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NOMENCLATURE 

f(x) the signal to be compressed 

'I/ mother wavelet 

{ Vt;} basis functions 

f(x,y) the image to be compressed 

z the graylevel of a pixel at (x, y), z = f (x, y) 

X some space 

R the real number space 

2 
the space of a rectangle R 

£{ the space of a grayscale image 

P; a point 

o(P1, Pi) the distance between P 1 and P 2 

w the contractive mapping of IFS 

a the contractivity of the contractive mapping 

x* a fixed point in Xspace 

sup the supremum metric 

B an element in X space 

B' a transformed element in X space 
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d; 
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a; 

the collage of w; transformations 

the attractor image 

the scale factor of the support 

rotation angle of the support 

displacement in x and y direction of the support 

the support ofthe domain block 

the support of the range block 

the contractive mapping of PIFS 

the scaling factor of the contractive mapping 

the offset factor of the contractive mapping 

the collage of V; transformations 

the decompressed image sequence where i = 0 .. oo 

the image surface above D, 

the image surface above R; 

square error between two image blocks 

root mean square error 

a flat image block with graylevel equal to the mean of the range block r, 

a flat image block with graylevel equal to the mean of the domain block d; 

the new f3i for centering method, Pt'= ft 

the coefficient of x; term 

the coefficient of j term 

the coefficient of xj term 
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CHAPTER I 

INTRODUCTION 

"One picture is worth a thousand words." This is one reason that images are 

massively used in our modern society. The massive usage of images causes difficulty of 

storage and transmission. For example, a grey-level image of about 1/4 screen of an 

ordinary SVGA monitor is composed of 512 pixels in width and 512 pixels in length. 

There are totally 262,144 pixels. Suppose the intensity of each pixel is from Oto 127; that 

takes 8 bits (1 byte) to express. That image takes 262,144 bytes to store. For a full color 

image, which uses one byte for each R/G/B color on every pixel, of the same resolution 

and size, 768,432 bytes are needed. To transmit that full color image by a 9600 bps 

modem, it takes 655 seconds plus some time for the transmission overhead. Hence, image 

compression techniques are developed to shorten the transmission time and reduce the 

storage burden. In this study, we seek to improve the state-of-the-art image compression 

technique in compression ratio, compression speed, decompression speed, and/or 

decompressed image fidelity. 

1.1 Background Information 

While the price of computer storage devices is dropping drastically and the data 

transmission speed is being enhanced rapidly, to store more data in less memory and 

transmit more data in less time are always desired. Data compression techniques provide 

some choices to fulfill this purpose. Sometimes, the data are very important so that the 

decompressed data must be exactly the same as the original data. The techniques that 
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satisfy this requirement are called lossless data compression. Sometimes, the data are not 

very critical so imprecise decompressed data are acceptable. The techniques that can 

provide this not-so-exact restoration are called lossy data compression. 

1.1.1 Lossless compression 

Lossless data compression techniques have been well developed and are 

approaching the theoretical limit [Stor88][Bell90]. The most common methods are 

Huffinan coding, LZ77, LZ78, and Arithmetic coding. They are mostly applied to textual 

data and some binary data such as executable codes. For such kinds of data, lossless 

compression typically can save 8% to 76% of the storage space depending on the 

information entropy of the original data and the technique used [Burt95]. However, 

lossless compression techniques may expand (poor) or save 50% (good) storage space for 

most natural image data and voice data [Nels91] [Stor92]. The advantage of these 

techniques is that the decompressed data will be exactly the same as the original one, no 

matter how many compression-decompression processes are applied on the data. The 

disadvantage is that only a limited amount of space can be saved by these techniques. 

1.1.2 Lossy compression 

Most image and voice data are not critical in detail. For example, human eyes may 

not tell the difference if the intensity (graylevel) of one pixel of an image is changed to one 

level brighter. In contrast, it may be a disaster to change the value of one bit of an 

executable file. Minor noise embedded in the data may cause the degradation of the visual 

or acoustic quality for the image data or voice data respectively, but the information 



contents could still be sensible. If the noise is very weak, human eyes or ears might not 

even perceive the existence of the noise. That is the reason why lossy compression is 

mainly applied to image and voice data. 
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There are several lossy compression techniques very popular such as vector 

quantization and JPEG for still image data, fractal and wavelet compression for still image 

and video data, and MPEG for video data. Fractal image compression is one of the most 

promising methods. The theory behind fractal compression is also applicable to one­

dimensional data such as voice data [Vine93]. Barnsley had demonstrated a compression 

rate of as much as 10,000:1 [SciAmSS], although this image was not naturally occurring, 

nor is the compressing automatic. 

Comparing with lossless compression, the advantage of lossy compression is that 

more storage space can be saved. The disadvantage is the degradation of decompressed 

data, and this degradation exists for each decompression if you do multiple compression­

decompression cycles on one image. 

1.1.2.1 Vector Quantization (YQ) 

The Vector Quantization idea comes from Scalar Quantization by which all values 

can be represented with fixed subset of representative values. For example, 16-bit values 

can be represented by only the 8 most significant bits (MSBs) and result in an 

approximation of the original data at the cost of precision. In this case, the fixed subset 

contains all the 16-bit numbers divisible by 256, that is, 0, 256, 512, ... , etc. Hence, all 

quantization methods are lossy. 
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As an extension of Scalar Quantization, Vector Quantization represents a small 

arrays of values instead of individual values [Zats95]. The color map is a typical VQ 

example. A full color image can be represented by a 2-dimensional array of triplets (RGB 

values). For most natural images, the whole RGB space is not fully used, i.e., the color 

tends to concentrate in certain areas. For example, the picture of a forest will typically 

have a lot of green. So, a relatively small subset of colors ( e.g., 256 colors) can be the 

representatives. All RGB triplets then can be approximated by those representatives, so 

each color pixel can be represented by one byte instead of three. 

To the VQ community, a ''vector'' is a small rectangular block of pixels. Similar to 

the color map example in which some colors occur much more frequently than others, 

some patterns occur much more frequently than others in an image. So the smart way is 

to store only a few of these common patterns in a separate file called the codebook. Some 

codebook vectors are flat, some are sloping, some contain tight texture, some sharp edges, 

etc. Each codebook entry is assigned an index number. A given image is partitioned into 

a regular grid array. Each grid element is represented by an index into the codebook. 

1.1.2.2 The JPEG Standard 

JPEG (Joint Photographic Experts Group) is a standard image compression 

mechanism. It is designed to compress natural real-world scenes instead of cartoons and 

line drawings. JPEG does not handle black-and-white images and motion pictures (video). 

JBIG and MPEG committees are working on those types ofimages respectively. 



The JPEG algorithm achieves much of its compression by exploiting human eye 

limitations that small color details are not perceived as well as small details of brightness. 

The outline of the baseline compression algorithm for grayscale images is listed here: 
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1. Group the pixel values into 8x8 blocks. Transform each 8x8 block through a 

discrete cosine transform (OCT) which is similar to Fourier transform and give 

a frequency map. Thus, the average value and higher-frequency changes within 

a block are represented by some numbers. Some of the high frequency 

information can be discarded depending on what image fidelity the users want. 

2. In each block, divide each frequency component by a separate quantization 

coefficient, and round the results to integers. 

3. Encode the quantized coefficients using either Huffinan or arithmetic coding. 

JPEG also provides three optional modes: progressive mode, hierarchical mode, 

and lossless mode. Progressive mode is intended to support real-time transmission of 

images It allows the DCT coefficients to be sent incrementally in multiple scans of the 

image. Hierarchical mode represents an image at multiple resolutions. Lossless mode 

does not use OCT, since roundoff errors prevent a OCT calculation from being lossless. 

The lossless mode simply codes the difference between each pixel and the "predicted" 

value for the pixel. The predicted value is a simple predictor function, such as average, of 

the already-transmitted pixels just above and to the left of the current one [Wal191] 

[Nels91] [Penn93] [Lane95]. 
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1.1.2.3 MPEG Standards 

MPEG (Moving Picture Experts Group) works on standards for the compression 

of video and associated audio data. They have completed the first phase of three: MPEG-

1, MPEG-2 and MPEG-4. MPEG-1 is defined as "Coding of Moving Pictures and 

Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s." MPEG-2 is 

defined as "Generic Coding of Moving Pictures and Associated Audio." The first step of 

the MPEG-1 algorithm is to convert the color image into YUV space in which the Y 

channel should preserve better image fidelity when decoded (i.e., not much compression) 

and UV channels can be greatly compressed. The basic scheme is to predict motion from 

frame to frame in the temporal direction, and then to use DCTs to organize the 

redundancy in the spatial directions [Gall91] [AdPo94]. 

1.1.2.4 Wavelet theory 

One of the most commonly used approaches for analyzing a signalf(x) is to 

represent it as a weighted sum of simple building blocks, called basis functions: 

f(x)= LC;fff;(X) (1.1) 
i 

where the f//i(x) are basis functions and the c; are coefficients, or weights. Since the basis 

functions f//i are fixed, it is the coefficients that contain the information about the signal. 

The simplest such representation uses translations of the impulse function as its 

only bases, yielding a representation that reveals information only about the time domain 

behavior of the signal. Choosing the sinusoids as the basis functions yields a Fourier 

representation that reveals information only about the signal's frequency domain behavior. 
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Fortunately, low frequency events are spread out (or non-local) in time, and high 

frequency events are concentrated ( or localized) in time. In order to get useful time-

frequency information about a signal, the basis functions should be designed to act like 

cascaded octave bandpass filters, which repeatedly split the signal's bandwidth in half 

In wavelet compression, all basis functions are constrained in { Vf;} to be scaled and 

translated versions of the same prototype function f//, known as the mother wavelet. The 

scaling is accomplished by multiplying x by some scale factor; if the scale factor is a power 

of 2, yielding lf/(2vx) where v is some integer, the cascaded octave bandpass filter structure 

is obtained. Because f//has finite support (support is described in section 3.2), it will need 

to be translated along the time axis in order to cover an entire signal. This translation is 

accomplished by considering all the integral shifts of f//, 

lf/(2v x-k), keZ (1.2) 

Putting this all together produces a wavelet decomposition of the signal, 

f(x)= LLcvklffvk(x) (1.3) 
V k 

The 2v12 is needed to make the bases orthonormal. 

As to the coefficients Cvk, they are computed by the wavelet transform, which is 

just the inner product of the signalf(x) with the basis functions f//vk(x) [HiJaSe94]. 

1.1.2.5 Fractal Image Compression 

The fractal image compression method is based on Iterated Functions Systems 

(IFS), the Collage Theorem, and the Contraction Theorem. The mathematics of IFS is 



8 

presented in Fractals Everywhere by Michael Barnsley [Bam89]. The Collage Theorem 

and the Contraction Theorem are also proven in that book. Heinz-Otto Peitgen compares 

IFS to a Multiple Reduction Copying Machine (MRCM) [PeJuSa93]. A MRCM is a 

regular copy machine with special features: 

1. Multiple lenses. 

2. Each lens creates its own reduced copy of the original. 

3. Reduced copies overlap to each other. 

4. The initial input copy can be anything. 

5. The output copy is always fed back as new input. 

When the MRCM runs, it eventually will produce an unique image which is called the 

attractor or the fixed point of that MRCM, because each lens creates its own reduced 

copy of the original. A good MRCM example that produces the Sierpinski triangle is 

presented in section 3. 8 and Figure 3. 5. Different numbers of lenses and lens 

arrangements will result in different attractors no matter what is the initial input image, as 

guaranteed by the Contraction Theorem which is stated in section 3.3 and 3.4. 

Similarly, IFS is a set of contractive transformations that map from a defined 

rectangle to smaller portions of that rectangle. The production of IFS is called fractal 

image because of the self-similarity property. A fractal image can be represented by a 

small number of IFS transformation, hence the storage space is saved. The construction 

of a typical fractal image, the Sierpinski triangle, is shown in section 3. 8. 

Unfortunately, natural images are not self-similar, because a small portion of the 

image is hardly like the whole image. To avoid this problem, Barnsley's Ph.D. student 

Arnaud Jacquin in Georgia Institute of Technology proposed a Partitioned IFS (PIFS) 
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which does not map from the whole image to the parts, but from larger parts (domains) to 

smaller parts (ranges). Because the mappings ofPIFS are still contractive, when iterated 

it will converge to its latent fixed point image. Constructing a PIFS amounts to pairing 

each range block to the domain block that it most closely resembles under some to-be­

determined affine transformation. Affine transformations act to translate, scale, shear, and 

rotate points in the domains. A simple compression example based on the PIFS model is 

presented in section 4.5. 

The decompression process begins with any initial image. Then the set of 

transformations is repeatedly applied on that image. The attractor will be stable after 

several iterations. The attractor usually will not be exactly identical to the original image 

[K.omi94] [K.omi95]. 

1.2 The Problems 

The compression process is basically the pairing of each range block to a domain 

block such that the difference between the two, under an affine transformation, is minimal. 

A general description of finding a good PIFS for any given image involves five main issues 

[K.omi94] [K.omi95]: 

1. Partitioning the image into range blocks. 

2. Forming the set of domain blocks. 

3. Choosing the types of transformations that will be considered. 

4. Selecting a distance metric between blocks. 

5. Specifying a method for pairing range blocks to domain blocks. 
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The range blocks and domain blocks are not necessarily squares or rectangles. Fisher et 

al. proposed an HV partitioning in which a range block is horizontally or vertically cut into 

two pieces alternatively when the pairing process fails [FiMe94]. Davoine et al. developed 

a triangular partitioning method and expected a lot of similarities between those triangles 

[DaCh94]. Both methods share the same problem that the locations (coordinates) of 

domain blocks and range blocks must be explicitly recorded in the compressed file, which 

decreases the amount of compression. 

Fisher utilized the beauty of quadtree structures to develop fractal image 

compression with quadtrees in which the range locations are implicitly encoded with only 

one bit for each quadtree branch [Fish95]. However, the problem is that many more range 

blocks are generated by the quadtree partitioning, because each partition produces four 

sub-range blocks. Each produced sub-block will repeat the pairing process all over again 

and may be partitioned repeatedly if its pairing fails again. It is the pairing processes that 

make fractal image compression very slow. Besides, each successfully paired sub-block 

needs to record all its transformation coefficients in the compressed file, which worsens 

the compression. 

Most researchers use the same type of transformation that Jacquin and Fisher used. 

That transformation, a scaling and a shifting on the domain pixel brightness, is so primitive 

that only a very similar domain block can be successfully paired to a range block. The 

transformaion is introduced in section 4.2. It makes the successful rate of pairing very low 

and lengthens the searching time. 

Monro et al. from University of Bath, England, proposed a more effectual 

transformation called the Bath Fractal Transformation (BFT) [Monr93] [MoDu92a] 
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[MoDu92b] [MoNi94] [Mo Wo94]. Jacquin and Fisher's transformation is just a special 

case of the BFT. This transformation is so powerful that almost any domain block can be 

transformed into an acceptable block which barely approximates the range block. Monro 

declared that BFT image compression can do quite well without searching. That means 

the compression speed could be very fast with the cost of worse decompressed image 

fidelity. The image fidelity can be improved by simply allowing searching. However, the 

pairing time could be longer than Barnsley's because the transformation is more 

complicated and takes longer to calculate the coefficients and errors. Section 5. 5 

describes BFT in detail. 

The decompression algorithm is quite straight forward. Applying all 

transformations on the initial image is called one decompression iteration. It usually takes 

7 to 9 iterations to converge to the attractor image. This could be a problem for some 

applications in which a real-time image display is critical, such as video decompression. 

1.3 Motivation 

For lossy image compression, it is well known that there is no best method for all 

kinds of images, because the results always depend on the input data. A method may do 

very well on an image but very poorly on another. As to the word "best," it is also 

ambiguous: best compression ratio, best compression speed, best decompressed quality, or 

best decompressing speed. These four intentions have trade-offs among them. 

Under such circumstance, a good method means to achieve more on some of these 

four intentions with less cost of others. 
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1.4 Objectives of the Study 

In this study, we propose a better fractal image compression model with two 

innovations: centering and BFTwith quadtrees. We expect that centering can reduce the 

decompression time to about half of the traditional models' time and the contents of the 

decompressed image could be perceptible as early as the end of the first decompression 

iteration. We also expect this early convergence property could make the result of the 

second decompression iteration very similar to the attractor image. Thus, the centering 

method provides a good choice for real-time video decompression. 

The BFTwith quadtrees is a modified algorithm from Fisher' sfractal image 

compression with quadtrees [Fish95]. The goals of developing this method are: 

1. To compress an image into smaller size. 

2. To reduce the decompression time. 

3. To keep the decompressed quality at the same level. 

We expect this modified algorithm is not only useful for quadtree type partitioning models, 

but also applicable to all kinds of partitioning models such as HV and triangular partitions. 

1. 5 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter II provides the 

literature review for fractal image compression. Chapter III describes the mathematical 

foundation of fractal image compression in detail, including the contractive 

transformations, the fixed point theorem, the iterated function systems, and the collage 

theorem. Chapter N introduces Jacquin's partitioned iterated :function systems and our 
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centering modification. Preliminary results of the centering method are also presented in 

this chapter. Chapter V shows the algorithms of Fisher's quadtree-based fractal encoding 

scheme, Monro's Bath Fractal Transformation, and our centered BFT with quadtrees. 

Chapter VI presents the experimental results from the centering and our centered BFT 

with quadtrees, and compares them with the results of Fisher's original model. Chapter 

VII summarizes our study andthe prospects for future work. 



CHAPTER II 

THE LITERATURE REVIEW 

2.1 Introduction 

While the root of fractal image compression is the Iterated Function System (IFS) 

which is based on the work of Williams [Wi1171] and Hutchinson [Hutc81], the rebirth of 

fractal geometry is usually traced to IBM mathematician Benoit B. Mandelbrot and his 

1977 seminal publication The Fractal Geometry of Nature [Mand77]. This book put forth 

a powerful thesis: traditional geometry with its straight lines and smooth surfaces does not 

resemble the geometry of trees and clouds and mountains. Fractal geometry, with its 

convoluted coastlines and endless detail, does [Mand77]. This insight opened vast 

possibilities, so that IFS's became very popular in the mid 1980's. 

2.2 Barnsley's IFS 

In 1985, Barnsley and his coworkers at Georgia Institute of Technology focused 

on modeling natural shapes such as leaves and clouds. In the reverse thinking direction of 

generating synthesized image, Barnsley et al. realized that fractal mathematics should be 

good for representing images. They announced the incredible compression rates of over 

10,000 to 1 in Popular Science magazine [SciAm88] [BaS187][BaS188]. The algorithm 

first partitioned an image into self-similar parts with a human' s interactive help. Then each 

part was coded as an IFS under the criterion of the Collage Theorem. This method is 

derisively referred to as the "graduate student algorithm": locking up a graduate student in 

14 
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a tiny office with a workstation and not letting him out until they come up with a good IFS 

for your image. They were granted two patents [BaS190] [BaS191] and established a new 

company, Iterated Systems, Incorporated. 

The myth of 10,000 to 1 compression rate depended on the fact that the 

demonstrated images are all man-made. Not only the images are synthesized, but also this 

deadly slow process is not automatic. In 1988, Barnsley admitted: "Complex color images 

require about 100 hours each to encode and 30 minutes to decode on the MassComp dual 

processor workstation." That is 100 hours of human-guided computation. 

After Barnsley published Fractals Everywhere [Barn89] [Barn93], he and Hurd 

published a second book, Fractal Image Compression [BaHu92]. In Fractals 

Everywhere, he presented the mathematics of IFS, and proved the Collage Theorem. 

2.3 Jacquin's PIFS 

In 1989, Jacquin, a Barnsley's Ph.D. student, proposed a fully automated 

algorithm, Partitioned Iterated Function Systems (PIFS), for fractal image compression 

based on Barnsley's IFS. The algorithm is described in Jacquin's landmark paper "Image 

Coding Based on a Fractal Theory oflterated contractive Image Transformations," and all 

contemporary fractal image compression algorithms are based upon this paper [Jacq92]. 

A grey-scale image is partitioned into nonoverlapping square range blocks. The same 

image is partitioned again into some overlapping larger square domain blocks sorted into 

three categories (shade blocks, edge blocks and midrange blocks). Each range block 

searches a domain block of the same category in order to find a domain block that 

minimizes the "distance" between the range block and the affine transformed domain 
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block. The affine mapping first shrinks the domain block down to the size of the range 

block, then scales its grey-levels and adds to a constant grey-tone block. There are several 

different definitions of the distance between two blocks such as Euclidean metric and 

supremum metric. The supremum metric is defined in section 3.5. 

Jacquin's algorithm is simple and not speedy, but it is fully automatic with the price 

of a much worse compression rate (compared with Barnsley's 10,000 to 1). His work 

provides a starting point for further research in many directions: 

1. The partitioning of the image into ranges: adaptive quadtrees, HV rectangular 

and triangular ranges, 

2. The encoding: choice of the domain pool, including several fixed basis blocks 

and even several image domain blocks for the code of a range, 

3. Classification methods for the complexity reduction of the encoding step: based 

on image values and intensity variance, clustering of domains, fast algorithms 

from computational geometry to solve nearest neighbor problems, 

4. The decoding: standard iteration vs. fast hierarchical or direct numerical, 

5. Coding of 1-D or 3-D data: time series, volume data, video frames. 

2.4 Monro's BFT 

In 1992, Monro and Dudbridge from the University of Bath, England, generalized 

Jacquin's scheme with the Bath Fractal Transform (BFT) [MoDu92a]. The domain block 

is mapped onto the range block by a four-variable BFT, while Jacquin uses a two-variable 

affine transformation. The four-variable BFT is illustrated in section 5.5. In order to 

minimize the error of the mapping, the least- squares error technique is applied. The four 



variables can be obtained by solving a set of linear equations in linear time with the total 

number of pixels, thus leading to higher computational efficiency as compared to other 

techniques. Although the compression is faster, the compression-fidelity tradeoff of the 

primitive order-I BFT is a little bit worse than that of JPEG [MoDu92b]. 
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In 1993, Monro further generalized his previous work and implemented an order-3 

BFT with different levels oflocal search. The encoding cost increases with both search 

level and order of the BFT, but the accuracy of the code is improved and beats JPEG 

coding. It also gives a lower Root-Mean-Square (RMS) error than Jacquin's PIFS-coding 

does with the same search level. Monro concluded that variants of the BFT will offer 

better fidelity-compression tradeoffs than JPEG coding and therefore are a serious 

alternative as a next-generation method for still-image coding [Monr93]. 



CHAPTER III 

THE MATHEMATICAL FOUNDATION OF FRACTAL IMAGE COMPRESSION 

3 .1 Introduction 

In this chapter, we describe the underlying mathematical principles of fractal image 

compression based on the theory of contractive iterated function systems. For a thorough 

introduction, the reader is referred to [Barn93]. 

We first define the mathematical model of an image. Then we describe the 

contractive transformations and their properties. Next, a short proof for the fixed point 

theorem is given. We define the supremum matrix and explain how the fixed point 

theorem can also be applied to images. The iterated function system is defined and is 

supported by the fixed point theorem. Based on the IFS, the collage theorem is derived. 

At the end of this chapter, we use the Sierpinski triangle image as an example to link IFS 

theory with image compression. 

3 .2 Definitions 

In order to discuss the compression of digital images, we need a mathematical 

model of an image. An image is considered as an element in the space of functions of two 

variables which are defined on a rectangular support (i). The two variables are denoted 

as x andy. Since the point (x, y) is defined on the support, (x, y) belongs to i. A black­

and-white image is a set of binary points on that support. 

18 
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2 
{z I z = f(x, y), (x, y) ER, z = 0 or 1) (3.1) 

A black pixel is represented by z = 1, and a white pixel is represented by z = 0. A 

grayscale image can be defined as a function on a rectangular support. 

2 
{z I z = f(x, y), (x, y) E R, z E R}. (3.2) 

For example, the face of the photographer is cropped from the Camera image (Figure 3 .1) 

which is one of our test images. The face image is on a support of the x-y plane. The 

dimension ofx-y support is 16xl6. The z value, from Oto 255, represents the graylevel of 

a pixel at location (x, y). Figure 3.2 is the mathematical model of the face image in/{. 

In the remainder of this dissertation, we will use the term image to mean a 

grayscale image which is denoted as the function/(x, y). 

3 .3 Contractive Transformations 

Since a grayscale image f is a function of (x, y) location, it can also be denoted as a 

triplet 

2 
(x, y,f(x, y)) where (x, y) ER andf(x, y) ER. (3.3) 

So, a grayscale image can be considered as a set of points in/{. Similarly, a black-and-

white image can be denoted as a pair 

(x,y) 
2 

where (x, y) ER andf(x, y}=l. (3.4) 

So, a black-and-white image can be considered as a set of points in R2• 

Now, let us generalize this: an image can be considered as a set of points in some 

space X The most common choice of underlying space is that of X = Rn. A black-and-
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(a) Original Camera image 

(b) The cropped face image 

Figure 3 .1 (a) Original Camera image and (b) the cropped face image. 

white image can thus be considered as a subset of sample points in X = R2
. A grayscale 

image can then be seen as a subset of points in X = n3, which represents a set of points on 

a surface in n3. This surface is the graph of the function representing the image intensity. 

Figure 3.2 shows the surface of the face image. 

Between two elements P 1 E X and P 2 E X, there are several possible metrics 

which are functions that measures distance, 8(P1, Pi) . The Euclidean metric in Rn is often 

used, although other choices such as supremum metric are also adopted. The supremum 
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Figure 3.2 The 3-D mathematical model of the face image. 

metric is defined in section 3. 5. In fact, the choice of metric determines whether the 

transformations we use are contractive or not [Fish95]. A good example at the end of this 

section illustrates that a transformation might be contractive with some metrics but not 

contractive with other metrics. 

Now, consider a mapping 

w:X~X. (3.5) 

The space X can be the space of compact subsets of n2 for black-and-white images, or the 

space of compact subsets of l for grayscale images. Moreover, X could be chosen as the 

space of functions defined on a unit square, or the space of functions defined on the unit 

interval for one-dimensional signals. We will use a simple one-dimensional example to 

show a contractive mapping and the fixed point theorem in section 3 .4. The contractive 

mapping means two points in X will become closer after each application of the mapping. 

8( w(Pi), w(Pi)) < a·8(Pi, Pi), (3.6) 
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whenever O s a < 1, the mapping w is said to be contractive with contractivity a 

[Nova93a]. 

Example 

Let us consider a mapping w : R2 I""'? R2 , 

If the L2 norm is used as the distance metric, this transformation is contractive with 

contractivity O. 99. 

If the L1 norm is used as the distance metric, this transformation is not contractive. For 

example, 

The definition of L 1 is the summation of the absolute values of all dimensions, so 

10.1 l 
l-01 j =14· . 1 

If the Lao norm is used as the distance metric, this transformation is not contractive. For 

example, 

The definition of Lao is the maximum value of the absolute values of all dimensions, so 
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11.41 l OJ =14. 
00 

Hence, whether a transformation is contractive depends on the choice of the distance 

metric. Of course, ifa transformation is contractive in one norm, then }im. llw(n)(x)ll=O 
n~ 

in every norm, but a particular iteration in one of these norms may not be contractive with 

ana.<1. 

3 .4 The Fixed Point Theorem 

The contractive transformation ensures that a fixed point, x* EX, will be reached 

ifwe repeatedly apply the transformation w, such that 

w(x*) =x*. (3.7) 

This theorem can be formally described as: 

Theorem 

let w be a contractive transformation, and 

w<n)(x)= ~(x)))= ~(x), (3.8) 

n n 

then for any x EX, x* E Xwill be the fixed point 

lim w<n>(x)=x*. (3.9) 
n-!)oo 

Furthermore, if we are given a point xo E X then 

8(x* ,xo)< 1 ! a 8(w(xo),Xo). (3.10) 
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This means that for a given xo, if we find a mapping w(:) such that o(w(xo), xo) is small, 

then the distance from x* (the fixed point of w( :)) to xo is also small. 

Proof 

Using the trian~e inequality repeatedly, 

o(xo,x*)<o(xo, w(xo))+ o(w(xo), w<2>(xo))+ 
<o(xo, w(x0)}(1 +a+ a 2 + .. ·) (3.11) 

< 1 ! a O(Xo, w(xo)). 

The equations (3.7), (3.9) and (3.10) are called the fixed point theorem. 

If we wish to find a mapping with a fixed point as close as possible to a given 

point, we should seek for a contractive mapping that moves this given point as little as 

possible. 

Example Let Xbe the space of a one-dimensional signal and let the Euclidean metric be 

used to measure the distance, 

o(x,y)=lx-yj. 

Consider a mapping W : XI-? X, 

w(x)=0.5·x+2. 

It is easy to verify w is a contractive mapping, because for any x, y E X 

o ( w( x ), w(y)) = jo.sx+ 2-( 0.5-y+ 2)1 

=lo.s-cx-y)I 
=0.5~x-yj 

= 0.5-o(x,y) 
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That means, the distance between x and y becomes closer after a contractive mapping. 

The contractivity is a = 0. 5. 

What is the fixed point x* for the contractive mapping w? According to the 

definition of the fixed point theorem (Equation 3. 7), 

w(x*) =x* 

==>0.5 x* + 2 = x* 

==>x* = 4. 

Because X = R, the fixed point x* is easy to calculate. However, the fixed point x* is very 

difficult to calculate directly when Xis a space of compact subsets of Rn. Suppose the 

fixed point x* is unknown, and the number which we want to represent by this contractive 

mapping w is 4.1, i.e., xo = 4.1, Xo E X What is the possible inaccuracy introduced by this 

representation? 

* 1 1 
O(X ,Xo)< l-a O(W(Xo),Xo)= l-0.58(w(4J),4J) 

lw( 4.1),4.11 
1-0.5 

14.05-4.11 
0.5 

=0.1 

That means, ifwe represent 4.1 with this contractive mapping w, the error in this 

representation will be less than or equal to O .1. This explains the fixed point theorem: if a 

contractive mapping can only move a given point a little bit (i.e., a very small o(w(xo), xo)), 

then that given point will be very close to the fixed point x* (i.e., a small o(x*, xo)). 
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3. 5 Supremum metric 

The contractive mapping maps an element of the space X to space X, where X can 

n n 
be not only a space of /l , but also a space of compact subsets of ll . That is, the fixed 

point theorem is also good for a space of images. 

3 
Let Xbe a space of compact subsets of ll . The distance between two images,/ E 

X and g EX can be defined by the supremum metric: 

8(/,g)= sup IJ(x,y)- g(x,y)I. 
(x,y) E R2 

(3.12) 

This metric finds the position (x, y) where two images f and g differ the most and sets this 

value as the distance between/ and g. 

3. 6 Iterated Function Systems 

An Iterated Function System (IFS) is a set of contractive mappings 

(3.13) 

where the contractivity of mapping W; is a;. Barnsley had described IFS in detail in 

[Bam93]. We briefly explain how contractive mappings compose the IFS as follows. 

If we are given a set B c X then this set is mapped by w; onto another set B' 

through 

B' LJwlx). (3.14) 
XEB 

That means W; transforms a set of elements to another set. Hence, we redefine the w; as 
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(3.15) 

where the space X is the space of all compact subsets of X 

Equation 3 .14 can be rewritten as: B E X and B' E X 

B=wlB). (3.16) 

A group of such contractive mappings, w;, compose the IFS ( defined in Equation 3 .13). 

This group mapping is defined by 

,_ 

W:Xl--?X, (3.17) 

and 

N 

W(B)=LJw;(B). (3.18) 
i=I 

The mapping W(j can be shown to be contractive with contractivity a= max; a;. 

Then it is said that the IFS has contractivity a. 

An IFS has, analogously to a contractive mapping, a unique fixed point. By this 

we mean a set A E X which is invariant to W( j, such that 

W(A)=A. 

This fixed point is commonly referred to as the attractor of the IFS. 

LetB EX and 

Then for any such B 

w<n>(B)= W(W(W··{B))). 
~ 

n 

litn w<n>(B)= A. 
n~oo 

(3.19) 

(3.20) 

(3.21) 
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Thus, if we start with any compact subset of X and apply W iteratively on the 

result from the previous step, we end up in the attractor of the IFS. This can be viewed as 

saying that the information about the attractor is stored in the mappings W; of the IFS. 

3. 7 The Collage Theorem 

LetA be the attractor of the IFS. From the relation 

N 

A= W(A)=LJw;(A), (3.22) 
i=l 

it can be seen that A consists of the union of contractively mapped copies of itself. It is 

said that W(A) is a collage covering A. 

Theorem 3.1 (The Collage Theorem) Let/be an image (strictly, an element in .X). Let 

also 8(·,-) be a metric on X. Ifwe are given an IFS 

(3.23) 

with attractor A and a mapping W(-) deduced from the IFS member functions w;, and if 

W(-) is contractive under 8(·, -) with contractivity a, then it follows that 

1 
8(A,f)< 1_a 8(W(f),f). (3.24) 

The collage theorem is analogous to the fixed point theorem in section 3.3 (Equation 

3.10). For a proof, see [Barn93]. 

This inequality states that if we can find a set of mappings which produce a 

collage, sufficiently close to the original image, then the attractor of the corresponding IFS 

will also be 'close' to the image. This is an important statement, since it is a much easier 
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task to find a good collage from a set of mappings { Wi }i1 than to calculate an attractor 

for every different choice of mappings. Specifically when the member functions W; of the 

IFS are contractive with contractivities a;, then the mapping WO defined by 

N 

W(B)=LJwlB) (3.25) 
i=l 

is contractive with contractivity a = max; a;. 

3. 8 The Sierpinski Triangle Example 

According to the right-hand side of Equation 3.25, the whole image, B, will be 

transformed into part of itself to be collaged. This is the deficiency of IFS theory, because 

natural images usually are not self-similar. However the theory does apply to some man-

made images and provides a good foundation for further development. 

In this section, we use the famous Sierpinski triangle, a man-made image, to show 

the application of IFS in image compression. Figure 3.3 is the Sierpinski triangle that has 

strong self-similarity. 

J;.. 

' ~ --,.,, ~ .... 
,~t;,..s1,b.,.~ 

Figure 3.3 Sierpinski triangle 
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Our objectives are to compress this image and use the compression process to explain the 

meaning of those symbols and theorems defined in previous sections. 

Similar to the surface of the face image (Figure 3 .2), the space X of the Sierpinski 

triangle isl. Every pixel is a triplet, (x, y,f(x,y)). We use/to represent the surface of 

the image. 

Since we are dealing with an image, not a single point, we need a space which is a 

collection of all images. The X is defined as a space of all compact subsets of X Hence, 

JEX. 

To compress this image, we notice that it consists of three smaller triangles which 

are reduced copies of itself. So, three contractive mappings are defined as 

The w1 is a simple shrinkage toward the origin. The w2 is a shrinkage followed by a right-

shift. The W3 is a shrinkage followed by both right- and up-shift. These three mappings 

are depicted in Figure 3 .4. 
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Figure 3 .4 Three contractive mappings on the Sierpinski triangle. 

It is obvious that these mappings are contractive, because the distance between any two 

points will be halved after one transformation Wi. Hence, the IFS, composed ofw1, w2 and 

3 

W(B)=LJwlB) 
i=l 

will have a fixed point image (attractor) 

W(f)=f. 

The attractor image is the Sierpinski triangle itself So, three mappings can be recorded to 

represent this image. 

The decompression is the course from any initial image to the attractor image. 

Figure 3. 5 shows the first three decompression iterations. The original Sierpinski triangle 

will be reached eventually, 

litn w<n>(B)= f. 
n~oo 



(a) 

(b) 

Initial image First iteration Second iteration Third iteration 

Figure 3.5 The decompression of Sierpinski triangle. The initial image can be anything 
such as (a) a smiling face, or (b) a letter A [Fisher95]. 
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CHAPTER VI 

PARTITIONED ITERATION FUNCTION SYSTEM AND CENTERING 

4 .1 Introduction 

In this chapter, we describe the partitioned iteration function system (PIFS) which 

is a generalization of the IFS to encode and decode grayscale images in section 4.2. PIFS 

was proposed by A. E. Jacquin in 1989 [Jacq89]. Similar to the IFS, the fixed point 

theorem ofPIFS is shown in section 4.3. The coefficients of the contractive mappings are 

derived in section 4.4. Section 4.5 gives a PIFS compression example. We describe our 

centering model and discuss its advantage on decompression convergence in section 4.6. 

Section 4.7 shows the preliminary results and comparison with the PIFS model. 

4.2 PIFS 

Barnsley suggested that storing images as collections of transformations could lead 

to image compression. For example, the fern in Figure 4.1 is generated from only 4 

contractive transformations. 

The transformations looks like the ones in the Sierpinski triangle example in 

section 3. 8, hence each transformation is defined by at most 6 numbers. Those 6 

coefficients of each transformation do not require much memory to store on a computer. 

They can be stored in 4 transformation x 6 numbers/transformation x 32 bits/number = 

768 bits= 96 bytes. The transformations can produce a fem image in arbitrary high 

resolution. However, it takes 1,048,576 bytes to store a 1024x1024 image of the 
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- - ·- - j 

(a) Four transformations ofBarsley's 

fern 

(b) the result of this IFS 

Figure 4.1 (a) Four transformations of Barnsley's fern and (b) the result of this IFS. 

enlarged fern as a collection of pixels. Barsley got the mythic compression ratio of 

1,048,576/96 = 10,922 by this way. 

Unfortunately, natural images are not exactly self-similar, i.e., it is unlikely to find 

a part of the image that is similar to the whole image. Based on self-similarity, Barnsley's 

IFS theory can do very little on natural image compression. But, in fact, an image does 

contain a different sort of self-similarity. Figure 4.2 shows sample regions of Clown that 

are similar at different scales: the two bulbs are almost identical, and the larger wall block 

after 50% reduction is similar to the smaller wall block. 

With this observation, Jacquin modified Barnsley's IFS into a partitioned IFS 

which cuts the image into many smaller blocks and finds the similar pairs within blocks. 

Now, let us review the IFS defined in chapter III: 
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Figure 4.2 Self-similar portions of the Clown image. 

N 

W(A)=LJw;(A), (4.1) 
i=l 

and the contractive transformation W ; can be defined as 

(4.2) 

We limit the contractive transformation to only evenly shrinking, rotation, and translation 

for our discussion, although skewing and stretching are also possible. The contractive 

transformation of the IFS contains the following components: 

• the number of the original image pasted together to form the output, i.e., N; 

• a setting of position, scaling, and rotation factors for each copy, i.e., Sx;, Sy;, M;, and 

8;. 

One of the deficiencies of the IFS is that there is no opportunity for a pixel to 

change its graylevel. Besides, the contractive transformation will only transform the 
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whole image into smaller blocks. To freedom these IFS's restrictions, the following two 

capabilities are added to IFS to derive PIFS: 

• A contrast and brightness adjustment for each transformation, 

• A mask which selects, for each transformation, a part of the original image to be 

transformed. 

These extra features are sufficient to allow the encoding of grayscale images. The 

second feature is a new important feature. It partitions an image into pieces which are 

transformed individually. By partitioning the image into pieces, we allow the encoding of 

many shapes that are difficult to encode using an IFS. The trade-off of the partitioning is 

that a worse compression ratio will be obtained. The 10,000 to 1 myth is gone. 

Let us review what happens when we encode an image using PIFS. Each mask 

selects a portion of the original image, whose support is denoted by D;, and transforms 

that part of image above D; with a contrast and brightness adjustment to another part of 

the image, whose support is denoted by R;. We call the D; domains and the R; ranges. 

The transformation is denoted by W;. When encoding, we find a piece of D; and a mapping 

ofw; for each R;, so that when we apply W; to the part of the image over D;, we get 

something that is very close to the part of the image over R;. Finding the piece R; with a 

surface which is as close as possible to the transformed surface of the corresponding D; is 

the heart of fractal image compression. 

The definition ofPIFS is the same as IFS except that to the transformations w; is 

added another dimension for changing the graylevel of the image. We denote the 

augmented W; as v;. 
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0 l[x] I Sx;l 
o_J y +ll Sy;JI, 
a1 z /3; 

(4.3) 

where z = f(x, y) is the graylevel of the pixel at the position (x, y), a; controls the contrast, 

and /3; controls the brightness of the transformation. M;, O;, Sx;, and Sy; determine how (by 

scaling, rotation, shifting, etc.) the partitioned domainD; ofan original image is mapped to 

the partitioned range R;. We use a shorthand to denote the contractive transformation v; 

ofPIFS. Note that this contractive transformation contains two parts: graylevel 

transformation and support transformation: 

Then the PIFS can be defined as 

N 

V(A)=LJvlA). 
i=l 

N 

Since we want V(:) to be an image, we must insist that LJR;=A and that 
i=l 

R; f1R1=~ when i ;,t j. That is, when we apply V to an image, we get some single 

valued function above each point of the square A. 

4.3 Fixed points for PIFS 

When decoding, we begin with an arbitrary initial image Jo and then iterate 

(4.4) 

(4.5) 
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Ji =V(fo) 

/2 = V(Ji)= V(V(fo))= v<2>(J0 ) 
(4.6) 

Since Vis contractive, eventually /oo=V00J(fo) will be a fixed-point image (attractor). In 

practical applications, the graylevels of an image are all quantized into integers. Hence, it 

will not take infinite steps to reach the attractor image. 

4.4 Pairing R; with the corresponding D; 

The transformation V; contains two parts, the support transformation (w;) and the 

graylevel transformation. The support transformation W; determines how D; is mapped to 

R,. The graylevel transformation approximately transforms the graylevel z of a pixel above 

D; at the location (x, y) into a new value close to the graylevel of a corresponding pixel 

above R;. It is denoted as 

f(w(x,y))+- a;·f(x,y)+ /3;. Vcx,y)eD;· (4.7) 

Here, f(x, y) represents the image surface above theD; support, and 

w(x, y) represents the R; support, i.e'., the transformed D; support, and 

f(w(x, y)) represents the image surface above the R; support. 

We use a shorthand to rewrite it: 

n +-a-·,,·+ /3· 1 1 Uj 1• (4.8) 

where d; f(x,y), V(x,y)eD;, and 

r; f(w(x,y)). 
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The d; values comprise the surface on D; and represent the contents of the domain block. 

The r; values comprise the surface onR; and represent the contents of the range block. 

From now on, our discussion will be concentrated on this graylevel transformation. 

The goal is to minimize the difference between the graylevels of range blocks and 

those of the transformed domain blocks. The least-squares error method is used to 

measure the difference. The graylevels of a transformed domain block are 

(4.9) 

The graylevels of the corresponding range block are 

ft, V(x,y)eD;· (4.10) 

Thus, the square error (SE) between them is 

SE= ff (at·dt + Pt -r; )2 d.xdy= f (at·dt + Pt -r; )2 dA. (4.11) 
(x,y)eD; 

The SE has its minimum value when the partial derivatives with respect to both 

coefficients (a and /J) are all zero. 

Jaf (at·dt + Pt -r;)2dA= 2.f (at·dt2 + Prdt -r;·dt)dA= 0 

;J(a1·d1 + /J1 -r,JdA= 2.f (a;-d; + jJ1-r;)dA= 0 

Rewrite the above equations in matrix form: 

This system of equations is solved to obtain a; and /);: 

(4.12) 

(4.13) 



40 

f dA•f d;ljdA- f d;dA•f ijdA 
a;= f dA.Jd/dA-(f d;dA) 2 

fr.-dA-a-·J d-dA 
(4.14) 

P;= I J~ I 

Then the minimized squared error (SE;) is 

SE;= f lj2dA + a;( a; f d/dA-2f d;ljdA + 2P; f d;dA) 

+ P;(P;f dA-2f 1tdA) 
(4.15) 

Since the size of the domain block (and/or range block) might be different, the 

better measurement of the difference between the range block and transformed domain 

block is the Root Mean Square (RMS;) error, 

(4.16) 

If the RMS; error is small enough, i.e., less than a given value, the transformed d; 

can pretty well represent 7; and the V; transformation is recorded to represent 7;. If the 

RMS; error is not good enough, we need to try other d; until a good transformation for this 

7; is found or no more d; are available. If no d; can be fairly transformed to match this 7;, 

the 7; needs to be broken down into smaller pieces and we repeat the matching process all 

over again for each smaller R;. Fisher implemented a compression algorithm which 

calculates the a. P, and RMS with the previous method and uses quadtrees to break down 

the range block [Fish95]. The compression and decompression programs are listed and 

explained in [Fish95]. Readers also can use mosaic or lynx to get them: 

http://inls3.ucsdedu/Resea7ch!Fishe7/F7actalslbook.html, under the link enc.c. All of the 
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experiments in this study are developed from and compared with these benchmark 

programs. 

4.5 A PIFS example 

Fisher implemented the PIFS model in his book [Fish95]. The program is called 

fractal image compression with quadtrees , which will be discussed in detail in the next 

chapter. We use this program to compress a small piece of an image with dimension 

16x16 and 256 graylevels per pixel. The demonstrated image is the photographer's face 

cropped from one of our test images, Camera. Figure 4. 3 (a) is the original Camera image 

with a little white box shows the place to crop. Figure 4.3 (b) is the enlarged face image 

whose width and height are each 16 pixels. 

(a) The 256x256 Camera image (b) The enlarged face image, 16 x 16 

Figure 4.3 (a) The 256x256 Camera image and (b) the 16x16 cropped and enlarged face 
lffiage. 



We set the minimum range block size to 4x4 and all domain block sizes to twice 

the range block size, 8x8. The program first partitions the input image into 16 range 

blocks, r;, i = 1 .. 16. (Figure 4.4). 

Figure 4. 4 The range blocks 

Then it partitions the input image into 4 domain blocks, d;, i = 1 . .4 (Figure 4.5). 

Figure 4. 5 The domain blocks 
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Each range block r; will be matched with a domain block d; with a minimum RMS error. 

The searching process could be very time consuming if there are many range blocks and 

domain blocks. The results of the pairing are shown in Table 4.1. 
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TABLE4.1 

THE RANGE-DOMAIN PAIRING RESULTS 

r, d3 3 -0.5625 94.12 

T2 d4 0 -0.375 218.11 

T3 d3 7 -1 204.80 

T4 d3 6 0.3125 131.14 

T5 d3 5 -1 236.93 

76 d1 5 0.5 32.13 

T7 d2 3 -0.375 215.34 

Ts d4 3 -0.25 228.40 

T9 d3 6 0.3125 99.52 

T10 d2 1 -0.125 180.71 

Tu d3 0 0.875 -31.12 

T12 d3 0 0.5625 54.21 

T13 d3 5 0.375 207.06 

T14 d2 5 0.675 6.53 

T15 d2 6 0.25 76.80 

T16 d, 0 0.5 89.35 

The Symmetry Operation in Table 4.1 is the set of 8 ways ( 4 rotations and a flip-flop) to 

align the range block and domain block. For example, symmetry operation equals O means 



44 

no rotation or flip-flop at all. Symmetry operation equals 1 means the upper-right comer 

of the range block matches the upper-left comer of the domain block, and the upper-left 

comer of the range block matches the bottom-left comer of the domain block. 

The original file size is 256 bytes. The contractive mappings in Table 4.1 are 

stored as the representation of the compressed image. The compressed file size is 40 

bytes. The decompressed image is enlarged and shown in Figure 4.6. 

Figure 4.6 The decompressed face image (enlarged). 

Figure 4. 7 shows another approach which sets the minimum range block size to 

2x2. There are 61 contractive transformations. The compressed file size, 152 bytes, is 

worse than the previous demonstration, 40 bytes, with the profit of better restored image 

fidelity. 
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Figure 4.7 Another approach. Poorer compression, but better image quality. 

4. 6 Centering to Decorrelate a and P 

Notice that the solutions of a and pare correlated. A larger a will result in a 

smaller p or even negative p. The correlation affects the distribution of a and p, hence 

their quantization is more complicated. In this section, we propose a model to decorrelate 

a and p by centering the r; and d;. 

4.6.1 Compression with Centered PIFS 

Equation 4.8 shows the contractive mapping of Jacquin's PIFS. The contractive 

mapping multiplies the image above the domain block by a contrast adjustment factor a, 

and then adapts it by a brightness adjustment factor p. The result should approximate the 

image above the range block. 

In order to decorrelate a and p, the image above the domain block and the image 

above the range block should be centered. To center a block of the image, we first 

calculate the mean value of all pixels in that block. Then, from each pixel we subtract that 
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mean value. The contractive transformation that tries to pair a centered domain and 

centered range will be simplified so that only the multiplication of the contrast adjustment 

factor a is necessary. That is, the brightness adjustment factor Pwill have no effect. We 

show that p equals zero as follows. Let us modify the contractive mapping PIFS 

(Equation 4.8) into that of a centered PIFS: 

(4.17) 

where rj is a flat image block with graylevel equal to the mean of the range block r;, 

d; is a flat image block with graylevel equal to the mean of the domain block d,. 

Then a and P can be solved the same way as for Equation 4.8, except the d; is now 

(d;-d;) and r; is now (r;----r;). Equation 4.14 is the solution of Equation 4.8. We replace 

the d; and r; in Equation 4.14 with (d;-d;) and (r;----r;) respectively to derive our a; 

solution. Let J dA = n. 

J dA .J (d;-d; )(r;-r;)dA - J (d; -d;)dA. J (r;-r;)dA 

a; = f dA · f (d; -d; )2 dA -[f (d; -d; )dA]2 

n· f ( d;r; -r; d;-d; r; +d;r; )dA - (J d;dA-nd; )· (f r;dA-nr;) 

n·J (d;2-2d;d;+d; 2 )dA-(f d;dA-nd;)2 
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(n·f d.r.dA - nd .. f r.dA - nr .. f d.dA + n2 d. r. )-
11 1 1 1 1 11 

(J d.dA-Jr..dA-nd. -Jr..dA-nr.- -Jd.dA + n2 d.r,.) l 1 l l 1 1 ll J 2 -J 2-2 n· d. dA-2nd.· d-dA+n d. -1 1 1 1 

«J d;dA)2 -2nd;· J d;dA + n2 d; 2 ) 

(4.18) 

n·J d;r;dA-J d;dA·J r;dA 

n·f d;2dA-(f d;dA) 2 

The a; solution is the same as Jacquin's PIFS solution (Equation 4.14). That means the a; 

calculated by Jacquin's PIFS is very meaningful. Its value best maps the domain block 

onto the range block. Other than that, the a, calculation in Fisher's programs need not be 

changed. 

To derive our p; solution, we again replace the d, and r; in Equation 4.14 with 

( d;-d;) and (r;--r;) respectively: 

p.) (ri-Ti}M-aJ ( d,-d;)M 
1 n 

f r;dA-n,:; ~a;(f d;dA-nd;) 
= 

n 

= friM -r.- -a-(f d1d4 dJ n 1 1 n 1 
(4.19) 

= r; -r; -a;( d; -d;) 
=0 

The p, value is always O. In Fisher's programs, the p, value is calculated by some real 

number multiplications and divisions. The real number p, should then be quantized into an 



integer. Our proposed centering model eliminates the p; calculation and saves 

compression time. 
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Since p, = 0, the contractive mapping of the centered PIFS can be rewritten as 

(4.20) 

The goal of the contractive mapping is to approximate the range block 7;, so the right­

hand side should be bare of7;. We move the fi to the right-hand side, 

1t ~ a;-(d;-d;)+fi. 

Now, the attractive transformation looks like a set ofPIFS's with 7; as new P;, 

r; ~ a;·(d;-d;)+ Pf, where P/=fi. 

Just as for the compression ofPIFS model, the coefficients (a, and p/) of the 

transformation are recorded to represent the range block, 7;. 

4.6.2 Decompression and Comparison 

(4.21) 

(4.22) 

The decompression process for the centered PIFS is the same as that for the PIFS. 

The initial image can be anything, because the fixed point theorem guarantees an attractor 

image will be reached eventually. In one iteration of the PIFS model, every domain block 

d; is multiplied by its corresponding a;, and then added to its corresponding p;. The 

resulting block is placed into the corresponding range block 7; location. In one iteration of 

the centered PIFS model, every domain block d; is first centered by subtracting its mean 

value, then multiplied by its a; and added to its Pt'. Just as for the decompression of PIFS 

model, the resulting block is placed into the corresponding range block 7; location. 
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Let us set the initial image all dark, i.e., the pixel values are all 0. For the PIFS 

model, the range block will be a flat ft; value at the end of the first iteration, because 

initially d; is an all-zero flat block and the a; multiplication contributes nothing. For the 

centered PIFS model, the range block will be a flat P/ value at the end of the first 

iteration, because initially d; and di are all-zero flat blocks and a; multiplication 

contributes nothing. Note that ft/= fi, that is, the range block becomes fi (the range 

block mean value from the original image) at the end of the first iteration. With the 

collage of those mean-value range blocks, the decompression result of the first iteration 

should be recognizable. 

Because P/ is more meaningful than p;, the centered PIFS creates a better image 

than the primitive PIFS does at the end of the first decompression iteration. That image is 

closer to the original image. We show how much closer it is compared with the result of 

the primitive PIFS. 

First, we compute the difference (diffi) between p; and P/: 

dif./; = Pi - P;' 
= pi -r; 

(4.23) 

The solution of the p; is carried out in Equation 4.14 and r; is the mean value of the range 

block. So the diffi can be simplified as 

. (f 11dA-aJ didA) f 1tdA 
diff;=~~~n~~~-~n~ 

aJdidA 
n 

=aid; 

(4.24) 
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The RMS, error at the end of the first iteration in the centered PIFS model is 

(r;-P/)2 dA 
n (RMS-) -

1 centered-PIFS (4.25) 

This is actually the standard deviation of the range block: 

f(n-r·)2dA 
(RMS-) - ' ' 

1 centered-PIFS n · (4.26) 

The RMS, error at the end of the first iteration in the primitive PIFS model is 

(RMS-) /J(r;-P;)2dA 
1 PJFs=\J n ,....,,--------

J ( r;-{r;+di.f.[;) )2 dA 
n 

f ( (r;-r; )-diff; )2 dA 
n 

( (r;-r; )2-2di.f.[;(r;-r; )+di.f.[;2 )dA 
n 

( ( r;-r; )2+di.f.[; 2 )dA-2di.f.[; ( r;-r;)dA 
n 

( (r;-r;)2+di.f.[;2)dA . (- nr;) -------2di+I'. n-n w; 1 n 
. (4.27) 

f { (r;-r; )2-t{ a;d;)2 )dA 

n 
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Compare Equation 4.26 with Equation 4.27. The right-hand side of Equation 4.26 is less 

than the right-hand side Equation 4.27: 

f ( ri-r, )2 dA < f ( <ri-tiY+( a,d;)2 )tL4 
n - n (4.28) 

This proves the primitive PIFS's RMS error at the end of the first iteration is worse than 

for the centered PIFS' s: 

(RMS·) <(RMS-) 1 centered-PIFS - 1 PIFS· (4.29) 

4. 7 Experimental Results and Convergence Comparisons 

The experiments are based on Fisher' sfractal image compression with quadtrees 

programs which we will discuss in detail in the next chapter. The compression and 

decompression programs are in the appendix of [Fish95] and can be obtained by mosaic or 

lynx to http://inls3.ucsdedu!Research!Fisher!Fractals/book.html, under the link enc.c and 

dec.c. The tested grayscale images are Lena, Clown, Camera, Hamlet and Kgirl which can 

be ftp'ed from eedsp.gatech.edu:ldatabaselimages directory. The image dimensions are 

256x256 with 256 graylevels (8 bits) for each pixel, i.e., the file size of the original image 

is 256x256 = 65,536 bytes. The decompression sequences of Lena using the primitive 

PIFS and our centered PIFS methods are in Figure 4.8. 
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Fisher's PIFS Centered PIPS 

1st iteration, RMS = 62.19 1st iteration, RMS = 15.74 

2nd iteration, RMS = 35.95 2nd iteration, RMS = 11.33 

3rd iteration, RMS = 21 .89 3rd iteration, RMS = 8.98 

Figure 4.8 Decompression sequences of Lena using PIPS and centered PIPS. 
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4th iteration, RMS= 12.28 4th iteration, RMS = 8.88 

5th iteration, RMS = 9.48 5th iteration, RMS = 8.87 

6th iteration, RMS = 8.97 6th iteration, RMS = 8.87 

Figure 4.8: Decompression sequences of Lena using PIFS and centered PIFS. (continued) 
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7th iteration, RMS = 8. 90 7th iteration, RMS = 8.87 

8th iteration, RMS = 8.89 8th iteration, RMS = 8.87 

9th iteration, RMS = 8.88 9th iteration, RMS = 8.87 

Figure 4.8 : Decompression sequences of Lena using PIFS and centered PIFS. (continued) 
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The comparison curves of the decoding convergence for both methods are in 

Figure 4.9 for Lena. The comparison curves for Clown, Camera, Hamlet and Kgirl are in 

Figure 4.10, 4.11, 4.12 and 4.13 respectively. Their corresponding comparative 

decompression sequences are in Appendix A to E. 

2 3 4 

Decoding Convergence of Lena 

5 

ftarallan 

6 7 8 9 

1--PIFS I 
-II-Centered PIF~ 

Figure 4.9 Decoding convergence of Lena using PIFS and centered PIFS 
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Decoding Convergence of Clown 

4 5 

llenillan 

6 7 8 9 

Figure 4.10 Decoding convergence of Clown using PIFS and centered PIFS 

2 

Decoding convergence of camera 

4 5 

Iteration 

6 7 8 9 

Figure 4.11 Decoding convergence of Camera using PIFS and centered PIFS 
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Decoding Convergence of Hamlet 
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Figure 4.12 Decoding convergence of Hemlet using PIFS and centered PIFS 

2 3 4 

Decoding Convergence of Kglrl 
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Figure 4.13 Decoding convergence ofKgirl using PIFS and centered PIFS 
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The domain and range blocks are centered before the pairing process, to 

decorrelate the coefficients of the contractive mapping. This decorrelation helps little on 

the compression ratio, because there are still two coefficients to be recorded to represent 

the graylevel transformation. However, the distributions of the decorrelated a; and P/ are 

more explicit so that more precise quantization is possible. Precise quantization could 

result in slightly better decompressed image fidelity. These aspects are discussed in 

Chapter VI. 

The major advantage of the decorrelation is the convergence speed of the 

decompression sequences. See Figure 4.8. According to our decompression experiments, 

the primitive PIFS method usually takes 8 to 10 iterations to reach the attractor image, 

while the centered PIFS method can converge to the attractor image in 4 to 6 iterations. 

Besides, the images are always recognizable at the end of the first decompression iteration. 

It is due to this win at the first iteration that the centered PIFS enjoys faster convergence 

speed. Furthermore, the images at the end of the second iteration are almost 

indistinguishable from the final attractor image. 



CHAPTERV 

FRACTAL IMAGE COMPRESSION WITH QUADTREES, BATH FRACTAL 

TRANSFORMATION AND HYBRID ALGORITHM 

Fisher extended Jacquin's [Jacq89] work and developed a quadtree-based fractal 

encoding scheme. It is a typical fractal scheme and a good first step for those who wish to 

implement their own. Hence, this scheme becomes a good reference point for other fractal 

schemes. Our study is based on this scheme too. We also compare our results with 

Fisher's results. The compression and decompression programs of this scheme are given 

in Appendix A of [Fish95] and stored at 

http://inls3.ucsdedu/Research/Fisher/Fractals/book.html under the links enc.c and dec.c. 

5.1 Encoding 

The pseudo-code of the encoding steps that targets an image fidelity ec is as 

follows [Fish95]: 

• Choose a tolerance level ec. 

• Set r1 as the whole image and mark it uncovered. 

• While there are uncovered ranges r, do { 

• Out of the possible domains d, find the domain d; and the corresponding v, that 

best cover r, (i.e., that minimizes the RMS error). 

• If(RMS < ec) or (size(r,) ~ Tmtn) then 

59 



• else 

} 
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• Mark r, as covered, and write out the transformation v,; 

• Partition r; into smaller ranges that are marked as uncovered, and remove 

r, from the list of uncovered ranges. 

In this case, the collection of ranges comes from a quadtree partition of the image, and the 

collection of domains consists of subsquares of the image that are twice the range size. 

5 .1.1 The Ranges 

A quadtree partition is a representation of an image as a tree in which each node, 

corresponding to a square portion of the image, contains zero or four subnodes, 

corresponding to the four quadrants of the square. The root of the tree is the initial image. 

A node containing zero subnodes is called a leaf node. 

The ranges are selected as follows: after some initial number of quadtree partitions 

are made (corresponding to a minimum tree depth), the squares at the nodes are compared 

with domains from the domain library ( or domain pool) d. Only the domains with a size of 

twice the range size are compared. The pixels in the domain are averaged in groups of 

four so that the domain is reduced to the size of the range, and the affine transformation 

(v,) of the pixel values (i.e., a scaling (a,) and offset (P,)) is calculated that minimizes the 

RMS difference between the transformed domain pixel values and the range pixel values. 

All of the potential domains are compared with a range, one by one, until the RMS value 

is below a preselected threshold, ec, Then the optimal domain and the affine 
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transformation are stored -- this constitutes one map V;. The collection of all such maps 

V = lJv; constitutes the encoding. If the resulting optimal RMS value is above the 

threshold and if the depth of the quadtree is less than a preselected maximum tree depth, 

then the range square is subdivided into four quadrants (which means adding four 

subnodes to that range node), and the process is repeated. 

5 .1.2 The Domains 

The large number of domain blocks is the major cause of slowness, if each range 

block is compared with each domain block. Suppose the image is partitioned in to 4x4 

range blocks. A 256x256 image contains a total of (256-8+ 1)2 = 62,001 different 8x8 

domain blocks. If the 8 isometric symmetries are included, the total number of domain 

blocks increases to 496,008. There are (256-4+1)2 = 64,009 4x4 range blocks, which 

makes for a maximum of 64,009x496,008 = 31,748,976,072 possible pairings to test! The 

exhaustive pairing cannot be completed in three days on a 486-66 MHz PC. 

In our study, the domain pool is constructed with a restriction: non-overlapping 

blocks with dimension twice the range size. Hence, a 256x256 image contains only 

(256/8)2 = 1,024 different 8x8 domain blocks. 

It is important to note that each domain can be mapped onto a range in eight 

different ways -- four rotations and a flip with four more rotations. Thus, the domain pool 

can be thought of as containing the domains in eight possible orientations. In practice, the 

classification scheme discussed below defines a fixed rotation, so that the domains are only 

considered in one or two orientations. 



62 

5 .1.3 The Classification 

The domain-range comparison step of the encoding is very computationally 

intensive. A classification scheme is used in order to minimize the number of domains 

compared with a range. Before the encoding, all the domains in the domain library are 

classified; this avoids reclassification of domains. During the encoding, a potential range 

is classified, and only domains with the same (or near) classification are compared with the 

range. This significantly reduces the number of domain-range comparisons. By "near'' 

classifications it means squares that would have been classified differently if their pixel 

values were slightly different. The idea of using a classification scheme was developed 

independently in [Jacq89] and [JaBoFi89]. 

Many classification schemes are possible. For example, Jacquin used a scheme 

that classified a sub-image into flat, edge, and texture regions. Here, a scheme similar to 

the one presented in [FiJaBo91] is discussed. A square sub-image is divided into upper 

left, upper right, lower left, and lower right quadrants, which are numbered sequentially. 

On each quadrant, we compute values proportional to the average and the variance. If the 

pixel values in quadrant i are p'1, ... , in for i = 1,2,3,4, we compute 

n 

A;=Lp~ (5.1) 
J=l 

and 

~{ i ) 2 2 VAR;=LJ...PJ -A;. 
J=l 

(5.2) 
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It is always possible to orient the sub-image so that theA/s are ordered in one of the 

following three ways: 

These classifications correspond to the brightness levels shown in Figure 5 .1. Once the 

rotation of the square has been fixed, each of the 3 major classes has 24 subclasses 

consisting of the 24 orderings of the VAR;. Thus, there are 72 classes in all. If the scaling 

value a; is negative, the orderings in the classes above are rearranged. Therefore, each 

domain is classified in two orientations, one orientation for positive a; and the other for 

negative a;. 

Major Class 1 Major Class 2 Major Class 3 

Figure 5 .1 Orientation of a square image. The brightness of quadrants can be arranged 
( rotation and flip-flop) into one of these three canonical classes. 

Hence, an encoding of an image consists of the following data: 

• The final quadtree partition of the image 

• The scaling and offset values a; and p; for each range 

• For each range, a domain that is mapped to it 
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• The symmetry operation ( orientation) used to map the domain pixels onto the range 

pixels 

5 .1. 4 The Quantization 

The affine transformation on the pixel values consists of a multiplication by a 

scaling factor a; and an addition ofan offset value p; (these can be thought ofas a contrast 

and brightness adjustment). These values must be quantized for efficient storage, and it is 

these quantized values that are used when computing the RMS difference between the 

domain block and the range block. 

If the magnitude of the optimal scaling factor la;I is greater than 1 for any of the v,, 

there is a chance that the resulting map V will not be eventually contractive. Thus, I a;I 

values larger than some maximal value amax are truncated. In this study, amax is set to 1.0. 

5.2 Decoding 

Decoding an image consists of iterating V from any initial image. The quadtree 

partition is used to determine all the ranges in the image. For each range R;, the domain D; 

that maps to it is shrunk by half in each dimension by averaging nonoverlapping groups of 

2x2 pixels. The shrunken domain pixel values are then multiplied by a;, added to p;, and 

placed in the location in the range determined by the orientation information. Completion 

of all V; contractive mappings constitutes one decoding iteration. The decoding step is 

iterated until the attractor image is approximated; i.e., until further iteration does not 

change the image or until the change is below some small threshold value. 
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5.3 Postprocessing 

Since the ranges are encoded independently, there is no guarantee that the pixel 

values will be smooth at the block boundaries. Human eyes are sensitive to such 

discontinuities, even when they are small. It is possible to minimize these artifacts by 

postprocessing the image. In Fisher's decompression program, only the pixels at the 

boundary of the range blocks are modified, using a weighted average of their values. If 

the pixel values on either side of a boundary are Pa and Pb, then these are replaced by 

W1Pa+WJ]Jb and WJ]Ja+W1Pb, with w1+w2 = 1. Ranges that occur at the maximum depth of 

the quadtree are averaged with weights ofw1 = 5/6 and w2 = 1/6, and those above this 

depth are averaged with weights ofw1 = 2/3 and w2 = 1/3. These values are largely 

heuristic (as is the method itself), but the results seem satisfactory. 

5. 4 Efficient Storage 

To increase the compression, the following bit allocation schemes are used. 

Quadtree: One bit is used at each quadtree level to denote a further recursion or 

subsequent transformation information. At the maximum depth, however, 

no such bit is used, since the decoder knows that no further division is 

possible. 

Scaling (a,) and Offset (P,): Five bits are used to store the scaling and seven bits for 

the offset. No form of adaptive coding is done on these coefficients, even 

though their distributions show considerable structure. 
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Domains: The domains are indexed and referenced by this index. However, when the 

scaling value ( a;) is zero, the domain is irrelevant, and so no domain or 

orientation information is stored in this case. 

Orientation: Three bits are used to store the orientation of the domain-range mapping. 

5.5 Bath Fractal Transformation 

The graylevel transformation ofJacquin's PIFS transforms the graylevel of a pixel 

at location (x, y) by multiplying it by a contrast factor a; and shifting it by a brightness 

factor p,. The resulting graylevel approximates the graylevel of the corresponding pixel of 

the range block. 

f(w(x,y)) = a;f(x,y) + ft;, \f(x,y) ED;. (5.3) 

We rewrite this in a shorthand 

(5.4) 

Monro called this an order-0 transformation, because only a constant term pis used, i.e., it 

does not utilize the x and y variables directly. In 1992, Monro and Dudbridge from the 

University of Bath, England, generalized Jacquin's scheme by adding an xterm and ay 

term into the graylevel transformation and called it Bath Fractal Transformation (BFT): 

(5.5) 

Similar to the PIFS model, the difference between the graylevels of a range block and 

those of the transformed domain block should be minimized. Monro also used the least­

squares error method to minimize the difference. The graylevels of a transformed domain 

block are 
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\;/(x,y)eD;· (5.6) 

The graylevels of the correspondent range block are 

r;, Vcx,y)eD;· (5.7) 

Thus, the squared error (SE;) between them is 

SE;= ff (a;·d; + P; +a1x+qy-r;)2 dxdy 
(x,y)eD; (5.8) 

= f (a;·d; + P; +a1x+ qy-r; )2 dA 

The SE, has the minimum value when the partial derivatives with respect to each 

coefficient (a;, p;, a, and b,) are all zero, 

Hence 

~-f (ard; + P; +a1x+bi_y-,-;}1 dA=O 
l 

;; J (a,·d; + P, +a1x+bi_y-,-;}1 dA=O 

! f (a;·d;+ P;+a1x+qy-r;)2 dA=O 
llttl . 

~ J (a,·d;+ P;+a1x+bi_y-r,}2 dA=O 

2.J (a;·d/ + P;d; +a1xd; +bi.yd; -r;d;)dA=O 

2.f (a;·d; + P; +a1x+b1y-r; )dA=O 

2-J( a;·d;x+ P;x+a1x 2 + qxy-xr; )dA=O 

2-f (a;·d;y+ ft;y+a1xy+qy2 -yr;)dA=O 

Rewrite the above equations to the following matrix form: 

(5.9) 

(5.10) 



f x 2 

f xy 
f xg_(x,y) 

l fx 

f xy ffxg(x,y) f X l r a1 l 
f y 2 yg( x,y) f y I bi I 

f yg(x,y) Jpex,y)2 f g(x,y) l :J 
J y J g(x,y) J 1 J 

r f xg(v(x,y)) l 
-1 f yg(v(x,y)) 
- , f g(x,y)g(v(x,y)) 

l J g(v(x,y)) J 
This system of equations is solved to obtain a;, p;, a1 and b1. Those transformation 
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(5.11) 

coefficients along with the location of the d<;>main block can be stored to represent the 

range block. 

The result of Monro's order-I BFT showed an inferior compression-fidelity 

tradeoff compared to the ADCT (adaptive discrete cosine transform) method. However, 

Monro expected further work could yield better results [MoDu92b]. 

In 1993, based on the order-I BFT, Monro implemented order-2 and order-3 

BFTs with different levels oflocal search [Monr93]. 

Order-2 BFT: 

(5. I2) 

Order-3 BFT: 

The method to solve those coefficients is similar to that of order-I BFT. 

When range blocks are searching for a similar corresponding domain block, 

Monro, based on his intuition, assumes that the similar blocks usually flock together (local 
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self-similarity). Hence, a local search should be enough to find a best match. The results 

show that the fidelity of the fractal transform increases with both search level and order of 

the polynomial approximation. Monro concluded that the order-I BFT without searching 

gives a lower RMS error than Jacquin's order-0 model does with level 6 searching. Level 

6 searching means domain blocks are at most 6 pixels away from the range block. The 

order-2 case also provides a notable improvement, beyond which there appears to be little 

improvement in decompressed image fidelity. Later, the local self-similarity was proven 

wrong by Fisher [Fish95], i.e., the successfully matched domains are essentially random 

and there is no preference for local domains. 

In 1994, based on [Monr93], Monro examined BFTs oforder-0, order-I and 

order-2 without searching and evaluated the degradation introduced by quantization of 

the coefficients of contractive mappings [Mo Wo94]. Higher orders and local searching 

were not considered in this investigation because earlier results in [Monr93] indicated that 

little was gained by an order-3 approximation or local searching. In Figure 5.2, the result 

shows at the high fidelity/low compression end of the curve, higher order methods are 

better in the sense that lower error rates are observed at a given compression ratio. 

Surprisingly, at higher compressions, the lower order BFT performs better. 
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Figure 5.2 Compression/fidelity performance of three orders of the BFT without 
searching [MoWo94] 

5.6 Centered BFT with quadtrees 
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The compression time for traditional fractal image compression is longer than for 

decompression. The advantage of Monro's higher order BFT is that the compression time 

and decompression time are nearly symmetrical, because no domain search is necessary 

during compression. However, the disadvantage of higher order BFTs is the inferior 

compression-fidelity tradeoff. 

Jacquin's PIFS is an order-0 case of the BFT with searching. The advantage of 

PIFS is the better compression-fidelity tradeoff. Contrarily, the disadvantage of PIFS is 

the slow compression, because further partitioning on a range block is needed when the 

searching fails to find a good enough domain block for that range block. Fisher 

implemented a quadtree partitioning method in [Fish95]. The quadtree partitioning 
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produces four more range blocks to be compressed and each new range block will cause 

the searching to start all over again. 

We propose a hybrid model that is a combination of Fisher's and Monro's. Our 

model eliminates the disadvantages from both models and enjoys the advantages from both 

models. 

The graylevel transformation of Monro's BFT does not include the xy cross terms 

which provide a rotation transformation of the image surface constructed by the 

polynomial terms. In order to make our model a complete one, we suggest including the 

xy cross terms. The following is the graylevel transformation with xy cross terms. 

r; +- ard; + P; + a1x + biy + a2x2 + bi.y2 + cuxy 
+ Q3X3 + ~y3 + C21X2 y + C12X)'2 +. • • (5.14) 

Compared with order-0, the order-I has two more coefficients, a1 and b1. Compared with 

order-I, the order-2 has three more coefficients, a2, b2 and clJ. Compared with order-2, 

the order-3 has four more coefficients, as, b3, c12 and c21. 

5.6.2 Centering the image on domain and range blocks to decorrelate .!h. and the 
polynomial 

Similarly, the solutions of a; and the polynomial are correlated. We decorrelate a; 

and the polynomial by centering the r; and d;. 

(5.15) 
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The coefficients, a,, ft;, a1, b1, a2, b2, en, etc., can be derived using the same method as in 

section 4.4. 

5.6.3 Re-centering the polynomial 

Since, the summation of the centered image block should be always zero, i.e., 

J (r;-r; )dA = 0 and J (d;-d; )dA= 0, the summation ofthe polynomial (the rest of 

the contractive mapping) should also be zero: 

However, after p,, a1, b1, a2, b2 and en are quantized, 

proper p, value should be adjusted to guarantee that the summation of the polynomial is 

zero. Let us denote the new P, as Pi: 

,..., -J (a1x+qy+a2x2+b2y2+c11XJl+···)dA => P-=~~~~~~~~~~-
' n 

(5.17) 

The contractive mapping of the centered BFT with xy cross-terms can be rewritten as 
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The goal of the contractive mapping is to approximate the range block r;, so that the right-

hand side should be just r;. We move the r; to the left-hand side and let P/ equal the 

summation ofr; and P;: 

where P/= /J;+f;. 

5.6.4 Algorithm of centered BFT with quadtrees 

We propose an algorithm which targets an image fidelity ea as follows. The 

algorithm adaptively uses a higher order BFT. The centered range block tries the pairing 

with centered domain blocks using order-0 BFT first. If the best-match domain block is 

still worse than our target fidelity ec, higher order BFTs are applied to this best match 

domain block until the image fidelity is satisfied or the maximum order of the BFT is 

reached. If even the maximum-order BFT still cannot make a satisfactory pairing, the 

range block is inevitably partitioned into several smaller blocks which should make it 

easier to find a centered domain block that will achieve the target fidelity. The pseudo-

code of the encoding steps is as follows: 

• Choose a tolerance level ea. 

• Choose a maximum order nmax. 

• Set r1 as the whole image and mark it uncovered. 
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• While there are uncovered ranges r; do { 

} 

• Out of the possible domains d, find the best domain~ and the corresponding v, 

of order-0 BFT that best cover r; (i.e., that minimizes the RMS error). 

• If (RMS < ec) or (size(r;) :::;; r min) then 

• else 

• Mark r; as covered, and write out the transformation v;; 

•setn=O 

. { 

•n =n+l 

• Use that d; to calculate the corresponding v, of an order-n BFT 

that best covers r; (i.e., that minimizes the RMS error) 

• } Repeat until (n ~ nmax) or (RMS < ec) 

• If (RMS < ec) then 

• else 

• Mark r; as covered, and write out the transformation V; of order-n 

BFT; 

• Partition r; into smaller ranges that are marked as uncovered, and 

remover; from the list of uncovered ranges. 

In our implementation, the collection of range blocks comes from a quadtree 

partitioning of the image, and the collection·of domain blocks consists of subsquares of the 



image that are twice the range block size. The experimental results are listed and 

discussed in chapter VI. 
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The decoding algorithm is basically identical to that of original PIFS modei except 

that the domain blocks should be centered before being multiplied by a;. 



CHAPTER VI 

EXPERIMENTAL RESULTS AND COMPARISONS 

The source programs of the compression and decompression are based on Fisher's 

fractal image compression with quadtrees. The source programs are listed in the 

Appendix A of [Fish95] and in the URL: 

http://inls3.ucsdedu!Research!Fisher!Fractals/book.html under the links enc.c and dec.c. 

We modify Fisher's programs into centered BFT with quadtrees and compare our results 

with Fisher's. The programs were compiled by Watcom C/C++32 version 10.0 under 

MS-DOS 6.2 environment and run on a 486-66 Mhz PC. Five test data sets, Lena, 

Clown, Camera, Hamlet and Kgirl, were used in our experiments. The data sets are 256-

graylevel images of size 256 pixels by 256 pixels and ftp'able from 

eedsp.gatech.edu:ldatabase/images directory. We first show the results of Fisher's 

original programs as the benchmarks in section 6.1. The results of the centered Fisher's 

model (centered order-0 BFT with quadtrees) are given in section 6.2. The results of the 

centered Fisher's model with new beta quantization are presented in section 6.3. We 

compare the results of the above three sections in section 6.4. The results of the centered 

BFT with quadtrees and re-centered BFT with quadtrees are presented in section 6.5 

which includes: the results of re-centered order-2 BFT/no-cross-term with quadtrees, re­

centered order-2 BFT/cross-term with quadtrees, re-centered order-3 BFT/no-cross-term 

with quadtrees, and re-centered order-3 BFT/cross-term with quadtrees. 
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6.1 The benchmarks: Fisher's original model 

The default options of the encoding program are used in our experiments. The 

tolerance criterion (ec, in the pseudo-code of section 5.1) for fidelity is 8.0, i.e., the 

acceptable RMS error between the range block and the corresponding domain block 

should be less than 8.0. The width and height of the input image are 256 pixels. The 

minimum quadtree depth is 4, i.e., the range-domain matching process will begin after four 

quadtree partitions have been done and.the width and height of the range block will be 256 

I 24 = 16. The maximum quadtree depth is 6, i.e., the range will not be further partitioned 

when its width and height are of size 256 I 26 = 4. Five bits are used to quantize a;. 

Seven bits are used to quantize p;. Only domains with the same or near classification are 

compared with the range in order to reduce the number of domain-range comparisons. 

The decoding program uses an all-black image (255 graylevel for each pixel value) 

as the initial image from which the partitioned iterated function is iterated. This initial 

image size is the same as the encoded image size, 256x256. Postprocessing is used to 

smooth the boundaries between two range blocks. This not only alleviates the blocky 

artifacts practically, but also reduces the overall RMS error. 

The file size of every input image is 65,536 bytes. The results of the compression 

are shown in Table 6.1. Table 6.1 shows a considerable variation in the compression 

results. Hamlet is very well compressed because the background is plainly gray, while 

Clown is the hardest. The compressed size of Hamlet is only 40% of that of Clown. The 

decompressed image 
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TABLE6.1 

COMPRESSION RESULTS OF FISHER'S PIFS WITH QUADTREES 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

i;!liiiiiil illi1liliiiiii 

fidelity also varies significantly. Hamlet converges to the smallest RMS error (4.64), while 

Camera converges to a high RMS error ( 11 .11) which is higher than the preselected ec 

value (8.0). The RMS error of Hamlet is only 42% of Camera' s. 

The original images and Fisher' s decompressed images are listed in Figure 6.1 for 

companson. 

The RMS errors at the end of each decoded iteration for those test images are 

shown in Table 6.2. The attractor images converge in 7 to 9 iterations. Usually, those 

images with smaller decompressed RMS errors converge faster, such as Hamlet, Kgirl and 

Clown. 

6.2 Centered Fisher' s model 

In Jacquin's original PIFS model, the a; and fi; are correlated. We decorrelate a; 

and fi; by centering the R; and D;. The compression results of our centered PIFS model 

are shown in Table 6.3. 
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256x256 Original Images Decompressed Images by Fisher's PIFS 

Origin Lena Decompressed Lena, RMS= 8.88 

Original Clown Decompressed Clown, RMS = 7. 73 

Original Camera Decompressed Camera, RMS = 11 .11 

Figure 6.1 List of original images and Fisher's decompressed images. 
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Original Hamlet Decompressed Hamlet, RMS= 4.64 

Original Kgirl Decompressed Kgirl, RMS= 6.69 

Figure 6.1 List of original images and Fisher's decompressed images. ( continued) 



TABLE 6.2 

THE RMS ERROR OF DECOMPRESSION SEQUENCES 
USING FISHER'S PIFS WITH QUADTREES 
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TABLE 6.3 

COMPRESSION RESULTS OF CENTERED PIFS WITH QUADTREES 

li]ilr.i f ,y~,.;r~:::::=:: 

• 11,1:::: 

Comparing Table 6.1 with Table 6.3, most images are compressed to smaller size 

by this centering method, except Camera which is 10 bytes more. The RMS errors of 

most attractor images are slightly reduced, except Camera which is O.01 more. Roughly 

speaking, the centering method may slightly improve the compression ratio and the 

decompressed image fidelity. 

The principal advantage of this centering method is the faster convergence of the 

decompression process. The RMS errors at the end of each decompression iteration for 

those test images are shown in Table 6.4. 



TABLE 6.4 

THE RMS ERROR OF DECOMPRESSION SEQUENCES 
USING CENTERED PIFS WITH QUADTREES 
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The decompression converges to the attractor image in 4 to 6 iterations for most images. 

The decompression sequences of Lena using PIFS and centered PIFS methods have been 

listed in Figure 4.8. The decompression sequences of Clown, Camera, Hamlet and Kgirl 

using PIFS and centered PIFS methods are in Appendix A, B, C and D respectively. The 

comparison curves of the convergent speed for each image also have been listed in Figures 

4.9 to 4.13. Obviously, the major advantage of the centering is the speedy convergence 

for decompression without sacrificing the compression ratio and the decompressed image 

fidelity. In fact, the compression ratio and the decompressed image fidelity are even 

slightly improved in average for our testing images. 
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6.3 Centered Fisher's model with new P'quantization 

The original Fisher's model used the following method to quantize the /J; value into 

a 7-bit integer. 

(6.1) 

Fisher utilizes the sign information of a; to quantize p; efficiently, because a; and p; are 

correlated. Now, the centered model decorrelates the a; and p;, so a regular quantization 

for the new p; (i.e., p/) would be more appropriate. The Pt' is actually r; (Equation 4.22), 

i.e., the value of P/ is from Oto 255. The objective is to use 7 bits to represent P/, hence 

quantiz!:d_ft;' =l 0.51 fs'~-127 J (6.2) 

The compression results of the centered Fisher's model with new P/ quantization are 

shown in Table 6.5. 



TABLE6.5 

COMPRESSION RESULTS Of CENTERED PIFS WITH QUADTREES 
AND NEW fi/ QUANTIZATION 

-:-:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:•:-:-:•:-:-:• 
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Let us compare Table 6.3 and Table 6.5. Some images are better compressed, while some 

images are not. The Kgirl image size is decreased the most, 36 bytes. The RMS errors of 

most attractor images are slightly reduced, except Kgirl which is 0.03 more. The slight 

decrease ofKgirl's image fidelity is the tradeoff of the 36 bytes saving of the compressed 

file size. However, 0.03 RMS difference on the decompressed image is not perceivable by 

human eyes. Roughly speaking, the new P/ quantization method may further slightly 

improve the decompressed image fidelity or the compression ratio compared with the 

results of the centered PIFS with the old Pi quantization. 

Because the centering model is also adopted by the new P/ quantization method, it 

enjoys the same advantage of a faster convergence of decompression process. The RMS 

errors at the end of each decompression iteration for those test images are shown in Table 

6.6. 
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TABLE 6.6 

THE RMS ERROR OF DECOMPRESSION SEQUENCES 
USING CENTERED PIFS WITH QUADTREES AND NEW P/ QUANTIZATION 

titHiMiDni ms< r 

•1111; 
maw 111iu1iiMs 
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Similar to the results of the centered PIFS with the old fi; quantization in Table 6.4, the 

decompression converges to the attractor image in 4 to 6 iterations. This new P/ 

quantization does not further improve the convergent speed. 

6.4 Comparison of Fisher's model, Centering and new P/ Quantization 

The compression results of the Lena image in Table 6.1 to 6.6 are summarized in 

Table 6. 7 for comparison. The results are similar for the other test images. 



TABLE6.7 

LENA COMPRESSION RESULTS OF PIFS MODEL, CENTERED PIFS 
AND CENTERED PIFS WITH NEW P/ QUANTIZATION 
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Figure 6.2 The comparison of decompression convergences of three models. 
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Figure 6.2 shows the decoding convergence of the above three methods. Both 

centered and centered-with-P~quantization methods converge to the fixed point at the 

fifth iteration, while Fisher's method converges at the ninth iteration. The new methods 

converge faster, but also converge to a slightly smaller RMS error. Due to the fact that Pt' 

is more precisely quantized, the P/ quantization method converges to the lowest RMS, 

8. 85, at the expense of a worse compression ratio, 14 bytes larger than the simple centered 

method. Their RMS errors at the first iteration are less than at the third iteration of 

Fisher's method, i.e., their resulting image at the first iteration looks better than the 

resulting image at the third iteration of Fisher's method. The decompression image 

sequences of Lena using primitive PIFS's and our centered PIFS with new P/ quantization 

methods are shown in Figure 6.3. 
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Fisher' s PIFS Centered PIFS with new B/ quantization 

1st iteration, RMS = 62.19 lsr iteration, RMS = 15.68 

2nd iteration, RMS = 35.95 2nd iteration, RMS = 11.31 

3rd iteration, RMS = 21.89 3rd iteration, RMS = 8.95 
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Figure 6.3 Decompression sequences of Lena using PIFS and centered PIFS with new B/ 
quantization. 

4th iteration, RMS = 12.28 4th iteration, RMS = 8.86 

5th iteration, RMS= 9.48 5th iteration, RMS = 8.85 

6th iteration, RMS = 8.97 6th iteration, RMS = 8.85 
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Figure 6.3 Decompression sequences of Lena using PIFS and centered PIFS with new~/ 
quantization. ( continued) 

7th iteration, RMS = 8.90 7th iteration, RMS= 8.85 

8th iteration, RMS = 8.89 8th iteration, RMS = 8.85 

9th iteration, RMS = 8.88 9th iteration, RMS = 8.85 
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Let us investigate the decoded images of the centered method with new P/ 

quantization. The decoded image at the first iteration is actually composed of the range 

blocks with flat mean value. This can be easily verified from Equation 4.22: 

r; +- a;·(d;-d;)+ P/, where P/=f;. (6.3) 

The fi is our Pt'. Since the initial image is all-black, every pixel value is zero. The d; is 

zero, so is d;. Hence, the a; term does not contribute any value in the first iteration. The 

resulting r; values in a range block will have the same value, fi. Due to the decorrelation 

of a; and p; by the centering, the new P/ is actually r; which is much meaningful than the 

old p;. This explains why the decoded image at the first iteration looks much better than 

that from Fisher's model. 

The decoded image at the 2nd iteration looks almost the same as the final attractor 

image. The decoded image at the 3rd iteration is indistinguishable from the final attractor 

image by human eyes. 

6.5 Centered BFT with Quadtrees 

Fisher's quadtree partition model will partition a range block into four sub-range 

blocks when there is no "good enough" domain block that can be contractively mapped 

onto the range block. Here, "good enough" means the image above a domain block can 

be transformed into a similar image above the range block, i.e., the RMS error between 

the two image blocks should be less than a preselected threshold. We propose a method 

that provides the range block a second chance, before being further partitioned, to find its 

corresponding domain block. The best-but-not-good-enough domain block is tested on 
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higher order BFT transformations to find out whether a good BFT transformation exists 

to make that domain block similar enough to the range block. The test proceeds from an 

order-I BFT until a good transformation is found or a maximum order is reached. If a 

good transformation is found, the coefficients are recorded as the representation of the 

range block. If even the maximum-order BFT cannot transform that domain block into 

the range block, the range block is then further partitioned. The detailed algorithm is 

given in section 5.6.4. 

6.5.1 Re-centering the polynomial 

Different maximum orders ofBFT were implemented based on the above 

algorithm. We not only used centered range and domain blocks, but also re-centered the 

polynomial after all coefficients were quantized (section 5.6.3). The re-centering adjusts 

the P/ value to make the integral of the polynomial terms zero. The benefit of this 

adjustment is a better compression ratio without reducing the image fidelity. We set the 

maximum order of the BFT to 2 for comparing the effect of re-centering. The 

experimental results are presented in Table 6.8. The maximum order of the BFT is 2, 

which means that order-I BFT is first tried to transform the domain block into the range 

block; if that fails, order-2 BFT is then tried before the range is further partitioned. 

According to the practical distribution of all transformation coefficients, the coefficients of 

the x term and the y term are limited between -8 and 8 and quantized into 5 bits. Any 

other values out of this range will be truncated. The coefficients of quadratic terms and 

above are limited between -1 and 1 and quantized into 5 bits. 



TABLE6.8 

THE EFFECT OF RE-CENTERING POLYNOMIAL ON ORDER-1,2 BFT 
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The compression ratios are improved by the re-centering polynomial with very 

little or no cost of decompressed image fidelity for most images, and with no effect on 

Lena or Camera at all. The compressed size of the Clown image is reduced the most, 134 

bytes, with the highest cost of degradation of decompressed image fidelity, 0.06, which is 

not distinguishable by human eyes. 

Because the re-centering polynomial producing a better compression ratio, we 

adopted this modification in all of the following experiments (section 6.5.2). 

We implemented some higher order BFTs with quadtrees to see the effect on the 

compression ratio. The domain and range blocks were centered and the polynomial was 

re-centered too. We also illustrate the effect of cross terms (xy, x2y and xi) in the 

polynomial by setting the maximum order of the BFT to 3. In Table 6.9, we list the 

compression ratio and the decompressed image fidelity achieved by Fisher's original model 

in column 1. Column 2 gives the results of our model which tries to transform the domain 

with order-I BFT first, then adds order-2 terms. Column 3 gives the results of our model 

which tries to transform the domain with order-I BFT first, then adds order-2 terms, then 

adds order-3 terms. Column 4 gives the results of our model which tries to transform the 

domain with order-I BFT first, then adds order-2 terms, then adds order-3 terms, and then 

adds the 3rd order cross-terms x2y and-xy2. 

The order-l,2,3,x2y&xy2 method (Column 4) has the best compression ratio at a 

cost of slightly reduced decompressed image fidelity. We notice that the additional order-
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3 terms improve the compression ratio much less than the order-I and order-2 terms do. 

We also notice that the 3rd-order cross-terms, .x2y and xi, do not help much in the 

compression ratio and the cost of reduced image fidelity is higher than for the 3rd order 

terms. 

There is no 2nd-order cross-term xy at all in our previous experiments (Table 6. 9). 

The effect of an xy term in higher order BFT is illustrated in Table 6.10. Columns I and 2 

are the same as in Table 6. 9. Column 3 gives the results of our model which tries to 

transform the domain with order-I BFT first, then adds order-2 terms, and then adds an xy 

term. Column 4 gives the results of our model which tries to transform the domain with 

order-I BFT first, then adds order-2 terms, then adds an xy term, and then adds order-3 

terms. Column 5 gives the results of our model which tries to transform the domain with 

order-I BFT first, then adds order-2 terms, then adds an xy term, then adds order-3 terms, 

and then adds .x2y and xi terms. We notice that the additional xy term in column 3 

improves the compression ratio quite a bit, although only one extra coefficient was added. 

The decoded images for Fisher's original method ( Column I) and our order-

1,2,xy,3 ,x2y&xy2 method (Column 5) are presented in Figure 6.4 for comparison. 



Lena 7197 8.88 

Oown 9366 7.73 

Camera 6222 11.11 

Hamlet 3822 4.64 

Kgirl 6191 6.69 

TABLE6.9 

RESULTS OF HIGHER ORDER BFTs 
WITHOUT THE 2ND ORDER CROSS-TERM XY 

6595 9.00 6491 9.03 

8769 8.01 8483 8.12 

6197 11.13 6119 11.15 

3355 5.01 3327 5.03 

5354 6.98 5263 7.02 

Order-1,2~~,, 

Encoded Size 

(B~) 

6423 9.10 

8338 8.34 

6103 11.17 

3245 5.30 

5158 7.25 
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TABLE6.10 

RESULTS OF HIGHER ORDER BFTS 
WITH THE 2ND ORDER CROSS-TERM XY 

J;I, 
•111111111111 
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Decoded Images by Fisher's PIFS 

Fisher's Decoded Lena 
RMS= 8.88 

Fisher's Decoded Clown 
RMS = 7.73 

Fisher' s Decoded Camera 
RMS = 11.11 

Decoded Images by Order-3 BFT 

Order-3 BFT Decoded Lena 
RMS = 9.15 

Order-3 BFT Decoded Clown 
RMS = 8.35 

Order-3 BFT Decoded Camera 
RMS = 11.18 

Figure 6.4 List of Fisher' s decoded images and order-3 BFT decoded Images. 
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Fisher's Decoded Hamlet 
RMS=4.64 

Fisher's Decoded Kgirl 
RMS=6.69 

Order-3 BFT Decoded Hamlet 
RMS= 5.41 

Order-3 BFT Decoded Kgirl 
RMS= 7.43 

Figure 6.4 List of Fisher's decoded images and order-3 BFT decoded Images. 

( continued) 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7. I Epilogue 

This dissertation presents a better fractal image compression model with two 

innovations: centering and BFTwith quadtrees. 

The centering method reduces the decompression time to about half of the 

traditional model's time and the contents of the decompressed image are recognizable as 

early as the end of the first decompression iteration. With this advantage, the centering 

method does not sacrifice the compression ratio and the decompressed image fidelity. In 

fact, the compression ratio and the decompressed image fidelity are even slightly improved 

in average for our testing images. 

The BFTwith quadtrees model can compress the image into a smaller file size at 

the expense of a slightly worse decompressed image fidelity. However, the slight 

deterioration is usually not perceivable by human eyes. 

The purpose of the centering method is to decorrelate the coefficients of the 

contractive mappings. The decorrelated coefficients are much more meaningful than the 

coefficients of the original model. For example, the coefficients (a; and p;) of the PIFS 

model are highly correlated. After decorrelation, Pt' represents the mean value of the 

range block. 

The main effect of decorrelation is a faster decompression speed. At the end of the 

first decompression iteration, the centered PIFS obtains a much better image than the 
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original PIFS model does, because the mean value of each range block is recovered from 

Pt'. Hence the contents of the decompressed image are recognizable at the end of the first 

decompression iteration. This advantage also leads to a faster convergence of the 

centered PIFS model. The centering method is not only effective for the PIFS model, but 

also applicable to most fractal image compression models with range blocks and domain 

blocks. 

The PIFS is actually an order-0 BFT. The reason that Monro extended PIFS into 

higher order BFTs was to reduce or eliminate the searching time for pairing. However, 

Monro's intuition about local self-similarity was proven wrong by Fisher. The 

successfully matched domains are essentially random and there is no preference for local 

domains. Searching is also necessary for higher order BFTs in order to find good matched 

domains. 

Fisher developed a program for fractal image compression with quadtrees based 

on PIFS. When the searching fails to find a good enough domain block for a range block, 

that range block is further partitioned into four smaller range blocks. Each new range 

block will be compressed individually, hence the searching process is repeated all over 

agam. 

Not only is the repeated searching very time consuming, but also the compression 

ratio becomes worse because four more sets of coefficients will be recorded in the 

compressed file. In order to reduce the repeated searching and improve the compression 

ratio, we proposed a hybrid model (BFTwith quadtrees) that combines Fisher's model and 

Monro's model. 
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When the best match domain block is still not acceptable, higher order BFTs are 

applied to this best match domain block until the image fidelity is satisfied or the maximum 

order of BFT is reached. If even the maximum order BFT still cannot make a satisfactory 

pairing, the range block is then partitioned into several smaller blocks which should make 

it easier to find a domain block that will achieve the target image fidelity. 

This strategy eliminates the necessary searching process for higher order BFTs, 

because the best domain block for PIFS (order-0 BFT) is ready for use. It also reduces 

the frequency of partitioning range blocks. Fewer partitioned range blocks means less 

repeated searching and less storage for coefficients of contractive mappings. Hence, a 

better compression performance and a better compression ratio are achieved at the cost of 

slightly worse decompressed image fidelity. 

We combine the two innovations into a model, centered BFTwith quadtrees, 

which enjoys the advantages from both innovations. Compared with Fisher's original 

model, this model can compress an image into a smaller file size with only slight 

degradation of the decompressed image fidelity. The convergence of decompression is 

fast too, because this model utilizes the centering method. 

The centering of the higher order BFTs is a little bit different from the centering of 

PIFS (order-0 BFT), because the quantized coefficients may bring up some bias. We 

propose a re-centering method to avoid the bias: the new P/ is derived by re-centering the 

polynomial with quantized coefficients. The compression ratio is improved by the re­

centering with very little or no deterioration in decompressed image fidelity. 
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We implemented some different maximum orders ofBFTs with quadtrees to see 

the effect on the compression ratio. The results show that higher maximum orders will 

produce a better compression ratio and slightly worse decompressed image fidelity. If 

there is no xy term, the 3rd order cross-terms, x2y and x/, do not help much on the 

compression ratio and the degradation of image fidelity is worse than for the 3rd order 

terms (see Table 6.9). We also notice that the additional xy term reduces the compressed 

file size notably although only one extra coefficient is added (see Table 6.10). 

7 .2 Contributions and Future Research 

The major contribution of the centered BFTwith quadtrees model developed by this work 

is to provide a :fractal image compression technique that can compress better and 

decompress faster with only slightly degradation of image fidelity. We outline the 

advantages as follows: 

(1) Centering can make the decompression faster. The decompressed image at the 

end of the first decompression iteration is composed of mean-value range 

blocks, hence the image fidelity is much better than that of the original PIFS 

model. The contents of the image are recognizable at the end of the first 

decompression iteration. Furthermore, the image at the end of the second 

iteration is almost indistinguishable from the final attractor image. In· addition, 

centering, by itself, does not degrade the image fidelity. In fact, centering 

slightly improves the compression ratio and the decompressed image fidelity in 

average for our testing images. 



(2) The model BFTwith quadtrees provides a better compression ratio with a 

negligible degradation of decompressed image fidelity. 
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(3) The combined model centered BFTwith quadtrees enjoys advantages from 

both methods: better compression ratio and faster decompression speed at the 

cost of slightly worse decompressed image fidelity. 

(4) Re-centering the polynomial further improves the compression ratio. 

(5) If the maximum order of the BFT is higher, a better compression and a slight 

degradation of decompressed image fidelity will be obtained. The xy term 

plays an important role for a better compression. 

( 6) Both centering and BFTwith quadtrees can be applied to most fractal image 

compression models. 

Future research directions include: 

1. Adaptive quantization of coefficients 

The coefficients a1, b1, a2, b2, cn, ... derived from the solution of the system of 

equations are floating numbers. They are quantized on a uniform scale before actually 

being stored as the representation of the compressed image block. In practice, they are 

usually distributed with a high concentration of zero values. We may more precisely 

describe the compressed image block if a Lloyd-Max quantizer [Lloy82] or others are 

applied. Hence, a better image fidelity might be obtained without decreasing the 

compression ratio. 

However, we will not know their distributions before the end of the compression. 

A carefully designed adaptive quantizer might solve this problem. 
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2. Video compression 

Video displays many frames in a second, so a fast decompression scheme is 

necessary. The centering method reduces the decompression time to about half of the 

traditional models' time, hence it can be a good alternative for video decompression. 

Besides, the image quality of TV is not extremely high, so a fractal image compression 

technique that can tradeoff the image quality with compression ratio might do the job. 

After two iterations, the centering method provides an almost indistinguishable image 

from the final attractor image. Video decompression using the centering method can also 

tradeoffthe decompression time and image fidelity according to its need. 
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APPENDIX A 

DECODING SEQUENCES OF CLOWN USING PIFS AND CENTERED PIFS 

Fisher' s PIFS Centered PIFS 

1st iteration, RMS= 58.14 1st iteration, RMS = 17.61 

2nd iteration, RMS = 32.88 2nd iteration, RMS = 11.45 

3rd iteration, RMS = 19.58 3rd iteration, RMS = 7.97 
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DECODING SEQUENCES OF CLOWN USING PIFS AND CENTERED PIFS 

Fisher' s PIFS (continued) Centered PIFS ( continued) 

4th iteration, RMS = 10.03 4th iteration, RMS= 7.73 

5th iteration, RMS = 8.04 5th iteration, RMS = 7.73 

6th iteration, RMS = 7.76 6th iteration, RMS= 7.72 



117 

DECODING SEQUENCES OF CLOWN USING PIFS AND CENTERED PIFS 

Fisher's PIFS (continued) Centered PIFS ( continued) 

7th iteration, RMS = 7. 73 7th iteration, RMS = 7.73 

8th iteration, RMS = 7. 73 8th iteration, RMS = 7. 73 

9th iteration, RMS = 7.73 9th iteration, RMS = 7. 73 



APPENDIXB 

DECODING SEQUENCES OF CAMERA USING PIFS AND CENTERED PIFS 

Fisher's PIFS Centered PIFS 

1st iteration, RMS = 60.91 1st iteration, RMS = 19. 71 

2nd iteration, RMS = 33.69 2nd iteration, RMS = 14.32 

3rd iteration, RMS = 21.02 3rd iteration, RMS = 11 .14 
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DECODING SEQUENCES OF CAMERA USING PIFS AND CENTERED PIFS 

Fisher's PIFS (continued) Centered PIFS ( continued) 

4th iteration, RMS= 13.52 4th iteration, RMS = 11.12 

5th iteration, RMS = 11.61 5th iteration, RMS = 11.11 

6th iteration, RMS = 11 .19 6th iteration, RMS = 11.12 
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DECODING SEQUENCES OF CAMERA USING PIFS AND CENTERED PIFS 

Fisher's PIFS (continued) Centered PIFS ( continued) 

7th iteration, RMS = 11 .13 7th iteration, RMS = 11 .12 

8th iteration, RMS = 11.12 8th iteration, RMS = 11.12 

9th iteration, RMS = 11.11 9th iteration, RMS = 11.12 



APPENDIXC 

DECODING SEQUENCES OF HAMLET USING PIFS AND CENTERED PIFS 

Fisher's PIFS Centered PIFS 

1st iteration, RMS = 49.59 1st iteration, RMS = 9.84 

2nd iteration, RMS = 23 .62 2nd iteration, RMS = 6.48 

3rd iteration, RMS = 12.09 3rd iteration, RMS = 4.94 
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DECODING SEQUENCES OF HAMLET USING PIFS AND CENTERED PIFS 

Fisher' s PIFS (continued) Centered PIFS ( continued) 

4th iteration, RMS = 6.35 4th iteration, RMS = 4.64 

5th iteration, RMS = 4.81 5th iteration, RMS = 4.63 

6th iteration, RMS = 4.66 6th iteration, RMS = 4.62 
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DECODING SEQUENCES OF HAMLET USING PIFS AND CENTERED PIFS 

Fisher' s PIFS (continued) Centered PIFS ( continued) 

7th iteration, RMS= 4.64 7th iteration, RMS = 4.62 

8th iteration, RMS = 4.64 8th iteration, RMS = 4.62 

9th iteration, RMS = 4.64 9th iteration, RMS = 4.62 



APPENDIXD 

DECODING SEQUENCES OF KGIRL USING PIFS AND CENTERED PIFS 

Fisher's PIFS Centered PIFS 

1st iteration, RMS= 39.6 1st iteration, RMS= 12.17 

2nd iteration, RMS = 22.62 2nd iteration, RMS= 8.37 

3rd iteration, RMS= 13.99 3rd iteration, RMS = 6.80 
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DECODING SEQUENCES OF KGIRL USING PIFS AND CENTERED PIFS 

Fishers' s PIFS ( continued) Centered PIFS ( continued) 

4th iteration, RMS = 8.30 4th iteration, RMS = 6.66 

5th iteration, RMS = 6.90 5th iteration, RMS = 6.66 

6th iteration, RMS = 6. 70 6th iteration, RMS= 6.66 
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DECODING SEQUENCES OF KGIRL USING PIFS AND CENTERED PIFS 

Fisher's PIFS (continued) Centered PIFS ( continued) 

7th iteartion, RMS = 6.69 7th iteration, RMS= 6.66 

8th iteration, RMS = 6.69 8th iteration, RMS = 6.66 

9th iteration, RMS = 6.69 9th iteration, RMS = 6.66 
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