.eq. l)goto 50 

50 continue 
print* 
write(* ,92)sige 
write(*, 102)bias 
write(* ,93)tag3,real(nsgn)*thep 
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write(* ,94 )real(nsgn)*theO 
write(*,95)real(nsgn)*thel 
write(*, 96)alpha 
write(*, 97)beta 

60 write(*,*) 

C 

C 

write(*, *)'Is the above information correct?' 
write(*, *)'Enter to accept, or # of parameter to reenter. ' 
print* 
read(*,9l)iopt 
if(iopt.eq.' ')goto 70 
if(iopt.gt. '7')goto 120 

if(iopt.eq.' l ')tag='Standard Deviation' 
if(iopt.eq. '3 ')tag='Specification Limit' 
if(iopt.eq.'4')tag='Accept Indifference Limit' 
if(iopt.eq.'5')tag='Reject Indifference Limit' 
if(iopt.eq. '6')tag='Alpha' 
if(iopt.eq. '7')tag='Beta' 
if(iopt.eq. '2 ')tag='Measurement bias' 
iflg=l 
goto 110 

70 continue 
dlna=log((l.0-beta)/alpha) 
dlnb=log(beta/(1.0-alpha)) 
do 80 j=l,k 
print* 
write(*, *)'Enter measurement observation #' ,j 
print* 
read(*, *)xobs(i) 
xobs(i)=nsgn *xobs(i)-bias 
sumx=sumx+xobs(i) 
dllr=((thel-the0)/sige**2.0)*sumx+(i/(2.0*sige**2.0))* 

\(the0**2.0-thel **2.0) 
if( dllr.lt.dlnb )then 

print* 
write(* ,98)dllr 
write(* ,99)dlnb 
write(*,*)'********************************' 
write(*,*)'******** Accept batch ********' 
write(*,*)'********************************' 
print* 
goto 140 
elseif( dllr .ge.dlna)then 

print* 
write(*, lOO)dllr 
write(*, 101 )dlna 
write(*,*)'********************************' 
write(*,*)'******** Reject batch ********' 
write(*,*)'********************************' 
print* 
goto 140 

endif 
80 continue 
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print* 
write(*, *)'Maximum number of iterations reached.' 
write(*, *)'Log of likelihood ratio = ',dllr 

C 

C 

write(*, *)'Acceptance limit= ',dlnb 
write(*, *)'Rejection limit = ',dlna 
write(*, *)'Waid Truncation Rule calls for' 
if(dllr.lt.O.)then 

write(*, *)'Acceptance.' 
else 

write(*, *)'Rejection.' 
endif 
goto 140 

84 format(' **** Limit must be ',a7,' than or equal to spec. ****') 
85 format(' **** Limit must be ',a7,' than or equal to spec. ****') 
90 format(' ',f6.2) 
91 format(al) 
92 format(' 1 Error Standard Deviation= ',f6.2) 
93 format(' 3 ',a5,' Specification= ',f6.2) 
94 format(' 4 Accept Indifference Limit= ',f6.2) 
95 format(' 5 Reject Indifference Limit= ',f6.2) 
96 format(' 6 Alpha= ',f4.2) 
97 format(' 7 Beta= ',f4.2) 
98 format(' Ln oflikelihood ratio, ',fl0.4,', less than') 
99 format(' In ofB, ',:f8.4,'.') 
100 format(' Ln oflikelihood ratio, ',fl0.4,', greater than') 
101 format(' In of A, ',:f8.4,'.') 
102 format(' 2 Measurement Bias= ',f6.2) 
C 

110 print* 
write(*,*)'Enter ',tag 
print* 
read(*,* ,err= 11 O)crct 

if(iopt.eq.'3')then 
crct=nsgn *crct 
if(crct.le.thel.and.crct.ge.theO)then 

thep=crct 
else 

goto llO 
endif 

endif 
if(iopt.eq.'2')bias=crct 
if(iopt.eq.'l')goto 10 
if(iopt.eq.'4')then 

crct=nsgn *crct 
if( crct.le. thep )then 

theO=crct 
else 

print* 
write(*,84)tagl 
write(*,*)'to ',tag3,' Specification.' 
goto llO 

endif 
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endif 
if(iopt.eq. '5')then 

crct=nsgn*crct 
if( crct.ge.thep )then 

thel=crct 
else 
print* 
write(* ,85)tag2 
write(*,*)'to ',tag3,' Specification.' 
goto llO 

endif 
endif 
if(iopt.eq.'6')goto 40 
if(iopt.eq.'7')goto 45 

goto 50 
120 print* 

write(*,*)'**** Invalid Entry. Please Reenter. ****' 
goto 50 

130 print* 
write(*,*)'**** Invalid Entry. Please Reenter Parameters. ****' 
write(*,*) 
goto4 

140 continue 
igo=3 
print*, 'Enter to continue' 
read(* ,91 )iopt 
return 
end 
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APPENDIXB 

ECONOMIC COMPUTER PROGRAMS UTILIZING 

THE PRIOR COSTING APPROACH 

(FORTRAN Code Listings) 
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c****************************************************** 
c****************************************************** 
c****************************************************** 
c main for approach 1 (prior), nmax=l 
c "n" is number of unknowns, in this case, only the 
c single value of cl=cll=clh 
C 

C 

dimension thta(4),tau(4) 
real*8 start(10),step(l0),xmin(20),xsec(20),tcnewlo, 

&tcsec,reqmin,a,b,pcs(3) 
character iopt 
character*S spec 
common /costs/ sl,a2,r2,nspc 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
spec='Upper' 
n=l 
call vardef(u,thta(l),tau(l),bias,sme,sl,a2,r2,nspc) 
if(nspc.eq.2)spec='Lower' 
reqmin=.00000 ldO 
icount=200 
j=l 
call setabx(a,bj) 
if(b.le.a)then 

tcnewlo=sl 
pcs(l)=sl 
pcs(2)=0.d0 
pcs(3)=0.d0 
xmin(l)=b+(.S*(a-b)) 
icount=O 
goto 80 

endif 
step(l )=(b-a )/2.dO 
start(l )=(b+a)/2.dO 

call nelmin(n,start,xmin,xsec,tcnewlo, 
&tcsec,reqmin,step,icount,pcs) 

80 continue 
print* 
write(* ,61 O)xmin( 1 ),xmin( 1 )-bias 
write(*,612) 
write(*, 614 )pcs( 1) 
write(*, 616)pcs(2) 
write(* ,618)pcs(3) 
write(* ,620)tcnewlo 

c write(*, *)'next highest= ',tcsec 
c write(*, *)'Trials used= ',icount 
90 print* ,'Send output to file? (YIN)' 

read(* ,SOO)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N' .and.iopt.ne. 'y' .and. 

&iopt.ne.'n')goto 90 
if(iopt.eq. 'n'.or.iopt.eq. 'N')goto 200 
write(2,5 l O)thta(l) 
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write(2,520)tau(l) 
write(2,530)spec,u 
write(2,540)sme 
write(2,550)bias 
write(2,560) 
write(2,570)sl 
write(2,580)a2 
write(2,590)r2 
write(2,600) 
write(2,610)xmin(l),xmin(l)-bias 
write(2,612) 
write(2,614)pcs(l) 
write(2,616)pcs(2) 
write(2,6 l 8)pcs(3) 
write(2,620)tcnewlo 

200 continue 
500 format(al) 
510 format(' Prior Mean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Measurement Error Std. Dev.= ',fl6.8) 
550 format(' Measurement Error Mean (Bias= ',fl6.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A)= ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' **************************************') 
610 format(' Zero-Bias Cl = ',fl6.8,5x,'Bias Adj Cl = ',fl6.8) 
612 format(' Expected Plan Costs:') 
614 format(' Sampling on I= ',fl2.4) 
616 format(' False Accept on I = ',fl2.4) 
618 format(' false Reject on I= ',fl2.4) 
620 format(' fa.'Pected Total Cost= ',fl2.4) 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c sub for input of all sampling paramters 
C 

subroutine vardef( u,thta, tau,bias,sme,s l ,a2,r2,nspc) 
ccccccccccccccccccc 

character iopt 
character* 5 spec 
spec='Upper' 
iflg=O 

10 print* 
print*, 'Enter the Specification Limit.' 
print* 
read(*, *,err=IO)u 
if(iflg.eq. l)goto 90 

15 print* 
print* ,'Is this an Upper (I) or Lower (2) Spec?' 
print* ,'Enter I or 2.' 

276 



print* 
read(*, *,err=l5)nspc 
if(nspc.ne. l.and.nspc.ne.2)then 

write(*, *)'Invalid Entry. Try again.' 
goto 15 

endif 
if(nspc.eq.2)spec='Lower' 

20 print* 
print*, 'Enter the value of the prior distribution mean.' 
print* 
read(*,* ,err=20)thta 
if(iflg.eq.l)goto 90 

30 print* 
print*, 'Enter the value of the prior standard deviation.' 
print* 
read(*,* ,err=30)tau 
if(tau.lt.O)then 

print* 
print*,'**** Standard Deviation cannot be negative****' 
goto 30 

endif 
if(iflg.eq. l )goto 90 

40 print* 
print*,'Enter the value of the measurement error' 
print*,'distribution mean (bias).' 
print*,'Sign Convention: If the instrument reads higher' 
print*, 'than the true value, this bias should be positive.' 
print* 
read(*,* ,err=40)bias 
if(iflg.eq. l )goto 90 

50 print* 
print*, 'Enter the value of the measurement error' 
print*, 'distribution standard deviation.' 
print* 
read(*,* ,err=50)sme 
if(sme.lt.O)then 

print* 
print*,'**** Standard Deviation must be positive ****' 
goto 50 

endif 
if(iflg.eq. l )goto 90 

60 print* 
print*, 'Enter the cost associated with a single measurement' 
print* ,'iteration (S).' 
print* 
read(*,*,err=60)sl 
if(sl.lt.O)then 

print* 
print*,'**** Cost must be positive****' 
goto 60 

endif 
if(iflg.eq. l)goto 90 

70 print* 
print*, 'Enter the cost associated with a false acceptance of 
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print*,'a batch of product (A).' 
print* 
read(*,* ,err=70)a2 
if(a2.lt.O)then 

print* 
print*,'**** Cost must be positive ****' 
goto 70 

endif 
if(iflg.eq. l)goto 90 

80 print* 
print*, 'Enter the cost associated with a false rejection of 
print* ,'a batch of product (R).' 
print* 
read(*,* ,err=80)r2 
if(r2.lt.O)then 

print* 
print*,'**** Cost must be positive ****' 
goto 80 

endif 
90 print* 

write(* ,300)spec,u 
write(* ,3 lO)thta 
write(* ,320)tau 
write(* ,330)bias 
write(* ,340)sme 
write(* ,350)sl 
write(* ,360)a2 
write(*,370)r2 
print* 
print*, 'Is the above information correct?' 
print*, 'Enter to accept or parameter # to reenter.' 
print* 
read(* ,380)iopt 
print* 
if(iopt.eq.' ')goto 1000 
if(iopt.lt.' I' .or.iopt.gt. '8')then 

print* ,'Invalid Entry. Please Reenter.' 
goto 90 

endif 
iflg=l 
if(iopt.eq. 'I ')then 

goto 10 
endif 
if(iopt.eq. '2')then 

goto 20 
endif 
if(iopt.eq. '3 ')then 

goto 30 
endif 
if(iopt.eq. '4')then 

goto 40 
endif 
if(iopt.eq. '5')then 

goto 50 
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end.if 
if(iopt.eq. '6')then 

goto60 
end.if 
if(iopt.eq. '7')then 

goto 70 
end.if 
if(iopt.eq. '8')then 

goto 80 
end.if 

300 format(lx,'1 ',a5' Specification Limit= ',fl0.4) 
310 format(' 2 Prior Distribution Mean= ',fl0.4) 
320 format(' 3 Prior Standard Deviation= ',fl0.4) 
330 format(' 4 Error Distribution Mean (Bias)= ',fl0.4) 
340 fonnat(' 5 Error Distribution Std. Dev.= ',fl0.4) 
350 fonnat(' 6 Iteration Cost (S)= ',f8.2) 
360 format(' 7 False Acceptance Cost (A)= ',f8.2) 
370 format(' 8 False Rejection Cost (R)= ',f8.2) 
380 format(al) 
1000 continue 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c subroutine to set a (-infinity) and b (infinity) 
c practical limits for the function used in order 
c to utilize gaussian quadrature 
c add argj to define which n (not nmax) is current 
c j passes from management program 

C 

subroutine setabx(a,bj) 
rea1*8 x,ffunc,pk,trof,a,b 
dimension thta(4),tau(4) 

common /parms/ tau,sme,thta,u 
c reject prob 
c must set b, unknown involving c is lower limit 
c start at u, work up 
C 

flg=l. 
x=u 
call func(j,flg,x,ffunc) 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O.)then 

x=x-sme 
. goto 12 

end.if 
x=x+sme 

10 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.pk)then 

· pk=ffunc 
end.if 
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if(ffunc.lt. tro:t)then 
trof=ffunc 
b=x 
if(trofle. (. 00000 ldO*pk) )then 

goto 20 
endif 

endif 
x=x+sme 
goto 10 

12 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt.O.)then 

b=x 
goto 20 

else 
x=x-sme 
goto 12 

endif 
20 continue 
c accept prob 
c need a, unknown involving c is upper limit 
c start at u, work way down 

flg=2. 
x=u 

27 continue 
call func(i,flg,x,ffunc) 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O.)then 

x=x+sme 
goto 32 

endif 
x=x-sme 

30 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt. pk)then 

pk=ffunc 
endif 
if(ffunc.lt.tro:t)then 

trof=ffunc 
a=x 
if(trof.le.(.OOOOOldO*pk))then 

goto 40 
endif 

endif 
x=x-sme 
goto 30 

32 continue 
call func(i,flg,x,ffunc) 
if(ffunc.gt.0.)then 

a=x 
goto 40 

else 
x=x+sme 
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goto 32 
endif 

40 continue 
return 
end 

c ten pt gaussian quadrature 
c****************************************************** 
c****************************************************** 
c****************************************************** 
c taken from Press, Flannery, Teukolsky and Vetterling 
c (1986), Numerical Recipes, Cambridge Univ. Press, NY. 
c This function is 
c called from fn, which serves as an intermediate 
c sub between nelmin and qgaus. 
C 

C 

subroutine qgaus(j,flg,a,b,ss) 
real*8 x(5),w(5),ss,xm,xr,dx,tl,t2,a,b 
data x/.1488743389d0,.433395394 ld0,.6794095682d0, 
&.8650633666d0,.9739065285d0/ 
data w/.295524224 7d0,.2692667193d0,.2190863625d0, 

&.1494513491d0,.0666713443d0/ 

C 

C 

C 

xm=0.5dO*(b+a) 
xr=0.5dO*(b-a) 
ss=O.dO 
do 11 k=l,5 

dx=xr*x(k) 

call func(j,flg,xm+dx,tl) 
call func(j,flg,xm-dx,t2) 
ss=ss+w(k)*(tl +t2) 

11 continue 
ss=xr*ss 
return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c Intermediate sub between nelmin and qgaus 
c called from nelmin 
c sub fn takes care of the accounting in solving 
c each leg of the tc equation (using qgaus) with 
c estimates provided by nelmin. 
c should receive the array of unknowns, must pass a 
c function value back to nelmin 
C 

c c is the unknown value of cl 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

subroutine fn(c,from,pcs) 
real*8 c,from,a,b,pcs(3) 
real*8 acc,rej,prb(2),step(10) 
dimension tau(4),thta(4) 
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C 

common /costs/ sl,a2,r2,nspc 
common /parms/ tau,sme,thta,u,a,b,step 
common Incur/ j 

c this is accept error for upper spec, reject for lower 
c cl is upper limit (-inf,lower) 
C 

C 

if( c.lt.a)then 
prb(l )= 100.dO 
goto 88 

else 
flg=2. 
call qgaus(j,flg,a,c,prb(l)) 

endif 

c reject for upper spec, accept for lower 
c cl is lower limit (inf, higher) 
c ==>a=c(l), b= ... must be close enough to cl for lOpt. 
C 

C 

C 

if( c.gt. b )then 
prb(2)=100.d0 
goto 88 

else 
flg=l. 
call qgaus(j,flg,c,b,prb(2)) 

endif 

c should now have the two integral terms 
c to plug in with costs and send back to nelmin in the 
c form of the total cost function value 
C 

88 continue 
if(nspc.eq. l)then 

acc=prb(l) 
rej=prb(2) 

else 
acc=prb(2) 
rej=prb(l) 

endif 
pcs(l)=sl 
pcs(2)=a2*acc 
pcs(3 )=r2 *rej 
from=pcs( 1 )+pcs(2)+pcs(3) 

100 continue 
return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c functions obtained from mead 
c calls sub errint from stegun and zucker 
c must bring in a x to this sub, which is obtained 
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c from gaussian quadrature 
C 

C 

C 

C 

C 

subroutine func(i,flg,x,ffunc) 

real*8 x,ffunc,erfarg,erfnum,erfden,ffjnk,erf,erfc 
dimension tau(4),thta(4) 
common /parms/ tau,sme,thta,u,a,b 

c ne'-1 eqns common to both errors (type I and II) 
C 

C 

C 

C 

erfnum=-u*tau(i)**2. -u*sme**2. +sme**2. * 
&thta(i)+tau(i)**2. *x 
erfden=sme* ( tau(i)*sqrt(tau(i)**2. +sme* *2.)) 
erfarg=.7071067811865475244dO*(erfnum/erfden) 
call errint(erfarg,erf,erfc) 

ffjnk=exp(-.5*(x-thta(i))**2./(tau(j)**2. +sme**2. ))/ 
&sqrt(tau(i)**2.+sme**2.) 

c this ffjnk for x from u to infinity (out ofup spec) 
c error is in accepting batch type ii 
C 

C 

if(flg.eq.l.) go to 21 
ffunc=.19947114020071633897d0*(1.d0+erf)*ffjnk 
go to 25 

c this ffjnk for x from -infinity to u (in upr spec) 
c error is in rejecting batch type i 
C 

C 

21 ffunc=-.19947114020071633897dO*(erf-l.dO)*ffjnk 

25 continue 
return 
end 

c**************************************************** 
C 

C 

************************************************ 
************************************************ 

c error function evaluation ( erf) 
c modified from Stegun and Zucker 
c**************************************************** 
C 

C 

C 

subroutine errint (x,erf,erfc) 
real*8 an,bn,cons,cl,dn,erf,erfc,f,fn,fnml, 
I fnm2,four,gn,gnml,gnm2,one,prev,pwr,rnbc,scf,sum, 
2 tn,toler,trrtpi,two,ulcf,ulps,wn,x,y,ysq 

data nbc,nbm/11,60/ 
data one,two,four,ulps,cons/l.d0,2.d0,4.dO,l.d0,.83dO/ 
data trrtpi/1.128379167095512574d0/ 
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C 

mbc=nbc 
toler=two**(-nbm) 

c test on zero 
C 

C 

C 

C 

if(x) 2,1,2 
1 erf=O.dO 

erfc=one 

return 

2 y=dabs(x) 
ysq=y**2.d0 
if(y-ulps) 3,3,4 

c maximum argument 
C 

C 

4 cl=two**((mbc-one)/two) 
ulcf=cons*cl 

c scale factor 
C 

scf=two**(cl **2.dO-mbc) 
C 

c limiting value 
C 

C 

C 

if(y-ulc:f) 10,10,11 

11 erf=one 
erfc=O.dO 
goto7 

c method -- power series 
C 

C 

3 sum=O.dO 
dn=one 
tn=one 
pwr=two*ysq 

6 dn=dn+two 
tn=pwr*tn/dn 
sum=tn+sum 

c tolerance check 
C 

C 

C 

if(tn-toler) 5,6,6 

5 erf=(sum+one )*trrtpi*y*dexp(-ysq) 
erfc=one-erf 

c negative argument 
C 

7 if(x) 8,9,9 .· 
8 erf=-erf 

erfc=two-erfc 
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9 return 
C 

c method-- continued fraction 
C 

C 

C 

10 fnm2=0.d0 
gnm2=one 
fnml=two*y 
gnml=two*ysq+one 

prev=fnml/gnml 
wn=one 
bn=gnml +four 

14 an=-wn*(wn+one) 
fn=bn*fnml+an*fnm2 
gn=bn*gnml+an*gnm2 
f=fn/gn 

c tolerance check 
C 

if(dabs(one-(f/prev))-toler) 12,12,13 
13 if(prev-f) 17,17,18 

c both fn and gn must be tested if abs(x) .It. .61 
17 if(gn.lt.scf) go to 16 

C 

c scaling 
C 

C 

15 fn=fn/scf 
gn=gn/scf 
fnml=fnml/scf 
gnml =gnml/scf 

16 fnm2=fnml 
gnm2=gnml 
fnml=fn 
gnml=gn 
wn=wn+two 
bn=bn+four 
prev=f 
go to 14 

18 f=prev 
12 erfc=f*dexp(-ysq)*trrtpi/two 

erf=one-erfc 

go to 7 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 

subroutine nelmin( n,start,xmin,xsec,ynewlo, 
&ysec,reqmin,step,icount,pclo) 

c********************************************************** 
c modified from: 
c Olsson, D. M., "A Sequential Simplex Program for 
c Solving Minimization Problems," JQT, V. 6, No. 1, 
C pp. 53-57, Jan. 1974. 
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c andfrom 
c Ho, C., "The Economic Design and Evaluation of Three 
c Variables Control Charts", Ph.D. Dissertation, O.S.U 
C July, 1992. 
c********************************************************** 

real*8 start(n),step(n),xmin(n),xsec(n),ynewlo, 
&ysec,reqmin,p(20,2 l ),pstar(20),p2star(20), 
&pbar(20),y(20),z,ylo,rcoeff,ystar,ecoeff, 
&y2star,ccoeff,f,dabit,dchk,coordl,coord2,pcs(3),pclo(3) 
data rcoeff/1. OdO/,ecoeff/2. OdO/,ccoeff/0. SdO/ 
kcount=icount 
icount=O 

c********************************************************** 
c initialization 
c********************************************************** 

do60 i=l,n 
xmin(i)=O.OdO 
xsec(i)=O.OdO 

60 continue 
ynewlo=O.OdO 
ysec=O.OdO 
if (reqmin.le.O.OdO) icount=icount-1 
if ( n.le.0) icount=icount-10 
if (n.gt.20) icount=icciunt-10 
if (icount.lt.O) return 
dabit=2.04607d-35 
bignum= l.Od30 
konvge=S 
xn=float(n) 
nn=n+l 

c*********************************************************** 
c construction of simplex 
c*********************************************************** 
1001 do 1 i=l,n 

C 

C 

C 

C 

1 p(i,nn)=start(i) 

call fn(start,f,pcs) 

y(nn)=f 
icount=icount+ 1 
do 2j=l,n 

dchk=start(j) 
start(j)=dchk+step(j) 
do 3 i=l,n 

3 p(ij)=start(i) 

call fn(start,f,pcs) 

y(j)=f 
icount=icount+ 1 

2 start(j)=dchk 
c*********************************************************** 
c simplex construction complete 
c*********************************************************** 
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c find highest and lowest y value 
c ynewlo indicates the vertex of the 
c simplex to be replaced 
c*********************************************************** 
1000 ylo=y(l) 

ynewlo=ylo 
ilo=l 
ihi=l 
do 5 i=2,nn 

if(y(i).ge.ylo) go to 4 
ylo=y(i) 
ilo=i 

4 if (y(i).le.ynewlo) go to 5 
ynewlo=y(i) 
ihi=i 

5 continue 
c*********************************************************** 
c perform convergence checks on function 
c*********************************************************** 

dchk=(ynewlo+dabit)/(ylo+dabit)-1. OdO 
if (dabs(dchk).lt.reqmin) go to 900 
konvge=konvge-1 
if (konvge.ne.0) go to 2020 
konvge=5 

c*********************************************************** 
c check convergence of coordinate 
c only every 5 simplex 
c*********************************************************** 

do 2015 i=l,n 
coordl =p(i, 1) 
coord2=coordl 
do 2010 j=2,nn 

if (p(ij).ge.coordl) go to 2005 
coordl =p(ij) 

2005 if (p(ij).le.coord2) go to 2010 
coord2=p(ij) 

2010 continue 
dchk=( coord2+dabit)/(coordl +dabit)-1.0dO 
if (dabs(dchk).gt.reqmin) go to 2020 

2015 continue 
go to 900 

2020 if (icount.ge.kcount) go to 900 
c*********************************************************** 
c calculate pbar, the centroid of the simplex 
c vertices except thjat with y value ynewlo 
c********************************************************** 

do 7 i=l,n 
z=O.OdO 
do6j=l,nn 

z=z+p(ij) 
6 continue 

z=z-p(i,ihi) 
7 pbar(i)=z/float(n) 

c*********************************************************** 
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c reflection through the centroid 
c*********************************************************** 

do 8 i=l,n 
8 pstar(i)=( 1. OdO+rcoefl)*pbar(i)-rcoeff*p(i,ihi) 

C 

call fn(pstar,f,pcs) 
c print* ,'nm f= ',f 

ystar=f 
icount=icount+ 1 
if (ystar.ge.ylo) go to 12 
if (icount.ge.kcount) go to 19 

c********************************************************** 
c successful reflection, so extension 
c********************************************************** 

C 

do 9 i=l,n 
9 p2star(i)=ecoeff*pstar(i)+( 1. OdO-ecoefl)*pbar(i) 

call fn(p2star,f,pcs) 
y2star=f 
icount=icount+ 1 

c********************************************************** 
c retain e:\.iension or contraction 
c********************************************************** 

if (y2star.ge.ystar) go to 19 
10 do 11, i=l,n 
11 p(i,ihi)=p2star(i) 

y(ihi)=y2star 
go to 1000 

c********************************************************** 
c no e:\.iension 
c********************************************************** 

121=0 
do 13 i=l,nn 

if (y(i).gt.ystar) l=l+ 1 
13 continue 

if(l.gt.l) go to 19 
if (l.eq.O) go to 15 

c********************************************************** 
c contraction on the reflection side of the centroid 
c********************************************************** 

do 14 i=l,n 
14 p(i,ihi)=pstar(i) 

y(ihi)=ystar 
c********************************************************** 
c contraction on the y(ihi) side of the centroid 
c********************************************************** 

C 

C 

15 if (icount.ge.kcount) go to 900 
do 16 i=l,n 

16 p2star(i)=ccoeff*p(i,ihi)+(l.Od0-ccoefl)*pbar(i) 

call fn(p2star,f,pcs) 

y2star=f 
icount=icount+ 1 
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if (y2star.lt.y(ihi)) go to 10 
c********************************************************** 
c contract the whole simplex 
c********************************************************** 

C 

do 18j=l,nn 
do 17 i=l,n 

p(ij)=(p(ij)+p(i,ilo) )*0.5d0 
17 xmin(i)=p(ij) 

call fn(xmin,f,pcs) 
Y(j)=f 

18 continue 
icount=icount+nn 
if (icount.lt.kcount) go to 1000 
goto 900 

c********************************************************* 
c retain reflection 
c********************************************************* 

C 

C 

19 continue 
do 20 i=l,n 

20 p(i,ihi)=pstar(i) 
y(ihi)=ystar 
goto 1000 

900 do 23 j=l,nn 
do 22 i=l,n 

22 xmin(i)=p(ij) 

call fn(xmin,f,pcs) 

y(j)=f 
23 continue 

ynewlo=bignum 
do 24j=l,nn 
if (y(j).ge.ynewlo) go to 24 
ynewlo=y(j) 
pclo(l )=pcs(l) 
pclo(2)=pcs(2) 
pclo(3)=pcs(3) 
ibest=j 

24 continue 
y(ibest)=bignum 
ysec=bignum 
do 25j=l,nn 
if (y(j).ge.ysec) go to 25 
ysec=y(j) 
isec=j 

25 continue 
do 26 i=l,n 

xmin(i)=p(i,ibest) 
xsec(i)=p(i,isec) 

26 continue 
C 

return 
end 
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c****************************************************** 
c****************************************************** 
c****************************************************** 
c Main for the prior case of nmax.=2. Calls 
c nelder-mead sub which will make a call 
c to the function for minimization. 
C 

C 

c for the n=l step ofnmax.=2, n=2 unknowns (cll,clh) 
C 

real *8 start( 1 O),step( I O),xmin(20),xsec(20),tcnewlo, 
&tcsec,reqmin,a,b,pcs(9),xtmp 
character iopt 
character* 5 spec 
dimension thta(4),tau(4) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 

ccccccccccccccccccc 
spec='Upper' 
call vardef(u,thta(l),tau(l),bias,sme,sl,a2,r2,nspc) 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c Use given spec, but find for symmetrical prior mean 

if(nspc.eq.2)then 
thta( I )=2 *u-thta(l) 
spec='Lower' 

endif 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 

j=l 
call setabx(a,bj) 
if(b.le.a)then 

tcnewlo=sl 
pcs(l)=sl 
pcs(2)=0.d0 
pcs(3)=0.d0 
pcs(4)=0.d0 
pcs(5)=0.d0 
pcs(6)=0.d0 
xmin(l)=b+(.5*(a-b)) 
icount=O 
goto 85 

endif 
c starting values for cll=a, clh=b, c2 split cliff 

start(l)=a 
start(2)=b 
start(3)=(a+b)/2.d0 
n=3 
step( I )=(b-a )/2 .dO 
step(2)=step( 1) 
step(3)=step(l) 
tcint=O.dO 
reqmin=.00000 ldO 
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icount=200 
call nelminl(n,start,xmin,xsec,tcnewlo, 

&tcsec,reqmin,step,icount,pcs) 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
c this to account for lower spec by symmetry, only 
c change prior mean back before print 
c find cl by symmetry around the specification 

if(nspc.eq.2)then 
xtmp=xmin(l) 
xmin(l)=2*u-xmin(2) 
xmin(2)=2*u-xtmp 
xmin(3)=2*u-xmin(3) 
thta(l )=2 *u-thta( 1) 

endif 
~lo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% 
C 

85 continue 
C 

write(*,610)xmin(3),xmin(3)-bias 
write(* ,614)xmin(l),xmin(l)-bias 
write(*,616)xmin(2),xmin(2)-bias 
write(*,618) 
write(*,620)pcs(l) 
write(* ,622)pcs(2) 
write(* ,624 )pcs(3) 
write(* ,626)pcs( 4) 
write(* ,628)pcs(5) 
write(* ,630)pcs(6) 
write(* ,650)tcnewlo 

90 print* ,'Send output to file? (YIN)' 
read(* ,500)iopt 
if(iopt.ne. 'Y' .and.iopt.ne. 'N' .and.iopt.ne. 'y' .and. 

&iopt.ne.'n')goto 90 
if(iopt.eq. 'n'.or.iopt.eq. 'N')goto 100 
write(2,510)thta(l) 
write(2,520)tau(l) 
write(2,530)spec,u 
write(2,540)sme 
write(2,550)bias 
write(2,560) 
write(2,570)sl 
write(2,580)a2 
write(2,590)r2 
write(2,600) 
write(2,610)xmin(3),xmin(3)-bias 
write(2,614)xmin(l),xmin(l)-bias 
write(2, 6 l 6)xmin(2 ),xmin(2 )-bias 
write(2,618) 
write(2,620)pcs( 1) 
write(2,622)pcs(2) 
write(2, 624 )pcs(3) 
write(2,626)pcs( 4) 
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write(2,628)pcs(5) 
write(2,630)pcs(6) 
write(2,650)tcnewlo 

100 continue 
500 format(al) 
510 format(' Prior Mean= ',fl6.8) 
520 format(' Prior Std. Dev= ',fl6.8) 
530 format(lx,a5,' Specification= ',fl6.8) 
540 format(' Measurement Error Std. Dev.= ',fl6.8) 
550 format(' Measurement Error Mean (Bias)= ',fl6.8) 
560 format(' Input Costs:') 
570 format(' Iteration (S) = ',fl2.4) 
580 format(' False Accept (A)= ',fl2.4) 
590 format(' False Reject (R) = ',fl2.4) 
600 format(' **************************************') 
610 format(' Zero-Bias C2 = ',fl6.8,5x,'Bias Adj C2 = ',fl6.8) 
614 format(' Zero-Bias Cll = ',fl6.8,5x,'Bias Adj Cll = ',fl6.8) 
616 format(' Zero-Bias Clh = ',fl6.8,5x,'Bias Adj Clh = ',fl6.8) 
618 format(' Expected Plan Costs:') 
620 format(' Sampling on 1 = ',fl2.4) 
622 format(' False Accept on 1 = ',fl2.4) 
624 format(' False Reject on 1 = ',fl2.4) 
626 format(' Sampling on 2 = ',fl2.4) 
628 format(' False Accept on 2 = ',fl2.4) 
630 format(' False Reject on 2 = ',fl2.4) 
650 format(' Expected Total Cost= ',fl2.4) 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
C 

c sub which steps through the integration of the 
c n=2 function from ell to clh 
c cl array holds ell and clh 
c pcs array holds the cost components 
C 

C 

subroutine clg2(cl,tctot,pcs) 
dimension thta(4),tau(4) 
real*8 cl(3),tcint,tctot,cll,clh,c2 
real *8 acc,rej,a,b,bignum,pcs(9) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 

print*, 'Working ... ' 
cll=cl(l) 
clh=cl(2) 
c2=cl(3) 
tctot=O.dO 
tcint=O.dO 
bignum=9.99d+55 

ccccccccccccccccccc 
j=l 
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if(c2.gt.clh.or.c2.lt.cll)then 
tctot=bignum 
goto 200 

endif 
if(clh.gt.b)then 

rej=IOO.dO 
else 

flg=l. 
call qgaus(j,flg,clh,b,rej) 

endif 
if(cll.lt.a)then 

acc=IOO.dO 
else 

flg=2. 
call qgaus(j,flg,a,c 11,acc) 

endif 
50 continue 

costl=sl 
cost2a=a2*acc 
cost3r=r2*rej 

55 continue 
if(cll.ge.clh)then 

tcint=bignum 
else 

call nmx2(cll,clh,c2,pcs(4),pcs(5),pcs(6)) 
endif 

60 continue 
tctot=costl +cost2a+cost3r+pcs( 4 )+pcs( 5)+pcs( 6) 
pcs(l )=cost I 
pcs(2)=cost2a 
pcs(3 )=cost3r 

200 continue 
return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
C 

c sub which steps through 
c the n=2 function between ell and clh 
C 

C 

subroutine nmx2(cll,clh,c2,tc4int,tc5int,tc6int) 
real*8 a,b,xl,c2,cll,clh 
real*8 tcpre,tcint,delx,xlpre,tc4pre,tc5pre,tc6pre 
real *8 acc2,rej2, tc4int,tc5int, tc6int 
dimension thta( 4 ), tau( 4) 
dimension x(2),p(2) 
common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u,a,b 
common Incur/ j 
j=2 

c n=l unknown in current equation, at nmax=2 (c2) 
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ccccccccccccccccccc 
nmx=2 

C 

n=l 
istp=O 
delx=(b-a)/100 .dO 
tcint=O.dO 
tc4int=O.d0 
tc5int=O.d0 
tc6int=O.d0 

xl=cll 
20 continue 

call post(xl,sme,thta{l),tau(l),thta(2),tau(2)) 
C 

80 continue 
ccccccccccccccccccccccccccc 

if(2.dO*c2-xl .le.a)then 
acc2=0.d0 

else 
call qgaus(2,2.,a,2.dO*c2-xl,acc2) 

endif 
if(b.le.2.d0*c2-xl)then 

rej2=0.d0 
else 

call qgaus(2, l .,2.dO*c2-xl ,b,rej2) 
endif 
cost5a=acc2*a2 
cost6r=rej2 *r2 
cost4=sl 
ynewlo=cost4+cost5a+cost6r 

if (istp.eq.O)then 
tc4pre=cost4 
tc5pre=cost5a 
tc6pre=cost6r 
tcpre=ynewlo 
xlpre=xl 
istp=l 

else 
x(l)=(xlpre-thta(l))/sqrt(tau(l)**2.+sme**2.) 
x(2)=(xl-thta(l))/sqrt(tau(1)**2. +sme**2.) 
call normal(x,p) 
prob=p(2)-p(l) 
tc4int=tc4int+prob*((cost4+tc4pre)/2.d0) 
tc5int=tc5int+prob*( ( cost5a+tc5pre )/2.dO) 
tc6int=tc6int+prob*((cost6r+tc6pre)/2.d0) 
tcint=tcint+prob*( (ynewlo+tcpre )/2.dO) 
tcpre=ynewlo 
tc4pre=cost4 
tc5pre=cost5a 
tc6pre=cost6r 
xlpre=xl 

endif 
xl=xl+delx 
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c this next chunk of code accounts for the 
c slack between the last xl and clh 

if (xl.gt.clh)then 
tcint=tcint+((clh-xlpre)/delx)*prob*((ynewlo+tcpre)/2.dO) 
tc4int=tc4int+((clh-xlpre)/delx)*prob*((cost4+tc4pre)/2.d0) 
tc5int=tc5int+( ( c lh-xl pre )/delx)*prob*( ( cost5a+tc5pre )/2.dO) 
tc6int=tc6int+( ( c 1 h-xl pre )/delx)*prob*( ( cost6r+tc6pre )/2.dO) 

goto 200 
endif 
goto 20 

200 continue 
2000 format(al) 

return 
end 

c most of this taken directly from HO. Not sure why 
c he's passing the sub in the call args (fn)-removed. 

subroutine nelminl ( n,start,xmin,xsec,ynewlo, 
&ysec,reqmin,step,icount,pclo) 

c********************************************************** 
c modified from: 
c Olsson, D. M., "A Sequential Simplex Program for 
c Solving Minimization Problems," JQT, V. 6, No. 1, 
C pp. 53-57, Jan. 1974. 
c andfrom 
c Ho, C., "The Economic Design and Evaluation of Three 
c Variables Control Charts", Ph.D. Dissertation, O.S.U 
C July, 1992. 
c********************************************************** 

real*8 start(n),step(n),xmin(n),xsec(n),ynewlo, 
&ysec,reqmin,p(20,2 l ),pstar(20),p2star(20), 
&pbar(20),y(20),z,ylo,rcoeff,ystar,ecoeff, 
&y2star,ccoeff,f,dabit,dchk,coordl,coord2,pclo(9),pcs(9) 
data rcoeff/1.0dO/,ecoeff/2.0dO/,ccoeff/0.5dO/ 
kcount=icount 
icount=O 

c********************************************************** 
c initialization 
c********************************************************** 

do 60 i=l,n 
xmin(i)=O.OdO 
xsec(i)=O.OdO 

60 continue 
ynewlo=O.OdO 
ysec=O.OdO 
if (reqmin.le.0.0dO) icount=icount-1 
if (n.le.0) icount=icount-10 
if (n.gt.20) icount=icount-10 
if (icount.lt.O)then 

print*, 'iterations expired' 
return 

endif 
dabit=2.04607d-35 
bignum= 1.0d30 
konvge=5 
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xn=float(n) 
nn=n+l 

c*********************************************************** 
c construction of simplex 
c*********************************************************** 
1001 do 1 i=l,n 

C 

C 

C 

C 

1 p(i,nn)=start(i) 

call clg2(start,f,pcs) 

y(nn)=f 
icount=icount+ 1 
do 2j=l,n 

dchk=start(j) 
start(j)=dchk+step(j) 
do 3 i=l,n 

3 p{i,j)=start(i) 

call clg2(start,f,pcs) 

y(j)=f 
icount=icount+ 1 

2 start(j)=dchk 
c*********************************************************** 
c simplex construction complete 
c*********************************************************** 
c find highest and lowest y value 
c ynewlo indicates the vertex of the 
c simplex to be replaced 
c*********************************************************** 
1000 ylo=y(l) 

ynewlo=ylo 
ilo=l 
ihi=l 
do 5 i=2,nn 
if (y(i).ge.ylo) go to 4 
ylo=y(i) 
ilo=i 

4 if (y(i).le.ynewlo) go to 5 
ynewlo=y(i) 
ihi=i 

5 continue 
c*********************************************************** 
c perform convergence checks on function 
c*********************************************************** 

dchk=(ynewlo+dabit)/(ylo+dabit)-1. OdO 
if (dabs(dchk).lt.reqmin) go to 900 
konvge=konvge-1 
if (konvge.ne.O) go to 2020 
konvge=5 

c*********************************************************** 
c check convergence of coordinate 
c only every 5 simplex 
c*********************************************************** 
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do 2015 i=l,n 
coordl=p(i,l) 
coord2=coordl 
do 2010 j=2,nn 

if(p(ij).ge.coordl) go to 2005 
coordl =p(ij) 

2005 if(p(ij).le.coord2) go to 2010 
coord2=p(i,j) 

2010 continue 
dchk=( coord2+dabit)/( coordl +dabit)-1.0dO 
if (dabs(dchk).gt.reqmin) go to 2020 

2015 continue 
go to 900 

2020 if (icount.ge.kcount) go to 900 
c*********************************************************** 
c calculate pbar, the centroid of the simplex 
c vertices except thjat with y value ynewlo 
c********************************************************** 

do 7 i=l,n 
z=O.OdO 
do 6j=l,nn 

z=z+p(ij) 
6 continue 

z=z-p(i,ihi) 
7 pbar(i)=z/float(n) 

c*********************************************************** 
c reflection through the centroid 
c*********************************************************** 

do 8 i=l,n 
8 pstar(i)=(l.OdO+rcoefl)*pbar(i)-rcoeff*p(i,ihi) 

C 

call clg2(pstar,f,pcs) 
c print* ,'nm f= ',f 

ystar=f 
icount=icount+ 1 
if (ystar.ge.ylo) go to 12 
if (icount.ge.kcount) go to 19 

c********************************************************** 
c successful reflection, so extension 
c********************************************************** 

C 

do 9 i=l,n 
9 p2star(i)=ecoeff*pstar(i)+(l .Od0-ecoefl)*pbar(i) 

call clg2(p2star,f,pcs) 
y2star=f 
icount=icount+ 1 

c********************************************************** 
c retain extension or contraction 
c********************************************************** 

if (y2star.ge.ystar) go to 19 
10 do 11, i=l,n 
11 p(i,ihi)=p2star(i) 

y(ihi)=y2star 
go to 1000 
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c********************************************************** 
c no extension 
c********************************************************** 

121=0 
do 13 i=l,nn 
if (y(i).gt.ystar) 1=1+ 1 

13 continue 
if(l.gt.l) go to 19 
if (1.eq.O) go to 15 

c********************************************************** 
c contraction on the reflection side of the centroid 
c********************************************************** 

do 14 i=l,n 
14 p(i,ihi)=pstar(i) 

y(ihi)=ystar 
c********************************************************** 
c contraction on the y(ihi) side of the centroid 
c********************************************************** 

C 

C 

15 if (icount.ge.kcount) go to 900 
do 16 i=l,n 

16 p2star(i)=ccoefff'p(i,ihi)+(l.Od0-ccoefl)*pbar(i) 

call clg2(p2star,f,pcs) 

y2star=f 
icount=icount+ 1 
if (y2star.lt.y(ihi)) go to 10 

c********************************************************** 
c contract the whole simplex 
c********************************************************** 

C 

C 

do 18j=l,nn 
do 17 i=l,n 

p(i,j)=(p(i,j)+p(i,ilo))*0.5d0 
17 xmin(i)=p(ij) 

call clg2(xmin,f,pcs) 

Y(j)=f 
18 continue 

icount=icount+nn 
if (icount.lt.kcount) go to 1000 
go to 900 

c********************************************************* 
c retain reflection 
c********************************************************* 

C 

19 continue 
do 20 i=l,n 

20 p(i,ihi)=pstar(i) 
y( ihi)=ystar 
go to 1000 

900 do 23 j=l,nn 
do 22 i=l,n 

22 xmin(i)=p(i,j) 
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C 

C 

call clg2(xmin,f,pcs) 

y(j)=f 
23 continue 

ynewlo=bignum 
do 24j=l,nn 
if (y(j).ge.ynewlo) go to 24 
ynewlo=y(j) 
pclo(l)=pcs(l) 
pclo(2)=pcs(2) 
pclo(3)=pcs(3) 
pclo( 4 )=pcs( 4) 
pclo( 5)=pcs( 5) 
pclo(6)=pcs(6) 
pclo(7)=pcs(7) 
pclo(8)=pcs(8) 
pclo(9)=pcs(9) 
ibest=j 

24 continue 
y(ibest)=bignum 
ysec=bignum 
do 25 j=l,nn 
if (y(j).ge.ysec) go to 25 
ysec=y(j) 
isec=j 

25 continue 
do 26 i=l,n 

xmin(i)=p(i,ibest) 
xsec(i)=p(i,isec) 

26 continue 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c sub to find posterior distribution parameters 
C 

subroutine post( xl ,sme, thtaa,taua, thtab, taub) 
real*8 xl 
thtab=(xl/sme**2.+thtaa/taua**2.)/ 

&(1./sme**2. + 1./taua**2.) 
taub=sqrt(l ./(l ./sme**2. + l ./taua**2.)) 
return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c sub for input of all sampling paramters 
C 

subroutine vardef(u,thta,tau,bias,sme,sl,a2,r2,nspc) 
ccccccccccccccccccc 

character iopt 
character* 5 spec 
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spec='Upper' 
iflg=O 

10 print* 
print*, 'Enter the Specification Limit.' 
print* 
read(*, *,err=IO)u 
if(iflg.eq.l)goto 90 

15 print* 
print*, 'Is this an Upper ( 1) or Lower (2) Spec?' 
print* ,'Enter 1 or 2.' 
print* 
read(*,* ,err= 15)nspc 
if(nspc.ne.1.and.nspc.ne.2)then 

write(*, *)'Invalid Entry. Try again.' 
goto 15 

endif 
if(nspc.eq.2)spec='Lower' 

20 print* 
print*, 'Enter the value of the prior distribution mean.' 
print* 
read(*,* ,err=20)thta 
if(iflg.eq. l)goto 90 

30 print* 
print*, 'Enter the value of the prior standard deviation.' 
print* 
read(*,* ,err=30)tau 
if(tau.lt. O)then 

print* 
print*,'**** Standard Deviation cannot be negative ****' 
goto 30 

endif 
if(iflg.eq.1 )goto 90 

40 print* 
print*, 'Enter the value of the measurement error' 
print*,'distribution mean (bias).' 
print*,'Sign Convention: If the instrument reads higher' 
print* ,'than the true value, this bias should be positive.' 
print* 
read(*, *,err=40)bias 
if(iflg.eq. l)goto 90 

50 print* 
print* ,'Enter the value of the measurement error' 
print*,' distribution standard deviation.' 
print* 
read(*, *,err=50)sme 
if(sme.lt.O)then 

print* 
print*,'**** Standard Deviation must be positive****' 
goto 50 

endif 
if(iflg.eq. l)goto 90 

60 print* 
print* ,'Enter the cost associated with a single measurement' 
print* ,'iteration (S).' 
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print* 
read(*,*,err=60)sl 
if(sl.lt.O)then 

print* 
print*,'**** Cost must be positive ****' 
goto 60 

endif 
if(iflg.eq. l)goto 90 

70 print* 
print*, 'Enter the cost associated with a false acceptance of' 
print*,'a batch of product (A).' 
print* 
read(*,* ,err=70)a2 
if( a2.lt. O)then 

print* 
print*,'**** Cost must be positive****' 
goto 70 

endif 
if(iflg.eq. l )goto 90 

80 print* 
print*, 'Enter the cost associated with a false rejection of' 
print* ,'a batch of product (R).' 
print* 
read(*,* ,err=80)r2 
if(r2.lt.O)then 

print* 
print*,'**** Cost must be positive****' 
goto 80 

endif 
90 print* 

write(* ,300)spec,u 
write(* ,3 IO)thta 
write(*,320)tau 
write(* ,330)bias 
write(* ,340)sme 
write(* ,350)sl 
write(* ,360)a2 
write(* ,370)r2 
print* 
print*, 'Is the above information correct?' 
print* ,'Enter to accept or parameter # to reenter.' 
print* 
read(* ,380)iopt 
print* 
if(iopt.eq.' ')goto 1000 
if(iopt.lt.' l '.or.iopt.gt. '8')then 

print*,'Invalid Entry. Please Reenter.' 
goto 90 

endif 
iflg=l 
if(iopt.eq.'l ')then 

goto 10 
endif 
if(iopt.eq. '2')then 

301 



goto 20 
endif 
if(iopt.eq. '3 ')then 

goto 30 
endif 
if(iopt.eq.'4')then 

goto40 
endif 
if(iopt.eq. '5')then 

goto 50 
endif 
if(iopt.eq. '6')then 

goto60 
endif 
if(iopt.eq. '7')then 

goto 70 
endif 
if(iopt.eq. '8')then 

goto 80 
endif 

300 format(lx,'l ',a5' Specification Limit= ',fl0.4) 
310 format(' 2 Prior Distribution Mean= ',fl O. 4) 
320 format(' 3 Prior Standard Deviation= ',fl0.4) 
330 format(' 4 Error Distribution Mean (Bias)= ',fl0.4) 
340 format(' 5 Error Distribution Std. Dev.= ',fl0.4) 
350 format(' 6 Iteration Cost (S)= ',f8.2) 
360 format(' 7 False Acceptance Cost (A)= ',f8.2) 
370 format(' 8 False Rejection Cost (R)= ',f8.2) 
380 format(al) 
1000 continue 

return 
end 

c ten pt gaussian quadrature 
c****************************************************** 
c****************************************************** 
c****************************************************** 
c taken from Press, Flannery, Teukolsky and Vetterling 
c (1986), Numerical Recipes, Cambridge Univ. Press, NY. 
c This function is 
c called from fn, which serves as an intermediate 
c sub between nelmin and qgaus. 
C 

C 

subroutine qgaus(j,flg,a,b,ss) 
real*8 x(5),w(5),ss,xm,xr,dx,tl,t2,a,b 
data x/.1488743389d0,.433395394ld0,.6794095682d0, 

&.8650633666d0,.9739065285d0/ 
data w/.2955242247d0,.2692667193d0,.2190863625d0, 

&.149451349ld0,.0666713443d0/ 
xm=0.5dO*(b+a) 
xr=0.5dO*(b-a) 
ss=O.dO 
do 11 k=l,5 

dx=xr*x(k) 
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C 

C 

C 

call func(j,flg,xm+dx,tl) 
call func(j,flg,xm-dx,t2) 

ss=ss+w(k)*(tl +t2) 

11 continue 
ss=xr*ss 
return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c functions obtained from mead 
c calls sub errint from stegun and zucker 
c must bring in a x to this sub, which is obtained 
c from gaussian quadrature 
C 

C 

C 

C 

C 

subroutine func(j,flg,x,ffunc) 

real *8 x,ffunc,erfarg,erfnum,erfden,fl:jnk,erf,erfc 
dimension tau(4),thta(4) 
common /parms/ tau,sme,thta,u,a,b 

c next eqns common to both errors (type I and II) 
C 

C 

C 

C 

erfnum=-u*tau(j)**2. -u*sme**2. +sme**2. * 
&thta(j)+tau(j)**2. *x 
erfden=sme*(tau(j)*sqrt(tau(j)**2.+sme**2.)) 
erfarg=. 70710678118654 75244dO*(erfnum/erfden) 
call errint(erfarg,erf,erfc) · 

fl:jnk=exp( -.5*( x-thta(j) )**2./(tau(j)**2. +sme* *2.) )/ 
&sqrt(tau(j)**2. +sme**2.) 

c this fl:jnk for x from u to infinity ( out of up spec) 
c error is in accepting batch type ii 
C 

C 

if(flg.eq.l.) go to 21 
ffunc=.19947114020071633897dO*(l.dO+ert)*fl:jnk 
go to 25 

c this fl:jnk for x from -infinity to u (in upr spec) 
c error is in rejecting batch type i , 
C 

C 

21 ffunc=-.19947114020071633897dO*(erf-l.dO)*fl:jnk 

25 continue 
return 
end 

303 



c****************************************************** 
c****************************************************** 
c****************************************************** 
c subroutine to set a (-infinity) and b (infinity) 
c practical limits for the function used in order 
c to utilize gaussian quadrature 
c add argj to define which n (not nmax) is current 
c j passes from management program 

subroutine setabx(a,b,j) 
real*8 x,ffimc,pk,trof,a,b 
dimension thta(4),tau(4) 

c common /costs/ sl,a2,r2 
common /parms/ tau,sme,thta,u 

c type i error 
c must set b, unknown involving c is lower limit 
c start at u, work up 
C 

flg=l. 
x=u 
call func(j,flg,x,ffimc) 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O.)then 

x=x-sme 
goto 12 

endif 
x=x+sme 

10 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.pk)then 

pk=ffunc 
endif 
if(ffimc.lt.trof)then 

trof=ffunc 
b=x 
if(trof.le.(.00000 ldO*pk))then 

goto 20 
endif 

endif 
x=x+sme 
goto 10 

12 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.O.)then 

b=x 
goto 20 

else 
x=x-sme 
goto 12 

endif 
20 continue 
C type ii 
C need a, unknown involving c is upper limit 
C start at u, work way down 
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flg=2. 
x=u 

27 continue 
call func(j,flg,x,ffunc) 
pk=ffunc 
trof=ffunc 
if(ffunc.eq.O. )then 

x=x+sme 
goto 32 

endif 
x=x-sme 

30 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.pk)then 

pk=ffunc 
endif 
if(ffunc.lt. trof)then 

trof=ffunc 
a=x 
if(trof.le.(.OOOOOldO*pk))then 

goto 40 
endif 

endif 
x=x-sme 
goto 30 

32 continue 
call func(j,flg,x,ffunc) 
if(ffunc.gt.O.)then 

a=x 
goto 40 

else 
x=x+sme 
goto 32 

endif 
40 continue 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c sub to evaluate normal curve probabilites 
C 

subroutine normal(x,p) 
C 

c algorithm as 2j.r.statist.soc. c,(1968) v.17,no.2 
c by B. E. Cooper 
C 

c computes normal areas and ordinates for an array of x values 
C 

C 

dimension x(2),p(2),q(2),z(2) 
dimension a(S) 

dimension connor(l 7) 
data connor 
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C 

C 

C 

C 

II 8.0327350124e-l 7, l.4483264644e-15, 2.4558270103e-l 4, 
2 3.9554295164e-13, 5.9477940136e-12, 8.350702795le-ll, 
3 l.0892221037e-9, l.3122532964e-8, l.4503852223e-7, 
4 l.458916900le-6, l.3227513228e-5, l.0683760684e-4, 
5 7.5757575758e-4, 4.6296296296e-3, 2.38095238le-2, 0.1, 
6 3.3333333333e-l/ 

data rrt2pi /0.3989422804/ 
n=2 

ifault=O 
if(n) 1,1,2 

1 ifault=l 
go to 100 

2 do 31 i=l,n 
s=x(i) 
y=s*s 
if (s) 10,11,12 

11 z(i)=rrt2pi 
p(i)=0.5 
q(I)=0.5 
goto 31 

10 s=-s 
12 z(i)=rrt2pi*exp(-.5*y) 

if (s-2.5)13,14,14 
13 y=-.5*y 

p(i)=connor( 1) 
do 151=2,17 

15 p(i)=p(i)*y+connor(l) 
p(i)=(p(i)*y+ l.O)*x(i)*rrt2pi+0.5 
q(i)= 1.0-p(i) 
goto 31 

14 continue 
a(2)=1.0 
a(5)=1.0 
a(3)=1.0 
y=l.0/y 
a(4)=1.0+y 
r=2.0 

19 do 171=1,3,2 
do 18j=l,2 
k=l+j 
ka=7-k 
a(k)=a(ka)+a(k)*r*y 

18 continue 
r=r+l.O 

17 continue 
atst=(a(2)/a(3))-(a(5)/a(4)) 
if(abs(atst).gt.(.OOOOOI))goto 19 

20 p(i)=(a(5)/a(4))*z(i)/x(i) 
if(x(i))21,ll,22 

21 p(i)=-p(i) 
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q(i)=l.0-p(i) 
goto 31 

22 q(i)=p(i) 
p(i)=l.0-p(i) 

31 continue 
100 continue 

return 
end 

c****************************************************** 
c****************************************************** 
c****************************************************** 
c error function evaluation 
c taken from Stegun and Zucker 
c called from func.for 
C 

subroutine errint (x,erf,erfc) 
real*8 an,bn,cons,cl,dn,erf,erfc,f,fn,fnml, 
1 fnm2,four,gn,gnml,gnm2,one,prev,pwr,mbc,scf,sum, 
2 tn,toler,trrtpi,two,ulcf,ulps,wn,x,y,ysq 

C 

data nbc,nbm/11,60/ 
data one,two,four,ulps,cons/1.d0,2.d0,4.d0,1.d0,.83dO/ 
data trrtpi/l.128379167095512574d0/ 

C 

C 

C 

mbc=nbc 
toler=two**(-nbm) 

c test on zero 
C 

C 

C 

C 

if(x) 2,1,2 
1 erf=O.dO 

erfc=one 

return 

2 y=dabs(x) 
ysq=y**2.d0 
if(y-ulps) 3,3,4 

c maximum argument 
C 

C 

4 cl=two**((mbc-one)/two) 
ulcf=cons*cl 

c scale factor 
C 

scf=two**(cl **2.dO-mbc) 
C 

c limiting value 
C 

if(y-ulcf) 10,10,11 
C 
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C 

11 erf=one 
erfc=O.dO 
goto7 

c method -- power series 
C 

C 

3 sum=O.dO 
dn=one 
tn=one 
pwr=two*ysq 

6 dn=dn+two 
tn=pwr*tn/dn 
sum=tn+sum 

c tolerance check 
C 

C 

C 

if(tn-toler) 5,6,6 

5 erf=(sum+one )*trrtpi *y*dexp(-ysq) 
erfc=one-erf 

c negative argument 
C 

C 

7 if(x) 8,9,9 
8 erf=-erf 

erfc=two-erfc 
9 return 

c method-- continued fraction 
C 

C 

C 

10 fnm2=0.d0 
gnm2=one 
fnml=two*y 
gnml=two*ysq+one 

prev=fnml/gnml 
wn=one 
bn=gnml +four 

14 an=-wn*(wn+one) 
fn=bn*fnml +an*fnm2 
gn=bn*gnml+an*gnm2 
f=fn/gn 

c tolerance check 
C 

if(dabs(one-(f/prev))-toler) 12,12,13 
13 if(prev-:t) 17,17,18 

c both fn and gn must be tested if abs(x) .It. .61 
17 if(gn.lt.sc:t) go to 16 

C 

c scaling 
C 

15 fn=fn/scf 
gn=gn/scf 
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C 

fnml =fnml/scf 
gnml =gnml/scf 

16 fnrn2=fnml 
gnm2=gnml 
fnml=fn 
gnml=gn 
wn=wn+two 
bn=bn+four 
prev=f 
go to 14 

18 f=prev 
12 erfc=f*dexp(-ysq)*trrtpi/two 

erf=one-erfc 

goto7 
end 
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APPENDIXC 

TABLES OF RESULTS 
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Economic Runs Cost Set 1 Nmax=1 

Common Parameters: 
Prior Std Dev.= 1.5 
Bias= 0.0 
Err. Std. Dev.= 0.5 

Upper Spec.= 102.0 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1 102.1568 101.9346 · 101.7123 101.4901 101.2679 101.0457 100.8235 
Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

False Accept Cost 0.0012 0.0803 0.7623 1.0463 0.2057 0.0057 0.0000 
False Reject Cost 0.0006 0.0678 1.1164 2.7384 1.0254 0.0605 0.0006 

E(Total Cost) 0.2518 0.3981 2.1287 4.0347 1.4810 0.3162 0.2506 

Economic Runs Cost Set2 Nmax=1 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1 102.6667 102.4445 102.2222 102.0000 101.7778 101.5556 101.3333 
Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

False Accept Cost 0.0023 0.1976 2.6032 5.1208 1.4763 0.0615 0.0004 
False Reject Cost 0.0004 0.0615 1.4764 5.1208 2.6033 0.1976 0.0022 

E(Total Cost) 0.2527 0.5091 4.3296 10.4916 4.3296 0.5091 0.2527 

Economic Runs Cost Set3 Nmax=1 

Prior Mean 
96.0 · 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1 103.1765 102.9543 102.7321 102.5099 102.2877 102.0655 101.8432 
Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

False Accept Cost 0.0006 0.0605 1.0253 2.7383 1.1164 0.0678 0.0006 
False Reject Cost 0.0000 0.0057 0.2057 1.0464 0.7623 0.0803 0.0012 

E(Total Cost) 0.2506 0.3162 1.4810 4.0347 2.1287 0.3981 0.2518 
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Economic Runs Cost Set 1 Nmax=2 

Common Parameters: 
Prior Std Dev.= 1.5 
Bias= 0.0 
Err. Std. Dev.= 0.5 
Upper Spec.= 102.0 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1,L 101.5402 101.3218 101.0993 100.8670 100.6604 100.4261 100.2493 
C1,H 103.6939 102.8218 102.5495 102.3170 102.0776 101.8760 101.6663 
C2 101.9819 101.8708 101.7597 101.6486 101.5375 101.4264 101.3152 

Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
False Accept Cost 0.0003 0.0111 0.0663 0.0532 0.0070 0.0010 0.0000 
False Reject Cost 0.0000 0.0023 0.0906 0.4141 0.2736 0.0240 0.0003 

Observation 2 Samplina Cost 0.0001 0.0042 0.0475 0.0857 0.0237 0.0011 0.0000 
False Accept Cost 0.0005 0.0384 0.4328 0.7320 0.1844 0.0071 0.0000 
False Reject Cost 0.0005 0.0496 0.7144 1.5571 0.4988 0.0247 0.0002 

E(Total Cost) 0.2513 0.3556 1.6016 3.0921 1.2375 0.3071 0.2506 

Economic Runs Cost Set2 Nmax=2 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1,L 101.8608 101.6111 101.3852 101.1781 100.8422 100.7043 100.5244 
C1,H 103.5842 103.3114 103.0854 102.8286 102.6454 102.3771 102.1714 
C2 102.3333 102.2222 102.1111 102.0000 101.8889 101.m8 101.6667 

Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
False Accept Cost 0.0007 0.0324 0.2392 0.2746 0.0219 0.0008 0.0000 
False Reject Cost 0.0000 0.0007 0.0334 0.2660 0.2111 0.0336 0.0006 

Observation 2 Sampling Cost 0.0000 0.0027 0.0412 0.0996 0.0432 0.0026 0.0000 
False Accept Cost 0.0010 0.1060 1.5560 3.4158 1.1699 0.0591 0.0005 
False Reject Cost 0.0005 0.0593 1.1576 3.4227 1.5818 0.1048 0.0011 

E(Total Cost) 0.2522 0.4510 3.2774 7.7288 3.2778 0.4509 0.2522 

Economic Runs Cost Set3 Nmax=2 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1,L 102.4125 102.1334 101.9236 101.6827 101.4867 101.2555 100.3069 
C1,H 104.2243 103.5845 103.3242 103.1328 102.8918 102.6737 102.4489 
C2 102.6847 102.5736 102.4625 102.3514 102.2403 102.1292 102.0181 

Observation 1 Samplim:i Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
False Accept Cost 0.0004 0.0245 0.2744 0.4138 0.1047 0.0033 0.0000 
False Reject Cost 0.0000 0.0001 0.0078 0.0533 0.0693 0.0113 0.0003 

Observation 2 Sampling Cost 0.0000 0.0011 0.0235 0.0857 0.0464 0.0041 0.0001 
False Accept Cost 0.0002 0.0244 0.4980 1.5574 0.7011 0.0487 0.0005 
False Reiect Cost 0.0000 0.0071 0.1838 0.7319 0.4300 0.0382 0.0005 

E(Total Cost) 0.2506 0.3071 1.2376 3.0921 1.6016 0.3556 0.2513 
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Economic Runs Cost Set 1 Nmax=3 

Common Parameters: 
Prior Std Dev.= 1.5 
Bias= 0.0 
Err. Std. Dev.= 0.5 
Uooer Spec.= 102.0 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1,L 101.4470 · 101.2393 100.9831 100.7645 100.5467 100.4284 100.4594 
C1,H 103.7258 103.0602 102.8136 102.4760 102.2645 102.0404 102.1076 
C2,L 101.6380 101.5229 101.3949 101.3123 101.1893 101.0690 101.1737 
C2,H 102.4185 103.0580 102.1425 102.0601 101.9678 101.8484 101.5743 
C3 101.9378 101.8638 101.7897 101.7156 101.6415 101.5675 101.4934 

Observation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
False Accept Cost 0.0002 0.0078 0.0365 0.0289 0.0033 0.0001 0.0000 
False Reiect Cost 0.0000 0.0006 0.0280 o.23n 0.1636 0.0170 0.0001 

Observation 2 Sampling Cost 0.0001 0.0049 0.0574 0.1003 0.0304 0.0015 0.0000 
False Accept Cost 0.0001 0.0056 0.0475 0.0803 0.0147 0.0004 0.0000 
False Reject Cost 0.0001 0.0000 0.1865 0.4168 0.1597 0.0099 0.0002 

Observation 3 Sampling Cost 0.0000 0.0024 0.0242 0.0451 0.0139 0.0006 0.0000 
False Accept Cost 0.0003 0.0252 0.3060 0.5445 0.1556 0.0067 0.0000 
False Reject Cost 0.0004 0.0424 0.4513 0.9781 0.3276 0.0157 0.0001 

E(Total Cost) 0.2511 0.3389 1.3874 2.6817 1.1188 0.3019 0.2505 

Economic Runs Cost Set2 Nmax=3 

Prior Mean 
96.0 98.0 100.0 102.0 104.0 106.0 108.0 

Cutoff(s) C1,L 101.6884 101.4419 101.1947 100.9869 100.7962 100.7360 100.6183 
C1,H 103.7187 103.4071 103.3480 103.0216 102.8088 102.5637 102.3553 
C2,L 101.8720 101.7575 101.6657 101.5739 101.3399 101.1520 100.7061 
C2,H 102.8246 102.7353 102.6148 102.4666 102.3471 102.2192 102.1004 
C3 102.2222 102.1481 102.0741 102.0000 101.9259 101.8519 101.7778 

Obsevation 1 Sampling Cost 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
False Accept Cost 0.0004 '0.0178 0.1047 0.1041 0.0166 0.0090 0.0000 
False Reject Cost 0.0000 0.0004 0.0066 0.0993 0.1030 0.0175 0.0004 

Observation 2 Sampling Cost 0.0000 0.0036 0.0520 0.1200 0.0511 0.0036 0.0000 
False Accept Cost 0.0002 0.0189 0.2440 0.4530 0.0452 0.0007 0.0000 
False Reject Cost 0.0000 0.0021 0.0681 0.3508 0.2268 0.0217 0.0003 

Observation 3 Sampling Cost 0.0000 0.0015 0.0232 0.0560 0.0242 0.0015 0.0000 
False Accept Cost 0.0008 0.0750 1.0993 2.4866 0.9622 0.0535 0.0005 
False Reject Cost 0.0005 0.0527 0.9472 2.5777 1.1161 0.0727 0.0007 

E(Total Cost) 0.2519 0.0422 2.7951 6.4975 2.7952 0.4220 0.2519 
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Statistical Runs Cost Set 1 Nmax=1 

Common Parameters: 
Prior Mean- 102.00 
Prior Std Dev.= 1.50 
Bias= 0.00 
Err. Std. Dev.= 0.50 
Upper Spec.= 102.00 
S= 0.25 
A= 100.00 
R= 20.00 

All Risk Pairs 

E(Total Cost) P(False Accept) P(False Reject) 
Economic 4.0624 0.0108 0.1364 
101.0/102.0 4.5452 0.0254 0.0877 

Lower/Upper 101.0/102.5 5.6544 0.0418 0.0614 
Indifference Limits 101.0/103.0 7.8412 0.0687 0.0360 

101.5/102.0 9.6556 0.0891 0.0248 
101.5/102.5 9.6556 0.0891 0.0248 
101.5/103.0 12.4716 0.1194 0.0139 
102.0/102.5 19.1360 0.1881 0.0036 
102.0/103.0 19.1360 0.1881 0.0036 
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w ...... 
\JI 

Statistical Runs Cost Set 1 

Common Parameters: 
Prior Mean-
Prior Std Dev.= 
Bias= 
Err. Std. Dev.= 
Upper Spec.= 
S= 
A= 
R= 

alpha/beta 
Economic 
101.0/102.0 

Lower/Upper 101.0/102.5 
Indifference Limits 101.0/103.0 

101.5/102.0 
101.5/102.5 
101.5/103.0 
102.0/102.5 
102.0/103.0 

Nmax=2 

102.00 
1.50 
0.00 
a.so 

102.00 
0.25 

100.00 
20.00 

E(Total Cost) 
0.05/0.05 0.05/0.01 0.1/0.01 

3.1200 3.1200 3.1200 
3.3157 3.3315 3.3447 
3.2887 3.2112 3.2044 
4.8845 4.6246 4.5446 
3.2791 3.3012 3.2845 
4.7373 4.7186 4.6875 

8.499 8.2628 8.1206 
8.4675 8.4987 8.4846 

13.3176 13.2928 13.2018 

P(False Accept) P(False Reject) 
0.05/0.05 0.05/0.01 0.1/0.01 0.05/0.05 0.05/0.01 0.1/0.01 

0.0075 0.0075 0.0075 0.1015 0.1015 0.1015 
0.0031 0.0030 0.0030 0.1334 0.1337 0.1351 
0.0138 0.0125 0.0120 0.0799 0.0818 0.0844 
0.0380 0.0349 0.0336 0.0395 0.0412 0.0442 
0.0129 0.0129 0.0129 0.0791 0.0791 0.0792 
0.0365 0.0361 0.0357 0.0373 0.0374 0.0384 
0.0791 0.0765 0.0748 0.0140 0.0144 0.0158 
0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 
0.1292 0.1287 0.1279 0.0030 0.0030 0.0032 



Statistical Runs Cost Set 1 Nmax=3 

Common Parameters: 
Prior Mean- 102.00 
Prior Std Dev.= 1.50 
Bias= 0.00 
Err. Std. Dev.= 0.50 
Upper Spec.= 102.00 
S= 0.25 
A= 100.00 
R= 20.00 

E(Total Cost) P(False Accept) P(False Reject) 
alpha/beta 0.05/0.05 0.05/0.01 0.1/0.01 0.05/0.05 0.05/0.01 0.1/0.01 0.05/0.05 0.05/0.01 0.1/0.01 

w Economic 2.6567 2.6567 2.6567 0.0061 0.0061 0.0061 0.0826 0.0826 0.0826 -0\ 101.0/102.0 3.1654 3.2049 3.2419 0.0015 0.0013 0.0013 0.1318 0.1333 0.1362 
Lower/Upper 101.0/102.5 2.8437 2.6822 2.7191 0.01 0.0075 0.007 0.0751 0.0786 0.0837 
Indifference Limits 101.0/103.0 4.6095 4.0905 4.0012 0.0361 0.0301 0.0286 0.0343 0.0372 0.0409 

101 .5/102.0 2.7632 2.8061 2.7729 0.0079 0.0079 0.0078 0.0737 0.0737 0.0737 
101.5/102.5 4.1893 4.0809 3.9869 0.0317 0.0302 0.029 0.0315 0.0322 0.0341 
101.5/103.0 8.1901 7.7248 7.4275 0.0765 0.0715 0.0682 0.0103 0.0107 0.0129 
102.0/102.5 8.0922 8.1473 8.1074 0.0743 0.0743 0.0741 0.0081 0.0081 0.0082 
102.0/103.0 13.3454 13.2093 12.9252 0.1293 0.1276 0.1248 0.0017 0.0018 0.0022 
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C 

C 

C 

C 

C 

C 

C 

********************************************** 
********************************************** 
********************************************** 
simulation pgm for nmax=l, disposition by stat 
and by an economic plan (with cutoffs provided 
by user). 

c muO=prior mean 
c sdO=prior std dev 
c sdme=measurement error std dev 
c u=upper spec 
c s 1 =iteration cost 
c a2=false acceptance cost 
c r2=false rejectio cost 
c cl=economic cutoff for first observation 
c n=number of trials (batches) 
c alpha=type I error risk (stat) 
c beta=type II error risk (stat) 
c theO=lower indifference limit (stat) 
c thel =upper indifference limit (stat) 
C 

integer rej l ,acc l ,stacc l ,strej 1,stacc2,strej2 
real muO 
n=50000 

ccxxxxxxxxxxxxxxx 
mu0=102. 
sdO=l.5 
sdme=.5 
u=l02. 
sl=.25 
a2=100. 
r2=20. 
cl=lOl.49010705 

cxxxxxxxxxxxxxxxxx 
alpha=.l 
beta=.01 
the0=102. 
the1=103. 
dlna=log((l.0-beta)/alpha) 
dlnb=log(beta/(1.0-alpha)) 

c sumx=O. 

ccxxxxxxxxxxxxxxxx 
write(4,*)'Trials= ',n 
write(4, *)'Upper Specification= ',u 
write(4,*)'theta0= ',muO 
write(4,*)'prior s= ',sdO,' mes= ',sdme 
write(4,*)'cl= ',cl 
write(4,*)'sl= ',sl,' a2= ',a2,' r2= ',r2 
write(4, *)'alpha= ',alpha,' beta= ',beta 
write(4, *)'lwr indif= ',theO,' upr indif= ',thel 
write(3,305) 

23 continue 
print* ,'seed? 999 to quit' 
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read(* ,300)isd 
if(isd.eq.999)goto 400 

C isd=lO 

C 

C 

C 

C 

igd=O 
ingd=O 
call seed(isd) 
tctot=O. 
sttot=O. 
rejl=O 
accl=O 
strejl=O 
strej2=0 
staccl=O 
stacc2=0 
jrl=O 
jal=O 
jastl=O 
jast2=0 
jrstl=O 
jrst2=0 
nost=O 
match=O 

do 200 k=l,n 
jdec=O 
jstat=O 
tcrun=sl 
strun=sl 
cst=O. 
st=O. 

40 call random(rvl) 
if(rvl.eq.O.)goto 40 

50 call random(rv2) 
if(rv2.eq.O.)goto 50 

c print*,'rvl= ',rvl,'rv2= ',rv2 
z=sqrt(-2. *log(rv 1 ))*cos(2. *3 .1415927*rv2) 
zme=sqrt(-2. *log(rv l))*sin(2. *3. l 415927*rv2) 
yact=z*sdO+muO 
ylobs=yact+(zme*sdme) 

cxxxxxxxxxxxxxxxx 
c sumx=sumx+ylobs 

dllr=( (thel -the0)/sdme**2.0)*y lobs+( 1/(2. O*sdme**2. 0) )* 
\(the0**2.0-thel **2.0) 
if( dllr.lt.dlnb )then 

C print* 
c write(* ,248)dllr 
c write(* ,249)dlnb 
c write(*,*)'******** Accept batch ********' 
C print* 

staccl =staccl + l 
jstat=l 
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goto 80 
elseif( dllr .ge.dlna)then 

C print* 
c write(* ,250)dllr 
c write(* ,251 )dlna 
c write(*,*)'******** Reject batch ********' 
C print* 

strej I =strej I+ I 
jstat=2 
goto 80 

endif 
st=O. 
nost=nost+ I 
if( dllr.gt. l. )then 

strej2=strej2+ I 
if(yact.le. u )then 

jrst2=jrst2+ I 
endif 

else 
stacc2=stacc2+ I 

if(yact.gt. u )then 
jast2=jast2+ I 

endif 
endif 

c write(*, *)'no statistical decision on I' 
cxxxxxxxxxxxxxxxxx 
80 continue 

if(y I obs.le.c I )then 
ace I =ace I+ I 
jdec=l 
goto 100 

endif 
if(ylobs.gt.cl)then 

rej I =rej I+ I 
jdec=2 
goto 100 

endif 
100 continue 

if(yact. le. u )then 
igd=igd+l 
if(idec.eq.2)then 

jrl=jrl+l 
cst=r2 

c write(*, *)'false econ reject' 
endif 
if(istat. eq .2)then 

jrstl =jrstl+ 1 
st=r2 

endif 
else 

ingd=ingd+ I 
if(idec.eq. l)then 

jal=jal+l 
cst=a2 
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c write(*, *)'false econ accept' 
endif 
if(jstat.eq .1 )then 

jastl =jastl + 1 
st=a2 

endif 
endif 
if(jdec.eq.jstat)match=match+ 1 
tcrun=tcrnn+cst 
strnn=strnn+st 
tctot=tctot+tcrnn 
sttot=sttot+strnn 

200 continue 
C 

C 

tcave=tctot/n 
stave=sttot/(n-nost) 

cc write(*,*)'RUN #',m 
c write(*,*)'xl= ',ylobs 

write(4,*) 
write( 4, *)'*****' 
write(4, *)'match= ',match,'%= ',real(match)/real(n) 
print*,'*****' 
write(4,320) 
write( 4,325)staccl,accl 
write(4,330)real(staccl)/real(n),real(accl)/real(n) 
write( 4,335)strej l ,rej 1 
write( 4,340)real(strej 1 )/real(n),real(rej 1 )/real(n) 

c write(* ,345)nost,real(nost)/real(n)) 
c write(*,385)nost,real(nost)/real(n),real(nost*sl)/real(n) 

write( 4 ,3 85)nost,real( nost)/real( n) 
write( 4,388)stacc2,strej2 
write( 4 ,389)jast2jrst2,real(jast2 *a2 )/real( n), 

&real(jrst2*r2)/real(n) 
write( 4,350)jastl,jal 
write( 4 ,3 55)real(jastl )/real(n),real(jal )/real( n) 
write( 4,357)real(jastl +jast2)/real(n) 
write(4,360)jrstl,jrl 
write( 4,365)real(jrstl )/real(n),real(jrl )/real(n) 
write( 4,367)real(jrstl +jrst2)/real(n) 
print*,'*****' 
write(4,370)stave,tcave 

c this next stat ave cost includes all decisions on 1 and 
c truncated decisions,too 

stall=(sttot+real(jast2*a2)+real(jrst2*r2))/real(n) 
write(4,374)stall 
write(4, *)'tot act above u= ',ingd,' ',real(ingd)/real(n) 
write(4, *)'tot act below u= ',igd,' ',real(igd)/real(n) 
write(4,*) 
crl =(real(jrl)/real(n))*r2 
cal =(real(jal)/(n))*a2 
write(4,*)'false econ rej on l= ',real(jrl)/real(n), 

&' cost= ',crl 
write(4,*)'false econ ace on I= ',real(jal)/real(n), 
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&' cost= ',cal 
write(4,*) 
write(3,310)sl,cal,crl,tcave 

248 format(' Ln oflikelihood ratio, ',fl4.4,', less than') 
249 format(' ln ofB, ',f8.4,'.') 
250 format(' Ln oflikelihood ratio, ',fl4.4,', greater than') 
251 format(' ln of A, ',f8.4,'.') 
300 format(i3) 
305 format(5x,'tc(l)',7x,'tc(a2)',7x,'tc(r3)',7x,'tcost') 
310 format(lx,f4.2,5x,fl l.8,5x,fl l.8,5x,fl 1.8). 

goto 23 
320 format(25x,'Stat',10x,'Econ') 
325 format(' Count Accept',llx,i5,8x,i5) 
330 format(' Percent Accept',8x,f6.4,7x,f6.4) 
335 format(' Count Reject',llx,i5,8x,i5) 
340 format(' Percent Accept',8x,f6.4,7x,f6.4) 
c345 format(' No Decision',9x,i5,'/',f6.4) 
350 format(' Count False Acc(l)',5x,i5,8x,i5) 
355 format(' Pere False Acc(l)',5x,f6.4,7x,f6.4) 
357 format(' Pere False Acc(all)',3x,f6.4) 
360 format(' Count False Rej(l)',5x,i5,8x,i5) 
365 format(' Pere False Rej(l)',5x,f6.4,7x,f6.4) 
367 format(' Pere False Rej(all)',3x,f6.4) 
370 format(' Ave Tot Cost (in l)',3x,f8.4,5x,f8.4) 
374 format(' Ave Stat Cost (wffrunc)',f8.4) 
c385 format(' No Decision',16x,i5,5x,f6.4,3x,'It cost',4x,f6.4) 
385 format(' No Decision',16x,i5,5x,f6.4) 
388 format(' acc/rej ',i5,'/',i5) 
389 format(' false ace/false rej ',i5,'/',i5,5x,'Cost', 

&2x,f8.4,'/',f8.4) 
400 return 

end 
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C ********************************************** 
C ********************************************** 
C ********************************************** 
c simulation pgm for nmax:=2, disposition by stat 
c and by an economic plan (with cutoffs provided 
c byuser). 
C 

c muO=prior mean 
c sdO=prior std dev 
c sdme=measurement error std dev 
c u=upper spec 
c s 1 =iteration cost 
c a2=false acceptance cost 
c r2=false rejectio cost 
c cll,clh,c2=economic cutoffs 
c n=number of trials (batches) 
c alpha=type I error risk (stat) 
c beta=type II error risk (stat) 
c theO=lower indifference limit (stat) 
c thel =upper indifference limit (stat) 
C 

integer rej l,accl,rej2,acc2,rej3,acc3,stflga,stflgr 
integer stacc(4),strej(4) 
real muO 
dimension yobs(3) 

c 50000 trials 
n=50000 

ccxxxxxxxxxxxxxxx 
mu0=102. 
sdO=l.5 
sdme=.5 
u=l02. 
sl=.25 
a2=100. 
r2=20. 
cll=I00.86696886 
clh= 102.31702894 
c2=101. 6485 9854 

C C21=101.3026704895847 
C c2h=102.0779310721692 
C C3 =101.7155998779199 
cxxxxxxxxxxxxxxxxx 
c statistical parameters 
c dlna and dlnb are the decision limits for SPRT 
C 

alpha=.l 
beta=.01 
the0=102. 
thel=l03. 
dlna=log((l.0-beta)/alpha) 
dlnb=log(beta/(1.0-alpha)) 

c print*,'dlna= ',dlna,' dlnb= ',dlnb 
ccxxxxxxxxxxxxxxxx 

write(4,*)'Trials= ',n 
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write(4, *)'Upper Specification= ',u 
write(4,*)'theta0= ',muO 
write(4,*)'prior s= ',sdO,' mes= ',sdme 
write(4,*)'c2= ',c2 
write(4, *)'ell= ',ell,' clh= ',clh 
write(4, *)'sl = ',sl,' a2= ',a2,' r2= ',r2 
write(4, *)'alpha= ',alpha,' beta= ',beta 
write(4, *)'lwr indif= ',theO,' upr indif= ',thel 
write(3,305) 

23 continue 
c accept the seed from the user. run 5000 trials for each 
c seed 
c initiate all counters 
C 

print* ,'seed? 999 to quit' 
read(* ,300)isd 
if(isd.eq.999)goto 600 
igd=O 
ingd=O 
call seed(isd) 
tctot=O. 
sttot=O. 
rejl=O 
accl=O 
rej2=0 
acc2=0 
rej3=0 
acc3=0 
jrl=O 
jr2=0 
jr3=0 
jal=O 
ja2=0 
ja3=0 
jrstl=O 
jrst2=0 
jrst3=0 
jrst4=0 
jastl=O 
jast2=0 
jast3=0 
jast4=0 
nost=O 
do 30 j=l,4 

staccG)=O 
strejG)=O 

30 continue 

C 

C 

C 

C 

C 

matcha=O 
matchr=O 
matchal=O 
matcha2=0 
matcha3=0 
rriatchrl =O 
matchr2=0 
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c matchr3=0 
C 

C 

C 

C 

do 200 k=l,n 
strun=O. 
sumx=O. 
jdec=O 
cst=O. 
st=O. 
stflgr=O 
stflga=O 

c generate random variables from the prior distribution . 
c this is the actual batch value 
40 call random(rvl) 

if(rvl.eq.O.)goto 40 
50 call random(rv2) · · 

if(rv2.eq.O.)goto 50 
c print*,'rvl= ',rvl,'rv2= ',rv2 

z=sqrt(-2. *log(rvl))*cos(2. *3.1415927*rv2) 
zme=sqrt(-2. *log(rvl))*sin(2. *3.1415927*rv2) 
yact=z*sdO+muO 

c generate measurement error components from the me dist 
c use with actual value to generate observation values 1-3 
C 

do 60j=l,2 
53 call random(rvl) 

if(rvl.eq:O.)goto 53 
56 call random(rv2) 

if(rvl.eq.O.)goto 56 
zme=sqrt(-2. *log(rvl))*sin(2. *3.1415927*rv2) 
yobs(j)=yact+(zme*sdme) 

60 continue 
cxxxxxxxxxxxxxxx 
c statistical case: find the log of likelihood ratio at 
c each observation 
c determine at each stage if disposition can be made 
C 

do 70 i=l,2 
strun=strun+s I 
sumx=sumx+yobs(i) 
dllr=((thel-the0)/sdme**2.0)*sumx+(i/(2.0*sdme**2.0))* 
&(the0**2.0-thel **2.0) 
if( dllr .lt.dlnb )then 

C print* 
c write(* ,248)dllr 
C write(* ,249)dlnb 
c write(*,*)'******** Accept batch ********' 
C print* 

stflga=i 
stacc(i)=stacc(i)+ 1 

C jstat=i 
goto 80 
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elseif( dllr.ge.dlna)then 
C print* 
c write(* ,250)dllr 
c write(* ,251 )dlna 
C 

C 

write(*,*)'******** Reject batch ********' 
print* 

C 

stflgr=i 
strej(i)=strej(i)+ 1 
jstat=i 

goto 80 
endif 

C 

C 

next code to use statistical (truncated sprt) rule of thumb 
in the case that no decision is reached in nmax 

70 continue 
nost=nost+ I 
if( dllr.gt. 0. )then 

strej( 4 )=strej( 4 )+ I 
if(yact.le. u )then 

jrst4=jrst4+ I 
endif 

else 
stacc( 4 )=stacc( 4 )+ I 

if(yact.gt. u )then 
jast4=jast4+ 1 

endif 
endif 

cxxxxxxxxxxxxxxxxx 
c econ case: compare observation mean to cutoff values 
c at each stage 
80 continue 

if(yobs(l).le.cll)then 
ace 1 =ace l+ 1 
jdec=l 
tcrun=sl 
goto 100 

endif 
if(yobs( I ).gt.c 1 h)then 

rej 1 =rej l+ 1 
jdec=2 
tcrun=sl 
goto 100 

endif 
c if((yobs(2)+yobs(l ))/2.le.c2l)then 

if( (yobs(2)+yobs( 1) )/2.le.c2)then 
acc2=acc2+ 1 
jdec=3 
tcrun=2. *sl 
goto 100 

endif 
c if((yobs(2)+yobs(l) )/2.gt.c2h)then 

if( (yobs(2)+yobs( 1) )/2. gt. c2 )then 
rej2=rej2+ 1 
jdec=4 
tcrun=2. *sl 
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goto 100 
endif 

c determine if the correct disposition was made 
c assess false disposition costs 
100 continue 

if(yact.le. u)then 
igd=igd+l 
if(jdec.eq.2)then 

jrl=jrl+l 
cst=r2 

c write(*, *)'false econ reject' 
endif 
if(stflgr.eq.1 )then 

jrstl =jrstl + 1 
st=r2 

endif 
if(jdec.eq.4)then 

jr2=jr2+1 
cst=r2 

endif 
if( stflgr.eq.2)then 

jrst2=jrst2+ 1 
st=r2 

endif 
if(jdec.eq.6)then 

jr3=jr3+1 
cst=r2 

endif 
if(stflgr.eq.3)then 

jrst3=jrst3+ 1 
st=r2 

endif 
else 

ingd=ingd+ 1 
if(jdec.eq. l)then 

jal=jal+l 
cst=a2 

c write(*, *)'false econ accept' 
endif 

c assign economic costs to the statistical case -
c determine if correct disposition, if not add cost 

if(stflga.eq. l)then 
jastl =jastl + 1 
st=a2 

endif 
if(jdec.eq.3)then 

ja2=ja2+1 
cst=a2 

endif 
if(stflga.eq.2)then 

jast2=jast2+ 1 
st=a2 

endif 
if(jdec.eq.5)then 
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ja3=ja3+1 
cst=a2 

endif 
if(stflga.eq.3)then 

jast3=jast3+ 1 
st=a2 

endif 
endif 

c find if the econ and stat cases match 
if(jdec.eq. l .and.stflga.gt. O)matcha=matcha+ 1 
if(jdec.eq.3.and.stflga.gt.O)matcha=matcha+ 1 
if(jdec. eq. 5 .and.stflga.gt. O)matcha=matcha+ 1 
if(jdec.eq.2.and.stflgr.gt.O)matchr=matchr+ 1 
if(jdec.eq.4.and.stflgr.gt.O)matchr=matchr+ 1 
if(jdec.eq.6.and.stflgr.gt.O)matchr=matchr+ 1 
if(stflga.eq.O.and.stflgr.eq.O)then 

c nost=nost+ 1 
strun=2*sl 

endif 
tcrun=tcrun+cst 

c print*,'tcrun= ',tcrun 
strun=strun+st 
tctot=tctot+tcrun 
sttot=sttot+strun 

200 continue 
C 

C 

tcave=tctot/n 
stave=sttot/(n-nost) 

cc write(*, *)'RUN #',m 
c write(*,*)'xl= ',ylobs 
C print*,(' 1 2 3 ') 
c print*,'Match Ace= ',matchal,' ',matcha2,' ',matcha3 
c print*,'Match Rej = ',matchrl,' ',matchr2,' ',matchr3 

write(4,*) 
write( 4, *)'*****' 
write(4, *)'Match Ace= ',matcha,' ',real(matcha)/real(n) 
write(4, *)'Match Rej = ',matchr,' ',real(matchr)/real(n) 

C write(4, *)'*****' 
write(4,315) 
write(4,320) 
write(4,325)stacc(l),real(stacc(l))/real(n),accl, 

&real(accl)/real(n) 
write( 4 ,345)stacc(2),real(stacc(2) )/real( n),acc2, 

&real(acc2)/real(n) 
c write(4,365)stacc(3),real(stacc(3))/real(n),acc3, 
c &real(acc3)/real(n) 

write( 4,335)strej(l ),real(strej( 1) )/real(n),rej 1, 
&real(accl)/real(n) 
write( 4 ,3 55)strej(2),real( strej(2) )/real( n),rej2, 

&real(acc2)/real(n) 
c write(4,375)strej(3),real(strej(3))/real(n),rej3, 
c &real(acc3)/real(n) 
c write(4,385)nost,real(nost)/real(n),real(nost*sl)/real(n) 
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write( 4,385)nost,real(nost)/real(n) 
write(4,388)stacc(4),strej(4) 
write(4,389)jast4jrst4,real(jast4*a2)/real(n), 

&real(jrst4*r2)/real(n) 
write(4,390)jastl,real(jastl)/real(n)jal, 

&real(jal )/real(n) 
write( 4,41 O)jast2,real(jast2)/real(n)ja2, 

&real(ja2)/real(n) · 
c write(4,430)jast3,real(jast3)/real(n)ja3, 
c &real(ja3)/real(n) 

write( 4,442)jastl +jast2,real(jastl +jast2)/ 
&real(n)jal +ja2,real(jal +ja2)/real(n) 
write( 4,443)jastl +jast2+jast4,real(jastl +jast2+ 

&jast4)/real(n)jal +ja2,real(jal +ja2)/real(n) 
write(4,400)jrstl,real(jrstl)/real(n)jrl, 

&real(jr 1 )/real(n) 
write( 4,420)jrst2,real(jrst2)/real(n)jr2, 

&real(jr2)/real(n) 
c write(4,440)jrst3,real(jrst3)/real(n)jr3, 
c &real(jr3)/real(n) 

write( 4,444)jrstl +jrst2,real(jrstl +jrst2)/ 
&real(n)jr 1 +jr2,real(jr 1 +jr2)/real(n) 
write( 4,445)jrstl +jrst2+jrst4,real(jrstl +jrst2+ 

&jrst4)/real(n)jrl +jr2,real(jrl +jr2)/real(n) 
print*,'*****' 
write( 4,450)stave,tcave 
stall=(sttot+real(jast4*a2)+real(jrst4*r2))/real(n) 
write( 4,455)stall 
write(4, *)'tot act above u= ',ingd,' ',real(ingd)/real(n) 
write(4, *)'tot act below u= ',igd,' ',real(igd)/real(n) 

C write(4, *) 
crl=(real(jrl)/real(n))*r2 
cal =(real(jal )/(n))*a2 

c write(4,*)'false econ rej on l= ',real(jrl)/real(n), 
c &' cost= ',crl 
c write(4,*)'false econ ace on I= ',real(jal)/real(n), 
c &' cost= ',cal 
c write(4,*) 

write(3,310)sl,cal,crl,tcave 
248 format(' Ln oflikelihood ratio, ',fl4.4,', less than') 
249 format(' 1n ofB, ',f'S.4,'.') 
250 format(' Ln oflikelihood ratio, ',fl4.4,', greater than') 
251 format(' In of A, ',f'S.4,'.') 
300 format(i3) 
305 format(5x,'tc(l)',7x,'tc(a2)',7x,'tc(r3)',7x,'tcost') 
310 format(lx,f4.2,5x,fl l.8,5x,fl l.8,5x,fl 1.8) 

goto 23 
315 format(35x,'Stat',15x,'Econ') 
320 format(30x,'Count',5x,'%',10x,'Count',5x,'%') 
325 format(' Countf'/o Accept on l',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
335 format(' Count/% Reject on l ',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
345 format(' Countf'lo Accept on 2',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
355 format(' Countf'lo Reject on 2',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
365 format(' Countf'/o Accept on 3',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
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375 format(' Count/% Reject on 3',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
c385 format(' No Decision',16x,i5,5x,f6.4,3x,'It cost',4x,f6.4) 
385 format(' No Decision', 16x,i5,5x,f6.4) 
388 format(' acc/rej ',i5,'/',i5) 
389 format(' false ace/false rej ',i5,'/',i5,5x,'Cost', 

&2x,f8.4,'/' ,f8.4) 
390 format(' Count/% False Accept on l',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
400 format(' Count/% False Reject on l ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
410 format(' Count/% False Accept on 2',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
420 format(' Count/% False Reject on 2',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
430 format(' Count/°/o False Accept on 3',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
440 format(' Count/% False Reject on 3',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
442 format(' Count/% False Accept (2) ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
443 format(' Count/% False Accept tot ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
444 format(' Count/% False Reject (2) ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
445 format(' Count/% False Reject tot ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
450 format(' Ave Tot Cost (in 2)',10x,f8.4,10x,f8.4) 
455 format(' Ave Stat Cost (w/ Trunc) ',f'8.4) 
600 return 

end 
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C 

C 

C 

C 

C 

C 

C 

********************************************** 
********************************************** 
********************************************** 
simulation pgm for nmax.=3, disposition by stat 
and by an economic plan (with cutoffs provided 
by user). 

c muO==prior mean 
c sdO==prior std dev 
c sdme=measurement error std dev 
c u=upper spec 
c sl =iteration cost 
c a2=false acceptance cost 
c r2=false rejectio cost 
c cll,clh,c21,c2h,c3=economic cutoffs 
c n=number of trials (batches) 
c alpha=type I error risk (stat) 
c beta=type II error risk (stat) 
c theO=lower indifference limit (stat) 
c thel=upper indifference limit (stat) 

integer rej l ,acc 1,rej2,acc2,rej 3 ,acc3 ,stflga,stflgr 
integer stacc(4),strej(4) 
real muO 
dimension yobs(3) 

c 50000 trials 
n=50000 

ccxxxxxxxxxxxxxxx 
mu0=102. 
sdO=l.5 
sdme=.5 
u=l02. 
sl=.25 
a2=100. 
r2=20. 
cll=l00.76454886 

·· clh=l02.47599537 
c21=101.31232719 
c2h= 102.06013412 
c3 =101.71559988 

cxxxxxxxxxxxxxxxxx 
c statistical parameters 
c dlna and dlnb are the decision limits for SPRT 
C 

alpha=.1 
beta=.01 
the0=102. 
the1=103. 
dlna=log((l .0-beta)/alpha) 
dlnb=log(beta/(1.0-alpha)) 

c print*,'dlna= ',dlna,' dlnb= ',dlnb 
ccxxxxxxxxxxxxxxxx 

write( 4, *)'Trials= ',n 
write( 4, *)'Upper Specification= ',u 
write( 4, *)'thetaO= ',muO 
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write(4, *)'priors= ',sdO,' mes= ',sdme 
write( 4, *)'c3= ',c3 
write(4,*)'c21= ',c21,' c2h= ',c2h 
write(4, *)'ell= ',ell,' clh= ',clh 
write(4,*)'sl= ',sl,' a2= ',a2,' r2= ',r2 
write(4,*)'alpha= ',alpha,' beta= ',beta 
write(4,*)'lwr indif= ',theO,' upr indif= ',thel 
write(3,305) 

23 continue 
c accept the seed from the user. run 5000 trials for each 
c seed 
c initiate all counters 
C 

print* ,'seed? 999 to quit' 
read(* ,300)isd 
if(isd.eq.999)goto 600 
igd=O 
ingd=O 
call seed(isd) 
tctot=O. 
sttot=O. 
rejl=O 
accl=O 
rej2=0 
acc2=0 
rej3=0 
acc3=0 
jrl=O 
jr2=0 
jr3=0 
jal=O 
ja2=0 
ja3=0 
jrstl=O 
jrst2=0 
jrst3=0 
jrst4=0 
jastl=O 
jast2=0 
jast3=0 
jast4=0 
nost=O 
do 30 j=l,4 

stacc(i)=O 
strej(i)=O 

30 continue 

C 

C 

C 

C 

C 

C 

matcha=O 
matchr=O 
matchal=O 
matcha2=0 
matcha3=0 
matchrl=O 
matchr2=0 
matchr3=0 
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C 

C 

C 

C 

do 200 k=l,n 
strun=O. 
sumx=O. 
jdec=O 
cst=O. 
st=O. 
stflgr=O 
stflga=O 

c generate random variables from the prior distribution 
c this is the actual batch value 
40 call random( rv 1) 

if(rvl.eq.O.)goto 40 
50 call random(rv2) 

if(rv2.eq.O.)goto 50 
c print*,'rvl= ',rvl,'rv2= ',rv2 

z=sqrt(-2. *log(rvl))*cos(2. *3.1415927*rv2) 
zme=sqrt(-2. *log(rvl))*sin(2. *3.1415927*rv2) 
yact=z*sdO+muO 

c generate measurement error components from the me dist 
c use with actual value to generate observation values 1-3 
C 

do 60 j=l,3 
53 call random(rvl) 

if(rvl.eq.O.)goto 53 
56 call random(rv2) 

if(rvl.eq.O.)goto 56 
zme=sqrt(-2. *log(rvl))*sin(2. *3.1415927*rv2) 
yobs(j)=yact+(zme*sdme) 

60 continue 
cxxxxxxxxxxxxxxxxx 
c statistical case: find the log of likelihood ratio at 
c each observation 
c determine at each stage if disposition can be made 
C 

do 70 i=l,3 
strun=strun+s 1 
sumx=sumx+yobs(i) 
dllr=((thel-the0)/sdme**2.0)*sumx+(i/(2.0*sdme**2.0))* 

\(the0**2.0-thel **2.0) 
if( dllr.lt.dlnb )then 

C print* 
c write(* ,248)dllr 
c write(*,249)dlnb 
c write(*,*)'******** Accept batch ********' 
C print* 

stflga=i 
stacc(i)=stacc(i)+ 1 

c jstat=i 
goto 80 
elseif(dllr.ge.dlna)then 
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print* 
write(* ,250)dllr 
write(* ,251 )dlna 

C 

C 

C 

C 

C 

write(*,*)'******** Reject batch ********' 
print* 

C 

stflgr=i 
strej(i)=strej(i)+ 1 
jstat=i 

goto 80 
endif 

C 

C 

next code to use statistical (truncated sprt) rule of thumb 
in the case that no decision is reached in nmax 

70 continue _ 
nost=nost+ 1 
if( dllr .gt. 0. )then 

strej( 4 )=strej( 4 )+ 1 
if(yact.le. u)then 

jrst4=jrst4+ 1 
endif 

else 
stacc( 4 )=stacc( 4 )+ 1 

if(yact.gt. u)then 
jast4=jast4+ 1 

endif 
endif 

cxxxxxxxxxxxxxxx 
c econ case: compare observation mean to cutoff values 
c at each stage 
80 continue 

if(yobs(l).le.cll)then 
accl=accl+l 
jdec=l 
tcrun=sl 
goto 100 

endif 
if(yobs( 1 ).gt.c I h)then 

rej 1 =rej l+ 1 
jdec=2 
tcrun=sl 
goto 100 

endif 
if( (yobs(2)+yobs( I) )/2.le.c2l)then 

acc2=acc2+ I 
jdec=3 
tcrun=2. *sl 
goto 100 

endif 
if( (yobs(2)+yobs( 1) )/2.gt.c2h)then 

rej2=rej2+ I 
jdec=4 
tcrun=2. *sl 
goto 100 

endif 
if( (yobs(3 )+yobs(2)+yobs( 1) )/3 .le.c3 )then 
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acc3=acc3+ 1 
jdec=5 
tcrun=3. *sl 
goto 100 

end.if 
if( (yobs(3 )+yobs(2 )+yobs( 1) )/3 .gt.c3 )then 

rej3=rej3+ 1 
jdec=6 
tcrun=3.*sl 
goto 100 

end.if 
c determine if the correct disposition was·made 
c assess false disposition costs 
100 continue 

if(yact.le.u)then 
igd=igd+l 
if(idec.eq.2)then 

jrl=jrl+l 
cst=r2 

c write(*, *)'false econ reject' 
endif 
if(stflgr.eq. l)then 

jrstl =jrstl + 1 
st=r2 

endif 
if(idec.eq.4)then 

jr2=jr2+1 
cst=r2 

end.if 
if(stflgr.eq.2)then 

jrst2=jrst2+ 1 
st=r2 

endif 
if(idec.eq.6)then 

jr3=jr3+1 
cst=r2 

end.if 
if(stflgr.eq.3)then 

jrst3=jrst3+ 1 
st=r2 

end.if 
else 

ingd=ingd+ 1 
if(idec.eq. l)then 

jal=jal+l 
cst=a2 

c write(*, *)'false econ accept' 
endif 

c assign economic costs to the statistical case -
c determine if correct disposition, if not add cost 

if(stflga.eq. l)then 
jastl =jastl + 1 
st=a2 

endif 
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if(jdec.eq.3)then 
ja2=ja2+1 
cst=a2 

endif 
if(stflga.eq.2)then 

jast2=jast2+ 1 
st=a2 

endif 
if(jdec.eq.5)then 

ja3=ja3+1 
cst=a2 

endif 
if(stflga. eq. 3 )then 

jast3=jast3+ 1 
st=a2 

endif 
endif 

c find if the econ and stat cases match 
if(jdec.eq. l.and.stflga.gt.O)matcha=matcha+ 1 
if(jdec.eq .3 .and.stflga.gt. O)matcha=matcha+ 1 
if(jdec.eq.5.and.stflga.gt.O)matcha=matcha+ 1 
if(jdec.eq.2.and.stflgr.gt.O)matchr=matchr+ 1 
if(jdec.eq.4.and.stflgr.gt.O)matchr=matchr+ 1 
if(jdec.eq.6.and.stflgr.gt.O)matchr=matchr+ 1 
if(stflga.eq.O.and.stflgr.eq.O)then 

c nost=nost+ 1 
strun=3*sl 

endif 
tcrun=tcrun+cst 

c print*,'tcrun= ',tcrun 
strun=strun+st 
tctot=tctot+tcrun 
sttot=sttot+strun 

200 continue 
C 

C 

tcave=tctot/n 
stave=sttot/(n-nost) 

cc write(*, *)'RUN #' ,m 
c write(*,*)'xl= ',ylobs 
C print*,(' 1 2 3') 
c print*,'Match Ace= ',matchal,' ',matcha2,' ',matcha3 
c print*,'Match Rej = ',matchrl,' ',matchr2,' ',matchr3 

write(4,*) 
write( 4, *)'*****' 
write(4, *)'Match Ace= ',matcha,' 
write(4, *)'Match Rej = ',matchr,' 
print*,'*****' 
write(4,315) 

',real(matcha)/real(n) 
',real(matchr)/real(n) 

write(4,320) 
write(4,325)stacc(l),real(stacc(l))/real(n),accl, 

&real(accl)/real(n) 
write( 4,345)stacc(2 ),real(stacc(2) )/real(n),acc2, 

&real(acc2)/real(n) 
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write( 4,365)stacc(3 ),real(stacc(3) )/real(n),acc3, 
&real(acc3)/real(n) 
write( 4,335)strej( 1 ),real(strej(l ))/real(n),rej 1, 

&real(accl)/real(n) 
write( 4,3 55)strej(2),real( strej(2) )/real( n),rej2, 

&real( acc2)/real( n) 
write( 4,3 7 5)strej(3 ),real(strej(3) )/real(n),rej3, 

&real(acc3)/real(n) 
c write( 4,3 85)nost,real(nost)/real(n),real(nost*s 1 )/real( n) 

write( 4,3 85)nost,real( nost)/real( n) 
write( 4,388)stacc( 4),strej( 4) 
write( 4,3 89)jast4 jrst4 ,real(iast4 *a2)/real(n), 

&real(irst4 *r2)/real(n) 
write(4,390)jastl,real(jastl)/real(n),jal, 

&real(ial)/real(n) 
write(4,410)jast2,real(iast2)/real(n),ja2, 

&real(ia2)/real(n) 
write(4,430)jast3,real(iast3)/real(n)ja3, 

&real(ia3)/real(n) 
write( 4, 442)jastl +jast2+jast3 ,real(iastl +jast2+jast3 )/ 

&real(n)jal +ja2+ja3,real(ial +ja2+ja3)/real(n) 
write( 4,443)jastl +jast2+jast3+jast4,real(iastl +jast2+jast3+ 

&jast4 )/real(n)jal +ja2+ja3 ,real(ial +ja2+ja3)/real(n) 
write( 4,400)jrstl ,real(irstl )/real(n),jr 1, 

&real(irl)/real(n) 
write( 4, 420)jrst2,real(irst2)/real( n),jr2, 

&real(jr2)/real(n) 
write(4,440)jrst3,real(jrst3)/real(n),jr3, 

&real(jr3)/real(n) 
write( 4,444 )jrstl +jrst2+jrst3 ,real(irstl +jrst2+jrst3 )/ 

&real(n)jrl +jr2+jr3,real(irl +jr2+jr3)/real(n) 
write( 4,445)jrstl +jrst2+jrst3+jrst4,real(jrstl +jrst2+jrst3+ 

&jrst4 )/real(n)jrl +jr2+jr3,real(jr 1 +jr2+jr3 )/real(n) 
print*,'*****' 
write( 4,450)stave,tcave 
stall=(sttot+real(jast4*a2)+real(jrst4*r2))/real(n) 
write( 4,455)stall 
write(4, *)'tot act above u= ',ingd,' ',real(ingd)/real(n) 
write(4, *)'tot act below u= ',igd,' ',real(igd)/real(n) 

C write( 4, *) 
crl =(real(jrl)/real(n))*r2 
cal=(real(jal)/(n))*a2 

c write(4, *)'false econ rej on 1 = ',real(jrl)/real(n), 
c &' cost= ',crl 
c write( 4, *)'false econ ace on 1 = ',real(jal)/real(n), 
c &' cost= ',cal 
C write(4,*) 

write(3,3 IO)sl,cal,crl,tcave 
248 format(' Ln of likelihood ratio, ',fl4.4,', less than') 
249 format(' In ofB, ',f8.4,'.') 
250 format(' Ln oflikelihood ratio, ',fl4.4,', greater than') 
251 format(' In of A, ',f8.4,'.') 
300 format(i3) 
305 format(5x,'tc(l)',7x,'tc(a2)',7x,'tc(r3)',7x,'tcost') 
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310 format(lx,f4.2,5x,fl l.8,5x,fl l.8,5x,fl 1.8) 
goto 23 

315 format(35x,'Stat',15x,'Econ') 
320 format(30x, 'Count' ,5x,'%', lOx, 'Count',5x,'%') 
325 format(' Count/% Accept on l',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
335 format(' Count/% Reject on l ',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
345 format(' Count/% Accept on 2',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
355 format(' Count/% Reject on 2',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
365 format(' Count/°/o Accept on 3',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
375 format(' Count/% Reject on 3',8x,i5,5x,f6.4,5x,i5,5x,f6.4) 
c385 format(' No Decision',16x,i5,5x,f6.4,3x,'It cost',4x,f6.4) 
385 format(' No Decision',16x,i5,5x,f6.4) 
388 format(' acc/rej ',i5,'/',i5) 
389 format(' false ace/false rej ',i5,'/',i5,5x,'Cost', 

&2x,f8.4,'/',f8.4) 
390 format(' Count/% False Accept on l ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
400 format(' Count/% False Reject on l ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
410 format(' Count/% False Accept on 2',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
420 format(' Count/% False Reject on 2',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
430 format(' Count/°/o False Accept on 3',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
440 format(' Count/°/o False Reject on 3',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
442 format(' Count/% False Accept (3) ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
443 format(' Count/% False Accept tot ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
444 format(' Count/% False Reject (3) ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
445 format(' Count/% False Reject tot ',2x,i5,5x,f6.4,5x,i5, 

&5x,f6.4) 
450 format(' Ave Tot Cost (in 3)',10x,f8.4,10x,f8.4) 
455 format(' Ave Stat Cost (w/Trunc)',5x,f8.4) 
600 return 

end 
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