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CHAPTER I 

INTRODUCTION 

Communications through wire line or radio have existed for over a hundred years. 

Today, communication is part of our daily life: from telephones to the Internet; from 

cellular phones to the global positioning system, etc. In a broader sense, broadcasting is 

also a kind of communication: it is the comm:unication between the stations and the 

viewers or listeners. Nyquist's telegraph theory [1] probably lays down the first foundation 

for the framework of modem communication theory, where certain basic problems of 

communication are formulated. Shannon's information theory [2] is a key milestone on the 

long journey towards mastering of the communication problems. 

One of the basic problems in communication is how to efficiently utilize the 

limited transmission media capacity ( e.g. bandwidth) for carrying useful information. 

''Efficiently'' means more information will be transmitted with the same transmission 

media. "U se:ful" generally means less interference and disturbance. For example, in data 

communication, this problem is translated as how to transmit data faster with less bit error 

rate or block error rate. 

In electrical communication, the "efficiency" problem is usually solved by properly 

modulating the signal and/or encoding the information at the transmitter. The 

''usefulness" is usually enforced by properly processing at the receiver. One of the key 

elements of this processing is equalization. In a broad sense, an equalizer is a device 
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whose goal is to restore the transmitted signal by processing the received signal. Usually, 

the received signal is a distorted version of the transmitted signal. These distortions are 

mainly caused by the transmission media. For example, in an analog telephone line, 

distortion results when the channel frequency response deviates from the ideal of constant 

amplitude and linear phase [3, 4]; in radio communication, distortion is mainly due to 

multipath propagation [5, 6,7,8,9,10], which maybe viewed as transmission through a 

group of channels with various relative amplitudes and delays. 

The result of the distortion is the time dispersion of the signal [11,12,13,14,15], 

generally called intersymbol interference (ISi}, because the information is usually carried 

by elements of the signal called symbols. In a broader sense of communication, such as 

analog television broadcasting, there is no such thing as a "symbol". We still use the term 

"intersymbol interference" to refer the time dispersion of the signal introduced by the 

channel distortion. 

In addition to channel distortion, the received signal is generally corrupted by 

noise. This noise can be additive and/or multiplicative. In this paper, only additive noise is 

considered. 

The straightforward way of equalization is to attempt to eliminate the intersymbol 

interference completely, which is exactly what the zero-forcing equalizer does [4,16]. The 

zero-forcing (ZF} criterion results in an equalizer which effectively inverts the channel 

frequency response. Unfortunately, this inversion may severely enhance the noise at the 

frequencies where the nulls of the channel frequency response exist [12,13,14]. In 

addition, if the channel transfer function is not minimum phase, the theoretical inverse 
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channel transfer :function would be noncausal ( assuming the solution is not allowed to be 

unstable). As an alternative to the ZF criterion, the mean square error (MSE) criterion is 

used [15,17]. The MSE criterion produces an equalizer which minimizes the mean square 

of the error between the equalizer output and a given reference signal. It was later realized 

that for an equalizer with a tapped delay line structure and an infinite number of taps, the 

MSE equalizer is indeed a superset of the ZF equalizer [11,18]: it strikes a balance 

between reducing the intersymbol interference (inverting the channel) and minimizing the 

noise enhancement. When there is no noise corrupting the received signal, the MSE 

equalizer will reduce to a ZF equalizer. On the other hand, when the received signal is 

corrupted by noise, the MSE equalizer will leave some intersymbol interference at the 

equalizer output so that the noise is not severely amplified at the :frequencies where the 

channel :frequency response manifests.nulls. The result is that the linear MSE equalizer 

with infinite length will produce less mean square error value than the ZF counterpart. For 

communication systems where the signal waveform itself is the ultimate information ( such 

as analog audio and video signals), the MSE is a meaningful measure of merit. 

In most practical applications, the channel distortion is statistical. In some cases, 

some prior knowledge about the channel distribution, typically the type of probability 

density :function ( e.g. Laplacian distribution) of the channel impulse response, is available 

based on previous experience. For example, in multipath propagation, the channel impulse 

response typically consists of a series of impulses which correspond to the various 

reflections produced in the process of transmission [19,20,21,22]. Histogram of the 

''weights" of these reflections in certain area can be used to suggest a suitable probability 
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density :function. Based on Bayesian theory, the maximum a posteriori (MAP) estimator 

results in a criterion which is a summation of two norms ( called a mixed norm (MN)), if 

p-Gaussian distributions [23] are assumed for both channel impulse response and the noise 

at the equalizer input. The concept of a mixed norm is not new in other areas, such as 

deconvolution [24,25]. But to the best of the author's knowledge, this is the first time that 

the mixed norm concept is introduced into the equalization problem For the equalizer 

structure of a tapped delay line with an infinite number of taps, the mixed norm equalizer 

has a performance in between the ZF equalizer and the MSE equalizer. 

In addition to the choice of criteria, extensive research has been done on the 

structure of the equalizer [26,27]. In addition to the tapped delay line, the feedback 

equalizer is another important equalizer structure [28,29,30,31,32]. As mentioned earlier, 

the linear (tapped delay line) equalizer is faced with a dilemma: leaving some intersymbol 

interference or enhancing the noise. On the other hand, the feedback equalizer which is 

generally the cascade of a linear filter ( called forward fdter) with a feedback fdter, has 

the benefit of compensating for severe channel distortion without enhancing the noise, 

provided that the delay line of the feedback portion is fed with noise-free signal (which is 

either from a known reference signal or from the correct decisions at the equalizer output) 

[11,33]. The choice of the previous three criteria (ZF, MSE, MN) generally will not affect 

the design of the feedback portion of the equalizer. It is the performance of the forward 

filter portion that affects the overall performance of a feedback equalizer [34]. 

In this research, the ISi problem under consideration is the "ghosting" problem in 

television reception, which is caused by the existence of multiple signal propagation paths 
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between the transmitter and the receiver. At the receiver, the ''main" signal (which is 

defined as the strongest signal and is not necessarily the first signal received) is corrupted 

by the addition to it of time shifted, attenuated copies, plus noise. In actual 

implementation, the "raw'' signal received is correlated with the local reference signal The 

peak of this cross-correlation corresponds to the position of the main signal. The "raw" 

signal is then shifted by the distance between this peak position and the nominal main 

signal position, before it is fed to the filter. By doing so, the main signal position is always 

fixed and known to the filter. The copies which precede the main signal in time are called 

the precursor ISi. The copies that arrive after the main signal are called the postcursor 

ISi. If we adopt the convention that channel introduces no pure delay, then the precursor 

part of the ISi is caused by the anticausal part of the channel impulse response. This 

concept is also commonly used in the communication theory [11, 13]. In spite of the fact 

that all physically realizable systems have to be causal, we use the noncausality concept to 

facilitate the theoretical analysis. We will discuss the physical implementation in Chapter 

V. 

The feedback filter is usually causal for realizability and stability [34]. This 

configuration makes the feedback filter able to cancel only the postcursor ISi. Therefore, 

the forward :fiher is solely responsible for the cancellation of the precursor ISi. In addition, 

since the feedback filter deals with the output of the forward filter, the performance of the 

forward filter will have direct impact on the feedback :fiher, hence the overall performance 

of the feedback equalizer. On the other hand, as mentioned earlier, the choice of the 
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criterion will affect the performance of the forward (linear) filter. Therefore, the choice of 

the criterion will affect the overall performance of the feedback equalizer. 

However, due to the structural difference, the choice of the criterion will have a 

different degree of impact on the feedback equalizer compared to the linear equalizer. For 

example, the feedback equalizer based on the zero-forcing criterion is generally less 

sensitive to the channel spectral nulls than the corresponding linear equalizer [13]. 

So far, our analysis is based on the ideal equalizer with an infinite number of taps. 

In practical applications, the equalizer has to be of finite length. Generally speaking, for 

the ideal equalizer with an infinite length, the frequency domain anaJysis provides more 

insight. On the other hand, for the practical equalizer with finite number of taps, the time 

domain method is more efficient. We follow this convention in this paper with a few 

exceptions. The practical restriction of finite length also makes the theoretical analysis 

more involved. For example, for the three criteria mentioned earlier, it is very difficuh to 

find closed form expressions for the MSE of the feedback equalizer with finite length. 

Therefore, evaluations for the performance of the equalizer in practice rely heavily on 

numerical solutions. Nevertheless, the theoretical analysis of the ideal equalizer provides a 

guideline for the practical design, which proves to be indispensable. 

Another important practical restriction is that the channel impulse response, or 

equivalently the channel frequency response, is not available. Moreover, it is usually 

changing with the environment and possibly with time [35,36]. Therefore, an equalizer 

should be able to ''learn" the channel characteristics by itself and adjust itself to reflect the 

changes of the channel characteristics. This is usually done by minimizing an objective 
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:function, i.e., the criterion mentioned earlier. For the same equalizer structure, the way in 

which the equalizer is updated, hence the performance ofthe equalizer, depends on the 

criterion chosen. Although some theoretical results can be obtained as a guideline, it was 

necessary to resort to numerical methods to evaluate the performance of the adaptive or 

automatic equalizer design. 

This paper is organized as follows. In Chapter II, the theoretical background about 

''norms", the common abstract representation of our three criteria (ZF, MSE, MN), is 

reviewed. In particular, the concept of mixed norm is formulated in the :framework of 

Bayesian theory. In Chapter III, the discrete-time communication system model is 

described, and the optimum linear and feedback equalizers based on the ZF and MSE 

criteria are reviewed in the context of norm theory, with the assumption of known channel 

characteristics. These results are extended to include the mixed norm criterion. The 

expressions for the MSE of the equalizer with infinite length are obtained for various 

criteria to show the inter-relationship between the reduction of the intersymbol 

interference and the enhancement of the noise. Further insight is made possible by the 

comparison of the linear equalizer with the feedback equalizer, and the inclusion of the 

linear prediction model of the feedback equalizer. 

In Chapter IV, adaptive or automatic equalizers with unknown channel 

characteristics are described. Lucky's ZF algorithm is re-cast into the L1 norm :framework, 

resulting in the so-called stochastic ZF algorithm. Widrow's LMS algorithm is revisited. 

Finally, an automatic equalizer minimizing the mixed norm is proposed for both the linear 

and feedback structures. 
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In Chapter V, numerical evaluation of the various equalizers discussed herein is 

described. In addition, applications of these equalizers are described, with particular 

emphasis on the mixed norm feedback equalizer to the television multipath (ghost) 

cancellation problem The significance of the mixed norm parameter 'A and its relationship 

to the performance of the equalizer is discovered for the first time. Numerous 

experiments are conducted with various ghosting scenarios. 

Chapter VI concludes this paper by summarizing the main results of the research 

leading to this paper. 
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CHAPTER II 

TIIE MIXED NORM 

1. The Lp Norm 

For a general regression problem, assume there are N points in the (M+ 1)-

dimensional Euclidean space (xi, Yi) e RM +i, we can set up a system of linear equations 

Xc=y (2.1) 

where Xis an NxM matrix, c is an Mxl vector, y is an Nxl vector. IfN > M, (2.1) is an 

overdetermined system of equation; ifN < M, (2.1) is an underdetermined system of 

equations.( In this paper, we only consider the case where N;;:: M;;:: 1). For both cases, 

the solution to (2.1) is not defined unless an additional constraint is imposed. One class of 

· solutions is to minimize the norm of the residual vector. Define the residual vector r( c) = 

y - X c. The LP problem is to find a vector c such that the p-norm llr( c )II P is minimized, 

where 

(2.2) 

and 

1t ( C) = Yi - x'{ · C (2.3) 

where x; is the fh row of X and 1::; p ::; oo. For 1 <p::; oo and non-negative argument the 

function ( . · )11P is a monotonically increasing function. Therefore, minimizing Jlr( c )II P is 

equivalent to minimizing 
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N 

dp(c) = I:lr;(c)IP (2.4} 
i=l 

The I,, criterion can be :further elaborated by introducing the p-Gaussian 

distnl>ution [23]. Let ri (i=l, 2, ... , N) be independent and identically p-Gaussian 

distributed, i.e., the joint probability density function of ri is 

where 

p N P 
:t{r) = a exp{ - -I:lr; -µI } 

CJP i=l 

a= p 
2r(11 p)[r(l/ p)11,2 ·CJ 

r(3/ p) 

(2.5) 

(2.6) 

where r ( ·) is the gamma function, µ is the mean, and a is the standard deviation. Figure 

2-1 shows the one-dimensional probability density function of ri for various values of p. 

For p=l, 2 and p = oo, it corresponds to the Laplacian, Gaussian and uniform distnbution, 

respectively. Maximizing the likelihood function ofri, ln{:t{r)}, is equivalent to 

minimizing dp( c ). That is to say, when the ri are independent and identically p-Gaussian 

distributed, the LP solution is the maximum likelihood estimate of c. 

The choice of the value ofp in practice depends on the characteristics ofri, When 

p=l, the LP problem falls back to the L 1 problem, which characterizes an ri with small 

values most of the time and huge values occasionally. Similar]y, when p=2, the LP 

problem reduces to the ~ problem, which characterizes an ri of "normal" behavior. When 
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p = oo, the Lp problem corresponds to an "minimax" problem, which characterizes an ri of 

uniform distributions. 

z 8.00E-01 
0 

B 7.00E-01 

~ 6.00E-01 

~ 
5.00E-01 

171 4.00E-01 z 
P'.I 3.00E-01 Q 

~ 2.00E-01 
~ 1.00E-01 ; O.OOE+OO 

i -1.00E-01 

-1.96 -1.56 -1.16 -0.76 -0.36 0.04 0.44 0.84 1.24 1.64 

NORMALIZED VARIABLE 

Figure 2-1. p-Gaussianpdfforp=l, 2, 4, 10, 50 
(p=l: ; p=2: -------- ; p=4: ; p=lO:-------- ; p=50:------- ) 

Appendix A shows many useful properties of the L1 and Lz norms. Generally 

speaking, the L 1 norm is more resistant to the effect of "outliers" in the measurements. It 

is more robust with respect to the signal with long-tailed distribution. But the solution to 

the L 1 problem may not be unique unless an additional constraint is imposed. On the other 

hand, the Lz solution is unique, which allows the algorithms like the steepest descent 

algorithm to be employed to find the Lz solution. 

2. Bayesian Estimation and the Mixed Norm 
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In the previous section, we pointed out that minimizing the Lp norm of the residual 

vector is in fact the maximum likelihood estimation of the unknown vector c, with the 

assumption that the elements of the residual vector are independent and identically p-

Gaussian distributed. We have made no assumption about the distribution of the unknown 

vector c itself In some applications, past experience will provide some prior knowledge 

about the vector c. For example, in the seismic deconvolution problem [37, 38, 25], 

experience shows that the impulse response (which is the unknown of deconvolution) 

appears like a series of impulses. Hence the prior assumption of the Laplacian distribution 

of the unknown seems appropriate. 

We now re-write the Gaussian distribution of the measurement vector y, with 

explicit dependency on the unknown vector c [24]: 

(2.7) 

Assume c has a prior distribution f{c II;) with I; unknown. According to Bayes's rule, the 

posteriori distribution for c is 

f( c ;; CJ)= f (ylc, CJ)/( cli;> 
Y, ~' f(y\i;, CJ) 

(2.8) 

f (y II;, a) provides the likelihood fimction for I; and a. This fimction has more practical 

implications, and we leave this topic to Chapter V where we are going to discuss the 

choice ofl; (equivalently, the choice of )..=1-1; as defined in the following) based on a 

practical application. 

Ifwe choose a Laplacian prior distribution, then [24] 
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(2.9) 

where c* is the mean of c and~ is the parameter. It is evident from (2.9) that the larger the 

~ is, the smaller the variance of ft c I~). 

The maximum a posteriori (MAP) estimate of c will minimize 

d' ( c) = IIY - Xcll~ + ;CT.Jsllc - c *111 (2.10) 

Equation (2.10) is what we call the mixed norm. It combines the L2 norm of the residual 

vector and our belief on the conjecture that c is Laplacian distributed with mean of c*. The 

degree of belief is characterized by the parameter ~-

Let the middle element of c* be 1 and the rest be 0, i.e., 

* C 8 
u 

0 

0 
1 
0 

0 (2.11) 

This choice of c* assumes that the mean of c is an unit impulse, which makes sense in 

some applications like the equalization, where the expected value of the combined channel 

impulse response is a pure delay. If we further let a be absorbed by ~ and define 

).,,= 1- ~ (2.12) 

and modify (2.10) by normalizing the sum, we then obtain the following form of mixed 

norm with more practical value: 

d(c) = -1lly-Xcll~ +(l--1)llc- oull1 (2.13) 
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Since the first term of d(c) in (2.13) is a strictly convex :function of c, and the second term 

is a convex :function of c (see Appendix A), we have that d( c) is a strictly convex :function 

of c. Therefore, a steepest descent algorithm can be used to find the c that minimizes d( c ). 

Similarly, if we chose a Gaussian prior distribution of c, the corresponding mixed 

norm will be 

d(c) = i11y-Xcil~ +(l-,-1,)\lc- oull~ (2.14) 

3. Summary 

In this chapter, we introduced the basic concepts of the Lp norm, leaving the 

detailed descriptions of the L 1 and Li norms to Appendix A. The normal definition of the 

Lp norm of the residual vector does not assume any prior knowledge about the unknown 

itself. Tue maximum a posteriori estimation was then introduced, which results in the 

mixed norm. The theoretical mixed norm was then modified for the convenience of 

practical usage. 
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CHAPTER ill 

MINIMUM NORMS EQUALIZATION 

1. Communication System Model 

A communication system generally includes a transmitter, transmission medium 

and a receiver (Figure 3-1 ). Depending on the specific application, the transmission 

medium can have physically different forms: twisted pair telephone cables for voice 

communication; wireless channel for line-of-sight terrestrial radio and satellite 

transmission; subscriber loops for integrated services digital networks (ISDN), etc. 

information ---ii~ transmitterH trans~ssion H receiver ~ inf~nnation 
source 7! . . roedmm . ...... ___ __.~ smk 

Figure 3-1. Communication system 

The information can be expressed in various forms, e.g., voice, image, data, etc .. 

In an electrical communication system, the information is carried by the signal. In order to 

more reliably transmit the signal and more efficiently utilize the transmission medium, the 

signal is usually modulated before it is transmitted. At the receiver, the received signal is 
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demodulated and information is restored to the original form. In the analog world, typical 

modulation schemes include amplitude modulation (AM) and frequency modulation (FM). 

With respect to AM, depending on the bandwidth usage, there are three modulation 

schemes: double-side band (DSB), single-side band (SSB) and vestigial-side band (VSB). 

For example, in the NTSC (National Television Standard Committee) television system, 

the image signal is VSB-AM modulated, and the audio signal is FM modulated. 

In the past few decades, digital communication has become more and more 

popular. It has many advantages over the analog counterpart. For example, state-of-the­

art digital signal processing (DSP) methods can be used to significantly improve the 

communication quality, and to utilize the transmission medium even more efficiently. 

Typical digital modulation schemes include pulse amplitude modulation (PAM) , 

frequency-shift keying (FSK), phase-shift keying (PSK) and quadrature amplitude 

modulation (QAM). 

The modulation and demodulation schemes may or may not be linear. For 

example, the QAM scheme is linear, but the FM scheme is nonlinear. This paper only 

concerns the linear modulation schemes. With the linear modulation, the distortion on the 

modulated signal can be modeled as an equivalent baseband effect. With reasonable 

approximation for practical interest, most transmission media are also linear. Therefore, 

the communication system in Figure 3-1 can be approximated by the baseband model 

shown in Figure 3-2. A signal x(t) is transmitted through a linear time-invariant (or slowly 

time-varying relative to the signal rate) channel f(t). At the receiver, the signal w(t) is 

received. All the noise sources are modeled by an equivalent white Gaussian noise ri(t). 
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The channel model f{t) includes the effects of the transmitter filter, the transmission media 

and the receiver filter. By linear system theory, we have 

w(t)= x(t)* f{t) + rt(t) (3.1) 

where''*" stands for convolution. If there is no time-dispersion in the channel, i.e., 

f{t)=8(t), where 8(t) is the unit impulse function, and there is no noise, i.e., ri(t) = 0, then 

w(t) = x(t) (3.2) 

i.e., the transmitted signal can be completely recovered if the channel does not introduce 

any distortion and there is no noise in the channel. 

transmitted 
signal 
x(t) 

channel 

noise 1ft) 

received 
signal 
w(t) 

Figure 3-2. Baseband model of the communication system 

2. Intersymbol Interference and Linear Receivers 

(1) Discrete-time Model 

Since most practical channels are not distortion-free, compensation is needed at 

the receiver side. The scheme used to compensate for the channel distortion is the 

equalizer. In this section, we focus on the equalizer with linear structure. Modem 

equalizers are generally implemented by a digital signal processor. Therefore the received 

signal has to be sampled before it is equalized. Suppose the bandwidth ofx(t) and f{t) are 
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Bx and Bf, respectively. Ifu(t) is sampled at a sample :frequency(;~ 2 · max{Bx, Br}, then 

we have the equivalent discrete-time model shown in Figure 3-3, where h(n) is the 

discrete-time equalizer, which is implemented by a tapped delay line. In other words, h(n) 

is the impulse response of a FIR system. 

x(n f(n) h(n) y(n) 

ll(n) 

Figure 3-3. Discrete-time model with equalizer 

In most communication system today, the timing and phase information needed for 

proper synchronization are extracted from the received signal itself without a secondary 

channel. In addition, the equalizer has to be trained with a signal such that fast 

convergence is possible. This requires the transmitted signal be broad band. In digital 

communication system, this is implemented by a device called "scrambler" which 

randomizes the transmitted data before it is modulated. At the receiver, a device called 

"descrambler" is used to recover the data. For the analog television system where usually 

no scrambler is used ( except in the encrypted cable TV signal which is irrelevant to the 

topic in this paper), a broad band signal called the Ghost Cancellation Reference (GCR) 

signal is inserted periodically. This signal is used at the receiver to trained the equalizer. 

Therefore, for practical purpose, we can assume a broadband transmitted 
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signal x(n) which is wide sense stationary and uncorrelated at different sampling instances 

and has the power cr/, i.e. 

&[x(n) x(n+m)]=cr/ · 8(m) (3.3) 

where &() is the expectation operator. Then the problem arises: among all receivers h(n) 

with linear structure , which one is the ''best"? The answer is that we have to first define 

what is the meaning of the ''best". In most communication systems, minimizing the 

probability of error is the goal. Since the probability of error is generally a non-linear 

function ofh(n), and the nonlinearity depends on the modulation scheme, usually some 

simplified measures such as the mean square error (MSE) and intersymbol interference 

(ISi) are used. In other applications, such as the television multipath cancellation problem 

we are going to discuss later, reconstructing the transmitted waveform itself is the goal. In 

this case the MSE and ISi have more practical meaning. 

(2) Linear Zero-forcing Equalizer 

a. lnfmite Length. Assume the equalizer h(n) has an infinite number of taps. Then 

the cascade of the discrete-time channel model f{n) and the equalizer h(n) can be 

represented by an equivalent combined channel q(n), where 

co 

q(n)= "f.h(j)f(n-j) (3.4) 
j=-co 

the output of the equalizer can be expressed as 
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00 00 

y(n) = L x(j)q(n- j) + L r,(j)h(n- j) 
J=-oo J=-oo 

(3.5) 
00 00 

=q(O)x(n)+ Lx(j)q(n- j)+ Lr,(J)h(n-j) 
J=-oo,jo=n J=-oo 

The first term of (3.5) represents a scaled version of the desired signal x(n); the second 

term of(3.5) represents the intersymbol interference at the output of the equalizer; and 

the third term of(3.5) is the noise at the output of the equalizer. 

The worst case intersymbol interference is measured by the peak distortion, 

defined as [39] 

00 

D= Liq(n)I (3.6) 
n=-oo,o=O 

Therefore, Dis a :function of equalizer taps h(n). Given the infinite number of equalizer 

taps, it is possible to chose a set of equalizer taps such that D is zero. This is called the 

zero-forcing criteria. 

In order to have D=O, we need q(n)=O except at n=O, i.e., 

00 

q(n)= Lh(j)f(n-J)=o(n) 
J=-oo 

Taking the z transform of (3. 7) leads to 

or 

H(z) F(z)=l 

1 
H(z)=­

F(z) 

(3.7) 

(3.8) 

where H(z) and F(z) are the Z transforms ofh(n) and f(n), respectively. Equation (3.8) 

indicates that the linear equalizer that minimizes the intersymbol interference is simply the 

inverse filter of the channel. This equalizer is called zero-forcing linear equalizer, 
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abbreviated as ZF-LE. Clearly, if the channel is not minimum phase, the resulting Hz) will 

be noncausal, since H(z) is a FIR filter here by definition. 

We define the MSE achieved by an equalizer as the mean square error of the 

equalizer output with respect to the desired output, i.e., 

i2(equalizer) = &{[x(n)- y(n)]2 } (3.9) 

where the "equalizer" is E2( equalizer) will be replaced by the particular equalizer under 

study. We will use E2() as a measure of merit to compare the various equalizers. 

Assume the noise 11(n) at the equalizer input is white Gaussian noise with spectral 

density of N0 , then the spectral density of the noise at the output of the equalizer will be 

No 

where T is the sampling period, with the above definition the MSE achieved by such 

equalizer is 

(3.10) 

From (3.10), it can be seen that the ZF equalizer will enhance the noise over those 

:frequency regions where the channel :frequency response has nulls. 

b. Finite Length. For practical applications, the equalizer has to be of finite 

length. For an equalizer with (2M+ 1) taps, Equation (3. 7) is re-written as 

M 
"'£,h(j)f(n- j) = 8(n) (3.11) 

j=-M 
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Although in practical applications, h(n) needs to represent a causal system, here, as 

mentioned earlier, we adopt the perspective that the channel impulse response is 

noncausal, and our equalizer impulse response can also be noncausal for theoretical 

convenience. Equation (3.11) can be written in matrix form, evaluated at n=-M, ... , +M: 

F h=o (3.12) 

where 

f{O) f{-1) f{-2M) h(-M) 0 

f{l) f{O) f{-2M+l) 

F= h= h(O) o = 1 

f{2M)f{2M-1) .. f{O) h(M) 0 

(3.13) 

The ZF equalizer coefficient vector is given by 

(3.14) 

Therefore, if the impulse response of the channel, :ffj) is known and the matrix Fis not 

singular, the ISi within the range covered by the equalizer, q(n) (-M :=:;; n :=:;; M, n ;t:O ), can 

be canceled exactly. However, in most applications, the channel impulse response is not 

known; it has to be· estimated from the received signal. An automatic equalizer or adaptive 

equalizer will be discussed in Chapter N. 

22 



(3) Linear MSE Equalizer 

a. Infinite Length. As mentioned earlier, the ZF equalizer can eliminate the ISi 

completely but at the expense of possible severe enhancement of noise. The minimum 

mean square error (MSE) equalizer, which minimizes the mean square error between the 

output of the equalizer and the desired signal, does not suffer from this drawback. Assume 

the transmitted signal x(n) is white with power of a/, as shown in Equation (3.3). Tue 

MSE is, as defined in (3.9), 

&[e2(n)] = &[(x(n)- y(n))2] 

where e(n) is the error at the equalizer output, shown in Figure 3-4. 

transmitted 
signal 

x(n) 

equalized 
signal 

-+' y(n) -

(3.15) 

e(n) 

desired signal 
x(n) 

noise ll(n) 

Figure 3-4. Communication system with linear equalizer 

By Parseval's theorem, the MSE can also be expressed as the integral of the power 

spectral density of the error, i.e., 

(3.16) 

where E( . ) denotes the spectrum of e(n). To further evaluate Equation (3.16), we start 

with the frequency domain equivalence of Figure 3-4, shown in Figure 3-5. 
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X(z) F(z) H(z) E(z) 

No 

Figure 3-5. Frequency domain equivalence ofFigure 3-4 

Figure 3-5 can be further simplified as Figure 3-6. 

X(z) 1-F(z)H(z) 

E(z) 

No H(z) 

Figure 3-6. Simplified version of Figure 3-5 

We have assumed that the sequence x(n) is uncorrelated and we further assume 

that x(n) and the noise n(n) are uncorrelated. Therefore the power spectral density of e(n) 

is 

IE( ej27if7)12 =u~ 11- F ( ej2tifl' )H ( ej2tifl' >12 + NolH ( ej2tifl' >12 

The MSE is expressed as 

&[e2(n)]= rf 1: u;ll-F(ej2iifl')H(ej2iifl')j2 +No,H(ej2iifl')j2 df 
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From (3.18), it is evident that the MSE consists of two parts: the first term in the 

integrand is the contribution from ISi ; the second term is the contnlJUtion from the noise. 

The equalizer that minimizes the MSE will minimize the sum ofboth contributions. Since 

there is no constraint on the complexity of the equalizer except that it has to be linear , we 

can minimize the MSE of Equation (3.18) by minimizing the power spectral density of 

Equation (3.17) at each :frequency. We do this by rearranging the terms in Equation 

(3.17): 

IE(e12efl')l2 = ~ {l-2Re(FH) +IFl2IHJ2} + NolHl2 

=(~IFl2 +No)IHl2-2~ ·Re(F·H)+~ 

=(a:IFJ2 +No)[IHl2 _ 2~ ·Re(F·H) +( ~ ·IFI )2] 
x ~IFl2 +No ~IFl2 +No 

- 1~~Fl2 +~ 
~IFI +No 

2 

No +---
IFl2 + No 

~ 

(3.19) 

where Re( ) means the real part of a complex number. The second term of (3 .19) is 

independent ofH. Therefore IE( ei2efl' )12 can be minimized by minimizing the first term of 

(3.19), which can be done by setting: 

(3.20) 
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This is indeed a type of noncausal Wiener filter. The relationship between the MSE 

equalizer and the Wiener filter is further elaborated in Appendix B. The MSE 

corresponding to the equalizer of(3.20) is 

2 f1tT No &(M~-m)=T N df 
0 IFl2 +-0 

~ 

(3.21) 

where ''MSE-LE" stands for mean-square-error linear equalizer. Since N0 ~ 0 and~~ 0, 

we always have 

(3.22) 

Therefore, from (3.10) and (3.22), we have 

(3.23) 

In other words, for a linear equalizer with an infinite number of taps, the MSE equalizer 

always yields less MSE value than the ZF equalizer. 

We come back to examine the implication of Equation (3.20). We can see that the 

equalizer H strikes a balance between inverting the channel frequency response and 

minimizing the noise enhancement. For those frequency regions where signal to noise ratio 

is large, i.e., 

the equalizer tries to invert the channel frequency response: 

p* 1 
H,;:::,--=-

IFl2 F 

26 



For those frequency regions where signal-to-noise ratio is small, i.e., 

the equalizer tries to match the channel: 

H,;::, ~ ·F* 
No 

This makes a lot of sense, since the matched filter will maximize the output signal-to-noise 

ratio if the input signal is corrupted only by additive white Gaussian noise. 

b. Finite Length. For an equalizer with (2M+ 1} taps, the output of the equalizer 

where 

M 
y(n) = Lh(J}w(n- j) 

j=-M 

=hT•W 

w = [ w(n+M) ... w(n) ... w(n-M} f 

(3.24} 

(3.24a) 

is the input to the equalizer, i.e. the received signal with noise, Fis defined in (3.13}, 

u=Frx is the noise-free output of the channel, xis the vector consisting of the transmitted 

signal samples and Tl is a vector consisting of noise samples. The MSE is 

(3.25} 

The MSE is minimized by setting the gradient of the MSE with respect to h to 0, which 

leads to 

(3.26} 

where 
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A=&[wwT] 

= &[(FTx+ 1J)·(FTx+ 1Jf] = a; ·l·FTF+Nol 
(3.27) 

is the covariance matrix of the input signal, where I is the (2M+ 1) by (2M+ 1) identity 

matrix, and 

a=&[wx(n)] 

= &[(FTx+ 1J)·x(n)] 

f(M) 

f(O) 

f(-M) 

cl 
X 

(3.28) 

is the cross-correlation vector. Assuming that x(n) has zero mean and variance a;, from 

Equation (3.28), the corresponding MSE is given by 

Er(MSE -LE)= &[(x(n)-hT (MSE -LE)w)2 ] 

= a; -aT A-1&[wwr]A-1a 

= a: -ar A-1a 
X 

= ifx - aTh(MSE - LE) 

(3.29) 

Where we have used the fact that A is symmetric, which is obvious from (3.27). 

Now, we can establish the relationship between the MSE of the linear ZF equalizer 

and that of the linear MSE equalizer. From (3.25), (3.26) and (3.27), we have 

&"(ZF-LE) = ifx -2hT (ZF-LE)a+ hT (ZF-LE)A-1h(ZF-LE) 

= ifx -2hT (ZF -LE)Ah(MSE -LE)+ hT (ZF-LE)A-1h(ZF-LE) 

28 

(3.29a) 



From (3.29) and (3.29a), we obtain 

s2(ZF-LE)-82{MSE -LE) 

= -2hT (ZF -LE )Ah(MSE -LE)+ hT (ZF -LE )A -lh(zF -LE) 

+aTh(MSE -LE) 

= -2hT (ZF -LE )Ah(MSE - LE)+ hT (ZF -LE )A-1h(ZF -LE) 

+hT (zF -LE)ATh(MSE -LE) 

Because A is symmetric by the definition in (3.27), we have 

(3.29b) 

C(ZF - LE)= C(MsE - LE)-2hr (zF -LE)Ah(MsE - LE)+ hr (zF -LE)A-1h(ZF -LE) 

+hr (ZF-LE)Ah(MSE -LE) 

= C(MsE -LE) +(h(zF -LE)-h(MsE - LE)f A(h(zF -LE )-h(MsE -LE)) 

(3.30) 

where "ZF-LE" stands for zero-forcing linear equalizer. 

It will be interesting to compare the ZF solution with the MSE solution. First, we 

observe that 

(3.31) 

and 

w=u+11 (3.32) 

where 11 is the vector consisting of noise sample. Then from Equation (3.27) , we have 

A= &[(u + 1J)(u +n)T] 

= &[(FT X + 1J)(FT X + 1Jl] 
=FT ·&(xxT)F+No·I 

= 0-:FTF+No•I 
X 

Similarly, from Equation (28), we have 

(3.33) 
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a= &[(u + 17)x(n)] 

=&[(FTx+ 17)x(n)] 

From Equation (3.26), we have 

Therefore, ifthere is no noise at all, i.e., N0 = 0, then 

which is the same as the ZF equalizer. 

(4) Mixed Norm Linear Equalizer 

(3.34) 

(3.35) 

(3.35a) 

a. Infinite Length. While the ZF equalizer tries to eliminate the ISI completely 

without considering the effect of noise, the MSE equalizer treats the ISI and the noise 

equally. The mixed norm equalizer can highlight the relative significance of the two by 

adjusting a parameter. 

As mentioned in Chapter II, section 4, the mixed norm consists of two parts. The 

first part is the contribution from the error at the equalizer output; the second part is the 

prior knowledge about the combined channel q(n). Since the peak distortion defined in 

(3.6) is independent of the signal power, and the MSE term is related to the signal power, 

the peak distortion term is multiplied by O: before it is added to the MSE term for proper 

scaling. Nonetheless, this new measure is still indicative of how well the peak distortion is 
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minimized. With this modification, the mixed norm problem under consideration is to 

mm1m1ze 

A ·&[e2 (n)] +(1-A) ·&[ {[q(n)-8(n)]x(n)}2 ] 

Note that the second term also implicitly assumes the choice of the mean value of the 

unknown q(n) to be Ou, as in(2.11 ). 

In practice, before the equalizer, an automatic gain control (AGC) device is usually 

used to adjust the received signal to the nominal level. Therefore, for simplicity, we can 

assume that q( 0 )= 1. For the case of a Gaussian distribution, according to Parseval' s 

theorem, the peak distortion, defined as an knormhere, can be expressed as the integral 

of the power spectral density, 

where j{.} is the Z transform operator, and 

j{q(n)- o(n)} 

= J{/(n)*h(n)}-J{o(n)} 

= F(z)·H(z)-1 

(3.36) 

(3.37) 

The power spectral density :function corresponding to the linear MSE equalizer was given 

by equation (3.17). The power spectral density :function corresponding to the linear mixed 

norm equalizer is the weighted sum of (3 .17) and the contribution of the peak distortion: 
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A[ ~ll-F·Hl2 +NolHl2]+(1-A)IF·H-ll2 -~ 

= A[ ~(1-2 ·Re(F·H)+IFl2IHl2)+ NolHl2]+(1-A)IF ·H -112 · ~ 

=(~IFl2 +A·No)IHl2 -2a; ·Re(F·H)+a; 

=(~IFl2+A·No){IHl2- 2a;-~e(F·H) + ~F 2}- 11F12 +~ 
(a;IFI +A·No) (~IFI +A·No) (a;IFI +A·No) 

2 

A·No 
+----

IFl2 +A No 
~ 

The equalizer that minimizes this spectral density at each :frequency is 

F* 
H=----

IFl2 +A No 
a; 

and the corresponding MSE is 

Since O ~ ').., ~1, from (3.10), (3.21) and (3.40) we have 

where ''MN-LE" stands for mixed-norm linear equalizer. 

(3.38) 

(3.39) 

(3.40) 

(3.40a) 

From Equation (3.39), we observe that the mixed norm (MN) equalizer, like the 

MSE equalizer, also strikes a balance between inverting the channel to reduce the ISi and 

matching the channel to reduce the noise at the output. The difference is that a parameter, 

')..,, is introduced in the MN equalizer to adjust the relative significance of the ISi and the 
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noise. One may ask: since the MSE equalizer already can optimize the overall MSE, why 

do we need the MN equalizer which yields a higher MSE? The answer is that the MSE 

equalizer yields a lower MSE only in the case of infinite number of equalizer taps. In 

practice, since we have finite number of equalizer taps, the MSE equalizer may not 

always yield less MSE than the MN equalizer, especially when the feedback mechanism is 

introduced, as will be evident later. 

b. Finite Length. The finite version of the mixed norm is given by 

&{l[x(n)- y(n)]2 +(1-1)[/ (n)*h(n)- 8(n}]2 x2 (n)} 

= l·&{[x(n}-hTw]2 } +(1-l}o; ·&{[Fh-b]T[Fh-b]} 

= l·&{x2 (n}-2x(n}hT w+hT wwTh} +(1-l}o;{hTFTFh-2Fh+ l} 

(3.41} 

Taking the gradient of(3.41} with respect to hand setting it to zero leads to 

Recall from equations (3.33) and (3.34}, we have 

&{x(n)w} = a;FT 8 (3.42a} 

and 

(3.42b} 

Equations (3.42), (3.42a} and (3.42b} together lead to 

(3.43} 

or 

h(MN -LE}= (FTF+A· ~ ·lf1FT 8 
X 

(3.44} 
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On the other hand, from (3.26), (3.42a) and (3.42b), we have 

(3.44a) 

3. Feedback Equalizer 

(1) Why Do We Need A Feedback Equalizer? 

In theory, for a channel with a frequency response of 

a linear equalizer with an infinite number of taps and frequency response :function H( ejafl') 

could be designed to remove all phase distortion from the received signal without 

increasing the noise power at the equalizer output. This could be accomplished by making 

removing the amplitude distortion would require 

1 
JHJ=IFI (ZF-LE) 

or 

IHI - JFI (MSE-LE) . 
- IFl2 +N0 / ~ 

or 

IHI- IFI 
- IFl2 +A·N0 I~ 

(MN-LE) 
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which could greatly enhance the noise power at the equalizer output. The problem is 

inherent in the linear structure. The inclusion of a feedback portion has the potential to 

compensate for severe amplitude distortion without enhancing the noise. The data in the 

feedback filter is either from the previous decision as in the case of the decision feedback 

equalizer (DFE), or from the reference signal itself as in the applications we are going to 

discuss in chapter V. In the case where a reference signal is available, the data in the 

feedback delay line is noise free. In the case of the DFE, for a reasonable low error 

probability in the decision, the decision output is basically noise free, although a wrong 

decision can cause error propagation [13]. Therefore, generally speaking, the feedback 

portion does not provide noise enhancement. 

Another motivation for using the feedback filter arises from the practical restriction 

of a finite number of equalizer taps. In equalizing a multipath signal, the multipath is 

generally modeled by an FIR system Therefore, to effectively compensate for the 

multipath distortion the equalizer is generally a feedback filter[6,7,8,9,10], although this 

feedback filter may be unstable if the multipath FIR system has zeros outside the unit 

circle. If the equalizer is restricted to be FIR, the number of taps of the equalizer will be 

much more than the one with feedback structure. 

Figure 3-7 shows the structure of the decision feedback equalizer where the input 

of the feedback delay line comes from the decision output. Figure 3-8 shows another form 

of feedback equalizer where the input of the feedback delay line comes from a known 

reference signal. In both cases, the feedback portion g(n) strives to cancel the post cursor 

(after the reference position) ISi at the output of the combined channe~ which consists of 
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the channel f(n) and the linear equalizer h(n). The forward filter h(n) is responsible for 

canceling only the precursor ISi, and therefore is anticausal. Figures 3-Sa and 3-Sb 

illustrate the taps of the forward filter h(n) and feedback filter g(n), respectively. 

x(n f(n) decision ..........,.....--, 

g(n) 

feedback filter 

Figure 3-7. Decision feedback equalizer 

v(n) 
x(n f(n) h(n) 

forward filter 

ri(n) 
g(n) x(n) 

feedback filter 

Figure 3-8. Feedback equalizer with reference signal 

2 

1.5 

0 
1 

• 0.5 

• • • ..... ~ ~ ~ ~ -- - - - ~ 

• -0.5 

-1 
-5 -4 -3 -2 -1 0 2 3 4 5 

n 

Figure 3-Sa. Typical coefficients distribution of the forward filter h(n) 
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1.5 

0.5 • • • . . . . . ,.. • ~ ~ ~ - - - • 
-0.5 

-1 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

n 

Figure 3-Sb. Typical coefficients distribution of the feedback fiher g(n) 

In the following, we will focus on the feedback equalizer with a reference signal 

(Figure 3-8), since it is the waveform that needs to be restored in the application we are 

going to discuss later. 

As mentioned earlier, the reference position is always known to the equalizer (by 

correlating the ''row" signal received to the local reference signal). In the feedback 

equalizer, the forward filter h(n) is responsible for eliminating the precursor ISi (samples 

of the channel impulse response before the reference position); the feedback portion is 

responsible for canceling the postcursor ISi ( samples of the channel impulse response 

after the reference position). Since removing only the precursor ISi using the forward 

filter does not enhance noise as much as removing all ISi, and the feedback portion plays 

no part in the effect of noise, it is expected that the feedback equalizer will have less 

overall noise enhancement than the linear equalizer. 
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The feedback portion g(n) must be strictly causal. Therefore g(n)=O for n:::;;o. Ifwe 

allow the feedback part to have an infinite number of taps, we can completely eliminate the 

postcursor ISi by choosing suitable set of coefficients, as shown in the following . 

Referring to Figure 3-8, the output of the entire feedback equalizer is 

00 00 00 

v(n) = _L q(j)x(n- j)+ _L r/._j)h(n- j)- Lg(J)x(n- j) 
1=-00 1=-00 j=l 

~ 00 00 
(3.46) 

= L q(j)x(n- j)+ L(q(j)-g(j))x(n- j)+ L r/._j)h(n- j) 
j=-oo j=l j=-oo 

and the MSE at the equalizer output is 

&{[v(n)-x(n)]2} 

= &{[ i q(j)x(n-j)+ f(q(j)-g(j))x(n- j)+ f r/._j)h(n- j)-x(n)]2 } 
j=-oo j=l j=-oo 

(3.47) 

Given that the sequence x(n) is uncorrelated, and x(n) and 11(n) are uncorrelated with 

each other, 

&{[v(n)-x(n)]2} 
-1 co co (3.48) 

= a; "i:,q 2(j)+ o;(q(o)-1)2 + a; "i:,(q(j)-g(j))2 + No "i:,h2(j) 
j=-CO j=l j=co 

From Equation (3.48), once the forward filter is chosen, the overall MSE can be 

minimi7.ed by choosing the feedback filter 

gG)=qG) for j=l, 2, 3, ··· (3.49) 

where qG) is the combined channel impulse response. Equation (3.49) shows that for a 

given forward filter, the feedback filter that minimizes the overall MSE actually cancels 

the postcursor ISi at the output of the forward filter completely. 
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It remains to find a suitable forward filter. As with the linear equalizer, there are 

several criteria regarding how to choose the forward filter, and we name the 

corresponding feedback equalizers after these criteria. 

(2) Zero-forcing Feedback Equalizer 

a. Infinite Length. We adopt a method proposed by Messerschmitt [34], since it 

provides more insight into the physical meaning of the feedback equalizer. We start with 

introducing the predictor ( 1 +G( z) ). The forward filter of the zero-forcing feedback 

equalizer (ZF-FE) is modeled as a cascade of the zero-forcing linear equalizer (ZF-LE) 

and a predictor, shown in Figure 3-9. The ZF-LE will invert the channel, and the predictor 

on1y introduces post cursor ISi since G(z) is causal The ISi introduced by the predictor 

will be completely canceled by the feedback portion G(z). Note that the model of the 

forward filter is just for illustration purpose. It is not actually how the forward filter is 

implemented. 

F(z) v(n) 

t(n) G(z) x(n) 

Figure 3-9. ZF feedback equalizer model 
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x(n) 
-I' -I' 

v(n) 

r(n) (l+G(z))/F(z) 

Figure 3-10. Equivalent ZF feedback equalizer model 

An equivalent model ofFigure 3-9 is shown in Figure 3-10, where the signal and 

noise are treated separately. Since the ISi is completely canceled (precursor ISi is 

canceled by the forward filter, and postcursor ISi is canceled by the feedback filter), there 

is no ISi at the output of the entire equalizer. Therefore, the choice of the predictor 

( 1 +G( z)) has no effect on the signal itseJ.:t: but it does have impact on the noise at the 

output. Then G(z) can be chosen to minimize the noise variance at the output. Therefore, 

the ZF-FE has more degrees of freedom in minimizing the noise than the ZF-LE whose 

sole purpose is to invert the channel regardless of how much noise is in the system This 

qualitatively explains why the ZF-FE enhances less noise than the ZF-LE. We will 

compare the MSE values more quantitatively later. 

In order to find the predictor (l+G(z)) which will minimize the noise variance, we 

rearrange the noise path in Figure 3-10, shown in Figure 3-11: 

ll(n) --~,___llF_(z)__.I ~(n) ~ l+G(z) ---) y(n) 

Figure 3-11. Rearrangement of noise path for ZF-FE 
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where the white noise sequence ri(n) is colored by the ZF-LE (which inverts the channel) 

to yield <J>(n). The predictor (l+(G(z)) strives to fit an autoregressive (AR) model to the 

sequence <J>(n) by taking advantage of the correlation between the successive samples of 

<J>(n) to minimize the prediction error &[y2 (n)]. From linear prediction theory [40], we 

know that for a predictor that minimizes &[ y2 ( n) ], 

&[y(n+m)¢(n)] = R,rt,(m) = 0 form> 0 (3.50) 

i.e., the prediction error is uncorrelated with the past inputs. Since y(n) is a linear 

combination of <J>(n), <J>(n-1), ... , it follows that 

&[y(n+m)y(n)] = R,(m) = 0 form> 0 (3.51) 

Since the autocorrelation :function is symmetric, then 

R,(m)=O m-:1:0 

or 

Ry(m) = a; ·o(m) (3.52) 

i.e., the predictor that minimizes MSE of prediction error yields a white noise sequence. 

On the other hand, since G(z) is causal, g(m) (m>O) and g(O)=l together form the 

impulse response of the predictor. Thus the autocorrelation of the y(n) sequence is 

R,(m) = &{y(n+m)y(n)} 

= &{L¢(})g(n+m- J)· L¢<i)g(n-i)} 
j i 

= &{LLg(n+m- j)g(n-i)¢(j)¢(i)} 
j i 

Let i=j+k and t=n+m-j, then 
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~(m)=&{LL.g(n+m- j)g(n- j-k)(i.._j)<jJ(j+k)} 
j k 

=LL.g(t)g(t-m-k)Rik) 
t k 

(3.53) 

= g(m)* g(-m)*Rip{m) 

Combining (3.52) and (3.53), we have 

g(m)*g(-m)*Rip{m) = a;. ·8(m) (3.53a) 

From the definition of the Z transform, it is easy to ~ow that, for a real sequence g(m), 

the Z transform of the sequence g(-m) is 

00 

1{g(-m)} = Lg(-m)z-m 
m=-oo 

(3.54) 
n=-oo 

Note that (l+G(z)) is the Z transform of the sequence g(m) with g(O)=l and g(m)=O for 

m < 0. We know from the properties of the autocorrelation that the Z transform of the 

autocorrelation :function ~(m) is the power spectrum of the sequence <l>(n), i.e. 

1{Rip(m)} = l<1>(z)l2 

- No (3.55) 

- IF(z)l2 

TaJcing the Z transform of(3.53a) leads to 

ci.:(ZF-FE) 2 
[ l+G(z)][l+G(z-1)]= r ·IF(z)I 

No 
(3.56) 

Given IF(z)l2, finding G(z) in equation (3.56) is known as the spectral factorization 

problem Since (l+G(z)) is causal, (l+G(z-1)) is anti-causal. Therefore, Equation (3.56) 
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says that the predictor that minimizes the noise variance is the causal part of the 

factorization of channel power spectrum IF(z}i2. 

In the following, we shall find this predictor for the special case where IF(z}i2 is 

rational. 

Since No!IF(z}i2 is the Z transform of~(m), and by definition ~(m)=~(-m), 

then 

m=-oo 
(3.57) 

n=-oo 

No 
=---

IF(z-l)J2 

Equation (3.57} implies that ifZo is a pole (zero) of IF(z}l2 , then Zo-1 is also a pole (zero) 

of it. Let a1, ···, Rm be them simple zeros and b1, ···, bn be then simple poles of IF(z }12 

inside the unit circle. Then 1/a1, ···, 11am will be them zeros and 1/ bi, ···, 1/bn then 

poles ofiF(z}i2 outside the unit circle. Since IF(z}l2 is rational, it can be expressed as 

m 
II(l-a;z-1)(1-a;z) 

IF(z}i2 =K-~;;----­
II(l-b;z-1 )(1-b;z) 
i=l 

where K is a constant. 

(3.58} 

We now want to factorize the right hand side of Equation (3. 5 8) into ( 1 +G( z)) and 

(l+G(z-1}}. Since G(z) is causal, we want its poles inside the unit circle. We could assign 
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the zeros arbitrarily as long as one zero is assigned to ( 1 +G( z)) and the reciprocal of it is 

assigned to (l+G(z"1)). We choose such that the inverse filter 1/(l+G(z)) has its poles 

inside the unit circle and hence is. stable. This results in a predictor which is minimum 

phase, i.e., both its poles and zeros are inside the unit circle: 

m 
II(I-a;z-1) 

(l+G(z))=~;:~1 --­

II (I-b;z-1 ) 
i=l 

(3.59) 

with this factorization, from Equation (3.56) the MSE of the predictor error, which is also 

the MSE of the entire ZF-FE since there is no ISi at the output, is 

Et'(ZF-FE,rational) =a;= No 
K 

(3.60) 

One interesting observation from Equation (3.60) is that even though the channel 

frequency response like the one of Equation (3.58) may have zeros (nulls), the final MSE 

of the ZF-FE output can be finite. This is in clear contrast to the ZF-LE which may result 

in infinite MSE (Equation (3.10)) by trying to invert a channel frequency response with 

nulls. 

FE is 

From Figure 3-9 and Equation (3.56), we know that the forward fiher of the ZF-

1 
H(z) =-·(l+G(z)) 

F(z) 

a; IF(z)l2 1 

= No O l+G(z-1) • F(z) 

a; F*(z) 
= No 0 l+G(z-1 ) 

(3.61) 
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Therefore, for a rational channel frequency response, the procedure to find the ZF-FE is: 

(1) factorize IF(z)J2 , which yields the feedback portion G(z) and the factor [l+G(z-1)]; (2) 

calculate the forward filter by using Equation (3.61). Note that the forward filter obtained 

from (3.61) is a noncausal system, which is expected from Figure 3-Sa. 

For a general case where F(z) is not rational, the solution can be found by the 

geometry method introduced in [34]. It is shown in Appendix C that for a general channel 

frequency response F(z), the ZF-FE with infinite length yields the output MSE: 

i2(ZF-FE) = No ·exp{T f T/2 1n[l/lF(e12ef)l2 ]d/ 
-T/2 

It is further shown that 

(3.62) 

(3.63) 

Equation (63) quantitatively shows what we have explained earlier, i.e., the ZF-FE always 

has less noise enhancement than the ZF-LE. 

b. Finite Length. For a finite length forward equalizer with length of(M+ 1), we 

can only guarantee the ISi in the equalizer span(-~ n ~ 0) to be zero, i.e., 

0 
q(n) = 'I:,h(j)f(n- j) = 1, for n = 0 (3.64) 

J=-M 

= 0, for - M ~ n < 0 

That is to say, with respect to the reference position, h(n) is strictly anti.causal, because 

h(n) is designed to cancel only the precursor ISi. Equation (3.64) is written in matrix form 

as 

(3.65) 

Where 
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f{O) f{-1) ... f{-M) 

f{l) f{O) f{-M+l) 

F= 
u 

f{M) f{M-1) ... f{O) 

h= 

h(-M) 

h(-M+l 

h(O) 

6 = 
u 

0 

0 

1 

(3.66) 

If Fu has full rank, i.e., the inverse of Fu exists, then the forward filter of ZF-FE is 

h(zF-FE) = Fu -l. Bu (3.67) 

Equations (3.65) to (3.67) are the anticausal versions of equations (3.12) to (3.14). On the 

other hand, from Equation (3.49), we have for the feedback filter with length N 

0 
g(n) = q(n) = 'J:.h(J)f(n- j) 

j=-M 

or in matrix form 

where 

F= 
b 

f{l+M) f{M) ... f{l) 

f{2+M) f{l +M) ... 1{2) 

f{N+M) f{N+M-1). f{N) 

Then the feedback filter of the ZF-FE is 

g(ZF-FE) = Fb ·h(ZF -FE) 

=Fb·F-1 ·8 u u 

for O<n~ N 

h= 
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h(-M) 

h(-M+l) 

h(O) 

g = 

(3.68) 

(3.69) 

g(l) 

g(2) 

g(N) 

(3.70) 

(3.71) 



Due to the finite length, both the forward and feedback filters do not cancel the ISi 

completely. Therefore, there is some ISi at the output of the entire ZF-FE. There is no 

simple closed form expression for the MSE in this case. Numerical solutions are generally 

used to evaluate the performance. Several factors may have an effect on the ultimate 

performance, including the particular channel characteristics being equalized, number of 

taps for forward and feedback :fihers and the noise variance, etc .. Some of these will be 

shown in Chapter V for the case of television multipath cancellation. 

(3) MSE Feedback Equalizer 

a. Infinite Length. The MSE feedback equalizer (MSE-FE) minimizes the overall 

MSE value at the output of the entire equalizer. Unlike the ZF-FE, there is no constraint 

on the forward filter other than that it has to be linear. 

The method we use to find the forward filter and feedback filter is similar to the 

one used in the ZF-FE case. We first model the forward filter as the cascade of a linear 

equalizer and a linear predictor, as shown in Figure 3-12, 

F(z) v(n) 

TJ(n) G(z) x(n) 

Figure 3-12. MSE feedback equalizer model 
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where H1(z) is a linear equalizer. The error at the equalizer output can be found by using 

Figure 3-13., which can be further simplified to Figure 3-14. 

x(n) 

x(n F(z) e(n) 

Figure 3-13. Model to calculate the error for MSE-FE 

x(n) 1 - F(z)Hl(z) 

1 + G(z) e(n) 

r(n) Hl(z) 

Figure 3-14. Equivalent model of Figure 3-13 

To minimize &[ e2(n)], we are going to minimize the power spectral density of 

e(n), I E(z) I 2, at each :frequency. From Figure 3-14, we can see that I E(z) I 2 can be 

minimized in two steps: (1) choose H1(z) so that I <I>(z) I 2 is minimized; (2) choose G(z) 

so that I E(z) I 2 is minimized given <l>(n) as input to the predictor. Comparing Figure 3-14 

with Figure 3-6, we can see that to find H1(z) is actually to find the optimum MSE-LE. 

From Equation (3.20), we have 

(3.72) 

and the spectral density of <l>(n) is 
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l<I>(z)l2 = a;(I-FH1)(1-F*H/)+No·IHii2 

= o;[l-FH1 -F*H/ +IFl2IHl2]+NolHii2 

= a; [IFl2 + ' 11Hii2 + a; [1- FH1 - F* H/] 
X 

= if. . IFl2 + if. [ 1- 2IFl2 ] 

x JFl2 + N 0 x JFl2 + No 
a; a; 

No 

(3.73) 

The optimum predictor can be found by spectral factorization in a similar fashion 

as in the ZF-FE case. Similar to Equation (3.56), we have 

(3.74) 

As in the case ofZF-FE, the prediction error, i.e., the error of the entire MSE-FE, is 

white. But, in contrast to the ZF-FE, the predictor error is not Gaussian due to the 

residual ISi [11,13]. The factorization can be done in the same any as in ZF-FE, except 

that this time we want to factorize (IFl2 +Nola;) instead of IFl2. Of Course, the 

resulting forward filter H(z) is also anticausal 

The MSE for the general channel :frequency response can also be found in a similar 

way ( see Appendix C ): 

c'-(MSE -FE)= Noex.p{T J T/2 ln[l/ (jF(ej2ef)j2 + Nol a;)]df} (3.75) 
-T/2 

It is also shown that 

(3.76) 

as expected. From Equation (3.62) and Equation (3. 75), it can be seen that 
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(3.77) 

i.e., the MSE-FE with infinite length always yields less or equal noise enhancement than 

the ZF-FE. Note that this conclusion is true only for the equalizers with infinite length. For 

the equalizers with finite length, there is no general conclusion, and we have to resort to 

numerical solutions. As will be seen in Chapter V, for some particular channel 

characteristics and equalizers with finite length, the ZF-FE may outperform the MSE-FE 

in obtaining smaller overall MSE. 

An alternative way to derive the MSE feedback equalizer is to use the Wiener-

Hopf theory, as shown in Appendix B [ 41]. 

b. Finite Length. From Figure 3-8, the output of the entire equalizer is 

0 N 
v(n) = I: h(j)w(n- j)- I;g(j)x(n- j) 

j=-M j=l (3.78) 
h T T = •WM-g •XN 

where 

wM =[w(n+M), ... ,w(n)f 
T 

=Fu xM+ 1J 
(3.79) 

where 

xN = [x(n-1), ... ,x(n-N)f 

xM = [x(n), ... ,x(n+M)f 

and Fu is defined in (3.66) and rt is the vector consisting of noise samples. The MSE is 

&{[x(n)-v(n)]2} =&{[x(n)-hT ·wM+gT ·xN]2} 

= &{[x(n)-hT ·WM]2 -2[x(n)-hT ·WM]·gT •XN +gT ·XN ·X~ •g} 
(3.80) 
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The MSE is minimized by setting the gradient with respect tog to 0. Considering 

Equation (3.79) and taking into account the fact that x(n) is an uncorrelated sequence and 

x(n) and 11(n) are uncorrelated, this leads to [14] 

Where 

F= 
p 

f{O} 

f{l) 

f{N-1} 

f{-1) 

f{O} 

f{N-2) 

f{-M} 

f{l-M) 

f{N-M-1} 

(3.81} 

(3.82} 

Considering Equation (3.81} and setting the gradient ofMSE with respect to h to zero 

leads to 

Where 

and 

AP =&[WM ·W:iJ-] 

= &'[(F/ XM + 1J}(F/ XM + 1Jf] 

= &[F/ XMX:iJ-Fu + 1]· if+ F/ XM if+ 1JX:iJ-Fu] 

= c? ·FT ·F +No•I 
X U U 

(3.84} 
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a= & [wx(n)] 
p 

= & [ (F x + Tl )x(n) ] 
u M 

2 
=CJ 

X 

f(O) 

f(-M) 
(3.85) 

From Equations (3.81) and (3.83), the optimum.feedback filter that minimizes the MSE is 

(3.86) 

(4) Mixed Norm Feedback Equalizer 

a. Infinite Length. We use a similar method as the one used for MSE-FE. 

Referring to Figure 3-14, we first want to find the linear equalizer H1(z) that minimizes the 

mixed norm of <l>(n). This is exactly the same as finding the optimum MN-LE. From 

Equation (3.38), we have 

(3.87) 

We then want to find the optimum linear predictor that minimizes the MSE of the 

prediction error. Note that for the prediction error, there is no such thing as a mixed norm. 

Following a similar procedure as the one used in ZF-FE, this optimum predictor can be 

found by factorization: 

(3.88) 
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and the MSE can be expressed as (see Appendix D) 

&7-(MSE -FE)= Noexp{T f ~;::Tln[ll(IFl2 +Wo/ o;)]d/} (3.89) 

From Equations (3.62), (3.75) and (3.89), we have 

(3.90) 

b. Finite Length. The finite version of the mixed norm for the FE case is given by 

&{l[x(n)-v(n)]2 +(1-l)[q(n)-8(n)]2 x2 (n)} 

Where 

0 
q(n) = "J:,h(j)f(n- j) 

J=-M 

Equation (3.91) can be written in matrix form as 

Where 

l·&[x2(n)-2x(n)hr ·w + hr wwrh] 

+(1-J)(F>-<Juf (Fuh-Ou)~ 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

Following the same arguments as in MN-LE and MSE-FE, it can be shown that the 

optimum forward filter is 

Where 

and 

AMN =&[lwwT +(1-l)F/Fuo;] 

= o;F/Fu +Wol 

(3.95) 

(3.96) 
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a MN= & [wx(n)] 

= & [ (F x + rt )x(n) ] 
u M 

2 =cr 
X 

fl:O) 

fl:-M) 

as in Equation (3.85). 

The feedback filter of MN-FE is 

where Fp is de.fined in equation (3.82). 

(3.97) 

(3.98) 

Again, there is no simple closed form expression for the MSE of the MN-FE. The 

performance evaluation relies heavily on a numerical solution. It is expected that the final 

MSE value depends on the number of taps for both forward and feedback filters, the 

channel characteristics, the noise variance and the value of the parameter 'A.. This subject 

will be explored later in Chapter V. 

4. Summary 

In this chapter, the communication system model was introduced. It was further 

simplified and cast into the digital signal processing framework. The concept of 

intersymbol interference (ISi) was then reviewed and the problem of eliminating it, i.e. 

equalization, was formulated. Finding the equalizer coefficients was shown to be 

equivalent to minimizing norms. Several norm-based criteria were introduced. The zero-
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forcing (ZF) criterion aims at eliminating the ISi regardless of the noise environment. The 

equalizer it leads to has a potential of enhancing noise for a channel with spectral nulls. 

The mean square error (MSE) criterion strikes a balance between reducing ISi and 

minimizing noise enhancement. The mixed norm (MN) criterion assumes some a priori 

knowledge about the underlying channel impulse response. (In fact, in this chapter, all 

three (ZF, MSE and MN) equalizers assume a known channel impulse response. But the 

MN equalizer has a distinct way to use this knowledge, which will become more apparent 

in Chapter V where no explicit channel impulse response is available). The relative 

significance of this a priori knowledge and the MSE is quantified by a parameter 'A. 'A will 

be chosen according to practical applications. 

Starting with linear structure, equalizers with infinite and finite number of taps 

were derived for the three criteria, and the resulting MSE values were compared. The 

feedback equalizer was then studied. It was noted that the feedback equalizer can 

compensate for severe amplitude distortion without significantly enhancing noise. Further 

insight was obtained by the introduction of the linear predictor in the model of the 

feedback equalizer. The feedback portion of the equalizer can be found by spectral 

factorization and the forward filter can be calculated as a function of the channel impulse 

response. 

Closed form expressions for the MSE of feedback equalizers with infinite length 

were derived using different criteria. It was shown quantitatively that the feedback 

equalizers yield less overall MSE than the linear counterparts. 
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The following paragraph summarizes the main results covered in this chapter for 

the linear and feedback equalizers [42]: 

A. Linear equalizers: 

* Block diagram: Figure 3-4 

* Definition for F, h, o: Equation (3.13) 

(i) ZF-LE (zero-forcing linear equalizer): 

(ii) MSE-LE (mean-square-error linear equalizer): 

(iii) MN-LE (mixed-norm linear equalizer): 

h(MN-LE) = (FTF+A· ~ ·If1FT 8 
X 

B. Feedback Equalizers: 

* Block diagram: Figure 3-9 

* Definition for Fu, Fh, Fp, <Xp, <XMN, h, g, 6u: 

Equations (3.66), (3.70), (3.82), (3.85), (3.97) 

* Note: his anticausal and g is causal 

(i) ZF-FE (zero-forcing feedback equalizer): 

h(zF-FE) = Fu -l. Ou 

g(ZF-FE) = Fb ·h(ZF -FE) 

(ii) MSE-FE (mean-square-error feedback equalizer): 
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g=FP·h 

(iii) MN-FE (mixed norm feedback equalizer): 

h(MN-FE) = [O: ·F/ ·Fu +A·No·I]-1ap 

g=FP·h 
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CHAPTERN 

ADAPTNE AND AUTOMATIC EQUALIZATION 
BY MINIMIZING NORMS 

In chapter ill, we found the optimum equalizer taps by minimizing norms: the L1 

norm of the combined impulse response for ZF; the L2 norm of the error signal for MSE; 

and the mixed norm for MN. We did the same thing for two different equalizer structures: 

the linear equalizer (LE) and the feedback equalizer (FE). In all of the above cases, we 

assumed that the channel impulse response ( or equivalently the channel :frequency 

response) is available. In most practical situations, this information is unknown. For 

example, in the television multipath cancellation problem, the channel characteristics 

depend on such factors as the locations of the TV receiver and the broadcasting station ( or 

its transmitting antenna); the geographical environment in the area (mountains, building, 

etc.), etc .. All these factors are not available when the equalizer is designed. Therefore, the 

equalizer has to be able to identify the channel characteristics by itself 

There are two distinct techniques in identifying the channel characteristics. One is 

generally called the "automatic" equalizer which uses a known signal as a reference. For 

example, in most communication systems, the equalizer is trained with a training signal 

(which is known to the receiver) before the application signal is transmitted. The 

reference signal can also be interleaved with the application signal. For example, in the TV 

multipath cancellation problem, the ghost cancellation reference (GCR) signal is 

transmitted during the vertical blanking period in every field. The second technique is 
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called the "adaptive" equalizer which adjusts the equalizer taps based on some statistics of 

the signal without an explicit reference signal. The ''blind equalizer" belongs to this 

category, which strives to restore the transmitted signal only by obseivation of the 

received signal over a nonminimum phase channel [43, 44, 45, 46]. Typical criteria used 

in the blind equalizer include entropy, higher order cumulants or bispectrum. 

In this chapter, we are going to focus on the automatic equalizer, i.e., a known 

reference signal is available. The chapter starts with the automatic linear equalizer 

obtained by minimizing norms. The result is then extended to the feedback equalizer. 

General comments on the performance of these equalizers are given as conclusions of the 

chapter. 

1. Automatic Linear Equalizer 

(1) Minimizing the L1 Norm and the ZF Algorithm 

a. Minimizing the L1 Norm. Effort to solve the L1 problem began with 

Edgeworth's work in 1880's. Since then a lot of algorithms have been developed, among 

which there are three major categories, namely, linear programming based algorithms, the 

iteratively reweighted least squares (IRLS) method, and the residual steepest descent 

(RSD) method. 

There are a number of different formulations of the L1 problem in linear 

programming, among which the Bartel-Roberts algorithm [47], the Bartel-Conn-Sinclair 

algorithm [48], and the Bloomfield-Steiger algorithm [49] are three most representative 
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ones. All these algorithms are of the extreme fits type [50]. Later Ruzinsky and Olsen [51] 

proposed an L1 optimization algorithm using a variant of the Karmak:ar's linear 

programming technique, in which the worst case computational complexity is the 

polynomial of the number of unknowns. By contrast, the worst case computational 

complexity of the extreme fits type is the exponential of the number of unknowns. 

The IRLS algorithm solves the L1 problem by iteratively computing a weighted 

least squares solution with weights optimized in the L1 sense. Schlossmaker [52] studied 

the IRLS and compared it with the linear programming-based methods then available and 

showed that the IRLS is much more efficient than the linear programming-based 

counterparts. But later Fair and Peck indicated that the IRLS can be numerically unstable 

and converge to the wrong value [53]. 

The IRLS was re-studied by Yarlagadda et al. [37]. They used the fast Fourier 

transform to implement the IRLS algorithm and illustrated that large overdetermined 

systems of equations have been solved successfully and the solutions converged in every 

case. 

The third category of algorithms for the L1 problem is the residual steepest descent 

(RSD) method [54,37]. Consider the set of linear equations of (2.1 ), the RSD algorithm 

finds the solutions to the equations using the following iteration: 

(4.1) 

where 

(4.2) 

and 
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lf/;(k) = sgn{Xc(k)-y}; (4.3) 

The simplest case is to let L\ k be some constant. But this does not guarantee fast 

convergence or may result in convergence to the wrong value. The optimum L\ k can be 

chosen by minimizing the L1 norm [37] 

(4.4) 

where 

r(k) = -y + X c(k) (4.5) 

is the residual vector. The minimization process can be carried out by the IR.LS algorithm 

mentioned earlier. Since this is a one variable (L\k) optimization, the computation involved 

is much less than the IR.LS algorithm for solving the c vector itself 

b. Minimizing Peak Distortion and Lucky's ZF Algorithm. The L1 solution 

that minimizes the peak distortion defined in (3.6) may not be unique. Ifwe defined the 

truncated peak distortion 

M 

DM = I:lq(n)I (4.6) 
n=-M,meO 

where q(n) is the combined channel impulse response, then finding the ZF-LE equalizer 

with (2M+ 1) taps that minimizes DM is unique, as long as the matrix F defined in (3.13) is 

of full-rank. It has been shown in [39] that ifh(O) is used to satisfy the constraint q(O)=l, 

then DM is a convex :function of the equalizer taps h(n) (-M::; n::; M, n :;t:O). Therefore, 

steepest descent technique can be used to estimate the set ofh(n) that minimizes ~-

Before we derive the algorithm, we define a measure called initial distortion: 
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00 

Do= I:l/(n)I (4.7) 
n=-oo,n'i'O 

where f{n) is the channel impulse response. D0 indicates how severe the ISi is before 

equalization. In binary baseband transmission, D0 < 1 means the "eye" of the eye pattern is 

open prior to equalization. 

In the following derivation, the transmitted signal x(n) is assumed to be a periodic 

pulse sequence with period much longer than the pulse duration. Therefore, the input 

signal to the equalizer closely approximates the impulse response of the channel f{n), and 

the signal at the equalizer output closely approximates the impulse response of the 

combined channel q(n). 

The steepest descent algorithm updates the coefficient vector of the equalizer in 

the opposite direction of the gradient ofDM: 

M BDM 
VDM= I: --·a. 

j=-M,j'i'O &J(j) J 

Where aj is a unit vector in the direction of the hG) coordinate, and 

BDM M iq(n) 
::,,.( .) = I: ~-( .) ·sgn(q(n)) 
urt J n=-M ,n'i'O Ut J 

M 
= I:f(n- J)·sgn(q(n)) 

n=-M,n'i'O 

Assume that f{n) (for n:t:O) are small compared to f{O), then 

:;) ~ /(O)·sgn(q(j)) 

The equalizer taps can be updated as follows: 

h(j, new) = h(j, old)- A · sgn( q(j, old)) 

62 

(4.8) 

(4.9) 

(4.10) 

(4.11) 



Where A is the step size. Equation ( 4.11) says that the equalizer that minimizes the 

truncated peak distortion,~' can be updated, based on the sign of the combined channel 

impulse response. When the transmitted signal, x(n), is a sequence of impulses as assumed 

here, the combined channel impulse response can be approximated by the equalizer output. 

The convergence of this algorithm is guaranteed only if the initial distortion D 0 is 

less than one, and the step size A is sufficiently small. This is shown as follows [39]: 

M 

q(n,new) = "f:.h(J,new)f(n- j)+ f(n) 
j=-M,j¢0 

M 
= "f:.[h(j,old)-A·sgn,(q(j,old))]f(n- j)+ f(n) 

j=-M,j¢0 

M 
= q(n,old)-A "f:.sgn,[q(j,old)]f (n- j) (4.12) 

j=-M,j¢0 

= q(n,old)-A ·sgn,[q(n,old)]f(O) 
M 

-A "f:.sgn,[q(j,old)]f(n-j) 
j=-M,j¢0,n 

Therefore, 

lq( n, new )I :::; l[lq(n, old)I- A · f ( n) ]sgn,[ q( n, old) ll 
M 

+A "Ll/(n- J)I 
(4.13) 

j=-M,j¢0,n 

But 

M oo 

"Llf(n- J)I:::; "Ll/(n- J)I = f(O)·Do </(0) (4.14) 
j=-M,fi'O,n j=-oo,j¢0 

where we have assumed that D0 < 1 and f{O)>O. 

So 

lq(n,new)l<IJq(n,old)I-A · /(0)1 +A· /(0) (4.15) 

Iflq(n,old)I> A· /(0), then 
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lq( n, new )i<lq( n, old)I 

i.e., the ISi is consistently decreasing. 

If lq(n,old)I< A· f (0), then 

lq(n,new)i<2A · /(0) 

(4.16) 

(4.17) 

i.e., the ISi will eventually be within the bound of2A f{O). As A approaches zero, the 

truncated peak distortion DM will approach zero. 

There are two problems with this algorithm. First, D0 < 1 may not always be 

guaranteed in practical applications ( although this is a sufficient but not necessary 

condition for the algorithm to work). Secondly, even ifD0 < 1, this algorithm only 

guarantees to minimize the ISi within the span of the equalizer. It may create some new 

ISi outside the span of the equalizer. 

c. Stochastic ZF Algorithm. In Lucky's ZF algorithm, the transmitted signal is 

assumed to be a sequence of impulses. In most practical applications, this is generally not 

the case, because this kind of signal does not perform well in a noisy environment. For the 

same peak power level (which is generally the measure of power in the transmission power 

amplifier) and noise environment, this kind of signal will have less signal to noise ratio 

than such signals as the pseudo random sequence (e.g. M-sequence) and the GCR signal. 

Therefore, signals with higher average power are used instead. These signals are usually 

zero-mean and uncorrelated, i.e., 

~(m) = &[x(n)x(n-m)] = ~ ·b"(m) (4.18) 
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For this kind of signal , Lucky's algorithm is no longer valid, since the equalizer 

output can no longer approximate the combined channel impulse response. It has to be 

estimated. 

From Figure 3-3, the error at the output of the equalizer is 

e(n) = y(n)- x(n) 

= "I:,x(j)q(n- j)+ "I:, r,(_j)h(n- j)-x(n) (4.19) 
j j 

Note that the transmitted signal, x(n), is also the desired output of the equalizer. 

The cross correlation between e(n) and x(n) is 

~x(m) = &{e(n)x(n-m)} 

= &{["i:,x(k)q(n-k)-x(n)]·x(n-m)} 
k 

= "i:,q(n-k)·Rx(n-m-k)-Rx(m) 
k 

= "i:,q(n-k)· a; ·8(n-m-k)+a; ·8(m) 
k 

= ~ ·(q(0)-1), if m = 0 
~ ·q(m), if m "* 0 (4.20) 

Therefore, Rex(m) can be used to estimate the combined channel impulse response, 

because Rex(m)=O for all m would imply that q(m)=8(m), as desired for zero-forcing. In 

practice, the expectation in Equation ( 4.20) is approximated by the instantaneous value: 

~x(m) ~ e(n)x(n-m) (4.21) 

Using this estimation, Equation ( 4 .11) can be rewritten as 

h(j,new) = h(j,old)-L\ ·sgn[e(n)x(n- j)] (4.22) 

Equation ( 4.22) is called the stochastic version of Lucky's ZF algorithm. 
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M 
If Lq2 (n), instead of~ defined in (4.6), is to be minimized, the equalizer can 

n=-M,n#O 

be updated by 

h(j,new) = h(j,old)- Ll ·e(n)x(n- j) (4.23) 

Equation ( 4.23) is also commonly referred to as a stochastic ZF algorithm in the 

literature. 

(2) Minimizing the L2 Norm and the LMS Algorithm 

In Chapter III, section 2.3.b, we have shown (see Equation (3.25)) that the MSE 

at the linear equalizer output is 

&{[x(n)- y(n)]2 } 

= &{x2 (n)-2x(n}hT w(n) + hT w(n)wT (n}h} 

(4.24) 

Where w(n)=[w(n+M) ... w(n) ... w(n-M)f This is a convex function of h. Therefore, 

steepest descent algorithm can be used to find the coefficient vector h: 

oMSE 
h(n + 1) = h(n)- Ll ·-­

oh(n) 
(4.25) 

where the gradient ofMSE with respect to h can be found from Equation (4.24). 

oMSE =2&[w(n)wT(n}]h-2&[w(n)x(n)] 
oh(n) 
=2Ah-2a 

(4.26} 

where A and a. are defined in Equations (3.27} and (3.28), respectively. 

From ( 4.25) and ( 4.26), we have 
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h(n + 1) = h(n)-2A[Ah(n)- a] (4.27) 

It has been shown [ 11] that as long as 

O<A<l/ ~max (4.28) 

where Smax is the maximum eigenvalue of the matrix A, the coefficient calculated by (4.27) 

will always converge to h(MSE-LE) defined in (3.26). 

In practice, the ensemble averages A and a. are approximated by the unbiased 

estimates, which are the instantaneous values: 

Then 

A= E[w(n)wT(n)] 

:::iw(n)wT(n) 

a= E[w(n)x(n)] 

:::iw(n)x(n) 

Ah(n)- a~ w(n)wT (n)h(n)-w(n)x(n) 

= w(n)[y(n)-x(n)] 

= w(n)·e(n) 

From Equations (4.27) and (4.30), we have 

h(n + 1) = h(n)-2Ae(n)w(n) 

Equation (4.31) is the celebrated least-mean squares (LMS) algorithm. 

(4.29) 

(4.30) 

(4.31) 

Comparing with the stochastic ZF algorithm of(4.32), rewritten in vector form, 

h(n+ 1) = h(n)-2A ·e(n)x(n) (4.32) 

where x(n)=[x(n+M) ... x(n) ... x(n-M)r is the reference signal vector (which is also the 

transmitted signal vector), we can see that the LMS algorithm updates the equalizer 
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coefficients vector in the direction of the received signal vector, whereas the ZF algorithm 

updates it in the direction of the reference signal vector. Figure 4-1 shows this difference. 

h(n+ 1), ZF 

/ 
~delta.e(n). x(n) 

~delta.e(n) v<:n) 

Figure 4-1. Two-dimensional vector updates in ZF and LMS 

(3) Minimizing the Mixed Norm 

The mixed norm defined in ( 3. 41) is rewritten as 

&{A[x(n)- y(n)]2 +(1 + A)[q(n)- 5(n)]2 x2(n)} 

= A&{x2 (n)-2x(n)hTw(n)+hTw(n)wT (n)h} 

+(1-A)&{[hrf - 5(n)][hrf -5(n)f x2(n)} 

(4.33) 

In most practical applications, we can assume f(O) >> f(n) (n * 0). For example, in the 

ghost cancellation problem, this means the main signal is much stronger than the ghosts. 

Taking the gradient of the above mixed norm with respect to h yields 

Where 

_8M._SE_ = 2..i(Ah- a) +2(1-A)/(O)(q-b)o; 
ih 
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q(-M) 0 

q= q(O) 6 = 1 

q(M) 0 
(4.35) 

FromEquation (4.20), we know that 

q(n)-o(n) = ~x(n)/ ~ (4.36) 

Equations (4.34), (4.35) and (4.36) together lead to 

8MSE 
-oh-= 2l·(Ah- a)+2(1-l)/(O)·&[e(n)x(n)] (4.37) 

Using ( 4.30) and approximating the expectations by the unbiased estimates, we have 

8MSE 
oh = 21 ·[e(n)w(n)] +2(1-1) · /(0) ·[e(n)x(n)] (4.38) 

Ifwe assume f(O) = 1 (if not, it can be absorbed by A), we have the steepest descent 

algorithm: 

h(n+ 1) = h(n)-2.A ·e(n)·[lw(n)+(l-l)x(n)] (4.39) 

When ).,=O, (4.39) reduces to the stochastic ZF algorithm (4.32); when ).,=l, it reduces to 

the LMS algorithm (4.31). 

2. Automatic Feedback Equalizer 

(1) Updating the Feedback Filter 

It has been shown in Chapter ill that the feedback equalizer has the potential of 

compensating for severe amplitude distortion without enhancing the noise power. But 
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the solution in Chapter ill requires the knowledge of the channel impulse response, which 

is generally not available in practice. Therefore both the forward and feedback filters have 

to be adjusted based on the received signal and the reference signal. 

Before we derive the algorithms to calculate the filter coefficients, we :first 

establish the relationship between the feedback filter and the forward filter, given that the 

overall MSE at the output of equalizer is to be minimized. 

First, from Figure 3-8, we establish the model for the output error, shown in 

Figure 4-2. 

x(n) F(z)H(z)-G(z) 

+ 
v(n) 

tin) H(z) 

Figure 4-2. Model for the output error 

Assuming that the sequence x(n) is uncorrelated, and that x(n) and 11(n) are uncorrelated 

with each other, and for a forward filter with (M+ 1) taps and a feedback filter with N taps, 

defining 

0 
q'(n) = L,h(i)f(n-i)-g(n) 1 5.n5.N 

i=-M 

0 
Lh(i)f(n-i) otherwise (4.40) 

i=-M 
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then from Figure 4-2, we can evaluate the overall MSE: 

&{e(n)2} =&{[v(n)-x(n)]2 } 

=&{[Lq'(J)x(n- j)+ fh(J)TJ(n- j)-x(n)]2 } 
j J=-oo 

= &{[(Lq'(J)x(n- j)-x(n))+ fh(J)r/.._n- j)]2 

j J=-oo 

= O: Lq'2 (J)+ O:[q'(o)-1]2 +No"f,h2 (J) 
J,t,O j 

From ( 4.40) and ( 4.41 ), the overall MSE can be minimized by choosing th~ 

feedback filter to eliminate the first N postcursor ISi samples, i.e., by letting q'(n) =O for 

1 <n~. This leads to a set of feedback filter coefficients 

0 
g(n) = Lh(i)f(n-i) 

i=-M 

= q(n), 1 5:n-.5:N (4.42) 

That is to say, the ISi term, hence the overall MSE, can be reduced by choosing the 

feedback filter to cancel the postcursor ISi within the span of it. 

In practice, as in the linear equalizer cases, the channel impulse response, f(n), is 

not available. Note that the right-hand side of Equation (4.42) consists of the first N 

samples of the combined channel impulse response following the reference position, which 

can be identified in a similar manner as in the linear equalizer case (Equations (4.20), 

(4.21)), assuming that x(n) is a signal satisfying equation (4.18). 

Based on the above observations, an algorithm to update the feedback filter is 

proposed: 

g(n+ 1) = g(n) +.1 ·e(n)·x'(n) (4.43) 
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where e(n) is the error at the output of the entire filter, and x'(n) is the reference signal 

vector (which is also the transmitted signal vector): 

e(n) = v(n) - x(n) 

x'(n)= 

x(n-1) 

x(n-2) 

x(n-N) 

Equation ( 4.43) is justified by the fact that 

&{e(n)x'(n)} 

= & {[ v( n) - x(n) ]x' ( n)} 

= &{v(n)x'(n)} 

x(n-1) 

x(n-2) 
= & { [ ~ q(i)x(n-i) - ~ g(i)x(n-i) ] } 

= cl { 
X 

1 1 

q(l) 

q(2) 

q(N) 

g(l) 

g(2) 

g(N) 

x(n-N) 

} 

(4.44) 

(4.45) 

Driving &{e(n)x' (n)} to zero effectively approaches a feedback filter that satisfies 

Equation (4.42). 

Note that Equation ( 4.43) does not assume any constraints on the forward filter, it 

just shows how the feedback filter can contn"bute towards the goal of minimizing the 

overall MSE, with the given forward filter. It is expected that the choice of the forward 
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filter will make both the overall MSE and the feedback filter different. As in the linear 

equalizer, there are several ways to update the forward filter coefficients, depending on 

the chosen criterion. 

(2) Automatic Zero-forcing Feedback Equalizer 

The forward filter of a zero-forcing feedback equalizer strives to eliminate the 

precursor ISi in the span ofit, as shown in (3.64). The solution, Equation (3.67), needs 

explicitly the channel impulse response, which is not available in practice. An alternative 

method has to be used. 

Since our goal is to eliminate the precursor ISi, we can adjust the forward filter to 

approach this goal without obtaining the channel impulse response explicitly. To do this, 

we form the error signal from Figure 3-8, 

e1(n)=y(n)-x(n) 

= '2:,q(j)x(n- j) + '2:,h(j)r!._n- j)- x(n) 
j j 

Define vector 

Then 

x(n+M) 

· x(n+ 1) 
x(n) 
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(4.47) 



q(-M) 0 

& [e 1 (n) x{n)]=cr~ { q(-l) 

q(O) 

0 

l 

} 

(4.48) 

An algorithm driving &[ e1(n)xu(n)] to zero effectively converges to a set of coefficients 

h(n) (-~<0) that satisfy equation (3-64), i.e., resulting in the elimination of the ISi in 

the span of the forward filter. In practice, as before, the expectation is approximated by 

the instantaneous value. Based on the above observations, an algorithm is proposed as 

follow: 

h(n+ 1) = h(n)-A ·e1(n)xu(n) (4.49) 

Equation ( 4.49) is similar to Equation ( 4.32) (the vector form stochastic ZF algorithm) for 

the linear ZF equalizer except that here h consists of only the first (M+ 1) taps and xu(n) is 

the upper half of x(n). This is expected, because the forward filter of ZF-FE only cancels 

the precursor ISi. In the feedback equalizer context, we also call (4.49) the stochastic ZF 

algorithm. Equation ( 4.43) is used to update the feedback filter coefficients g. 

(3) Automatic MSE Feedback Equalizer 

As mentioned earlier, the feedback filter only strives to cancel the post cursor ISi 

at the output of the forward filter. Therefore, it does not necessarily produce global 

minimum MSE at its output unless the forward filter adjusts its coefficients according to 
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the output of the entire filter. Based on these observations, we form the augmented LMS 

algorithm. 

where 

From Figure 3-8, we form the error at the output of the entire filter: 

e2 (n) = v(n)- x(n) 

= hTw(n)-gTx'(n)-x(n) 

= h/w u(n)-x(n) 

h. - [:] 

¥>= [ ~~~)] 

(4.50) 

(4.51} 

are the augmented coefficient vector and data vector, respectively. It is evident that the 

MSE of ~(n) is a convex :function of ha. Therefore, there is a unique value of ha that 

minimizes the MSE. Using the LMS algorithm as in the linear equalizer case, we have the 

following algorithm to update the augmented vector: 

ha(n+ 1) = ha(n)-A ·e2 (n)·w a(n) 

Equation (4.52) can be decomposed into two separate equations: 

h(n+ 1) = h(n)-A ·e2 (n) ·w(n) 

g(n+ 1) = g(n)+A ·e2 (n)·x'(n) 

(4.52} 

(4.53} 

(4.54) 

Equation (4.54} is essentially the same as Equation (4.43}, which we derived based on the 

observation that the feedback filter only cancels the postcursor ISi. Equation (4.53} is 
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similar to Equation (4.31) with two subtle differences: (1) hand w(n)in Equation (4.53) 

consist of only the first (M+ 1) elements of h and w(n) in Equation ( 4.31 ), respectively; (2) 

e2(n) in Equation ( 4.53) is the error at the output of the entire filter (including the 

feedback part). The later enables the forward filter to adjust its coefficients based on the 

change of the feedback filter so that together a global MSE can be approached. 

( 4) Automatic Mixed Norm Feedback Equalizer 

The forward filter of the feedback equalizer that minimizes the mixed norms can be 

updated in a similar fashion as the linear equalizer (Equation (4.39)) 

h(n+ 1) = h(n)-A ·[A·e2 (n) ·w(n)+(l-J)·e1(n)·xu(n)] (4.55) 

where 

e1 (n) = y(n)-x(n) 

e2 (n) = v(n)- x(n) 

and xu(n) is defined in (4.47) and 

l(n) = 

w(n+M) 

w(n+l) 
w(n) 

(4.56) 

(4.57) 

(4.58) 

It is evident that Equation (4.55) is the combination of the stochastic zero-forcing 

algorithm (4.49) and the LMS algorithm (4.53), with 'A, adjustable for different 

contributions from the two. 
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The feedback filter g is also updated using ( 4.43). 

The problem of finding the optimum ...i remains to be solved. The ''transition 

derivative" defined in [25] is re-written as follows in this context: 

T. (l )= ~lqll1 . ~lell1 
D OA OA 

(4.59) 

It was suggested that Tv( ...i) is very sensitive to the change of ...i and· can be used to 

choose the optimum ...i. There are two problems in applying Tv(l) in the mixed norm peak 

distortion problem First, it is the equalizer impulse response h instead of the combined 

impulse response q that needs to be calculated. Therefore, it is difficult to calculate the 

first derivative in ( 4.59) numerically. Secondly, even if the first derivative in ( 4.59) could 

be calculated, the same computation has to be repeated for numerous ...i 's so that the 

optimum ...i indicated by Tv(A) can be chosen. This is not practical in most applications 

where on-line processing of data is required. We are going to choose A based on empirical 

evidence related to its practical implementation. We leave this topic to Chapter V. 

Unlike the LMS algorithm, the convergence property of the mixed norm algorithm 

(4.55) is not well understood at this point. We resort to the numerical evaluation of this 

problem in Chapter V. 

3. Summary 

In this chapter, we studied the problem of automatic equalization by minimizing 

norms. This problem arises in practice, because in most applications the channel 
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characteristics are unknown, and only the received signal and reference signal are 

available. 

We started with minimizing the L1 norm and reviewing Lucky's classical zero­

forcing algorithm with a train of impulses as a reference signal. Then we extended these 

results to include the more general broadband signals because they have higher average 

power and hence higher signal to noise ratio for the same peak energy. This resulted in the 

stochastic zero-forcing algorithm. The minimization of the Mean Squared Error, an Li 

norm, was then examined and the associated LMS algorithm reviewed. Algorithm to 

minimize the mixed norm was then proposed based on the zero-forcing and the LMS 

algorithms. 

It was recognized in Chapter m that the feedback filter can compensate for severe 

amplitude distortion without enhancing noise. It was further noted that the feedback filter 

needs only to cancel the postcursor intersymbol interference to contribute to the global 

minimization of the MSE at the output of the equalizer. These observations lead to the 

independent update of the feedback filter. The forward filter can be updated just as a linear 

equalizer, depending on the underlying norm being minimized, except that only taps before 

the reference position need to be updated. 

It was shown that Lucky's zero-forcing algorithm will converge if the initial peak 

distortion is less than one [39]. The stochastic ZF algorithm will behave similarly if the 

transmitted signal is broadband. It is also well known that the LMS algorithm will 

converge as long as the step size is sufficiently small. Since the mixed norm algorithm is a 

combination of the stochastic ZF algorithm and the LMS algorithm, it is reasonable to 
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expect that the mixed norm algorithm will converge if the initial peak distortion is less than 

one and the step size is sufficiently small. However, at this point, there is no quantitative 

analysis of the convergence property of the mixed norm algorithm, although the numerical 

evaluation provides encouraging results. Furthermore, there are no closed form 

expressions for the MSE of the automatic feedback equalizers at this point. Also, none of 

the algorithms for feedback equalizers can guarantee the equalizers obtained are stable, as 

commonly occurs in other adaptive IIR algorithms. 

The relationship between the performance of the equalizer and the choice of 

algorithms, number of taps and channel characteristics to be equalized, is to be analyzed 

by numerical evaluation with the practical problem of television multipath cancellation in 

ChapterV. 

We summarize the algorithms covered in this chapter in the following [42]: 

A Automatic linear equalizer: 

(i) Lucky's ZF algorithm: 

h(n+ 1) = h(n}-2A ·sgn[e(n)x(n)] 

(ii) Stochastic ZF algorithm: 

h(n + 1) = h(n)-2A ·e(n)x(n) 

(iii) LMS algorithm 

h(n+ 1) = h(n)-2A ·e(n)w(n) 

(iv) mixed norm steepest descent algorithm (proposed) 

h(n+ 1} = h(n)-2A ·e(n)·[Aw(n}+(l-.;1,}x(n)] 

B. Automatic feedback equalizer: 
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* e1, e2 Xu, x' are defined in (4.56), (4.57), (4.47), (4.44), 

respectively 

(i) ZF feedback equalizer (proposed): 

h(n + 1) = h(n)-A ·e1 (n)xu(n) 

g(n+ 1) = g(n)+A ·e2 (n)·x'(n) 

(ii) MSE feedback equalizer: 

h(n+ 1) = h(n)-A ·e2 (n) ·w(n) 

g(n+ 1) = g(n) +A ·e2 (n)·x'(n) (proposed) 

(iii) mixed norm feedback equalizer (proposed): 

h(n+ 1) = h(n)-A ·[A·e2 (n)·w(n)+(l-A)·e1(n)·xu(n)] 

g(n+ 1) = g(n)+A ·e2 (n)·x'(n) 
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CHAPTERV 

AUTOMATIC TELEVISION MULTIPATH CANCELLATION 

1. Introduction 

Multipath signal propagation, or "ghosting", has been a problem in the reception of 

television signal since the beginning of the television broadcasting industry. In the off-the­

air broadcasting, the ghosts are caused by reflections from mountains, buildings, etc .. In 

cable television, the ghosts are caused by the mismatch of connector impedance. 

Effort to solve the ghosting problem began a few years after television became 

popular, because the ghosting creates quite an annoying effect on the viewer. However, 

little progress had been made until the introduction of digital signal processing into this 

area [22]. Since then, extensive research has been done on the mechanism of the ghosting 

process, the structure and technique of ghost cancellers [55, 56, 57, 58, 59] and the 

selection of a suitable reference signal to characterize the ghosting process. [60, 61, 62, 

63, 64, 65]. Until 1990, most research on the ghosting problem was done in Japan, where 

because of the dense population and relatively low cable television penetration, solving the 

ghosting problem is of great interest. 

In 1989, Japan established the first ghost canceller reference (GCR) signal [60]. In 

1992, the United States adopted the high energy GCR signal as standard [63]. The 

standard for the PAL system (the European television standard) in Europe is also near 
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completion [ 66,67]. These developments clear the way for the commercialization of ghost 

canceller products. At the same time, a ghost canceller for future high definition television 

(HDTV) is under active research [68]. 

Since the modulation-demodulation process in the television system is sufficiently 

linear, the ghosted signal can be modeled as a transmitted signal passing through a linear 

system The ghost canceller is also a linear system From this point of view, the deghosting 

problem is similar to the channel equalization problem · 

Early research on ghost cancellation focused on the transversal filter, ie., the linear 

equalizer. Later, it was realized that for sufficient coverage of the ghosts, it is necessary to 

use a feedback equalizer. Unfortunately, the difficulty in updating the IIR filter [69] has 

cast some cloud on the usefulness of the technology. Some modifications have been done 

to facilitate the update of the IIR filter [56]. In 1991, Winters et al. introduced the concept 

of time-reversal [55] where spectral factorization was used to calculate the feedback filter 

coefficients. Later, the author [70] proposed a structure called a virtual filter to further 

simplify the feedback filter update, .and optimized it for the US GCR [71]. 

In the ghost cancellation context, the main signal is defined as the strongest of the 

received signals, The corresponding time is indicated by the peak of the cross-correlation 

between the received signals and the local reference signal. The received signals are then 

shifted so that this peak position coincides to the center tap position in the linear equalizer 

or the position separating the forward filter and the feedback filter in the feedback 

equalizer. The ghosts preceding the main signal are called the precursor ghosts; the 

ghosts following the main signal are called the postcursor ghosts. 
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It is generally recognized that the feedback portion of the ghost canceller is 

responsible for canceling the post-cursor ghosts. We have shown in chapter III and IV that 

for the norm based algorithms and reducing the overall MSE as the ultimate goal, the 

algorithm to update the feedback filter remains the same, independent of the way the 

forward filter is updated. Therefore, in this particular class of structure, it is the algorithm 

for updating the forward filter that makes the overall performance different. 

In this chapter, we are going to evaluate the various algorithms we derived in 

chapters III and IV in the application of ghost cancellation. We begin by introducing the 

basic principle of ghost cancellation. We then analyze the requirements for the reference 

signal to properly characterize the ghosting process. Then we study the performance of 

the linear equalizer under various ghosting scenarios with zero-forcing, MSE and mixed 

norm criteria. This is followed by the feedback equalizers. In particular, we are going to 

study the effect of the choice of the parameter 11. on the overall MSE, under various 

ghosting scenarios. 

2. The Filter Structures for Ghost Cancellation 

In Chapter III and IV, for the convenience of theoretical analysis, we used the 

noncausal model for both linear and feedback equalizers, shown here in Figures 5- la and 

5-lb. In practice, all systems have to be causal. The time advance elements are realized by 

changing the relative position of the reference signal. Figures 5-2a and 5-2b show the 

actual implementations of Figure 5-la and 5-lb, respectively [42], where we introduce a 

new set of variables for the feedback equalizer coefficients: 
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b(O) =h(-M) 

b(l) = h(-M+ 1) 

b(M) =h(O) 

a(M+ 1) = g(l) 

a(M+2) = g(2) 

a(M+N) = g(N) 

and for the linear equalizer coefficients: 

c(O) =h(-M) 

c(l) = h(-M+ 1) 

c(M-1) = h(-1) 

c(M)=h(O) 

c(M+ 1) = h(l) 

c(2M) = h(M). 

(5.1) 

(5.2) 

For the feedback equalizers (Figures 5-la and 5-2a), the switch is set to the 

position "l" during the adaptation, and it is set to the position "2" after training so that the 

normal video signal can pass through. 
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e(n) 

Figure 5-la. A noncausal feedback equalizer for ghost canceler (M=36, N=288) 

x(n) 

Figure 5-lb. A noncausal linear equalizer for ghost canceller (M=36) 
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b(M) 

-M z 

x(n-M) 

x(n) 

a(M+N) 

Figure 5-2a. Actual impelementation of the feedback equalizer (M=36, N=288) 

i------+ e(n-M) 

Figure 5-2b. Actual implementation of the linear equalizer (M=36) 
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As mentioned earlier, the advantage of the feedback structure is that wider range 

of ghosts can be covered with the same number of taps. In addition, as we have known 

from Chapters ID and N, the feedback filter can cancel severe amplitude distortion 

without enhancing noise. The problem with this structure is that the feedback filter brings 

in the stability issue. We are going to discuss this problem later in this chapter. On the 

other hand, the linear structure is always stable. The problem with this structure is that it 

will have more residuals compared with the feedback equalizer with the same number of 

taps, because it tries to invert the ghosting system which is typically an FIR filter. 

3. The Ghost Cancellation Reference (GCR) Signal 

In order to characterize the ghosting process, a ghost cancellation reference ( GCR) 

signal has to be transmitted by the television station. In the receiver, the received GCR 

signal is compared against the standard GCR signal stored locally. The ghosting process is 

then characterized, and the filter coefficients are then properly set to cancel the ghosts. In 

order to effectively characterize the ghosting process, the GCR signal has to have the 

following properties [61,62]: 

(1) High energy: this is needed in order to characterize the ghosting process 

accurately under noisy conditions. 

(2) Flat spectrum: this is important to characterize distortion in the entire 

frequency spectrum of the composite video bandwidth. 
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(3) Non-cyclicity: this is needed to detect the ghosts with arbitrary long delays. 

(4) sin(x)/x shaped autocorrelation: this is the time-domain equivalence of a flat 

spectrum in the frequency domain. 

Besides the above properties, the GCR signal should be incorporated into the 

composite video signal in such a way that in the receiver the GCR signal can be extracted 

with minimal interference from the signals in the vicinity. 

The GCR signal adopted in Japan in 1989 [72], shown in Figure 5-3, satisfies the 

(2) and (4) requirements. But it does not satisfy the requirements of (1) and (3). It has to 

be differentiated into a sin(x)/x pulse, shown in Figure 5-4, before it can be used as a 

reference signal for equalizer updates. This differentiation process will enhance the noise, 

because it is effectively a high.pass filter. In addition, the falling edge of the bar signal, after 

differentiation, becomes a negative pulse. This limits the maximum delay of the ghosts to 

44. 7 µsin order for the reference signal to properly characterize the ghosting process. 

The GCR adopted in the United States satisfies all of the above requirements. 

Figure 5-5, Figure 5-6 and Figure 5-6a show the GCR signal, the spectrum of the GCR 

signal, and the autocorrelation of it, respectively. This signal is inserted into the NTSC 

(National Television Standard Committee) composite signal in an 8-field sequence 

according to the color burst phase changes. The 8-field sequence of the GCR is: 

S1( + ), S2(-), SJ(+), S4(-), Ss(-), S6( + ), S1(-), Ss( +) 

where"+" stands for the original GCR signal, and"-" means the GCR signal with negative 

polarity. Si (i=l,2, ... , 8) means the GCR signal at the i-th field. At the receiver, the GCR 

signal can be extracted by using the following equation: 
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(5.3) 

The above averaging process not only eliminates the interference of the color 

bursts and horizontal synchronization signals, it also reduces the effect of the additive 

noise. If the signal at the line before the GCR signal stays constant in all fields, the above 

averaging process should also eliminate the effect of this signal. Even if this signal changes 

with time ( such as teletext), the averaging process will reduce the effect it has on the 

composite GCR signal. 

Under noisy conditions or when the received signal fluctuates because of the 

environment such as windy weather, the number of fields of GCR signals to be averaged 

should be increased, but it has to be a multiple of 8. 

The GCR's autocorrelation is a narrow sin(x)/x shaped pulse, which corresponds 

to a flat spectrum in the bandwidth of interest (the composite video bandwidth). This 

satisfies the requirement imposed by equation (3.3) for practical purposes. In addition, the 

cross-correlation between the received GCR signal and the local standard GCR signal 

manifests a peak, which corresponds to the location of the main (desired) signal, because 

the main ( desired) signal is the strongest signal as defined. In addition, the polarity of this 

peak indicates the polarity of the received GCR signal. The combination of the position 

and polarity enables the averaging process of(5.3). 
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Figure 5-3. Japan standard GCR signal 
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Figure 5-4. Differential Japan standard GCR signal 
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Figure 5-5. US Standard Ghost Cancellation Reference (GCR) signal 
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Figure 5-6a. Autocorrelation of the standard US GCR signal 

4. The Ghost Cancellation System 

A flexible ghost cancellation system has been built for this research, shown in 

Figure 5-7 (part of this structure belongs to the US patent 5,321,512 [70]), where x(n) is 

the stored US standard GCR signal (Figure 5-5), w(n) is the received GCR signal after 

averaging (e.g. Figure 5-8), v(n) is the equalized GCR signal (e.g. Figure 5-10), plotted 

after convergence of the algorithms. There are the three switches controlling the signal 

path. During the GCR line and the following line, all the switches are set on the respective 

position "l" so that the filter can be updated. In normal video lines, all the switches are 

put on the respective position "2" so that the deghosted picture can be viewed in the 

monitor. 
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antenna 

tuner ( ch 36) 
demodulator) 

Figure 5-7. The ghost cancellation system 
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In the evaluation experiments conducted for this paper, the GCR signals are 

captured from the transmitted off-the-air signal of channel 36 in the San Francisco Bay 

area. The ghosts are generated through a baseband ghost generator. The noise is 

simulated white Gaussian noise band limited to 4.2 MHz, which is injected at the input of 

the ghost canceller filters. The ghost canceller is implemented by commercial digital filters 

with sampling rate of 14.32 MHz. The linear equalizer has a total of 72 taps with the 36th 

tap being the reference position. When used as a forward filter of the feedback equalizer, 

the taps following the 36th tap are disabled. The feedback filter (enabled only for feedback 

equalization) has 288 taps. All filters have 9-bit precision for data and 10-bit precision for 

coefficients. All internal calculations are carried out in full precision so there is no loss of 

precision. Data are rounded to 9 bits only when they are moved out of the filter. 

The adaptation algorithms are implemented with a 24-bit fixed-point digital signal 

processor. The internal coefficients are stored in 24 bits. All multiply-accumulate 

operations needed for the convolution/correlation calculations are carried out in 56-bit 

precision ( double precision with 8 bit sign-extension to protect from overflowing). All 

multiply/add operations are carried out in 56-bit precision. The final results are rounded to 

24 bits when they are stored in the memory locations. 

At every field of the television signal, the GCR line (line 19 in the US) and the line 

after are sampled at 14.32 MHz and stored in a 9-bit First-In-First-Out (FIFO) buffer. The 

second line signal is needed so that ghosts with delays up to one line duration ( 64 µs) can 

be canceled, because the delayed GCR signal with long delay will be shifted to the line 

following it. For the best quality, the signals at the lines preceding and following the GCR 
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line should stay at constant waveform (which is true in most channels), so that the 

averaging operations (Equation (5.10)) with the help of the GCR polarities will eliminate 

the effect of these signals. Only the GCR signal and its ghosts will remain. If these two 

lines of signal are changing with time rapid1y, the averaging operations will treat them as 

noise. Since they may not be Gaussian or may not be white at all, these changing signals 

will have severe adverse impact on the performance of the ghost canceller. In this case, 

special techniques like the one introduced in [73] can be used. Fortunately, the channel we 

are investigating does not have this problem We only deal with white Gaussian noise in 

this report. 

The ghosts are generated in baseband by a separate ghost generator. The off-the­

air television signal is demodulated by a tuner. The baseband video signal is then fed to the 

ghost generator, which can simulate ghosts with various amplitude, delay or advance and 

polarities. The ghost generator is implemented by a digital FIR filter with 288 taps. The 

coefficients of this filter are calculated by a digital signal processor (DSP) based on the 

positions of the switches at the control panel. Note that this DSP is not the same as the 

one for the ghost canceller (they are on different boards), so the DSP for the ghost 

canceller is complete]y ''blind" to the setting of the ghosting scenario. In addition, 

although the input signal to the ghost generator is basically ghost-free, it is not the same as 

the ideal GCR, because the antenna and the demodulator introduce some roll-off at the 

high frequency of the baseband signal. Therefore, the channel impulse response, :f(n), is the 

convolution of the FIR filter with an equivalent lowpass filter. In other words, :f(n) is not 
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explicitly known in the experiments here. It is estimated by the cross-correlation between 

the GCR signal at the ghost canceller input and the stored standard GCR signal. 

The software structure of the ghost canceller mainly consists of two parts: the 

foreground tasks and the background tasks. The foreground tasks are driven by interrupts. 

They include fetching data from FIFO buffers, all the preprocessing of the data ( signal 

qualification, polarity detection, timing alignment, etc.), and the averaging operations. The 

background tasks implement the main algorithms, including convolutions, correlation, tap 

updates, step size controls and convergence analysis, etc .. 

The equalizer is updated once per 16 fields of television signal, during which a new 

set of data are captured. The reason to do this is that the signal is sampled at 14. 32 MHz 

and the DSP used is at 27 MIPS (million instructions per second). But we need few 

thousands instruction cycles to do one update. Therefore, it is not possible to do one 

update per sample as required by the original algorithms. In addition, in practice, this will 

allow the ghost canceller to track the slowly changing ghosts (which in irrelevant to the 

experiments in this paper, where the ghosting settings are fixed for each experiment). 

The performance indices (peak distortion, MSE) are recorded for every iteration 

so that the convergence process can be monitored. After 500 iterations, the algorithms are 

stopped and the states are stored for comparison. 

Typical data collected are: the input and output of equalizer and their spectra; the 

estimated channel impulse response, the equalizer taps h(n) and g(n) at the end of the last 

iteration; the estimated peak distortion and the estimated mean square error for each 

iteration. For feedback equalizer, the output of the forward filter is also collected. 
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As mentioned earlier, the channel impulse response shown here is estimated by the 

cross-correlation between the received GCR signal ( after averaging) and the ideal GCR 

signal, i.e., 

A 

f(n) = Z:.w(J)x(j +n) 
j 

This is justified by the fact that 

A 

&{/(n)} = en:w(J)x(j +n)} 
j 

= &{~:[Z:.x(i)f(j-i)]x(j +n)} 
j i 

= Z:.Z:.f(j-i)·&[x(i)x(j +n)] 
j i 

= Z:.Z:.f(j-i)· ~ ·8(i- J-n) 
j i 

= ~ ·f(n) 

The MSE for the linear equalizer is calculated by 

MSE = Z:.[y(n)-x(n)]2 

n 

(5.4) 

(5.5) 

(5.6) 

summing over the duration of the GCR, where y(n) is the output of the linear equalizer 

with the taps at each update. The MSE for the feedback equalizer is calculated by 

MSE =Z:.[v(n)-x(n)]2 (5.7) 
n 

The peak distortion for the linear equalizer is estimated by the cross-correlation between 

the error signal and the ideal GCR signal, i.e., 

A M I" I DM = n~M q(n) (5.8) 

where 
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q(n) = "i:,e(j)x(j +n) 
j 

This is justified by the fact that 

&{q(n)} = &{"i:,e(j)x(j +n)} 
j 

= &{"i:,[y(j)-x(j)]x(j +n)} 
j 

= &{"i:,["i:,x(i)q(j-i)]x(j +n)]}-~ ·8(n) 
j i 

= "i:,"i:,q(j-i)-~ ·8(i- j-n)- ~ ·8(n) 
j i 

= ~ ·q(n)-~ ·8(n) 

= ~ ·[q(0)-1], 

~ ·q(n), 

Therefore, D M is a good estimate of D M. 

n=O 

(5.9) 

(5.10) 

The MSE (11,) is calculated by (5.6) or (5.7) at the end of the last iteration for each 

"A from Oto 1.0 with the step size of 0.1. For this plot, the shape of the curve is more 

important than the absolute values, because all MSE values are scaled before they are 

plotted (the plotting package can only handle the number in certain range). Note that "A=O 

corresponds to the ZF equalizer, and "A=l corresponds to the MSE equalizer. Therefore, if 

this curve has a minimum value somewhere between "A=O and "A= 1, we conclude that the 

MN equalizer outperforms the ZF and MSE equalizers in terms of reaching a smaller MSE 

value in the steady state. 
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5. Ghost Cancellation using Linear Equalizer 

Consider the linear equalizer shown in Figure 5-2b (see also Figure 3-4). The 

center tap hois chosen as the reference position, i.e., the equalizer taps are evenly 

partitioned for the precursor and postcursor ghosts. The GCR signal after averaging over 

16 fields is used as the received signal w(n). 

Four algorithms are used for the tap updates: the stochastic zero-forcing (4.23), 

the stochastic version of Lucky's ZF algorithm (4.22), the LMS (MSE) algorithm (4.31) 

and the mixed norm algorithm ( 4. 3 9 ). "Gear-shifting" of the step size (larger step size at 

the beginning of the adaptation and smaller step size later on) is used so that fast 

convergence and small steady-state residual can be achieved. Three ghosting scenarios are 

tested: 

Case 1: precursor and postcursor ghosts within the span of the equalizer (without noise). 

Figure 5-8 shows the received GCR signal after averaging and Figure 5-8a shows 

the spectrum of it. Figure 5-9 shows the estimated channel impulse response in this case. 

Figures 5-10 and 5-11 show the impulse response and :frequency response, respectively, 

of the linear equalizer at the last iteration. Figures 5-12 and 5-13 show the GCR signal 

and its spectrum, respectively, after being equalized with the stochastic ZF algorithm 

(equation (4.23)). Figures 5-14 to 5-17 show these for the stochastic version ofLucky's 

ZF algorithm ( equation( 4.22)). Figures 5-18 to 5-21 show the same things for the LMS 

algorithm ( equation ( 4.31 ). Figures 5-22 to 5-25 show these for the mixed norm algorithm 

(equation (4.39)) with 'A,= 0.5 (arbitrary choice). Figure 5-26 shows the peak distortions 

for each iteration for the four algorithms. Figure 5-27 details the second part of Figure 5-
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26. Figure 5-28 shows the MSEs for each iteration. Figure 5-29 details the second part of 

Figure 5-28. Figure 5-30 shows the MSE versus the mixed norm parameter A . 

It can be seen that the stochastic version of Lucky's ZF algorithm, the LMS 

(MSE) algorithm and the mixed norm algorithm approach similar MSE values in the 

steady state. But the stochastic ZF algorithm deviates from the optimum solution after 

about 50 iterations. The stochastic ZF algorithm converges fastest among the four 

algorithms in this case. The LMS algorithm is the slowest one in terms of convergence. 

The stochastic version of Lucky's ZF algorithm behaves abnormally on the way to 

convergence, and it is oscillating in the steady state. We also see that the stochastic ZF 

algorithm and the mixed norm algorithm indeed approach the minimum peak distortion. 

Case 2: precursor and postcursor ghosts within the span of the equalizer (SNR=30 dB). 

Figures 5-31 to 5-53 show the numerical results for this case. It can be seen that 

the MN algorithm with A ~ 0. 7 yields the least MSE value in steady state, and the 

stochastic ZF algorithm has the highest steady state MSE value among the four 

algorithms. But curiously, Lucky's ZF algorithm seems to do as well as the LMS 

algorithm. The LMS algorithm, on the other hand, compensates for the channel distortion 

in a more moderate way by leaving some ISI at the equalizer output, thus having less noise 

enhancement. The overall MSE at the output of the MSE equalizer, including the residual 

ISI and the noise, is less than that of the ZF equalizer. 

The linear equalizer based on the mixed norm criterion tries to compromise 

between the ZF equalizer and the MSE equalizer. It does not enhance the noise as much as 

the ZF equalizer; neither does it leave the residual ISI as much as the MSE equalizer. 
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It is noted from Figure 5-51 that, in spite of the higher MSE value at the end, the 

ZF algorithm does converge to its steady state faster than the other two algorithms. Note 

that all four algorithms use the same step size. 

Case 3: postcursor ghosts out of the equalizer span (SNR=30 dB). 

Figures 5-54 to 5-76 show the results for this case. The ZF equalizer is ''blind" to 

the ghosts in this case, because the cross correlation between the reference signal and the 

error signal results in a series of spikes in the outside of the equalizer span, which will 

have no contribution to the taps updates. The end result is that the ZF equalizer will 

ignore these ghosts by leaving the ISi, and of course, it will not enhance the noise. (Note 

that the ZF equalizer enhances noise only when it tries to invert the channel with spectral 

nulls. This will always happen for the linear ZF equalizer with infinite length as long as the 

spectral nulls exist in the channel frequency response. However, this may not be the case 

for the linear ZF equalizer with finite length). 

On the other hand, the cross correlation between the equalizer input and the error 

signal produces some strength within the equalizer span in addition to the spikes outside 

of the equalizer span. Therefore, the MSE equalizer will try its best to reduce the ISi. The 

end result is that the MSE equalizer will have less MSE value than the ZF equalizer in this 

case. 

The mixed norm equalizer (with 11.=0.5) has the performance in between the ZF 

equalizer and the MSE equalizer in this case, in terms of the MSE value. 
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6. Ghost Cancellation using Feedback Equalizer 

From Chapters III and IV, we know that for a feedback equalizer with an infinite 

number of taps for both forward and feedback filters, the MSE feedback equalizer does 

the best in reducing the overall MSE. However, this may not be the case for the feedback 

equalizer with a finite number of taps, as the one shown in Figure 5-2a. 

One particular case, which turns out to be the most common case in practice, is 

that the postcursor ghosts fall within the span of the feedback filter. We know that the 

feedback filter can cancel the postcursor ghosts at the output of the forward filter exactly. 

If the ghosts are out of the span of the forward filter (which is true in this case since the 

forward filter only covers the precursor ghosts), then it would be better to leave them as 

they are instead of trying to cancel them with the forward filter. We also know from the 

previous section that the ZF linear equalizer tends to ignore the ghosts out of its span. 

Therefore we may anticipate that in this case the ZF feedback equalizer (equations (4.49) 

with equation ( 4.43)) may result in a lower overall MSE value than the MSE feedback 

equalizer (equation (4.53) with equation (4.54)). 

Another case is where the precursor ghosts fall within the span of the forward 

filter. We know from Chapters III and IV that the feedback filter can only cancel the 

postcursor ghosts. Thus the forward filter is mainly responsible for canceling the precursor 

ghosts. On the other hand, we also know from the previous section that in the case of 

ghosts within the span of the linear equalizer, the MSE linear equalizer yields less MSE 

value than the other two linear equalizers. Therefore we may anticipate that for the case of 
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precursor ghosts withln the span of the forward filter, the MSE feedback equalizer will 

yield less overall MSE value than the ZF feedback equalizer. 

The case of particular interest is the one that combines the previous two cases, 

namely, the precursor ghosts fall withln the span of the forward filter and the postcursor 

ghosts fall withln the span of the feedback filter. Based on the discussions of the previous 

two paragraphs, we have reason to believe that the mixed norm feedback equalizer 

(equation (4.55) with equation (4.43)), with O <"A< 1, may result in the least overallMSE 

value among the three feedback equalizers. 

In what follows, we are going to present the three distinct cases mentioned above. 

In all cases, the signal to noise ratio (SNR) at the input of the equalizer is 30 dB. 

Case 1: precursor ghosts withln the span of the forward filter 

Figure 5-77 shows the received GCR after averaging, and Figure 5-77a shows the 

spectrum ofit. Figure 5-78 shows the estimated impulse response of the channel, f{n), in 

this case. Figures 5-79 and 5-80 show the coefficients of the forward filter h(n) and the 

feedback filter g(n), respectively, at the last iteration. Figures 5-81 and 5-82 show the 

signal and its spectrum, respectively, at the output of the forward filter which is updated 

using the stochastic ZF algorithm (Equation ( 4.49)). Figures 5-83 and 5-84 show the 

signal and its spectrum, respectively, at the output of the entire feedback equalizer, where 

the feedback filter g(n) is updated using ( 4.43). It can be seen that the feedback part does 

not make much an impact here, which is expected, because the feedback part cancels only 

the postcursor ghosts. 
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Figures 5-85 to 5-90 show the same things for the MSE equalizer (Equations 

(4.53) and (4.54)) as Figures 5-79 to 5-84 do for the ZF equalizer. Figure 5-91 shows the 

calculated MSEs at each iteration for both ZF and MSE equalizers. Figure 5-92 details the 

second part of Figure 5-91. Figure 5-93 shows the MSE at the last iteration for the mixed 

norm algorithm (Equation ( 45 5) and equation ( 4.43)) with various choices of the 

parameter A. 

It can be seen from Figure 5-91 and 5-93 that the MSE equalizer using the LMS 

algorithm outperforms the ZF equalizer in this situation, in terms of arriving at smaller 

amount of the MSE value in steady state. Moreover, Figure 5-93 indicates that the mixed 

norm equalizer can not do anything better than the MSE equalizer in this case. 

Case 2: postcursor ghost within the span of the feedback filter 

Figures 5-94 to 5-110 show the same things in this case as Figures 5-77 to 5-93 do 

with respect to Case 1. It can be seen from Figures 5-108 and 5-110 that the ZF equalizer 

produces smaller a MSE value at the end than the MSE equalizer. Figure 5-110 also 

shows that the mixed norm equalizer does not do better than the ZF equalizer in this case. 

It can also be seen that the feedback part does most of the improvement in this case, which 

is expected. 

Case 3: precursor and postcursor ghosts within the span of the forward :fiher and the 

feedback filter. 

Figures 5-111 to 5-127 show the same things in this case as Figures 5-77 to 5-93 

do with respect to Case 1. It is interesting to see from Figure 5-127 that the mixed norm 

feedback equalizer yields the least MSE value at ;t ~ 0. 75. (Note that 'A,=O corresponds to 
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the ZF feedback equalizer; 'A=l corresponds to the MSE feedback equalizer). In this 

particular channel distortion, the mixed norm feedback equalizer outperforms both the ZF 

and MSE counterparts in terms of arriving at smaller MSE values in the steady state. It 

can also be seen that both the forward filter and the feedback filter contribute to the 

cancellation of ghosts in this case, which is expected. 

It is evident that the mixed norm equalizer will approach to different MSE values 

depending on the choice of the parameter A. However, this relationship is highly nonlinear, 

as indicated by Figure 5-127, and it is very difficult to establish explicitly. Various 

experiments suggest that A~ 0. 75 generally yields better result than A= 0 (ZF) and A= 1 

(MSE) in this case. 

Case 4. precursor and postcursor ghosts within the span of the linear equalizer. 

This case is similar to Case 3. It is conducted to evaluate the performance of the 

linear equalizer versus the feedback equalizer. The linear equalizer is updated using 

equation (4.31) (LMS algorithm); and the feedback equalizer is updated using equations 

(4.53) and (4.54) (also LMS algorithms). 

Figures 5-128 and 5-128a show the received GCR signal and its spectrum, 

respectively. Figure 5-129 shows the estimated channel impulse response. Figures 5-130 

and 5-131 show the coefficients and frequency response of the linear equalizer, 

respectively. Figures 5-132 and 5-133 show the coefficients of the forward and feedback 

:filters, respectively, of the feedback equalizer. Figure 5-134 shows the MSE values of 

each iteration. It can be seen that the feedback equalizer clearly reaches a smaller MSE 

value than the linear equalizer in steady state in this case. 
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Figure 5-8. Received GCR signal for Case 1 (linear equalizer) 
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Figure 5-8a. Spectrum of the received GCR signal for Case 1 (linear equalizer) 
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Figure 5-9. Estimated channel impulse response :f(n) for Case 1 (linear) 
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Figure 5-10. Coefficients of linear ZF equalizer for Case 1 
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Figure 5-11. Frequency response of linear ZF equalizer for Case 1 
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Figure 5-12. Output signal of the linear ZF equalizer for Case 1 
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Figure 5-13. Output signal spectrum of the linear ZF equalizer for Case 1 
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Figure 5-14. Coefficients of linear Lucky's ZF equalizer for Case 1 
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Figure 5-15. Frequency response of linear Lucky's ZF equalizer for Case 1 
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Figure 5-16. Output signal of the linear Lucky's ZF equalizer for Case 1 

2.00E+01 

O.OOE+OO 

-2.00E+01 
In' 
~ -4.00E+01 
~ 

~ -6.00E+01 

~ -8.00E+01 

~ -1.00E+02 

-1.20E+02 

-1 .40E+02 

0.01 0 .82 1 .62 2.43 3.23 4.04 4.84 5.65 6.46 

FREQUENCY (MHz) 

Figure 5-17. Output signal spectrum of the linear Lucky' s ZF equalizer for Case 1 
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Figure 5-18. Coefficients of linear MSE (LMS) equalizer for Case 1 
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Figure 5-19. Frequency response of linear MSE (LMS) equalizer for Case 1 
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Figure 5-20. Output signal of the linear MSE (LMS) equalizer for Case 1 
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Figure 5-21. Output signal spectrum of the linear MSE (LMS) equalizer for Case 1 
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Figure 5-22. Coefficients of linear MN 01..=0.5) equalizer for Case 1 

4.00E+01 
3.50E+01 
3.00E+01 

ij 
'-' 

2.50E+01 

! 
2.00E+01 
1.50E+01 
1.00E+01 

~ 5.00E+OO 
O.OOE+OO 

-5.00E+OO 

-1.00E+01 

0.01 0.82 1.62 2.43 3.23 4.04 4.84 5.65 6.46 

FRB:lUENCY (MHz) 

Figure 5-23. Frequency response of linear MN () .. =0.5) equalizer for Case 1 
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Figure 5-24. Output signal of the linear mixed norm equalizer for Case 1 
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Figure 5-25. Output signal spectrum of the linear mixed norm equalizer for Case 1 
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Figure 5-26. Peak distortions of linear equalizers for Case 1 
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Figure 5-27. Detailed peak distortions oflinear equalizers for Case 1 
( ZF: Lucky's ZF: -------- MSE: - MN: - - - - - - - - ) 
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Figure 5-28. MSE of linear equalizers for Case 1 
(ZF: Lucky's ZF: -------- MSE: ......... MN: - - -·- - - - - ) 
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Figure 5-29. Detailed MSE of linear equalizers for Case 1 
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Figure 5-30. MSE values versus :nilxed norm parameter A for Case 1 (linear) 
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Figure 5-31. Received GCR signal for Case 2 (linear equalizer) 
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Figure 5-3 la. Spectrum of the received GCR signal for Case 2 (linear equalizer) 
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Figure 5-32. Estimated channel impulse response f{n) for Case 2 (linear) 
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Figure 5-33. Coefficients of linear ZF equalizer for Case 2 
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Figure 5-34. Frequency response of linear ZF equalizer for Case 2 
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Figure 5-35. Output signal of the linear ZF equalizer for Case 2 
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Figure 5-36. Output signal spectrum of the linear ZF equalizer for Case 2 
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Figure 5-37. Coefficients of linear Lucky's ZF equalizer for Case 2 
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Figure 5-38. Frequency response of linear Lucky's ZF equalizer for Case 2 
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Figure 5-39. Output signal of the linear Lucky' s ZF equalizer for Case 2 
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Figure 5-40. Output signal spectrum of the linear Lucky' s ZF equalizer for Case 2 
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Figure 5-41. Coefficients of linear MSE (LMS) equalizer for Case 2 
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Figure 5-42. Frequency response of linear MSE (LMS) equalizer for Case 2 
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Figure 5-43. Output signal of the linear MSE (LMS) equalizer for Case 2 
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Figure 5-44. Output signal spectrum of the linear MSE (LMS) equalizer for Case 2 
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Figure 5-45. Coefficients of linear MN (A=0.5) equalizer for Case 2 
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Figure 5-46. Frequency response of linear MN (A=0.5) equalizer for Case 2 
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Figure 5-47. Output signal of the linear mixed norm equalizer for Case 2 
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Figure 5-48. Output signal spectrum of the linear mixed norm equalizer for Case 2 

130 



4.50E+03 

4.00E+03 

3.50E+03 

~ 3.00E+03 

~ I 
2.50E+03 \ 

:fl .,,, 2.00E+03 

] 1.50E+03 
Po 

1.00E+03 .... -.. 
- ••• - ••••••••• i,. ••••••••• - ••••••••• 

5.00E+02 

0.00E+OO 

101 201 301 401 

number of iterations 

Figure 5-49. Peak distortions of linear equalizers for Case 2 
( ZF: Lucky's ZF: -------- MSE:···························MN: - -·-·---·-·-·- ) 
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Figure 5-50. Detailed peak distortions oflinear equalizers for Case 2 
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Figure 5-51. MSE of linear equalizers for Case 2 
( ZF: Lucky's ZF: -------- MSE:····················-·-··MN: - -·-·-·-·----- ) 
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Figure 5-52. Detailed MSE of linear equalizers for Case 2 
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Figure 5-53. MSE values versus mixed norm parameter 'A for Case 2 (linear) 
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Figure 5-54. Received GCR signal for Case 3 (linear equalizer) 
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Figure 5-54a. Spectrum of the received GCR signal for Case 3 (linear equalizer) 
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Figure 5-55. Estimated channel impulse response f(n) for Case 3 (linear) 
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Figure 5-56. Coefficients of linear ZF equalizer for Case 3 
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Figure 5-57. Frequency response of linear ZF equalizer for Case 3 
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Figure 5-58. Output signal of the linear ZF equalizer for Case 3 
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Figure 5-59. Output signal spectrum of the linear ZF equalizer for Case 3 
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Figure 5-60. Coefficients of linear Lucky's ZF equalizer for Case 3 
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Figure 5-61. Frequency response of linear Lucky's ZF equalizer for Case 3 
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Figure 5-62. Output signal of the linear Lucky's ZF equalizer for Case 3 
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Figure 5-63. Output signal spectrum of the linear Lucky' s ZF equalizer for Case 3 
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Figure 5-64. Coefficients of linear MSE (LMS) equalizer for Case 3 
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Figure 5-65. Frequency response of linear MSE (LMS) equalizer for Case 3 
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Figure 5-66. Output signal of the linear MSE (LMS) equalizer for Case 3 
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Figure 5-67. Output signal spectrum of the linear MSE (LMS) equalizer for Case 3 
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Figure 5-68. Coefficients of linear MN 0.=0.5) equalizer for Case 3 
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Figure 5-69. Frequency response of linear MN (1,.,=0.5) equalizer for Case 3 
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Figure 5-70. Output signal of the linear mixed norm equalizer for Case 3 
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Figure 5-71. Output signal spectrum of the linear mixed norm equalizer for Case 3 

145 



l'l 
~ 
~ 
"" ] 
p., 

4.50E+03 

4.00E+03 

3.50E+03 t 

3.00E+03 

2.50E+03 

2.00E+03 

1.50E+03 

1.00E+03 

5.00E+02 

O.OOE+OO 

~' I' 
1\ 
\, 
\-~ 
L • 
\. '-t:··- .• 
11\,'1\ ..,_ . - ·. :. : :.· ..........•...... 

·""'°lo.-., .............. . 

I ·-·-----,--~-----~:~:~~~:~:~:-......... 

101 201 301 401 

number of iterations 

Figure 5-72. Peak distortions of linear equalizers for Case 3 
( ZF: Lucky's ZF: -------- MSE: MN: - -·- - - -·-·- ) 
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Figure 5-73. Detailed peak distortions oflinear equalizers for Case 3 
( ZF: Lucky's ZF: --------- MSE: ---------------MN: --------------- ) 
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Figure 5-80. Coefficients of feedback filter g(n) ofZF feedback equalizer for Case 1 
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Figure 5-94a. Spectrum of the received GCR signal for Case 2 (feedback equalizer) 
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Figure 5-95. Estimated channel impulse response f{n) for Case 2 (feedback) 
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Figure 5-97. Coefficients of feedback filter g(n) ofZF feedback equalizer for Case 2 
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Figure 5-100. Output signal of the ZF feedback equalizer for Case 2 

2.00E:+01 

O.OOE+OO 

iii' -2.00E:+01 
~ 

-4.00E:+01 w 
C 
:::, -6.00E:+01 
I-
::i -8.00E:+01 C. 
~ 
c:( -1.00E:+02 

-1.20E+02 

-1.40E+02 

0.01 1.13 2 .25 3 .37 4 .49 5.60 6 .72 

FREOUENCY (MHz) 

Figure 5-101. Spectrum of the output signal of the ZF feedback equalizer for Case 2 

166 



1.40 
1.20 

1.00 
0.80 

Ill O.&l li ·a 0.40 
~ 0.20 0 
0 

0.00 
-0.20 

-0.40 
-0.00 

-2.44 

0.10 

0.05 

0.00 

i -0.05 
·a 
~ -0.10 
0 
0 

-0.15 

-0.20 

-0.25 
O.o7 

-1.75 -1.05 

time span 

Figure 5-102. Coefficients of forward filter h(n) 
ofMSE(LMS) feedback equalizer for Case 2 

-0.35 

2.86 5.66 8.45 11.24 14.04 16.83 

time span 

Figure 5-103. Coefficients of feedback filter g(n) 
ofMSE(LMS) feedback equalizer for Case 2 

167 

19.62 



w 
C 
::> 
I-
:::i 
c.. 
~ 
<( 

m 
~ 
w 
C 
::> 
1-
:::i 
c.. 
~ 
<( 

1.50803 

1.00803 

5.00802 

O.OOE+OO 

-5.00802 

-1 .00803 

-1.50803 

2.00801 

O.OOE+OO 

-2.00801 

-4.00801 

-6.00801 

-8.00801 

-1 .00802 

-1 .20802 

-1.40802 

-1 . 6'.)802 

0 4 7 11 15 19 22 26 30 33 37 41 44 48 52 56 59 63 67 70 74 78 81 85 89 

TIME(us) 

Figure 5-104. Output signal of the forward filter 
of the MSE(LMS) feedback equalizer for Case 2 

0.01 1.13 2.25 3 .37 4.49 5.60 6 .72 

FRBJUENCY (MHz) 

Figure 5-105. Spectrum of the forward filter output 
of the MSE(LMS) feedback equalizer for Case 2 

168 



1.00E+03 

5 .00E+02 

w 
C 

O.OOE+OO ::, 
I-
:J 
C. 

-5.00E+02 ~ 
c( 

-1.00E+03 

-1.50E+03 

0 4 7 I I 15 19 22 26 30 33 37 41 44 48 52 56 59 63 67 70 74 78 81 85 89 

TIME(us) 

Figure 5-106. Output signal of the MSE(LMS) feedback equalizer for Case 2 

m 
~ 
w 
C 
::, 
I-
:J 
C. 
~ 
c( 

2.00E+01 

O.OOE+OO 

-2.00E+01 

-4.00E+01 

-6.00E+01 

-800E+01 

-1.00E+02 

-1 .20E+02 

-1 .40E+02 

0.01 1.13 2.25 3.37 4.49 5.60 

FREQUENCY (MHz) 

Figure 5-107. Spectrum of the output signal 
of the MSE(LMS) feedback equalizer for Case 2 

169 

6 .72 



4.50E+03 

4.00E+03 

3.50E+03 

.. 3.00E+03 
'Gil 
:; 2.50E+03 
l 

2.00E+03 ILi ....., 
::E 1.50E+03 

1.00E+03 

5.00E+02 

O.OOE+OO 

101 201 301 401 

number of iterations 

Figure 5-108. MSE of feedback equalizer for Case 2 
( ZF: MSE: -------- ) 

170 



6.00E+02 

5.00E+02 

4.00E+02 '~~-~-------~~ ~---~~--~-----~----
"' Cl) 

i 3.00E+02 ZF 
; 

2.00E+02 

1.00E+02 

O.OOE+OO 
31 131 231 331 431 

number of iterations 

Figure 5-109. Detailed MSE values for Case 2 (feedback) 
( ZF: MSE: -------- ) 

171 



3.80802 

3.70802 

3.00802 
fl.I 

i 3.50802 

; 3.40802 

3.30802 

3.20802 

3.10802 
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

mixednonn parameter 
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Figure 5-111. Received GCR signal for Case 3 (feedback equalizer) 
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Figure 5-114. Coefficients of feedback filter g(n) ofZF feedback equalizer for Case 3 
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Figure 5-118. Spectrum of the output signal of the ZF feedback equalizer for Case 3 
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Figure 5-123 . Output signal of the MSE(LMS) feedback equalizer for Case 3 
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CHAPTER VI 

CONCLUSIONS 

This paper deals with the important topic of equalization in a communications 

system in a broad sense. The main results obtained through this research are: 

( 1) Introducing the concept of mixed norm into the area of equalization. 

Channel distortion and noise are the two main factors contributing to the 

degradation of the communication quality. The zero-forcing (ZF) criterion attempts to 

eliminate the intersymbol interference (ISi) regardless of the noise environment. The 

mean-square-error (MSE) criterion treats the ISi and noise equally. This paper started by 

formulating the equalization problem in the :framework of norms. Based on the Bayes 

theory, the maximum a posteriori estimation of the combined channel impulse response 

was obtained, resulting the mixed norm criterion. The mixed norm parameter A, which is 

related to our belief on the prior knowledge about the channel characteristics, provides an 

extra degree of freedom to optimize the mixed norm for the specific application. 

(2) Developing the optimum ideal linear equalizer that minimizes the mixed norm, 

and obtaining an expression for the resulting mean square error (MSE). 

A linear equalizer with the tapped delay line structure that minimizes the mixed 

norm was obtained, as a function of the channel impulse response. It was pointed out that 

the linear equalizer based on the zero-forcing criterion attempts to invert the channel 

:frequency response; the linear equalizer based on the mean-square-error criterion, which is 
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a type of noncausal Wiener filter, strikes a balance between reducing the ISi and 

enhancing noise. The mixed norm linear equalizer, with the help of the mixed norm 

parameter, can highlight the ISi or noise. 

The mean square error at the equalizer output, as a measure of merit, was obtained 

for each equalizer during the derivation of the equalizer itself 

(3) Developing the optimum ideal feedback equalizer that minimizes the mixed 

norm, and obtaining an expression for the resulting MSE. 

The noise enhancement problem is inherent in the linear equalizer structure. The 

feedback equalizer was proposed as an alternative, with the.goal of compensating severe 

amplitude distortion without significantly enhancing noise. The feedback portion of the 

feedback equalizer is designed to cancel only the postcursor ISi; while the forward filter is 

responsible for canceling only the precursor ISi. The relationship between the desired 

feedback filter and the combined channel impulse response (including the channel and the 

forward filter) remains the same, independent of the criterion for the forward filter, as long 

as the overall MSE is the goal for the entire feedback equalizer. 

The ZF forward filter attempts to eliminate the precursor ISi; the MSE forward 

filter is a type of Wiener filter (based on the Wiener-Hopf theory); the mixed norm 

forward filter allows further optimization with the given channel distortion and noise 

environment in practice. The overall MSE is also obtained for each feedback equalizer as a 

measure of merit. 

( 4) Proposing algorithms for updating the automatic linear and feedback equalizers 

that minimize the mixed norms. 
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In most practical applications, the channel impulse response ( or equivalently the 

channel frequency response) is not explicitly known. Therefore, an equalizer should be 

able to adjust itself given the received signal ( and possibly a reference signal). 

The original version ofLucky's ZF algorithm assumes a periodic narrow pulse as a 

training signal, which is not true in most practical applications today, due to the poor 

performance of this signal under noisy conditions. In this paper, the ZF algorithm was 

extended for a general broadband signal. An augmented LMS algorithm was adopted to 

update the LMS equalizer. A new algorithm to update the mixed norm equalizer was 

proposed. 

Because of the availability of the local reference signal, the feedback filter is 

updated by a special algorithm optimized for implementation simplicity in practice. 

( 5) Through numerical solutions, the relationship between the parameter 'A, of the 

mixed norm and the performance of the mixed norm equalizer is observed. 

The mixed norm parameter, related to our belief on the a priori knowledge about 

the channel characteristics under consideration, plays a key role in the performance of the 

mixed norm equalizer. Extensive experiments indicated that under some particular channel 

distortion and noise environment and the practical restriction of finite length 

implementation, the mixed norm equalizer can outperform both the ZF equalizer and the 

MSE equalizer in terms of reaching a smaller steady state mean square error. 

However, the relationship between the overall MSE value and the mixed norm 

parameter appears to be highly nonlinear, given the same channel characteristics and noise 

environment. 
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( 6) Experiments showed that in the multipath cancellation application, the 

introduction of the feedback structure can substantially improve the overall performance 

of the equalizer, in terms of reaching a smaller MSE value. 

(7) New algorithms and implementations for the television multipath cancellation 

are obtained, resulting in two US patents and the related products. 

The multipath signal propagation, or "ghosting" problem, in the television system 

is considered to be ''the last major technological problem in the analog television system". 

In fact, the technique developed here will be also useful for the future digital and high­

definition television systems. 

To effectively cancel the ghosts, a feedback equalizer was employed, which results 

in extra computational complexity. In addition, digitizing the video signal requires a very 

high sample rate compared with the computational capability of the digital signal 

processors available today. Therefore, the algorithms have to be modified and optimized 

to fit into today's technology. For example, a block-based scheme instead of the 

conventional sample-based scheme was used to update the equalizer coefficients, with the 

he]p of a flexible hardware architecture. 

Experimental results with the real life off-the-air signals indicated that the 

proposed algorithms, together with the hardware structure, substantially improved the 

video quality. A commercial product based on these techniques is its near completion. 

The problems that remain to be solved are: 

(1) Even though we discovered that fact that the mixed norm equalizer, with some 

particular mixed norm parameter, can reach a smaller overall MSE value than the ZF 
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equalizer and MSE equalizer under certain channel distortion and noise environment, no 

explicit relationship is established at this point. Further research and extensive experiments 

have to be done for more understanding of this relationship. 

(2) Although the feedback structure substantially improves the equalizer 

performance, it introduces the stability issue. None of the algorithms for the feedback 

equalizer proposed in this paper can guarantee the stability. Further research is needed to 

understand the cause of the instability in the particular algorithm proposed in this paper to 

update the feedback portion of the equalizer. 
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APPENDIX A 

THE L1 AND Li NORMS AND THEIR PROPERTIES 

1. Linear Norm Space 

Before we start our discussion of the L1 norm, we review some of the basic 

concepts of ''linear norm space". 

Defmition: Let £. be a real linear space. If for every element x e £., there exists a real 

number llxll such that 

llxll ~ O; llxll = o if and only if x = O; 

II axil = I al· llxll, for any real number a ; 

llx + YII ~ llxll + IIYII for any x, Y e £. 

(A.I} 

then £ is called a real linear norm space, or simply real norm space. llxll is called the 

norm ofx. 

From the definition, we know that the M-dimensional Euclidean space RM is a 

norm space. 

Defmition: Let £. be a linear space, and let V be a subset of £.. If for any two points x, y 

in V, the segment connecting the two points 

{ ,·x+(l-,}·y,where, isreal, 0~-r~l} (A.2} 

is also in V , then V is called a convex set. (A.2} is called the convex combination of x 

andy. 
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From the definition, the set of all non-negative real numbers is a convex set. 

Defmition: a :function d(.) in the norm space £. is a mapping from a convex set V to the 

set of the non-negative real numbers. The :function is said to be convex if the :function of 

the convex combination of x, y e l/ is not larger than the convex combination of the 

:functions ofx and y, i.e. 

d{ T•X +(1- T)·y}::;; T·d(x)+(l- T)·d(y) (A3) 

Defmition: Let xi, x2, ... , XM be M vectors in the linear sub-space l/ . If any vector y e V 

can be expressed as a linear combination ofxi (i=l,2, ... , M) 

(A.4) 

then we say Xi (i=l,2, ... , M) spans l/ . 

Defmition: A convex hull of a set of M points in a convex space V is the smallest 

convex polygon S for which each point in l/ is either on the boundary of S or in its 

interior. 

Figure A-1 shows a convex hull in the two dimensional Euclidean space. 

convex 
hull 

Figure A-1. Two dimensinal convex hull 
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2. The L1 Norm and Its Properties 

Let p=l in the dp(c) defined in (2.4), we have the L1 norm 

N 

d1 (c) = Ll1t(c)I 
i=l 

(A5) 

Before we formalize the properties of the L1 norm, we summarize the basic problems of 

the L1 solution to the equations of (2.1), in the following: 

a. find all points c which satisfy M out of the N equations in (2.1) by checking all 

the combinations; 

b. evaluate d1(c) for each of these points; 

c. if there is a points Ci such that dp( Ci) < dp( CJ) for all j -:f:. i, then Ci is the unique 

solution; 

d. the solution may not be unique. 

The computation involved in step (a) may be enormous. The properties of the L1 

norm in the following will help to better understand the L1 norm and its solution set, 

leading to the ahemative algorithms to find the L1 solution. 

(1) Continuity and Convexity of L1 Norm 

Property 1: d 1 ( c) is continuous and convex 

Proof: Assume 
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then 

b = [bl b2 . . . bMl 

x = [ Xjj 1NxM 

T 
y = [Y1 Y2 ... YN1 

T 

N M N M 

= LY; - Lajxij - LY; - Lbjxij 
i=l j=l i=l j=l 

NM 
= L L(aj -b)xij 

i=l j=l 

N 

= ~J(a-b}7 x;J 
1=1 

If a ~ b, then Jd1 (a) - d1 (b )J ~ 0. Therefore d 1 ( c) is continuous. 

The convexity can be shown as follows: 

Assume -re[0,1], then 

N 
d1( -r·a +(1- -r) ·b) = LJr;( -r·a +(1- -r)·b)J 

i=l 

N M 
=LY; - L[ -r·aj +(1- -r) ·bj ]xij 

i=l j=l 

N M M 
= L -r{y;- Lajxij}+(l- -r){y;- Lbjxij} 

i=l j=l j=l 

N 

= Ll-r·r;(a)+(l- -r)·r;(b)I 
i=l 

N N 
~ TLlr;(a)J+(l- -r)LJr;(b)I 

i=l i=l 
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Therefore, d1(c) is convex.• 

(2) Convexity of the L1 Solution Set 

The L1 solution set S is defined as the set of all vectors that minimize the L1 norm. 

Formally, 

(A9) 

Property 2: S is non-empty and bounded. 

The proof of this property can be found in [74]. 

Property 3: Sis convex. 

Proof: Assume a,b eS, then d1(a) = d1(b) =min.Assume -re[0,1], then 

d1( -r·a +(1- -r)·b) = ~IYi -[ -r·a +(1- -r)·bf x;I 
1=1 

= ~I i-{y; -aT x;} +(1- i-){y; -hr x;}I 
1=1 

N N 

~ -r~lyi-arx;l+(l- -r)~IY;-brx;I 
1=1 1=1 

(AlO) 

= -r·d1(a)+(l- -r)·d1(b) 

=d1(a) 

Since d1( a) = min, d1 ( -r· a + (1- -r) · b) = min. Therefore, 

-r·a +(1- -r)·b eS (A.11) 

and S is convex.• 

From property 2, S has at least one element. If S has more than one element, by 

convexity, it will have infinite number of elements. Therefore, the L1 solution may not be 
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unique. Although S may have infinite number of elements, it has certain structure. This 

structure is characterized by some special elements of S called the extreme points. 

Define an index set 

Z = { i: rl C) = 0} (A.12} 

A point c eRM is said to be extreme if {xpi eZ} spans RM. In other words, any other 

vectors in RM can be expressed as a linear combination of { x1, i e Z} . Therefore, the 

number of elements in Z, denoted as IZI, has to be greater than or equal to M. That is to 

say, an extreme point c must satisfy at least M out of the N (N ~ M) equations in (2.5). 

An extreme point may or may not be an L1 solution. If it is an L1 solution, then it 

can not be expressed as a convex combination of other L1 solutions (see [74] for the 

proof). On the other hand, if c e S is not extreme, then it is a convex combination of the 

other points in S. Therefore, S has the following property: 

Property 4: S is the convex hull of the finite set of its extreme points. 

The proof of this property can be found in [74]. 

Example A-1. Assume we have a set of linear equations with M=l, N=2: 

The L1 norm of the residual vector is 

d1(c) = h(c)i+h(c)i 

= ll-ci+l2-ci 

Figure A-2 shows d1 (c) versus c. 
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dl(c) 

"-,, / a)/2+dl(), )/2 

·-:. 

1 solution set S 

a C 
1 b 2 

a/2+b/2 

Figure A-2. dl( c) versus c for example A-1 

From the figure, we can see that 

(a) d 1 ( c) is piece-wise continuous; 

(b) for a point between a and b, say, a/2+b/2, we have 

d1 ( a I 2 + b I 2) < d1 (a) I 2 + d1 ( b) I 2, therefore d 1 ( c) is convex; 

( c) the L1 solution set is S = { c: 1 :::; c :::; 2}. It is non-empty and bounded; 

(d) S is convex, because for any c1,c2 e[l,2] and re[0,1], we have 

( e) S is a line which is a convex hull in one-dimensional space. 

From this example, we can see that the L1 solution may not be unique unless an 

additional constraint is imposed. One of the solution is the L1/Li estimator [75], or 

restricted least square, which finds the solution that minimizes the ~ norm within the L1 

solution set. 
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Example A-2. Assume we have the same set of linear equations as in example A-

1. The Li objective function 

d2 (c) = (1-c)2 +(2-c)2 

= 2{(c-3 /2)2 + 1/ 4} 

Figure A-3 shows d2(c) together with d1(c). 

1 solution set S 

1 3/2 2 

~ Ll/L2 solution 

Figure A-3. dl(c) and d2(c) versus c for example A-2 

C 

We can see that the value of c within the L1 solution set that minimizes the d2(c) is 3/2. 

Therefore, 3/2 is the L1/Li solution. 

In this example, the L1/Li solution is also the global Li solution. This is not always 

true. Sometimes, the global L2 solution may not be in the L1 solution set. In this case, the 

L1/Li solution is just the one that has least squared error within the L1 solution set. 

(3) Directional Derivative 

The directional derivative of d 1 ( c) in the direction .J is defined as 
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(A.13) 

Property 5: If d' 1 ( c, J) is non-negative for all directions .J e RM ( .J cl O ), then c is 

ins. 

Proof: By contradiction. Otherwise, there will be a vector a eRM (a c1 c) with d1(c) > 

d1( a), and d' 1 ( c, .J) in the direction .J = a - c will be negative.• 

Corollary: c is the unique minimizer of d1 ( c) if and only if d'i ( c, .J) is positive for 

3. The L2 Norm and Its Properties 

The Li norm is defined as in (2.2) when p=2. As mentioned earlier, for a non-

negative argument, the function (.) 112 is a monotonically increasing function. Therefore, 

we concentrate on the function 

N 2 

d2 (c) = Llr;(c)j (A.14) 
i=l 

where ri ( c) is the element of the residual vector 

r(c)=y-Xc (A.15) 

From (A.14) and (A.15), we have the vector expression of d2( c ): 

d2 (c) = rT (c)r(c) 

= (y-Xcf (y-Xc) 

= (yT -cTXT)(y-Xc) 
(A.16) 

= yTy-2yTXc+cTXTXc 

From (A.16), we have the following important property of the Li norm: 

Property: d2( c) and hence lir( c )11 2 is a strictly convex function of c. 
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Proof: To prove that d2( c) is a strictly convex function of c, we need to show that for any 

real N-dimensional vectors Ca and Cb, and parameter 0~11.~l, we have 

(A.17) 

and the equality holds only when Ca = Cb. In order to do that, we expand the left-hand side 

of(A.17) according to (A.16): 

d2 [A·Ca +(1-.l)cb] 

= yTy-2yTX[A·Ca +(1-.l)cb] 

+[A·Ca +(1-.l)cbfXTX[A·Ca +(1-.l)cb] 

= yTy-2.lyTXca -2(1-.l)yTXcb 

+.l2c~XTXca + 2.l(l - .l )c~XTXcb + (1- .l )2 c!XTXcb 

The right-hand side of (A.17) is expanded as 

M 2 (ca)+(l-.l)d2 (cb) 

= yTy-2.lyTXca -2(1-.l)yTXcb 

+.lc~XTXca +(1-.l)c!XTXcb 

Canceling common terms in (A.18) and (A.19), we need to show that 

or 

(A.18) 

(A.19) 

{A.20) 

(A.21) 

Since 0~11.~l, except for the trivial cases where 11.=0 or 11.= 1 (then (A.17) is trivially true), 

we always have 11.( l-11. )>0. Dividing (A.21) by 11.( l-11.) and combining the quadratic forms 

yields 

(A.22) 

or 
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(A.23) 

The right hand side of(A.23) is the L:i norm of the vector X(ca-cb), and by definition, is 

always non-negative. The equality of (A.23) will hold only when Ca - Cb = 0, ie., ca=ch. 

Therefore, we have proved that (A.17) is true, and d2( c) is strictly convex. Since the 

:function (. )112 is also convex, we have that the L:i norm of r( c) is also strictly convex. 

The strict convexity of d2(c) indicates that unlike the case of d1(c) there is a unique c that 

:minimizes d2( c ). This will allow us to use the steepest descent algorithm to find that 

unique c. 
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APPENDIXB 

WIENER FILTER AND THE MSE EQUALIZER 

Since both the Wiener filter and the MSE equalizer are based on the minimum 

mean squares (MSE) criterion, they bear a lot of similarity. Indeed, as will be shown in the 

following, the MSE equalizer is a kind of Wiener filter in special case. 

1. Noncausal Wiener Filter and the Linear MSE Equalizer 

Consider the smoothing problem in the following [76]. We wish to estimate the 

present value of a sequence u(n) given the values of w(i) for every i from - oo to oo: 

w(n) = u(n) + 11(n) (B.1) 

where 11(n) is a stationary random sequence representing the noise in the measurement. 

The desirable estimate is formed as a linear function of the value ofw(i): 

" co 

u(n)= Lc(j)w(n- j) (B.2) 
J=-<YJ 

where cG) is the impulse response of a time-invariant noncausal system. We want to find 

the cG) such that the mean square value of the estimation error 

" 
&{[u(n)-u(n)]2 } 

ismmunum 

From the orthogonality principle [76], we know that the estimation error so 

obtained is orthogonal to the w(i) for all~ i.e., 
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&{[u(n)- u(n)]w(i)} = 0 for all i, (B.3) 

From (B.2) and (B.3) and by setting i=n-m, we have 

00 

&{[u(n)- ~:CU)w(n- j)]w(n- m)} = 0 (B.4) 
j=-«> 

or 

00 

~(m)= Lc(j)~(m- j) (B.5) 
j=-«> 

where Ruwis the cross correlation between u(n) and w(n) and Rw is the autocorrelation of 

w(n). Ta1cing the discrete Fourier transform of both sides of (B.5), we obtain 

(B.6) 

where Suw(ro) is the cross-spectral density ofu(n) and w(n), and Sw(ro) is the power 

spectral density of w(n). From (B.6), we have 

C(m)= Suw(m) 
Suw(m) 

The linear system C(ro) in (B.7) is called the noncausal Wiener filter. 

If the signal u(n) and noise ri(n) are uncorrelated, i.e., 

&{u(n)17(n)} = 0 

and ri(n) is white noise with zero man and spectral density ofNo, i.e., 

&{1,2(n)} = N 0 ·b'(n) 

then 
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From (B. 7) and (B.10), we have 

(B.11) 

Now we come to the equalization problem If we model the channel as a linear 

system with an impulse response off{n) and the transmitted signal x(n), then the received 

signal without noise is 

u(n) = f(n)*x(n) (B.12) 

where " * " stands for the convolution. Furthermore, as we have done in Chapter ill 

(equation (3.3)), we assume that the transmitted signal x(n) is uncorrelated at different 

sampling instances, i.e., 

& { x( n )x( n - m)} = er; · 8( n) (B.13) 

Then from (B.12) and (B.13) and the fact that the Fourier transform of the autocorrelation 

function is the power spectral density, we obtain 

Su(OJ) = IF(OJ )12 · er; (B.14) 

From (B.11) and (B.14), we have 

C(OJ) = IF(OJ )12 

IF(OJ)i2 + N; 
CT,, 

(B.15) 

C(co) of (B.15) is a filter to estimate u(n) from w(n). From the estimate ofu(n), we can 

estimate x(n) ifwe know the channel impulse response f{n). To do so, we take the 

Discrete Fourier transform of both sides of (B.12), resulting in 

U(co) = F(co) X(co) 

or 
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X(m) = U(m) 
F(m) 

(B.16) 

Therefore, from w(n), we can estimate the transmitted signal x(n) by using a "compound 

filter" 

H(m) = C(w) 
F(m) 

- IF( {V )12 I F( {V) 

- IF(m)i2 + No 
(J'2 

JI 

F*(w) = ----'--'---

IF( {V )12 + :i 
JI 

(B.17) 

Comparing (B.17) with (3.20), we can see that this "compound filter" is indeed a linear 

MSE equalizer. That is to say, the linear MSE equalizer with infinite length is a special 

noncausal Wiener filter. 

2. Prediction and the MSE Feedback Equalizer 

In Chapter III, we derived the MSE feedback equalizer based on the linear 

prediction model. An alternative method is to use the Wiener-Hopf theory, as shown in the 

following. 

In Chapter III, we have shown that the best choice of the feedback portion to 

minimize the overall MSE is to set the feedback filter coefficients to the corresponding 

postcursor sample values of the combined channel impulse response, i.e., 

gG)= qG) for j = 1,2,3, ... (B.18) 

With this choice, from (3.48), we know that the overall MSE is 
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~ 0 

MSE =er;· Lq2(j)+cr;[q(0)-1]2 +N0 • Lh2(j) (B.19) 
j=-<:IJ j=-<:IJ 

where hG) is the coefficient of the forward filter (note that hG)=O for j > 0), er; is the 

variance of the transmitted signal x(n) and No is the power spectral density of the noise. 

(B.19) can be rearranged as 

(B.20) 

Since 

0 
q(j) = 'J:.,h(m)f(j-m) (B.21) 

m=-oo 

where flj) is the channel impulse response, taking the first variation of (B.20) with respect 

to h(n) yields 

N o 
f(-n) = ---f h(n) + Lq(m)f(m- n) 

CT X ,n=-<:IJ 

(B.22) 

(B.21) can be rearranged as 

CT2 o 
h(n)=-x {/(-n)- Lq(m)f(m-n)} 

No m=-<:IJ 

0 

= Z:p(m)f(m-n) 
m=-oo 

= p(n)* f(-n) (B.23) 

where 
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()2 

p(m) = _x [1- q(O)], m = 0 
No 

()2 

- Nx q(m), 
0 

m~-1 (B.24) 

0 m>O 

Equation (B.23) indicates that the forward filter h(n) of the MSE feedback equalizer 

consists of a matched filter, f(-n), followed by a one-sided ( anti.causal) tapped delay line 

with weights of p(m). This structure will allow the forward filter to minimize the mean 

square precursor ISi and the filtered noise, leaving only the postcursor to be compensated 

for by the feedback portion. 

(B.24) does not provide the coefficients p(m), since q(m) is a :function ofh(m) 

which is the unknown. To find p(m), we define the autocorrelation function off(-n) 

(B.25) 
n 

Multiplying both sides of(B.22) by f(k-n) and summing over n yields 

N. 0 
~/(-n)/(k-n)= ~~h(n)f(k-n)+ m"E_oo q(m)~f(m-n)f(k-n) (B.26) 

From (B.25) and (B.26), we obtain 

(B.27) 

(B.27) is the well-known Wiener-Hopf equations [76]. Solving these equations is beyond 

the scope of this paper. Using the method introduced in [11], one can show that the 

discrete Fourier transform of the sequence q(n) ( -oo::;; m ~ 0) is 
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0 . 
Q( OJ) = L q(n )e1m» 

n=-oo 

= 1- No I cl; 
Er(m)y0 

where the power spectral density is factored according to 

00 . 

= L(f)ne1nw 
n=-oo 

with the one-sided transforms 

00 • 

0+(01) = L rneinw 
n=O 

0 . 
0-(01) = L rne1nw 

n=-oo 

and St(ro) is the power spectral density of the sequence :f(-n). 

224 

(B.28) 

(B.29) 

(B.30) 



APPENDIXC 

CLOSED FORM EXPRESSIONS OF MSE FOR 
FEEDBACK EQUALIZERS WITH INFINITE LENGTH 

1. Residue Theorem and Jensen's Formula [77] 

If an analytic :function f{z) is single-valued in a domain D and is regular there 

except at a point p1 ofD, then f{z) may be expanded in the vicinity of p1 with Laurent 

series 

00 

/(z) = l:an(z- Pif (C.1) 
n=-oo 

The coefficient a_1 is called the residue off{z) at the singular point z = P1, 

(C.2) 

Where c1 is a closed contour surrounding z = P1 and, except at z = P1, f{z) is regular 

within and on c1. Then we have the following residue theorem: 

Iff{z) is single-valued and regular within and on the closed contour c except at the 

n singular points pi, P2, ... , PN, then, 

(C.3) 

Where R (i=l;··,N) is the residue off{z) at the singular point Pi· 
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While the residue theorem establishes the relationship between the contour integral 

of a function and its poles, the following .Jensen's formula [78] establishes the 

relationship between the contour integral of a function and its zeros: 

If.f.(z) is analytic within and on the closed contour c, and .f.(z) has M zeros z1, z2, 

... , Zn inside c, and 1(0):;cO, then 

Jc li(z)ldz= 27if[1nl/(O)I- ~Jnlz;I] 
i=l 

(C.4) 

2. Evaluation of MSE for Feedback Equalizers 

We chose the unit circle as the contour c along which we are going to integrate. In 

Equation (3-56), we have assumed that the linear predictor 1 +G(z) is causal, and has all its 

poles and zeros inside the unit circle. Therefore, l+G*(l/z*) has all its poles and zeros 

outside the unit circle, and hence 1 +G* ( 1/z *) is analytic inside the unit circle. In addition, 

l+G*(l/z*) is anti-causal. It can be expanded with only positive power of z. Therefore 

[1 +G*(l/z*)]lz=0=l. 

Now we let .f.(z) = l+G*(l/z*) in (A4), then the first term of (C.4) is 0. The second 

term is also O because l+G*(l/z*) has no zeros inside the unit circle. Therefore 

T f 112T 1n11 + o* ( ej2efl' >ldf = 0 
-1/2T 

Furthermore, 

11 +G(ejwT )J = 11 +G*(ejwT >I 

(C.5) 

(C.6) 

Taking logarithm of both sides of(3-56) and integrating along the unit circle lead to 
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In lt"(ZF-FE) + T J 1/2T mlF(ej2efJ')l2 df 
No -1/2T 

= T J 1/2T 1n11 + o* ( ej21(I' >12 df = 0 
-1/2T 

Therefore 

lt"(ZF-FE) = Noexp{- T J 112T InlF(ej2efJ'}l2 df 
-112T 

= Noexp{ T J 1/2T 1n[l/lF(ej2efJ')l2]d/} 
-1/2T 

(C.7) 

(C.8) 

Similarly, taking the logarithm of both sides of (3-74) and integrating along the unit circle 

lead to 

and doing the same thing on (3-88} leads to 

lt"(MN-FE) = Noexp{TJ 112T 1n[l/(IF(ej2ef)l2 +»lo/ 0:)]4/} (C.10) 
-112T 

Since the :functions exp(.) and In(.) are both monotonically increasing :functions, it is 

obvious from (C.8), (C.9} and (C.10) that 

(C.11} 
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APPENDIXD 

COMPARISON OF MSE 
BETWEEN LINEAR AND FEEDBACK EQUALIZERS 

It has been shown in [77] that for a function f{z) which is analytic within and on 

the closed contour c, 

exp [ fcf{z) dz] ~ Jc exp [f{z)]dz (D.1) 

and the equality is established when f{z) is constant along the contour c. 

If we let c be the unit circle and 

f(z) =1n[l/lF(z)i2] (D.2) 

Then from (D.1 ), we have 

exp [T J 112T ln[l/lF(ej2ef)l2]d/ :s;T J 112r 111F(ej2ef)l2 df (D.3) 
-1/2T -112T 

From (3-10) and (3-62), we have 

(D.4) 

Similar]y, we have 

(D.5) 

and 

(D.6) 
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APPENDIXE 

AN ALTERNATIVE MODEL OF THE GHOSTING PROBLEM 

In the ghost cancellation literature, the ghosting process is often modeled 

according to the causality [57]. The overall ghosting channel is modeled as an FIR :fiher 

with transfer :function 

F(z) = K(z) G(z) (E.l) 

where K( z) is an anti-causal system and G( z) is a causal system. 

The ghost canceling system is basically an inverse system of the ghosting system 

In the postcursor case, the ghost is the time-delayed (and possibly phase-shifted) version 

of the main signal: 

u(n) = x(n)+ g1 ·x(n-1)+ g2 ·x(n-2)+ ... +gN ·x(n-N) (E.2) 

The transfer :function of the ghosting system is 

G( ) 1 -1 -2 -N Z = +g1 •Z +g2 •Z + ... +gN •z 

The inverse filter is an IIR filter with transfer :function of 

1 
T(z)=­

G(z) 
1 

=~~~~~~~~~~ 

l+g1 .z-1+g2 .z-2+ ... +gN .z-N 
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In the precursor case, the ghost is the time-advanced (and possibly phase-shifted) version 

of the main signal: 

u(n) = k0 ·x(n)+k1 ·x(n+ l)+k2 ·x(n+2)+ ... +kp ·x(n+ P) (E.5) 

The transfer :function of the ghosting system is 

The inverse filter is a physically unrealizable IIR filter: 

1 
H(z)=­

K(z) 

1 =----------
ko +k1 ·z1 +k2 ·z2 + ... +kp ·ZP 

This filter can be approximated by a long FIR filter: 

1 kl 1 kp p kl 1 kp p 2 

H(z) = -{1- (-z + ... +-z ) + (-z + ... +-z ) - ... } 

(E.6) 

(E.7) 

k0 k0 k0 k0 k0 (E.8) 

1 2 M 

~ ho +h_l ·Z +h_z ·Z + ... +h_M ·Z 

where hi (i = - M, ... , -1, 0) can be calculated by re-arranging the terms in the polynomial. 

The combined ghost canceling system is an IIR filter with both forward section 

H(z) and feedback section 1/G(z). 
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