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PREFACE 

The research reported herein is presented as a collection of three journal articles. 

An introduction and thorough literature review (Chapter 1) precedes the articles and 

contains a separate reference section. Each journal article (Chapters 2, 3, and 4) has its 

own abstract, introduction, literature review, methodologies, results, conclusions, and 

reference section. Each article adheres to the style requirements of the journals to which 

it has been submitted. Detailed information left out of the journal articles is presented in 

the Appendices for each article separately. Finally, recommendations for future research 

are presented. The three articles, by chapter, are: 

Chapter 2: 

Chapter 3: 

Chapter 4: 

Title: Risk Analysis of Total Maximum Daily Loads in an Uncertain 

Environment Using EUTROMOD. Authors: W.C. Hession, D.E. Storm, 

C.T. Haan, K.H. Reckhow, and M.D. Smolen. Journal: Lake and 

Reservoir Management. 

Title: Uncertainty and the USLE. Authors: W.C. Hession, D.E. Storm, 

and C.T. Haan. Journal: Transactions of the ASAE. 

Title: A Watershed-Level Ecological Risk Assessment Methodology. 

Authors: W.C. Hession, D.E. Storm, C.T. Haan, S.L. Burks, and M.D. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Wister Lake, located in southeast Oklahoma, is the sole water supply for the 

majority of residents in Leflore and three adjacent counties. In addition, the lake and 

related recreational activities are important to the economy of the area. The lake receives 

pollutants from a wide variety of both point and nonpoint sources. Wister Lake has been 

classified eutrophic since it was surveyed by the U.S. Environmental Protection Agency 

(U.S. EPA) in 1974 (U.S. EPA, 1977). Oklahoma's 1990 Water Quality Assessment 

Report for Section 305(b) of the Clean Water Act~,i.dentifies Wister Lake as 

eutrophic and highly turbid. In addition, Wister Lake's watershed has been targeted in 

Oklahoma's Section 319 Nonpoint Source (NPS) Management Plan as well as in its 

Section 303(d) list of total maximum daily load (TMDL) waters. 

The State of Oklahoma, using the CWA of 1987 as guidance, has an ongoing 
''I (if 
~booperative project to improve and prevent further deterioration of water quality in 
Iii. r 
1lwister Lake. The ultimate objective of the CW A is "to restore and maintain the 
l 

J l 
'f,ltfchemical, physical, and biological integrity of the Nation's waters." Tansley (1935) 

l 
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defined ecosystem as "a system resulting from the integration of all living and nonliving 

factors of the environment." Therefore, an ecosystem-based approach, including the 

integration of chemical, physical, and biological components, is the most logical 

approach to address CW A goals. 

Suter (1993) defined ecological risk assessment as the process of assigning 

magnitudes and probabilities to the adverse effects of human activities or natural 

catastrophes. Ecological risk assessments provide a holistic method for analyzing and 

predicting ecosystem responses to stress. Resource planning and decision making using 

ecosystem response can be difficult due to lack of knowledge, intricacies of ecosystem 

function, and minimal data availability. Therefore, simulation models are often used for 

analyzing and predicting the response of ecosystems to perturbation (Minns, 1992). 

Uncertainty analyses should be a routine part of ecological risk assessment (Risk 

Assessment Forum, 1992). However, few, if any, existing pollutant transport and fate 

models proposed for use in ecological risk assessments include thorough uncertainty 

analyses (Reckhow, 1994). 

,,,/"\There is a growing consensus that the water quality problems now facing society 

./can best be solved by following a basin-wide or watershed protection approach (U.S. 

EPA, 1991; Doppelt et al., 1993 ). The CW A, Section 319, requires that States implement 

NPS management programs to the maximum extent practicable on a 

watershed-by-watershed basis,! In addition, the present reauthorization of the CWA is 

expected to incorporate a watershed management approach and may include amendments 

that provide incentives to state and local governments to adopt watershed management 

plans (Browner, 1993; Perciasepe, 1994). Methodologies and tools for performing 
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ecological risk assessments at the watershed level which are simple, "user friendly," and 

incorporate thorough uncertainty analyses to allow for appropriate management decisions 

at the local, state, and federal levels are needed. 

THE PROBLEM 

Rationale 

,./·_,,·,, Ecological risk assessment and watershed-level management are quickly 
lt 

I 
. 1 /becoming fundamental components of environmental decision making concerning the 
i'lt:1 f ·f'VI 1 

;.ii·· { Nation's water bodies. Geographic information systems (GISs) and simulation models 
' .(t-·•-"""""' 

\ are important tools in water quality management. Uncertainty analyses should be an 
\ 
I 
l_!!!tegral part of ecological risk assessments, but are rarely incorporated thoroughly in 

pollutant transport and fate models. Appropriate tools and methodologies are needed to 

allow for ecological risk assessment and watershed management while addressing 

uncertainties in knowledge, data, and ultimately, predictions. The tools and 

methodologies should be useful for assessment and decision making at local, state, and 

federal agencies. Therefore, they must be user friendly and simple, while providing 

reliable information with quantifiable uncertainty. 

Theoretical Framework for Proposed Study 

The proposed work is based on the theory that an ecosystem-based approach, 
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where the ecosystem is defined at the watershed level, is the most logical approach to 

addressing the ~~thsL.CWA.as~pres~n_t.~4 _i~_tlie}.2!Z~~~~nts.!he 

ecological risk assessment methodology will build on the paradigms and theories laid out 

by Suter (1993). Reckhow's (1994) suggestion that all scientific uncertainties must be 

estimated and included in ecological risk assessment or modeling activities will be 

adhered to as much as possible. Finally, methodologies used to incorporate uncertainty 

into the risk assessment and model will follow fundamentals put forth by Suter et al. 

(1987), Helton (1994), and MacIntosh et al. (1994). Validation will be performed by 

comparing model results with in-lake monitoring data from an ongoing U.S. EPA Clean 

Lakes Project and watershed loading estimates from monitoring stations located on the 

main tributaries to the lake. 

Statement of the Problem 

The purpose of this research is to develop an ecological risk assessment 

methodology at the watershed level for freshwater ecosystems. The main product will be 

a pollutant transport and fate model (a modified EUTROMOD) with uncertainty analysis 

integrated as fully as possible considering existing knowledge, data, and technology. The 

model will allow for ecological risk assessment of lentic ecosystems due to the stress of 

excess phosphorus. The methodology and model will be tested on the Wister Lake 

watershed with the lake and its trophic state as the endpoint for ecological risk 

assessment. Alternative management scenarios will be simulated and recommendations 

for achieving water quality goals in Wister Lake will be made. 
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Elements of the Problem (Objectives) 

1. Define a methodology for conducting watershed-level ecological risk 

assessments. 

2. Modify EUTROMOD for use in ecological risk assessment. 

3. Define methodology for propagating uncertainty throughout risk assessment. 

4. Using the proposed methodology and EUTROMOD, evaluate the risk of 

eutrophication in Wister Lake, Oklahoma as a probabilistic description of 

uncertain phosphorus inputs. 

5. Evaluate alternative management scenarios in the Wister Lake watershed and 

make recommendations on land use changes and/or management alternatives for 

achieving water quality objectives in Wister Lake. 

PROJECT AREA DESCRIPTION 

The Lake and its Watershed 

Wister Lake, located in the Arkansas River Basin on the Poteau River, was 

created by the U.S. Army Corps of Engineers in 1949 to provide flood control, water 

supply, low flow augmentation, and water conservation. Wister Lake has a surface area 

of 2,970 ha, a shoreline length of 185 km, a mean depth of 2.3 m, and a maximum depth 

of 13 .4 m at normal pool elevation of 146 m. Wister Lake's watershed covers 

approximately 260,000 ha with two thirds in Oklahoma and the remainder in Arkansas. 
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The watershed drains portions of Leflore and Latimer Counties in Oklahoma, and Scott 

and Polk Counties in Arkansas. 

The lake receives inputs from a wide variety of pollutant sources, both point and 

nonpoint. There are nine major permitted wastewater treatment plants in Wister Lake's 

watershed. Nonpoint pollution contributing to the lake includes agricultural, forestry, 

resource exploration and extraction, and urban sources. A major source of nutrients in 

the watershed originates from the large poultry rearing and processing industry present in 

the region. In fact, Leflore County is one of the largest and most rapidly growing poultry 

producing counties in Oklahoma. Poultry litter, spread as fertilizer on pastures, may 

result in a large pollutant source if poorly managed. 

The Wister Lake watershed includes portions of the Ouachita Mountains and the 

Arkansas Valley ecoregions (Omernik, 1987). The Ouachita Mountain ecoregion is 

described as open high hills to open low mountains, land use of oak/hickory/pine 

woodland and forest, and soils of moist ultisols. The Arkansas Valley ecoregion is 

described as plains with hills, land use a mix of cropland with pasture and varied forest 

types of oak/hickory/pine or oak/tupelo/bald cypress, and soils consisting of altisols and 

sandstone/shale. Land use in the watershed is approximately three fourths forest and one 

fourth pasture, with small amounts of cropland, urban, and disturbed land. The 

topography ranges from level flood plains along Fourche Maline Creek and the Poteau 

River to gently sloping uplands to steep mountainous areas. The relief ranges from 

Wister Lake's normal pool elevation to the 817 m peak of Rich Mountain in Arkansas. 
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Water Quality Monitoring 

); Presently, a cooperative project is underway to prevent further deterioration of 
fj.i. 
l:j) . 

f1t/water quality in Wister Lake through control of point and nonpoint pollution sources. 
jl ' ,; ,! . 

'\ 

Monitoring stations have been established throughout the Wister Lake watershed to assist 

in determining the magnitude of pollutant loading to the lake, distinguishing sources, and 

tracking the effectiveness of pollution control activities (Hession et al., 1992; Storm et al., 

1994). The U.S. Geological Survey (USGS) and the Oklahoma Conservation 

Commission (OCC) have established seven water quality/quantity monitoring stations 

which are sampled at 6-week intervals for flow, nutrients, sediments, and other 

constituents of concern. In addition, four of these stations have continuous automatic 

samplers for stream flow monitoring. Figure 1.1 shows the four water quality monitoring 

stations that define the main subwatersheds addressed throughout this study. 

Additional, monitoring activities have also been conducted by the Arkansas 

Department of Pollution Control and Ecology (ADPC&E) on the Poteau River as well as 

by consultants hired by the Town of Waldron and Tyson Foods in Arkansas (Storm et al., 

1994). In addition, in-lake nutrient and chlorophyll a concentrations have been 

monitored by the Oklahoma Water Resources Board (OWRB) at five different locations 

within the lake for an ongoing U.S. EPA Clean Lakes Project. 

Watershed-Level Data 

The Geographic Resources Analysis Support System (GRASS) (U.S. Army, 
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1991) GIS software on Sun Workstations was utilized to store, manage, and manipulate 

spatially referenced data for characterizing the Wister Lake watershed. Land use data for 

the Oklahoma portion of the basin were obtained from the U.S. Natural Resource 

Conservation Service (NRCS) at a resolution of 4 ha. These data represent land use from 

between 1982 and 1985. Land use information for the Arkansas portion of the watershed 

was obtained from the USGS GIRAS (Mitchell et al., 1977) land use and land cover 

digital database at a resolution of 4 ha. The two land use coverages were categorized 

using the USGS classification system (Anderson et al., 1976) and merged to create one 

coverage. This data layer resulted in §yYet·tg~P,!.;gtlJi:mq µs~A~p-~s distributed throughout 

exp!2!~!!Q!1:_ disturbances ... The Geography Department at Oklahoma State University is 
{''"'"'·"·' ' . ·-,,",,,.,.,,,,, , .. ,, ............ «<~.,.-,,-.. -~"-''"''''·~·----

presently classifying Landsat Thematic Mapper imagery to provide more detailed, 

consistent land use data for the entire basin. Unfortunately, the data were unavailable for 

this project. 

Detailed soils data for the Oklahoma portion of the watershed were obtained in 

digital format from the NRCS at a resolution of 4 ha. These data were developed 

between 1982 and 1985. The soil surveys for Scott and Polk Counties in Arkansas were 

not yet available. Instead, the general county-level soil maps for the Arkansas portion of 

the basin were obtained and digitized into the GIS. A detailed soils data layer is presently 

being digitized from soil surveys and being combined with existing soil survey data 

layers from the U.S. Forest Service. These data were unavailable for this project. 

The digital elevation maps (DEMs) covering the Wister Lake watershed were 

8 



purchased from USGS. These data are on a 30 m by 30 m square grid for 7 .5' quadrangle 

coverage, which corresponds to the 1 :24,000-scale topographic map series. These DEMs 

were imported into the GIS and merged to form one elevation file for the entire Wister 

Lake watershed. This elevation data layer was then used to create a percent slope data 

coverage for the watershed. 

LITERATURE REVIEW 

Ecological Risk Assessment 

The Paradigm 

As a comparatively recent discipline, ecological risk assessment methodologies 

and concepts are subject to debate and change (Lipton et al., 1993). In addition, risk 

assessment methodologies dealing with ecosystem responses are difficult to standardize 

due to the wide variability in the types of ecosystems, intended scopes, available 

resources, and endpoint objectives. Suter (1993) defined ecological risk assessment as 

the process of assigning magnitudes and probabilities to the adverse effects of human 

activities or natural catastrophes. ~E:~~~~Ki£aj. risk assessments provide a holistic method 

\ for analyzing and predicting ecosystem responses to stress. The stressors can be any 
\ 

' } 

\ chemical, physical, or biologic entity that can cause adverse effects on individuals, 

populations, communities, or ecosystems (U.S. EPA, 1992). 

I used the effects-driven retrospective ecological risk assessment paradigm with 

ecosystem-level effects as described by Suter (1993) for this project. This type of 
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assessment is appropriate where there are observed effects, unknown exposure, and 

unknown sources. Wister Lake and its tributaries have been identified as having water 

quality problems and, although there are strong suspects for sources of phosphorus, the 

amount of exposure and importance and distribution of the sources is unknown. There 

are four sequential components to this ecological risk assessment: hazard definition, 

hazard measurement and estimation, risk characterization, and risk management (Suter, 

1993). Suter (1990) also points out that an ecological risk assessment begins with three 

activities: choosing endpoints, describing the environment, and describing the hazard. 

Lipton et al. (1993) proposed a paradigm for ecological risk assessment composed of 

seven steps: receptor identification, hazard identification, endpoint identification, 

relationship assessment, exposure assessment, response assessment, and risk 

characterization/uncertainty analysis. 
" •• ,• , ••• ,•. ", ~·· ,_ , •• , ,.,._,, •• ,.~,~- ~ " • ,... ~ >- '" •" e ' < ,.,.-,...... - 14Y'"'- ---~aas,._, 

··-, .... , .. ~.----.· ---.........,, 

•' ,.-''~-..L1lesource pl~g and decision making using ecosystem response can be difficult ) 

// 
/' :Y /due to lack of knowledge, intricacies of ecosystem func~on,. and minimal data 

.,..~~-·-~ } , ........ ____ ,,.,,., ...... . 
/ /'" 

\ .. \ availability.\Often, the determining factor in the accuracy of an ecological risk 
\ .....•.. ___ .---·~- .. -- .. ~, 

assessment is the availability of long-term, multivariate field data (Cairns and 

Neiderlehner, 1993). However, simulation models are often used as an alternative to field 

observations for analyzing and predicting the response of ecosystems to perturbation 

(Minns, 1992). Uncertainty analyses should be a routine part of ecological risk 

assessments (Risk Assessment Forum, 1992; Lipton et al·., 1993; Reckhow, 1994). The 

result of an ecological risk assessment should be a probabilistic estimate of the ecological 

effects resulting from specific levels of stress (Cairns and Pratt, 1990; Cairns and 

McCormick, 1991). 
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The Ecosystem 
\ 
\ 

c{ /·· ]lletei~tm@:yJ,e.ferenc.es.1hauygg~!$.L~~jJ1tt,fy~~tc;-J.h~dL~~,J:!r~!~~~;!. i -
.·,) lf ~y~t~rn ~h~~.~~~~~tJl~i!x,C.PP.~.~ro§/ Reynolds Q~~~~!.~£~~~!~~-,!11~ 
j\ i I• 'f •/J:i { ' 

·~/ j J ~~J)«IQ~0-wat-er=mai:iagement,sSt.mS.~~,~t!h~~~~-~<!,!~:~--~-:!~~~.-!~-
, ·m. , 11 

:;( \I e~~~J;ij~!,i e11£~~-~en:. entir~.E!~~~:.~~~!~J Stanford and War (1~2) 
JI • 
,\ 

refined watershed as the ridgeline-or elevation contour that delimits drainage basins or 

• 1 catchments where the catchment is bounded by the watershed, and can be defined as a 

. land area drained by a river/stream or system of connecting rivers/streams such that all 

f h water within the area flows through a single outlet. Doppelt et al. (1_22]) described 

:fl watersheds as II ecosystems composed of a· mosaic of different land or terrestrial patches 

that are connected by ( drained by) a network of streams. 11 They further described 

watersheds as involving four-dimensional processes that connect longitudinal, lateral, and 

vertical dimensions, each differing temporajJy. 

Odum (1969) stated that the entire drainage or catchment basin, not just the lake 

or stream, must be considered the ecosystem unit in order to deal successfully with water 

pollution problems. He considered streamsrembedded in the watershed to be the 

integrated result of ecosystem processes. Hynes (1975) encouraged a holistic view of 

watercourses, suggesting that streams not be viewed as purely aquatic phenomena, but 

rather as parts of the valleys that they drain. Stanford and Ward (1992) reasoned that, 

since water flows downstream from the watershed through the catchment, thereby 

integrating influences of natural and human disturbances within the catchment, the 

watershed is a natural ecosystem boundary. Lotspeich (1980), while noting that streams 

are the integrated product of their watershed, defined watersheds as the basic ecosystem. 
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The Stressor 

The pollutants of concern in Wister Lake and its tributaries are nutrients 

(phosphorus and nitrogen) and sediment (Hession et al., 1992; Storm et al, 1994). The 

work performed herein specifically addresses phosphorus and its effect on the aquatic 

environment (Wister Lake). 

The trophic state of a water body refers to its productivity level which can be 

affected by, but not defined by, its nutrient status. Lakes are often classified as 

oligotrophic, mesotrophic, or eutrophic based on their primary productivity and other 

attributes. Oligotrophic lakes tend to be geologically young, low productivity lakes and 

c~J,e ,l:lG9elerateJl ,by~5H~,!~,~~.~~.i~E~!.¥~.f.~Y;gi~nts,.cwNPll Cl:lD, litnjt,»:c,;it~~H§.~f O,L, 

~!!!~~!:l~~?"£~9!ft~!!,g£i,.1U~H~J0:1,,2L,S!Ji!!!sil!~:,J~1though nitrogen and carbon are associated 

with eutrophication, most attention has focused on phosphorus inputs because of the 

difficulty in controlling the exchange of nitrogen and carbon between the atmosphere and 

water, and fixation of atmospheric nitrogen by some blue-green algae. Thus, phosphorus 

often limits eutrophication and its control is of prime importance in decreasing 

accelerated eutrophication (Sharpley, 1993; Daniels et al., 1994). Of the major nutrients, 

phosphorus is the most effectively controlled using existing engineering technology and 

land use management (Reckhow et al., 1980). 

The Ecological Endpoints 

Ecological risk assessments must have clearly defined endpoints that are socially 

and biologically relevant, accessible to prediction and measurement, and susceptible to 
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the hazard being assessed (Suter, 1990). A risk assessment using ecosystem-level effects 

involves the assessment of endpoints that are ecosystem properties. Appropriate 

endpoints might be the probability of eutrophication or functional properties such as 

primary productivity (Suter, 1993). Two distinct types of endpoints, assessment and 

measurement, have been identified by Suter (1990). A measurement endpoint is a 

measurable environmental characteristic that is related to the socially valued 

characteristic chosen as the assessment endpoint. In this study, the assessment endpoint 

for phosphorus is eutrophication, or level of primary productivity, where the 

measurement endpoint is chlorophyll a concentration which, in turn, can be related back 

to eutrophication (Vollenweider, 1968). Chlorophyll a, as the dominant photosynthetic 

pigment in phytoplankton, is often measured as an indicator of phytoplankton biomass. 

Many methods have been proposed in the literature for relating in-lake chlorophyll a 

concentrations to trophic state (Sakamoto, 1966; Vollenweider, 1968, 1982; Dobson et 

al., 1974; Gakstatter et al., 1974). Herein, I utilize two different methods, Gakstatter et 

al. (1974) and Vollenweider (1982), in order to illustrate a fixed boundary and open 

boundary system, respectively. 

Uncertainty Analysis 

Definition, Purpose,· and Types of Uncertainty 

The American Heritage Dictionary (Morris, 1978) defines ~~!X as "the 

condition of being in doubt." In most water quality assessments and/or modeling 

activities the only thing we are sure of is that we are "in doubt." Unfortunately, in most 
~~,., 
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applications, parametric models are treated as deterministic, producing the same outputs 

for a given set of inputs (Haan, 1989). Uncertainty in spatial data has been greeted by a 

conspiracy of silence (Rejeski, 1993) and few, if any, existing pollutant transport and fate 

models include thorough uncertainty analyses (Suter, 1993; Reckhow, 1994). Model 

uncertainty and error analysis are major, but poorly understood aspects of risk assessment 

and modeling (Beck, 1987; Summers et al., 1993). We must learn to live with 

uncertainty and incorporate it into numerical analysis and modeling, rather than ignore it 

(Fedra, 1983). Rejeski (1993) referred to "modeling honesty" as the truthful 

representation of model limitations and uncertainties. Reckhow (1994) suggested that all 

scientific uncertainties must be estimated and included in ecological risk assessment or 

modeling activities. 

Many types of uncertainties have been identified in the literature utilizing various 

taxonomic breakdowns. Brown and Barnwell (1987) described uncertainty inherent in 

water quality modeling in terms of spatial and temporal variability, sampling error, 

analytical error, and bias in measurement and estimatiqnJechniques: Tung and Mays 

(1980) defined four main types ofuncertainty that exist in designing hydraulic structures: 

hydrologic (stochastic), hydraulic, structural, and economic. Each of these major 

categories was further divided into inherent (stochastic), parameter (lack of perfect 

information), and model (lack of perfect information, equation errors) uncertainty. 

Bogardi and Bardossy (1987) acknowledged the importance of incorporating 

spatial and temporal stochasticity into watershed management. However, they only 

considered temporal stochasticity in their study. Gardner and O'Neill (1983) discussed 

three main sources of uncertainty in water quality modeling: assumptions in model 
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construction; measurement errors; and errors in formulating processes. They further 

discussed measurement errors in terms of parameter variability and divide them further 

into natural variability and error in parameter estimation. 

F edra (1983) discussed system variability (stochastic), theoretical background 

(lack of knowledge), environmental database (lack of good data; wrong variables, 

different places and times), and model uncertainty (simplifications such as lumping and 

assumptions) as important components of uncertainty. Haan (1989) and Vicens et al. 

(1975), in discussing uncertainty in hydrologic models, classified uncertainty into three 

categories: 

1. The inherent variability in natural processes. 

2. Model uncertainty. 

3. Parameter uncertainty. 

Rejeski (1993) identified three types of spatial uncertainty that are important 

when using a GIS for model input: locational error; error due to the aggregation of data 

(lumping); and fuzzy boundaries (there are virtually no hard boundaries, just transition 

zones). Antenucci et al. (1991) described locational error as positional accuracy. 

Suter et al. (1987) proposed a taxonomy of uncertainty (fig. 1.2). Defined 

uncertainty is uncertainty about the state of the world and undefined uncertainty relates to 

one's actual level of ignorance. Undefined uncertainty (also referred to as the unknown 

unknowns) cannot be incorporated into risk assessment, but its existence must be 

acknowledged (Suter et al., 1987). Defined uncertainty is further partitioned into identity 

and analytical uncertainty (fig. 1.2). Identity uncertainty, referring to lack of knowledge 

concerning the identity of future victims, is a major concern in human risk assessments, 
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but of minor importance in ecological risk assessments. They noted that analytical error 

is invariability large in ecological analysis and its consideration is essential. The three 

sources of analytical uncertainty are errors resulting from our conceptualizations of the 

world (model error), stochasticity in the natural world, and uncertainties in measuring 

model parameters (parameter error). 

Categorization of uncertainty into objective and subjective uncertainty is also 

common (Palisade Corporation, 1993). Objective uncertainty is due to the stochastic 

nature of the world while subjective uncertainty is due to lack of knowledge and can 

always be refined. Similarly, Helton (1994) listed two types of uncertainty: 1) subjective 

(due to lack of knowledge) and 2) stochastic (due to system variance). MacIntosh et al. 

(1994) defined these major types of uncertainty as knowledge uncertainty and stochastic 

variability (fig. 1.3). Knowledge uncertainty is due to incomplete understanding or 

inadequate measurement of system properties. This uncertainty is a property of the 

analyst and can also be considered subjective uncertainty (Helton, 1994). Knowledge 

uncertainty can be further partitioned into model and parameter uncertainty. Stochastic 

variability is due to unexplained random variability of the natural environment and is a 

property of the system under study. Stochasticity can:be further subdivided into temporal 

and spatial variability. The terminology of MacIntosh et al. (1994) will be utilized 

throughout this study (fig. 1.3). Note that this taxonomy is meant for organizational and 

discussional purposes rather than as a strict categorization of uncertainty types. 

Propagation of Uncertainty 

There are two main categories of methods for estimating the uncertainty in model 
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predictions: first-order variance propagation and Monte Carlo simulation methods (Beck, 

1987; Summers et al., 1993; Zhang et al., 1993). First-order variance techniques have a 

number of theoretical shortcomings that reduce their utility (Summers et al., 1993). For 

example, first-order analysis is restricted by assumptions of linearity and the magnitudes 

of input parameter variances (Gardner and O'Neill, 1983; Summers et al., 1993). First-

order approximation deteriorates if the coefficient of variation of the model parameters is 

greater than 10-20% (Zhang et al., 1993). 

Monte Carlo simulation is a method for numerically operating a complex system 

that has random components (Brown and Barnwell, 1987). Repeated simulations are 

performed with the model using randomly selected parameter values. At the beginning of 

each simulation, parameter values are chosen from pre-determined probability 

distributions. The process is repeated for a number of iterations sufficient to converge on 

an estimate of the probability distribution of the output variables (Gardner and O'Neill, 

1983). Unlike first-order analysis, the validity of Monte Carlo procedures is not affected 

by nonlinearities or discontinuities in the model (Brown and Barnwell, 1987; Lei and 

Schilling, 1994). Hammonds et al. (1994) concluded that Monte Carlo simulation is the 
~· .,, ... , 

most robust method for propagating uncertainty···fur~ugh either simple or complex 

models. Therefore, given the limitations of first-order analysis, Monte Carlo procedures 

are the preferred method of propagating uncertainty in complex, watershed-level 

hydrologic and water quality (H/WQ) models (Haan, 1989; Summers et al., 1993; 

Taskinen et al., 1994; Haan and Zhang, 1995; Prabhu, 1995). 

Burmaster and Anderson (1994) detailed principles of good practice for the use of 

Monte Carlo techniques in human health and ecological risk assessments. They proposed 
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the following principles of good Monte Carlo techniques: 

1. Show all formulae used to estimate exposure. 

2. Calculate and present point estimates (deterministic) first. 

3. Present results from sensitivity analyses of the deterministic calculations to 

identify the inputs suitable for probabilistic treatment. 

4. Restrict probabilistic techniques to important variables. 

5. Provide detailed information on the input distributions selected. 

6. Show how input distributions capture both variability and uncertainty. 

7. Use measured data for selecting input distributions when possible. 

8. Discuss the methods and report the goodness-of-fit statistics for distributions 

fit to measured data. If measured data are not used, discuss the techniques 

used for judgement. 

9. Discuss the presence or absence of correlation between input parameters. If 

correlations are suspected but no data are available, try Monte Carlo 

simulations with correlations set to zero and ·set to values considered high but 

plausible to learn if possible correlations are important in the analysis. 

10. Provide detailed information and graphs for each output distribution. 

11. Perform probabilistic sensitivity analyses for all key inputs having 

distributions in the Monte Carlo analysis in such a way as to distinguish the 

effects of variability from effects of uncertainty. 

12. Investigate and demonstrate the numerical stability of output distributions. 

The analyst should run enough iterations to ensure numerical stability of the 

tails of the output distributions. 
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13. Present the name and statistical quality of the random number generator used. 

14. Discuss limitations of the methods and indicate where additional research or 

measurements could improve the analysis. 

Monte Carlo analysis is usually performed using one of two random sampling 

processes: simple random sampling and Latin hypercube sampling (LHS). Simple 

random sampling is less efficient than LHS when the sample size is less than a few 

thousand (Hammonds et al., 1994). Burmaster and Anderson (1994) suggested using 

Latin hypercube sampling (LHS) for more efficient sampling. LHS ensures full coverage 

across the range of sampled variables (Morgan and Henrion, 1992; Burmaster and 

Anderson, 1994; Helton, 1994; Taskinen et al., 1994). Monte Carlo analysis may be 

performed in many ways; one may write numerical code or use one of several currently 

available software packages (Hammonds et al., 1994). Monte Carlo simulations were 

performed in this study using @Risk Version 3.la (Palisade Corporation, Newfield, NY) 

linked with Microsoft Excel Version 5.0 (Microsoft Corporation, Cambridge, MA). 

Hammonds et al. (1994) proposed a general approach to uncertainty analysis that 

included the following steps: 

1. Define endpoint. 

2. List uncertain parameters. 

3. Specify the maximum range of uncertain parameters. 

4. Specify subjective distributions for values within ranges. 

5. Determine and account for correlations. 

6. Propagate the uncertainty (analytically or numerically) to produce stochastic 

output. 
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7. Derive quantitative statements of uncertainty for the endpoint. 

8. Rank parameters contributing to output uncertainty using sensitivity analysis. 

9. Obtain additional data for the parameters found to be most important and 

repeat steps 3 through 8. 

10. Present and interpret the results of the analysis. 

It is important for an uncertainty analysis to distinguish between stochastic 

variability and knowledge uncertainty (Burmaster and Anderson, 1994; Hammonds et al., 

1994; Helton, 1994; Hoffman and Hammonds, 1994; MacIntosh et al., 1994). 

Knowledge uncertainty can be improved upon by decreasing the possible range of 

parameter estimates or by model improvements. A reduction in parameter uncertainty 

can be accomplished by physically sampling the appropriate phenomena. However, 

stochastic variability is a natural property of the system being studied and must be 

accounted for, but can not be reduced. 

Helton (1994) and MacIntosh et al. (1994) proposed an uncertainty propagation 

methodologies which involved two-phase Monte Carlo sampling structures used to 

propagate knowledge and stochastic uncertainty separately throughout analyses. This 

two-phased Monte Carlo methodology with LHS was utilized throughout this study. 

Details of the procedure are presented in Chapter 2 and Chapter 3. 

Parameter Distributions 

In order to perform Monte Carlo simulations, a probability distribution defining 

the range of possible values must be defined for each uncertain parameter. However, 

there is limited information on parameter uncertainty terms reported in literature and 
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distributional shape may be difficult to characterize with confidence (Reckhow, 1994). 

Lei and Schilling (1994) discussed the difficulty in defining probability density functions 

(PDFs) for input parameters, but suggested that the mean and variance are the most 

important properties of a random variable and are not difficult to estimate. They also 

suggested that the actual shape of PDF is of minor importance and utilized uniform, 

normal, lognormal, triangular, gamma, and Gumbel with no major differences in output 

PDF. 

Gardner and O'Neill (1983) also discuss the lack of information concerning 

parameter uncertainty in models and that approximations must be made based on the best 

available information. Under such circumstances, they recommended the use of 

triangular distributions due to the few parameters needed to define the distributions 

(mode, maximum, and minimum). These parameters can usually be inferred from the 

physical process under investigation. Contrary to the conclusio11~. of Lei and Schilling 

(1994), they concluded that assuming different distribution shapes for parameter 

uncertainty can have a significant effect on the output distributions. 

Although distributions may result directly from data obtained from a proper 

experimental design, usually subjective judgment must be used to reflect the degree of 

belief that the unknown value for a parameter lies within a specified range (Hammonds et 

al., 1994). Where data are limited and uncertainty is low, Hammond et al. (1994) 

recommended the specification of a range to define a uniform distribution. If there is 

knowledge about a most likely value or midpoint, in addition to range, a triangular 

distribution may be assigned. When range exceeds a factor of 10, log-uniform or log­

triangular distributions are prudent. When there is doubt about subjectively defined 
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distributions, the effects should be analyzed (Hammonds et al., 1994). They stated that 

under no circumstance should an uncertain parameter be held constant simply due to lack 

of data to define a range or distribution. 

Fedra (1983) analyzed uncertainty in a lake ecosystem model for modeling a 

lake's trophic state or water quality. If data were available, the mean and variability were 

defined. For the other parameters, he estimated ranges from the literature; the additional 

uncertainty of these estimates was reflected as wide ranges. He used uniform PDFs for 

all parameters in his Monte Carlo simulations. 

It is important to account for correlations between input distributions during error 

propagation to ensure realistic results (Reckhow, 1994). However, little experimental 

data exist concerning the correlation structures within watersheds (Sharma and 

Rogowski, 1985). Morgan and Henrion (1992) suggested that assessing correlation by 

subjective judgment is difficult at best. Unfortunately, due to a lack of data, correlations 

often must be assigned subjectively. In this study, a distribution-free rank correlation 

methodology (Iman and Conover, 1982) was employed by the @Risk software and 

correlation coefficients ranging from -1 to 1 were assigned subje,~tjyely to dependent 

variable pairs. 

Concluding Remarks 

Although extensive research has been conducted concerning the propagation of 

uncertainty in mathematical models (Beck, 1987; Suter et al., 1987; Haan, 1989; Beven 

and Binley, 1992; Morgan and Henrion, 1992; Summers et al., 1993; Reckhow, 1994; 

Helton, 1994; MacIntosh et al., 1994), there are still questions that need to be answered in 
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order to appropriately incorporate uncertainty into H/WQ models at the watershed level. 

For instance, when evaluating parameter uncertainty using Monte Carlo simulation 

procedures we often subjectively assign probability distribution types to input parameter 

values. Is this subjective assignment of parameter distribution shape appropriate? How 

does the assumed shape affect the output distributions? Additionally, many H/WQ 

models are distributed-parameter models that perform under the assumption that the 

physical system is made up of small, uniform, and discrete sub-units (Tim, 1995). Each 

discrete sub-unit is characterized by a uniform set of properties and input parameters. 

When performing Monte Carlo procedures on spatially distributed models, do we reduce 

the variability of the output simply by sub-dividing the study area into multiple units? 

The Model 

The Need/or Simple Models 

Beck (1987), in reviewing the analysis of uncertainty in water quality modeling 

concluded that many of the larger, more complex water quality models can easily 

generate predictions with little or no confidence attached. -Latge mechanistic models are 

too complex and large to be subjected to adequate uncertainty analysis (Reckhow, 1994). 

Therefore, Reckhow (1994) suggested the use of simpler models with thorough 

uncertainty analysis. State and regional agencies are a large percentage of model users 

and they rarely use large mechanistic models. Many modelers believe that since the 

world is complicated, then simulation models must also be complicated to be accurate. 

Suter et al. (1987) suggested that assessment models should be as simple as 
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possible while also including the critical components and processes. Increasing the 

complexity of a model is often viewed as a desirable goal. However, increased 

complexity of process models increases the number of parameters and, thereby, increases 

the potential for parameter error. In fact, increased model complexity can result in more 

variability in output distributions and increase the chance of incorrectly estimating risk 

(Suter et al., 1987). This phenomena is referred to as the Information Paradox (Rowe, 

1977): the more complex one's model becomes, the greater one's uncertainty will be 

because of the greater number of parameters to be estimated and the greater number of 

stochastic processes and model functions that must be included. 

EUTROMOD 

EUTROMOD is a computer model developed to provide guidance and 

information for managing eutrophication in lakes and reservoirs (Reckhow et al., 1992). 

It is a collection of spreadsheet-based nutrient loading and lake response models which 

may be used to relate water quality goals to allowable nutrient inputs. The model, 

thereby, provides information concerning the appropriate mix of point source discharges, 

land use, and land management controls that result in acceptable water quality. 

EUTROMOD predicts lake-wide, growing season average conditions as a 

function of annual nutrient loadings (phosphorus and nitrogen). The annual loadings are 

simulated with a simple, lumped watershed modeling procedure which includes the 

Rational Equation's runoff coefficient for surface runoff (Chow et al., 1988), the 

Universal Soil Loss Equation (USLE) for estimating soil loss (Wischmeier and Smith, 

1978), loading functions for nutrient export from NPSs, and user provided point source 
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information. Model input requirements are detailed for the original model and a modified 

version in Chapters 2 and 4, respectively. 

Lake response is predicted by a set of nonlinear regression equations from multi-

lake regional data sets. These regression equations are used to estimate lake nutrient 

levels (mg/1), chlorophyll a (µg/1), and Secchi Disk depth (m). As discussed previously, 

the measurement endpoint of the ecological risk assessment is in-lake chlorophyll a 

concentration which can then be related to the assessment endpoint (trophic state). The 

in-lake chlorophyll a regression model for reservoirs in the six-state region including 

Oklahoma is: 

log (CHLA) = 2.0 + O.Sllog (P) + 0.23log (-c) - 0.35log (z) w w w w (1.1) 

where CHLA is annual median in-lake chlorophyll a concentration (µg/1), Pis annual 

median estimated in-lake phosphorus concentration (mg/1), -c is the hydraulic residence 

time (yr), and z is the average lake depth (m). Details concerning this equation and the 

equation for estimating in-lake phosphorus can be found in Reckhow et al. (1992). This 

equation is presented here to highlight the fact that only phosphorus (not nitrogen) is used 

to estimate chlorophyll a concentration. In addition, the importance of hydraulic 

residence time and lake depth in this equation becomes apparent later in the study. I used 

EUTROMOD to simulate annual phosphorus load from point and nonpoint sources as 

well as resulting lake response in terms of chlorophyll a. 

The original EUTROMOD allows for minimal uncertainty analysis by providing 

estimates of model error and hydrologic variability. The model error is provided in 

terms of lake response estimates plus or minus one standard deviation, which is 
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associated with the error term of the regression models. Year-to-year variability is 

addressed by utilizing an annual mean precipitation and coefficient of variation to 

account for hydro logic variability. This hydro logic variability is propagated by 

utilizing first-order error analysis (Reckhow and Chapra, 1983) and is presented as lake 

response estimates bounded by 90 % confidence limits. 

These uncertainty estimates within EUTROMOD are useful; however, for 

several reasons a more extensive uncertainty analysis must be employed to perform a 

thorough risk analysis. First, although the model error estimates include some 

parameter uncertainties (Reckhow et al., 1992), parameter uncertainties are not 

C 

specifically addressed in a manner that allows for detailed sensitivity analysis. Second, 
'~ 

the assumptions required for first-order analysis are most likely violated and, therefore, 

inadequate for uncertainty propagation in EUTROMOD. Therefore, risk analysis was 

performed in this study using Monte Carlo techniques rather than uncertainty estimates 

currently provided within EUTROMOD. 

DISSERTATION FORMAT 

The research performed in this dissertation is presented as a collection of three 

journal articles (Chapters 2, 3, and 4). Each article contains an abstract, introduction, 

literature review, methodology, results, conclusions, and references. The subjects of the 

articles, their purpose, and the journal to which they have been or will be submitted 

follow. The journals to which each of these articles were or will be submitted required a 

different style and, therefore, some of the formatting changes from article to article 
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depending on the style required for the journal to which it is intended. Detailed 

information left out of the journal articles is presented in the Appendices for each article 

separately. Finally, recommendations for future research are presented. 

A two-phased Monte Carlo simulation methodology for use in conducting a total 

maximum daily load (TMDL) analysis of phosphorus to Wister Lake is presented in the 

first article (Chapter 2), Risk Analysis o/Total Maximum Daily Loads in an Uncertain 

Environment Using EUTROMOD. Previously, a TMDL was conducted for Wister Lake 

using EUTROMOD in a deterministic manner (Hession et al., 1995). The EUTROMOD 

model was converted from a shareware spreadsheet program to Micosoft Excel Version 

5.0. In Excel, the model is a three-dimensional spreadsheet that is more organized and 

functional than the original model. The Wister Lake watershed was simulated as a single 

watershed and watershed-level inputs were lumped by land use. In addition, all input 

parameters were considered to be uncertain (66 in all) and included in the propagation of 

uncertainty. Details of the procedures for assigning parameter assignments are presented 

in Appendix 1 due to lack of space in the journal article. In addition, model simulation 

results were compared to in-lake monitoring data which are presented in detail in 

Appendix 1. This article has been submitted to the Lake and Reservoir Management 

journal, and the authors are W.C. Hession, D.E. Storm, C.T. Haan, K.H. Reckhow, and 

M.D. Smolen. 

Various aspects of the two-phased Monte Carlo simulation methodology are 

evaluated in the second article (Chapter 3) using the Universal Soil Loss Equation 

(USLE) (Wischmeier and Smith, 1978). This article is titled Uncertainty and the USLE. 

The USLE was selected due to its simplicity, the fact that it is used to estimate soil 
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erosion in EUTROMOD, and extensive observed data were available to compare 

simulation results with actual data. Twenty-seven years of measured rainfall; runoff, and 

soil loss data were obtained from the National Soil Erosion Research Laboratory at 

Purdue University for four original USLE test plots in Guthrie, Oklahoma (data are· 

presented in detail in Appendix 2). These plots were chosen for their close proximity to 

the Wister Lake study area. The three main goals of this study were: 1) to test effects of 

subjectively assigning input parameter dis~butions; 2) to evaluate the effects of 

distributed parameter modeling (discretization) on output variance; and 3) to illustrate the 

value of incorporating uncertainty analysis into model studies by comparing probabilistic 

soil loss estimates to deterministic estimates and observed data. Parameter probability 

distributions are often subjectively assigned due to a lack of adequate data. Therefore, it 

is important to determine the effect this subjectivity has on model results. For the final 

article, EUTROMOD was modified to allow for modeling by subwatersheds, thereby 

allowing discretization of the watershed. The evaluation of the effect of discretization 

level on output variance was performed to ensure that the output results for the final 

portion of the study are reasonable. This article will be submitted to the Transactions of 

the ASAE, and the authors are W.C. Hession, D.E. Storm, and C.T. Haan. 

The uncertainty propagation methodology presented in Chapter 2 and a modified 

EUTROMOD were utilized to perform an ecological risk analysis on Wister Lake for the 

third and final article (Chapter 4), A Watershed-Level Ecological Risk Assessment 

Methodology. The main differences between this article and the first article were: 1) 

simulations were performed by subwatershed; 2) a sensitivity analysis was performed (as 

detailed in Appendix 3) and only parameters significantly contributing to output 
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uncertainty were considered uncertain parameters; and 3) a methodology was presented 

specifically for performing ecological risk assessments at the watershed-levet··fiie 

•' 

reduction in output uncertainty due to discretization effects was not address~d in this 

article due to length constraints and the general readership ofthe journal to which the 

article has been submitted (the Journal of Soil and Water Conservation). However, the 

reduction in output uncertainty was evaluated and discussed in the Appendix 3. The 

authors for this final article are W.C. Hession, D.E. Storm, C.T. Haan, S.L. Burks, and 

M.D. Matlock. 
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Figure 1.1 Wister Lake watershed with streams, monitoring stations, and subwatersheds identified. 
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CHAPTER2 

RISK ANALYSIS OF TOTAL MAXIMUM DAILY LOADS IN AN 

UNCERTAIN ENVIRONMENT USING EUTROMOD 

ABSTRACT. A two-phased Monte Carlo procedure is presented for estimating the 

probability distribution of annual phosphorus load to a lake and the response of the lake 

to the load A watershed-level nutrient loading and lake response model, EUTROMOD, 

and a geographic information system (GIS) were used The uncertainty in loading and 

lake response due to natural variability and parameter uncertainty were propagated 

separately throughout the analysis. The methodology was applied to Wister Lake in 

Oklahoma with the lake and its trophic state as the endpoint for total maximum daily 

load (!'MDL) analysis. The watershed contributing to Wister Lake covers approximately 

260,000 ha and contains a variety of point and nonpoint sources of pollution contributing 

to the degradation of the lake. Model results compared well with measured water quality 

data. EUTROMOD simulations indicated that the lake is eutrophic under current land 

use and management conditions. Nonpoint source (NPS) pollution was estimated to 

contribute nearly 90 percent of the annual phosphorus load with the remainder attributed 

to point sources. The majority of this NPS load was attributed to agriculture. 

Alternative management evaluations indicated that an average reduction of agricultural 
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NPS loads by 25 and 35 percent would be needed to meet our water quality goal with and 

without point source controls, respectively. Due to uncertainties inherent in the 

evaluation procedure, the required reductions had large confidence intervals which must 

be taken into consideration in the decision making process. 

INTRODUCTION 

Under section 303(d) of the Clean Water Act, States are required to compute total 

maximum daily loads (TMDLs) for their priority waters. A TMDL is an estimate of the 

maximum pollutant loading from point and nonpoint sources that a receiving water can 

accept without exceeding water quality standards (U.S. EPA 1991). The TMDL process 

has become an important and required portion of U.S. EPA's water quality initiatives. 

Although the TMDL requirement has been in existence for 20 years, most 

implementation has focused on point source (PS) requirements (Zander 1994). 

Computing a TMDL is difficult for a combination of point and nonpoint pollution 

sources because of the fundamentally different nature of the two sources. PS loadings are 

essentially continuous in time, while most nonpoint source (NPS) loadings occur 

intermittently (Rossman 1991). In reality, the TMDL varies from day to day as a 

receiving water's capacity to assimilate pollutant loads varies. However, an operational 

TMDL, where a constant daily load is defined, can be useful in terms of management. 

The TMDL can be interpreted as the sum of the long-term average loadings from each 

source category that achieves water quality standards. 

Simulation models are often used as an alternative to or in addition to field 
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observations for analyzing and predicting TMDLs (Rossman 1991; Dilks et al. 1993). 

More often than not, simulations are performed using single point estimates for a model's 

input variables to predict a single or deterministic output. However, magnitudes and 

timing of stream flow pollutants are inherently uncertain (Haith 1987). In addition, 

parameter values used as input to models are only estimates since the actual values are 

not known with certainty. Rejeski (1993) referred to "modeling honesty" as the truthful 

representation of model limitations and uncertainties. Beven (1993) and Haan (1995) 

suggested that the inclusion of uncertainty analysis in modeling activities can be 

interpreted as intellectual honesty. Reckhow (1994a) suggested that all scientific 

uncertainties must be estimated and included in modeling activities. However, few, if 

any, pollutant transport and fate models include thorough uncertainty analyses (Suter 

1993; Reckhow 1994a). 

We propose a risk-based methodology for conducting TMDLs based on 

procedures typically utilized in environmental and ecological risk analyses. Risk can be 

defined as the probability of occurrence of an undesired event (Suter et al. 1987). As an 

example, we evaluated the risk of eutrophication in Wister Lake as a probabilistic 

description of uncertain phosphorus inputs. Stream loading and lake response were 

estimated using-EUTROMOD, a. watershed-level nutrient loading and lake response 

model (Reckhow et al. 1992). The uncertainty in loadings and lake response due to 

natural variability and parameter uncertainty were propagated separately throughout the 

analysis using a two-phased Monte Carlo simulation methodology. 
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STUDY AREA 

Wister Lake, located in the Arkansas River Basin on the Poteau River, was 

created by the U.S. Army Corps of Engineers in 1949 to provide flood control, water 

supply, low flow augmentation, and water conservation. Wister Lake has a surface area 

of2,970 ha, a shoreline length of 185 km, a mean depth of2.3 m, and a maximum depth 

of 13.4 mat the normal pool elevation of 146 m (Oklahoma Water Resources Board 

1990). 

Wister Lake is the sole water supply for the majority of residents in Leflore and 

three adjacent counties. In addition, the lake and related recreational activities are 

important to the economy of the area. Wister Lake has been classified as eutrophic since 

it was surveyed in 1974 by the U.S. EPA (1977) as part of the National Eutrophication 

Survey. Oklahoma's 1990 Water Quality Assessment Report identifies Wister Lake as 

eutrophic and highly turbid. In addition, the Wister Lake watershed has been targeted in 

Oklahoma's section 319 NPS Management Plan as well as in its section 303( d) list of 

TMDL waters. 

The watershed draining into Wister Lake covers approximately 260,000 ha with 

two thirds in Oklahoma and the remainder in Arkansas (Fig. 2.1 ). The lake receives 

pollutants from a wide variety of both point and nonpoint sources. There are nine 

permitted wastewater treatment plants in Wister Lake's watershed. Nonpoint pollution 

contributing to the lake includes agricultural, forestry, resource exploration and 

extraction, and urban sources. A potential major source of nutrients in the watershed 

originates from a large poultry rearing and processing industry in the region. 
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The Wister Lake watershed includes portions of the Ouachita Mountains and the 

Arkansas Valley ecoregions (Omernik 1987). The Ouachita Mountain ecoregion is 

described as open high hills to open low mountains, land use of oak/hickory/pine 

woodland and forest, and soils of moist ultisols. The Arkansas Valley ecoregion is 

described as plains with hills, land use a mix of cropland with pasture and varied forest 

types of oak/hickory/pine or oak/tupelo/bald cypress, and soils consisting of altisols and 

sandstone/shale. Land use in the watershed is approximately three fourths forest and one 

fourth pasture, with small amounts of cropland, urban, and disturbed land. The 

topography ranges from level flood plains along Fourche Maline Creek and the Poteau 

River to gently sloping uplands to steep mountainous areas. The relief ranges from 

Wister Lake's normal pool elevation of 146 m to the 817 m peak of Rich Mountain in 

Arkansas. 

Presently, a cooperative project is underway to prevent further deterioration of 

water quality in Wister Lake through control of point and nonpoint pollution sources. 

Monitoring stations have been established throughout the Wister Lake watershed to assist 

in determining the magnitude of pollutant loading to the lake, distinguishing sources, and 

tracking the effectiveness of pollution control activities (Hession et al. 1992; Storm et al. 

1994). The U.S. Geological Survey and the Oklahoma Conservation Commission have 

established seven water quality/quantity monitoring stations on the main tributaries 

flowing to the lake. These are sampled at six-week intervals for flow, nutrients, 

sediments, and other constituents of concern. Four of these stations have continuous 

automatic stream flow samplers. In addition, the Oklahoma Water Resources Board has 

been monitoring the lake as part of an U.S. EPA-funded Clean Lakes Project. 
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METHODS 

TMDL Development 

A standard TMDL analysis includes the following activities: (1) determine 

· pollutant of interest; (2) estimate the water's assimilative capacity; (3) quantify pollutant 

loading from all sources; (4) determine total allowable pollutant load; and (5) allocate the 

allowable loads among different pollutant sources (U.S. EPA 1991). Quantitatively, a 

TMDL is defined as: 

LC = WLA + LA + MOS (2.1) 

where LC is the loading capacity of the receiving water, WLA is the waste load allocation 

or amount of loading capacity allocated to point sources, LA is the load allocation 

attributed to nonpoint sources (natural and anthropogenic), and MOS is a margin of 

safety. The margin of safety is a required component of the TMDL that accounts for 

uncertainty in pollutant loads and receiving water quality. 

It is important to note that the U.S. EPA allows flexibility when describing 

TMDLs (Zander 1994). TMDLs can be set as actual loadings in mass per day or as 

concentrations. In addition, in some cases the pollutant or system being investigated may 

not lend itself to a mass per day limitation, but may best be described in a TMDL as a 

percentage reduction from current loadings (Zander 1994). 

Our risk-based TMDL methodology was derived by combining the steps listed 

above for a typical TMDL analysis and an approach discussed by Hammonds et al. 
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(1994) for conducting uncertainty analysis in risk assessments. The general steps are: 

1. Define assessment endpoint and determine pollutant of concern. 

2. Select model(s) for estimating the water's assimilative capacity and for 

determining pollutant loadings from all sources. 

3. Estimate pollutant loadings and the water's assimilative capacity under 

uncertainty. 

a. List all uncertain model parameters. 

b. Specify maximum range of values for each uncertain parameter. 

c. Specify a subjective probability distribution for each uncertain parameter. 

d. Determine and account for correlations among parameters. 

e. Propagate uncertainty (we use Monte Carlo techniques). 

f. Determine sensitive parameters, improve estimates for these parameters, 

and repeat steps 3a through 3f. 

g. Present stochastic output. 

4. Determine allowable pollutant load. 

5. Allocate allowable loads and/or evaluate management alternatives. 

Assessment Endpoint and Pollutant of Concern 

Our assessment endpoint was eutrophication. Eutrophication is generally thought 

of as a natural aging process oflakes (Masters 1991). However, eutrophication of surface 

waters can be accelerated by an increased input of nutrients, which can limit water use for 

fisheries, recreation, industry, or drinking. Although nitrogen and carbon are associated 
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with eutrophication, most attention has focused on phosphorus inputs, because of the 

difficulty in controlling the exchange of nitrogen and carbon between the atmosphere and 

water, and fixation of atmospheric nitrogen by some blue-green algae. Thus, phosphorus 

often limits eutrophication and its control is of prime importance in decreasing 

accelerated eutrophication (Daniels et al. 1994). Of the major nutrients, phosphorus can 

be effectively controlled using existing engineering technology and land use management 

(Reckhow et al. 1980). Due to the importance and manageability of phosphorus, we 

developed a TMDL for total phosphorus (TP) loading to Wister Lake. 

Phytoplankton population or algal biomass has been related to nutrient loading 

and is often used as an indicator of primary productivity or trophic state of water bodies 

01 ollenweider 1968). Chlorophyll a, as the dominant photosynthetic pigment in 

phytoplankton, is often measured as an indicator of phytoplankton biomass. Since 

neither Oklahoma nor Arkansas have set water quality standards for nutrients, we used in­

lake chlorophyll a estimates as an indicator of whether or not water quality goals were 

met. This assumes that excessive growth of aquatic plants interferes with desirable water 

uses. We used a chlorophyll a concentration of 10 µg/1, which U.S. EPA's National 

Eutrophication Survey indicated as the breakpoint between mesotrophic and eutrophic 

lakes (Gakstatter et al. 1974), as our endpoint or water quality goal and for determining a 

TMDLforTP. 

Selection of the chlorophyll a concentration goal allowed us to focus attention in 

this paper on the predictive models and uncertainty analysis necessary to support decision 

making. In reality, the selection of water quality goals and endpoints should reflect 

public values (Reckhow 1994b ). Scientists can assess the feasibility of various scientific 
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measures of eutrophication; for example, they can estimate the uncertainty in the 

endpoints under consideration. However, the public and elected officials (as 

representatives of the public) should choose the endpoint, based on a meaningful 

relationship between the endpoint and the use and enjoyment of the lake. 

The Model 

We utilized a nutrient loading and lake response model, EUTROMOD (Reckhow 

et al. 1992), to estimate Wister Lake's assimilative capacity, to quantify TP loading from 

all sources, to determine total allowable pollutant load, to allocate these loads among the 

different sources, and to evaluate management alternatives. The EUTROMOD computer 

model was developed to provide guidance and information for managing eutrophication 

in lakes and reservoirs. It is a collection of spreadsheet-based nutrient loading and lake 

response models which may be used to relate water quality goals to allowable nutrient 

inputs. The model, thereby, provides information concerning the appropriate mix of PS 

discharges, land use, and land management controls that result in acceptable water 

quality. 

Lake-wide, growing season average conditions in a lake are predicted as a 

function of annual nutrient loadings. Annual loadings are simulated with a simple, 

lumped watershed modeling procedure which includes the Rational Equation's runoff 

coefficient for surface runoff (Chow et al. 1988), the Universal Soil Loss Equation 

(USLE) for estimating soil loss (Wischmeier and Smith 1978), loading functions for 

nutrient export from NPSs, and user provided PS information. Lake response is predicted 
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by a set of nonlinear regression equations from multi-lake regional data sets. These 

regression equations are used to estimate lake nutrient levels, chlorophyll a 

concentrations, and Secchi Disk depth. 

Currently, EUTROMOD allows for minimal uncertainty analysis by providing 

estimates of model error and hydrologic variability. The model error is provided in terms 

of lake response estimates plus or minus one standard deviation ( associated with the error 

term of the regression models). Year-to-year variability is addressed by utilizing an 

annual mean precipitation and corresponding coefficient of variation to account for 

hydrologic variability. This hydrologic variability is propagated by utilizing first-order 

error analysis (Reckhow and Chapra, 1983) and is presented as lake response estimates 

bounded by 90% confidence limits. 

These uncertainty estimates within EUTROMOD are useful, however, for several 

reasons we felt that a more extensive uncertainty analysis must be employed in order to 

perform a thorough risk analysis. First, although the model error estimates include some 

parameter uncertainties (Reckhow et al. 1992), parameter uncertainties are not 

specifically addressed in a manner that allows for adequate sensitivity analysis. Second, 

the assumptions required for first-order analysis are most likely violated and, therefore, 

inadequate for uncertainty propagation in EUTROMOD. Therefore, we performed our 

risk analysis using Monte Carlo techniques rather than utilize the uncertainty estimates 

currently provided within EUTROMOD. 

47 



Model Input 

Data required for simulating basin loadings and lake response include information 

about climate, watershed characteristics, and lake morphometry (Reckhow et al. 1992). 

Climate parameters include precipitation and lake evaporation estimates. Several 

parameters are needed to describe the watershed in terms of land use, soils, and 

topography. Lake morphometry is described using surface area and mean depth. 

Required model inputs are listed in Table 2.1. EUTROMOD treats each land use in the 

simulated watershed as a homogeneous unit. Many of the input parameters are required 

for each land use ( as indicated by a subscript i in Table 2.1) and, therefore, the number of 

input parameters depends on the number of unique land uses simulated. 

The pertinent data layers (land use, soils, water bodies, and topography) were 

compiled for the Wister Lake watershed within the Geographic Resources Analysis 

Support System (GRASS) geographic information system (GIS) developed by the U.S. 

Army Corps of Engineers (U.S. Army 1991). All watershed characteristic input 

parameters were area-weighted by land use category utilizing soil, land use, and 

topographic digital data layers in the GIS (Hession, 1995). 

Uncertainty Analysis 

Uncertainty Defined 

Uncertainty and error analysis are major, but poorly understood, aspects of risk 

assessment and modeling (Beck 1987; Suter et al. 1987; Summers et al. 1993). 
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Uncertainty is "the condition of being in doubt" (Morris 1978). In most water quality 

assessments and/or modeling activities the only thing we are sure of is that we are "in 

doubt." Unfortunately, in most applications, parametric models are treated as 

deterministic, producing the same outputs for a given set of inputs (Haan 1989), thereby, 

ignoring inherent uncertainties. 

Many types of uncertainties have been identified in the literature utilizing various 

taxonomic breakdowns (Suter et al. 1987; Morgan and Henrion 1992; Helton 1994; . . 

MacIntosh et al. 1994). We utilized the terminology of MacIntosh et al. (1994) who 

defined the major types of uncertainty as knowledge uncertainty and stochastic variability 

(Fig. 2.2). Knowledge uncertainty is due to incomplete understanding or inadequate 

measurement of system properties. This uncertainty is a property of the analyst and can 

also be considered subjective uncertainty (Helton 1994). We further divided knowledge 

uncertainty into model and parameter uncertainty. Stochastic variability is due to 

unexplained random variability of the natural environment and is a property of the system 

under study. Stochasticity can be further.subdivided into temporal and spatial variability. 

Note that the taxonomy shown in Fig. 2.2 was meant for discussion purposes rather than 

as a strict categorization of uncertainty types. For a more thorough discussion of 

uncertainty the reader is referred to Suter et al. (1987) and Morgan and Henrion (1992). 

It is important for uncertainty analyses to distinguish between stochastic 

variability and knowledge uncertainty (Burmaster and Anderson 1994; Helton 1994; 

Hoffman and Hammonds 1994; MacIntosh et al. 1994). Knowledge uncertainty can be 

reduced by narrowing the possible range of parameter estimates or by improving the 

model. For example, a reduction in parameter uncertainty can be accomplished by 
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physically sampling the appropriate phenomena. However, stochastic variability is a 

natural property of the system being studied and must be accounted for, but can not be 

reduced. MacIntosh et al. (1994) and Helton (1994) accounted for stochastic uncertainty 

using weather variables, i.e. precipitation, while knowledge uncertainty was accounted 

for by defining possible ranges and distributions for all remaining model variables. 

Propagation of Uncertainty 

There are two main methods for propagating uncertainty in models: Monte Carlo 

methods and first-order analysis (Beck 1987; Summers et al. 1993; Zhang et al. 1993). 

First-order variance techniques have a number of theoretical shortcomings that reduce 

their utility (Summers et al. 1993). For example, first-order analysis is restricted by 

assumptions of linearity and the magnitudes of input parameter variances (Gardner and 

O'Neill 1983; Summers et al. 1993). First-order approximation deteriorates if the 

coefficient of variation of the model parameters is greater than 10-20% (Zhang et al. 

1993). Therefore, given the limitations of first-order analysis, Monte Carlo procedures 

are the preferred method of propagating uncertainty in complex, watershed-level models 

(Haan 1989; Summers et al. 1993; Taskinen et al. 1994; Haan and Zhang 1995; Prabhu 

1995). 

Our uncertainty analysis followed the methodology of Helton (1994) and 

MacIntosh et al. (1994) which involved a two-phase Monte Carlo sampling structure used 

to propagate uncertainty while separating knowledge and stochastic uncertainty. The 

uncertainty analysis was performed using@RISK Version 3.la (Palisade Corporation, 

Newfield, NY) linked with Microsoft Excel Version 5.0 (Microsoft Corporation, 
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Cambridge, MA). The EUTROMOD model was converted from a share-ware 

spreadsheet program to Excel for use in this study. 

We included analysis of parameter knowledge uncertainty and stochastic 

variability utilizing the two-phased Monte Carlo procedme illustrated in Fig. 2.3. The 

analysis of stochastic variability was nested within knowledge uncertainty. This was 

done by performing k knowledge simulations, with s stochastic iterations within each 

simulation. Each simulation represented a different set of knowledge uncertain 

parameters while each iteration within a simulation represented a unique set of stochastic 

parameters. Random sampling was performed using Latin hypercube sampling (LHS) to 

ensme full coverage across the range of each sampled variable (Morgan and Henrion 

1992; Bmmaster and Anderson 1994; Helton 1994). 

First, a value was drawn at random from the distribution for each input considered 

to have knowledge uncertainty. In addition, for parameters having both knowledge 

uncertainty and stochasticity, a mean and variance were sampled for use in defining the 

distribution of the stochastic variation of that parameter. Together this set of random 

values, one for each knowledge uncertain input, defined a simulation scenario. Next, a 

value was drawn at random from the distribution for each input considered to have 

stochastic variability. These values, along with the previously defined knowledge 

uncertain inputs, were used as input to the model, computing a corresponding output 

value representing one iteration of the simulation scenario. Without changing the values 

of the randomly drawn knowledge uncertain input parameters, a new value was drawn at 

random for each of the stochastic inputs and a new output value was computed. This 

resampling of the stochastic parameters was repeated s times resulting in s deterministic 
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estimates of output for the simulation scenario. These s output results were analyzed 

statistically resulting in a complementary cumulative distribution function (CCDF) that 

represented the uncertainty in model results due to stochastic variability for one 

simulation scenario. 

At this point, a new value was drawn at random from the distributions for each of 

the knowledge uncertain input parameters, representing a new simulation scenario, and, 

holding these constant, the stochastic variables were again resampled s times resulting in 

a new CCDF. This process was repeated for k simulation scenarios. Each iteration 

resulted in a single estimate of the output, meanwhile, each simulation scenario resulted 

in a set of s simulated outputs and a CCDF. The overall analysis resulted in a distribution 

of k CCDFs. The variation in each CCDF showed the effects of stochastic variability on 

the model estimates while the distribution of CCDFs represented the effects of 

knowledge uncertainty. 

Parameter Uncertainty 

As previously discussed, we incorporated both knowledge uncertainty and 

stochastic variability into our analysis. Upon investigation, all parameters included as 

input to EUTROMOD were found to have both types of uncertainty. In addition, 

stochasticity of most parameters exists in both the temporal and spatial realm. As an 

example, one of the more important parameters used to predict soil loss in the USLE is 

the K-factor or soil erodibility. Erodibility values have been defined for many soil types 

and are often included in soil survey reports (Brinlee and Wilson 1981; Abernathy et al. 

1983). In addition, one can use nomographs (Wischmeier and Smith 1978) or tables 
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based on soil characteristics (Stewart et al. 1975) to estimate values for a particular soil 

texture. Therefore, there is knowledge uncertainty in the fact that we do not know which 

value is appropriate for use in our model for the soil type in question. In addition, the 

erodibility, which is often assumed to be an inherent soil property with a constant value 

has been found to vary spatially within a given soil type (Bajracharya and Lal 1992) as 

well as temporally (Romkens 1995). 

In our analysis, we defined only the variability in annual weather (precipitation 

and rainfall erosivity) as stochastic parameters. In addition, the mean and coefficient of 

variation of annual precipitation and rainfall erosivity were treated as having knowledge 

uncertainty. All remaining parameters were treated as having only knowledge 

uncertainty. 

The probability distributions of the stochastic parameters were based on analysis 

of approximately 30 years of weather data collected from seven raingages distributed 

within or near the watershed (Hession, 1995). Statistical analyses were performed on the 

annual rainfall data from all the stations and all were found to fit a lognormal distribution 

adequately with each station having a different mean and coefficient of variation. We 

assigned the range of means and coefficients of variation to the knowledge uncertainty 

portion of precipitation. Rainfall erosivity distributions were assumed to be lognormal 

and to have a coefficient of variation of0.67, as determined from erosion plot studies in 

Guthrie, Oklahoma using 27 years of rainfall data (Daniel et al. 1943; Risse et al. 1994). 

Knowledge uncertainty was assigned using the range of isoerodent lines shown to be 

closest to the Wister Lake watershed on the isoerodent map of Wischmeier and Smith 

(1978). 
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The ranges and distributions of the remaining parameters representing knowledge 

uncertainty were assigned subjectively using a few basic rules. The possible range of 

each parameter was based on the range of reasonable values found in the literature. The 

distribution was assumed to be either triangular or uniform. MacIntosh et al. ( 1994) 

suggested that if the range of a parameter is greater than a factor of 10, the data should be 

log-transformed to a logtriangular or loguniform distribution. For this study, however, 

none of our ranges were greater than a factor of 10. If no site specific data were available 

for a particular parameter, the uniform distribution was assigned to the range of values. 

However, if data were available from previous studies in the Wister Lake watershed or 

nearby, the modes were set based on the site-specific data and a triangular distribution 

was employed. Detailed information concerning parameter estimates and distributional 

assignments can be found in Hession (1995). 

As part of the TMDL process, we simulated both a baseline of natural background 

conditions (100% forest) as wen as current land use conditions. The number of 

parameters with knowledge uncertainty was 23 for the natural condition simulations and 

66 for the current condition simulations. Recall that many of the parameters are assigned 

for each land use and, therefore, the number of input parameters varies depending on the 

number of land uses simulated. Presentation of all 66 parameter ranges and distributions 

used in the current condition simulations would be too lengthy. However, to illustrate the 

parameter uncertainties, Table 2.2 contains the distributions assigned for the parameters 

representing stochastic variability and knowledge uncertainty in the natural condition 

simulations. Detailed information concerning parameter estimation procedures, ranges, 

and distributions for the current condition simulations can be found in Hession (1995). 
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It is important to account for correlations between input distributions during error 

propagation to ensure realistic results (Reckhow, 1994a). A distribution-free rank 

correlation methodology (Iman and Conover 1982) is employed by the@Risk software, 

and correlation coefficients ranging from-1.0 to 1.0 were assigned subjectively to 

dependent variable pairs. The stochastic variables, precipitation and the USLE rainfall 

erosivity factor (R), were correlated at 1.0 based on analysis of the 27 years of measured 

data from Guthrie, Oklahoma. 

Several parameters with knowledge uncertainty were also assumed to be 

correlated. The mean precipitation and rainfall erosivity values with knowledge 

uncertainty were also correlated at 1.0. Lake area and lake depth were assigned a 

correlation coefficient of 1.0 based on available reservoir storage/depth relationships from 

the U.S. Army Corps of Engineers. Finally, all trapping factors (five were assigned, one 

for each of the main subwatersheds flowing into the lake and one for the area flowing 

directly into the lake, see Fig. 2.1) were correlated subjectively at 0.50. The correlations 

among the remaining parameters were assumed to be negligible. 

RESULTS AND DISCUSSION 

Current Conditions 

We applied EUTROMOD to the Wister Lake watershed for current conditions. 

Seven distinct land uses were identified and model input parameter distributions were 

assigned. The land use types and approximate percentage coverage were: forest (75%), 
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pasture (18-22%), manured pasture (1-4%), urban (I%), water/wetlands (I%), cropland 

(<1%), and disturbed land (<1%). The land use areas were considered deterministic 

(known) values except for those of pasture and manured pasture. 

The effects of the poultry industry in the watershed were incorporated into the 

model by estimating the amount of pasture land being spread with poultry litter based on 

estimates of number of birds, waste produced, and application rates. This manured 

pasture was then included as a separate land use in the model with higher nutrient loading 

factors. The resulting estimates were treated as being uncertain by treating the amount of 

pasture spread with poultry litter as having knowledge uncertainty. However, we 

assumed that the amount of total pasture land was deterministic. Therefore, the area of 

manured pasture was selected from a distribution and the remaining pasture land was set 

equal to the difference between total pasture area and the sampled manured pasture area. 

The results of the current condition simulations are shown in Fig. 2.4 through2.6. 

The two-phased Monte Carlo procedure described previously was performed with 225 

simulations (knowledge uncertainty) with each simulation consisting of 100 iterations 

(stochastic variability). Sample sizes were based on achieving a 95% confidence of being 

within 0.5 µg/1 of the mean chlorophyll a. We used distribution-free confidence intervals 

(Devore 1987; Morgan and Henrion 1992). The standard statistical technique used to 

estimate the confidence intervals is applicable to normal Monte Carlo sampling methods 

(random sampling), however, they are inaccurate for LHS since the samples are not 

completely independent. Fortunately, the precision estimated is an underestimate of the 

precision obtained using LHS (Morgan and Henrion 1992). 

The distribution of complementary cumulative distribution functions (CCDFs) of 
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median in-lake chlorophyll a concentrations resulting from I 00 iterations within 225 

simulations for current conditions is shown in Fig. 2.4. We showed only 100 of the 225 

CCDFs to illustrate the methodology depicted in Fig. 2.3. Recall that each individual 

CCDF represents stochastic variability using a fixed set of knowledge uncertain 

parameter values, and the distribution of CCDFs represents the uncertainty due to lack of 

knowledge. A less congested summary is presented in Fig. 2.5, which provides the 

expected values and percentile curves of the distribution of CCDFs. The remainder of the 

results will be illustrated using this summary technique. The stochastic and knowledge 

expected value curves were obtained by running the model with stochasticity, holding the 

knowledge variables at their expected values, and with knowledge uncertainty, holding 

the stochastic variables at their expected values, respectively. A comparison of the two 

clearly shows that our uncertainty due to lack of knowledge was greater than uncertainty 

due to stochasticity. 

Using the 50th percentile curve, we might estimate that there is a 95% chance that 

the lake is eutrophic (greater than IO µg/1). However, further inspection shows that, 

based on the 5th and 95th percentile CCDFs, the in-lake chlorophyll a could range from 8 

µg/1 to 14.5 µg/1 due to knowledge and stochastic uncertainty, resulting in a trophic 

classification from mesotrophic to highly eutrophic. 

A summary of CCDFs for annual total phosphorus load estimates is provided in 

Fig. 2.6. Our 90% confidence intervals indicated annual loads from below I 00 Mg/yr to 

above 400 Mg/yr. The percentages of total phosphorus load contributions by source are 

provided in Table 2.3. As with all results of this risk analysis, these percentages were 

also uncertain and, consequently, they were provided as means bounded by a 90% 
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confidence interval due to knowledge uncertainty. Simulation results indicate that 

nonpoint sources contributed the majority of the annual phosphorus loads (with a mean of 

nearly 90%) and point sources contributed only a small fraction of the annual load. 

Furthermore, agricultural sources, though accounting for less than 25% of the watershed 

area, were estimated to contribute nearly 80% of the annual total phosphorus load. It 

appears that a watershed protection strategy should concentrate on controlling nonpoint 

pollution sources, especially agricultural, and will require extensive use of best 

management practices (BMPs) or nutrient management practices (NMPs). 

Our main purpose in this study was to present and illustrate a methodology for 

conducting a risk-based TMDL analysis. Therefore, validation of the model was not of 

prime importance. However, previous deterministic simulations were performed by 

Hession et al. (1995a and 1995b) where model results were compared with monitored or 

previously computed values of runoff, sediment and nutrient loads, and in-lake 

parameters with favorable results. Although these comparisons were by no means 

adequate for validation, they did provide some confidence in the simulation process. In 

addition, in Fig. 2.5 we include 1993 median in-lake chlorophyll a estimates for five 

sampling stations at different locations on the lake as monitored for an ongoing U.S. EPA 

Clean Lakes Project (Oklahoma Water Resources Board, unpubl. data). Our simulated 

chlorophyll a ranges compare favorably with these monitored values. It is important to 

remember that the EUTROMOD lake model estimates lake-wide median growing season 

average conditions. Therefore, it would take many years of measured data, averaged on 

an annual or seasonal basis to validate the model adequately. 
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Natural Conditions 

Natural loads and lake conditions were estimated by simulating the watershed as 

100% forest. The estimate of natural conditions can be considered a reference in the 

sense that it determines the lowest possible trophic condition that can be achieved 

through management (Vollenweider 1982). Even though these conditions never existed 

(the reservoir was not created until 1949, at which time urban and agricultural land uses 

already existed), these results provide loads and conditions that are natural and, therefore, 

not due to anthropogenic influences. By definition, natural loads are not pollution and do 

not have to be mitigated (Griffin et al. 1991). 

The estimated median in-lake chlorophyll a concentrations under natural 

conditions are provided in Fig. 2. 7. It is interesting to note that, even under these 

theoretically "pristine" conditions, the lake is predicted to be borderline 

oligotrophic/mesotrophic based on U.S. EPA's trophic level classification system (4 µg/1; 

Gakstatter et al. 1974). This is likely due to the fact that Wister Lake is relatively 

shallow, and shallow lakes tend to be more biologically productive. In fact, many 

shallow man-made lakes are naturally eutrophic when initially filled (North American 

Lake Management Society 1988). 

Setting the TMDL and Management Alternatives 

Our water quality goal was to achieve a trophic state that is borderline 

mesotrophic/eutrophic corresponding to a chlorophyll a concentration of 10 µg/1. The 
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current condition simulations estimated that the lake was eutrophic (Fig. 2.5). Due to the 

variability and uncertainties involved, there were many approaches that one can take to 

set the TMDL for total phosphorus. In addition, there was not a set estimate of total 

phosphorus load for each resulting in-lake chlorophyll a output. Due to the sensitivity of 

the chlorophyll a model to variations of lake depth, runoff volume, and hydraulic 

retention time, a single phosphorus load can result in varied estimates of in-lake 

chlorophyll a. Therefore, instead of setting a total allowable phosphorus load, which is 

done in traditional TMDL analyses, we instead proceeded directly to evaluating 

management alternatives. After investigating these management alternatives, we set our 

TMDL as a reduction in annual total phosphorus loads that will result in the lake being 

borderline mesotrophic/eutrophic. 

Our management alternatives concentrated on control of agricultural loads since 

they were found to be the most significant source of phosphorus to Wister Lake (Table 

2.3). Fig. 2.8 and 2.9 illustrate our approach to determining ways to meet our water 

quality goals. The resulting in-lake chlorophyll a reductions due to percentage reductions 

in agricultural loads are shown in Fig. 2.8. First, EUTROMOD simulations were 

performed as deterministic estimates by holding all parameters at their expected value for 

each 5% increment of agricultural phosphorus load reduction ranging from no reduction 

to 100% reduction. These deterministic results are presented as the expected value curve 

in Fig. 2.8. Next, 100 EUTROMOD simulations were conducted for each 5% increment 

of agricultural phosphorus load reduction, varying only the stochastic parameters. The 

results are shown as the 90% confidence intervals due to stochastic variability (Fig. 2.8). 

Finally, 225 EUTROMOD simulations were conducted for each 5% reduction increment 

60 



while varying only the parameters representing knowledge uncertainty. The results are 

presented as the 90% confidence interval representing knowledge uncertainty (Fig. 2.8). 

The wider confidence intervals for knowledge uncertainty indicated that the uncertainty 

due to lack of knowledge was greater than that due to rainfall stochasticity. 

According to the expected value simulation results, we need to reduce annual 

agricultural loads of total phosphorus by approximately 35% to achieve our water quality 

goal (shown as the mesotrophic/eutrophic breakpoint line at 10 µg/1 in Fig. 2.8). 

Furthermore, it appears unlikely that an oligotrophic condition can be achieved as was 

also apparent from our natural or background condition simulations. 

The stochastic and knowledge uncertainty 90% confidence intervals can be used 

to illustrate how uncertain we are in our assessment as well as to set our management 

strategy with a margin of safety as required for a TMDL analysis ( equation 2.1 ). Based 

on the stochastic confidence interval, the percentage reduction in agricultural loads 

required to meet our water quality goals ranged from 30% to nearly 50%. Additionally, 

the range of reductions was from 0% to more than 70% based on the knowledge 

uncertainty confidence intervals. These confidence intervals could be used to include a 

margin of safety by choosing the management option that represents 95% confidence due 

to stochasticity, i.e. 50% reductions in agricultural loads, or a given confidence in 

knowledge uncertainty. 

The margin of safety was incorporated into the TMDL procedure to provide 

conservative estimates, however, if one wants to be conservative in the decision making 

process the degree of conservatism in calculations and decisions should known (Hattis 

and Burmaster 1994). A stochastic representation as provided by a quantitative 
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uncertainty analysis allows for more useful information for planning and management 

and can improve decision making (Finkel 1994). Given the stochastic results illustrated 

above, decisions on the level of management could be made based on probability of 

occurrence and the level of risk acceptable to resource managers. 

To illustrate a management strategy that incorporates both NPS and PS controls, 

we simulated the results of placing a 2 mg/I phosphorus limit on all point sources in the 

watershed and proceeded to reduce agricultural NPS in the same manner as discussed 

above. The results (Fig. 2.9) again illustrated the importance of nonpoint sources of 

phosphorus to Wister Lake. Implementation of the 2 mg/1 limit on point sources with no 

NPS controls only reduced the most likely chlorophyll a value from 11.1 µg/1 to just 

below I 0.9 µg/1. Under this scenario a 20% to 35% reduction in agricultural load 

reductions would still be required based on the stochastic 90% confidence interval or 0% 

to 63% based on knowledge uncertainty. 

Many different combinations of point and nonpoint source controls can be 

generated to meet water quality goals. Employing NPS controls (BMPs and/or NMPs) is 

generally cheaper than upgrading or adding wastewater treatment. A cost analysis can be 

used to determine the most cost-effective combination ofcontrols resulting in watershed­

scale pollution control optimization. One innovative management technique is to allow 

municipalities and utilities to trade NPS control for PS control (Griffin et al. 1991). If 

trading is allowed, and NPS control is significantly cheaper than additional PS treatment, 

water quality goals may be more obtainable. There are many different types of NPS 

controls that can be implemented to achieve water quality goals. However, cost analysis 

and actual BMP and/orNMP recommendations were beyond the scope of this study. 
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CONCLUSIONS 

Wister Lake, important as a water supply and recreational resource, has been 

classified eutrophic since 1974. A total maximum daily load (TMDL) for phosphorus 

was estimated using a nutrient loading and lake response model, EUTROMOD. Model 

input parameters were evaluated using digital data layers within the GRASS GIS. The 

TMDL was set such that in-lake chlorophyll a concentration estimates remained at levels 

considered borderline mesotrophic/eutrophic by U.S. EPA estimates (10 µg/1). 

The TMDL was described as a percentage reduction from current loads rather 

than a set allowable phosphorus loading per day. This was due to the fact there was not a 

set estimate of total phosphorus load for each resulting in-lake chlorophyll a output. Due 

to the importance in variations of lake depth, runoff volume, and hydraulic retention time 

in determining chlorophyll a, a single phosphorus load can result in varied estimates of 

in-lake chlorophyll a. The stochastic output from the model was utilized to incorporate a 

margin of safety in the TMDL with a known degree of conservatism. 

Uncertainty analyses should be a routine part of any TMDL analysis or modeling 

activity. There are many uncertainties due to the lack of knowledge and system 

stochasticity that affect model output. Knowledge uncertainty and stochastic variability 

were evaluated and propagated separately throughout the TMDL analysis. Knowledge 

uncertainty can be reduced by improving parameter estimates, however, we have little 

control over the variability of the natural system under study. 

It is important to note that the endpoint used in this analysis was also an uncertain 

entity. Eutrophication itself is a vague term and has different meanings to different 
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people (Shannon and Brezonik 1972). Our endpoint was actually "cultural" 

eutrophication which refers to the accelerated aging of a lake or reservoir through human 

activities (Hasler 1947). In addition, we used U.S. EPA's general guideline of 10 µg/1 

chlorophyll a concentration as an indicator of eutrophication. This value is based on 

measured in-lake concentrations from many lakes and reservoirs as part of the National 

Eutrophication Survey (Gakstatter et al. 1974). The trophic state of the lakes sampled 

were determined subjectively through the opinions of the researchers or through 

comparison with literature values. Vollenweider (1982), in summarizing the results of 

the Organization for Economic Co-operation and Development's (OECD) Cooperative 

Program on Eutrophication, recognized the uncertainties involved in using subjective 

judgement to allocate lakes to trophic categories. He presented the trophic state 

categories as probability distributions. Therefore, at a given chlorophyll a concentration, 

a given lake would have different probabilities of being classified as oligotrophic, 

mesotrophic, or eutrophic. We did not utilize Vollenweider's (1982) probabilistic results 

since the lakes included in his analysis were mostly natural lakes and none were in or 

near Oklahoma. Reckhow (1979) and Chapra and Reckhow (1979) also discussed the 

uncertainty inherent in Vollenweider's classification and present methods for 

incorporating the uncertainty into analysis. Additional work is needed to incorporate this 

trophic state classification uncertainty into the methodology illustrated in this paper. 
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Table 2.1 Input requirements for EUTROMOD. 
Type Parameter Symbol Units 
Climatic Precipitation (annual mean) PREC cm/yr 

Precipitation (coefficient of variation) PRECCV 
Precipitation Nutrients: Phosphorus PRECP mg/I 

Nitrogen PRECN mg/I 

Watershed Runoff Coefficient RCi fraction 
USLE Parameters: 

Rainfall Erosivity R MJ-mm/ha-h 
Soil Erodibility ~ Mg/ha per unit R 
Topographic Factor LSi ratio 
Cropping Factor Ci ratio 
Practice Factor pi ratio 

Area per Land Use ARE~ ha 
Phosphorus Loading Factors: 

Dissolved LFPDISi mg/I 
Sediment Attached LFPSEDi mg/kg 

Phosphorus Enrichment Ratio ENP ratio 
Nitrogen Loading Factors: 

Dissolved LFNDISi mg/I 
Sediment Attached LFNSEDi mg/kg 

Nitrogen Enrichment Ratio ENN ratio 
Trapping Factors TFi ratio 
Septic Systemlnformation: 

Number of People SEPNUM per capita-yr 
Phosphorus Load SEPP kg P/person-yr 
Nitrogen Load SEPN kg N/person-yr 
Phosphorus Soil Retention RETP fraction 
Nitrogen Soil Retention RETN fraction 

Point Source Information: · 
Waste Flow PSQ MGD 
Phosphorus Concentration. PSP mg/I 
Nitrogen Concentration PSN mg/I 

Lake Surface Area LAREA km2 

Mean Depth LDEPTH m 
Lake Evaporation (annual mean) LEV AP rnlyr 

Note: Subscript i refers to number of land uses and i refers to number of regions assigned different 
trapping factors (number of subwatersheds in this case). 
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Table 2.2 

Type 
Climatic 

Watershed 

Natural condition parameter distributions. 

Parameter 
PREC 
PRE CCV 
PRECP 
PRECN 

RCrores1 
R 

Krorest 
LS forest 
cforest 
pforest 
AREAforest 
LFPDIStorest 
LFPSED1ores1 
ENP 
LFNDISroresi 
LFNSEDrorest 
ENN 
TFPoteau River 

TFFourche Maline Creek 

TFBlack Fork Creek 

TFHolson Creek 

TFLakeSide 

SEPNUM 
SEPP 
SEPN 
RETP 
RETN 
PSQ 
PSP 
PSN 

Knowledge 
Uncertainty 
Triangular(l 12, 120,123)1 

Triangular(0.23,0.25,0.28) 
Triangular(0.012,0.015,0.021) 
Triangular(0.012,0.015,0.021) 

Triangular(0.10,0.25,0.40) 
Triangular( 430,520,600) 
Uniform(0.27 ,0.43)4 

Uniform(l.6,2.8) 
Uniform(0.0001,0.001) 
constanf 
constant 
Uniform(0.006,0.012) 
Triangular(200,300,400) 
Triangular( 1.19, 1.50,3. 7 4) 
Uniform(0.06,0.19) 
Triangular(900,1200,2000) 
Triangular(l .08,2.00,5.00) 
Triangular(O. 78,0.92,0.97) 
Triangular(0.80,0.91,0.97) 
Triangular(0.65,0.90,0;97) 
Triangular(0.40,0.86,0.96) 
Triangular(0.80,0.85,0.97) 
__ 6 

Lake LAREA Uniform(27.11,29.68) 
LDEPTH Uniform(l.82,2.59) 
LEV AP Triangular(l.0,1.3,1.8) 

1 Triangular distribution (minimum, mode, maximum). · 

Stochastic 
Variability 
Ln(k(PREC)2, k(PRECCV))3 

Ln(k(R) ,0.67) 

2 Value obtained from knowledge (k) uncertainty distribution for each simulation scenario. 
3 Lognormal distribution (mean, coefficient of variation). 
4 Uniform distribution (minimum, maximum). 
5 Values assumed constant throughout all simulations and iterations. 
6 Under natural conditions there would be no point sources or septic systems. 
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Table 2.3 Mean and 90% confidence interval estimates of total phosphorus load by source 
category as percent of total based on EUTROMOD simulations with knowledge 
uncertainty. 

Point Nonpoint Sources 
Estimate Sources Agriculture Forest 

(%) (%) (%) 
Mean 11 80 5 
5th Percentile 6 72 2 
95th Percentile 17 87 9 

1 Includes disturbed land, precipitation, septic systems, and urban/built-up land. 
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Figure 2.1 Location of Wister Lake watershed with major tributaries. 
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CHAPTER3 

UNCERTAINTY AND THE UNIVERSAL SOIL LOSS EQUATION 

ABSTRACT. Hydrologic and water quality (H/WQ) models are important tools for 

assessment and management at the watershed level. Typically, simulations are 

performed deterministically, resulting in a single estimate of the output while ignoring 

natural variability and knowledge uncertainty. We propose a two-phased Monte Carlo 

methodology that provides for the evaluation and propagation of natural stochastic 

variability and knowledge uncertainty separately in HIWQ modeling efforts. The 

Universal Soil Loss Equation (USLE) and experimental plot data were used to evaluate 

the proposed methodology and to illustrate the value of incorporating uncertainty 

analysis into model studies. Next, we showed that subjectively assigning triangular, 

normal, or lognormal distributional shapes to represent parameter uncertainty has little 

effect on output variability. However, the uniform distribution, typically used to express 

greater uncertainty in parameter estimates, resulted in greater output uncertainty. 

Finally, we determined that output variance is reduced as the level of discretization 

increases in spatially distributed modeling due to the mathematics of the underlying 

statistics. Watersheds are often represented as a collection of discrete sub-units in 

distributed parameter HIWQ models. Therefore, model output uncertainty would be 
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under-estimated due to discretization level rather than due to increased confidence in 

parameter estimates or model improvements. Additional work is needed to develop and 

test procedures to correct for this artificial reduction in output variance in order to 

accurately present output variability and uncertainty for distributed HIWQ models. 

INTRODUCTION 

There is a growing consensus that the water quality problems now facing society 

can best be solved by following a basin-wide or watershed protection approach (U.S. 

EPA, 1991a). The Clean Water Act (CWA) of 1987, Section 319, requires that States 

implement nonpoint somce (NPS) management programs to the maximum extent 

practicable on a watershed-by-watershed basis (U.S. EPA, 1991b). In addition, the 

present reauthorization of the CW A is expected to incorporate a watershed management 

approach and may include amendments that provide incentives to state and local 

governments to adopt watershed management plans (Browner, 1993; Perciasepe, 1994). 

Hydrologic and water quality (H/WQ) models are important tools for assessment 

and management at the watershed level. H/WQ simulation models are often used as an 

alternative to or in addition to field observations for analyzing and predicting watershed 

response and for developing watershed management plans. The importance of 

incorporating uncertainty analysis into H/WQ models has been emphasized by many 

authors (Beck, 1987; Reckhow, 1994; Haan et al., 1995; Hession et al., 1995a; Kumar 

and Heatwole, 1995). More often than not, model simulations are performed using single 

point estimates for a model's input variables to predict a single or deterministic output. 
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However, magnitudes and timing of stream flow pollutants are inherently uncertain 

(Haith, 1987). In addition, parameter values used as input to models are only estimates 

since the actual values are not known with certainty. Rejeski (1993) referred to 

"modeling honesty" as the truthful representation of model limitations and uncertainties. 

Beven (1993) and Haan (1995) suggested that the inclusion of uncertainty analysis in 

modeling activities can be interpreted as intellectual honesty. Reckhow (1994) suggested 

that all scientific uncertainties must be estimated and included in modeling activities. 

However, few, if any, existing pollutant transport and fate models include thorough 

uncertainty analyses (Suter, 1993; Reckhow, 1994). 

There are two main categories of methods for estimating the uncertainty in model 

predictions: Monte Carlo methods and first-order variance propagation (Beck, 1987; 

Summers et al., 1993; Zhang et al., 1993). First-order variance techniques have a number 

of theoretical shortcomings that reduce their utility (Summers et al., 1993). For example, 

first-order analysis is restricted by assumptions of linearity and the magnitudes of input 

parameter variances (Gardner and O'Neill, 1983; Summers et al., 1993). First-order 

approximation deteriorates if the coefficient of variation of the model parameters is 

greater than 10-20% (Zhang et al., 1993). Therefore, given the limitations of first-order 

analysis, Monte Carlo procedures are the preferred method of propagating uncertainty in 

complex, watershed-level models (Haan, 1989; Summers et al., 1993; Taskinen et al., 

1994; Haan and Zhang, 1995; Kumar and Heatwole, 1995; Prabhu, 1995). 

We propose a two-phased Monte Carlo procedure for propagating uncertainty in 

H/WQ models based on procedures typically utilized in environmental and ecological 

risk analyses (Helton, 1994; MacIntosh et al., 1994). Risk can be defined as the 
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probability of occurrence of an undesired event (Suter et al., 1987). Although extensive 

research has been conducted concerning the propagation of uncertainty in mathematical 

models (Beck, 1987; Suter et al., 1987; Haan, 1989; Beven and Binley, 1992; Morgan 

and Henrion, 1992; Summers et al., 1993; Reckhow, 1994; Helton, 1994; MacIntosh et 

al., 1994), there are still many questions that need to be answered in order to 

appropriately incorporate uncertainty into H/WQ models at the watershed level. 

For instance, when evaluating parameter uncertainty using Monte Carlo 

simulation procedures, probability distribution types are often subjectively assigned to 

input parameter values. Is this subjective assignment of parameter distribution shape 

appropriate? How does the assumed shape affect the output distributions? Additionally, 

many H/WQ models are distributed-parameter models that perform under the assumption 

that the physical system is made up of small, uniform, and discrete sub-units (Tim, 1995). 

Each discrete sub-unit is characterized by a uniform set of properties and input 

parameters. When performing Monte Carlo procedures on spatially distributed models, 

do we reduce the variability of the output simply by sub-dividing the study area into 

multiple units? 

In order to explore these questions, we evaluated our uncertainty propagation 

methodology using the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 

1978). The USLE was developed as a method of estimating long-term average soil losses 

in runoff from specific field areas under specified cropping and management practices 

(Wischmeier, 1984). The USLE groups the many variables and interactions that 

influence erosion into six major factors, resulting in the following equation: 
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A=RKLSCP (3.1) 

where A is the estimated long-term average annual soil loss per unit area (Mg/ha), R is the 

rainfall erosivity factor, K is the soil-erodibility factor, LS is a dimensionless topographic 

factor that represents the combined effects of slope length and steepness, C is the cover 

and management factor, and P is the factor for supporting practices. Detailed 

descriptions of the USLE and its factors can be found in Wischmeier and Smith (1978) 

and Stewart et al. (1975). 

Although the USLE is fairly simple and is in the process of being replaced by the 

new technology ofRUSLE (Renard and Ferreira, 1993) and WEPP (Nearing et al., 1989), 

it is still used extensively for conservation planning. In addition, the USLE and 

variations of the equation are used in many distributed parameter watershed-scale models 

such as AGNPS (Young et al., 1989), SWRRB (Williams et al., 1985); SW AT 

(Srinivasan and Arnold, 1994); SIMPLE (Sabbagh et al., 1995), and EUTROMOD 

(Reckhow et al., 1992; Hession et al., 1995b ). The USLE has also been utilized 

independently as a spatially distributed model of soil loss (Pelletier, 1985; Hession and 

Shanholtz, 1988). 

It is important to note that, while we compared our USLE estimates to measured 

soil loss values, this research was not conducted to validate or disprove the USLE. 

Several comprehensive studies have been conducted concerning the accuracy of the 

USLE (Wischmeier, 1972; Risse et al., 1993), while others have evaluated the USLE 

under specific conditions in different locations (Onstad et al., 1976; Kramer and Alberts, 

1986). In addition, several studies have treated the USLE in terms of risk and 

86 



uncertainty, thereby estimating soil loss in a stochastic manner (Fogel et al., 1977; Snyder 

and Thomas, 1986, 1987; Thomas and Snyder, 1986; Thomas et al., 1988). 

Twenty-seven years of measured rainfall, runoff, and soil loss data were obtained 

from the National Soil Erosion Research Laboratory at Purdue University for four 

original USLE test plots in Guthrie, Oklahoma. These plots were chosen for their close 

proximity to other studies currently being conducted in Oklahoma by the authors. The 

plot data were used to evaluate our proposed two-phased uncertainty propagation 

methodology and to conduct comparisons between estimated and measured soil loss in 

order to illustrate the value of incorporating uncertainty analysis into model studies. We 

also evaluated how different probability distribution assumptions affect output results and 

how discretization level affects output variance in a spatially distributed model. 

METHODS 

Study Area 

In 1930 the Red Plains Conservation Experiment Station in Guthrie, Oklahoma 

began a series of soil-erosion investigations (Daniel et al., 1943). Numerous soil-erosion 

plots and small watersheds were instrumented to collect rainfall, runoff, and erosion data. 

The data used in this study were from the "control plots" which were incorporated into 

the analyses resulting in the empirically-based USLE (Wischmeier and Smith, 1978). 

We selected the four plots with the longest period of record (27 years from 1930 

through 1956) for use in this study. Table 3.1 provides size, slope, tillage, and cropping 
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information for each of the plots. All four plots consisted of a Stephensville fine sandy 

loam soil. The cotton plots were harvested in the fall, leaving cotton stalks over winter, 

and spring turnplowed parallel to slope (up and down slope) in the spring. The fallow 

plot was not tilled regularly and was, therefore, fully consolidated (Risse et al., 1994). 

Uncertainty Analysis 

Uncertainty Defined 

Uncertainty and error analysis are major, but poorly understood aspects of risk 

assessment and modeling (Beck, 1987; Suter et al., 1987; Summers et al., 1993). 

Uncertainty is "the condition of being in doubt" (Morris, 1978). In most H/WQ modeling 

activities the only thing we are sure of is that we are "in doubt." Unfortunately, in most 

applications, parametric models are treated as deterministic, producing the same outputs 

for a given set of inputs (Haan, 1989), thereby, ignoring inherent uncertainties. 

Many types of uncertainties have been identified in the literature utilizing various 

taxonomic breakdowns (Suter et al., 1987; Morgan and Henrion, 1992; Helton, 1994; 

MacIntosh et al., 1994). We utilized terminology used by MacIntosh et al. (1994) who 

defined the major types of uncertainty as knowledge uncertainty and stochastic variability 

(fig. 3.1). Knowledge uncertainty is due to incomplete understanding or inadequate 

measurement of system properties. This uncertainty is a property of the analyst and can 

also be considered subjective uncertainty (Helton, 1994). We further divided knowledge 

uncertainty into model and parameter uncertainty. 

Stochastic variability is due to unexplained random variability of the natural 
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environment and is a property of the system under study. Stochastic variability can be 

further divided into temporal and spatial variability. It is important to note that the 

taxonomy shown in figure 3 .1 was meant for discussion purposes rather than a strict 

categorization of uncertainty types. For more thorough discussions of uncertainty types 

the reader is referred to Suter et al. (1987) and Morgan and Henrion (1992). 

It is important for uncertainty analyses to distinguish between stochastic 

variability and knowledge uncertainty (Burmaster and Anderson, 1994; Helton, 1994; 

Hoffman and Hammonds, 1994; MacIntosh et al., 1994). Knowledge uncertainty can be 

improved upon by decreasing the possible range of parameter estimates or by model 

improvements. A reduction in parameter uncertainty can be accomplished by physically 

sampling the appropriate phenomena. However, stochastic variability is a natural 

property of the system being studied and must be accounted for, but can not be reduced. 

MacIntosh et al. (1994) and Helton (1994) accounted for stochastic uncertainty using 

weather variables, i.e. precipitation, while knowledge uncertainty was accounted for by 

defining possible ranges and distributions for all remaining model variables. 

Propagation of Uncertainty 

Our uncertainty analysis followed the methodology of Helton (1994) and 

MacIntosh et al. (1994) which involved a two-phase Monte Carlo sampling structure used 

to propagate uncertainty while separating knowledge and stochastic uncertainty. The 

uncertainty analysis was performed using@RISK Version 3.la (Palisade Corporation, 

Newfield, NY) linked with Microsoft Excel Version 5.0 (Microsoft Corporation, 

Cambridge, MA). The USLE was entered into the Excel spreadsheet program for use in 
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this study. 

We included analysis of parameter knowledge uncertainty and stochastic 

variability utilizing the two-phase Monte Carlo procedure illustrated in figure 3.2. The 

analysis of stochastic variability was nested within knowledge uncertainty. This was 

done by performing k knowledge simulations, with s stochastic iterations within each 

simulation. Each simulation represented a different set of knowledge uncertain 

parameters while each iteration within a simulation represented a unique set of stochastic 

parameters. Random sampling was performed using Latin hypercube sampling (LHS) to 

ensure full coverage across the range of each sampled variable (Morgan and Henrion, 

1992; Burmaster and Anderson, 1994; Helton, 1994; Taskinen et al., 1994). 

First, a value was drawn at random from the distribution for each input considered 

to have knowledge uncertainty. Together this set of random values, one for each 

knowledge uncertain input, defined a simulation scenario. Next, a value was drawn at 

random from the distribution for each input considered to have stochastic variability. 

These values, along with the previously defined knowledge uncertain inputs, were used as 

input to the model, computing a corresponding output value representing one iteration of 

the simulation scenario. Without changing the values of the randomly drawn knowledge 

uncertain input parameters, a new value was drawn at random for each of the stochastic 

inputs and a new output value was computed. This resampling of the stochastic 

parameters was repeated s times resulting in s deterministic estimates of output for the 

simulation scenario. These s output results were analyzed statistically resulting in a 

complementary cumulative distribution function (CCDF) that represented the uncertainty 

in model results due to stochastic variability for one simulation scenario. 
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At this point, a new value was drawn at random from the distributions for each of 

the knowledge input parameters, representing a new simulation scenario, and, holding 

these constant, the stochastic variables were again resampled s times resulting in a new 

CCDF. This process was repeated for k simulation scenarios. Each iteration resulted in a 

single estimate of the output, meanwhile, each simulation scenario resulted in a set of s 

simulated outputs and a CCDF. The overall analysis resulted in a distribution of k 

CCDFs. The variation in each CCDF showed the effects of stochastic variability on the 

model estimates while the distribution ofCCDFs showed the effects of knowledge 

uncertainty. 

Parameter Uncertainty 

We incorporated both knowledge uncertainty and stochastic variability into our 

analysis. Upon investigation, all parameters in the USLE can be found to have both types 

of uncertainty. In addition, stochastic variability of these parameters exists in both the 

temporal and spatial realm. As an illustrative example, consider the K factor or soil 

erodibility. Erodibility values have been defined for many soil types and are often 

included in soil survey reports. In addition, one can use nomographs (Wischmeier and 

Smith, 1978) or tables based on soil characteristics (Stewart et al., 1975) to estimate 

values for a particular soil texture. Therefore, there is knowledge uncertainty in the fact 

that we do not know which value is appropriate for use in our model for the soil type in 

question. In addition, the erodibility, which is often assumed to be an inherent soil 

property with a constant value, has been found to vary spatially within a given soil type 

(Bajracharya and Lal, 1992) as well as temporally (Romkens, 1985). 
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In our analysis, we defined the variability in annual rainfall erosivity (R) as a 

temporally stochastic parameter. The soil erodibility (K) and cropping and management 

(C) factors were treated as having knowledge uncertainty. The LS and P factors were 

treated as constant, deterministic values under the assumption that the lengths and slopes 

of the plots were controlled and no support practices were utilized on the plots in 

question, respectively. The C factor for the fallow plot (l-8) was also assumed to be 

deterministic and set equal to unity. 

Annual rainfall erosivity values were found to be lognormally distributed using 27 

years of measured values for the Guthrie plots. The possible ranges of the knowledge 

uncertain parameters (K and C) were set based on the range of reasonable values found in 

the literature. A uniform distribution was used initially for both parameters with 

knowledge uncertainty. We tested the effect of assuming other distributional shapes later 

in the study. Table 3.2 contains the distributions assigned for the parameters representing 

stochastic variability and knowledge uncertainty. 

The range of possible K factor values was determined from Natural Resource 

Conservation Service (NRCS) tables and seven additional sources or methods (Stewart et 

al., 1975; Wischmeier and Smith, 1978; Schwab et al., 1981; Henley et al., 1987; 

Sharpley and Williams, 1990; Risse et al.,1993; Risse et al., 1994). The resulting range is 

shown in table 3.2. The cropping and management factor (C) was estimated on an annual 

basis and the range of possible values was determined from NRCS tables and five 

additional sources or methods (Beasley, 1972; Stewart et al., 1975; Wischmeier and 

Smith, 1978; Line and Coffey, 1992; Risse et al., 1993). The resulting range is shown in 

table 3 .2 for each plot. 
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It is important to include correlations between input distributions during error 

propagation to ensure realistic results (Reckhow, 1994). A distribution-free rank 

correlation methodology (Iman and Conover, 1982) is employed by the @Risk software 

and correlation coefficients ranging from -1 to 1 can be assigned subjectively to 

dependent variable pairs. We assumed that the correlation between the different factors 

in the USLE were negligible. We did, however, incorporate correlations later during our 

discretization analysis. 

RESULTS AND DISCUSSION 

Two-Phased Monte Carlo Simulation 

We applied the two-phased Monte Carlo procedure to the USLE for each of the 

four Guthrie, Oklahoma plots. The Monte Carlo procedure was performed using 100 

simulations (knowledge uncertainty) with each simulation consisting of 1000 iterations 

(stochastic variability). The sample sizes were determined based on an inspection of 

figures 3.3a and 3.3b showing the means, 90% confidence intervals, and standard 

deviations versus number of iterations. These iterations were performed using plot 1-1 

parameter estimates. Figure 3.3a shows the results of varying only the parameters with 

knowledge uncertainty (Kand C) and figure 3.3b shows the results of varying only the 

stochasticly varying parameter (R). In these figures, we looked for the mean and standard 

deviation to stabilize as well as the confidence intervals to flatten, becoming fairly 

constant. We assumed that 100 samples for knowledge uncertainty and 1000 for 
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stochastic variability would provide adequate precision and numerical stability for our 

analysis. 

Figure 3 .4 shows the distribution of CCDFs of estimated average annual soil loss 

resulting from 1000 iterations within 100 simulations for plot 1-1. Recall that each 

individual CCDF represents stochastic variability using a fixed set of knowledge 

uncertain parameter values and the distribution of CCDFs represents the uncertainty do to 

lack of knowledge. A less congested summary of this information is presented in figure 

3.5, which provides the 5th, 50th, and 95th percentile curves of the distribution of 

CCDFs. The remainder of the results are presented using this summary technique. 

In figure 3.5 we also present the complementary empirical distribution function 

(EDF) (Conover, 1980) for the 27 years of observed soil loss and the EDF for estimates 

of soil loss on plot 1-1 conducted by Risse et al. (1993). The Risse et al. (1993) estimates 

were computed for each year using the observed R values and NRCS estimates of K and 

C. It is important to note that Risse et al. (1993) did not present their estimates as 

distributions, but rather as estimates for given years to be compared one-to-one with the 

observed values for that year. Also shown (fig. 3.5) are the observed mean annual soil 

loss value and a deterministic USLE estimate using R as estimated from an isoerodent 

map (Wischmeier and Smith, 1978) and K and C values from NRCS tables for 

Oklahoma. 

A visual comparison of the observed EDF of soil loss and our stochastic estimates 

with 90% confidence intervals indicated that we consistently over-predicted soil loss on 

this plot (fig. 3.5). The low probability, high soil loss events were the only portion of the 

observed EDF that fit within our 90% confidence intervals. Our 50th percentile 
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distribution of estimates and those of Risse et al. (1993) were very similar in magnitude 

as well as distributional shape. Since the observed distribution of soil loss fell outside 

our confidence intervals, one must conclude that either the standard methods for 

estimating the input parameters or the model itself is inadequate and reject the hypothesis 

that the model-parameter estimation procedure combination is capable of estimating soil 

loss at the 90% confidence interval (Haan et al., 1995). 

It is interesting to note that the observed mean and deterministic USLE estimate 

compared well. Therefore, if one were to merely compare mean observed soil loss with 

the average soil loss estimate of the deterministic USLE, one would conclude that the 

model performs well. In addition, the mean observed soil loss fell within our 90% 

confidence intervals. However, the highest observed soil loss from 1949 (540 Mg/ha) 

greatly influenced the mean of the observed soil loss. 

The CCDF percentiles of estimated soil loss for plot 1-2 are shown in figure 3 .6. 

In this case much of the observed EDF fell within our 90% confidence intervals. 

However, we over-predicted the lower soil loss portion of the distribution(< 30 Mg/ha) 

and under-predict the high soil loss portions (> 150 Mg/ha). Again, the observed mean 

and USLE deterministic estimate compared favorably. Note that the mean observed 

annual soil loss did not fall within our 90% confidence interval even though our soil loss 

distribution estimate was much closer than the observed EDF than it was for plot 1-1. 

Simulated CCDFs for plot 1-3 showed that we again consistently over-predicted 

annual soil loss (fig. 3.7). It is interesting to note that the first three plots (1-1, 1-2, 1-3) 

had the same cropping and management practices, soil type, and slope. The only 

difference was the length of slope. We used deterministic estimates of the LS factor 
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under the assumption that little variability would be present and that there was basically 

only one possible estimate for each plot. However, the fact that we were able to predict 

soil loss from plot 1-2 with some success, but not from the two plots with shorter lengths, 

suggests that there was some unexplained variability between plots or that model error in 

terms of the slope length is significant. 

The resulting annual soil loss distribution estimates and observed data for plot 1-

8, the fallow plot, are shown in figure 3.8. Again, we greatly over-predicted the soil loss 

distribution. In fact, for the first time, the USLE deterministic value was not a good 

estimate of the mean observed annual soil loss. Risse etal. (1994) discussed the fact that 

this fallow plot was different from the standard fallow plots since it was not plowed and 

became highly consolidated. This may explain our inability to simulate the annual soil 

loss distribution, but further analysis was beyond the scope of this study. 

With the exception of plot 1-2, the estimated soil loss distributions using the 

USLE greatly over-predicted the observed soil loss distributions from the Guthrie, 

Oklahoma plots. However, a comparison of the mean observed soil loss and a standard 

deterministic estimate with the USLE would suggest otherwise. The EDFs of observed 

soil loss were highly skewed with many small annual values and a few very extreme 

outliers. The USLE was developed as an estimate of "average" annual soil loss and it 

does appear to do a good job of estimating this "average" or mean value. However, this 

average value would tend to produce overly conservative estimates and does not provide 

adequate information for decision making. If one wants to be conservative in their 

decision making process they should know the degree of conservatism in calculations and 

decisions (Hattis and Burmaster, 1994). A stochastic representation of the annual soil 
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loss as provided by a quantitative uncertainty analysis allows for more useful information 

for planning and management (Finkel, 1994). Given a CCDF of soil loss, decisions on 

the level of management could be made based on probability of occurrence and the level 

of risk acceptable to resource managers. 

Effects of Parameter Probability Distribution Assumptions 

In order to perform a quantitative uncertainty analysis in a H/WQ model, 

probability distributions must be assigned to each of the uncertain model parameters. In 

some cases, observed data may be available for the analyst to adequately evaluate the 

underlying distribution. For example, in this study we were able to fit 27 years of rainfall 

erosivity estimates to a lognormal distribution. However, information concerning 

parameter uncertainty is seldom available, even for a portion of the parameters in a model 

(Gardner and O'Neill, 1983). Therefore, approximations must be made based on the best 

available information or subjective judgement. 

When subjectively defining input parameter distributions, Hammonds et al. 

(1994) suggested the use of uniform or triangular distributions when the range of values 

is less than a factor of 10. If the range of possible values exceeds a factor of 10, they 

preferred to assume a probability distribution of the logarithms of the parameter values, 

resulting in either log-uniform or log-triangular distributions. In deciding between a 

uniform or triangular distribution, Hammonds et al. (1994) suggested the uniform 

distribution where data are limited or based on purely literature values, and the triangular 

distribution if there is prior knowledge about a most likely value or midpoint based on 
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site-specific information. Though we could have used triangular distributions in our 

study since actual parameter estimates were made using data from the Guthrie plots, we 

utilized uniform distributions for K and C in order to reflect the uncertainty in the USLE 

under normal application. 

We simulated the annual soil loss from plot 1-1 using several different 

distributional shapes for the knowledge uncertain parameters (K and C). We set the 

rainfall erosivity parameter (R) equal to the median observed value and varied only K and 

C for 100 simulations. Figure 3 .9 displays the annual soil loss output distribution results 

obtained by assigning uniform, triangular, normal, and lognormal distributional shapes to 

the knowledge uncertain parameters, K and C. The triangular distributions were set using 

the same range as those assigned for the uniform distribution (see table 3.2) with a mode 

equal to the center of the range. The normal and lognormal distributions were then 

defined with means equal to the mode of the triangular distribution and variances 

equivalent to those computed for the triangular distributions. 

The output distributions illustrated in figure 3.9 showed that the use of triangular, 

normal, and lognormal probability distributions resulted in very similar soil loss CCDFs. 

However, use of the uniform distribution for input parameter uncertainty resulted in 

greater uncertainty as indicated by a lower slope and a wider range exhibited by the 

CCDF. It is important to note that the variance of the uniform distributions were higher 

than those of the other three distributions. Therefore, it appears that the variance of the 

parameter distribution, not the shape, is the most important aspect when subjectively 

defining parameter distributions. 

Use of subjectively determined triangular distributions rather than assuming a 
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normal or lognormal distribution had little effect on output distributions. Rather than 

spending valuable time and resources on defining complex probability distributions, the 

use of a triangular distribution based on probable ranges of input variables appears to be 

adequate for propagation of uncertainty. In addition, the use of the uniform distribution 

to express greater uncertainty in parameter estimation procedures resulted in greater 

output uncertainty as expected. More comprehensive research is needed to validate these 

findings using various H/WQ models in a distributed parameter context and for 

alternative distributional assumptions. 

Effects of Discretization on Uncertainty Propagation 

Most H/WQ models are distributed-parameter models to some extent. These 

models rely on discretization of a watershed into smaller units that are then assumed to be 

homogeneous in terms of input parameters and mathematical representation. To test the 

effect that discretization has on model output variance as propagated using Monte Carlo 

techniques, we simulated plot 1-1 at different levels of discretization as illustrated in 

figures 3 .1 Oa through 3 .1 Oe. We divided the plot vertically so as not to affect the slope 

length factor. 

We estimated the annual soil loss for each discretization level in figures 3.10a 

through 3 .1 Oe by computing the soil loss from each sub-unit as a mass per unit area 

(kg/ha) using the USLE, multiplying these by the area of the sub-unit to get a mass (kg), 

and adding these soil losses for the sub-units together resulting in an annual soil loss 

estimate for the entire plot in kg. We varied the K and C factors for 100 iterations for 
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each sub-unit using LHS sampling. It is important to note that the K and C values for 

each sub-unit were sampled independently. 

Correlations between different parameters in the USLE were assumed to be 

negligible throughout the previous analyses. However, correlations in the same 

parameter, across different sub-units are probably not insignificant. In particular, in this 

investigation we merely discretized a small, relatively homogeneous plot and the 

correlation of a single parameter from one sub-unit to the next is probably very high. 

However, when modeling entire watersheds at a variety of discretization levels, we do not 

know the actual correlation structure of the natural system. To investigate the combined 

effect of discretization level and parameter correlation on output variance, we simulated 

annual soil loss for five different discretization levels (fig. 3.10a through 3.lOe) and five 

levels of correlation (0.0, 0.25, 0.50, 0.75, and 1.0). The correlations were accounted for 

within@Risk using a distribution-free rank order methodology. 

The results of our investigation into the combined effects of discretization level 

and parameter correlation on output variance are shown in figure 3 .11. Assuming no 

parameter correlations from sub-unit to sub-unit, the output variance was reduced 

significantly merely by the act of discretization. One might argue that the uncertainty 

should be reduced when modeling an area as more detailed, homogeneous units. 

However, we did not reduce the range of our parameter estimates to reflect this reduction 

in knowledge or spatial uncertainty. Therefore, the reduction in output uncertainty was 

purely of a mathematical nature, not related to the knowledge of the model user. We 

argue that a more detailed discretization of a watershed or other area under study should 

result in less uncertainty in the parameter estimates (reflected by a lower range or more 
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centrally-based distribution type) which would then result in a reduction in output 

uncertainty. 

Mathematically, this reduction in output variance due to discretization can be 

illustrated through inspection of the underlying statistics. As an example, we examined 

the case where the parameter correlations between sub-units were set to zero. The total 

annual soil loss from a discretized plot is a linear function of independent random soil 

loss estimates from the sub-units: 

(3.2) 

where Z is the annual soil loss estimate for the entire plot (kg), a; is the area of the i'h sub-

unit (ha), X; is the annual soil loss per unit area of the i'h sub-unit (kg/ha), and mis the 

number of sub-units. The variance is defined as (Devore, 1987): 

m 

Var(Z) = La/ Var(x1) (3.3) 
1-1 

where Var(Z) is the variance of annual soil loss for the entire plot (kg2). Note that since 

the variables are independent and random, the covariances are equal to zero. Since the 

sub-units are equal in size, the areas of the i'h sub-units can be redefined as: 

A 
a= -

I m 

where A is the area of the entire plot (ha). Therefore, the variance of Z becomes: 
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Furthermore, for the simulations discussed above, the variances of the x;'s were 

approximately the same since we did not adjust the distributions of the input parameters 

(K and C) and the USLE estimates of soil loss per unit area were nearly equivalent. 

Therefore, the variance of Z becomes: 

A2 A2 
Var(Z) = - m Var(x) = - Var(x) m2 , m , (3.6) 

This mathematical evaluation matches our simulation results shown in figure 3 .11 as the 

line representing the change in variance assuming no correlations. For example, the 

variance of the soil loss estimate for the plot with five sub-units (fig. 3.lOe), where m = 5, 

had a variance approximately I/5th that of the undivided plot, where m = 1. 

It is important to note that we have made some simplifications and assumptions to 

illustrate our point. For instance, the x;'s for our discretized plots were nearly equal since 

we did not change the input distributions. When simulating a watershed or other 

heterogeneous system, one would most likely change the input estimates for each 

discretized area to reflect this heterogeneity. However, the inputs and their variances will 

likely not change significantly from discretization to discretization and the reduction in 

variance would still occur purely for mathematical reasons. In addition, in the derivation 

above, we assumed no correlations from variable to variable or for the same variables 

across discretizations. However, the results shown in figure 3.11 illustrate that, unless we 

assume correlations equal to 1.0 across discretizations, the mere act of discretization 

results in a reduction in output variance. 

Many distributed parameter models require the discretization of watersheds into 

uniform grids. This can result in thousands of discrete sub-units used to represent a 
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single watershed. Based on the trend seen in the line representing zero correlations, we 

could expect the output variance to be nearly equal to zero if we sub-divide an area into 

thousands of discrete units. Does this mean that by simply sub-dividing a watershed into 

many smaller units we can model the hydrology or water quality with near certaino/? In 

fact, when sub-dividing a watershed we are forced to estimate many more parameters, 

each with uncertainty, which could actually result in an increase in uncertainty (Suter et 

al., 1987). 

Increased correlations tend to mask the effect of discretization level on output 

variance (fig. 3.11). Is it therefore possible to conduct Monte Carlo procedures on 

distributed parameter models and still maintain some control on the output variance? 

What level of correlation is appropriate? Should this correlation be based on the actual 

spatial correlation structure in the physical world or can we estimate these subjectively? 

Morgan and Henrion (1992) suggested that assessing correlation by subjective judgment 

is difficult to do at best. However, little experimental data exists concerning the 

correlation structures within watersheds· (Sharma and Rogowski, 1985). This is further 

complicated because the spatial and temporal relationships are site-specific, scale 

dependent, and vary with the property being measured (Warwick and Nielsen, 1980; 

Peck, 1983; Parkin, 1993). 

Additional research is needed to determine the appropriate level of correlation at 

the watershed scale for the various parameters used in H/WQ models. In addition, a 

method of correcting for the mathematical reduction in output due merely to 

discretization level needs to be developed so that model results can be presented 

realistically and honestly. 
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SUMMARY AND CONCLUSIONS 

We have proposed a two-phased Monte Carlo methodology that provides for the 

evaluation and propagation of natural stochastic variability and knowledge uncertainty 

separately in H/WQ modeling efforts. We illustrated our uncertainty propagation 

procedures using the USLE and 27 years of rainfall and erosion data from four 

experimental plots in Oklahoma. Comparisons between our probabilistic estimates of 

annual soil loss and observed soil loss were made. We concluded that a stochastic 

representation of annual soil loss is more appropriate for decision making than a 

conservative estimate (based on a single estimate of the mean that is strongly influenced 

by extreme values) and allows for management based on the level of risk acceptable to 

resource managers. 

We also showed that the use of subjectively determined triangular distributions, 

rather than assuming a normal or lognormal distribution, had little effect on output 

distributions. The use of the uniform distribution to express greater uncertainty in 

parameter estimates resulted in greater output uncertainty as desired. We also illustrated 

that output variance was reduced significantly merely by the act of discretization due to 

the mathematics of the underlying statistics. This is a potential problem since most 

distributed parameter models discretize the watershed into many uniform units resulting 

in hundreds or even thousands of discrete sub-units used to represent a single watershed, 

thereby, greatly reducing output variance. Additional work is needed to test procedures to 

correct for this false reduction in output variance in order to honestly present output 

variability and uncertainty for distributed H/WQ models. 
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Table 3.1. Guthrie, Oklahoma erosion plot characteristics. 
Plot Size (m) Slope Tillage 

(width by length) % 
1-1 1.83 by 11.06 7.7 U/D* 
1-2 1.83 by 44.26 7.7 U/D 
1-3 1.83 by 22.13 7.7 U/D 
1-8 1.83 by 22.13 7.7 U/D 

* Up and down slope tumplow. 
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Crop 
Type 

Cotton 
Cotton 
Cotton 
Fallow 



Table 3.2 Parameter distributions and ranges for USLE uncertainty analysis in metric units. 
Plot R K LS C P 
1-1 LN(383,0.67)* U(0.21,0.45)t 0.57 U(0.42,0.59) 1.0 
1-2 LN(383,0.67) U(0.21,0.45) 1.13 U(0.42,0.59) 1.0 
1-3 LN(383,0.67) U(0.21,0.45) 0.80 U(0.42,0.59) 1.0 
1-8 LN(383,0.67) U(0.21,0.45) 0.80 1.0 1.0 
* Lognormal distribution (Mean, Coefficient of Variation). 
t Uniform distribution (Minimum, Maximum). 
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Figure 3 .1 Uncertainty taxonomy used in this study. 
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Figure 3.8 Summary of the distribution of CCDFs of annual soil loss estimates for plot 1-8 
compared with observed soil loss, previous estimates, and a deterministic USLE estimate. 
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CHAPTER4 

A WATERSHED-LEVEL ECOLOGICAL RISK 

ASSESSMENT METHODOLOGY 

ABSTRACT. We present an ecological risk assessment methodology at the watershed 

level for .freshwater ecosystems. The major component is a pollutant transport and fate 

model (a modified EUTROMOD) with an integrated uncertainty analysis utilizing a two­

phased Monte Carlo procedure. The uncertainty analysis methodology distinguishes 

between knowledge uncertainty and stochastic variability. The model assesses the 

ecological risk of lentic ecosystems in response to the stress of excess phosphorus 

resulting in eutrophication. The methodology and model were tested on the Wister Lake 

watershed in Oklahoma with the lake and its trophic state as the endpoint for ecological 

risk assessment. A geographic information system was used to store, manage, and 

manipulate spatially referenced data for model input. 

INTRODUCTION 

Ecological risk assessment (Suter 1990; Cairns and McCormick 1991; Risk 

Assessment Forum 1992; Lipton et al. 1993; Suter 1993; Matlock et al. 1994) and 
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watershed-level management (U.S. EPA 1991; Browner 1993; Doppelt et al. 1993, 

Perciasepe 1994) are quickly becoming fundamental components of environmental 

decision making concerning the Nation's water bodies. Appropriate tools and 

methodologies are needed to allow for ecological risk assessment and watershed 

management while addressing uncertainties in knowledge, data, and ultimately, 

predictions. The tools and methodologies should be useful for assessment and decision 

making for local, state, and federal agencies. Therefore, they must be user friendly and 

simple, while providing reliable information with quantifiable uncertainty. 

Suter (1993) defined ecological risk assessment as the process of assigning 

magnitudes and probabilities to the adverse effects of human activities or natural 

catastrophes. Ecological risk assessments provide a holistic method for analyzing and 

predicting ecosystem response to stress. However, resource planning and decision­

making using ecosystem response can be difficult due to lack of knowledge, intricacies of 

ecosystem function, and minimal data availability. Therefore, simulation models are 

often used for analyzing and predicting the response of ecosystems to perturbation 

(Minns 1992). Uncertainty analyses should be a routine part of ecological risk 

assessments (Risk Assessment Forum 1992). However, few, if any, existing pollutant 

transport and fate models proposed for use in ecological risk assessments include 

thorough uncertainty analyses (Reckhow 1994a). 

We propose a methodology for performing ecological risk assessments at the 

watershed level which incorporates thorough uncertainty analysis to allow for appropriate 

management decisions. As an example, we evaluated the risk of eutrophication in Wister 

Lake, Oklahoma as a probabilistic description of uncertain phosphorus inputs. Stream 
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loading and lake response were estimated using EUTROMOD, a watershed-level nutrient 

loading and lake response model (Reckhow et al. 1992). The uncertainty in loadings and 

lake response due to natural variability and parameter uncertainty were propagated 

separately throughout the analysis using a two-phased Monte Carlo simulation 

methodology. Finally, we illustrated the value of the proposed methodology for risk 

management by simulating alternative management scenarios for achieving water quality 

goals in Wister Lake. 

PROJECT AREA DESCRIPTION 

Wister Lake, located in the Arkansas River Basin on the Poteau River in 

Oklahoma, was constructed by the U.S. Army Corps of Engineers in 1949 to provide 

flood control, water supply, low:flow augmentation, and water conservation. Wister Lake 

has a surface area of 2,970 ha, a shoreline length of 185 km, a mean depth of 2.3 m, and a 

maximum depth of 13.4 mat the normal pool elevation of 146 m (Oklahoma Water 

Resources Board 1990). The lake is the sole water supply for the majority of residents in 

Leflore and three adjacent counties. In addition, the lake and related recreational 

activities are important to the economy of the area. 

Wister Lake has been considered eutrophic since it was first surveyed in 1974 by 

the U.S. EPA (1977) as part of the National Eutrophication Survey. Oklahoma's 1990 

Water Quality Assessment Report classified Wister Lake as eutrophic and highly turbid. 

In addition, the Wister Lake watershed has been targeted in Oklahoma's Section 319 

Nonpoint Source Management Plan as well as in its section 303( d) list of TMDL waters. 
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The watershed draining into Wister Lake covers approximately 260,000 ha with 

two thirds in Oklahoma and the remainder in Arkansas (Figure 4.1 ). The lake receives 

pollutants from a wide variety of both point and nonpoint sources. There are nine major 

permitted wastewater treatment plants in Wister Lake's watershed. Nonpoint pollution to 

the lake includes agricultural, forestry, resource exploration and extraction, and urban 

sources. A potential major source of nutrients in the watershed originates from a large 

poultry rearing and processing industry in the region. The manure generated from poultry 

production is generally applied to permanent pasture, thereby, possibly becoming a 

source of excess phosphorus. 

The Wister Lake watershed includes portions of the Ouachita Mountains and the 

Arkansas Valley ecoregions (Omernik 1987). Land use in the watershed is 

approximately three fourths forest and one fourth pasture, with small amounts of 

cropland, urban, and disturbed land. The topography ranges from level flood plains along 

Fourche Maline Creek and the Poteau River to gently sloping uplands to steep 

mountainous areas. The relief ranges from Wister Lake's normal pool elevation of 146 m 

to the 817 m peak of Rich Mountain in Arkansas. 

Presently, a cooperative project is underway to prevent further deterioration of 

water quality in Wister Lake through control of point and nonpoint pollution sources. 

Monitoring stations have been established throughout the Wister Lake watershed to assist 

in determining the magnitude of pollutant loading to the lake, distinguishing sources, and 

tracking the effectiveness of pollution control activities (Hession et al. 1992; Storm et al. 

1994). The U.S. Geological Survey and the Oklahoma Conservation Commission have 

established seven water quality/quantity monitoring stations on the main tributaries 
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flowing to the lake. Samples were collected at six-week intervals for flow, nutrients, 

sediments, and other constituents of concern. Four of these stations have continuous 

automatic samplers for stream flow monitoring. In addition, the Oklahoma Water 

Resources Board has been performing in-lake monitoring as part of an U.S. EPA-funded 

Clean Lakes Project. 

ECOLOGICAL RISK ASSESSMENT 

As a comparatively recent discipline, ecological risk assessment methodologies 

and concepts are subject to debate and change (Lipton et al. 1993). In addition, risk 

assessment methodologies dealing with ecosystem responses are difficult to standardize 

due to the wide variability in the types of ecosystems, intended scopes, available 

resources, and endpoint objectives. We used the effects-driven retrospective ecological 

risk assessment paradigm with ecosystem-level effects as described by Suter (1993) for 

this project. This type of assessment is appropriate where there are observed effects, 

unknown exposure, and unknown sources. Wister Lake and its tributaries have already 

been identified as having water quality problems and, although there are strong suspects 

for pollutant sources, the amount of exposure and importance and distribution of the 

sources is unknown. There are four sequential components to this type of ecological risk 

assessment: hazard definition, hazard measurement and estimation, risk characterization, 

and risk management (Suter, 1993) (Figure 4.2). 
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Hazard Definition 

The hazard definition component includes defining the motives of the assessment, 

describing the environment to be assessed, and choosing endpoints (Suter, 1993). As 

mentioned previously, the overall goal of the Wister Lake project is to improve or prevent 

further deterioration of water quality in the lake. The goals for this particular assessment 

were to determine the level of impairment of the lake, determine the major sources of 

phosphorus, and provide information to state and federal management agencies to allow 

them to implement effective corrective or protective management actions. We defined 

the environment being assessed as the entire drainage basin flowing into Wister Lake. 

The watershed was defined as the ecosystem under stress while the lake was viewed as 

the integrator responding to inputs from the watershed. 

We defined two distinct types of endpoints, assessment and measurement, where 

the measurement endpoint was a measurable environmental characteristic that was related 

to the socially valued characteristic chosen as the assessment endpoint (Suter 1990). Our 

assessment endpoint was the trophic state of the lake while our measurement endpoint 

was chlorophyll a concentration which, in turn, can be related back to trophic state or 

eutrophication. We utilized two separate methods to relate in-lake chlorophyll a to 

trophic state: 1) a fixed boundary system that is based on best judgement as to the 

transition between neighboring trophic categories from U.S. EPA's National 

Eutrophication Survey (Gakstatter et al. 1974) and 2) an open boundary system proposed 

by Vollenweider (1982) that accounts for the uncertainty in allocating a lake to a given 

trophic state. 
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Hazard Measurement & Estimation 

One of the main tasks in a retrospective ecological risk assessment is to establish 

that a relationship exists between a pollutant source and an ecological effect. The source 

is often unclear and can be defined as that aspect of a pollution that is subject to 

management and to which the assessor attempts to relate exposure and effects (Suter 

1993). For effects-driven assessments, the sources are the hypothesized anthropogenic 

causes of the observed effect. In this assessment, we hypothesized that specific land use 

practices in the watershed resulted in excessive phosphorus loading to Wister Lake, 

thereby, causing accelerated eutrophication. Exposure is the process that links sources 

with effects, where the effects are the changes in the ecological values specified by the 

assessment endpoint ( eutrophication). We utilized a nutrient loading and lake response 

model, EUTROMOD, to estimate the annual phosphorus loading from the watershed 

(exposure) and resulting lake trophic state (effect). 

Risk Characterization 

The results of an ecological risk assessment should be a probabilistic estimate of 

the ecological effects resulting from specific levels of stress (Cairns and McCormick 

199.1). We utilized a two-phased Monte Carlo procedure for estimating the probability 

distribution of annual phosphorus load to Wister Lake and the response of the lake to the 

load. We, thereby, characterized the risk of eutrophication in Wister Lake as a 

probabilistic description of uncertain phosphorus inputs. 
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Risk Management 

Risk management is the process of decision making that attempts to minimize 

risks without undue harm to other societal values (Suter, 1993). Selection of 

eutrophication and chlorophyll a concentration as assessment endpoints allowed us to 

focus attention upon the predictive models and uncertainty analyses necessary to support 

decision making. In reality, the selection of water quality goals and endpoints should 

reflect public values (Reckhow 1994b). Scientists can assess the feasibility of various 

scientific measures of eutrophication; for example, they can estimate the uncertainty in 

the endpoints under consideration. However, the public and elected officials (as 

representatives of the public) should choose the endpoint based on a meaningful 

relationship between the endpoint and the use and enjoyment of the lake. We evaluated 

management alternatives using the model and the two methods of relating in-lake 

chlorophyll a to trophic state to illustrate the value and possibilities this methodology has 

for management and decision making. 

THE EUTROMOD MODEL 

Model Description 

The EUTROMOD computer model was developed to provide guidance and 

information for managing eutrophication in lakes and reservoirs (Reckhow et al. 1992). 

It is a collection of spreadsheet-based nutrient loading and lake response models which 
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may be used to relate water quality goals to allowable nutrient inputs. The model, 

thereby, provides information concerning the appropriate mix of point source discharges, 

land use, and land management controls that result in acceptable water quality. 

Lake-wide, growing season average conditions in a lake are predicted as a 

function of annual nutrient loadings. Annual loadings are simulated with a simple, 

lumped watershed modeling procedure which includes the Rational Equation's runoff 

coefficient for surface runoff (Chow et al. 1988), the Universal Soil Loss Equation 

(USLE) for estimating soil loss (Wischmeier and Smith 1978), loading functions for 

nutrient export from nonpoint sources, and user provided point source information. Lake 

response is predicted by a "robust" set of nonlinear regression equations from multi-lake 

regional data sets. These regression equations are used to estimate lake nutrient levels 

and chlorophyll a concentrations. 

The EUTROMOD model was converted from a share-ware spreadsheet program 

to Microsoft Excel Version 5.0 (Microsoft Corporation, Cambridge, MA) for use in this 

study. We also modified the nutrient loading portion of the model to allow for the 

simulation ofup to 10 separate subwatersheds. Previously, the entire watershed flowing 

into a lake was modeled as a single basin with all parameters lumped by land use. This 

modification allows for a level of spatially distributed modeling and provides loading 

estimates by subwatershed for comparison with data from our monitoring stations. 

Currently, EUTROMOD allows for minimal uncertainty analysis by providing 

estimates of model error and hydrologic variability. The model error is provided in terms 

of lake response estimates plus or minus one standard deviation, which is associated with 

the error term of the regression models. Year-to-year variability is addressed by utilizing 
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an annual mean precipitation and coefficient of variation to account for hydrologic 

variability. This hydrologic variability is propagated by utilizing first-order error analysis 

(Reckhow and Chapra 1983) and is presented as lake response estimates bounded by 90% 

confidence limits. 

These uncertainty estimates within EUTROMOD are useful; however, for several 

reasons we felt that a more extensive uncertainty analysis must be employed in order to 

perform a thorough risk analysis. First, although the model error estimates include some 

parameter uncertainties (Reckhow et al. 1992), parameter uncertainties are not 

specifically addressed in a manner that allows for detailed sensitivity analysis. Second, 

the assumptions required for first-order analysis are most likely violated and, therefore, 

may be inadequate for uncertainty propagation in EUTROMOD. Therefore, we 

performed our risk analysis using Monte Carlo techniques rather than utilize the 

uncertainty estimates currently provided within EUTROMOD. 

Model Input 

Data required for simulating watershed loadings and lake response include 

information about climate, watershed characteristics, and lake morphometry (Reckhow et 

al. 1992). Climate parameters include precipitation and lake evaporation estimates. 

Several parameters are needed to describe the watershed in terms of land use, soils, and 

topography. Lake morphometry is described using surface area and mean depth. Model 

inputs are detailed in Table 4.1. The modified EUTROMOD treats each land use within 

each simulated subwatershed as a homogeneous unit. Many of the input parameters are 
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required for each land use within each subwatershed. Therefore, the number of input 

parameters depends on the number of unique land uses and the number of subwatersheds 

simulated. 

The pertinent data layers (land use, soils, water bodies, and topography) were 

compiled for the Wister Lake watershed within the Geographic Resources Analysis 

Support System (GRASS) geographic information system (GIS) developed by the U.S. 

Army Corps of Engineers (U.S. Army 1991). All watershed characteristic parameters 

were area-weighted by land use within each subwatershed utilizing soil, land use, and 

topographic digital data layers in the GIS (Hession, 1995). 

UNCERTAINTY ANALYSIS 

Uncertainty Defined 

The American Heritage Dictionary (Morris 1978) defines uncertainty as "the 

condition of being in doubt.I' In most water quality modeling activities the only thing we 

are sure of is that we are "in doubt." Many types of uncertainties have been identified in 

the literature utilizing various taxonomic breakdowns (Suter et al. 1987; Morgan and 

Henrion 1992; MacIntosh et al. 1994). We utilized the terminology of MacIntosh et al. 

(1994) who defined the major types of uncertainty as knowledge uncertainty and 

stochastic variability. Knowledge uncertainty is due to incomplete understanding or 

inadequate measurement of system properties and is a property of the analyst. We further 

partition knowledge uncertainty into model and parameter uncertainty. Stochastic 
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variability is due to unexplained random variability of the natural environment and is a 

property of the system under study. Stochastic variability can be further divided into 

temporal and spatial variability. Note that this taxonomy is meant for discussion 

purposes rather than as a strict categorization of uncertainty types. For a more thorough 

discussion of uncertainty the reader is referred to Suter et al. (1987), Haan (1989), and 

Morgan and Henrion (1992). 

Propagation of Uncertainty 

It is important for uncertainty analysis to distinguish between stochastic 

variability and knowledge uncertainty (Helton 1994; MacIntosh et al. 1994). Knowledge 

uncertainty can be improved upon by decreasing the possible range of parameter 

estimates. This can be accomplished by physically sampling the appropriate phenomena, 

thereby, improving confidence in parameter estimation. However, stochastic variability 

is a natural property of the system being studied and must be accounted for, but can not 

be reduced. 

Our uncertainty analysis followed the methodology of Helton (1994) and 

MacIntosh et al. (1994) which involved a two-phase Monte Carlo sampling structure used 

to propagate uncertainty while separating knowledge and stochastic uncertainty. The 

uncertainty analysis was performed using@RISK Version 3.la (Palisade Corporation, 

Newfield, NY) linked with Microsoft Excel Version 5.0. All random sampling was 

performed using Latin hypercube sampling (LHS) to ensure full coverage across the 

range of each sampled variable (Morgan and Henrion 1992; Burmaster and Anderson 
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1994; Helton 1994). 

We included analysis of parameter knowledge uncertainty and stochastic 

variability utilizing the two-phased Monte Carlo procedure illustrated in Figure 4.3. The 

analysis of stochastic variability was nested within knowledge uncertainty. This was 

done by performing k knowledge simulations, with s stochastic iterations within each 

simulation. Each iteration resulted in a single estimate of the output, meanwhile, each 

simulation scenario resulted in a set of s simulated outputs. The s stochastic output results 

were then analyzed statistically resulting in a complementary cumulative distribution 

function (CCDF). The overall analysis resulted in a distribution of k CCDFs. The 

variation in each CCDF showed the effects of stochastic variability on the model 

estimates while the distribution of CCDFs represented the effects of knowledge 

uncertainty. Details of the two-phased Monte Carlo procedure utilized in this study can 

be found in Helton (1994), MacIntosh et al. (1994), and Hession et al. (1995). 

Parameter Uncertainty 

Upon investigation, all parameters included as input to EUTROMOD have both 

knowledge uncertainty and stochastic variability. In addition, stochastic variability of 

most parameters exists in both the temporal and spatial realm. In our analysis,· we 

defined only the variability in annual weather (precipitation and rainfall erosivity) as 

temporally stochastic parameters. The remaining parameters were treated as having only 

knowledge uncertainty. We only included knowledge uncertainty for the 17 parameters 

found to have a significant effect on output variability from a previously conducted 
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sensitivity analysis (Table 4.2) (Hession 1995). 

In order to perform Monte Carlo simulations, a probability distribution defining 

the range of possible values must be defined for each uncertain parameter. The 

probability distribution for annual precipitation amounts was determined based on 

analysis of 30 years of weather data (Hession, 1995). Statistical analyses were performed 

on the annual precipitation data from five weather stations within the watershed and all 

were found to fit a lognormal distribution adequately. There was little variation between 

the fitted lognormal distributions from station to station and a single distribution was 

selected (Table 4.2). Rainfall erosivity distributions were assumed to be lognormal and 

to have a coefficient of variation of0.67, as determined from the analysis of27 years of 

rainfall erosivity data from Guthrie, Oklahoma (Daniel et al. 1943; Risse et al. 1994). 

The ranges and distributions of the parameters representing knowledge 

uncertainty were assigned subjectively using a few basic rules. The possible range of 

each parameter was based on the range of reasonable values found in the literature. The 

distributions were assumed to be either triangular or uniform. If no site specific data 

were available for a particular parameter, the uniform distribution was assigned. 

However, if data were available from previous studies in the Wister Lake watershed or 

nearby, a triangular distribution was employed with the mode set based on the site­

specific data. The resulting distributions are shown in Table 4.2. Details concerning 

parameter estimates and distributional assignments can be found in Hession (1995). 

It is important to account for correlations between input distributions during error 

propagation to ensure realistic results (Reckhow 1994a). A distribution-free rank 

correlation methodology is employed by the @Risk software, and correlation coefficients 
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ranging from -1.0 to 1.0 were assigned subjectively to dependent variable pairs (Table 

4.2). The correlations among the remaining parameters were assumed to be negligible. 

Details concerning correlation assignments can be found in Hession (1995). 

RESULTS AND DISCUSSION 

Risk Characterization 

We applied EUTROMOD to the Wister Lake watershed for current conditions. 

The five subwatersheds shown in Figure 4.1 were simulated separately and seven distinct 

land uses were identified. The land use types and approximate percentage coverage by 

subwatershed are given in Table 4.3. The land use areas were considered deterministic 

(known) values except for those of pasture and manured pasture (Hession 1995). 

The two-phased Monte Carlo procedure was performed with 200 simulations 

(knowledge uncertainty) with each simulation consisting of 50 iterations (stochastic 

variability). Sample sizes were selected based on the number of iterations required to 

provide numerical stability of the output distributions (Hession 1995). 

The distribution of CCDFs of median in-lake chlorophyll a concentrations 

resulting from 50 iterations within 200 simulations for current conditions is shown in 

Figure 4.4. Each individual CCDF represents stochastic variability using a fixed set of 

knowledge uncertain parameter values, and the distribution of CCDFs represents the 

uncertainty due to lack of knowledge. A less congested summary is presented in Figure 

4.5, which provides the percentile curves of the distribution of CCDFs. In addition, we 
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included 1993 observed median in-lake chlorophyll a for five sampling stations at 

different locations on the lake from an ongoing Clean Lakes Project (Oklahoma Water 

Resources Board, unpublished data). Our simulated chlorophyll a ranges compared 

favorably with the observed values. Although these comparisons were by no means 

adequate for validation, they did provide some confidence in the simulation process. It is 

important to remember that the EUTROMOD lake model estimates lake-wide median 

growing season average conditions. Therefore, it would take many years of measured 

data, averaged on an annual or seasonal basis to validate the model adequately. 

Recall that bur assessment endpoint is lake trophic state, or the risk of being 

eutrophic. Many methods have been proposed in the literature for relating in-lake 

chlorophyll a concentrations to trophic state (Y ollenweider 1968, 1982; Dobson et al. 

1974; Gakstatter et al. 1974). Herein, we utilized two different methods, Gakstatter et al. 

(1974) and Vollenweider (1982), in order to illustrate a fixed boundary and open 

boundary system, respectively. Gakstatter et al. (1974) proposed that an average 

chlorophyll a concentration of 10 µg/1 represents the breakpoint (or fixed boundary) 

between mesotrophic and eutrophic lakes based on data from the U.S. EPA's National 

Eutrophication Survey. Using the 50th percentile curve (Figure 4.5), we might estimate 

that there was a greater than 95% chance that the lake is eutrophic. However, based on 

the 5th and 95th percentile CCDFs, the in-lake chlorophyll a could range from less than 9 

µg/1 to 13 µg/1 due to knowledge and stochastic uncertainty resulting in a trophic 

classification from mesotrophic to highly eutrophic. 

A more realistic system, in our view, is an open boundary system such as that 

proposed by Vollenweider (1982) that recognizes the uncertainties involved in using 
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subjective judgement to allocate lakes to trophic categories. He presents the trophic state 

categories as probability distributions. Therefore, at a given chlorophyll a concentration, 

a given lake would have different probabilities of being classified as oligotrophic, 

mesotrophic, or eutrophic. Figure 4.6 was derived from data presented by Vollenweider 

(1982) in summarizing the results of the Organization for Economic Co-operation and 

Development's (OECD) Cooperative Program on Eutrophication. This figure can be used 

to estimate a probabilistic expression for lake trophic state. For example, we have 

included median chlorophyll a estimates from the 5th, 50th, and 95th percentile CCDFs 

at 0.5 probability of exceedence as vertical lines in Figure 4.6. Using the median from 

the 50th percentile CCDF we estimated that the lake has a negligible chance of being 

oligotrophic, a 3% chance of being mesotrophic, a 61 % chance of being eutrophic, and a 

36% chance ofbe hypertrophic. Such a probabilistic expression makes it clear that 

lowering the in-lake chlorophyll a concentration to levels at or below 10 µg/1 based on 

U.S. EPA's fixed boundary system does not necessarily ensure that the lake will be 

mesotrophic. Actually, according to Figure 4.6, at 10 µg/1 the lake still has a 64% chance 

of being eutrophic. 

At this point, it is important to note that the fixed boundary system of the U.S. 

EPA and the open boundary from Vollenweider (1982) result from the analysis of a 

different set of lakes and observed data. It was not our intent to prove or disprove either 

method for trophic classification, but rather, to present the alternative methodologies as 

possibilities for use in ecological risk assessments. Additionally, we presented the open 

boundary system in an attempt to include the analysis of uncertainty throughout all 

aspects of our risk assessment. 
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Risk Management 

Phosphorus Loads 

The stressor in our ecological risk assessment was.defined as total phosphorus 

loading to the lake. Therefore, we present the annual total phosphorus load estimates as 

stochastic entities and discuss risk management in terms of the control of phosphorus 

sources in the watershed. A summary of CCDFs for annual total phosphorus load 

estimates is provided in Figure 4.7. Our 90% confidence intervals indicated annual loads 

from below 100 Mg/yr to nearly 400 Mg/yr. This was a large range of possible values, 

thereby, highlighting the extent of our uncertainty in the estimates as well as the effect of 

year-to-year variability. Although beyond the scope of this study, an important step in 

risk management will be to reduce the uncertainty in these estimates through improved 

parameter estimation, as represented by knowledge uncertainty. 

The expected value annual phosphorus load CCDFs for the individual 

subwatersheds are provided in Figure 4.8. These expected value curves were obtained by 

running the model with knowledge uncertainty, while holding the stochastic variables 

(PREC and R) at their mean values. Also shown in Figure 4.8 are annual total 

phosphorus load estimates by subwatershed based on 2 years of record 

(Lakshminarayanan 1994). It is important to note that these estimates were based on 

regression analysis of six-week grab samples for only two years of data and, therefore, 

are probably not representative of average annual loads as estimated by EUTROMOD. 

Details concerning the procedures used to estimate annual loads by subwatershed from 

six-week grab samples can be found in Smolen et al. (1993). The estimated loads from 
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the monitoring stations fell within our 90% confidence intervals for all but the Holson 

Creek and Fourche Maline Creek subwatersheds. In addition, the rank-order from highest 

to lowest contributing subwatershed was identical. Therefore, both estimation procedures 

suggest that management activities should be targeted in the lake side and Poteau River 

portions of the Wister Lake watershed. 

The percentages of total phosphorus load contributions by source for the Wister 

Lake watershed and within each subwatershed are provided in Table 4.4. As with all 

results of this risk analysis, these percentages were also uncertain and, consequently, they 

are provided as 5th, 50th, and 95th percentile estimates due to knowledge uncertainty. 

Nonpoint sources contributed the majority of the annual phosphorus loads (with a median 

greater than 90%) and point sources contributed only a small fraction of the annual load. 

Furthermore, agricultural sources, though accounting for only 25% of the watershed area 

(Table 4.3), were estimated to contribute nearly 80% of the annual total phosphorus load. 

It appears that a watershed protection strategy should concentrate on controlling nonpoint 

pollution sources, especially agricultural, and will require extensive use of agricultural 

best management practices. 

Alternative Management Scenarios 

To illustrate the use of our probabilistic estimates of stressor (annual phosphorus 

load) and endpoints ( chlorophyll a and trophic state), we evaluated possible management 

alternatives. Due to the variability and uncertainties involved, there are many options for 

setting management goals to achieve a desired water quality in Wister Lake. 

Our management alternatives focused on control of agricultural loads since they 
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were estimated to be the largest source of phosphorus to Wister Lake (Table 4.3). Figure 

4.9 illustrates our approach to determining ways to meet a water quality goal of returning 

the lake to borderline mesotrophic/eutrophic according to U.S. EPA's trophic 

classification system (Gakstatter et al. 1974). The resulting in-lake chlorophyll a 

reductions due to percentage reductions in agricultural loads are shown in Figure 4.9. 

First, the EUTROMOD simulations were performed as deterministic estimates by holding 

all parameters at their expected value for each 5% increment of agricultural phosphorus 

load reduction ranging from no reduction to 100% reduction. These deterministic results 

are presented as the expected value curve in Figure 4.9. Next, 50 EUTROMOD 

simulations were conducted for each 5% increment of agricultural phosphorus load 

reduction, varying only the stochastic parameters. The results are shown as the 90% 

confidence intervals due to stochastic variability (Figure 4.9). Finally, 200 EUTROMOD 

simulations were conducted for each 5% reduction increment while varying only the 

parameters representing knowledge uncertainty. The results are presented as the 90% 

confidence interval representing knowledge uncertainty (Figure 4.9). The wider 

confidence intervals for knowledge uncertainty indicate that the uncertainty due to lack of 

knowledge is greater than that due to rainfall stochasticity. 

Based on the expected value simulations, we need to reduce annual agricultural 

loads of total phosphorus to the lake by approximately 33% to achieve our water quality 

goal; shown as the mesotrophic/eutrophic breakpoint line of 10 µg/1 in Figure 4.9. 

Furthermore, it appears unlikely that an oligotrophic condition can be achieved, which 

was estimated as 4 µg/1 by Gakstatter et al. (1974). 

The stochastic and knowledge uncertainty 90% confidence intervals can be used 
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to illustrate how uncertain we are in our assessment as well as to set our management 

strategy with a pre-determined level of confidence. Based on the stochastic confidence 

interval, the percentage reduction in agricultural loads required to meet our water quality 

goal ranged from less than 20% to nearly 50%. Additionally, the range of reductions was 

from 0% to between 60 and 70% based on the knowledge uncertainty confidence 

intervals. These confidence intervals can be used to include a conservative component in 

our management plan with a given level of confidence by choosing the management 

option that represents 95% confidence due to stochasticity, i.e. 50% reductions in 

agricultural loads, or a given confidence in knowledge uncertainty. Management 

decisions often incorporate conservative estimates, typically called a margin of safety; 

however, if one wants to be conservative in their decision making process they should 

know the degree of conservatism (Hattis and Burmaster 1994). A stochastic 

representation, as provided by our risk assessment methodology, allows for useful 

information for planning and management (Finkel 1994). Given the stochastic results 

illustrated above, decisions on the level of management can be made based on probability 

of occurrence and the level of risk acceptable to resource managers. 

SUMMARY AND CONCLUSIONS 

We presented an ecological risk assessment methodology at the watershed level 

for freshwater ecosystems. The methodology involves a two-phased Monte Carlo 

procedure that provides for the evaluation and propagation of natural stochastic 

variability and knowledge uncertainty separately in a pollutant transport and fate model, 
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EUTROMOD. The model and uncertainty propagation methodology allows for 

evaluating the risk of eutrophication in lentic ecosystems as a probabilistic description of 

uncertain phosphorus loadings. The result is a tool that is user friendly and simple, while 

providing reliable information with quantifiable uncertainty. 

As an example, the methodology and model were used to perform an ecological 

risk assessment on Wister Lake in Oklahoma. The EUTROMOD model was used to 

estimate annual watershed phosphorus loads from point and nonpoint sources as well as 

resulting lake response ( chlorophyll a concentration). The chlorophyll a concentrations 

were then related to trophic state utilizing both a fixed and open boundary system. The 

open boundary system recognizes the uncertainties involved in using subjective 

judgement to allocate lakes to trophic categories and allows for more thorough 

uncertainty analysis. Finally, alternative management scenarios were simulated in order 

to illustrate the value of our methodology for decision making. 
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Table 4.1 Input requirements for EUTROMOD with subwatershed capability. 
Type Parameter Symbol Units 

Climatic Precipitation (annual mean) PREC cin/yr 
Precipitation (coeficient of variation) PRE CCV fraction 
Precipitation Nutrients: Phosphorus PRECP mg/1 

Nitrogen PRECN mg/1 

Watershed Runoff Coefficient RCij fraction 
USLE Parameters: 

Rainfall Erosivity R MJ-mm/ha-h 
Soil Erodibility ~j Mg/ha per unit R 
Topographic Factor LSij ratio 
Cropping Factor cij ratio 
Practice Factor pij ratio 

Area per Land Use AREAij ha 
Phosphorus Loading Factors: 

Dissolved LFPDISij mg/1 
Sediment Attached LFPSEDij mg/kg 

Phosphorus Enrichment Ratio ENPj ratio 
Nitrogen Loading Factors: 

Dissolved LFNDISij mg/1 
Sediment Attached LFNSEDij mg/kg 

Nitrogen Enrichment Ratio ENNj ratio 
Trapping Factors TFj ratio 
Septic System Information: 

Number of People SEPNUMj per capita-yr 
Phosphorus Load SEPPj kg P/person-yr 
Nitrogen Load SEPNj kg N/person-yr 
Phosphorus Soil Retention RETPj :fraction 
Nitrogen Soil Retention RETNi fraction 

Point Sotiice Information: 
Effluent Flow PS Qi MGD 
Phosphorus Concentration. PS Pi mg/1 
Nitrogen Concentration PS Ni mg/1 

Lake Surface Area LAREA km2 

Mean Depth LDEPTH m 
Lake Evaporation (annual mean) LEV AP m/yr 

Note: Subscript i refers to number of land uses and j refers to number of subwatersheds. 
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Table 4.2 Distributions for parameters with stochastic variability or knowledge uncertainty. 
Type of 
Uncertainty 

Parameter Distribution Correlations 

Stochastic 

Knowledge 

PREC 
R 

Ln(121,0.25)* 
Ln(520,0.67) 

RCrorestj t Triangular(O. l 0,0.25,0.40)* 
RCmpasi Triangular(0.15,0.35,0.45) 
Cpastj Uniform(0.012,0.043)1 

LFPDISmpastj Uniform(l .0,5.0) 
LFPDISpastj Uniform(0.15,0.30) 
ENPj Triangular(l.2,1.5,3.7) 
TFp/ Triangular(O. 78,0.92,0.97) 
TFFM Triangular(O. 78,0.92,0.97) 
TF8F Triangular(O. 78,0.92,0.97) 
TFHc Triangular(O. 78,0.92,0.97) 
TFi.s Triangular(O. 78,0.92,0.97) 
AREA pasun,PR Triangular(870, 1450,4800) 
AREA pasun,FM Triangular(390,660,2160) 
AREA pasun,BF Triangular(360,600,1960) 
AREA pasun,Hc Triangular(90,150,500) 
AREA pasun.LS Triangular(1350,2250,7400) 
LDEPTH Uniform(l.82,2.59) 

* Lognormal distribution (arithmetic mean_, coefficient of variation). 

R (0.90) 
PREC (0.90) 

none 
none 
none 
none 
none 
none 
TF811 (0.50)** 
TF 811 (0.50) 
TF all (0.50) 
TF all (0.50) 
TF a11 (0.50) 
AREAa11 (0.50) 
AREAall (0.50) 
AREAa11 (0.50) 
AREAa11 (0.50) 
AREA811 (0.50) 
none 

t A subscript of j indicates that the parameter does not change across subwatersheds. 
* Triangular distribution (minimum, mode, maximum). 
§ Land use indicators: pastm=manured pasture; past=pasture. 
'I Uniform distribution (minimum, maximum). 
# Subwatershed indicators: PR=Poteau River; FM=Fourche Maline Creek; BF=Black Fork Creek; 
HC=Holson Creek; LS=Lake Side. 
** A subscript of all indicates that the parameter is correlated to this parameters across all land uses 
or subwatersheds tor j• respectively) 
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Table 4.3 Land use eercentages b~ subwatershed and their eercent of the total watershed. 
Land Use Poteau Fourche Maline Black Fork Holson Lake Total 
Categories River Creek Creek Creek Side Watershed 
Cropland 0 <1 0 0 <1 <1 
Pasture 24-27* 26-28 5-7 4-5 19-27 19-22 

...... Pasture-manured 1-5 1-2 1-3 1-2 3-10 1-4 
VI ...... Forest 70 69 92 95 64 75 

Urban/Built-up 1 2 <1 0 1 1 
Barren Lands <1 <1 0 0 1 <1 
Water/Wetlands 1 1 <1 0 5 1 
Percent of Total 27 27 20 7 19 100 
* Percentage ranges for pasture and manured pasture based on minimum and maximum values from distributions in Table 4.2. 



Table 4.4 Annual QhOSQhorus loads hr source based on uncertain EUTROMOD estimates. 
Point · NonQoint Sources 

Sub watershed Percentile Sources Agriculture Forest Other·· 

Estimate * % % % % 
Poteau River 5TH 14 66 2 1 

50TH 20 74 3 2 
95TH 28 82 5 3 

Fourche Maline Creek 5TH 8 76 3 2 
50TH 10 81 5 4 
95TH 14 85 6 4 

Black Fork Creek 5TH 1 78 8 0 

- 50TH 1 85 14 <1 
Vt 

95TH 2 90 21 <1 Iv 

Rolson Creek 5TH 0 69 13 0 
50TH 0 78 22 0 
95TH 0 86 30 O· 

Lake Side 5TH 0 76 1 6 
50TH 0 85 2 12 
95TH 0 92 4 21 

Total Watershed 5TH 6 74 3 3 
50TH 9 81 5 5 
95TH 13 86 7 9 

* Percentiles based on 200 simulations with knowledge uncertainty only. 
** "Other" focludes disturbed Iand,.precipitation, septic systems, and urban/built-up land. 
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CHAPTERS 

RECOMMENDATIONS 

The directions for recommended future research include: 

I. In terms of future research and data collection for Wister Lake and its watershed, 

there are two main areas of concern. First, the spre~ding of poultry manure in the 

watershed was found to be the most significant source of phosphorus. In addition, 

the parameters used to describe this source of phosphorus were found to be the 

most important in terms of output uncertainty as well as the most difficult and 

uncertain to estimate. Therefore, accurate data on the number of broilers 

processed in the watershed are needed. In addition, more accurate information is 

needed concerning where the manure is applied and at what rates, and a thorough 

inventory of how much of the manure actually remains in the watershed is needed. 

Second, the lake side (LS) area of the watershed was estimated to be the 

largest source of phosphorus loads to the lake. Unfortunately, it is also the 

portion of the watershed that has the least amount of data. For instance, there are 

no monitoring stations within this portion of the watershed; therefore, 

comparisons between model estimates and monitoring data are difficult at best. 

Some form of monitoring should be employed in order to adequately quantify the 
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loads and sources from the lake side portion of the Wister Lake watershed. 

2. In this study, phosphorus was assumed to be the most significant nutrient in terms 

of limiting algal growth as well as manageability. Additional analyses are needed 

concerning other nutrients (nitrogen) and sediments. In fact, several researchers 

involved with the Wister Lake study have suggested that light (limited due to high 

suspended solids in the lake) is the limiting growth factor, and, without this 

limitation, the nutrients in the lake would cause a much more significant problem. 

More work is needed to address this issue. 

3. Chlorophyll a and trophic state were chosen as endpoints for this study due to 

their predictability as well as their perceived importance. However, additional 

investigation into what the public and elected officials desire from Wister Lake is 

needed and an endpoint should be defined to reflect these desires. For instance, if 

the main desire of the public is to reduce the cost of treating drinking water, then 

possibly only the peak algal growth periods are of concern, in which case an 

average annual simulation model such as EUTROMOD is inadequate. 

4. Further analysis with EUTROMOD or some other H/WQ model should be 

conducted to address specific best management practice installations in the Wister 

Lake watershed. In addition, cost analyses should be included to determine the 

most cost effective combination of management alternatives available to achieve 

water quality goals. 

5. The lake response portion ofEUTROMOD is very sensitive to watershed runoff 

due to its effect on hydraulic retention times. In addition, the runoff coefficient 

from the Rational Equation is not considered the "cutting edge" technology for 
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estimating the complexities of the hydrology of watersheds. One option would be 

to incorporate a more extensive runoff model into EUTROMOD. Another option 

would be to perform an extensive analysis of observed rainfall and runoff data 

within the Wister Lake watershed in order to estimate the runoff coefficients (as 

the ratio of annual runoff to annual rainfall) and to adequately account for the 

uncertainties and variabilities inherent in the estimations of this factor. 

6. The release of phosphorus from bottom sediments may be a significant source of 

phosphorus within the lake. Additional monitoring is needed to assess the amount 

of phosphorus in the lake sediments and estimates are needed concerning its 

release into the water. 

7. Much more work is needed to fully understand and quantify uncertainty at the 

watershed level. In this study, temporal variability ( on an annual basis) and 

parameter knowledge uncertainty were addressed. However, spatial variability 

was ignored. In addition, error due to the lumping of parameter values was not 

accounted for. Whether this lumping should be considered parameter error or 

spatial variability is unclear. In fact, the resulting error is due to spatial 

variability, but presents itself in the simulations as parameter error. In addition, 

this error or uncertainty due to lumping could be defined as model error as well. 

In summary, additional research is needed to define the different types of 

uncertainty inherent in watershed-level assessment and management as well as to 

determine ways to adequately account for these uncertainties. 

8. .Additional research is needed to thoroughly understand the reduction in output 

uncertainty when performing Monte Carlo-type analyses with distributed 
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parameter models. Most likely, the reduction in output uncertainty is unique for 

each model, study area, and discretization level. However, a method for 

estimating and correcting for this reduction in output uncertainty is needed. 

9. The results of the 2-phased Monte Carlo procedure need to be summarized into a 

single CCDF or PDF, thereby allowing for quantifying risk as a single value. 

10. The TMDL and ecological risk assessments were performed in this study using 

the lake and its trophic state as a management endpoint. However, more often 

than not, the water bodies managed by state and federal agencies are lotic (streams 

and rivers). Little data and information are available for assigning endpoints to 

lotic water bodies with the stressor of concern being nutrients. Additional 

research is needed to define the unacceptable characteristics of a nutrient stressed 

stream or river. In addition, simple models such as EUTROMOD must be 

modified to allow for assessing in-stream impacts. 

11. The TMDL concept is fiiadequate for analysis at the watershed level where both 

point and nonpoint sources exist. Fortunately, the U.S. EPA allows for flexibility 

when applying a TMDL to waterbodies impacted by nonpoint sources. However, 

the TMDL concept should be rebuilt and/or renamed in order to more adequately 

apply to the watershed-level concerns now facing society. 

12. An extensive probability analysis of the data used to develop U.S. EPA's trophic 

state classification breakpoints would be very useful. As a result, the trophic 

classification could be presented as uncertain entities and probabilistic 

expressions for lake trophic state could be presented similar to those presented in 

Chapter 4 for the open boundary system. 
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APPENDIXl 

CHAPTER 2 DETAILS 

(Risk An(l/ysis of Total Maximum Daily Loads in an 

Uncertain Environment Using EUTROMOD) 

INPUT PARAMETER DISTRIBUTIONS 

The purpose of this section is to present details concerning the input parameter 

selection process for the Risk Analysis of Total Maximum Daily Loads in an Uncertain 

Environment Using EUTROMOD (Chapter 2). A list of parameters required for input to 

EUTROMOD and their abbreviations are given in table 2.2. In the paper (Chapter 2), 

only the distributions used in simulating natural conditions were presented (table 2.3) due 

to length restrictions. Therefore, the distributions for all parameters used to simulate 

current conditions are presented in table Al .1. In addition, detailed discussions are 

presented by parameter under the main data types: climatic, watershed, and lake. 

Climatic Data 

Precipitation (PREC, PRECCV) 
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Precipitation data were obtained from the Climdata CD-ROM in the Geography 

Department at Oklahoma State University. This database is from the National Climatic 

Data Center and contains statistical weather information for stations throughout the U.S. 

I retrieved annual precipitation amounts for seven stations within or near the Wister Lake 

watershed (see Figure I.I for station locations). 

Data were analyzed statistically within BestFit Version 1.02 (Palisade 
.,,, 

Corporation, Newfield, NY). Annual precipitation amounts for all stations were found to 

fit lognormal distributions based on the Kolmogorov-Smirnov (K-S) and the Chi-Square 

(C-S) goodness of fit tests. Resulting distributions and test results are in table Al .2. 

The annual precipitation was treated as having both temporal stochasticity and 

knowledge uncertainty. The precipitation mean and coefficient of variation were treated 

as having knowledge uncertainty. Triangular distributions were assigned to PREC and 

PRECCV based on the range of values found for the seven stations in table Al .2. These 

knowledge mean and coefficients of variation were then used to. define the lognormal 

distribution used for assigning stochastic variability to precipitation. 

The knowledge uncertain PREC and PRECCV variables were correlated at -031 

based on the rank correlation coefficients estimated through analysis of the seven PREC-

PRECCV pairs. The stochastic and knowledge uncertain PRECs were correlated to the 

stochastic and knowledge USLE R factor values, respectively, based on subjective 

judgement at a value of 1.0. .Although, this was subjectively assigned, later evaluation of 

27 years of data from Guthrie, Oklahoma resulted in a rank correlation of 0.90 between 

observed annual precipitation and rainfall erosivity. Once this new correlation value was 

determined (after the fact) the model was run using the two different values with no 
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significant change in output distributions. 

Precipitation Nutrients (PRECP, PRECN) 

Values for the dissolved nutrient content of precipitation were obtained from 

Sharpley et al. (1985). They determined the chemical composition of rainfall at several 

rural Oklahoma and no~ Texas locations over a number of years (1972-1984). Data 

from the Chickasha, Oklahoma station, which was the closest to the Wister Lake 

watershed, were used. Since the data used were actual collected data near the study site, a 

triangular rather than uniform distribution was assumed. The range of values of total 

phosphorus and total nitrogen concentration were selected from the reported minimum 

and maximum values in the study. The mode was set to the average values reported in 

the study (see table Al.I for resulting distributions). 

Watershed Data 

Runoff Coefficient (RC) 

The EUTROMOD model uses the Rational Equation's runoff coefficient to 

estimate annual runoff from each land use as a fraction of annual precipitation. Literature 

values were obtained for the different land uses to estimate a range of possible values 

(Chow, 1964; Reckhow et al., 1990; Schwab et al., 1981). The values found are given in 

table Al.3 by literature source and land use. Triangular distributions were subjectively 

selected to represent these ranges with the modes set based on the author's experienced 

judgement (see table Al.I assigned distributions). 
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USLE Parameters 

Rainfall Erosivity (R). This parameter was treated as having both knowledge 

uncertainty and stochastic variability. Usually, R values are estimated from isoerodent 

maps (Stewart et al., 1975; Wischmeier and Smith, 1978). The lack of knowledge in 

picking the R value from an isoerodent map is represented by assigning a triangular 

distribution to the average annual values. Figure Al .1 is a reproduction of an isoerodent 

map presented by Stewart et al. (1975). From this map, one might select a value of 520 

or attempt to interpolate between 520 and 600 for the Wister Lake watershed. There is 

much uncertainty and error in such an estimate due to personal bias as well as errors 

inherent in the development of the iso-value lines from experimental data. Therefore, I 

chose to represent knowledge uncertainty for the R value as a triangular distribution with 

a mode equal to the isoerodent line closest to the watershed (520) and a range equal to the 

next closest isoerodent lines (minimum=430; maximum=600). 

Temporal stochasticity was assigned based on analysis of27 years of observed 

rainfall erosivity data at an original USLE test plot in Guthrie, Oklahoma and the 

assertion by Beasley (1972) that annual rainfall erosivity values are lognormally 

distributed. The observed annual rainfall erosivities from Guthrie, Oklahoma were found 

to fit a lognormal distribution (fig. Al.2), significant at the u=0.10 level using the K-S 

and C-S goodness of fit tests. Based on these findings, the stochasticity of rainfall 

erosivity in the Wister Lake watershed was assumed to be lognormal with a mean 

obtained from the distribution representing knowledge uncertainty and a coefficient of 

variation equal to that found for the Guthrie annual rainfall erosivity data (0.67). 

Soil Erodibility (K). This parameter was treated as having only knowledge 
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uncertainty. A K factor coverage was generated from the soil data layers within the 

GRASS GIS. Erodibility values were assigned to each soil type or group in the soils data 

layer from county soil survey reports from the NRCS and the soils data layer was 

resampled to create a K factor data layer. Next, by overlaying the K factor data layer 

with the land use data layer, area-weighted K factors were determined for each land use 

as required for input to EUTROMOD. 

At this point, it is apparent that there are several sources of uncertainty in the K 

factor estimates. First, there is knowledge uncertainty in that the K factors assigned for 

each soil type are not known with certainty, they are just estimates. Second, there are 

errors in the soils data layer due to resolution and registration problems as well as 

differences between the Oklahoma and Arkansas portions. Third, there is error due to 

lumping of the K factors within each land use. This lumping could be considered spatial 

variability. In fact, it is possible to determine the distribution of K factors within each 

land use using the GIS. However, since only knowledge uncertainty was being accounted 

for, the error due to lumping was ignored. This was an important assumption and was 

addressed in the "Recommendations" portion of this dissertation. 

Stewart et al. (1975) presented a table that assigns K factor based on soil texture 

and organic matter content. The distributions for K factor knowledge uncertainty were 

assigned as uniform distributions having a range equivalent to the average range of values 

presented by Stewart et al. (1975) for sandy loam soils since most soils in the watershed 

were similar. Uniform distributions were assigned as being centered on the area­

weighted average K factor value with a minimum and maximum value ±0.08 (metric 

units; see table Al.I). 
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Topographic Factor (LS). This parameter was treated as having only knowledge 

uncertainty. As with the K factor, this parameter is based on lumping within each land 

use and, therefore, has multiple sources of uncertainty. A slope data layer was created ,. 

from the elevation data layer within the GIS. This slope data layer was then overlaid with 

the land use data layer and area-weighted average slopes were computed for each land 

use. Again, the distribution of slopes within each land use was assumed to be spatially 

variable, not knowledge uncertain, and was ignored for this analysis. 

The slope lengths were assigned for each land use based on Oklahoma NRCS's 

technical guidance which assigns slope lengths based on slopes and soil texture ( e.g. for 

sandy loams: 0-1%=600', 1-3%=500', 3-5%=400', 5-8%=300', and 8-12%=200'; percent 

slopes greater than 12% were assumed to have a slope length of 100'). 

The distributions for knowledge uncertainty were assigned to the topographic 

factors using the follows process: 

I. Determine area-weighted average percent slope for each land use. 
(i.e. 4.7% for pasture) 

2. Assign a slope length for each land use based on NRCS technical guidance 
and percent slope assigned in (I) (i.e. 400' for pasture). 

3. From Wischmeier and Smith (1978), identify the percent slopes bracketing 
that selected in (1) above (i.e. see table Al .4 as an example for pasture; 
5% and 6% chosen). 

4. Also, in Wischmeier and Smith (1978) identify the slope lengths that 
bracket that chosen in (2) above (i.e. see table Al .4 as an example for 
pasture, 300' and 500' chosen). 

5. Assign a uniform distribution for the LS factor based on the minimum and 
maximum values bracketed (i.e. see table Al .4 as an example for pasture, 
minimum=0.621 and maximum=l.20). 

See table Al.I for distributions determined for each land use based on this methodology. 

· The above method was devised to ensure that the topographic factors were 

assigned wide ranges in order to adequately represent the uncertainties involved. In 
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estimating LS factor values the uncertainties in parameter estimation can result from the 

following: 

I. Errors in resolution and/or registration problems in the elevation data 
layer. 

2. Errors incurred during creating slopes from the elevation data layer. 
3. Lumping the slopes and assigning an area-weighted average by land use. 
4. Error in assigning slope lengths. This is always a difficult procedure 

without actual field reconnaissance. 
5. Biases and interpolation errors incurred while. estimating LS factors from 

slope lengths and percent slopes from tables or figures (Wischmeier and 
Smith, 1978). 

6. The LS factor is a purely empirical relationship with little or no physical 
basis (Moore and Burch, 1986). Therefore, there are also errors in the 
regression equation used to develop the relationship. 

Cropping Factor (C). This parameter was treated as having only knowledge 

uncertainty. The distribution was assumed to be uniform since the range of possible 

values was based purely on literature values, not on measured data within or near the 

study area. The C factors were estimated as annual average values and the minimum and 

maximum values were assigned based on several references (Wischmeier and Smith, 

1978; Reckhow et al., 1992; Haan et al., 1994). The assigned ranges for each land use are 

shown in table Al.I. 

Practice Factor (P). The management practice factor was assumed to be 

deterministic ( equal to unity) for all land uses. 

Land Use Areas (AREA) 

Land use areas were computed using the land use data layer in the GRASS GIS. 

All land uses were considered deterministic except for pasture and manured pasture. 

However, the total amount of pasture (non-manured and manured) was considered 
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deterministic. The land use areas are given in table A 1.5 for the entire watershed as well 

as within each of the five major subwatersheds. 

The effects of the poultry industry prevalent in the watershed were incorporated 

into the model by estimating the amount of pasture spread with poultry litter. This 

manured pasture was then included as a separate land use in the model with higher 

nutrient loading factors. 

The area estimates for manured pasture were based on an estimate of broilers 

produced in the watershed on an annual basis, estimates of the nutrient content of poultry 

manure, and an estimate of typical application rates. Obviously, there was much 

uncertainty inherent in these estimates. However, at the time of this study, this was the 

best data available. The knowledge uncertainty was assigned a triangular distribution 

with the modes estimated as shown in table Al.6. The maximum or upper bound of the 

triangular distribution was selected based on estimates made by the NRCS and the 

Oklahoma Cooperative Extension Service for a hydrologic unit area proposal (NRCS and 

CES, 1991 unpublished proposal). The minimum bound on the triangular distribution 

was computed by substituting the value used in column (5) in table Al.6 with the value 

minus one standard deviation (standard deviation=0.053; from ASAE Standards, 1990). 

The amount of total phosphorus spread on pasture (84 kg P/ha-yr or 

approximately 6.7 Mg/ha oflitter) was estimated based on a discussion with Storm (1994, 

personal communication) and as referenced in Sharpley et al. (1994). The poultry litter is 

typically spread on fields based on nitrogen needs of the crop (-18 kg N/ha-yr; Sharpley, 

1994). Unfortunately, this results in an excess application of phosphorus in terms of crop 

needs. 
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Loading Factors (LFPDIS, LFPSED, LFNDIS, LFNSED) 

The loading factors for phosphorus and nitrogen, dissolved and sediment-bound, 

were treated as having knowledge uncertainty. The ranges for dissolved as well as 

sediment-bound nutrients were obtained from the literature as detailed in table Al.7. 

However, references specific to the study area were found for sediment-bound nutrients, 

but not for dissolved nutrients. Therefore, dissolved nutrient inputs were assigned to 

uniform distributions and sediment-bound were assigned to triangular distributions. 

Enrichment Ratios (ENP, ENN) 

The phosphorus and nitrogen enrichment ratios were treated as having knowledge 

uncertainty. Both were assumed to be triangular distributions based on ranges found in 

the literature (Haith and Tubbs, 1981; Dean, 1983; Blalock, 1987). The modes were set 

based on the best estimates suggested by Haith and Tubbs (1981) (see table Al.I for final 

distributions). 

Trapping Factors (TF) 

The USLE estimates edge-of-field sediment losses. However, the movement of 

sediment and sediment-bound nutrients from source areas to receiving water body is a 

complex process involving many rainfall-runoff events, deposition, resuspension, and 

chemical transformations, among other things. The quantity of sediment estimated to 

have been lost from source areas (USLE) is usually higher than the amount actually 

transported to the watershed outlet or the lake. Typically, a large fraction of the sediment 
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and sediment-bound pollutants are trapped within the watershed (Reckhow et al., 1992). 

EUTROMOD accounts for this loss of sediment and attached pollutants with "attenuation 

zones." For each attenuation zone, a trapping factor (TF) is defined as the fraction of 

gross sediment that is "trapped" within an area, thereby, not being delivered to the 

watershed outlet or lake. 

In EUTROMOD, these attenuation zones and their TFs are a simple lumped 

method of modeling a variety of complex processes. This "catch-all" concept can be used 

to account for natural trapping effects within watersheds as well as management 

practices, including (but not limited to) agricultural BMPs, sedimentation basins, riparian 

zones, wetlands, and slope changes. 

I used sediment delivery ratios to estimate trapping efficiencies. Sediment 

delivery ratios (DR) are estimated as the amount of sediment delivered to the point of 

measurement divided by the mass of soil loss due to gross erosion (i.e. USLE estimates in 

this case). Estimated DRs can be used to estimate trapping efficiencies for use in 

EUTROMOD as: TF = I-DR. 

EUTROMOD allows for the definition of up to nine attenuation zones into which 

the land use category areas can be distributed. The Wister Lake watershed consists of 

four main subwatersheds flowing into the lake and the area adjacent to the lake (lake side; 

see fig. 1.1 ). Five attenuation zones were defined based on these four subwatersheds and 

the lake side area. The land use digital layer was overlaid onto a subwatershed coverage 

and amounts of each land use within each subwatershed were determined (table Al .5). 

The amounts of each land use category per subwatershed were then distributed among the 

five attenuation zones for input to the model. 
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Delivery ratios have been estimated based on a variety of factors, including 

geomorphology, watershed size, and distance from source to stream. The estimated DRs 

and TFs for each subwatershed based on three separate methods, watershed area (Haan et 

al., 1994), watershed relief ratio (Maner, 1958), and mainstem stream distance-based 

(Reckhow et al., 1989) are shown in table Al .8. The areas, relief ratios, and distances 

along the mainstem stream were determined using routines within the GRASS GIS. 

The distance-based method ofReckhow et al. (1989) was developed using data 

from Oklahoma, Texas, and southern Kansas. Delivery ratios are calculated as: 

ln(DR)=l.01-0.34/n(d); where dis half the length of the mainstem stream (m). These 

estimates were taken as being "site specific" and triangular distributions were employed 

with the distance-based estimates as the mode, the relief ratio-based estimate as the 

minimum, and the high end of the area-based estimate as the maximum. Since the range 

of estimates was based on different methods of estimating trapping factors, they were 

correlated to each other subjectively (0.50) under the assumption that one would use the 

same method of estimation for all attenuation zones. 

Septic Systems 

Number of People (SEPNUM). The U.S. EPA included ten residences 

(equivalent to 35 per capita-yr; an average of 3.5 persons per residence) and one park (30 

per capita-yr) while computing nutrient loads to Wister Lake for the National 

Eutrophication Survey (U.S. EPA, 1977). For most applications it is reasonable to 

consider only those systems located a few hundred meters from the lake and tributary 

shorelines (Reckhow et al., 1992). 
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Since no information was available concerning the present level of septic systems 

and their locations relative to shorelines, U.S. EPA's estimate was used as a starting point. 

The distribution for SEPNUM was assumed to be uniform with a minimum equal to U.S. 

EPA's estimate (65 per capita-yr). The maximum of the range was based on doubling the 

number of residences to 20 (70 per capita-yr) and increasing the park estimate by 20 per 

capita-yr resulting in an upper bound of 120 per capita-yr. These distributions were set 

subjectively, but conservatively. 

Nutrient Load (SEPP, SEPN). The septic nutrient loadings (kg/person-yr) were 

estimated from two sources (U.S. EPA, 1977; Reckhow et al., 1980). Triangular 

distributions were assigned with the U.S. EPA estimates as the mode and the range based 

on the range of possible values presented in Reckhow et al. (1980). The resulting 

distributions are given in table Al.I. 

Soil Retention Factors (RETP, RETN). The percentage of phosphorus and 

nitrogen from septic tanks retained in the soil were assigned to a uniform distribution 

based on the range of values found in the literature (Metcalf and Eddy, 1979; Reckhow et 

al., 1980). 

Point Source Information (PSQ, PSP, PSN) 

Nine significant point sources were located within the Wister Lake watershed. 

Table Al .9 lists these facilities, two in Arkansas and seven in Oklahoma, their average 

and design flows, and estimated nutrient concentrations. Flow and concentration data 

were available for the two facilities in Arkansas from recent studies performed by 

consulting firms (Storm et al., 1994). The Oklahoma point sources were determined from 
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the Oklahoma Water Quality Management Plan of 1993 and, although important 

information on flow, populations, and location were provided, no information on nutrient 

concentrations and little information concerning treatment type were available. 

Therefore, secondary treatment was assumed and nutrient concentrations were estimated 

from Thomann and Mueller (1987) for the point sources in Oklahoma. 

EUTROMOD only allows for the inclusion of one flow, one phosphorus 

concentration, and one nitrogen concentration as point source input. Therefore, all flows 

were summed and flow-weighted average nutrient concentrations were computed for 

input to the model. The distributions for all were assumed to be uniform. The minimum 

flow was set equal to the sum of the average flows (1.62 MGD) while the maximum was 

set to the design flow summation (1.83 MGD). The ranges of the nutrient concentrations 

were set based on coefficients of variation (0.33 to 0.38) for point source nutrient 

concentrations presented by Reckhow and Chapra (1983). Therefore, the nutrient 

concentration distribution ranges were set to plus or minus one standard deviation from 

the flow-weighted average concentrations computed in table Al.9. The assigned 

distributions are provided in table Al .1. 

Lake Data 

Lake Area and Depth (LAREA, LDEPTH) 

Finally, information concerning lake morphometry (surface area and mean depth) 

and lake evaporation rates were treated as having knowledge uncertainty. Surface 

elevation and lake volume data were obtained from the U.S. Army Corps of Engineers 
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(Christine Altendorf, 1995 personal communication). Surface elevation and lake area 

data were obtained from the Oklahoma Water Resources Board (OWRB, 1985 

unpublished data). These relationships are shown in figure Al.3. 

The desired normal pool elevations are 144.9 m (475.5 ft) from December through 

May and 145.7 m (478 ft) from June through November (Christine Altendorf, 1995 

personal communication). However, until recently the pool elevation from December 

through May was 144.7 (474.6 ft), but a congressional directive demanded that it be 

raised. Therefore, the range of values due to knowledge uncertainty of pool elevations 

was set from 144.7 m to 145.7 m. This range was then used to estimate a range of 

volumes (49.4 to 77.0 m3*106) and areas (27.11 to 29.68 km2) using figure Al.3. 

Average lake depth was computed for the ranges of volume and area as volume/area (1.8 

to 2.6 m). The lake area (LAREA) and depth (LDEPTH) distributions were assumed to 

be uniformly distributed. The knowledge uncertainty distributions for lake area and 

average depth were correlated at 1.0 based on analysis of the data. 

Lake Evaporation (LEV AP) 

Annual lake evaporation was also treated as having knowledge uncertainty. A 

triangular distribution was assigned based on analysis of data for one station at the Wister 

Lake dam from the Climdata CD-ROM in the Geography Department at Oklahoma State 

University. 

OBSERVED LAKE DATA 
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In Chapters 2 and 4 the simulated in-lake chlorophyll a concentrations were 

compared with observed data from an on-going U.S. EPA Clean Lake Project 

(Oklahoma Water Resources Board, unpublished data). In the previous comparisons (fig. 

2.5 and 4.5) only the 1993 observed median in-lake chlorophyll a concentrations were 

included. This was due to the fact that EUTROMOD estimates annual or growing season 

median conditions and the available monitoring data only had one full year of data 

(1993). Table Al.IO lists all of the data available from the five sampling stations at 

different locations on the lake as monitored for an ongoing Clean Lakes Project. The 

sampling station locations within the lake are shown in Figure Al .4. 

REFERENCES 

Abernathy, E.J., K.M. Olszewski, and R. Peters. 1983. Soil Survey of Leflore County, 
Oklahoma. Stillwater, OK: USDA-Soil Conservation Service in cooperation with 
Oklahoma Agricultural Experiment Station. 

ASAE Standards, 37th Ed. 1990. D384.1. Manure production and characteristics. St. 
Joseph, MI: ASAE. 

Blalock, L.L. 1987. Nonpoint source pollution loading factors and related parameters. 
Draft Report. Raleigh, N.C.: Water Quality Group, North Carolina State University. 

Brinlee, R.C. and R.C. Wilson. 1981. Soil survey of Latimer County, Oklahoma. 
Stillwater, OK: USDA-Soil Conservation Service in cooperation with Oklahoma 
Agricultural Experiment Station. 

Chow, V.T. (ed.). 1964. Handbook of Applied Hydrology. New York: McGraw-Hill. 

Daniel, J.A., A.N. Sharpley, B.A. Stewart, and S.J. Smith. 1993. Environmental impact of 
animal manure management in the Southern Plains. ASAE Paper No. 93-4011. St. 
Joseph, MI: ASAE. 

Dean, J.D. 1983. Potency factors and loading functions for predicting agricultural 

181 



nonpoint source pollution. In Agricultural Management and Water Quality, ed. F.W. 
Schaller and G.W. Bailey, 155-177. Ames, IA: Iowa University Press. 

Haan, C.T., B.J. Barfield, and J.C. Hayes. 1994. Design Hydrology and Sedimentology 
for Small Catchments. San Diego, CA: Academic Press. 

Haith, D.A. and L.J. Tubbs. 1981. Watershed loading functions for nonpoint sources. 
Journal of the Environmental Engineering Division 107(EE1):121-137. 

Maner, S.B. 1958. Factors affecting sediment delivery rates in the Red Hills 
physiographic area. Transactions of the American Geophysical Union 39(4):669-675. 

Metcalf and Eddy, Inc. 1972. Wastewater Engineering. New York: McGraw-Hill. 

Moore, 1.D. and G.J. Burch. 1986. Physical basis of the length-slope factor in the 
Universal Soil Loss Equation. Soil Science of America Journal 50(5):1294-1298. 

Reckhow, K.H., M.N. Beauiac, and J.T. Simpson. 1980. Modeling phosphorus loading 
and lake response under uncertainty: a manual and compilation of export coefficients. 
EPA 440/5-80-011. Washington, DC: U.S. EPA. 

Reckhow, K.H. and S.C. Chapra. 1983. Engineering Approaches to Lake Management, 
Volume I Data Analysis and Empirical Modeling. Boston, MA: Butterworth Publishing. 

Reckhow, K.H., J.P. Hartigan, and S. Coffey. 1989. Lake nutrient budget development 
for State-level applications. In Proc. National Conference on Enhancing States' Lake 
Management Programs, 45-52. Chicago, IL: Northern Illinois Planning Commission and 
North American Lake Management Society. 

Reckhow, K.H, S. Coffey, and C. Stow. 1990. Managing the trophic state of water 
bodies. Draft technical release prepared for the Soil Conservation Service. Durham, NC: 
School of the Environment, Duke University. 

Reckhow, K.H., S. Coffey, M.H. Henning, K. Smith, and R. Banting. 1992. 
EUTROMOD: technical guidance and spreadsheet models for nutrient loading and lake 
eutrophication. Draft report. Durham, NC: School of the Environment, Duke University. 

Schwab, G.O., R.K. Frevert, T.W. Edminster, and K.K. Barnes. 1981. Soil and Water 
Conservation Engineering. New York: John Wiley & Sons. 

Sharpley, A.N., S.J. Smith, R.G. Menzel, and R.L. Westerman. 1985. The chemical 
composition of rainfall in the Southern Plains and its impact on soil and water quality. 
Technical Bulletin T-162, Oklahoma Agricultural Experiment Station. Stillwater, OK: 
Division of Agriculture, Oklahoma State University. 

182 



Sharpley, A.N., B.J. Carter, B.J. Wagner, S.J. Smith, E.L. Cole, and G.A. Sample. 1991. 
Impact of long-term swine and poultry manure application on soil and water resources in 
eastern Oklahoma. Technical Bulletin T-169, Oklahoma Agricultural Experiment Station. 
Stillwater, OK: Division of Agriculture, Oklahoma State University. 

Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel, and K.R. Reddy. 
1994. Managing agricultural phosphorus for protection of surface waters: issues and 
options. Journal of Environmental Quality 23 :43 7-451. 

Stewart, B.A., D.A. Woolhiser, W.H. Wischmeier, J.H. Caro, and M.H. Frere. 1975. 
Control of water pollution from cropland. EPA-600/2-75-026a. Washington, DC: U.S. 
EPA. 

Storm, D.E., M.D. Smolen, R. Lakshminarayanan, W.C. Hession, and M. Mungle. 1994. 
Wister Lake watershed project - annual report FY 93. Stillwater, Oklahoma: Agricultural 
Experiment Station and Cooperative Extensive Service, Biosystems and Agricultural 
Engineering Department, Oklahoma State University. 

Thomann, R.V. and J.A. Mueller. 1987. Principles a/Surface Water Quality Modeling 
and Control. New York: Harper Collins Publishers. 

U.S. EPA. 1977. Report on Wister Reservoir Leflore County, Oklahoma. EPA Region 
VI Working Paper No. 595, U.S. EPA National Eutrophication Survey Working Paper 
Series. Washington, D.C.: U.S. EPA. 

Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall erosion loss - a guide to 
conservation planning. Ag. Handbook. No. 537. Washington, DC: USDA-ARS. 

183 



Table Al.1 List of EUTROMOD inputs and distribution assignments for 
Chapter 2 simulations. 

Parameter Units 

Parameters with Stochastic Variabilitt 
PREC cm/yr 
RE MJ-mmlha-h 

Parameters with Knowledee Uncertaintt 
(Climatic Data) 

PREC 
PRE CCV 
PRECN 
PRECP 
(Watershed Data) 
RC[cropland] 
RC[pasture] 
RC[manured pasture] 
RC[forest] 
RC[urban] 
RC[ disturbed] 
RC[ wetlands/water] 
R 
K[cropland] 
K[pasture] 
K[manured pasture] 
K[forest] 
K[urban] 
K[disturbed] 
K[ wetlands/water] 
LS[cropland] 
LS [pasture] 
LS[manured pasture] 
LS[forest] 
LS[urban] 
LS[ disturbed] 
LS[ wetlands/water] 
C[ cropland] 
C[pasture] 
C[manured pasture] 
C[forest] 
C[urban] 
C[ disturbed] 
C[ wetlands/water] 
P[all land uses] 
AREA[cropland] 
AREA[pasture] 
AREA[manured pasture] 
AREA[forest] 
AREA[urban] 
AREA[disturbed] 
AREA[ wetlands/water] 
LFPDIS[cropland] 
LFPDIS[pasture] 

cm/yr 
cm/yr 
mg/I 
mg/I 

fraction 
fraction 
fraction 
fraction 
fraction 
fraction 
fraction 
MJ-mm/ha-h 
Mg/ha per unit R 
Mg/ha per unit R 
Mg/ha per unit R 
Mg/ha per unit R 
Mg/ha per unit R 
Mg/ha per unit R 
Mg/ha per unit R 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ratio 
ha 
ha 
ha 
ha 
ha 
ha 
ha 
mg/I 
mg/I 
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Distribution * 

Lognormal(kt{PREC},k {PRECCV}) 

. Lognormal(k {R},0.60) 

Triangular(l12,120,123) ·· 
Triangular(0.23,0.25,0.28) 
Triangular(0.16,0.21,0.22) 
Triangular(0.012,0.015,0.021) 

Triangular(0.2,0.4,0.5) 
Triangular(0.15,0.35,0.45) 
Triangular(0.15,0.35,0.45) 
Triangular(O. l ,0.25,0.4) 
Triangular(0.25,0. 7 ,0.95) 
Triangular(0.5,0.6,0.9) 
=1.0 
Triangular( 430,520,600) 
Uniform(0.40,0.56) 
Uniform(0.40,0.56) 
Uniform(0.40,0.56) 
Uniform(0.27,0.43) 
none 
Uniform(0.29,0.45) 

=0 
Uniform(0.62, 1.2) 
U niform(0.62, 1.2) 
Uniform(0.62, 1.2) 
Uniform(l.56,2.81) 
n/a 
Uniform(0.58, 1.21) 

=0 
Uniform(0.22,0.29) 
Uniform(0.012,0.043) 
Uniform(0.012,0.043) 
Uniform(0.0001,0.001) 
n/a 
Uniform(0.66,1.3) · 
=O 
=1 
=240 
=58730-AREA[manured pasture] 
Triangular(3094,5094, 11094) 
=192171 
=2053 
=621 
=3800 
Uniform(0.3,0.8) 
Uniform(0.15,0.3) 



Table Al.1 (continued) 
Parameter Units Distribution 
LFPDIS[manured pasture] mg/I Uniform(l,5) 
LFPDIS[forest] mg/I Uniform(0.006,0.012) 
LFPDIS[ urban] mg/I Uniform(0.12,0.38) 
LFPDIS[ disturbed] mg/I Uniform(0.03,0.06) 
LFPDIS[ wetlands/water] mg/I =0 
LFPSED[cropland] mg/kg Triangular(200,300,400) 
LFPSED[pasture] mg/kg Triangular(200,300,400) 
LFPSED[manured pasture] mg/kg Triangular(800,800, 1100) 
LFPSED[forest] mg/kg Triangular(200,300,400) 
LFPSED[ urban] mg/kg n/a 
LFPSED[ disturbed] mg/kg Triangular( 150,250,300) 
LFPSED[ wetlands/water] mg/kg =0 
ENP ratio Triangular(l .19, 1.5,3.74) 
LFNDIS[ cropland] mg/I Uniform(l .8,3) 
LFNDIS[pasture] mg/I Uniform(2,3) 
LFNDIS[manured pasture] mg/I Uniform(7,16) 
LFNDIS[forest] mg/I U niform(0.06,0.19) 
LFNDIS[ urban] mg/I Uniform(l.5,2.6) 
LFNDIS[ disturbed] mg/I Uniform(0.5,1) 
LFNDIS[ wetlands/water] mg/I =0 
LFNSED[ cropland] mg/kg Triangular(900, 1200,2000) 
LFNSED[pasture] mg/kg Triangular(900, 1200,2000) 
LFNSED[manured pasture] mg/kg Triangular( 1900, 1900,4000) 
LFNSED[forest] mg/kg Triangular(900, 1200,2000) 
LFNSED[urban] mg/kg n/a 
LFNSED[ disturbed] mg/kg Triangular(470,600,620) 
LFNSED[ wetlands/water] mg/kg =0 
ENN ratio Triangular( 1.08,2,5) 
TF[Poteau River] ratio Triangular(O. 78,0.92,0.97) 
TF[Black Fork] ratio Triangular(0.65,0.9,0.97) 
TF[Holson Creek] ratio Triangular(0.4,0.86,0.96) 
TF[Fourche Maline Creek] ratio Triangular(0.8,0. 91,0.97) 
TF[Lake Side] ratio Triangular(0.8,0.85,0.97) 
SEPNUM per capita-yr Uniform(65,120) 
SEPP kg P/person-yr Triangular(O. 7 4, 1.28,3) 
SEPN kg N/person-yr Triangular(2.15,3.2,8.2) 
RETP fraction Uniform(0.4,0.7) 
RETN fraction Uniform(0.3,0.45) 
PSQ MGD Uniform(l .62, 1.83) 
PSP mg/I Uniform( 4.94, 10.6) 
PSN mg/I Uniform(9,17.9) 
(Lake Data) 

LAREA km2 Uniform(27.l l,29.68) 
LDEPTH m Uniform(l.82,2.59) 
LEV AP m/yr Triangular(l.0, 1.3, 1.8) 
* Distribution parameters are: Lognormal(mean, coefficient of variation); 
Triangular(minimum, mode, maximum); and Uniform(minimum, maximum). 
t Parameters are obtained from knowledge distribution (k ) .. 
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Table Al.2 Distributional assignments and goodness of fit tests for annual precipitation from seven weather 

stations in or near the Wister Lake watershed. 

Station Number of Lognormal Fit K-S* K-S Test K-S Test C-St C-S Test C-S Test 

Observations Mean Coefficient Calculated Statistic Result Calculated Statistic:j: Result 

(years) (cm) of Variation (a:=0.10) (a=0.10) 

Fanshawe, OK 43 121 0.25 0.12 0.19 Accept H0§ 3.1 9.2 Accept H0 

Heavener, OK 40 121 0.25 0.09 0.19 Accept H0 3.5 6.2 Accept H0 

Parks, AR 34 120 0.23 0.12 0.21 Accept H0 4.8 6.2 Accept H0 ..... 
00 Waldron, AR 42 120 0.25 0.09 0.19 Accept H0 4.6 6.2 Accept H0 0\ 

Wilburton, OK 29 123 0.28 0.19 0.23 Accept H0 7.0 9.2 Accept H0 

Wister, OK 30 112 0.23 0.08 0.22 Accept H0 0.6 7.8 Accept H0 

Zoe, OK 34 122 0.24 0.13 0.21 Accept H0 3.7 9.2 Accept H0 

* Kolmogorov-Smirnov goodness of fit test. 

tChi-Square goodness of fit test. 

:j: x\.9 •• ; where vis degrees of freedom (k-p-1; k=number of class intervals, p=number of parameters estimated (2)) 

§ The null hypothesis being tested is that the data are from the specified probability distribution. 



Table Al.3 Runoff coefficients found in literature. 
Source Land use Minimum Maximum 
Chow (1964) Cropland 0.20 0.50 

Pasture 0.15 0.45 
Forest 0.10 0.40 
Urban-Lawns 0.05 0.35 
Urban-Business 0.50 0.95 
Urban-Residential 0.25 0.75 
Urban-Industrial 0.50 0.90 

Reckhow et al. (1990) Cropland 0.10 0.40 
Pasture 0.10 0.35 

. Forest .0.05 0.25· ::_ 

Schwab et al. (1981) Cropland 0.18 0.66 
- "~§ 

Pasture 0.02 0.23 
Forest 0.02. 0.15 
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Table Al.4 Detail of a portion of Wischmeier and Smith's (1978) 
table as an example of assigning LS factor distributions. 

Percent Slope Length (feet) 
Slope 200 300 400 500 

3 0.354 0.400 0.437 0.466 
4 0.528 
5 0.758 
6 0.952 1.170 1.350 1.500 

Note: The shaded area is shown as an example of the range assigned for 
pasture land. 
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600 
0.492 
0.820 
1.310 
1.650 



Table Al.5 Land use amounts b~ subwatershed and for the entire Wister Lake watershed. 
Watershed Area* Cropland Pasturet Manured Forest Urban Disturbed Wetlands/ 

(ha) (ha) (ha) Pasture (ha) (ha) (ha) (ha) Water (ha) 
Poteau River 69540 0 18290 1445 48506 575 35 689 

- Fourche Maline Creek 69181 212 18965 655 47744 1068 191 346 
00 Black Fork 50927 0 3253 595 46992 43 0 44 \0 

Holson Creek 18097 0 825 151 17113 0 0 8 
Lakeside 49871 28 12303 2248 31817 367 395 2713 
Totals 257616 240 53636 5094 192172 2053 621 3800 
* All areas are presented as entered into EUTROMOD ignoring significant digit convention. 
t Pasture and manured pastured areas based on mode of input distribution representing knowledge uncertainty. 
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Table Al.6 Calculations for estimatin~ the amount of manured easture in the Wister Lake watershed. 
(1) (2) (3) (4) (5) (6) (7) (8) . 

Broilers per Weight per Total Broiler Total Phosphorus Total Phosphorus Total Phosphorus Pasture Land 
County, State year Bird Weight as Manure as Manure as Manure Required to 

(kg) (kg) (kg/1000 kg (kg/day) (kg/yr) apply 84 kg/ha 
animal/dax) (75 lb/ac) eer xear 

LeFlore, OK 25000000 0.9 22500000 0.3 6750 303750 3616 
Latimer, OK 256000 0.9 230400 0.3 69 3110 37 
Scott, AR 10000000 0.9 9000000 0.3 2700 121500 1446 
Total Watershed 35256000 0.9 31730400 0.3 9519 428360 5100 
Descriptions by column: 
Column 1: Counties within the Wister Lake watershed with poultry production. 
Column 2: Estimate of number of broiler produced per year in portion of county included in the Wister Lake watershed (Jim Britton, 

1994 personal communication. 
Column 3: Typical live animal mass per broiler (ASAE Standards (ASAE D384.l); ASAE (1990)). 
Column 4: Total broiler weight per year [column (2) * column (3)]. 
Coluinn 5: Total phosphorus produced as fresh manure per 1,000 kg live animal mass per day (ASAE D384.1). 
Column 6: Total phosphorus produced as fresh manure per day [column (4) * column (5)]. 
Column 7: Total phosphorus produced as fresh manure per year, assuming 6 flocks per year and each bird is in house for 

45 days [column (6) * 45] (Jim Britton, 1994 personal communication). 
Column 8: Amount of pasture requited to spread the estimated phosphorus produced as manure at a typical annual rate of 84 kg/ha (75 lb/ac). 

This rate is actually based on the nitrogen needs of the pasture {column (7) / 84.0] 
(D.E. Storm, 1994 personal communication; Sharpley et al., 1994). 
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Table Al.7 Range of values found in the literature for nutrient loading factors. 
Diss.Qlve.d Loadin~ FacJQrs.: Uniform Distributions 

Phosehorus (mg/I) 
Land Use Minimum Maximum References* 
Cropland 0.300 0.800 4 
Pasture 0.150 0.300 4 
Manured Pasture 1.000 5.000 4,5 
Forest 0.006 0.012 4 
Disturbed 0.030 0.060 4 
Urban 0.120 0.380 4 

Sediment-Bound Loading Factors: Triangular Distributions 
Phosphorus (mg/kg) 

Land Use 
Cropland 
Pasture 
Manured Pasture 
Forest 
Disturbed 
Urbant 

* References: 

Minimum Maximum Mode 
200 
200 
800 

400 300 
400 300 

200 
150 

1100 
400 
300 

n/a n/a 

(1) Abernathy et al. (1983) 
(2) Brinlee and Wilson (1981) 
(3) Daniel et al. (1993) 
(4) Reckhow et al. (1990) 
(5) Sharpley et al. (1991) 

800 
300 
250 
n/a 

t Urban land use requires only dissolved nutrient loading factors. 

Nitrogen (mg/I) 
Minimum Maximum 

1.80 3.00 
2.00 3.00 
7.00 16.00 
0.06 0.19 
0.50 1.00 
1.50 2.60 

References Minimum 
1,2,3,5 900 
1,2,3,5 900 
1,2,3,5 1900 
1,2,3,5 900 
1,2,3,5 470 

n/a n/a 

References 
4 
4 
4 
4 
4 
4 

Nitrogen (mg/kg) 
Maximum Mode References 

2000 1200 3,5 
2000 1200 3,5 
4000 1900 3,5 
2000 1200 3,5 
620 600 3,5 
n/a n/a n/a 



Table Al.8 Delivery ratio and traeein~ factor determination. 
Area-Based Estimate* Relief Ratio Based Estimate t Distance-Based Estimate :J: 

Watershed Area Area DR§ TFII Relief DR TF 1/2 Mainstem DR TF 
(ha) (mi2) (ratio) (ratio) Ratio (ratio) (ratio) Len~th (m) (ratio) (ratio) 

Poteau River 69500 268 0.03-0.10 0.90-0.97 0.012 0.22 0.78 27500 0.08 0.92 
Fourche Maline Creek 69200 267 0.03-0.10 0.90-0.97 0.01 0.20 0.80 21000 0.09 0.91 - Black Fork Creek 50900 197 0.03-0.12 0.88-0.97 0.021 0.35 0.65 16000 0.10 0.90 \0 

Iv Holson Creek 18100 70 0.04-0.20 0.80-0.96 0.04 0.60 0.40 7000 0.14 0.86 
Lakeside 49719 192 0.03-0.12 0.88-0.97 0.01 0.20 0.80 5000 0.15 0.85 
* Delivery ratio based on watershed area (Figure 8.25, Haan et al., 1994). 
t Delivery ratio based on watershed relief ratio (Maner, 1958). 
:J: Pelivery ratio based on one-half the length of the mainstem stream (Reckhow et al., 1988). 
§ Delivery ratio. 
II Trapping factor (1-DR). 



Table Al.9 Point sources in the Wister Lake watershed 
Facility Average Flow Design Flow Phosphorus Nitrogen Receiving Treatment 
Name (MGD) (MGD) (mtiO (m~l) Subwatershed Type 
Arkansas 
City of Waldron 0.48 0.48 3.8 12.0 Poteau River oxidation pond, post aeration 
Tyson Foods 0.626 0.626 10.6 7.7 Poteau River activated sludge, lagoons 
Oklahoma 

..... Cedar Lake Park 0.0001 0.024 6.4 17.1 Black Fork Creek aerated lagoon 
\0 Eastern State 0.065 0.065 8.7 23.8 Fourche Maline·Creek lagoon w 

Ouachita Correct. Cntr. 0.022 0.04 8.7 23.8 Black Fork Creek lagoon 
RedOakPWA 0.068 0.09 8.7 23.8 Fourche Maline Creek lagoon 
Wilburton PW A, NE 0.144 0.24 8.7 23.8 Fourche Maline Creek lagoon 
Wilburton PW A, S 0.06 0.085 8.7 23.8 Fourche Maline Creek lagoon 
Wilburton PW A 0.15 0.18 6.4 17.1 Fourche Maline Creek aerated lagoon 
Total Flows = 1.62 1.83 

Flow Weighted Average Cone.= 7.8 13.4 



Table Al.IO Observed chlorophyll a concentrations from Clean Lakes Project.** 
Chlorophyll a Concentration (ug/1) 

Date Station l Station 2 Station 4 Station 5 Station 6 
16-Dec-92 4.3 6.8 3.3 1.9 0.0 
6-Jan-93 5.2 6.3 5.5 10.6 9.3 
l l-Feb-93 26.9 34.9 154.5 13.0 2.7 
3-Mar-93 3.8 7.8 6.2 4.0 4.7 
8-Apr-93 18.4 22.9 20.7 11.4 5.2 

12-May-93 13.6 11.6 7.2 1.7 5.4 
26-May-93 13.4 19.8 15.0 11.0 17.2 
9-Jun-93 7.3 7.4 5.6 13.4 4.9 
23-Jun-93 14.4 10.5 12.0 15.2 9.1 

15-Jul-93 18.4 16.9 9.2 31.0 28.1 
28-Jul-93 10.8 11.5 14.7 20.1 22.8 
12-Aug-93 17.3 14.9 12.3 20.0 27.6 
25-Aug-93 23.9 7.5 9.0 11.1 20.7 
15-Sep-93 20.0 18.3 12.2 26.1 15.0 
13-0ct-93 9.3 9.0 10.8 24.2 27.2 
23-Nov-93 1.9 12.7 8.3 1.6 0.8 
15-Dec-93 2.0 3.2 3.7 2.9 2.2 
27-Jan-94 10.4 15.7 13.4 12.1 37.2 
24-Feb-94 6.6 20.4 6.5 4.1 2.2 
23-Mar-94 22.5 22.l 3.6 12.8 7.1 
20-Apr-94 7.0 5.9 2.7 27.2 17.8 
4-May-94 9.6 8.6 14.5 3.6 8.0 
18-May-94 6.0 6.6 5.9 16.5 13.l 
15-Jun-94 20.0 14.7 20.5 16.2 · 21.8 
29-Jun-94 15.0 12.3 27.9 24.3 39,6 

** Oklahoma Water Resources Board, unpublished data. 
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Figure Al.1 Location of iso-value lines of average annual rainfall erosivity. Values are in 
metric units (MJ-mm/ha-h). Based on Stewart et al. (1975). 



-'° °' 

Lognormal Distribution 

~ 
(mean=384, coefficient of variation=0.67) .... 

l 
t 
~ 

~ .... 
~ 

~ 

0 200 400 600 800 

Rainfall Erosivity (MJ-mm/ha-h) 

Figure Al.2 Observed relative frequencies and fitted lognormal distribution for 
annual average rainfall erosivities from Guthrie, Oklahoma (Ho accepted at a=O. l 0 
level for both K-S and C-S goodness of fit tests). 
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Figure Al.3 Elevation-area-volume relationships for Wister Lake. 



198 



APPENDIX2 

CHAPTER 3 DETAILS 

(Uncertainty and the USLE) 

GUTHRIE, OKLAHOMA PLOT DATA 

Twenty seven years of measured rainfall, runoff, and soil loss data were obtained 

from the National Soil Erosion Research Laboratory at Purdue University for four 

original USLE test plots in Guthrie, Oklahoma. The observed rainfall, runoff, rainfall 

erosivity (R), and sediment loss are shown in tables A2. l through A2.4. In addition, 

yearly estimates of USLE are provided as estimated by Risse et al. (1993). The yearly 

soil loss estimates of Risse et al. ( 1993) were used to produce the empirical distribution 

functions (EDFs) in figures 3.5 through 3.8. Finally, the mean and median estimates for 

all the parameters in the tables are provided. The purpose for this is to highlight the 

differences between the mean and median annual soil loss due to the skewed nature of the 

annual soil loss distribution. 

ADDITIONAL OUTPUT: DISCRETIZATION STUDY 

An important result of the USLE study was that output uncertainty or variance 
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was reduced merely due the act of discretization. Figure A2. l shows the soil loss CCDFs 

for plot 1-1 as an undivided plot and as a discretized plot (four subdivisions). Note that 

these CCDFs were due to knowledge uncertainty only. The CCDF for the discretized plot 

showed a marked decrease in variability or uncertainty. The reason for this reduction in 

variance was shown mathematically in Chapter 3. 

The CCDFs are distribution-free distributions or EDFs and the ends of the 

distributions represent the distribution-free 90% confidence interval. However, in order 

to evaluate the reduction of uncertainty due to level of discretization it proves useful to 

inspect confidence intervals in terms of the confidence interval equation under 

assumptions of normality (Haan, 1977): 

CI= X - t • S-
1--,n,-1 " 

2 
(A2.1) 

where x is the mean, t is the value from the t distribution with a confidence interval of 

100(1-a), and si is the standard deviation of the mean. The standard deviation is 

computed as the square root of variance. 

Chapter 3 results indicated that when discretization is performed the output 

variance is approximately 1/m times the original variance, where m is the number of 

subdivisions. Therefore, we would expect the confidence intervals for the divided plots 

to be .../llm times the undivided confidence intervals. In fact, inspection of figure A2. l 

verified these expectations. The 90% confidence interval for the undivided plot is 

approximately 20 Mg/ha. Therefore, we would expect the 90% confidence interval for 

the discretized plot to be /fi4. ( or 0.5) times the that of the undivided plot. The 90% 

confidence of the CCDF for the discretized plot's soil loss is approximately .10 Mg/ha 
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wide, or 0.5 times the confidence interval of the undivided plot's CCDF. This estimate of 

confidence interval reduction will be used to compare the results from Chapter 2 and 

Chapter 4 simulations in Appendix 3. 

REFERENCES 

Risse, L.M. M.A. Nearing, AD. Nicks, and J.M. Laflen. 1993. Error assessment in the 
Universal Soil Loss Equation. Soil Science Society of America Journal 57:825-833. 
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Table A2.1 Observed data and USLE soil loss. estimates for plot 1-1 in Guthrie, Oklahoma. 
Plot Characteristics: US.LE F ar;,tors. [metric; Risse g,l al.. 199 3,i; 
Width(m)= 1.8 RE Factor= (by year in table) 
Length (m) = 11.1 KFactor= 0.28 
Slope(%)= 7.7 LS Factor= 0.57 
Tillage= Up/Down C Factor= 0.59 
Crop Type= Cotton P Factor= 1.00 

Year Observed Observed Observed RE Observed Soil USLE Soil 
Rainfall (mm) Runoff (llllD) (Mg-mm/ha-hr) Loss {Mg/ha) Loss {Mg/ha)* 

1930 855 99 429 48 41 
1931 742 77 259 18 25 
1932 950 182 586 107 56 
1933 798 140 457 29 44 
1934 897 176 655 36 63 
1935 806 75 486 20 46 
1936 545 66 301 12 29 
1937 613 17 266 4 25 
1938 797 49 313 4 30 
1939 598 45 200 3 19 
1940 845 32 371 6 35 
1941 missing data 185 515 20 49 
1942 893 72 397 7 38 
1943 641 54 131 5 12 
1944 797 53 303 2 29 
1945 862 134 548 36 52 
1946 701 52 236 4 23 
1947 706 70 303 6 29 
1948 687 59 273 17 26 
1949 1168 320 1018 539 97 
1950 719 55 273 4 26 
1951 917 91 673 12 64 
1952 527 5 157 0 15 
1953 842 56 344 3 33 
1954 389 0 41 0 4 
1955 663 21 176 17 
1956 658 77 346 7 33 

Average 754 84 372 35 36 
Median 769 66 313 7 30 
*·As estimated by Risse et al. ( 1993) using the factors defined above. These estimates were used 
to create empirical distribution function (EDF) in Figure 3.5. 
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TableA2.2 Observed data and USLE soil loss estimates for plot 1-2 in Guthrie, Oklahoma. 
Plol Characteristics: U..SLE Fa,;.tors. (metri,;.: B.i3.s~ ~t al,, 192.Jl: 
Width (m) = 1.8 RE Factor= (by year in table) 
Length (m) = 44.3 KFactor= 0.28 
Slope(%)= 7.7 LS Factor= 1.13 
Tillage= Up/Down C Factor= 0.59 
Crop Type= Cotton P Factor= 1.00 

Year Observed Observed Observed RE Observed Soil USLE Soil 
Rainfall (mm) Runoff(mm) (Mg-mm/ha-hr) Loss (Mg/ha) Loss (Mg/ha)* 

1930 855 86 429 32 81 
1931 742 100 259 57 49 
1932 950 142 586 196 111 
1933 798 135 457 74 87 
1934 897 197 655 85 124 
1935 806 91 486 105 92 
1936 545 76 301 56 57 
1937 613 33 266 14 50 
1938 797 76 313 46 59 
1939 598 42 200 12 38 
1940 845 82 371 33 70 
1941 missing data 229 515 61 98 
1942 893 117 397 24 75 
1943 641 104 131 21 25 
1944 797 65 303 IO 58 
1945 862 195 548 247 104 
1946 701 76 236 10 45 
1947 706 133 303 35 57 
1948 687 102 273 209 52 
1949 1168 415 1018 832 193 
1950 719 97 273 107 52 
1951 917 181 673 1 IO 128 
1952 527 24 157 6 30 
1953 842 142 344 45 65 
1954 389 10 41 2 8 
1955 663 102 176 34 33 
1956 658 172 346 46 66 

Average 754 119 372 93 71 
Median 769 102 313 46 59 
* As estimated by Risse et al. (1993) using the factors defined above. These estimates were used 
to create empirical distribution function (EDF) in Figure 3.6. 
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TableA2.3 Observed data and USLE soil loss estimates for plot 1-3 in Guthrie, Oklahoma. 
Plot Charac.teristic.s: USLE Factors (metric.; Risse et al., 19931: 
Width (m) = 1.8 RE Factor= (by year in table) 
Length (m)= 22.l KFactor= 0.28 
Slope(%)= 7.7 LS Factor= 0.80 .. 

Tillage= Up/Down C Factor= 0.59 
Crop Type= Cotton P Factor= 1.00 

Year Observed Observed Observed RE Observed Soil USLE Soil 
Rainfall (mm) Runoff(mm) (Mg-mm/ha-hr) Loss (Mg/ha) Loss (Mg/ha)* 

1930 855 112 429 39 58 
1931 742 98 259 26 35 
1932 950 136 586 153 79 
1933 798 123 457 33 61 
1934 897 176 655 34 88 
1935 806 72 486 41 65 
1936 545 69 301 28 40 
1937 613 23 266 4 36 
1938 797 68 313 23 42 
1939 598 24 200 1 27 
1940 845 58 371 25 50 
1941 missing data 182 515 26 69 
1942 893 75 397 10 53 
1943 641 73 131 11 18 
1944 797 58 303 7 41 
1945 862 171 548 113 74 
1946 701 69 236 14 32 
1947 706 87 303 15 41 
1948 687 86 273 91 37 
1949 1168 328 1018 420 137 
1950 719 65 273 13 37 
1951 917 120 673 39 90 
1952 527 13 157 3 21 
1953 842 75 344 9 46 
1954 389 6 41 2 5 
1955 663 60 176 18 24 
1956 658 124 346 16 46 

Average 754 94 372 45 50 
Median 769 75 313 23 42 
* As estimated by Risse et al. (1993) using the factors defined above. These estimates were used 
to create empirical distribution function (EDF) in Figure 3.7. 

204 



TableA2.4 Observed data and USLE soil loss estimates for plot 1-8 in Guthrie, Oklahoma. 
Plot C.harae,teristic5.; U..SLE Factors (metric.; Risse et al,. 1923); 
Width (m) = 1.8 RE Factor= (by year in table) 

Length (m) = 22.1 KFactor= 0.28 
Slope(%)= 7.7 LS Factor= 0.80 · 

Tillage= Up/Down C Factor= 1.00 

Crop Type= Fallow P Factor= 1.00 

Year Observed Observed Observed RE Observed Soil USLESoil 
Rainfall (mm) Runoff(mm) (Mg-mm/ha-hr) Loss {Mg/ha) Loss (Mg/ha)* 

1930 855 196 429 41 98 

1931 742 160 259 14 59 

1932 950 272 586 31 133 

1933 798 254 457 45 104 

1934 897 293 655 65 149 

1935 806 225 486 77 111 

1936 545 162 301 35 68 

1937 613 145 266 65 61 

1938 797 243 313 51 71 

1939 598 116 200 23 45 

1940 845 237 371 94 84 

1941 missing data 360 515 31 117 
1942 893 204 397 12 90 

1943 641 121 131 7 30 
1944 797 134 303 3 69 

1945 862 276 548 38 125 

1946 701 94 236 7 54 

1947 706 176 303 20 69 

1948 687 150 273 8 62 

1949 1168 379 1018 343 231 

1950 719 130 273 6 62 
1951 917 223 673 8 153 

1952 527 31 157 1 36 
1953 842 139 344 4 78 
1954 389· 33 41 1 9 
1955 663 75 176 1 40 
1956 658 137 346 7 79 

Average 754 184 372 38 85 
Median 769 162 313 20 71 
* As estimated by Risse et al. (1993) using the factors defined above. These estimates were used 
to create empirical distribution function (EDF) in Figure 3.8. 
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APPENDIX3 

CHAPTER 4 DETAILS 

0 Watershed-Level Ecological Risk Assessment Methodology) 

SENSITMTY ANALYSIS 

Introduction and Literature Review 

Chapter 2 simulations were performed with all model input parameters treated as 

being uncertain, assigned probability distributions, and included in Monte Carlo analyses. 

Many of these parameters had little effect on output variability due to lack of importance 

in the model structure or due to the small range of possible values (low uncertainty). An 

important step in any risk assessment or modeling activity is a sensitivity analysis 

(Gardner et al., 1981; Downing et al., 1985; Morgan and Henrion, 1992; Yeh and Tung, 

1993; Burmaster and Anderson, 1994; Hammonds et al., 1994; Helton, 1994; MacIntosh 

et al., 1994). Burmaster and Anderson (1994) suggested the use of sensitivity analysis to 

identify the inputs suitable for probabilistic treatment. 

The @Risk software provides two different analytical techniques for performing 

sensitivity analyses. Both techniques make use of the fact that with a Monte Carlo 
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procedure, there are many outputs as well as a set of inputs corresponding to each output. 

The first technique is a form of regression analysis. With this analysis, sampled input 

variable values are regressed against output values, leading to a measurement of 

sensitivity by input variable. The second technique is a rank correlation calculation 

(Iman and Conover, 1982). In this analysis,·rank correlation coefficients are calculated 

between the output values and each set of sampled input values. 

Many techniques have been utilized to perform sensitivity analyses. MacIntosh et 

al. (1994) performed linear regression for each individual input versus output from Monte 

Carlo simulation results and ranked the input parameters by the r2 of the regression. They 

explained that this was a "measure of the amount of uncertainty in the expected 

distribution explained by uncertainty in the parameter." Helton (1994), also using results 

from a Monte Carlo analysis, used partial rank correlation coefficients to rank input 

parameters in order of importance. Correlations greater than 0.5 were assumed to be 

significant. They suggested that ranks help remove the effects of nonlinearities. 

Hammonds et al. (1994) used squared rank correlation coefficients and adjusted 

them to 100% in order to determine the most influential input parameters. Yeh and Tung 

(1993) listed simple correlation coefficients, rank correlation coefficients, partial 

correlation coefficients, and partial rank correlation coefficients as useful measures of 

sensitivity. They concluded that the partial simple and partial rank correlations were the 

most useful. The correlation coefficients "indicate the strength of the association between 

inputs and outputs" (Yeh and Tung, 1993). They suggested that parameters found to be 

insignificant in regression can be considered "constants" in uncertainty analyses. 

Morgan and Henrion (1992) discussed simple sensitivity and normalized 
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sensitivity or elasticity, defined as: 

(A3.1) 

UJ_x,y) = [c3yL x xo 
c3x Yo 

(A3.2) 

where U8 and UE are the simple and normalized sensitivity (or elasticity), respectively, x 

is input, y is output, and~ indicates that the derivatives are evaluated at the values of the 

nominal or "base-case" scenario. They stated that the problem with simple sensitivity is 

that it depends on the scale, or units of measurement of x and y. The normalized 

sensitivity corrects for this problem by defining the changes in x and y in relative terms, 

as a fraction of their nominal values. However, a drawback to both of these as measures 

of uncertainty importance is that they consider only the slopes ofthe response surface, 

and ignore the degree of uncertainty in each input (Morgan and Henrion, 1992). For 

instance, an input that has a small sensitivity (in terms of model structure) but a large 

uncertainty ( do to lack of knowledge) might be very important in influencing output 

uncertainty. 

Morgan and Henrion (1992) recommended correlation coefficients for use in 

sensitivity analyses from Monte Carlo simulations. Correlation coefficients were cited as 

being a truly global measure of "uncertainty importance." They provide a good estimate 

of the effect of uncertainty in input on uncertainty in output, averaged over all possible 

combinations of values of the other inputs, weighted by their probabilities. In addition, 
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they concluded that rank-order correlations are good measures of the strength of 

monotonic relations, whether linear or not. 

Gardener et al. (1981) recommended using simple correlation coefficients for 

Monte Carlo simulations to rank model parameters according to contributions to 

prediction uncertainty. They ranked sensitivities in terms of output-input combinations 

and selected the top 10 for probabilistic consideration. Downing et al. (1985) used partial 

rank-order correlation citing the measures ability to account for nonlinearity and correctly 

incorporate monotonicity. 

Sensitive Input Parameters 

Based on the review of literature concerning sensitivity analysis and the available 

techniques provided within the @Risk software, uncertainty importance for this study 

was defined using the rank correlation coefficient technique. It is important to note that 

this analysis was performed only on the parameters having knowledge uncertainty; the 

two stochastic parameters (PREC and R) were assumed to be important in defining 

stochasticity and automatically included as probabilistic parameters in Chapter 4 

simulations. 

The EUTROMOD model was run for 225 iterations while varying only the 

knowledge uncertain parameters. Simulations were performed with the model as used in 

Chapter 2 (without the subwatershed modeling capability). Any input parameters found 

to be important were entered into the subwatershed-version of the model as being 

probabilistic within each of the subwatersheds. The l3 parameters found to be significant 
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in defining output uncertainty are shown in table A3 .1. The important parameters were 

ranked based on their correlation coefficient with in-lake chlorophyll a output; the 

correlations are also shown in relation to total phosphorus load. Significance of the 

correlation coefficients was determined using: 

(A3.3) 

where tis the test statistic used to consult at-distribution table, rs is the rank correlation 

coefficient, and n is the number of data points. Determining at-value from a t-

distribution table (Haan, 1977) at a 95% confidence level (1.97), inserting 225 for n, and 

solving for rs, a correlation greater than or equal to 0.13 was considered significant. An 

input parameter was selected if its correlation coefficient was greater than 0.13 in terms 

of in-lake chlorophyll a or total phosphorus load output. These parameters ( table A3 .1) 

were selected for probabilistic consideration in the Chapter 4 simulations; all others were 

treated as constants. 

To ensure that the parameters selected adequately accounted for output 

uncertainty, output CCDFs from the model with all inputs treated as probabilistic and 

those resulting from considering only the parameters given in table A3 .1 were compared 

(fig. A3. l and A3.2 for chlorophyll a and total phosphorus loads, respectively). The 

model used in Chapter 2 (without subwatershed capability) was run 225 times while 

varying only knowledge uncertain parameters. There is very little difference between the 

CCDFs and it appears that the inputs most important in influencing output uncertainty 

were correctly chosen. 
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MODEL MODIFICATIONS 

The EUTROMOD model was converted from a share-ware spreadsheet program 

to Microsoft Excel Version 5.0 for use in this study. In addition, for the simulations in 

Chapter 5, the model was modified to allow for simulating up to ten subwatersheds. This 

was done by copying the watershed input and output portion of the spreadsheet ten times 

and providing a section for accumulating the loads from these subwatersheds to estimate 

total loads for the entire watershed. The total loads are then input into the lake model 

portion of EUTROMOD which was not modified in any way. This modification was 

made to allow for comparisons with the monitoring station data described in Chapter 1. 

However, this modification also requires that all watershed characteristic inputs be 

entered by subwatershed, thereby greatly increasing the number of input parameters that 

must be estimated. 

MODEL INPUT 

Introduction 

There are two main differences between the model input for Chapter 2 and 

Chapter 4: 1) only the input parametersfound to significantly influence output 

uncertainty were treated as probabilistic inputs for the Chapter 4 simulations and 2) all 

watershed descriptive inputs were required by subwatershed, lumped by land use. 
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Probabilistic Input 

Stochastic Variability 

PREC and R were again treated as temporally stochastic parameters. However, in 

Chapter 2 simulations with these two parameters were treated as having knowledge 

uncertainty as well. The knowledge uncertain aspect of these parameters was not found 

to significantly contribute to output uncertainty, therefore PREC and R were treated as 

having only stochastic variability for Chapter 4 simulations. 

The R factor was treated as lognonnal with a mean equal to the isoerodent line 

closest to the watershed (520; fig. Al.I) and a coefficient of variation of0.67 as found 

from analysis of the Guthrie, Oklahoma data (fig. Al.2). Precipitation was initially 

assigned by subwatershed by selecting a raingage within or near each subwatershed as 

shown in table A3.2. Due to the similarities in distributional assignments from station to 

station and subwatershed to subwatershed, a single distribution was assigned for the 

entire watershed in the interest of computational efficiency (table A3.2). 

Knowledge Uncertainty 

As discussed previously, 13 parameters were found to be important in 

determining output uncertainty and treated as probabilistic inputs for Chapter 4 

simulations. The parameters and their distributional assignments are shown in table 4.2. 

Note that there were actually 17 parameters considered since the area of manured pasture 

was assigned probabilistically by subwatershed. The other parameters were not assigned 

by subwatershed since they were based on literature values and no additional data were 
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available to allow for changing estimates by subwatershed. 

Deterministic Input 

The remainder of the parameters were considered constants (deterministic) for 

Chapter 4 simulations. These inputs were assigned based on estimates made for a 

previous deterministic modeling effort (Hession et al., 1995). The parameters that vary 

by subwatershed (K and LS) were determined within the GIS as area-weighted averages 

within each subwatershed, by each land use. The remainder of the parameters were 

assigned by land use regardless of the subwatershed in question. Point source 

information was computed by subwatershed based on the location of the treatment plants. 

The assigned parameter estimates are given in table A3 .3 and A3 .4 for nonpoint source 

and point source related data, respectively. Note that only phosphorus-related inputs are 

provided since nitrogen was not included in the analysis. 

NUMBER OF ITERATIONS 

The precision determination curves for the subwatershed-based simulation are 

shown in figures A3 .3 and A3 .4 for knowledge uncertainty and stochastic variability, 

respectively. Sample sizes of200 and 50 were assumed to provide adequate precision 

and numerical stability for the analysis performed in Chapter 4. 
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ADDITIONAL OUTPUT: REDUCTION IN UNCERTAINTY? 

The simulations performed with EUTROMOD for Chapter 4 involved a level of 

discretization (5 subwatersheds). The simulated chlorophyll a concentrations and annual 

total phosphorus loads from Chapter 2 and 4 are compared in figure A3.5 and A3.6, 

respectively. The study performed in Chapter 3 showed thatoutput variance could be 

reduced merely by the act of discretization. In addition, based on the Chapter 3 results 

and addition investigations performed in Appendix 2, we might expect the output 

uncertainty (in terms of confidence intervals) to be vfis or (0.45) multiplied by the 

undiscretized uncertainty or confidence interval. 

The stochastic variability of estimated chlorophyll a concentrations were reduced 

significantly from Chapter 2 to Chapter 4 simulations (fig. A3.5). The stochastic 

variability is represented by a single CCDF; in this case, inspection of the 50th percentile 

CCDFs indicates that the 90% confidence interval was reduced from a range of more than 

2.5 µg/1 to just over 1 µg/1. However, the reduction in knowledge uncertainty, 

represented by the range in the distribution of CCDFS, was reduced from approximately 

3.5 µg/1 to 3.0 µg/1. This was estimated by inspection of the median values for the 5th 

and 95th percentile values, before (Chapter 2) and after (Chapter 4) discretization. 

Inspection of figure A3.6 indicates that the stochastic variability of the total phosphorus 

estimates actually increased slightly from Chapter 2 to 4. However, knowledge 

uncertainty, again estimated by inspecting the median values of the 90% confidence 

intervals, was reduced from approximately 170 Mg/ha to 110 Mg/ha 

The results of this analysis were not as straight forward as those performed in 
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Chapter 3 using the USLE plot. Following are some reasons why the results did not 

indicate a reduction in output uncertainty of exactly related to {[is: 

1. The discretizations ( subwatersheds) were not of equal areas as were those 

in Chapter 3. 

2. The parameter values were changed from subwatershed to subwatershed 

unlike the sub-units for the USLE plot where the parameter distributions 

were kept constant from sub-unit to sub-unit. 

3. Only 17 parameters were considered probabilistic versus 66 in Chapter 2. 

Even though comparisons made in Appendix 1 suggested that the 

reduction in input parameters considered uncertain had little effect on 

output uncertainty, uncertainty was reduced. 

4. The subwatershed-based simulations in Chapter 4 required that more 

parameter estimates be made. Therefore, more error may have been 

infused into the model due to the "Information Paradox;" 

5. Some parameters were correlated at 1.0 from basin to basin while others 

were not correlated at all. 
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Table A3.l Important input parameters contributing to prediction uncertainty. 
Importance Significant** Rank-Order Correlation Coefficient by Output 

Rank* Input Parameters Chlorophyll a . Total Phosphorus Load 
l RC[forest] -0.67 0.03 
2 LFPDIS[manured pasture] 0.47 0.59 
3 AREA[manured pasture] 0.31 0.39 
4 RC[manured pasture] 0.13 0.29 
5 ENP 0.22 0.26 
6 C[past] 0.18 0.26 
7 LDEPTH -0.18 0.05 
8 LFPDIS[past] 0.15 0.24 
9 TF[LS] -0.15 -0.25 
10 TF[FM] -0.14 -0.29 
11 TF[BF] -0.11 -0.29 
12 TF[PR] -0.10 -0.19 
13 TF[HC] -0.03 -0.19 

* Ranked based on absolute value of the rank-order correlation to chlorophyll a output. 
** Significance based on t-test (n=225, p=2); correlations > 0.13 significant at a =0.05 
for either chlorophyll a or total phosphorus load output. 
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Table A3.2 Precipitation station assignments by subwatershed. 
Subwatershed Station Assignment Distribution 
Poteau River Waldron Lognormal(120,0.25)* 
Fourche Maline Creek Fanshawe Lognormal(l21,0.25) 
Black Fork Creek Zoe Lognormal(l22,0.24) 
Holson Creek Zoe Lognotmal(l22,0.24) 
Lake Side Heavener Lognormal(121,0.25) 
Whole Watershed (combined)** Lognormal(l21,0.25) 
* Lognormal(mean, coefficient of variation). 
** Assigned subjectively to entire watershed due to similarities in 
the distributions by subwatershed. 
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TableA3.3 Deterministic ineut earameters related to noneoint sources. 
Subwatershed Land Use RC K LS C p ;LFPDIS LFPSED 
Poteau River Cropland 0.40 0.38 0.6. 0.2550 1.0 0.550 300 

Pasture 0.35 0.38 0.6 * 1.0 * 300 
Manured Pasture * 0.38 0.6 0.0275 1.0 * 800 
Forest * 0.28 2.1 0.0006 1.0 0.009 300 
Urban/Built-up 0.70 n/a n/a n/a n/a 0.250 nla 

Disturbed 0.60 0.32 0.7 0.9800 1.0 0.045 250 
Wetlands/Water 1.00 0.00 0.0 0.0000 0.00 0.000 0 

Fourche Maline Cropland 0.40 0.36 0.9 0.2550 1.0 0.550 300 
Creek Pasture 0.35 0.36 0.9 * 1.0 * 300 

Manured Pasture * 0.36 0.9 0.0275 1.0 * 800 
Forest * 0.27 2.8 0.0006 1.0 0.009 300 
Urban/Built-up 0.70 n/a n/a n/a n/a 0.250 n/a 
Disturbed 0.60 0.34 0.6 0.9800 1.0 0.045 250 
Wetlands/Water 1.00 0.00 0.0 0.0000 0.00 0.000 0 

Black Fork Cropland 0.40 0.36 1.4 0.2550 1.0 0.550 300 
Creek Pasture 0.35 0.36 1.4 * 1.0 * 300 

Manured Pasture * 0.36 1.4 0.0275 1.0 * 800 
Forest * 0.25 3.0 0.0006 1.0 0.009 300 
Urban/Built-up 0.70 n/a n/a n/a n/a 0.250 n/a 
Disturbed 0.60 0.29 0.6 0.9800 1.0 0.045 250 
Wetlands/Water 1.00 0.00 0.0 0.0000 0.00 0.000 0 

Rolson Creek Cropland 0.40 0.34 1.1 0.2550 1.0 0.550 300 
Pasture 0.35 0.34 1.1 * 1.0 * 300 
Manured Pasture * 0.34 1.1 0.0275 1.0 * 800 
Forest * 0.26 2.6 0.0006 1.0 0.009 300 
Urban/Built-up 0.70 n/a n/a n/a n/a 0.250 n/a 
Disturbed 0.60 0.29 0.6 0.9800 1.0 0.045 250 
Wetlands/Water 1.00 0.00 0.0 0.0000 0.00 0.000 0 

Lake Side Cropland 0.40 0.37 1.1 0.2550 1.0 0.550 300 
Pasture 0.35 0.37 1.1 * 1.0 * 300 
Manured Pasture * 0.37 1.1 0.0275 1.0 * 800 
Forest * 0.28 2.4 0.0006 1.0 0.009 300 
Urban/Built-up 0.70 n/a n/a nla nla 0.250 n/a 
Disturbed 0.60 0.27 1.6 0.9800 1.0 0.045 250 
Wetlands/Water 1.00 0.00 0.0 0.0000 0.00 0.000 0 

* Parameter treated probabilistically (knowledge uncertainty); see Table 4.2 for distributional details. 
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Table A3.4 Point source inputs by subwatershed. 
Subwatershed Waste Flow Phosphorus 

Poteau River 
Fourche Maline Creek 
Black Fork Creek 
Rolson Creek 
Lake Side 

(MGD) Concentration (mg/1) 
1.11 7.7 
0.49 7.0 
0.02 
0.00 
0.00 

7.0 
0.0 
0.0 

Note: Only phosphorus inputs were modeled. 
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