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A MONTE CARLO STUDY OF A TWO EQUATION OVERIDENTIFIED MODEL 
WITH TWO SPECIFICATION ERROl^o— AuTuCORRELATION 

AND MULTICOLLINEARITY

CHAPTER I 

INTRODUCTION

Economic models are concerned with the general relat­
ionship between economic variables. Many times this interde­
pendence is in the form of simultaneous equations. The degree 
of interdependence is different as compared to the classical 
analysis in that dependent variables of one equation usually 
are independent variables of another equation within the sys­
tem. Econometricians have developed estimators to obtain em­
pirical parameter estimates in simultaneous equations under 
specified assumptions. Each estimator has large sample pro­
perties and/or asymptotic properties deemed desirable for esti­
mators based on large sample sizes (Christ, 1966; Theil, 1971). 
Knowing these properties does not eliminate the large sample 
problem of choosing the best estimator because economic models 
usually have specification errors.^ Economists should be alert

Specification error is due to the violation of one or 
more specified assumptions which were used to derive the large 
sample properties.
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of these specification errors because they may give rise to 
empirical results that are erroneous.

The choice of estimators becomes more involved when 
the sample of economic data for a given model is small. Gen­
erally, the properties of estimators in small samples with 
no specification errors have not been derived. The theoreti­
cal studies of small sample estimators are very limited with 
regard to studying only the k-class estimators under specified 
assumptions within a given model. These theoretical studies 
are a conclusive first step in trying to solve for the distri­
bution of estimates in finite samples. Because of the mathe­
matical complexities in deriving distributions of estimates in 
small sample models, econometricians have resorted to empiri­
cal comparisons of estimators.

A Monte Carlo experiment is an empirical method of 
obtaining the probability distribution of a small sample esti­
mator. Monte Carlo experiments consist of postulating a model, 
specifying parameters, generating values for exogenous vari­
ables and disturbance terms from assumed density functions, 
and solving for values of the endogenous variables from the 
reduced form equations. The econometrician then returns to 
the original model and applies estimators to the data under 
no a priori information. This process is repeated a large 
number of times. The resultant frequency distribution of each 
estimator along with the a priori information about the para­
meters is used to determine the small sample properties of each 
estimator.



3
In studying individual parameters a loss function must 

be chosen to determine which estimator performs "best" given 
this particular model. In many Monte Carlo studies, mean- 
square error has been chosen as the loss function. Robert 
Basmann has criticized this choice of a loss function because 
of lack of knowledge about the existence of low order moments 
(1961). Therefore, in this Monte Carlo study, the loss func­
tions which will be chosen always exist and are measures of 
central location and dispersion.

Most studies of small sample sizes have been attempted 
observing only one specification error within the model. Even 
when more than one specification error has been observed, the 
Monte Carlo study has not generally been used to isolate the 
effects of each specification error upon the accuracy of each 
estimator. Major Monte Carlo studies of these types will be 
summarized in Chapter III.

As stated above. Chapter II and III will be a review 
of major research involved in searching for the best estimator 
that economists could use in empirically investigating econo­
mic models. As economists, we should be aware of these contri­
butions and use them to guide us in the empirical investigat­
ions of economic phenomena.

The purpose of this Monte Carlo experiment is to study 
the effects of two specification errors on the accuracy of 
each estimator.2 The specification errors introduced will be

two
^The estimators in this study are ordinary least squares, 

stage least squares and three stage least squares.
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autocorrelation of the disturbance terms and multicollinearity 
of the exogenous variables.^ The Monte Carlo study will be 
carefully outlined and analyzed in Chapter IV. Due to the 
criticism by Hobson Thornber (1967), this study will vary both 
specification errors. Although this will not be a continuous 
variation, it may be sufficient to acknowledge the validity 
of the above criticism on past Monte Carlo studies. Secondly, 
it may allow the isolation of the effects of each specification 
error variation on the estimators involved.

The final chapter will outline and analyze an approp­
riate demand and supply model. The model is a demand and 
supply equation for pork which seems to have similar specifi­
cation errors to those discussed in Chapter IV. This study 
will be contrasted and integrated into the store of knowledge 
already obtained from theoretical and empirical research sum­
marized in Chapters II and III and the results of Chapter IV.

The goals of this paper are to observe the knowledge 
accumulated by economists in their search for improved under­
standing of estimators used in empirical economic research and 
to add to this store of knowledge by empirically observing 
and isolating the effects of two specification errors on each 
estimator within the model studied. It must be noted that 
generally, results in small sample size research are applicable 
only to the specified model studied. One hopes that the model

^The introduction of the autocorrclated disturbance 
terms will consider both serial and contemporaneous correlation,



chosen is general enough to give information to econometricians 
working with these specification errors in similar models under 
similar circumstances.



CHAPTER II

MAJOR THEORETICAL CONTRIBUTIONS TO THE STUDY 
OF ESTIMATORS IN SIMULTANEOUS EQUATIONS 

OF FINITE SAMPLE SIZES

Major theoretical contributions in deriving the distri­
bution of different estimators of the structural parameters 
for finite samples have been limited, this limitation being 
due primarily to the complex mathematics involved. Simplify­
ing assumptions, small models, and single equation estimators 
usually are requirements for deriving any theoretical distri­
bution of structural parameters in finite samples. Even with 
the shortcomings of these theoretical works, econometricians 
have shown that research in this area is feasible. Theoretical 
research already completed has given insights concerning the 
properties of estimators in small samples. These theoretical 
contributions have helped develop better Monte Carlo studies. 
The major theoretical works will be summarized by authors.

Robert Basmann (1961) studied the finite frequency 
function of generalized classical linear estimators (GCL) in 
the following two equation, overidentified model:



+Y + = 0  t = l,...,n 2.1.11 0

•*tl + =,/t2 + Y,/t2 + \/t3 + \/t4

+ Yjt + ®t2 ® 2.1.2

where E(e^j^) = 0

E(et±, e^j) = w^j i,j = 1,2

ê ĵ  ~ N(0, 0i^). 2.1.3

Estimation was achieved on the basis of the following hypothe­
ses:

H : y = 0  y = 0 ; y ^ 0 y ?^0 2.1.41 11 12 13 14

H : y = 0 y = 0 ;  y ^ 0 y j^O. 2.1.52 2 3  24 21 21

The reduced form disturbance terms denoted by and were 
identically and independently distributed with

E(nti) = 0 2.1.6

and E(n^^n^j) = 0 ij^j,i,j=l,2. 2.1.7

The exogenous variables were independently distributed, i.e., 
no exogenous variable was a lagged endogenous variable.
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n = 0  m K
Et=l tK tm = 1 m = K. 2.1.8

The restriction imposed on the exogenous variables by equation 
2.1.8 was equivalent to orthogonalizing the exogenous sample 
data. The parameters of the reduced form were appropriately 
adjusted to the orthogonalization.

Dr. Basmann studied two cases. Case I was divided into 
two sub-cases. The first sub-case assumed hypothesis 2.1.4.
The necessary condition for overidentification was met, K**
- + 1 = 1 (Johnston, 1963), where K** was the number of ex­
cluded exogenous variables and was the number of included 
endogenous variables within the equation to be estimated. The 
exact finite sample frequency function of GCL estimators of
B was 1 2

- X V 2  + b!/4 2 2

+ 2 ; (-1," T (±1) p
n=l r(2n+l) n 4 1 1 2 2

—w< Y <+w 2,1.9
1

where X = (1+B* ) ( i r ^ + n * )  2.1.1012 12 22

b = / î i ^ + i T ^  B 2.1.112 21 22 12
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jFj denoted the confluent hypergeometric function, denoted
a modified Bessel function, were reduced form coefficients,
and 0, Xj = . , and (B^^v^ + 1).

/1+vJ
The GCL estimators of B^^ possessed a finite first moment but
not a finite second moment. The second sub-case of case I
assumed that B = 0  but the econometrician was unaware of this

1 2
when applying the estimators. The exact frequency function 
reduced to

h (v ) =    7 F ; 1; -1-) . 2.1.12
‘ ‘ 2(1 + v p   ̂ 2 2

Once again the GCL estimators of B possessed a finite first1 2
moment and no finite second moment. These results showed the
inadequacy of the mean square error as a loss function.

Case II assumed y  = 0, y = 0 and B = 0 .  B was11 12 12 12
assumed to be zero but not known by the econometrician when 
applying the GCL estimators to the model, K** - G^ - 1 = 2 in
this case. The frequency distribution of GCL for B^^ was

h ( V  ) = ----- ?--- 2.1.13
* ' ir(l+v*)* .

1

Finite first and second moments existed for Case II.
The above results hold if the structural normally dis­

tributed disturbance terms were serially correlated assuming 
the exogenous variables were fixed and not lagged endogenous 
variables. In this instance, the unrestricted maximum likeli­
hood estimates of the reduced form coefficients were normally
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distributed but their variance was dependent upon the correlo- 
grams of the reduced form disturbance terms. Therefore, GCL 
estimates could be approximated by the normal distribution or 
by some other distribution function affected by the correlo- 
gram and the sample serial covariance of the exogenous vari­
ables.

Basmann*s (1963) second article showed the generality 
in the transformation involved in solving for the exact distri­
bution of GCL estimators. The model used was a general three 
equation model denoted as follows:

B' Y' + r'X" + e = 0 2.1.14t* t « t.

where B" was 3x3 matrix, (b| 0, B^^ = -1, T' was a 3xK matrix,
t = 1,..., n, and all the assumptions of his previous article 
held true (Basmann, 1961).

The equation of concern v/as:

-Yti ^ii^tl ^i2^t2 ^iK *tK ®tl ~
2.1.15

The identifying hypothesis was = y ^̂  = y^^ = 0, therefore 
K** - G^ + 1 = 1 in this case. The GCL estimators* density 
functions of B and B , denoted by h (v ) and h (v ) respect-

1 2  1 3  2 2 3 3

ively, were derived under the assumption that B^^ = B^^ = 0.
The marginal frequency functions of v and v were2 3

h (v ) = ----=------, -oo<v <00 2,1.16
: ' 2(l+v!) :
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1 iFjCn+l; n + — _ }and h (v ) = -------- —  E -------------— 2----- 2—

* ® 2(l+v^)^/^ n=0 n!
2TT'3 3 n

2(l+v*)
2.1.17

The first moments of the GCL estimators existed but the second 
moments did not.

From these two studies, Robert Basmann conjectured that 
the existence of finite moments holds only to the order of K**
- + 1. If K** - G^ + 1 was equal to one, under Basmann*s
conjecture the GCL estimators would not possess moments higher 
than one. The second contribution of these studies was the 
solving of complex functions to find the exact frequency dis­
tribution of the estimates from the GCL estimators. But until 
the other estimators* distributions are also solved, the results 
can not be applied to the determination of the "best" estimator 
in finite samples. The third conclusion was that the finite 
sample frequency distribution of the estimates of the GCL esti­
mators had, under similar assumptions, a general form in two 
and three equation models.

A. L. Nagar was another pioneer in research concerned 
with theoretical small sample properties of simultaneous 
equation estimators. In his first article, Nagar (1959) stud­
ied the approximate bias and moment matrix of the general k- 
class estimators.* The equation estimated was overidentified

*The approximate bias was due to the expansion of
equation 2.2.4 where terms of higher order than T-1 were ignored.
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and was assumed to exist in an M-equation model.

y = Y Y + X^B + u 2.2.1

where y was a column vector of T observations on the jointly 
dependent variable to be explained, Y was a Txm matrix of the 
explanatory jointly dependent variables, X^ was a Txl matrix 
of the exogenous variables, and u was the disturbance term 
vector.

The total number of exogenous variables in the system 
was A. The exogenous variables were nonstochastic. Assumpt­
ions beyond the identifying assumptions were that the value 
k of the k-class estimators was nonstochastic, 1-k was of the 
order T*"̂ , and the disturbance terms were independent random 
drawings from a normal M-dimensional distribution with zero 
mean.

The first result was the bias of the k-class estimators 
in equation 2.2.1.

E(e^) = {- X + I* - 1} Qq 2.2.2

where k = 1 + — 2.2.3T

e^ was the sampling error of the k-class estimators,

= O k  - 0
and L was the number of exogenous variables in the model in 
excess of explanatory variables in equation 2.2.1.
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Y Y Y'X

X Y X"X 1 1 1

-1
2.2.5

2.2.6

where Y was the solution of the reduced form jointly dependent 
variables given that the reduced form error terms were distri­
buted normally.

q =

cov

cov
cov

cov (x ,u) 
I

- a* u 1:1 2.2.7

where it was a column vector of m components that transformed 
the structural equation disturbance terms into the reduced form 
equation disturbance terms V.

V s= u ir' + W. 2.2.8
W was normally distributed and independent of the error terms 
in equation 2.2.1.

The bias of two stage least squares reduced to (L-l)Qq 
because k=l implied X=0. The bias vanished to the order T“^ 
when X=L-1 in equation 2.2.3.

The moment matrix to the order T"^ of the estimates
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rCi around the parameter vector (̂ ) was given by

E(e.e') = a^Qd + A*) 2.2.9k k u

where A* was a matrix of order T“ .̂

A* = {(2X - 2L + 3) tr (C Q) + tr (C Q)} I +1 2

{( X - L + 2)* + 2(X +1)} C^Q +

(2X - L + 2) C O  2 2.2.10

C* 0
= { * } = — q q"" = — IT it" 2.2.111 0 0 a" o"u u

c* 0
c = { ^ } = -=~ E(W W') 2.2.122 0 0 T

— — C* 0
and C = C + C = - i - E  (V'V) = { }. 2.2.13

» * T 0 0

For the choice of k, the criteria was to minimize the 
value of the determinant of 2.2.9. This was the same as mini­
mizing 2.2.14.

[E(e^ep] = [q] [l + tr (A*)]. 2.2.14

The X value which minimized 2.2.1 was

X = A - 2 (m +&) - 3 - 2.2.15
tr(CjQ)
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This minimization determined the optimum value of k which was
usually less than one.^

In following up this conclusion. Dr. Nagar empirically
studied Klein's model I. He estimated parameters letting k
be optimal, k=l, k=0, k=l+îÜ, and also solved for limited

T
information and full information maximum likelihood estimates. 
For the k-class estimators, the bias and standard error were 
calculated according to 2.2.2 and 2.2.9, respectively. The 
results concurred with the theoretical results. The optimal 
value of k was below one for all three equations. The unbiased 
estimates had larger standard errors than the estimates cor­
responding to the optimal k.

Dr. Nagar's second article (1962), dealt with double 
k-class estimators. The model and assumptions were the same 
as in the previous article. The double k-class estimators 
were

k = 1 + and k = 1 + —  2.2.16I m 2 m

where x and x were non-stochastic real numbers and indepen- 1 2
dent of the size of the samples. The results were as follows. 
The bias of the sampling error was

E(e) = (-x^ + L-1) Qq + (Xj - X^) QC(^). 2.2.17

®The value of X should usually be less than 0 under the 
conditions of 2.2.14 and 2.2.15. Therefore the above results 
followed from equation 2.2.3. X could be positive if A was 
large. Since we are concerned with small finite samples, the 
T observations will limit A and generally cause X to be negative
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The moment matrix, to the order T“^, of the double k-class 
estimators was

E(ee') - 0  ̂ {(1+B ) Q + B Q C Q  + B Q C Q  
U  0 1 1 2  2

+ B^ (Qqr^ + rq'Q) + B^rr'} 2.2.18

where B = -2(% -% - {-2% + 2L - 30 1 2  g2 2
U

, ^  q} tr C Q + tr C Q1 2 ŷ2 1 2
U

+ 2(x. -X ) 2.2.19

B = 2(x + 1) + { (X, - X )  X + I*1 1  1 2 g2 2) jBjq _ 
2 
U

2}^2.2.20

B =

B =

B -

2 X - L + 2 
1

X,) - X 2+ L - 2}
u

(Xl-X2 )^
u

2.2.21

2.2.22

2.2.23
u

and r = QC (%).
2 D 2.2.24

Finally, the bias to the order T“^ of ^ 2  of the double k-classu
estimators was

E(u"u) - 0 *= - 0 *u u 2{ -Xg + L - 1 + (Xj - Xg)

ill̂  } tr C 0 - tr CO + + 2(x - xÏ m 1 2 j,2u
2,2.25
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All the results of the double k-class estimators were identical
with the k-class estimators when k = k = k.1 2

In summary, Nagar in both articles succeeded in deriv­
ing approximate distributions for k and double k-class esti­
mators in models which were less restrictive than the ones 
studied by Basmann. Because of the generality of the models 
and the use of a family of estimators, this article has greatly 
broadened the theoretical knowledge of small sample estimators.

Dr. Gerhard Kabe presented two articles (1963; 1964) 
similar to each of Robert Basmann's articles to illustrate an 
alternative derivation of Basmann*s results when using GCL esti­
mators. Kabe's alternative approach used the properties of the 
non-central Wishart distribution. The second article will be 
discussed here because it was a generalization of the first 
article. In this article, Kabe (1964) specified a three equa­
tion model having three endogenous variables and three exogenous 
variables. Following Basmann's approach, the assumptions and 
identifying restrictions were given by 2.1.14-2.1.15. Using 
the non-centra] Wishart distribution, Kabe derived the same 
results as Basmann. Both authors simplified the problem by 
using identifying restrictions which reduced the rank of the 
reduced form coefficients to one. Kabe generalized this treat­
ment by changing the identifying restriction so that the rank 
of the reduced form coefficient would be two. The results were 
given in his paper (p. 893, eq. 4.14, Kabe, 1964).

Kabe's articles showed that the sampling distributions 
of GCL estimates in two and three equation models followed a
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similar pattern. This concurred with Basmann's results. In 
extending Basmann's work, Kabe decreased the restrictions on 
the reduced form parameters and still derived the exact GCL 
estimators distribution. The feasibility of using the non- 
central Wishart distribution in deriving the distribution of 
the GCL estimators in a model with more than three equations 
seemed doubtful due to the mathematical complexities. There­
fore Kabe, like Basmann, could only conjecture the similarity 
of the distribution of GCL estimators in a model as the number 
of equations increases.

A. R. Bergstrom (1962), solved the exact sampling dis­
tributions of ordinary least squares and maximum likelihood 
estimators of the marginal propensity to consume in a simple 
Keynesian Model.

= a + BY^ + t=l,...,T

= C + 2.4.1

Where «v N(0,a*> 2.4.2

I^, ... ,1^ are non-stochastic 2.4.3
. T

and -A- Z (I. - I)= = 1. 2.4.4
T t=l

The frequency distribution of the least squares esti­
mator for finite samples of four and larger when T was even 
was:
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T-4

f (b) = (-if^ k i Æ ü d B l  «q I (̂ )  : (i-3-r)!
oZ:(l-b)= r=0 r Î fT-4-2r) •

,2jT-4-2 j4j5  ̂  2,r (_i)T-4-r
Z aZ

{e"9 - ^ (-^)^> for 1 b §±i
s=0 s: 2 2.4.5

where Z = Z^,(2b-B-1). 2.4.6(l~b)

_ _ T(l+B-2b)(1-B) 2.4.7
9 - 2 (1-b)-s---

T-1 _T_,“2“ — T-2 20 -1and k = {2^ A  r( ) e } . 2.4.8
2

The frequency distribution of the marginal propensity to con­
sume for the maximum likelihood estimator was

-T(b-B):
8(b) = b^l 2.4.9

✓2ir a (1-b)* t^4 and
even.

From the above frequency distribution, a basic Keynesian model 
with no specification errors or identifying restrictions would 
be estimated by the maximum likelihood method for samples of 
size ten or more. For any sample size, it seemed doubtful 
that the ordinary least squares estimator could ever be deemed 
"better" than the maximum likelihood estimator.
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In a more recent article, David H. Richardson (1968) 

studied the identical problem that Robert Basmann (1961; 1963) 
and Gerhard Kabe (1963; 1964) researched in the early sixties. 
Richardson adopted Kabe's approach, deriving the exact distri­
bution of the GCL estimators from a system of equations based 
on the non-central Wishart distribution. The number of exo­
genous variables excluded from the equation to be estimated 
was two or more. The number of endogenous variables in the 
equation being estimated was two. The equation estimated was 
as follows:

y = y B* + Z Y* + Z y* + e 2.5.1
1 2 1  1 1  2 2 1

where the assumptions were the same as those made in Basmann*s 
two previous articles (1961; 1963).

Making substitutions in the non-central Wishart distri­
bution, the author showed that the number of excluded exogenous 
variables, (n), appeared as a parameter in the density function 
of the GCL estimator of B*.^ The marginal density function of 
the transformed data for B*, denoted by h(v ), was:

Let K** represent the number of excluded exogenous 
variables in 2.5.1. n was also the sample size. To derive 
the following results, Richardson assumed n = K**, This was 
easily accomplished once the model was formulated. The loss 
due to the assumption was the loss of degrees of freedom. 
This could not happen when the model was small, but if the 
model was large, n = K** seemed quite feasible.



h(v,l =

21
u
2

00
2   (5zl ; j + >ü_ ; 22) 2.5.2

(JE) , jî  ̂ 2 2
2 ]

where (1+BiVi)  ̂ 2.5.3
1 + V*

2z = ----- ‘ 2.5.4

u*= ft' IT 2.5.522 o 2222

B(a,b) was a Beta function,

and S = Z'Z - Z'Z (Z'Z )“^ Z"Z . 2.5.62 2  2 1 1 1  1 2

Once the density function of the GCL estimators was 
derived, Richardson showed that the relative bias of v^ was

1

Note as », g(-^)~ -S— ; 2,5.82 2 2

therefore, 0 <g(-H_) - -S- 2.5.9

.2
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Richardson concluded that the sign of the bias was 

opposite to the sign of and that the size of the relative 
bias was between zero and minus one. Asymptotic expansion of 
2.5.7 yielded E(v^)=B^. The biases were computed in the arti­
cle for given u and n (p. 1222, Table 1, Richardson, 1968). 
Richardson, in expressing the second moment of the GCL esti­
mators, showed that the existence of higher moments concurred 
with Basmann*s (1959) hypothesis that moments exist to the 
order K** - G* + 1. The final observation was that the esti­
mates of the GCL estimators converged to the parameter B^ when 
the sample size was fixed. This convergence was due to an in­
definite increase of one of the parameters of the distribution
- V  ,  B or u*.1 1

Richardson * s study also indicated that the number of 
excluded exogenous variables appeared as a parameter in the 
density function of the GCL estimators.

Takamitsu Sawa (1969) derived results similar to Rich­
ardson's using equation 2.5.1. The difference in the two stud­
ies were:

1. The distribution of the two stage least squares 
estimator was derived as a corollary to the distribution of 
the ordinary least squares estimator. Thereby it was shown by 
Sawa that the distributions of the two estimators were similar 
In functional form.

2. In Richardson's paper, the variance-covariance 
matrix of the endogenous variables was assumed to be the iden­
tity matrix. Sawa assumed:
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ir + E TT, .Z 
•" j=rl 1] ]t

(’' 2 0
» 4

Tf + E ir Z .- 
1 0 1] ]t

% .  +j!/2i=it

2.6.1
which emphasized the dependency in the difference between the 
values of the structural parameters and of the regression co­
efficients of the reduced form equations. The relationship
was = ^2 j ' i - l, ...,k.

3. A numerical evaluation for the comparison of the 
two estimators was shown by Sawa. The equation studied was

?2t = “ B^lt + “t 2.6.2

The assumptions in the study were identical to the assumptions 
made by Richardson in his study (1968). The density function 
of the ordinary least squares estimator of B, B ^ p, was

f (B) = C E 1 T*(B-p)* a a r“lV 1 A
a=0 a ! r [ ^  + 1 ^ P. j=0

r ( ^  + a - j - 1) r (_^ + j)N

a(B-p) +
a* (B-p)

2j
o*(B-p): + K ‘‘

(N/2)+j

2.6.3
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exp 2 l  (1 +
2o'

2.6.4

2.6.5

2.6.6

2.6.7

and 2.6.8

Alternative forms were given for this density function in 
Sawa's article (pp. 929-30, eg. 3.18 and 3.24, 1969). When 
B = p, this density function was

f(B) = oe-T*/2u'
/if Ç

00

z
3=0 j:(—  + j) 2

3
2o^ 0*(B-B):+ çi

2+i

2.6.9

The ordinary least squares estimator possesses moments to the 
order N-2 and those of higher order do not exist. The distri­
bution of the two stage least squares estimator can be derived 
directly from the distribution of ordinary least squares esti­
mator by substituting K+1 for N in all distributions mentioned



25
above. Moments existed to the order of K-1 for two stage

7least squares.
By modifying equation 2.6.2 to

Kiy = a  + B y  + Z y. Z. + u t=l,...,N 2.6.10zt It j=x ] ^
Sawa studied a general equation which was identical to Richard­
son's equation 2.5.1. The density function for ordinary least 
squares and two stage least squares could have been derived 
from 2.6.3 by replacing N with = K-K^ and letting 

k
T* = E ..

j=kj+l
The two estimators' mathematical structures were too 

complex to deduce any definite conclusion involving small sam­
ple properties. Therefore, Sawa evaluated the density function 
numerically. The density function contained the following
parameters; B, o , a , N, K and a . The first three1 1 2 2  12
parameters do not play an important role in determining the
behavior of the estimator and therefore were given constant
values of 0.6, 1,0 and 1.0, respectively. Based on past econo-

2metric models, —3—  was fixed at 4.0. K and N were varied byN
two's from two to ten and four to twenty, respectively, 
equaled 0.0, 0.2, 0.4, 0.8, and 0.5. The results were summar­
ized as follows:

^Whenever the name of an estimator is made reference 
to without clarification, the reference refers to the method 
of estimation.
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1. The distributions of both estimators were highly 

sensitive to changes in = p. As (B-p) increased in magni­
tude, the bias of ordinary least squares increased as compared 
to two stage least squares.

2. As the sample size, (N), increased, both estimators' 
dispersions decreased. The estimates of two stage least squares 
were concentrated around the parameter while the estimates of 
ordinary least squares were concentrated around a different 
point, illustrating the well-documented property that two stage 
least squares is a consistent estimator.

3. As K decreased for a given sample size, the bias 
and dispersion of two stage least squares estimates decreased.
If K was less than N, the estimates of ordinary least squares 
and two stage least squares were similar. In conclusion, the 
estimates of the two stage least squares estimator were at 
least as "good" as the estimates of the ordinary least squares 
estimator in all cases studied in this paper.

K. Takeuchi (1970) also studied the exact sampling mo­
ments of ordinary least squares, two stage least squares and 
instrumental variables estimators in the same model as Sawa
(1969) and similar to Richardson's model (1968) under the same 
assumptions. The lower moments of ordinary least squares for 
equation 2.6.2 were

B(B-B) = (p-B) {i-n g„ (-5-)} 2.7.1
" 2
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and E(B-B)^ = (p-B) ̂ {1+ (-ZL - Ên) g^(— ) + (—)g _ (H)
2 2 2 2

+ i ?  ^.-2 T 2.7.2

where the reduced form disturbance terms variance-covariance 
matrix was

*■ 12

12 2
2.7.3

12 2.7.4

X* = a* - a* /o^ 2 12 1 2.7.5

k=0 (n+2k)k!
2.7.6

n
E € * /  

i=l J
2.7.7

and was a linear combination of the exogenous variables.
The sampling moments of the instrumental variables 

n 1 j = K
V  V  ' 2.7.8

were the same as equations 2.7.1 and 2.7.2 where n is replaced
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P 2 • nby JB and E ^. for E Ç?
j=i=i : i=i

r eCZ2^)̂  j=l »...#£ 2,7.9J B

n
Zj. = E X y j=l,...,p. 2.7.10i=l 3^ 2i

By making certain adjustments, it was shown that the instrumen­
tal variables estimates were identical to the ordinary least 
squares estimates for the regression coefficient of ygĵ  on y^^ 
for equation 2.6.2. When the instrumental variables were the 
same as the exogenous variables within the model, the distri­
bution of the estimates of the instrumental variables estimator 
was identical to the distribution of the two stage least squares 
estimates. When the number of instrumental variables was 
greater than the number of exogenous variables but less than n 
and the instrumental variables were orthogonal to the exogenous 
variables, the estimator was B* with EC* = E€* = By hold­
ing $* constant, varying p and observing equation 2.7.1 and 
2.7.7, the bias of two stage least squares was established to 
be smaller than the bias of the ordinary least squares estimator, 
when the number of exogenous variables within the system was 
K < jp < n.

Takeuchi derived an improved estimator due to his know­
ledge of the theoretical small sample bias of ordinary least 
squares and two stage least squares estimators.
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B = B + (n-2) 2.7.11

^ ^ ô* B* - aj2B* = B* + (p-2) ---%-----   2.7.12

where B and B* are ordinary least squares and two stage least
8squares estimators, respectively.

When exogenous variables appeared in equation 2.6.2 
and the instrumental variables (r) were orthogonal to them­
selves and the exogenous variables, the moments of the general­
ized instrumental variable were given by 2.7.1 and 2.7.2, where
r replaced n and replaced EÇ?.

3 ^

2.7.13

pProfessor Takeuchi noted that if K is large, two stage 
least squares estimates may have a large bias and mean square 
error due to the possibility of correlation between the K exo­
genous variables. In this situation, Takeuchi suggested taking 
part of the exogenous variables as instrumental variables, and 
obtaining a better estimator than the two stage least square 
estimator.

'• ■ Ji ' I ' W  I ' V n " / ,  .
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Following a similar procedure as outlined in 2.7.8 - 

2.7.12 a generalized two stage least squares estimator was 
derived. The results of this paper were similar to those of 
Richardson's paper, except Richardson used a different approach.

Still another approach was taken by Kotesv/ara Rao 
Kadiyala (1970), Walter Oi (1969), and Asatoshi Maeshiro (1966) 
in determining theoretical criteria for selecting the "best" 
estimator in simultaneous equations with finite samples. They 
developed similar mathematical relationships among k-class 
estimators. These relationships were helpful in choosing an 
appropriate estimator under given assumptions and in evaluat­
ing Monte Carlo studies.

Asatoshi Maeshiro (1966), studied relationships for 
the following equation

'ot ' " "t

f f II * 2*9*1

Given n observations, the calculation of k*>l, b* , c?, ,
^ 1and h^ (i=l,...,X) were made such that bj and Cĵ  were related 

to the value of k by the rectangular hyperbola with the follow­
ing form:

(b - b*) (k - k*) = h. 2.9.21 1  D 1

and (c^ - c*) (k - k*) = h^ 2.9.3
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where the coefficients of 2.9.2 and 2.9.3 were defined by 
Maeshiro (p. 371, eq. 12-16, 1966). The results were as 
follows;

1. Given 2.9.2 and 2.9.3, a set of estimates for any 
k could have been directly derived,

2. Except for k*, each estimated coefficient was a 
monotonie increasing or decreasing function of k depending on 
whether h was negative or positive, respectively.

3. If k was near k*, the estimated coefficients were 
highly unstable.

4. Estimates for two stage least squares estimators 
(k=l) were between ordinary least square (k=0) and limited in­
formation maximum likelihood estimates (k>l).

5. Estimates from limited information maximum likeli­
hood estimators were less stable than estimates from ordinary 
least squares and two stage least squares estimators.

6. It was useful to calculate k* before choosing an 
estimator because whenever k was close to one, two stage least 
squares estimates were unstable.

Walter Oi (1969) generalized equation 2.9,1 by intro­
ducing n dependent endogenous variables in the equation observed.

y = X * a + y  B + u  2.10.1
1 2

01 showed that the two stage least squares estimates, denoted 
by subscripts of 1, were related to all k-class estimates by
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the following identities:

a, = a - X q (G - B ) 2.10.2K 1 2 k 1

B = B + q (G - B ) 2.10.3
1 jc 1

and ®k ” 2.10.4

where q. = (1-k) {e' e - k V' V } V' V 2.10.5k  2 2 2 2 2 2

ê ê = Y' Y - Y' X*X 2.10.72 2 2 2 2 2

V = Y - X(X' X)“^ X'Y 2.10.82 2 2

and G = (V' V' (ŷ  - X(X'X)~^ X'y ). 2.10.9

The discrepancies between k-class estimators and two 
stage least squares estimator were determined by three para­
meters , G, X^, and q^. Oi studied three conditions: (1) q^=0,
(2) G-B =0 and (3) X =0. If (1) and (2) hold, all estimates 1 2
of the k-class estimators gave identical results. However, if
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only (3) holds, all k-class estimators gave identical esti­
mates for the a parameters but not for the B parameters.

With no C O -linearity between Y and X*, a.=(X*'X*) ^2 K
X*^y . When y and X* were correlated, (X*"'X*)”^ X*''y -a +X B^, •*1 ■*2 1 k 2
When the difference between G and B^ decreased, the dispersion 
between estimates from different k-class estimators diminished. 
The smaller dispersion implied that the linear association 
between systematic jointly dependent variables was approaching 
the linear association between the measured reduced form dis-

^ /V
turbance terms. Finally, qĵ  was dependent on k, V  and
/V A.e" e which implied that q was a generalized variance ratio:2 2 0

q = (e" e V" V 2.10.100 2 2 2 2

If q.=0, then k=l. Furthermore, if q was small and between
K  0

zero and one, the different k-class estimators yielded para­
meter estimates within a small range. For k > 1, qĵ  was a
negative definite matrix. Therefore {l-kq } was a positive

0
definite matrix.

Given the above information, ordinary least squares 
estimates and two stage least squares estimates bracketed the 
estimates from the k-class estimators for k between zero and 
one. When k was greater than one, ordinary least squares and 
k-class estimates bracketed the two stage least squares esti­
mates .

The last study of this type was by Koteswara Kadiyala
(1970). Kadiyala used an equation with assumptions similar to
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equation 2.10.1. He showed that the residual sum of squares 
was a monotonie increasing function of k for 0 - k < k*. Kadi­
yala *s results were similar to Maeshiro's (1966) and Oi's 
(1969).

In conclusionf the theoretical contributions of Basmann 
(1961; 1963) and Nagar (1959; 1962) constituted important first 
steps in theorizing on the small sample properties of different 
estimators. Basmann*s major contributions were: (1) solving
for the exact finite sample frequency function of the GCL esti­
mators ; (2) questioning the existence of the lower moments of 
the GCL estimators; and (3) showing that the density function 
of the GCL estimators had a general form in two and three 
equation models. Nagar's major contributions were: (1) solv­
ing for the approximate distribution of the k-class and double 
k-class estimators; (2) showing that the optimal value of k of 
the k-class estimators was below one; and (3) showing the re­
lationship among a family of estimators.

After Basmann * s and Nagar*s contributions, econometric­
ians tried to clarify and continue the search of these two men. 
Gerhard Kabe (1963; 1964) expanded on Basmann*s contributions 
by using the non-central Wishart distribution. His results 
concurred with Basmann*s results. David Richardson (1968) 
carried on the work of Basmann and Kabe using the non-central 
Wishart distribution. Richardson's major contributions were: 
(1) showing that the sign of the bias of the GCL estimates was 
opposite the sign of the parameters and that the size of the
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relative bias was between zero and minus one, and (2) showing 
that the estimates of the GCL estimators could converge to the 
parameters when the sample size was held constant.

Sawa (1969) and Takeuchi (1970) made contributions 
similar to Basmann, Kabe, and Richardson, Sawa showed that 
the distribution of the two stage least squares estimator could 
be derived as a corollary to the distribution of the ordinary 
least squares estimator. Sawa also showed that ordinary and 
two stage least squares estimates were sensitive to changes in 
the parameters of their respective density functions. Takeuchi*s 
results were similar to Sawa's results. Takeuchi's major con­
tribution was to devise improved estimators from his theoretical 
findings (supra, pp. 28-29) .

A. R. Bergstrom (1962) contribution was in solving for 
the exact sampling distributions of ordinary least squares and 
maximum likelihood estimators in a basic Keynesian model.
Maeshiro (1966), Oi (1969), and Kadiyala (1970) contributed 
to the theoretical knowledge of the k-class estimators by de­
veloping mathematical relationships between the different esti­
mators belonging to the k-class estimators (supra, pp. 30-34).

The authors of the preceding theoretical works con­
jectured about choosing the "best" estimator when the sample 
size was finite for simultaneous equations. These conjectures 
were usually limited to single equation estimators, two or 
three equation models and models with no specification errors 
under restricted assumptions. Due to these limitations, it
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seems important to review some of the major Monte Carlo studies 
in Chapter Three.



CHAPTER III

MAJOR MONTE CARLO CONTRIBUTIONS TO THE STUDY OF ESTIMATES 
FROM DIFFERENT ESTIMATORS IN SIMULTANEOUS EQUATIONS 

OF FINITE SAMPLE SIZES

Monte Carlo methods approach the study of the distri­
bution of the estimates of different estimators by empirically 
generating a sufficient number of artificial finite samples 
to make conjectures about the distributions of these estimates. 
The theoretical methods discussed in Chapter II are more power­
ful but generally do not result in the determination of the 
distribution of the estimates of different estimators due to 
extremely complex mathematical expressions. Therefore, econo­
metricians have turned to Monte Carlo methods for supplementary 
knowledge about the "best" estimator for simultaneous equations 
with finite samples. These studies are always suspect due to 
lack of generality. But as more Monte Carlo studies are con­
ducted, one can hope that a pattern will be generated to give 
general results.

Guy Orcutt and Donald Cochrane were pioneers in Monte 
Carlo studies (1949A; 1949B). In their first study (1949A), 
they examined autocorrelation of the error terms. The general 
equation studied was

37
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X = a  + b ^ X + b  ^ X + b ^  t  + u 3.1.1I 1 2 . 3 t 2  1 3.2t 3 i t . 23

where X^, X and u were independently constructed series pos­
sessing the same autoregressive scheme, t represented a linear 
time trend, a=0, b = 2, b = 1 and b = 0. There-

1 2 . 3t 1 2 . 2t I t . 23
fore the actual generation of X could be denoted by equation 
3.1.2.

X = 2X + X + u. 3.1.2
1 2  3

Five series were used to generate the data for X^ and
X .3

A. X = X_ + 0.3(X^ - X ) + e 3.1.3t+i t t t-i t+i

B. X^. = X. + e^. 3.1.4t+1 t t+1

C. X 0.3X + e_ 3.1.5t+i t t+i

D. X = e^. 3.1.6t+1 t+1

where the e's were random disturbances with zero mean and the 
number of observations was usually twenty. Series D was ran­
dom; C and B were first order autoregressive schemes; A was a 
second order autoregressive scheme; and E was the first dif­
ference of random series.
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The results of this experiment when applying least 

squares showed that there was strong evidence of positive auto­
correlation in the error terms in the formation of economic 
models. This autocorrelation in the error terms caused an 
underestimation of the variance of the disturbance terms. In 
addition, the variances of the regression coefficients were 
overestimated. And finally, inefficient predictions would be 
obtained if the error terms were autocorrelated.

A suggested treatment was to add an independent vari­
able to bias the residuals toward randomness. A second treat­
ment suggested was to bias the series of residuals toward ran­
domness by an autoregressive transformation. Suggested tech­
niques to bias the series of residuals toward randomness were 
presented v/ithin this study (p. 53-55, Orcutt and Cochrane, 
1949A).

In their second study, Orcutt and Cochrane (1949B) 
added lagged variables to autocorrelated residual terms in a 
simultaneous equation model of finite sample size. The data 
was generated by the following recursive system of equations:

Y. = bX, . + v^ 3.1.8t t-1 2t

where v^^ and v^^ were series of random errors.

Assuming E(Vg^) = 0, model 3.1.8 became
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1. X = aY^ + Vt t It

2. Y. = bX^t t-1

3. X. = pX_ + V  . 3,1.9t t-1 it

Assuming E(v^^^) = 0, the system became

4. X , = aYt t

5. Y_ = bX^ + V ^t t-1 2t

6. X. = pX. + av . 3.1.10t t-1 2t

Equations 1 and 4 were indicative of structural equations; 
equations 2 and 5 were indicative of reduced form equations; 
and equations 3 and 6 were the reduced form equations of 1 and 
4, respectively. Model 3.1.9 had one specification error; 
lagged exogenous variables. Model 3.1.10 had two specificat­
ion errors: lagged exogenous variables and autocorrelation
of the disturbance terms which caused correlation between the 
independent variables and the error terms.

This research resulted in skepticism in using the 
method of least squares for estimating structural parameters 
when autocorrelation was present. When autocorrelation was 
present and the correct intercorrelation of the error terms 
was known, the skepticism associated with the use of the method 
of least squares was reduced due to an appropriate autoregres­
sive transformation.
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One can conclude about Orcutt and Cochrane's study 

that autocorrelation alone would not have led one to expect 
biased estimates. Lagged variables would result in negative 
biases for least squares estimates. In this study, when com­
bining these two specification errors, the least squares 
estimates showed a substantial positive bias. "This result 
highlights once again a striking weakness of the current 
state of econometrics, in that the joint result of several 
complications cannot be inferred as the sum of their separ­
ate result." (p. 216, Johnston, 1963)

George W. Ladd (1956) studied a complete, overidenti­
fied, non-dynamic model.

1. Y (t) = b Y (t) + C Z (t) + C Z (t) + C + u (t) 1 1^2 111 12 2 1 0 1

2. Y (t) = b Y (t) + C Z (t) + C Z (t) + C + u (t).
1 2 2  2 2 3  3 2 4  4 2 0  2

3.2.1

The population parameters of the exogenous variables and the 
disturbance terms were specified a priori and assumed to be 
normally distributed. Given the structural parameters, the 
means and variance-covariance of the endogenous variables can 
be computed from the reduced form equations. From the above 
information, samples of size thirty were generated for the

9endogenous variables from the reduced form equations. A

%all this sample of size thirty data set one.
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second data set was generated from the first data set. This 
second data set contained errors in observations for all exo­
genous and endogenous variables by adding to each observation 
in data set one a normally distributed error term with mean 
zero, given variance, which was serially independent and in­
dependent of each other. Thirty samples of this type were 
constructed and called data set two. In addition, two infin­
ite samples were constructed corresponding to data set one 
and data set two, respectively.

The question asked by Ladd was "whether the presence 
of errors of observation biases L.I.S.E. (Limited Information 
Single Equation) estimates, or simply affects their random 
errors of sampling" (p. 488, 1956). Comparisons were made 
between the computed coefficients from the no errors in obser­
vations data to the means of the computed estimates in the 
errors in observations data. The results from the finite 
sampling experiments suggested that errors in observation 
affect the limited information single equation estimates' 
random errors of sampling. In two cases ( b and c ), the

1 2  2 3

absolute difference of the means of the estimates of data set 
two from the structural parameters was larger than the differ­
ence between the coefficients of data set one and the struct­
ural parameters, while in four cases the opposite was true.
A closer analysis showed that in the four cases cited above
(c , c , c and b ), forty-five of the one hundred and 11 12 2 % 22
twenty estimates from data set two were closer to the para-
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meters than the estimates from data set one. Only in thir­
teen of the sixty estimates of the initial two cases mentioned 
above were the limited information single equation estimates 
closer to the values of the parameters for data set two. In 
every case, the difference between estimates from data set 
one and the mean estimates from data set two were smaller 
than one standard error.

When the method of least squares was applied to equa­
tion one for both data sets, the mean estimates of data set 
two were consistently closer to the parameters than the least 
squares estimates from data set one. This concealed the fact 
that only forty of the ninety estimates from data set two for 
equation one were closer to the parameters as compared to the 
estimated coefficients from data set one. For equation two, 
only twenty-eight out of ninety estimates using data set two 
were closer to the parameter for ordinary least squares esti­
mates. Other important observations in this Monte Carlo ex­
periment were:

1. The limited information single equation estimates 
approached a normal distribution quite rapidly.

2. The estimated variances of the coefficients when 
using the limited information single equation estimator were 
overestimated and therefore understated the reliability of 
the estimated coefficients in this experiment when using this 
estimator.

3. The presence of errors in variables did not increase
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the bias of least squares or limited information single 
equation estimates significantly, but did increase the stan­
dard error of the estimated coefficients.

4, The ordinary least squares estimator can safely 
be applied to structural equations when the correlations be­
tween the exogenous variables and the disturbance terms are 
small.

5. When the disturbance terms and the exogenous 
variables were highly correlated, the least squares estimates 
of the standard errors overestimated the true value of the 
standard errors.

Harvey M. Wagner (1958), studied the following three- 
equation model, with equation one being the only overidenti­
fied equation within the model.

1. Y - B Y  -Y = u1 1 2  1 1

2. -B Y + y + Y Z -Y = u2 2 3 2 1 3 2

3. Y - y  + Y  + Z  =0. 3.3.1
1 2  3 2

The disturbance terms in the above model were independently 
and identically normally distributed with zero mean and fin­
ite variance. The exogenous variable Z^ was the lagged endo­
genous variable Y such that Z (t) = Y (t-1). Z was a trend2 1 2  2
variable. Given a priori information about the specification 
of the parameters, a hundred samples of size twenty were
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generated for model I and model II. The difference between 
models was that the parameters of the variance-covariance 
matrix of model II were greater than those of model I. In 
addition, the covariance terms of model II were negative.
The parameters of the variance-covariance matrix for both 
models were relatively small.

Wagner estimated only the first equation, which can 
be interpreted as an overidentified consumption function of 
the following form:

C = 0.25 + 0.5Y(t) + u^(t) 3.3.2

The estimators used for and were ordinary least squares, 
limited information single equation, and instrumental vari­
ables. The results showed that ordinary least squares and 
limited information single equation estimates have approxi­
mately the same mean square error for both model I and model
1 1 . 1 0  One exception to the above results occurred in model 
I where the mean square error of the ordinary least squares 
estimate for was less than the mean square error of the 
limited information single equation estimate. This study 
showed, as expected, that the ordinary least squares estimates

l®Note that the "good" performance of the mean square 
error of ordinary least squares may be due to the small values 
of the parameters of the variance-covariance matrix of model 
I and model II. Johnston indicated that the smaller the 
values of the variance-covariance matrix of the disturbance 
terms, the smaller the difference in estimates by different 
estimators (p. 287, 1963).
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have a larger bias but a smaller variance than the limited 
information single equation estimates.

The performance of the estimates of the instrumental 
variables could not be generalized. In model II, the mean 
square errors of each estimator were approximately equal. In 
model I, the mean square errors of the estimates of the in­
strumental variables were smaller when using the variable 2^ 
but larger when using the variable 2 . For in model 1, 
the mean square error of the instrumental variables estimates 
was larger than the ordinary least squares estimates but 
smaller than the limited information single equation estimates.

In summary, this experiment showed that the estimates 
from all three estimators vare relatively equal when judged 
by the mean square error loss function. The time trend var­
iable was recommended to aciiieve the above results for the 
estimates of the instrumental variables.

William Neiswanger and Thomas Yancey (1959) studied a 
model which contained autonomous g r o w t h . A u t o n o m o u s  growth 
of this type tends to cause correlation of the error terms 
with the exogenous variables. This type of autonomous growth 
is a specification error frequently observed in econometric 
models. A second experiment was conducted without including 
autonomous growth. This second study involved a model which

^^Autonomous growth is a secular change in the endo­
genous variables which is unexplr,ined by the parameters or 
exogenous variables of the structural equations.
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contained stochastic exogenous variables.

Model I was identical to Ladd's (1956) model 3.2.1.
A second model was constructed identical to 3.2.1. except an 
exogenous variable Z^(t) was added to each equation. This 
new variable represented a time trend. Data set I was gen­
erated from a priori information for a hundred and twenty 
samples of size twenty-five each. Data set II was generated 
by adding a growth trend to each error term and exogenous 
variable Uĵ (t) + 6j^(t-13), Z^(t) + ô^Ct-ll) . The magnitude 
of each growth trend was as follows; Z^(t) = 4.00, Z^(t) = 
10.00, Z (t) = 4.00, Z (t) = 0.50, U (t) = 4.40 and Ü (t) =3 4 1 2
3.40. The trends in the error terms were characteristic of 
omitted variables in econometric models. This specification 
error increased the correlation between all variables within 
the model. Data set I contained multicollinearity. Data set 
II contained multicollinearity plus autonomous growth trends 
which caused correlation between the exog-nous variables and 
the disturbance terms. These specification errors violated 
the assumptions underlying the application of the ordinary 
least squares and limited information single equation esti­
mators .

This Monte Carlo study showed that when applying data 
set I to model I, limited information single equation esti­
mates performed better than ordinary least squares estimates. 
In this case, the ordinary least squares est.mates exhibited 
a larger bias but a smaller variance around the sample mean
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of the least squares estimates. The mean square error of the 
limited information single equation estimates was smaller than 
the ordinary least squares mean square error, but the differ­
ence was marginal. An interesting test conducted by the 
authors showed that the bias of the ordinary least squares 
estimates involved a high risk of incorrect inferences based 
on the estimated coefficients with respect to the parameters. 
When data set II was applied to model I, both estimators per­
formed poorly. For this experiment, there was a high risk 
that the estimates of both estimators would yield incorrect 
inferences about the parameters, especially for the coeffi­
cients of the endogenous variables.

In a second experiment both data sets were applied to 
Model II. When data set II was applied to Model II, the rank­
ing of the estimates of the estimators was similar to that of 
Model I, data set I. The estimates of both estimators impro­
ved as compared to applying data set II to Model I which did 
not contain a trend variable. Once again limited information 
single equation estimates had a smaller bias and a larger 
variance than ordinary least squares estimates. The mean 
square errors of the limited information single equation esti­
mates were smaller than the ordinary least squares estimates 
of the mean square errors for Model II. When data set I was 
applied to Model II, there were no noticeable effects upon 
the performance of the estimates of either estimator.

The authors then applied trend free data to a model
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in which the exogenous variables were stochastic from sample 
to sample. The results were similar to the results of apply­
ing data set II to Model II.

The conclusions of the Monte Carlo study were:
1. Ordinary least squares estimates of the standard

errors were always smaller on the average than the limited 
information single equation estimates of the standard errors, 
but the limited information single equation estimates had a 
smaller bias.

2. Ordinary least squares estimates performed poorly
when the disturbance terms and the exogenous variables were
correlated.

3. Multicollinearity did not seem to increase on the 
average the standard errors of the estimates of either esti­
mator.

4. Other disparate rates of growth besides autonomous 
growth made little difference in the estimates of the coeffi­
cients and their standard errors on the average.

5. An indication that Z (t) should be omitted was
5

when the estimates of C and C were small relative to their
1 5  2 5

respective standard errors. The authors recommended the use 
of the variable time in economic models in which time series 
are used. The addition of the variable time seemed to improve 
the estimates of each estimator, and on the average the esti­
mates were not made worse.

A. L. Nagar (1960) used Wagner's (1958) model I and 
II, 3.3.1, with the omission of the constant terms. Me
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applied four different k-class estimators to equation I and 
equation II using a hundred samples of size twenty each. The 
estimators were ordinary least squares, two stage least squares, 
Nagar's unbiased k-class and minimum second moment estimators. 
The first equation was similar to 3.3.2.

y (t) - Y Y (t) = u (t). 3.4.11 1 2  1

Equation II was a simple investment function depicted in 
3.4.2.

-Y (t) + Y Y (t) + B Z (t) - Z (t) = u (t). 3.4.21 2 2 2 1 2 2

Y was current consumption; Y was current investment; Y
1 . 2  3

was current income; Z (t) = Y (t-1); and Z was a trend vari-1 2  2
able. Equation I was overidentified, and equation II was 
just identified.

General conclusions were that ordinary least squares 
estimates usually had the largest bias, but the smallest vari­
ance around the sample mean of the least squares estimates.
Two stage least squares estimates usually exhibited the small­
est bias and best ranking among estimators for this experiment 
(except in Model II, equation II). This ranking was made

^^Note that the last two estimators are unbiased when 
there are no lagged endogenous variables (Nagar, 1959). The 
model here has lagged endogenous variables.



51
according to increasing distance from the parameter value. 
Ordinary least squares (except for Model II, equation II) 
exhibited the largest second moment about the parameters.
The last conclusion was that as exogenous variables were 
added to the equations, minimum second moment estimates re­
ceived the best ranking.

A conjecture which may be of interest in this Monte 
Carlo experiment was that if either the size of the para­
meters in the variance-covariance matrix of the disturbance 
terms increased or the covariance parameters were negative 
or both, there was a significant improvement in ordinary least 
squares estimates as compared to two stage least squares esti­
mates.

A classic study was accomplished by Robert Summers
(1965) which entailed the study of alternative estimators 
with respect to forecasting precision, estimating parameters 
of the reduced form equations, and estimating parameters of 
the structural equations. The model under consideration was 
an overidentified two equation model.

1. y + B Y  + Y Z ^ + Y = u .It 12 2t 11 It 10 it

2. Y^. + B Y . + y  Z . + y Z 4. + Y = u1^ 22 2t 23 at 2 4 4^ 20 zt

3.5.1

The disturbance terms were distributed as a bivariate normal
400 200

distribution with zero mean and variance-covariance =
'200 400
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The four estimators used in estimating the structural coeffi­
cients were full information maximum likelihood, limited in­
formation single equation, two stage least squares and ordi­
nary least squares. Five different sets of parameters were 
used with two different data sets. Data set A had very little 
multicollinearity relative to data set B. This experiment 
was conducted for fifty samples of size twenty. An additional 
experiment was conducted for a sample of size forty. In 
addition, for two experiments, the data was generated by using 
equation I in 3.5.1 and equation 2A in 3.5.2.

2A. y . + B  Y + y  Z . + Y  Z . + y  Z . + y  = u . .
i t  2 2  2 t  2 1  i t  2 3  2 t  2 4 «| t  2 0 2 t

3.5.2

The data was then applied to model 3.5.1. The loss function 
used to rank the different estimators was the root mean square 
error.

The results were as follows:
1. The minimum variance property of ordinary least 

squares estimates of structural coefficients was reinforced, 
the bias of ordinary least squares estimates was usually the 
largest among the estimates obtained from the four estimators.

2. A conjecture was that the root mean square error 
of consistent estimators was inversely proportional to the 
square root of the sample size.

3. With a low degree of multicollinearity, the full
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information maximum likelihood method clearly gave the best 
estimates. Two stage least squares estimates were ranked 
second and ordinary least squares estimates were ranked last.

4. With a high degree of multicollinearity, two 
stage least squares estimates received the highest ranking, 
full information maximum likelihood estimates were ranked 
second, and ordinary least squares estimates were ranked 
third.

5. With specification errors that Summers introduced 
by equation 3.5.2, full information maximum likelihood esti­
mates performed poorly. This would be expected because this 
was the only estimator in this study which considers all a 
priori restrictions. Two stage least squares estimates re­
ceived the highest ranking and were judged less sensitive to 
specification errors. A surprising result was that the ordi­
nary least squares estimates received the second best ranking.

6. The results of applying the KoImogoroff-Smirnov 
test to the sample distribution of Studentized structural co­
efficient estimates to test for normality showed that limited 
information single equation and two stage least squares esti­
mates fared well with regard to accepting the null hypotheses 
of normality.

From the above results, the recommendation of using 
two stage least squares was justified for estimating the co­
efficients of structural equations in this Monte Carlo study.

Richard E. Quandt (1965) presented the results of a
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sampling experiment on a four equation model. This study in­
volved the comparison of the k-class estimators for alternat­
ive values of k with special emphasis given to ordinary least 
squares and two stage least squares estimates.

The two models used were from the following basic
model:

1. B Y  + B Y  + B Y  + B Y  + Y Z  + Y Z  +
1 1 1  1 2 2  1 3 3  1 4  4 1 1 1  1 2 2

Y Z = U
1 3  3 1

2. B Y  + B Y  + B Y  + B Y  + y Z  + y Z  = u
2 1  1 2 2  2 2 3  3 2 4  4 2 2  2 2 5  5 2

3. B Y  + B Y  + B Y  + B Y  + y Z  + y Z  +
3 1 1  3 2  2 3 3  3 3 4  4 3 3  3 3 4  4

y Z = U
3 5  5 3

4. B Y  + B Y  + B Y  + B Y  + y Z  + y Z  +
4 1  1 4 2  2 4 3  3 4 4  4 4 3  3 4 5  5

y Z = U . 3.6.1
4 6  6 4

The above model was denoted as Model I. Model II was identi­
cal to model I except that a new exogenous variable, Z , was 
introduced into the second equation. Equation I was the only 
equation estimated. Equation I for model I was just identi­
fied and equation I for model II was overidentified. The 
exogenous variables were fixed for repeated sampling and did 
not include lagged values of the endogenous variables. The 
structural disturbance terms were jointly normally distributed 
with zero mean and covariance matrix E. There were one hun­
dred samples of size twenty.
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The experiment studied the effects of sparseness of

the B matrix, sparseness of the z matrix and multicollinear- 
13ity» To accomplish this, the data sets were generated as 

follows;
1. Five alternative B matrices were used. These 

five matrices ranged from low sparseness to high sparseness 
with B^ being a lower triangular matrix,

2. Two I matrices were used, one of which was per­
fectly sparse (Z^).

3. Two data sets were used. Data set II contained 
relatively less multicollinearity between exogenous variables 
than data set I, Six logical sets were constructed from the 
above generations: (B ,Z ), (B ,E ), (B ,Z ) , (B ,Z ), (B ,E ),

5 1  4 1 3 1  2 1  1 1

and (B ,E^), Each logical set was run four times; each run 
consisted of a different data set and different model.

The results were as f o l l o w s : ^ *
1. For covariance Z , the ordinary least squares 

standard deviations of the coefficients were smaller than two 
stage least squares standard deviations of the coefficients. 
However, the ordinary least squares bias of the estimates was

^^Perfectly sparse refers to a matrix which has only 
diagonal elements.

^^The ranking of estimators was based upon the follow­
ing combination of loss functions: bias, sample standard
deviation, coefficient of concentration, coefficient of decent­
ralization (estimates which have the wrong sign), largest de­
viation of an estimate from the parameter, and the root mean 
square error.
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greater than was the two stage least squares bias of the 
estimates. This tended to confirm the hypothesis that the 
tails of the distribution of two stage least squares estimates 
are substantially thicker than ordinary least squares distri­
bution of the estimates. In addition two stage least squares 
estimates exhibit a greater density around the parameter than 
ordinary least squares estimates. Given the above results, 
two stage least squares performed better in this experiment.

2. When Z^was used, the question of superiority of 
ordinary least squares and two stage least squares was un­
settled in this experiment.

3. When multicollinearity was low, the estimates of 
both estimators were generally good, with two stage least 
squares estimates performing best. The performance of ordi­
nary least squares estimates improved as compared to two 
stage least squares estimates when data set I was applied.

4. Sparseness and triangularity of the B matrix im­
proved the estimates of both estimators.

5. Sparseness of the Z matrices improved the esti­
mates of both estimators. This was especially true for ordi­
nary least squares estimates.

6. Generally, the estimates of different estimators 
performed better for the overidentified equation.

Quandt has shown in this Monte Carlo study that ordi­
nary least squares estimates were not necessarily poorer than 
two stage least squares estimates, given all the results of
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the above models. He suggested that both estimators merit 
consideration when choosing the "best" estimator for a parti­
cular model. A guideline suggested was to calculate esti­
mates from both estimators and if the difference of the two 
estimates is large, use ordinary least squares as the esti­
mator. If the difference is small, use two stage least

15squares.
John Cragg has done extensive work on Monte Carlo 

studies (1966, 1967 and 1968). In his first study, Cragg
(1966) investigated the sensitivity of ordinary least squares, 
two stage least squares, Nagar*s unbiased k-class estimator 
(k = 1+ ^ ~ ) , (supra, p. 12, eq. 2.2.3), three stage least 
squares, limited information and full information maximum 
likelihood estimates, when errors of measurement in the exo­
genous variables, stochastic coefficients, heteroskedastic 
disturbances, or autocorrelation of the disturbance terms was 
present in an econometric model. Each equation in his three 
equation model was overidentified. The model was as follows 
in matrix notation;

BY^ = r 3.7.1

where had a multivariate normal distribution with mean zero.

^^The author did not give a criterion for distinguish­
ing between large and small differences between estimates 
from different estimators.
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and covariance

E(U_ Ü. ) = E, t = m It

E(Uj^^ Uj^) = 0 ,  t ^ m; t,m = i,j = 1,2,3

|E| 0.

Fifty samples of size twenty were generated for each experi­
ment. Each experiment contained a specification error, except 
the initial experiment.

The results were as follows:
1. In the initial experiment without a specification 

error, the results suggested that full information maximum 
likelihood and three stage least squares estimates were super­
ior to the second group which included Nagar's unbiased k- 
class estimates, limited information single equation and two 
stage least squares estimates. Ordinary least squares esti­
mates exhibited the poorest performance in this experiment 
due to a large bias. This ranking was based upon the absolute 
deviation of the estimated coefficients from the true coeffi­
cients. The standard errors of the coefficients of the consis­
tent estimators were reliable for making inferences about the 
true value of the structural coefficient, A second experiment 
which altered the parameters of the variance-covariance matrix 
of the error terms gave different results. When these para-
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meters were reduced in magnitude, all the estimates except 
the ordinary least squares estimates were negligible (p. 141, 
Cragg, 1966). The inferiority of ordinary least squares 
estimates was not as pronounced in this second experiment.

2. Errors of measurement in the exogenous variables 
were introduced into the initial experiment after the gener­
ation of the data. This was done four different times with 
the variance of the errors of measurement being one, four, 
sixteen, and sixty-four. The ranking of the estimates of 
different estimators resulted in identical ranking as depicted 
in the results of the initial experiment by Cragg. An inter­
esting result was that the standard errors of the structural 
coefficients increased approximately in proportion to increases 
in the size of the standard deviation of the measurement errors 
Structure II was used when the variance of the errors of 
measurement was four. The ranking of the estimator was the 
same as depicted in the initial experiment.

3. The stochastic coefficients were introduced by 
adding independent normal deviates to each coefficient before 
an observation was generated. For three different replicat­
ions of this experiment, the stochastic additions were multi­
plied by various scale factors so that the variances of the 
additions were equal to four, sixteen, and sixty-four percent 
of the true coefficients. The ranking of the estimates from

l^Call this second experiment, experiment on structure
II.
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different estimators changed drastically. Ordinary least 
squares estimates were ranked best with respect to absolute 
deviation of estimates from the true coefficient; limited 
information and full information maximum likelihood estimates 
received the lowest ranking. Two stage least squares and 
three stage least squares estimates v/ere ranked second behind 
the ordinary least squares estimates. Stochastic coefficients 
affected the central tendency of the estimates of all esti­
mators. There was a marked increase in the dispersion of the 
estimates. With respect to increases in dispersion, there 
seemed to be an approximate proportional relationship to in­
creases in the variance of the addition to the standard de­
viations of the coefficients.

4. Heteroskedastic disturbance terms were introduced 
as a specification error in the following forms;

it

20 '

= ^it 1 + til "ft ^itt 3.7.2

^it = ^it +
20

7
I

K=1 Kt
20 7
E E Z 

t=l K=1

wit 3.7.3

where r^^ was the value of when there were no disturbances 
and w^^ was the value of the reduced form disturbance term 
when there was heteroskedasticity. Autocorrelation of the
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disturbance terms was introduced in the following forms:

1. U. = 0.6 V.. + 0.4 U. . i=l, tffl 3.7.4It J-t 1 It—1)

“it = ’'it

i=l, all t

2. = 0.5 + 0.5 t^l, all i 3.7.5

t=l, all i

3. = 0.2 + 0.8 t^l, all i 3.7.6

t=l, all i

where represented the structural disturbance term usually 
used. The results of these two specification errors on struc­
ture I did not alter the ranking given in the initial experi­
ment. The standard errors of the estimates were relatively 
unaffected.

Overall, the only specification error that had any 
pronounced effect on the ranking of the estimates as depicted 
in the initial experiment was that of the stochastic coeffi­
cients .

In Cragg * s second study (1967), the basic model was
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identical to 3.7,1. Five different B matrices were used for 
a given E matrix denoted as structure I, II,..., and structure 
V, respectively. Structures VI through VIII used the B matrix 
of structure I in conjunction with different E matrices.
There were three different data sets available for all experi­
ments . Theoretically each data set had no multicollinearity 
attached to the exogenous variables. When the experiment in­
volving multicollinearity was investigated, data sets ranging 
from low to high multicollinearity were used. The results 
were as follows:

1. With no specification errors, the results were
1 7identical to Cragg's earlier work (1966).

2. When different sets of disturbance terms were 
used, the ranking was the same as in the initial experiment.

3. When different exogenous data sets were introduced 
into the initial experiment which were similar but generated 
independently of the original data set of the exogenous vari­
ables, the ranking was identical to the initial experiment.
An important conjecture about this sampling experiment was 
that "the precise results of sampling experiments depend on 
the exact set of exogenous data used" (Cragg, p. 103, 1967).

4. When observing the effects of different structural 
coefficients upon the estimates of different estimators, no 
conclusions were drawn about the performances relative to

17Denoted in 1, page 58 of this paper and referred to 
as the results of the initial experiment.
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ranking. The results show that the estimates of each esti­
mator were sensitive to changes in structural coefficient p.

5. With different Z matrices, the results showed 
great improvement in ordinary least squares estimates. The 
estimates of k-class estimators performed better than those 
of three stage least squares and full information maximum 
likelihood estimates. These results were probably due to 
the fact that the changes in the Z matrices reduced the ele­
ments of the off-diagonal terms, i.e., reduced contemporaneous 
correlation.

6. The size of the disturbance terms of the reduced 
form equations changed the results of the ranking of estimates 
from different estimators as given in the initial experiment.
As the size of the disturbance terms increased, the dispersion 
of the estimates of each method increased. The standard errors 
of the estimates were approximately proportional to the differ­
ence in the size of the disturbance terms. With respect to 
the above results, limited information and full information 
maximum likelihood estimates deteriorated the most. The bias 
of the estimates from Nagar's unbiased estimator, two stage 
least squares and three stage least squares estimators in­
creased as the size of the disturbance terms increased. At 
first, the bias of the limited information and full information 
maximum likelihood estimates decreased but the bias eventually 
increased as the size of the disturbance terms increased.

7. When the sample size was increased, the dispersion
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of the estimates from each estimator decreased about the para­
meter except for ordinary least squares.

A general ranking of estimates from different esti­
mators gave a marginal preference for three stage least 
squares and full information maximum likelihood estimates.
The remaining estimates, except for ordinary least squares 
estimates, were ranked second. Ordinary least squares esti­
mates performed poorly. Generally, the central tendency of 
the estimates from the consistent estimators behaved well, 
with full information and limited information maximum likeli­
hood estimates giving superior results. With respect to the 
above results concerning central tendency, the presence of 
large disturbance terms or multicollinearity changed the con­
clusions. Standard errors of the estimates from consistent 
estimators usually gave reliable inferences. Standard errors 
of ordinary least squares estimates were not useful in making 
inferences about the parameters. Given the results of this 
Monte Carlo study, the two stage least squares estimator was 
chosen from among the consistent estimators because of its 
low cost and ease of application.

Gragg's final article (1968) studied the specification 
error of incorrect exclusion of variables from certain equat­
ions or the exclusion of entire equations from a model, the 
estimators and models examined being identical to those of 
his earlier study (p. 137-38, 1966). The summary of the 
general results of structure I was given in Gragg's earlier 
article (supra, footnote 17, p, 62).
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The specification that coefficients were zero when 

in reality they were almost zero had little effect upon the 
ranking of the estimates of different estimators as given in 
his initial experiment (supra, p. 49). Ignoring an unimpor- 
tcuit exogenous variable or omitting a structural equation 
affected the estimates of different estimators only slightly 
and did not alter their previous ranking. The above results 
suggested that econometric models built on approximate or 
partial knowledge give useful information.

Contrary results were presented when the specification 
error designated a non-zero coefficient to be zero when the 
coefficient had important economic significance. Full infor­
mation maximum likelihood and three stage least squares esti­
mates deteriorated in performance. The estimates of the single 
equation consistent estimators ranked as the best estimates 
under this specification error with respect to central ten­
dency. The standard errors of the estimates of all estimators 
were useless in making inferences about the parameter with 
this type of specification error present. Another specifi­
cation error studied was that of estimating the coefficients 
when the true values of these coefficients were zero. This 
specification error seriously affected the central tendency 
and dispersion of the estimates of different estimators. Many 
times, a specification error of the above type is introduced 
in econometric models so that identification can be achieved.

The results of this Monte Carlo experiment emphasized
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the importance of a priori knowledge about coefficients in 
structural equations which are close to or equal to zero and 
the importance of these variables in economic theory. This 
illustrates the econometrician's problem of misspecification 
versus underspecification and the econometric consequences.

Jan lùnenta and Roy Gilbert (1968) studied a model 
which was already in the reduced form. Though this is not 
the subject being discussed here, it is interesting to see 
the effects of specification errors on the reduced form co­
efficients. It must be recalled that two stage and three 
stage least squares estimates use information from the reduced 
form equations in the initial stages.

Four experiments were conducted. Experiments 1 and 
2 were conducted on the following model;

Y (t) = 10 + 2X (t) - 5X (t) + u (t) 
1 11 12 1

Y (t) = -10 + 6X (t) + 3X (t) + u (t). 3.8.1 
2 2 1 22 2

The difference between experiments 1 and 2 was that in experi­
ment 2 there was an increase in the pairwise correlation be­
tween explanatory variables. Experiment 3 added the follow­
ing two equations to experiment 1 and 2.

Y (t) = 10 + 2X (t) - 5X (t) + u (t)3 31 32 3

Y (t) = -10 + 6X (t) + 3X (t) + u (t). 3.8.2% 41 42 4
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For experiment 3, the values of the explanatory variables for 
equations 3.8.1 were the same as experiment 1 and the explana­
tory values for 3.8.2. were the same as experiment 2. The 
purpose of experiment 3 was to examine the effects of increas­
ing the number of equations in a system of equations which 
contained a high pairv/ise correlation between explanatory 
variables. Experiment 4 studied the effects on a two equation 
model which had lagged values of the dependent variable as 
one of the independent variables.

y (t) = -10 + 6X (t) + 0.25Y (t-1) + u (t)
1 11 1 1

y (t) = 10 + 2X (t) + 0.75Y (t-1) + u (t). 3.8.32 2 1 2 2

Nine different data-models were generated. Each data model 
consisted of a hundred samples of size ten, twenty, and one 
hundred. Each data-model set was applied to each experiment. 
Data-models A, B, and D were identical except for the degree 
of correlation of the disturbance terms across equations. 
Data-model A had high correlation, data-model B had moderate 
correlation, and data-model D had no correlation of disturb­
ance terms across equations. Data-model C was the same as
data-model B except that the variance of u (t) had been in-2
creased greatly. Data-models E and F had heteroskedasticity 
built into the error terms in the following form:

Var {u (t)} = E {y„(t)>}*. 3.8.4m 10 ro
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Data-model E had moderate correlation of disturbance terms 
across equations while data-model F had none. Data-models G, 
F, and I had an autocorrelated scheme of the following form:

u (t) = 0.8 u (t-1) + 0.6 V (t)

u (t) = 0.8 u (t-1) + Xv (t) + yv (t) 3.8.52 2 1 2

where v (t) «x, NID(0,1), v (t) NID(0,1) ,1 2

E{v^ (t) v^(t)} = 0, Var (ty(t)} = 1. 3.8,6

Model G: X = 0.555, y = 0.228 . 3.8.7

Model H: X = 0.360, y = 0.480 . 3.8.8

Model I : X = 0  , y =  0.600 . 3.8.9

All data-models had the same autoregressive coefficients of
0.8 but were different in the correlation of the disturbance 
terms across equations. Data-model G contained high, data- 
model H contained moderate, and data-model I contained no 
contemporaneous correlation.

The estimators considered were ordinary least squares, 
(OLS), Zellner's two stage Aitken's (ZEF), Zellner's iterative 
Aitken's (IZEF), Telser's iterative (TIE), and maximum likeli­
hood (ML). In this sampling experiment ML, IZEF, and TIE esti­
mates gave identical results; therefore, ML estimates were used
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to measure the performance of this group. The results were 
as follows:

1. Theoretical studies have been completed using 
large sample sizes that coincided with the results of this 
sampling experiment, when the size of the sample was one 
hundred. The unbiasness of ordinary least squares estimates 
for Experiments 1, 2, 3, and 4 with data-models A and B co­
incided with the theoretical results. The ZEF and ML esti­
mates theoretically should have given the author identical 
results and they did.

2. ZEF estimates were superior to OLS estimates ex­
cept when there was no correlation of the disturbance terms 
across equations. In the latter case, OLS estimates were 
only marginally better than ZEF estimates for all experiments 
and models.

3. ZEF and ML estimates had equal efficiency for 
large samples for all experiments and data-models. In experi­
ment I, data-model A, maximum likelihood estimates were more 
efficient than ZEF estimates. This result also held true for 
all experiments when data-models H and 6 were used. In all 
other cases, ZEF estimates showed greater efficiency than ML 
estimates.

4. When data-model C was used the relative performance 
of the estimates from all estimators was not affected.

Overall results for these experiments suggested that 
ZEF estimates were preferable in most situations. This con-
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elusion was drawn due to the overall superiority of the effi­
ciency and ease of application of the ZEF estimator.

Recently, Potluri Rao and Zvi Griliches (1969) studied 
the effects of autocorrelation on the following model:

Where

BXt + "t 

^^t-1 + ^t t = 1,...,T

^t ^ P^t-1 ''t* 3.9.1

E(v^) = E(w^) = E(v^w^) = E(WtW^_^) = E(v^v^_^) = 0

E(vp = a = , E(w;> = |X| < 1, Ip I < 1.

3.9.2

3.9.3

The initial values of u and x were derived from a normal pop­
ulation with mean zero and variance /(1-p*) and

/(1-X*), respectively. Six methods were used to esti­
mate B (3.9.1). They were generalized least squares (GLS) 
with p known and ordinary least squares (OLS) with p unknown. 
Four other estimators were used in an attempt to improve on 
the ordinary least squares estimates. They were the Cochrane 
and Orcutt estimates (p. 53-55, 1949A) where

T /T
" “ t=2 '

the Durbin estimates (p. 256-57, Roa and Griliches, 1969) of
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p from the following equation:

+ Bx^ - Bpx^_^ + t=2,...,T 3.9.5

where p = E y.y / Ï yf » 3.9.6t=2 ^ t-1 / 2 t

the Prais-Winsten (p. 256-57, Roa and Griliches, 1969) esti­
mates which solve for p the same as the Cochran and Orcutt 
method but transforms the initial value of the original data
by /1-p^, and a nonlinear estimate identical to 3.9.5 except

/S /V /Vthat Bp = B p. For this last estimator, the criterion was to 
find the absolute minimum of the residual sum of squares with 
respect to B and p.

Except for the nonlinear method, the last four esti­
mators required two stages to estimate B. In the first stage, 
p was estimated, and from the estimate of p the estimate of 
B was made. For the estimate of p, when p was positive, the 
Durbin estimates showed significantly smaller bias than the 
Cochrane-Orcutt or nonlinear estimates of p. For small nega­
tive values of p, the Cochrane-Orcutt estimates showed the 
least bias while for large negative values of p, the nonlinear 
method showed the least bias. It is noteworthy that the 
superiority of the estimates of the above two estimators as 
compared with the Durbin estimates of p, when p was negative, 
was slight. In addition, most economic data generally does 
have a positive autocorrelated scheme. With respect to the
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mean square error of the above estimates of p, the results 
were similar to those given above.

In estimating B, ordinary least squares estimates 
were inefficient as compared to all other estimates produced 
by the other estimators. The estimates of the nonlinear esti­
mator were somewhat inferior to two stage estimates for p 
greater than zero. The Cochrane-Orcutt method was slightly 
inferior to the other two stage methods of estimating B. 
Therefore, when p is thought to be larger than 0.3 in abso­
lute value, either the Durbin or Prais-Winsten method should 
be applied. Even when p is less than 0.3 in absolute value, 
little is lost by using the estimates of these two stage esti­
mators. The authors suggested that the best method was to 
use the Prais-Winsten method in the first stage, estimating 
p, and the Durbin estimates in the second stage in calculating 
B.

Recently, there has been a trend toward investigating 
alternative methods of estimating small samples in simultaneous 
equations. Fred Glahe and Jerry Hunt (1970) studied the per­
formance of least absolute ordinary least squares and least 
absolute two stage least squares estimates versus ordinary 
least squares and two stage least squares e s t i m a t e s . T h e  
model selected was:

^Least absolute estimators minimize the absolute values 
of the residuals where ordinary least squares and two stage 
least squares minimize the squares of the residuals.



73

1. Y + B Y + y Z + y Z + y = U 1 1 2 2  1 1 1  12 2 10 1

2. Y + B Y + Y  Z + Y Z + y = u  3.10,11 22 2 23 3 24 4 20 2

where ~ N(0,100) , i=l,2.

Sample sizes of ten and twenty were used for four experiments. 
Experiment I contained no specification errors. Experiment 
2 contained a degree of multicollinearity common to most eco­
nomic data. Experiment 3 introduced the following heteroske­
dasticity scheme:

“ (a* + i)* 3.10.2u 0

where a* = 5 and i = 0,... ,N-1. Experiment 4 investigated the 0
specification error of a variable added to equation 2, 3.10.1, 
when the true value of the parameter of this new coefficient 
was zero. The results showed that for structural estimations, 
ordinary least squares and two stage least squares estimates 
performed better than the estimates from either of the two 
least absolute estimators for samples of size ten and twenty 
for all four experiments. The only exception to the above 
statement occurred when the loss function, mean absolute error, 
was used for samples of size ten for all four experiments.
In this case, two stage least absolute estimates were better 
than the estimates from the other estimators. Kendall's W 
in this experiment was usually not significant at the .01 
level; therefore, the differences of the two stage least
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absolute estimates were slight as compared to the estimates 
from other estimators for samples of size ten given this loss 
function. This study showed that continued use of the squared 
deviations of the residuals as a criterion in developing esti­
mators for simultaneous equations with small sample sizes was 
a valid choice.

In summary, each Monte Carlo study has made contri­
butions to the understanding of the estimators used in esti­
mating coefficients in structural equations when the sample 
size is finite. Though each Monte Carlo experiment was unique 
in that the models used were never identical, a few general­
izations and conclusions seem to follow from one Monte Carlo 
study to other Monte Carlo studies. They are as follows :

1. When autocorrelation was present, the ordinary 
least squares estimates (OLS) performed poorly (Cochrane and 
Orcutt, 1949A, 1949B; Cragg, 1966; Kmenta and Gilbert, 1968; 
Roa and Griliches, 1969).

2. The addition of the exogenous variable time (t) 
improved the performance of different estimators (Neiswanger 
and Yancey, 1959; Wagner, 1958).

3. The estimates of the OLS estimator exhibited a 
larger bias but a smaller variance than other estimates from 
different estimators in different Monte Carlo studies (Wagner, 
1958; Nagar, I960; Summers, 1965; Quandt, 1965; Cragg, 1966; 
Kmenta and Gilbert, 1967; Roa and Griliches, 1969). The major 
exception to the above property was found in Quandt (1965)
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when multicollinearity was present. Summers (1965), Cragg
(1966), and Kmenta and Gilbert (1968) contradicted Quandt's 
findings and reinforced the above property. The results in­
dicated that multicollinearity has an adverse effect on the 
bias and standard error of the estimates from different esti­
mators but this adverse effect was less for consistent esti­
mators .

4. When errors in observation were analyzed in Monte 
Carlo experiments, the results were that the bias of OLS and 
limited information single equation (LISE) estimates did not 
increase but the standard errors of the estimated coefficients 
did (Ladd, 1956). Cragg*s (1966) results were similar to 
Ladd's results. Cragg also ranked the estimators with three 
stage least squares (3SLS) and full information maximum like­
lihood (FIML) receiving the highest rank and the consistent 
single equation estimators being ranked second.

5. When lagged exogenous variables were present in 
a simultaneous equation model (Wagner, 1958), the results 
showed that OLS, instrumental variables (IV), and LISE esti­
mates were similar. This Monte Carlo experiment recommended 
two stage least squares estimates (TSLS) with lagged exogenous 
variables.

6. Ladd's study (1956) showed that the OLS estimator 
can be used when the disturbance terms and the exogenous vari­
ables were slightly correlated. Ladd also showed that when 
the disturbance terms and exogenous variables were highly
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correlated, OLS estimates of the standard errors overestimated 
the true values of the standard errors. Neiswanger and Yancey 
(1959) substantiated Ladd's findings.

7. Neiswanger and Yancey (1959) observed that the 
LISE estimates performed better than the OLS estimates when 
the exogenous variables were stochastic. Cragg (1967) sub­
stantiated the above observation but ranked FI and 3SLS esti­
mates ahead of the estimates of the consistent single equation 
estimators.

8. Cragg (1967) ranked FI and 3SLS estimators first 
when the specification error was heteroskedasticity. Kmenta 
and Gilbert (1968) verified Cragg's findings.

9. Summers (1965) concluded that the 2SLS estimator 
performed best with an incorrect specification of a model. 
Cragg*s (1968) Monte Carlo study verified Summer's findings.

10. Many econometricians have analyzed the effects
of different B matrices on different estimators. Quandt (1965) 
showed that OLS and 2SLS estimates improved when the B matrix 
was sparse. Cragg*s (1966) Monte Carlo study showed that 
stochastic coefficients caused the OLS estimates to be super­
ior to the estimates from the consistent estimators. Cragg
(1967) showed that the estimates of different estimators were 
sensitive to changes in the structural coefficients.

11. As the size of the parameters in the variance-co­
variance matrix (E) of the disturbance terms increased, became 
negative or both, OLS estimates improved (Nagar, 1960).
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Quandt (1965) showed that as the Z matrix became sparse, OLS 
estimates improved. Cragg (1967) and Kmenta and Gilbert (1968) 
reinforced the conclusions of Nagar and Quandt. Cragg (1967) 
also showed that as the size of the disturbance terms increased, 
the performance of all the estimators in his Monte Carlo study 
deteriorated in performance with respect to bias and efficiency.



CHAPTER IV

A MONTE CARLO EXPERIMENT WITH TWO SPECIFICATION ERRORS 
IN A TWO EQUATION SIMULTANEOUS MODEL

The two preceding chapters reviewed the major theore­
tical and Monte Carlo studies in estimating structural para­
meters in a system of simultaneous equations when the samples 
were of finite size. Numerous Monte Carlo studies have been 
attempted observing only one specification error within the 
model. Even when more than one specification error has been 
observed, the purpose of the experiment has not generally 
been to isolate the effects of each specification error upon 
the accuracy of each estimate. The purpose of this chapter 
is to attempt to ascertain the effects of each specification 
error on the performance of the estimates from different esti­
mators. The specification errors are autocorrelation of the
disturbance terms and multicollinearity of the exogenous vari- 

IQables. These two specification errors were chosen because 
they are inherent in many economic models.

^^The assummption of the autocorrelated disturbance 
terms considers both serial and contemporaneous correlation.

78
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The model chosen is the following:^®

y (t) = B Y (t) + C Z (t) + C Z (t) + C + Ü (t) 1 12 2 1 1 1  12 2 10 1

y (t) = B y (t) + c z (t) + c z (t) + c + u (t).1 22 2 23 3 24 4 20 2

3.1
In model 3.1, the first equation is a demand equation and the 
second equation is a supply equation in partial equilibrium.
Both equations are overidentified. The Y variables are endo­
genous variables, the Z variables are exogenous variables and 
the U variables are error terms. The parameter values are 
specified a priori. The independent observations of the Z and 
Ü variables are generated from random normal deviates. The 
exogenous variables are stochastic because they are, in reality, 
endogenous variables or some larger system (p. 392, Neiswanger 
and Yancey, 1959), Fifty samples of size twenty each are 
generated for each case.^l Corresponding to each sample, the 
disturbance terms are generated consistent with a positive 
first order autocorrelated scheme. The exogenous variables 
have varying degrees of multicollinearity.

The above model was chosen because it is indicative 
of economic models but small enough to be handled within time 
and cost constraints (Summers, 1965; Neiswanger and Yancey, 1959)

^^he size of the samples, twenty, and the number of 
samples in one experiment, fifty, were chosen arbitrarily.
Both choices are deemed adequate in conducting Monte Carlo 
studies (Summers, 1965; Roa and Griliches, 1969; Glahe and 
Hunt, 1970).
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The exogenous variables have the following means 
and the following variance covariance matrices:

Z = 478 
1

Z = 381 2 Z = 478
3

Z » 43d 3.2

Low Multicollinearity 
Correlation Matrix of the 

Exogenous Variables
High Multicollinearity 

Correlation Matrix of the 
Exogenous Variables

z z z Z z z Z Z1 2 3 d 1 2 3 d
z ' 1 .078 .016 .38 Z ' 1 -.37 .76 .801 1
z 1 .017 -.057 z 1 -.52 -.432
z 1 .31 z 1 .833
z 1 z 1d ,

3.3

The structural coefficients are as follows: 22

B
1 2

— -0.4
B
22

0.6
c
11

0.1
c
12

0.45
c 2 3 0.25
c
2d

0.8
c
10

100.0
c 20

50.0 . 3.4

22The structural coefficients are identical to the co­
efficients used by Neiswanger and Yancey (p. 391, 1959).
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The disturbance terms and the exogenous variables are indepen­
dently generated; therefore, the study of the effects of each 
specification error on estimates from each estimator is achieved 
by using different data sets with different degrees of multi­
collinearity and autocorrelation.^^

For example, data set one has a given autocorrelation 
scheme of and varying degrees of multicollinearity— low 
and high.^^ Data set two has an autocorrelation scheme P^, 
where P ̂ is greater than P ̂ , and maintains the same low and 
high multicollinearity as each respective sub data set of 
data set one. The autocorrelation scheme is varied to include 
the autoregressive parameters 0.2, 0.6, 0.8, and 0.9. Four 
data sets are generated with two sub-sets each and are denoted 
as , and and ... , and in which the
first subscript is for the autoregressive parameter and the 
second subscript is for the degree of multicollinearity.^^

^^This is true if the autocorrelated disturbance terms 
are due to omitted exogenous variables. If autocorrelation 
is present and lagged endogenous variables are used as exo­
genous variables in the same equation, the assumption of inde­
pendence does not hold true.

^^Exogenous data sets having low and high multicollin­
earity will be denoted by L and H, respectively.

^^Hobson Thornber (1967) criticized past Monte Carlo 
studies for concentrating attention to one or two points in 
a parameter space when the risk function should be evaluated 
over the whole parameter space. In this Monte Carlo study, 
eight parameter points are observed because an arbitrary 
choice had to be made with respect to the constraints of time 
and cost (Thornber, p. 809, 1967).
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The variance-covariance matrix and means of the exo­

genous variables are shown in the following form for generat­
ing the data with the desired level of multicollinearity.

Z/1) ... z 1 (20) M 11 0 0 0

z (1 ) 2 ... z2 (20) M 2 1 M
22 0 0

Z3(l) ... z 3 (20) M 3 1 M 32 M 3 3 0

z (1)4 ... z 4 (20) M 4 1 M 41 M 4 3 M

S^(l)
S (1) 
2

8 3 (1 )
s (1)

4

8/ 20)
8 (20) 
2

83 (20)
8 (20) 4

M  ■1
M 2+
M

3

M 4
3.5

The M matrix is a lower triangular matrix which is 
related to the population variance-covariance matrix of the 
exogenous variables such that MM'*= population variance-covar­
iance matrix. The 8 variables are standardized normal deviates. 
M , M , M and M are the means of Z , Z , Z and Z , respect-1 2 3 4  1 2 3 4
ively.

To derive the M matrix, let Z be a symmetric, positive 
definite matrix of rank four. Then there exists a lower tri­
angular matrix M such that Z = M M"* (p. 3, Graybill, 1961) .

Z Z Z Z ' M 0 0 0 M M H M11 1 2 1 3 1 4 11 11 21 31 4 1
z Z Z Z M H 0 0 0 M M H21 22 2 3 2 4 21 22 2 2 32 42
z Z Z Z M M M 0 0 0 M H3 1 32 3 3 34 3 1 32 3 3 3 3 4 3
z Z Z Z M M M M 0 0 0 M4 1 42 4 3 4 4 4 1 4 2 4 3 4 4 44

3.6



83
E = M* Z = + M*1 1 1 1  2 2 2 1 2 2

Z = M* + M* + Z = M M33 31 32 33 12 1 1 2 1

E = M M + M M  E = M M + M M  + M M
2 3 21 3 1 22 32 3 4 31 41 32 4 2 3 3 4 3

E = M M  E = M M + M M13 1 1 3 1  24 21 4 1 22 42

E = + M* + E = M M . 3.744 41 42 43 44 14 11 41

M = r/Z M = Æ  +
11 11 22 22 21

M = Æ  - M = E /M
33 33 31 32 21 12 11

M = (E - M - M )/M M = (E - M M  - M M  )/M32 23 21 31 22 43 34 31 41 32 42 33

M = E / M  M = (E - M M  )/M31 13 11 42 24 2 1 4 1 2 2

M = Æ  - M^ - M^ - M^ M = E /M . 3.844 44 41 42 43 41 14 11

The values of the M matrix are ail positive on the diagonal so 
a unique matrix M is determined.

The true values of the disturbance terms are calcu­
lated from a first order autocorrelated scheme
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Assume (Parks, 1968)

'V N(0,1) i = 1,2 t = l,...,20. 3.10

Let^®

E(0it = Oĵ j i,j = 1,2 t = t

= 0 t f*. 3.11

The initial value of the autocorrelated scheme is

Ü = (1 - P?)"^ ^  e . 3.1211 1 11 11

27The value of the first element in the covariance matrix is

TNow note that U.. = E P, e.. _ . 3.14i it-T

The variance-covariance matrix of the structural disturbance 
terms contain the following elements:

- a 12 21
^^Note that the assumption is that P.=P. in all data 

sets. Therefore Ete^iey^) - o^j. ^
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® < " i t  ” it+T>
°ij
1 - P |

i =  1,2

a
"it+T) =

■*• 1 3

i =  1,2 T - 0

i = 1,2 T ^  0. 3.15

Given the above assumptions, the generation of the 
disturbance terms Uĵ ,̂ i = 1,2, t = 1,2, ..., 20 is as follows;

Let ” °̂ ij' ” IfZ. Therefore QQ'=
a a 

1 1 1 2

a a 
2 1 2 2

where Q is a lower triangular matrix (p. 3, Graybill, 1961). 
The QQ' matrix of the disturbance terms for this study equals

I:

400 200
200 400
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The generation is

U 11
Ü 1 2

120
U 21
Ü 22

Ü 220

11

12
11

1 0

(i-pir** . 
Pi(i-pjr^ 1.

0
0

0 pî*(i-p?r*2 pî®...iX A i

0 0

11

■ C i
1 1

^12

/51T
• • •  ̂2” “

2
12

ai 1

11

12 0

21

220

3.16
The above generation gives the disturbance terms both 

serial and contemporaneous correlation as given in Park's



article (1968) when = P^,
87
28

The proof is as follows:

P =

r(l-P?)“^ 0
Pi(l-P?)"^ 1

p!^ (i-p?r^ pj® Pii

Q =

aji 0 0
0

11

Q - 2

ü =

Cl 2 0 ... o'

0
• • Q

3
• Ol2

0 • •• /a j j
-

u e11 11
• .
• ■
• •
Ü e120 e = 120
Ü e2 1 2 1
• .
• .
• •
u e220 22 0• » 4

r / : 12
22 ail 0 ... 0

/ 12
a.22 a11

28
Pi î* Pj.

Note that this scheme also generates data when
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Then

UU' = ee
3-" 3̂

E(UU') =
p 0
.0 p.

fo Q ' p- 0 ■1 2
0 qJ 0 p'_

E(ee')

E(UU') -
P O O P ' PO 0 p' 1 1 2

PO 0 p'  ̂ 1 2 PQ Q P'+PO 0 p'
2 2 3 3 J

fl 0 ... 0
0 1 0  ...0
p 0 ... p

• .

0 Ô ... 1

E(UU") = rciiPP' C12PP'
02iPP' 022PP'.

3.18

The reduced form of the structural equations is

1. y (t) =
‘ IB

 ----  fB C - E C  - B C Z (t)
_ g  1 1 2 2 0  2 2 1 0  2 2 1 1 1fB -B 1 12 22 I

- B C Z (t) + B C Z (t) + B C Z (t)22 12 2 1 2  2 3 3 1 2  2 4  4 1
+ ---- 1----  Fb u

fB -B 1 [ ’
(t) - B

2 2 12
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2. y (t) = -------   fc - c - c 2 (t) “ c z (t)2 rc 1 I 20 10 111 12 2Tb -B 1 I 12 22I

+ C Z (t) + C Z (t)1 + ---------
2 3  3 2 4  4 I fB -B 1I 22 1 2 I

U (t) - U (t) 
1 2

3.19

Having specified the values of the parameters a priori and 
having generated data sets for the exogenous variables and 
disturbance terms, the endogenous variables are generated 
from the reduced form equations. After generating the data 
sets, the data sets are then applied to the structural equa­
tions. The estimates of the structural coefficients are de­
termined by applying different estimates with different data 
sets to the structural equations disregarding all a priori 
information. The estimators are ordinary least squares, tv/o 
stage least squares, and three stage least squares.^9 The

^^The properties of the estimators chosen are well 
documented in (Dhrymes, 1970), (Johnston, 1963), (Theil, 1971), 
(Christ, 1966) and the studies which are referenced in chap­
ters II and III. In simultaineous linear models, the explana­
tory variables are many times not independent of the error 
terms. An example of such a model is as follows:

m G
y^» — E B..y + E YgjX + U .. X “ 1,2,...,m t = 1,2,...t tx t] g=i sx ts tx

where, for purposes of identification, it is understood that 
some of the B^j and Y$\may be zero; E(U^i) = 0 ;  E ( U + . ) -

for t = t'; E(ü^£Ü^'-) = 0 for t ^ t'j and E(X^gUti) =
0. In the above system, ordinary least squares gives xncon- 
sistent and generally biased estimates. Two stage least 
squares gives consistent but generally biased estimates in 
the above model. Under the assumptions of the above model.
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choice of these estimates is due to their popularity over a 
wide range of individuals who are involved in estimating para­
meters in economic models.

The estimates of each estimator have a sampling dis­
tribution of size fifty for each parameter. The results of 
these sampling distributions plus our a priori knowledge of 
the parameters are analyzed to compare these estimators under 
the specification errors involved.

Certain measures of performance are compared through­
out this experiment to observe if any estimator shows super­
iority over other estimators under given specification errors. 
The ideal result would be that one estimator performs better 
for all data sets, for all data sets given a level of auto­
correlation, or for all data sets given a level of multicollin­
earity. The measures of performance are the absolute values 
of the deviations of the median of the sampling distribution

the asymptotic distribution of two stage least squares esti­
mates approaches the normal distribution with mean zero and 
constant covariance. Two stage least squares estimates are 
efficient when a .. = 0 for i ^ j.

Three stage least squares estimates are consistent 
under the assumptions of the above model. The asymptotic 
distribution of three stage least squares estimates is dis­
tributed with zero mean and constant covariance. Assuming 
E(UtiU^'j) - <7ij » three stage least squares estimates
are efficient estimates.

Note that the above statements hold true for stochas­
tic exogenous variables but not for finite samples or auto­
correlated disturbance terms. Multicollinearity can cause 
problems with respect to matrix inversion.



91
of the estimators from the parameter, a coefficient of con­
centration and mean square error.

For each measure of performance, the three estimators 
are ranked. The criteria for ranking are the smallest abso­
lute deviation of the median from the parameter, largest co­
efficient of concentration, and the smallest mean square 

32error.
The Kendall Coefficient of Concordance, W, and the

Friedman Two Way Analysis of Variance non-parametric tests
are used to analyze the loss functions with respect to each

33estimator (Siegel, 1965). Because of the quantity of data 
generated by these estimators, general observations of the 
data are also made to shed light on the characteristics of the 
estimators in this experiment.

^®C is defined as the number of estimates within thirty 
percent of the parameter yalue.

Sl^jhe median and coefficient of concentration always 
exist but the mean square error may not exist because the fin­
ite sampling distribution of the estimators may not have first 
or second moments. Professor Johnston states (1963) that even 
if appropriate moments do not exist for one or more of the 
estimators, comparisons between sample mean square errors still 
provide useful summary information on the dispersion of the 
estimates of different estimators. In this experiment, the 
mean square error is observed because past Monte Carlo experi­
ments have used this loss function. Conclusions based upon 
the mean square error as a loss function will be judged less 
significant than those based on other loss functions used in 
this study.

S^Data from the Monte Carlo experiment is summarized in 
the Appendix I, tables 1-6, to facilitate the understanding of 
the rankings of the different estimators.

^^The description of the non-parametric ^s t s  are given 
in Appendix II.
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In observing each level of autocorrelation when the 

level of multicollinearity is given, the results show, using 
the Kendall Coefficient of Concordance, W, that the medians of 
the two stage least squares estimates are ranked best. Of the 
other two estimators, the medians of ordinary least squares 
estimates are ranked last. This ranking held true for all 
data sets with low multicollinearity except data set where 
the medians of two stage and three stage least squares esti­
mates are tied for the best ranking. When combining all the 
data sets, the Friedman non-parametric test for ®3l '
and ranked the estimates of two stage least squares first, 
three stage least squares second, and ordinary least squares 
last if the loss function is the median. When the level of 
multicollinearity is increased to high, the Friedman non-para- 
metric test for related samples, (S^u# Ŝ jj, and , gave
the estimates of two stage least squares the highest ranking 
and the estimates of three stage least squares the second 
highest ranking when the loss function is the m e d i a n . T h i s  
ranking is not as conclusive as when the level of multicollin­
earity is low. Kendall's W for S ranks three stage least2H
squares estimates ahead of two stage least squares estimates. 
From a closer analysis of data set S , the ranking of two2a
stage least squares estimates behind three stage least squares

^^All the rankings are achieved at the .05 level of sig­
nificance. The ranking of the median given above is achieved 
at the .06 level of significance.
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estimates is negligible. In these two estimators tied
for the highest ranking. These results show that two stage 
least squares estimates generally give the best estiiaates of 
the central location at different levels of autocorrelation 
given the level of multicollinearity.

When autocorrelation is held constant and multicollin­
earity is varied, the results are as follows: For and
®1H' ^4L ®4H' results are that the medians of
two stage least squares estimates perform better than the 
medians of the three stage least squares estimates. In data 
sets S2 2, and two stage and three stage least squares
estimates of the medians are tied for the best ranking. In 
data set the three stage least squares estimates are
ranked ahead of the two stage least squares estimates. In all 
cases, the medians of the ordinary least squares estimates 
perform poorly.

When the coefficient of concentration is used as the 
loss function, the results of the Friedman test for related 
samples are inconclusive. The Kendall coefficient of concor­
dance, W, shows in four out of eight data sets (S^^, Sgg
and Ŝ jj) that the coefficients of concentration of the three 
stage least squares are ranked first. Of the other two esti­
mators for these data sets, the coefficients of concentration 
of the two stage least squares estimates are ranked second.
In the other four data sets, Kendall's test does not establish 
a ranking of estimators at the .05 level of significance. In
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analyzing all the data sets, the coefficients of concentration 
of the ordinary least squares estimates perform very poorly 
as compared to the coefficients of concentration of the two 
and three stage least squares estimates.

When the mean square error loss function is used, no 
conclusive statistical statements can be made about the super­
iority of one estimator's performance as compared to the per­
formance of other estimators as the level of the specification 
error changes. The Friedman test shows that the mean square 
errors of the ordinary least squares estimates perform as well 
as the mean square errors of the other two estimators for re­
lated data sets. For data sets S ^ ,  ^2h '
Kendall test gives the estimators identical rankings. For 
®2L ®4H' Kendall test ranks the ordinary least squares
estimates best, the three stage least squares estimates second, 
and tv70 stage least squares estimates last. When applying the 
Kendall test to data set S^g, the mean square errors of the 
three stage least squares estimates perform better than the 
mean square errors of the ordinary least squares estimates.
The two stage least squares estimates are ranked last for data 
set Sgg. The ordinary least squares and three stage least 
squares estimates are tied for highest ranking for data set
S . In observing these results, a general conclusion is that 4L
the estimates of ordinary and three stage least squares are 
better than the estimates of two stage least squares as auto­
correlation increases when the loss function is the mean square 
error.
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In observing the estimates of different estimators in 

samples from different data sets the following observations are 
made:

1. When the autocorrelation parameter is increased for 
a given level of multicollinearity, the absolute distances be­
tween the medians and the parameters increase, the coefficients 
of concentration decrease, and the mean square errors increase. 
In the few exceptions to the above observations, the behavior of 
the loss functions is very similar to the above pattern; even
if some deviation occurs this deviation usually returns to the 
above pattern as the specification error changes. The above 
pattern holds true when the level of autocorrelation is held 
constant and multicollinearity is varied. These changes are 
important in that they illustrate the importance of analyzing 
Monte Carlo studies over a whole parameter space (pp.806-810, 
Thornber, 1968).

2. With the exception of the intercept parameters, the 
medians for all parameters underestimate the parameters if the 
parameter is positive or overestimate the parameters if the 
parameter is negative. The only time this observation does 
not hold true is for ordinary least squares estimates of
in all data sets, two stage least squares estimates of in 
®1L' ®1H' three stage least squares estimates of

in This observation is also violated for two stage
least squares and three stage least squares estimates of
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35in data set S . This may be a clue that the estimators in 4n

question are all biased in the same direction for small sample 
size with the specification errors observed in this Monte 
Carlo experiment.

3. When the level of autocorrelation or multicollin­
earity is increasedr the standard errors of the regression co­
efficients of all estimators increase in magnitude.

A conclusion that can be drawn from this experiment 
is that the overall performance of the ordinary least squares 
estimates is poor. The improvement in the ordinary least 
squares estimates when the ranking is judged by the mean square 
error loss function only illustrates the conjecture that the 
ordinary least squares estimates cluster around a point other 
than the parameter of the sampling distribution of the esti­
mates. Furthermore, using the mean square error as a loss 
function can lead one to make incorrect inferences about the 
performance of different estimators. With specification errors 
involved, the choice of two stage least squares as an esti­
mator gives the best estimates when the median is the loss 
function. If the loss function is the coefficient of concen­
tration, then the three stage least squares estimator is mar­
ginally superior to the two stage least squares estimator.
In ranking the estimators over all data sets and all loss

^Note that the exceptions are 8.5 percent of the total 
possible chances. Of this 8.5 percent, 85.7 percent occurred 
when calculating estimates for C
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and then applying the Friedman test, three stage least squares 
estimates rank first, two stage least squares estimates rank 
second, and ordinary least squares estimates ranks last. The 
overall conclusion of this experiment is that the three stage 
least squares estimates is preferred wherever applicable. If 
difficulty arises due to complexities of a model, the recom­
mended estimator is two stage least squares. All these con­
clusions are based upon the model and specification errors 
given in Chapter IV.



CHAPTER V

AN EMPIRICAL INVESTIGATION OF A REAL WORLD DEMAND AND 
SUPPLY MODEL AND CONCLUDING REMARKS

The results of Chapter IV, though not entirely con­
clusive, should provide some insight into the analysis of 
other economic models with similar specification e r r o r s .36 
A model chosen to study is similar to Karl Fox's model (p. 403, 
1968) for the consumption of pork and is given as follows:

Demand Q = B + B P  + B Y  + B W
1 0  1 1  1 2  1 3

Supply Q = B + B P  + B R  + B Z .
2 0  2 1  2 4 - 1  2 5

5.1

The variable P is the average retail price of pork in cents 
per pound, Q is per capita consumption of pork, Y is per capita

36The Durbin-Watson statistics for the demand and supply 
equations in 5.1 are 0.385 and 0.802, respectively. The cor­
relation matrix of the exogenous variables is as follows:

Y
W

W
34451 .1146 .2127 

.0706 .0464 
1 .1748 1

98
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disposable consumer income, W is the per capita consumption 
of beef, Z is an estimate of per capita pork production based 
upon exogenous and predetermined variables, and is the 
ratio of the average Chicago wholesale price of hogs per hun­
dred pounds to the average market price of a bushel of corn, 
lagged one year. The data observed is for the years 1922 to 
1941.

The model described above is similar to the model stu­
died in Chapter IV, equations 3.1. There are two equations, 
each equation is overidentified to the following degree,
K** - - 1 = 1.37 The exogenous variable Z is determined
from some larger model and therefore is stochastic. The Durbin- 
Watson statistics show that both equations have autocorrelation, 
and the exogenous variables have a moderate degree of multi­
collinearity. The Monte Carlo model (3.1) and the "real world" 
model (4.1) studied exhibit a high degree of similarity, but 
one must proceed with caution in comparing them because the 
real world model may have other characteristics not included 
in the Monte Carlo model.

The results from the application of ordinary, two 
stage, and three stage least squares to the pork consumption 
model are:

37r ** is the number of excluded exogenous variables 
and is the number of included endogenous variables in the 
equation being analyzed.
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Ordinary Least Squares

Demand Q = 70.5756 - 1.30576P + 0.0843832Y - 0.297492W 
(13.0235) (0.312185) (0.0172713) (0.250361)

Supply Q = 15.8244 - .0395168P - 0.0685225R + 0.750699Z.
(6.1854) (0.114252) (0.120233) "1 (0.079457)

5.2

Two Stage Least Squares

Demand Q = 73.3939 - 2.84232P + 0.143381Y - 0.285731W 
(19.8886) (0.780463) (0.0365858) (0.381654)

Supply Q = 9.10129 + 0.166267P - 0.0649537R _ + 0.775114Z.
(7.26034) (0.145958) (0.130958) (0.0778449)

5.3

Three Stage Least Squares

Demand Q = 92.7631 - 2.82456P + 0.149357Y - 0.709185W 
(16.5251) (0.780397) (0.0364261) (0.295163)

Supply Q = 7.52553 + 0.173896P + 0.00816743R . + 0.781116Z.
(7.01589) (0.145723) (0.104180) (0.0775719)

5.4
The results yielded by applying these three estimators to the 
real world model for the consumption of pork are not conclusive 
but some evidence is generated which seems to substantiate the 
conclusions of Chapter IV. For example, the ordinary least 
squares estimate of the coefficient of the price variable in 
the supply equation has a negative sign while the two stage 
and three stage least squares estimates of the same variable 
have a positive sign. Based upon economic theory, one would
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expect a positive sign for the coefficient of the price vari­
able in a supply function for a non-durable commodity. A 
second result that one would expect is that the sign of the 
coefficient of the variable should be positive, and only 
the three stage least squares estimate gives this sign.
Based upon these results, the choice of an estimator should 
be three stage least squares first, two stage least squares 
second, and ordinary least squares third.

The evidence yielded by the demand equation support­
ing the two and three stage least squares estimators is not 
conclusive. The signs of the estimated coefficients produced 
by each estimator appear as might be expected. For the esti­
mated coefficients of the demand and supply equations, there 
seems to be a directional pattern of the estimated coefficients 
of all variables except W. This pattern seems similar to 
the conjectures made in Chapter IV (supra, para. 2, p. 95 and 
pp. 92-93). The conjectures can best be summarized by stating 
that the bias of the ordinary least squares estimates is larger 
than the bias of the two and three stage least squares esti­
mates, and that the bias of all estimators is opposite the 
sign of the parameter. An example of this pattern is illus­
trated for the estimated coefficients of the P and Y variables 
in the demand equation. From the above pattern and conjectures, 
one would conclude that the parameters of P and Y are less 
than -2,82456 and greater than .149357 respectively.

In general, the Monte Carlo study presented in Chapter
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IV and the analysis of the pork consumption model substantiates 
the conclusions of past theoretical works and Monte Carlo 
studies dealing with simultaneous equation models with finite 
sample sizes. Basmann*s and Takeuchi*s theoretical findings 
under restrictive assumptions stated that the bias of ordin­
ary least squares is larger than the bias of two stage least 
squares estimates and that the standard error of the regres­
sion coefficients are smaller for ordinary least squares esti­
mates than two stage least squares estimates. The results 
derived from pure theory were confirmed by our Monte Carlo 
studies, when specification errors were involved. Richardson's 
theoretical conclusion also applies to this Monte Carlo study. 
His conclusions, under restrictive assumptions, were that the 
signs of the biases of the two stage least squares estimates 
are opposite to the sign of the parameter and that the size 
of the relative bias lies between zero and minus one. Not only 
were these conclusions warranted for the two stage least square 
estimates, but also for the estimates produced by the other 
two estimators in most cases. Sawa showed that two stage least 
squares estimates are concentrated around the parameter while 
ordinary least squares estimates are concentrated around some 
other value. In our Monte Carlo experiment with specification 
errors, Sawa's results held and three stage least squares 
estimates exhibited the same pattern as the two stage least 
squares estimates.

A general conclusion reached in the Monte Carlo studies
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discussed in Chapter III was that the use of ordinary least 
squares gives estimates that are inferior to other estimates 
for different estimators. This coincides with the findings 
of the Monte Carlo study performed in Chapter IV. A basic 
conclusion of Monte Carlo studies was that the ordinary least 
squares estimates have a large bias but a small variance 
around the mean of the least squares estimates, and the Monte 
Carlo study of Chapter IV verified this. The two stage least 
squares estimates produced in most of the Monte Carlo studies 
were found to be less sensitive to specification errors as 
compared to the estimates generated by ordinary least squares. 
This was also substantiated in Chapter IV.

In Monte Carlo studies where all three estimators were 
used, the basic results of the ranking are identical to those 
given in Chapter IV. When the ranking was changed due to 
specification errors, two stage least squares became the re­
commended estimator over three stage least squares suid ordi­
nary least squares was always considered an inferior estimator. 
In Chapter IV, the three stage least squares estimator was 
less sensitive to the specification errors that were introduced 
when compared to other specification errors in other Monte 
Carlo studies.

Therefore in general, given the three estimators which 
were analyzed in Chapter IV and given the results of the study 
presented and studies in the past, the present investigation 
seems to provide rational evidence for the choice of three
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stage least squares as the appropriate estimator in simultan­
eous models with finite samples. If it is not feasible to 
apply three stage least squares, then two stage least squares 
would be the next best choice. Ordinary least squares is not 
recommended.
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APPENDIX I 
TABLE 1

THE VALUES OF THE MEDIANS OF THE SAMPLING DISTRIBUTION
OF THE ESTIMATORS WHEN THE LEVEL OF

MULTICOLLINEARITY IS LOW

P =0.2 P =0.6 P =0.8 P =0.9
^10 ■ 
OLS

100.0
109.8720 109.8025 101.3255 109.24552SLS.. 104.9565 100.5674 98.8806 102.40603SLS.. 110.7380 105.5630 108.1920 107.6220

®12 == 
OLS

-0.4
-.2127 -.1765 -.1320 -.11402SLS., -.3873 -.3646 -.3545 -.32763SLS.. -.3715 -.3659 -.3369 -.3422

^11 = 
OLS

0.1
.1055 .1438 .1519 .14252SLS. .1067 .1068 .0936 .09043SLS. .1130 .0889 .0791 .0626

^12 = 
OLS ..

0.45
.3585 .3362 .3063 .29252SLS.. .4380 .4022 .4014 .40813SLS., .4283 .4129 .3999 .3920

^20
OLS

50.0
104.9230 119.5995 124.0705 138.14652SLS., 56.6420 72.2471 82.8171 74.46653SLS., 60.4998 67.4109 62.3273 56.4067

®22 
OLS ..

0.6
.4045 .4030 .3410 .27182SLS.. .5804 .4680 .5490 .51753SLS. .5784 .5559 .5281 .5150

^23 = 
OLS .

0.25
.1863 .1535 .1464 .16902SLS. .2217 .2117 .2055 .21093SLS. .2272 .2189 .2107 .1979

^24 = 
OLS .

0.8
.6731 .6077 .5843 .58712SLS. .7883 .7604 .7731 .72693SLS. .7608 .7371 .7512 .7120

109
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TABLE 2

THE COEFFICIENTS OF CONCENTRATION C WHEN 
THE LEVEL OF MULTICOLLINEARITY IS LOW

P = 0 . 2 P = 0.6 P = 0.8 P = 0.9
C^Q = 1 0 0 . 0

O L S ....... 19 18 14 162SLS....... 2 1 2 0 18 133SLS....... 2 2 18 19 18
Bj^2 * " " 0.4 
O L S ....... 14 9 1 1 92SLS....... 24 23 28 163SLS....... 24 23 18 15Cii « 0 . 1

O L S ....... 29 29 25 272SLS....... 27 25 2 2 2 2
3SLS....... 35 30 28 2 1
Ci2 = 0.45 
O L S ....... 27 25 2 1 152SLS....... 30 27 24 19
3SXiS *«•••••• 30 27 26 2 2

^20 * 50.0 
O L S ....... 5 9 3 32SLS....... 1 2 4 4 73SLS....... 17 1 2 1 0 9
B2 2  “ 0 . 6

O L S ....... 2 1 2 1 15 132SLS....... 30 29 27 24
3SLS 30 29 27 24
C 2 3  ^ 0.25 
O L S ....... 2 2 2 1 18 192SLS....... 26 19 18 163SLS....... 29 24 25 18
C 2 4  “ 0 . 8

O L S ....... 33 24 25 23
2SLS....... 35 33 30 263SLS....... 36 29 31 25
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TABLE 3

THE MEAN SQUARE ERRORS OP THE ESTIMATES OF EACH
ESTIMATOR WHEN THE LEVEL OF

MULTICOLLINEARITY IS LOW

P = 0.2 P = 0.6 P = 0.8 P = 0.9
^ 1 0  - 
OLS

1 0 0 . 0

4656.7258 5899.6293 7388.8680 10050.0693
2SLS.. 5140.5873 7691.2040 11606.3994 15548.6741
3SLS.. 3854.0662 7658.0810 12560.8300 15284.1413
=12 = 
OLS ..

-0.4
.0484 .0632 .0844 .1215

2SLS.. .0337 .0444 .0716 .1239
3SLS.. .0335 .0441 .0733 .1179
^ 1 1

OLS
0 . 1

.0159 .0178 . 0 2 1 2 .0307
2SLS. .0163 .0188 .0281 .0435
3SLS. .0099 .0143 .0234 .0316
^ 1 2  = 
OLS ..

0.45
.0248 .0344 .0448 .0548

2SLS.. .0236 .0349 .0471 .0681
3SLS., .0237 .0372 .0514 .0717
C 2 0  =
OLS

50.0
5678.1693 7280.3035 10221.2850 13925.7928

2SLS. 12232.0317 9291.0161 12207.5704 16821.1699
3SLS. 11454.3593 7992.1340 10007.3940 13546.1595
® 2 2  ^ 
OLS .

0 . 6

.0151 .0665 .0979 .1418
2SLS. . 1 0 2 1 .0814 .0992 .1310
3SLS. .0997 .0767 .0881 .1099
^23 ~ 
OLS ,

0.25
.0114 .0143 . 0 2 0 2 .0277

2SLS. .0193 .0162 .0228 .0309
3SLS. .0169 . 0 1 2 0 .0255 .0203
^24 = 
OLS .

0 . 8

.0580 .0810 .1248 .1611
2SLS. .1363 . 1 2 1 1 .1567 .2264
3SLS. .1343 .1132 .1357 .1911
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TABLE 4

THE VALUES OF THE MEDIANS OF THE SAMPLING DISTRIBUTION
OF THE ESTIMATORS ÏŸHEN THE LEVEL OF

MULTICOLLINEARITY IS HIGH

P = 0.2 P = 0.6 P = 0.8 P = 0.9
^ 1 0

OLS ..
1 0 0 . 0

83.4352 71.5492 57.9859 73.51922SLS., 99.3240 83.4078 102.0270 105.97753SLS. 94.0192 100.8200 110.9510 116.0780
® 1 2  " 
OLS ..

—0.4
-.1135 -.0783 -.0158 .04882SLS.. -.3781 -.3294 -.3268 -.30243SLS. -.3537 -.3571 -.3293 -.2992

^ 1 1  = 
OLS ..

0 . 1

.1915 .2246 .2410 .24672SLS.. .1027 .0973 .0816 .10883SLS., .1066 .0991 .0995 .0998
^ 1 2  = 
OLS ..

0.45
.2645 .2433 .2214 .21512SLS.. .4179 .4007 .3639 .36673SLS.. .4159 .3963 .3573 .3560

‘= 2 0  = 
OLS ..

50.0
142.3880 166.8395 172.2160 185.31052SLS. 67.6479 83.6484 88.9468 79.29613SLS.. 74.8051 79.1524 85.3350 98.6380

® 2 2  ^ 
OLS ..

0 . 6

.3352 .3263 .2707 .23032SLS., .5727 .5115 .5086 .45123SLS.. .5612 .5262 .5133 .4614
^23 " 
OLS ..

0.25
.1258 .0874 .0453 .04292SLS. .2368 .1961 .2050 .19323SLS.. .2330 .2008 .1915 .1811

OLS
0 . 8

.6778 .5961 .5738 .56962SLS. .8260 .7664 .7820 .69533SLS.. .8058 .7784 .7330 .6265
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TABLE 5

THE COEFFICIENTS OF CONCENTRATION C WHEN 
THE LEVEL OF MULTICOLLINEARITY IS HIGH

P = 0.2 P = 0.6 P = 0.8 P = 0.9
Cĵ Q — 100.0
O L S ....... 21 15 11 112SLS....... 17 10 8 83SLS....... 19 15 17 16
®12 = -0.4 
O L S ....... 8 4 4 62SLS....... 20 20 15 123SLS....... 18 18 21 12= 0.1 
O L S ....... 23 17 15 142SLS....... 25 24 22 203SLS....... 27 30 28 28
C^2 - 0.45 
O L S ....... 17 11 7 92SLS....... 25 26 20 193SLS....... 27 29 23 17
^20 — 50.0 
O L S ....... 5 3 3 32SLS....... 5 3 2 53SLS....... 7 7 5 5
B22 ” 0.6 
O L S ....... 16 12 14 122SLS....... 29 21 15 153SLS....... 32 21 17 15
S 3  " 0'^^
OLS ....... 17 13 12 102SLS....... 16 16 14 153SLS....... 15 19 15 13
^24 ~ 0.8 
O L S ....... 29 21 17 202SLS....... 25 22 23 203SLS....... 21 24 21 18
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TABLE 6

THE MEAN SQUARE ERRORS OF THE ESTIMATES OF
EACH ESTIMATOR WHEN THE LEVEL OF

MULTICOLLINEARITY IS HIGH

P = 0.2 P = 0.6 P = 0.8 P = 0.9
^ 1 0  ■

1 0 0 . 0

OT A . . 7074.8906 9227.9728 10574.5503 13350.6744
2SLS....... 8622.7975 13745.0508 21882.6208 31298.9262
3SLS....... 6388.3628 10336.1283 17819.7372 25936.7775
® 1 2  - -0.4
OT.S - . .1032 .1296 .1587 . 2 0 2 2
2SLS....... .0836 .1008 .1406 .2399
3SLS....... .0873 .1036 .1265 .1945
‘= 1 1  = 0 . 1

or.R - .0342 .0418 .0442 .0584
2SLS....... .0294 .0338 .0593 . 1 2 1 1

3SLS....... .0197 . 0 2 0 2 .0381 .0730
( = 1 2 = 0.45
OT.S . .0505 .0671 .0862 .1042
2SLS....... .0540 .0748 .0935 .1366
3SLS....... .0570 .0799 .0932 .1315
^ 2 0  ■ 
OT.S .

50.0
16400.3267 18969.2250 24874.9588 38195:9810

2SLS....... 33644.8904 32500.4010 28250.1966 41025.9509
3SLS........ 31596.4031 28772.8203 22033.9556 30573.8113
® 2 2  - 0 . 6

OT.fi - .0741 .0983 .1386 .1900
2SLS....... .1904 .2472 .1965 .2649
3SLS....... .1841 .2319 .1726 .2307
C23 = 0.25
OT.fi . .0462 .0497 .0657 .1072
2SLS....... .0669 .0515 .0586 .0961
3SLS....... .0631 .0461 .0389 .0594
^24
OT.fi .

0 . 8

.0945 .1355 .2256 .2997
2SLS....... .2887 .4195 .4352 .6308
3SLS....... .2809 .4931 .3936 .5757



APPENDIX II

The parameters for each measure of performance are 
ranked in the following form for each data set.

Estimators

OLS 2SLS 3SLS

C.o r r r

B 11 r r r

•
•

•
•

r r r

“j Zr zr Zr

r is the rank of the 
estimators— 1,2, or 3,

R. is the sum of the 
column ranks for each 
estimator.

The Kendall Coefficient of Concordance: W (Siegel, 1956) 
is used to test the null hypothesis that there is no differ­
ence in relative performances between estimators for a given 
data set. The alternative hypothesis would be that there is 
a difference in relative performances between estimators for 
a given data set. The level of significance used is five per 
cent. If the null hypothesis is rejected, the estimators will 
be ranked according to the following procedure. The estimator 
with the smallest Rj receiving the rank 1, the estimator with 
the largest Rj receiving the rank 3, and the other estimator 
receiving the rank 2.
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The Friedman Two-Way Analysis of Variance by Rank 

test for matched groups (Siegel, 1956) is applied to within 
data sets and among data sets. The null hypothesis will be 
that there is no difference in relative performance within 
(among) data sets. The alternative hypothesis is that there 
is a difference in relative performance within (among) data 
sets. The significance level is five percent. The form is 
as follows;

Within Data Sets 
Estimators

4*OCO

«
a

OLS 2SLS 3SLS
®1L r r r

®iH r r r

“j Ir Zr Zr i = 1,2,3,4

Among Data Sets 
Estimators

m4*oiO
4»«

OLS 2SLS 3SLS
=11 r r r

=21 r r r

=31 r r r

=41 r r r
Zr Zr Zr i = L, H
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r now is the rank of the estimator received by the Kendall 
coefficient of concordance: W non-parametric test.

An example of this procedure is given as follows:

Loss Function - Median Data Set - SIH

Kendall Coefficient of Concordance: W

OLS 2SLS 3SLS
^10 3 2
®12 3 1 2
^11 3 1 2
Cl2 3 1 2
^20 3 1 2
®22 3 1 2
^23 3 1 2
^24 3 2 1

24 9 . 15
Rank 3 1 2

W = L - N
kMN"- N)

Critical value of W is .37

W = .82 > .37

Therefore reject H and 
accept ®
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Friedman Two-Way Analysis 

of Variance by Rank

OLS 2SLS 3SLS
=1H 3 1 2
S2h 3 1.5 1.5
®3B 3 1 2
®4H 3 1 2

12 4.5 7.5
Rank 3 1 2

_ _ k
= — —   I (R.)-3N(k+]

^ Nk(k-l) i=l ?

Critical value of is 6.(

X‘ = 43.1 > 6.0

Therefore reject H. and 
accept


