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CHAPTER I 

INTRODUCTION 

The manufacture and treatment of web materials, which include polymer films, 

paper, metallic foils, and fabrics, present a unique challenge. These materials are 

usually very long, thin, and highly flexible. Since the webs are flexible and moving 

at high speeds, controlling the processing is difficult without a precise model. The 

goal of this thesis is to develop a web handling model which captures the viscoelastic 

behavior of materials to give more confident control of the web handling process. 

Among the concerns for the web handling systems, tension control is 

paramount since the product qualities and the stable operations of web handling 

systems rely on the tension levels in the webs. For example, a coating procedure 

requires the proper tension in the substrate in order to obtain a product with 

acceptable interaction between the substrate and the coating layer. Improper tension 

may also result in slackness of the web line, breakage of the web materials, slippage 

between the web and the rollers, or wrinkling of the web. 

The tension in the web is a function of the operating conditions, the system 

configuration and the web material response. A slight variation in the speed 

difference between the rollers at the ends of a span will result· in a large change in the 

tension level in the system. Tension in a free span depends not only on the velocity 

1 



difference at the two ends of the span but also on the tension level in the upstream 

span. This phenomenon, referred to as "tension transfer" (Shin, 1991), is closely 

related to the system configuration. 

2 

The material response is also an important factor in the tension control. Most 

web materials, especially polymer films at higher temperatures or wet paper, exhibit 

viscoelastic behavior, i.e., the material response to the applied force can be attributed 

to the combination of the present time conditions as well as past rheological events. 

This time-dependent, partially viscous and partially elastic deformation behavior 

makes the tension control very difficult. 

The control strategy is another significant issue. There have been two major 

control methods in the web handling systems: open-loop and closed-loop (Shin, 1991; 

Reid and Lin, 1993). The open-loop control measures and controls the speed. 

Closed-loop control directly measures the tension level in the span and adjusts the 

roller speed in order to maintain the desire~ tension value. Practical difficulties 

associated with measuring the tension on line have hampered the use of closed-loop 

control. As expected, open-loop control is more sensitive to the material response 

than the closed-loop control since the tension level in the span is a strong function of 

the material properties. Therefore, the roller speeds must be controlled with extreme 

accuracy and the relationship of roller speed to tension known with a high degree of 

precision. 

Due to the complexity of web handling systems, modeling of the system is not 

an easy task, especially when viscoelasticity is incorporated into the model. Some 
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models have been developed which use a purely elastic material response (Hooke's 

Law). However, a realistic model must include the viscoelastic properties of the web. 

In fact, the purely elastic model is a limiting case of the viscoelastic response 

exhibited by most web materials and would be included in a realistic viscoelastic 

model. 

In a viscoelastic material, the deformation is continuous, although not 

produced at a constant rate, throughout a free span. The viscous component of the 

deformation allows the stress to relax to some extent. In contrast, a purely elastic 

model allows only for a step change in the deformation to occur at the beginning of 

the span. Thereafter, the deformation remains constant meaning that there is no 

possibility to model stress relaxation. Moreover, the permanent deformation due to 

the viscoelasticity will affect the tension distribution in the subsequent spans and may 

result in undesired operating conditions. 

In addition, the interaction of the web line and rolls or rollers may severely 

affect the system behavior. Rolls and rollers apply the driving forces, provide the 

moving velocities, and serve as supports to the web line by direct contact. In the 

contact region, the web material undergoes a rapid change of kinematic conditions. 

For the viscoelastic material, this rapid change may seriously influence the tension 

transfer from the upstream span to the downstream span as well as the viscoelastic 

responses in the subsequent spans. 

Under transient operating conditions such as start-up or shut-down of the 

system, viscoelasticity is even more significant since relaxation will affect the system 



behavior. Purely elastic models cannot predict the dynamic response resulting from 

the relaxation. 

This study was motivated by the need for a viscoelastic model. Also, the 

study provides a means for evaluating the effects of the viscoelasticity. Open-loop 

control problems are major concerns, but the methods and techniques are essentially 

the same for the closed-loop control problems. 

In Chapter II, the background in the field is introduced and the relevant 

literature is reviewed. Considerable attention is drawn to the previous studies of 

viscoelastic models and constitutive equations. 

In Chapter III, the viscoelastic model is developed through system analysis, 

appropriate assumptions, and the establishment of governing equations. The White­

Metzner rheological equation of state was used to model viscoelastic behavior. Non­

dimensionalization is further carried out to enable the model to be suitable to general 

analysis. In addition, boundary and initial conditions are set for the governing 

equations. 

Chapter IV describes and develops the numerical methods and the 

formulations. As an analytical solution to the model was not possible, two different 

numerical methods were used for the steady-state and unsteady-state analyses, 

respectively. 

Chapter V presents the numerical simulation results and discussions for both 

steady state and unsteady state. Parameter studies were performed to investigate the 

effects of the viscoelasticity by varying the viscoelastic properties. The tension 

4 



distribution is the major concern, and is examined in several significantly different 

cases. Also, the viscoelastic results are compared to the purely elastic simulation in 

order to emphasize the significance of the viscoelastic model. 

5 

Finally, in Chapter VI, conclusions are drawn, and recommendations are made 

for future studies. 



CHAPTER II 

BACKGROUND 

Significant attention has been given to the modeling of web handling systems 

during the past several decades. Current models capture the behavior of complex 

multi-span systems under the assumption that the web materials behave as Hookean 

solids. However, the literature also shows that nearly all web materials have some 

degree of viscoelastic character. This chapter reviews the development of web 

handling models and presents the essential elements of viscoelastic modeling and 

numerical solutions to systems of differential equations. 

In spite of extensive studies on web handling systems, the effect of 

viscoelasticity on tension control is still somewhat of a mystery in multi-span systems. 

Undesired operations could result from influence of viscoelastic behavior of materials. 

Modern web handling industries require precise control of web tensions since 

significant economic loss and unacceptable product quality result from malfunctions of 

the operating systems. Thus, even though the incorporation of viscoelasticity may 

significantly complicate the modeling, a realistic and rigorous model which includes 

viscoelastic response is essential for the accurate tension control. 

6 
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2.1 Web Handling System Models 

Work on modeling web handling systems can be traced to the late 1950's. 

Campbell (1958) related the tension of the moving web material in a free span to the 

deformation of the web by assuming that the material obeyed Hooke's law. The 

dynamic change of the tension was also modeled for a free span. Campbell clearly 

recognized the need to include viscoelasticity in his model and made an initial attempt 

to account for viscoelastic effects in the formulation by adding one more term to the 

elastic model. However, the model was not fully examined for details of the 

viscoelastic behavior of web handling systems and did not consider the effect of 

tension transfer from the previous span. 

Models have also been proposed by Grenfell (1963), Brandenburg (1976) and 

Taguchi et al. (1985). Grenfell also assumed Hookean behavior but introduced the 

tension transfer effect into the mathematical model which allowed the model to 

simulate the interaction of adjacent spans in multi-span systems. Steady-state system 

behavior as well as dynamic responses with step change and sinusoidal variation of 

the end speeds were formulated in the model. Grenfell noted, from the simulation 

results, that the tension did not instantaneously respond to step changes in roller 

speeds even though the material was purely elastic. The delay in tension response 

could be correlated by a time constant that reflected the residence time of a material 

particle in the span. 

Based on a purely elastic analysis, Brandenburg (1976) also conducted 

mathematical simulation for the dynamic behavior of web handling systems. The 
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purely elastic analysis revealed that the stress, strain and velocity in a free span at 

steady state and under transient conditions do not vary with position. This conclusion 

is true for Hookean materials since all deformation occurs at the beginning of the 

span when the web enters the current span, and the tension is constant in the span if 

the inertial forces can be neglected due to very small mass of the web. However, real 

web handling systems show continuous deformation through out the span due to the 

viscoelastic nature of the material. 

Brandenburg's model also showed that the velocity of the web in contact with 

a roller is not instantly identical to the surface velocity of the roller. The web 

velocity gradually changes from the value of the previous span to the value of the 

current span going through an adhesion zone and a sliding zone. This phenomenon 

has also been reported and modeled by Whitworth and Harrison (1983) and Shin 

(1991). 

The interaction of tensions in multi-span systems was also studied by Taguchi 

et al. (1985), who related the tension difference before and after the drag (driven) 

roller to the friction force in the web/roller contact region. An actual measurement 

showed that the tension transfer was significantly affected by the slippage between the 

web and the drag roller. Although Taguchi et al. acknowledged that viscoelastic 

effects might influence their system (wet paper), only an elastic analysis was given. 

In later work, Shin (1991) produced a systematic method to model a multi­

span system. In his model, the systems were assembled from six primitive elements: 

unwinding roll, free span, driven roller, idle roller, dancer-type device and winding 
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roll. These elements could be combined to any desired configuration to simulate even 

the most complex web handling operation. Shin also considered tension transfer in 

his model. 

The results of Shin's model showed that the tension level in the current span 

of interest depends on the operating conditions in the current span as well as the 

conditions in the previous span. The tension transfer between spans makes tension 

control more difficult since the effect of change in one operating parameter (such as 

roller speed) will propagate through the subsequent spans. Therefore, accurate 

control of the operating conditions in the current span of interest cannot be maintained 

to give the desired tension level without controlling the operating conditions in the 

upstream spans by using some systematic control scheme. 

Although viscoelastic effects were not incorporated into his model, Shin 

pointed out the viscoelastic behavior in the web handling systems and showed that the 

effect of viscoelasticity on the tension decreases as transport speed increases. 

By extending Shin's work, Reid and Lin (1993) conducted simulation for 

multi-span systems during start up. The variation of the tension during the start-up 

procedure was fully investigated for systems with simple fixed-gain PID controllers. 

The elastic analysis indicated that web breakage and instability could occur during the 

start-up procedure if the system is not properly controlled. 

In an experimental investigation, Whitworth and Harrison (1983) reported that 

the materials (Meiinex and HOPE) exhibited typically viscoelastic behavior in tensile 

tests. In an attempt to account for the effect of the viscoelasticity, the authors 
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suggested that a viscoelastic dynamic modulus be used to replace the elastic modulus 

in their model, which was developed to predict the tension variations due to 

disturbance. However, the formulation was still based on Hooke's law in essence and 

showed no significant effects from the "viscoelasticity" of the materials. 

Another model dealing with longitudinal tension was proposed by Akatsuka 

(1990) whose mathematical model employs linear viscoelastic equations to simulate 

the steady-state responses of the web systems. Unfortunately, the model did not 

include the effect of irrecoverable strains. Calculation results for several two-span 

systems indicated that no matter what the speed of the third roller, the total strain at 

the end of the second span is always identical to the strain predicted from the elastic 

model. Actually, it is expected that the irrecoverable deformation is accumulated in 

the subsequent spans so that the total strain will be larger than the elastic strain. 

Other models for web handling systems, which are based on elastic analyses, 

can also be found in multi-span systems (Dunn, 1969; Soong and Li, 1979; Young et 

al., 1989; Young et al., 1989; Parant et al., 1992), tension control (Martin, 1973; 

Henderson et al., 1979), tension measurements (Horst and Negin, 1992), tension 

oscillations (Veits et al., 1981), lateral dynamics (Shelton and Reid, 1971a; Shelton 

and Reid, 1971b), winding mechanism (Pfeiffer, 1966; Pfeiffer, 1968; Rand and 

Eriksson, 1973; Pfeiffer, 1977), and wrinkles (Gehlbach et al., 1989). 

Several viscoelastic studies are also available in winding mechanics 

(Tramposch, 1967; Mukherjee, 1974; Lin and Westmann, 1989; Kalker, 1991), and 

single span behavior of paper handling system (Hauptmann and Cutshall, 1977). 
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2.2 Viscoelastic Properties and Behavior 

Most web materials are viscoelastic. The degree of viscoelasticity varies from 

one material to another and depends on the micro-structures of materials and 

processing conditions such as temperature, pressure, geometry of deformation, type of 

force, operating condition, time and prehistory. The viscoelastic properties of web 

materials as well as viscoelastic behavior of systems are discussed in this section. 

The viscoelastic response of a real material exhibits both elastic (recoverable) 

and viscous (irrecoverable) components. The ratio of viscous to elastic response 

depends on the manner of deformation, the temperature and the time scale (Ward, 

1983). A viscoelastic material will respond to a sudden change in stress with an 

instant elastic deformation and reacts to a gradual change in stress with both elastic 

and viscous deformations. Since the viscous deformation requires a finite amount of 

time, the material response is highly time-dependent. The longer the time over which 

a stress is applied, the greater viscous component of the deformation. Therefore, a 

viscoelastic material may respond to an applied stress like a purely elastic solid 

(governed by Hooke's law) if the time over which the stress is applied is short 

enough, or like a purely viscous fluid if the time is long enough. 

To quantify the viscoelastic behavior, a dimensionless group, the Deborah 

number, (Bird et al., 1987) may be employed. The Deborah number is defined as the 

ratio of the characteristic time of the material response to the characteristic time of 

the process. A zero Deborah number means that viscous fluid behavior is obtained 

while an infinite Deborah number indicates that the system behaves like a Hookean 



elastic solid. Any intermediate Deborah number indicates some degree of 

viscoelasticity. 
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In practice, many commercial web handling systems are operated with larger 

Deborah numbers and, therefore, the elastic analyses for these systems may result in 

reasonable predictions. However, there are many other systems in which viscoelastic 

behavior may be so important that the operation and product quality can be 

significantly affected. The relatively small Deborah number systems consist of either 

more viscoelastic materials or long residence times and should be analyzed using 

more rigorous models that include viscoelasticity. 

Two types of common web materials have short relaxation times. One is 

polymeric materials at higher temperatures, and the other is wet paper. An effort has 

been made to study the viscoelastic properties of the two types of materials (Halsey et 

al., 1945; Afcker, 1970; Smith, 1973; Titomanlio et al., 1976; Rendell et al., 1987). 

The emphasis has been on relaxation and creep that are typical characteristics of 

viscoelasticity, though few of the studies have been directly related to the applications 

in web handling. 

Polymeric materials exhibit viscoelastic behavior provided that the operating 

temperature is high enough. For amorphous or partially crystallized polymers, the 

amorphous part of the structure undergoes a sharp and dramatic transition of 

deformation response at a temperature called the glass transition temperature, Tg 

(Aklonis et al., 1972). Above this temperature (actually a narrow region of 

temperature), the short range diffusional motions of the polymer segments begin to . 
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occur so that the viscoelastic behavior increases. In this rubbery region, the degree of 

viscoelasticity may be several orders of magnitude higher than that in the glassy 

region (T < Tg) in which the chain segments are "frozen" in fixed positions with 

slight vibrating. 

Indeed, the organization of the macromolecules plays a critical role in the 

viscoelastic behavior of polymeric materials. As relaxation takes place over chain 

distances with time, the relaxation times are strongly dependent on the chain 

architecture. Thus the molecular weight (related to the structures) and temperature 

(reflects the thermal activity) are very important in the rheological properties of the 

polymers (Mark et al., 1984). 

Orientation also affects the viscoelastic responses of the polymer materials 

since the further viscous deformation is restrained, for example in elongational 

deformation, by the aligned chain structures. Flow-induced crystallization and 

anisotropy are also typical consequences of the orientation, which influence the 

viscoelastic behavior (Ericksen, 1962; Perkins and Porter, 1977; Cogswell, 1981; 

Tree, 1990; McHugh et al., 1991; McHugh et al., 1992). 

Since the molecular motions of the polymers are largely restricted in the glassy 

region, the materials are hard and brittle (Aklonis et al., 1972). But, the polymers in 

this region are still capable of flowing with a comparatively small degree of 

viscoelasticity (Lockett, 1972). However, the viscoelastic response of linear polymers 

will increase rapidly as temperature increases above Tg since the entire polymer 

molecule can undergo large scale movement. For some other structural types of 



polymers such as highly crystalline polymers or lightly cross-linked polymers, the 

mechanisms of molecular motions are different. However, viscoelasticity will 

generally increase as the processing temperature increases (Ferry, 1970; Aklonis et 

al., 1972; Ward, 1983). 
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Wet paper, as another typical viscoelastic material, is composed of porous, 

fibrous structures. Although the paper sheet is constructed by macromolecules from 

natural or synthetic. fibers, the deformation mechanism is quite different from that of 

common polymers. 

Structurally, the paper sheet can be considered as fiber network. A fiber in 

the network is linked to a number of crossing fibers by hydrogen bonds (Nissan, 

1977; Hollmark et al., 1978; Page et al., 1979). When the network undergoes 

straining, the stresses are propagated through fibers and their contact points. Since 

the distribution of fiber length and direction are random, the stress distribution is 

microscopically nonuniform and highly dependent on the local structure of the 

network. The strain in a fiber is dependent on the local network strains and the strain 

transfer process through the crossing fibers (Hollmark et al., 1978). 

The fiber to fiber bonds that are under highly concentrated stresses usually 

break earlier and the stress will redistribute. Therefore, paper exhibits plastic 

deformations (Rance, 1956; Sanborn, 1962; Perez, 1970). The weaker the bond is, 

the more ready it will break. 

In a wef paper web, however, the bonds are very weak compared to the fiber 

strength since the interface between two crossing fibers is formed by water. Since the 
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bonds cannot withstand any significant shear stress, the fiber has less tendency to 

break (Williams, 1983). When the sheet is strained, the fibers tend to slide 

frictionally over the crossing fibers after the bond failure. This mechanical response 

is typically viscoelastic since the process is highly time-dependent (Brezinski, 1956; 

Schulz, 1961) and results in permanent deformation. 

Viscoelastic behavior of wet paper can be affected by several factors. Typical 

viscoelastic response of wet paper can appear at high stress level before failure but is 

still not negligible at low stress level (Hauptmann and Cutshall, 1977; Baum et al., 

1984). Also, the water content of paper can greatly influence the viscoelasticity. 

Experiments have indicated that the viscoelastic response of the wet paper increases 

with increasing relative humidity (Brezinski, 1956; Byrd, 1972). 

Even though the deformation mechanisms of polymer and paper are different, 

their viscoelastic behavior is essentially the same and can be characterized by the 

same macroscopic models (Brezinski, 1956). Actually, there has been a great amount 

of work successfully done regarding the viscoelastic behavior of paper using the same 

mathematical models as those for polymer materials. The work in this field can be 

found in stress analysis (Agbezuge, 1981a; Agbezuge, 1981b; Pecht and Johnson, Jr., 

1985), creep (Pecht et al., 1984), single-span web behavior (Hauptmann and Cutshall, 

1977), and dynamic response (Roylance et al., 1980). 

Theoretically, the viscoelastic behavior of web handling systems with those 

materials should be taken into account. The viscoelastic responses of the systems in 

some conditions will behave quite differently from those modeled by Hooke's law that 



can only characterize the limiting properties of the materials, i.e., purely elastic 

responses. 

2.3 Rheological Equations of State 

Historically, rheological equations of state have been developed over more 

than a hundred years from primary forms to more sophisticated ones, from non­

objective to objective, and are still under development. Extensive applications have 

revealed that no single rheological equation of state can universally predict the 

viscoelastic responses in various applied situations (Spriggs et al., 1966; Tanner, 

1983; Bird et al, 1987). 

The selection of a model should be made based on the understanding of the 

essence of the model, particular applications, and equation solving techniques. A 

more systematic and thorough review can be found in Bird et al. (1987). Here only 

some relative context is given for the purpose of this study. 
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Generally speaking, the rheological equations of state fall into five major 

categories that characterize the viscoelastic responses of the processes. Each of those 

equations has found specific applications. 

The Generalized Newtonian Fluids (GNF) are the simplest constitutive 

equations. The stress tensor, I., is linearly related to the strain rate tensor, i, by the 

viscosity, 7/. The viscosity may be a function of the second invariant of the strain rate 

tensor, II, or its equivalent, the magnitude of the strain rate tensor, t 
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(2.1) 

This viscosity function is commonly chosen to be a power law relationship to account 

for the non-Newtonian viscosity. A typical power law relationship can be expressed 

as 

T) = myn-1 (2.2) 

where m and n are parameters. 

An essential limitation of the generalized Newtonian fluid is that it cannot 

predict elastic effects so that the use of GNFs must be restricted to systems with very 

small Deborah numbers. However, in the common web handling systems especially 

with solid materials, the Deborah numbers are quite large and the elastic effects are 

very important. Therefore the generalized Newtonian fluid is not suitable in modeling 

web handling operations. 

General Linear Viscoelastic Fluids are a large group of rheological equations 

of state, which linearly combine Hooke's law and Newton's law of viscosity. A 

typical example is the Maxwell model 

a 
i- + l -i- = -Tin!,· = 1 at= u..,.. 

(2.3) 

where A1 and 710 are the time constant and zero-shear-rate viscosity, respectively 

(Ferry, 1970; Aklonis et al., 1972; Lockett, 1972; Han, 1976; Ward, 1983). Other 

members of this group include the Voigt model, the generalized Maxwell model, and 

the Jeffreys model. 
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The linear viscoelastic models do not meet the requirement of material 

objectivity. The concept of material objectivity or admissibility (proposed by 

Oldroyd) was well explained by Bird et al. (1987), that is, the relationship of stress 

and strain should be independent of the coordinate system, position in space, 

translational and rotational motions of the material element, and effects of the 

neighboring elements. 

To illustrate material objectivity, the turntable problem is shown here. A 

shearing flow with constant strain rate, i', between two parallel plates is on the 

turntable as shown in Figure 2.1. If one views the flow on the turntable and uses the 

general linear viscoelastic model to determine the viscosity, the zero-shear-rate 

viscosity, flo is 

Tio = f H(s)ds (2.4) 

0 

where H is the relaxation modulus. If one views the flow in a laboratory coordinate 

reference (off the turntable), the viscosity, when the parallel plate is lined up with the 

x-axis, is given by 

Tlo = f H(s)cos2<,)sds. 
0 

(2.5) 

In the second case, f/o is dependent on the angular velocity, w. Physically, however, 

the viscosity must be a definite value no matter how one views it. Obviously, the 

general linear model gives different results based on the different coordinate 
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Figure 2.1 Turntable Problem 
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references. The coordinate dependence of the interpretation in this example clearly 

illustrates the non-objectivity of the general linear models. 
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Although the rotational motion is generally absent in web material, the 

translational motion is significant since the web materials may be stretched to such an 

extent in some operations that the relative translation will affect the objectivity. The 

linear viscoelastic models are restricted to small-displacement-gradient flows and 

therefore are incapable of accounting for material objectivity. 

Another inconvenience of using the linear viscoelastic models in modeling web 

handling systems arises from the conveying movement of the webs, especially in 

transient analysis. Usually, a web enters a free span with variables changing over 

position and time. The partial derivatives of the variables in the linear viscoelastic 

models require moving coordinates unless a translation between the moving 

coordinates and fixed coordinates is involved. However, in transient analysis, this 

translation is too cumbersome to consider. 

Both the effect of the translational motion and the inconvenience of using 

moving coordinates in web handling systems require a more sophisticated constitutive 

equation that is objective (admissible), and can be conveniently constructed in a fixed 

coordinate system. 

The Differential Constitutive Equations can meet the requirements by 

introducing convected derivatives to replace the partial derivatives. The equation may 

be generated by changing the convected derivatives for the partial derivatives in the 

linear viscoelastic model which results in a quasi-linear model, or by including 
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nonlinear terms. The kinematic quantities in these models are defined in the 

convected coordinate system but expressed in terms of Cartesian components in a 

fixed coordinate system. Generally speaking, the nonlinear models are more accurate 

than the quasi-linear models since they can predict real material data such as shear-

rate-dependent viscosity that the linear models cannot. 

As an equivalent approach to the differential models, the Integral Constitutive 

Equations allow more general equations to be generated by taking advantage of 

integration. A simple integral constitutive equation can be expressed as 

t 

'J:_(t) = f Q<.t-t')!(t,t')dt' (2.6) 

_.., 

where Q(t-t') is the memory function. Although the integral models are particularly 

useful in some applications, the gen~ral forms of the integral models prohibit more 

accurate numerical evaluations in practice since the material functions are difficult to 

determine. Furthermore, unless convected coordinates are introduced, integral 

models involve in the problem of tracking the position of particles making the 

computational time significantly longer than that of the equivalent differential models 

(Crochet et al., 1984). 

Actually, the choice of using the differential model or the integral model is 

arbitrary as long as they are equivalent in theory. Practical· uses of the models rely 

on a number of factors such as the material, the accuracy required and the computing 

techniques. 

The Retarded-Motion Expansion (RME), in the last category of constitutive 



equations, is based not on empiricism but rather a purely mathematical treatment. 

The RME is an expansion about Newton's law of viscosity, and practically used in 

truncated forms 
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(2.7) 

J, = -[b1J:(l) + b~> + bu <rc1). '1_1/ + b~3> 

+ b12<rc1) 0 
~) + '1.2) 0 11/ + b1:11'1.1)=Xc1)>11) + ... ] 

where bi, b2, b11 , etc. are constants and subscripts (1), (2) and (3) indicate first-, 

second- and third-order convected derivatives, respectively. The elastic effect has 

been accounted for since the successive terms in the expansion reflect the deviations 

from the Newtonian behavior, and those deviations are due to the elastic responses as 

mentioned previously. However, the retarded-motion expansion is restricted to 

applications with small Deborah numbers. The applications of the RME outside the 

small Deborah number range will result in undesired consequences such as negative 

viscosity and no stress relaxation. As a result, the retarded-motion expansion is not 

recommended for modeling web handling systems that commonly exhibit large 

Deborah numbers. 

In summary, among the many rheological equations of state available, the 

nonlinear models are particularly suitable and useful for the modeling of the 

viscoelastic behavior of the web handling systems. Therefore, in this study, a White­

Metzner equation (Bird et al., 1987) in the category of Differential Constitutive 
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Equations 

't + T)(y) 't n(y" )Y = G =<t> = -., =e1> 
(2.8) 

was used since it allows for stress relaxation through viscous deformation; preserves 

material objectivity, independence of selection of coordinate system; provides the 

flexibility to model diverse materials such as polymer and paper; and has sufficient 

mathematical simplicity to allow for a solution. 

2.4 Modeling of Extensional Deformation in Transporting Processes 

In modeling of the longitudinal tensions in the web handling systems, the web 

may be considered as a strip of material which is primarily in uniaxial extension, as 

shown schematically in Figure 2.2. As the web is moving from the upstream span 

into the current span, mass and momentum (if heat effects are neglected) are 

transferred under different conditions in the two spans. Therefore, the tensions are 

interactive at the transient point (the roller that separates the two spans). This 

phenomenon is called tension transfer. 

In elastic analyses, Shin (1991) and other authors (Spielbauer and Walker, 

1993; Reid and Lin, 1993) treated the web as a perfectly elastic material. This 

treatment required a step change in strain at the span entrance and no further strain 

occurring in the free span resulting in a one-dimensional (time) approach. 

However, in a viscoelastic analysis, the web behavior is different from that of 

the elastic analysis. As the web particle enters the span, part of the strain is produced 
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Figure 2.2 Schematic Illustration of Tension Transfer Mechanism 
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in the roller region due to the elastic effect. Elastic deformation and the viscous 

deformation will continuously occur throughout the free span. Thus, the total strain 
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is _no longer a constant with position as shown in Figure 2.3. Certainly, a two­

dimensional (position and time) approach must be involved in the modeling so that the 

necessary boundary and initial conditions can be specified for the mixed value 

problem. 

Since tension is only transferred downstream (Shin, 1991), the tension 

interaction occurs between the upstream span and the current span of interest. 

Obviously, the tension interaction should be embedded into the boundary conditions 

for the viscoelastic response in the free span. Moreover, the elastic response in the 

roller region and the viscoelastic response in the free span must be balanced in order 

to determined the tension level. 

Due to the lack of viscoelastic analysis for multi-span web handling systems, 

quantitative viscoelastic behavior is unclear. However, a number of viscoelastic 

analyses can be found in other applications .that are analogous to the web handling 

systems such as fiber spinning (Spearot and Metzner, 1972), thin film casting (Alaie 

and Papanastasiou, 1991), paper making (Hauptmann and Cutshall, 1977), and liquid 

stretching (Denn and Marrucci, 1971). Although these applications involve only one 

span without tension transfer, the viscoelastic responses in the free span are of interest 

in modeling of the web handling systems since they are subjected to the same type of 

deformation. 

Fisher and Denn's (1976) modeling of the fiber spinning process should be 
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particularly noted since their model was similar to the model developed in this study 

in terms of viscoelastic deformations. Fisher and Dunn used the White-Metzner 

equation and simultaneously solved the mass and momentum conservation equations 

for both steady-state and transient operations. Their work showed that the tension 

level is closely related to the Deborah number. 

Other modeling work of viscoelasticity in extensional deformation can also be 

found in steady state (Matovich and Pearson, 1969; Kase, 1974; Keunings et al., 

1983), dynamic and stability analysis (Kase and Matsuo, 1965; Pearson, 1971; 

Pearson and Shah, 1972; Shah and Pearson, 1972a; Shah and Pearson, 1972b; Kase, 

1974; Schultz and Davis, 1984; Kase and Katsui, 1985), and wet spinning (Han and 

Segal, 1970a; Han ad Segal, 1970b). 

2.5 Numerical Methods and Techniques 

The viscoelastic problem cannot be solved analytically without over 

simplifying the complex governing rheological equations. Consequently, most 

researchers have preferred numerical methods in their studies of the extensional 

deformation. 

Usually, the models consist of a set of partial differential equations that 

involve two-dimensional independent variables (position and time). The equations are 

often highly coupled, and the boundary conditions are incomplete or unknown before 

the solution. These difficulties require special techniques to decouple the equations 

and to get the solutions iteratively. 
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Many numerical methods can be found in the literature regarding extensional 

deformation. The examples include series expansion (Kase, 1974), finite element 

method (Keunings et al., 1983; Alaie and Papanastasiou, 1991), finite difference 

method (Pearson, 1971; Shah and Pearson, 1972a; Shah and Pearson, 1972b; Pearson 

and Shah, 1972; Kase, 1974), linearized disturbance method (Schultz and Davis, 

1984), and eigenfunction expansion (Fisher and Denn, 1976). In steady state, the 

governing equations can be solved by Runge-Kutta method (Pearson and Shah, 1972). 

In this study, as will be fully discussed later, the fourth-order Runge-Kutta 

method was used for the steady-state analysis, and the finite difference method 

together with decoupling and iterative techniques were adapted for the transient 

analysis. Theoretically, the results should not significantly depend on the solution 

methods, provided that the algorithms are correctly and precisely controlled for 

consistency, stability and convergence. The choices for this study were primarily 

based on convenience. 

2.6 Summary 

At the beginning of this study, there were no viscoelastic models that capture 

the nature of viscoelastic behavior in multi-span web handling systems. Currently 

existing purely elastic models could not satisfy modern industries with precise control 

of tension for systems with viscoelastic materials. A rigorous viscoelastic model, 

therefore, is needed for modeling system behavior influenced by viscoelasticity for the 

purpose of design, control and operation. To meet the specific requirements for web 
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handling systems, the desired model should include a more realistic rheological 

equation of state and converge to an elastic model in limiting cases. Practical 

difficulties are also embedded in solving the model due to complexity of the problem 

so that specific methods and techniques must be carefully chosen. Those situations 

establish the background for this study. 



CHAPTER III 

MODEL DEVELOPMENT 

This chapter presents the development of the model of viscoelastic behavior in 

web handling systems. In Section 3.1, a typical web handling system is analyzed for 

the case of a viscoelastic material interacting with the rollers. The appropriate 

assumptions are stated in Section 3.2 that make the model, developed in Section 3.3, 

easier to solve without losing the essence. of the problem. In Section 3.4, the 

governing equations are non-dimensionalized. In the steady-state case, the governing 

equations are further reduced to a single ordinary differential equation i~ Section 3.5. 

Boundary and initial conditions are given in Sections 3. 3 and 3 .4 for the unsteady­

state case. Boundary conditions for the steady-state case are specified in Section 3.5. 

3.1 System Analysis 

A representative web handling system is shown in Figure 3.1. The system 

consists of a web line and a set of roller pairs that separate the open spans. Although 

the rollers do not necessarily appear as pairs as depicted in Figure 3.1, the rollers 

represent a means of transmitting forces to the web. Generally, the rollers are 

operated at different speeds so that the tension in the machine or longitudinal direction 

varies in the different open spans due to the drawing. 
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Figure 3.1 A Typical Web Handling System 
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In a given open span, the tension does not vary with position provided that 

inertial effects are neglected. When the web goes through a roller or a roller pair, 

the tension changes from one level in the upstream span to another in the downstream 

span. The tension of the current span depends on the operating condition of the two 

roller sets at both ends of the span, the tension level in the upstream span as well as 

the dynamic change across the entry roller. 

Since the viscoelastic response is a function of the residence time, the 

viscoelastic behavior under different kinematic conditions can vary widely. There are 

three different time scales in the system: the time that is needed for a web particle to 

travel throughout the whole system, tsystem; the time that is needed for the particle to 

go through a particular open span, tspan; and the time that is needed for the particle to 

go through a contact region of the web and a roller set, 1roIIer For common web 

handling systems, the following relationship generally holds: 

t >t >>t . system span roller" 
(3.1) 

From Eq. (3.1), one can conclude that the Deborah number for the procedure 

in the contact region, Deronen is quite large since 1roner will be several orders of 

magnitude smaller than the characteristic time of the material. Therefore, the 

viscoelastic response while in contact with the roller is negligible and elastic 

deformation dominates in the roller contact region. However, the Deborah number in 

the open span, Despan, is several orders of magnitude smaller than Deroller There is 

enough time in the open span to allow for viscous deformation to occur so that the 

viscoelastic response is not negligible. Even though the viscoelastic response in one 
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open span may be not large, the viscoelastic effect will be accumulated due to the 

larger residence time in the whole system. Therefore, the system can be modeled as 

a number of viscoelastic responses in series (open spans) separated by a number of 

purely elastic step changes (rollers). From this point of view, the length of the 

contact region is not significant and can be treated as a zero-length contact since the 

elastic deformations are instantaneous. 

The web velocities, vi, marked in Figure 3.1 represent the velocities of the 

web surface at the points just before the contact regions. Consequently, the transient 

region at the upstream roller is included in the current span. If the contact condition 

is non-slip, the web surface velocity will be identical to the velocity of the roller 

surface in the adhesion region. In the slip case, the velocities of the web surface and 

roller surface are no longer identical, but the definition of the velocities, vi, is the 

same. The determination of the web surface velocity at the roller contact point from 

a given roller velocity is difficult in the slip condition and is not the concern of this 

study. 

Since the web line is transported downstream throughout the system, the 

modeling of the system behavior may be conducted span by span. However, within 

each span, the elastic response in the web/roller contact region and the viscoelastic 

response in the open span are interrelated and must be modeled simultaneously. The 

tension transferred from the upstream span must also be incorporated into the model. 

The results of the current span can serve as the input for the calculation of the next 

span. 
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Figure 3.2 shows an isolated span with a coordinate system. The Cartesian 

coordinate system is fixed in the space with the z-axis coinciding with the machine 

direction and the x-axis perpendicular to web surface. The web velocities at the 

upstream and downstream rollers are v0 and vL, respectively. The length of the span 

is L. 

For actual web handling systems, especially operated at higher temperatures, 

the heat effects may be important since the temperature may affect the material 

properties. For high viscosity polymer materials, heat dissipation may be important 

during the stretching. Low thermal conductivity, typical of polymers, prohibits the 

heat removal from the web line. This action may result in a temperature gradient 

across the web (normal to the machine direction). However, most web lines are so 

thin that the temperature gradient is not large enough to allow the material properties 

to vary significantly within the cross section. Moreover, if the draw ratio is small 

enough, which is the most common case in: commercial web handling systems, the 

temperature should not change significantly along the web line. Thus, the 

temperature may be reasonably treated as constant at least within an open span. 

Exceptions may be found in cases in which a concentrated heating or cooling 

process takes place. In this case, the web may be considered as a number of 

segments that are processed at relatively constant temperatures. In this study, the 

open spans are considered as segments that have constant web temperatures and, 

therefore, the physical properties of the material are constant. However, the 

operating temperature may change from span to span. More severe heat effects are 
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Figure 3.2 An Isolated Span with a Coordinate System 



not considered in this study. 

During the processing, the web material is under tension, and orientation of 

the polymer macromolecules or paper fibers will occur. The orientation will induce 

anisotropy and crystallization (for polymers), which may change the material 

properties. Fortunately, in most web handling systems, the draw ratios are small, 

making this phenomena minor. 

Although the longitudinal tension may induce other imperfect operating 

conditions such as lateral movement or wrinkling of the web line, in this study the 

web line is considered to be under purely uniaxial stretching. As a consequence of 

the small draw ratios, shearing effects are negligible. 
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Finally, the tension is produced only from the drawing, which is due to the 

velocity difference in consecutive rollers. Other forces that can potentially affect the 

tension such as inertial, gravitational, and air traction are excluded in this model. 

3 .2 Assumptions 

Based on the system analysis conducted in Section 3.1, the viscoelastic 

behavior of the system can be modeled under the most common operating conditions 

encountered in the web handling industries. The conditions are reflected in the 

assumptions listed in this section. 

To characterize the deformation, a control element cut from the web line, was 

considered as shown in Figure 3.3. The incline angles, ot and {3, result from the 

deformation of the web. 
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A=bw 

Figure 3.3 A Control Volume Cut from a Web Line 
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Assumptions: 

1. The thickness of the web, b, is much smaller than the other two length 

scales: width and length, wand L, respectively; 

2. The web is in uniaxial extension. 

3. The incline angles, a and {3, are very small. 

4. No shearing deformations exist in the planes perpendicular to the z-

direction. 

5. Inertial, gravitational and air traction forces are negligible. 

6. There are no heat effects, i.e., the web temperature is constant within a 

span. 

7. Material properties are constant within a span. 

8. The length of web/roller contact region is zero. 

9. The material obeys Hooke's law at the web/roller contact point. 

10. The material is incompressible and isotropic. 

11. Stresses and Vz are functions of z only. 

12. The isotropic pressure, p, at the beginning of the open span, is given by 

(Han, 1976): 

1 
P = --(o + o + o ) 3 n yy u (3.2) 

where uij (i,j = x, y, z) are total stresses. 

Assumption 10 requires the density to be constant. In practice, constant 

density is a common assumption in modeling viscoelastic behavior of materials such 
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as polymers and paper. 

Assumption 12 was only used to evaluate the stress ratios at the beginning of 

the open spans since this relationship may not hold at every point within the span, due 

to the use of the White-Metzner equation. 

3.3 Governing Equations 

The governing equations for the free span were derived from: conservation of 

mass, a force balance, and the rheological equation of state. 

3. 3 .1 Mass Conservation 

A mass balance can be written for the control volume shown in Figure 3.3: 

p (z,t)A(z,t)v_z(z,t) 

-p(z+az,t)A(z+az,t)vz(z+az,t) 

= [p(z,t+at)A(z,t+ai) - p(z,t)A(Z,t)] az. 
at 

(3.3) 

The left hand side of Eq. (3.3) accounts for the mass flux in and out of the control 

volume. The right hand side accounts for the mass accumulation rate in the control 

volume. 

By dividing both sides of Eq. (3.3) by .1z, allowing .1z and .!lt to approach 

zero, and applying assumption 10 (p = constant), the mass conservation equation 

becomes: 
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aA + a(Av) = O. (3.4) 
at az 

3.3.2 Force Balance 

By definition: 

(3.5) 

The two stress components of interest are: 

0 xx = 't'xx - p, (3.6) 

and 

(3.7) 

Therefore, 

(3.8) 

In an open span, the web is supported by rollers at the two ends. 

Consideration of assumptions 2 and 11, which require the stresses to be uniformly 

distributed within the cross-section, allows the force balances in the x- and z-

directions to be expressed as: 

(3.9) 

and 
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F 
a:u. = A - Pa, (3.10) 

where Pa denotes the ambient pressure. 

By substituting Eqs. (3.9) and (3.10) into Eq. (3.8), the tension can be given 

as: 

(3.11) 

Due to assumption 5, the tension in an open span will not be a function of 

position along the web line. Therefore, differentiating Eq. (3.11) with respect to z 

yields: 

(3.12) 

Eq. (3.12) is the needed form of the force balance. 

3.3.3 The Rheological Equation of State 

The White-Metzner model (White and Metzner, 1963; Bird et al., 1987) was 

chosen as the rheological equation of state: 

' ... T) ... 
" + G~l) = TJ#t) 

(3.13) 

where, 
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D-r: 
1: = ----= - {J::Y ~}T - {J_ ·:Y !1 
=(I) Dt - -

(3.14) 

and 

D-r: a-r: 
----= = -= + ~-V .!}. 
Dt at -

(3.15) 

Note should be made that there is no minus sign on the right hand side of the 

White-Metzner equation in order to be consistent with the definition of the stress 

tensor in Eq. (3.5). 

From assumption 3 and 4, the velocity gradient tensor can be written as: 

avx 
0 0 -ax 

Vv= 0 
avy 

0 (3.16) . 
ay 

0 0 
av% 
az 

With assumption 4, the stress tensor can be expressed as: 

'r:u 0 'r:xz 

1: = 0 'r:yy 'r:yz • 
(3.17) 

'r:a 'tzy 'r:zz 

Thus, 
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avx 
0 

avz 
't'- 't'-

X:t c3x x.z az 

't'·Vv = 0 
avy avz (3.18) 

't'- 't'-yy ay yz az 
avx avy avz 

't'- 't'- 't'-~ax zy ay zz az 

and 

a't'X:t 
0 

a't'xz 
v-- v--z az z az 

~-~ :1 = ~-Y>:1 = 0 
a't'yy a't'yz (3.19) 

v-- vz~· z az 
a't'~ a't'zy a't'u 

v-- v-- v--z az z az z az 

The xx and zz components of the convected derivatives of the stress tensor can 

be extracted as: 

(3.20) 

and, 

(3.21) 

For an incompressible material (assumption 10): 

~-~ = 0. (3.22) 

From the symmetry of the deformations in the x- and y-directions: 



avx = av, = _ _! avz 
ax c3y 2 oz 
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(3.23) 

By definition (Bird et al., 1987), the xx, yy and zz components of the strain rate 

tensor can be written as: 

and 

avx 
#l)xx = 2 ax ' 

av 
Y - 2 y 
::!::(l)yy - c3y ' 

av 
y = 2-z. 
::!::(l)zz oz 

(3.24) 

(3.25) 

(3.26) 

Eq. (3.13) is a tensor equation from which the xx and zz components are of 

interest. From Eqs. (3.17), (3.20), (3.21), (3.24), and (3.26), the xx and zz 

components of Eq. (3.13) can be expressed as: 

,, (y. > ( ai: ai: av ) av 
i; + -- --2:! + V --2:! - 2,; -=. = 2fl(y)-=., 
.a G ot z oz .a ox ox 

(3.27) 

and 

,, (y. > ( ai: ai: av ) av 
i; + -- --E. + V --E. - 2,; _z = 2T1(Y)-z 

zz G c3t z oz zz oz c3z ' 
(3.28) 

respectively. 

Eq. (3.23) can be substituted into Eq. (3.27) to give: 
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n(y')(ai; a1: av) av ,; + -·•-~ + V ~ + ,; _z = -ri(y)-z. 
xr G at zc3z. xraz az 

(3.29) 

Since only one stress component normal to the transport direction is needed in 

the derivation of the model, uxx was arbitrarily chosen. Assumptions 2, 10 and 11 

require the deformation behavior in the x- and y-directions to be identical. Thus, if 

<1yy is chosen, the results of the model will be exactly the same. Actual cases do exist 

in which the deformation in the x-direction is different from that in the y-direction 

(Titomanlio et al., 1976). However, this effect is not within the scope of this study. 

In this study, a power law expression, 

ri(y) = my"-1, (3.30) 

was selected for the viscosity in the White-Metzner equation. m and n are the power 

law coefficient and exponent, respectively. 'Y is the magnitude of the strain rate 

tensor, and can be obtained from Eqs. (3.23)-(3.26) and (3.31): 

y = 1 
2Ic1) :. Ic1) = !( )2 ( )2 ( )2] 1 avx . avy av% . 

22ax +2ay +2c3z (3.31) 

= ~avz. V-'I az 
Introducing Eq. (3.31) into Eq. (3.30) yields the viscosity function: 

(3.32) 

Finally, by substituting Eq. (3.32) into Eqs. (3.29) and (3.28): 



and 

m av n-l(a't' ~ av l 't' + 3(n-l)/2(-)-z __E: + V __E: + 't' _z 
xx G oz at z oz xx Bz 

. av r-1 av = _3(n-l)/2m _z _z 
oz oz' 

't' + 3(n-l)/2(m) avtr-l(a't'u + V a't'u - 2't' avz) 
u G oz at z Bz .u: oz 

av n-l av 
= 2 .3(n-l)/2m _z _z 

az az 
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(3.33) 

(3.34) 

Eqs. (3.33) and (3.34) are the equations governing the rheology of an open 

span. 

3.3.4 Strain in the Web Material 

The elongational strain in the.z-direction, ez, can be examined by considering 

three points in the web line labeled u, 1 and 2, respectively, as shown in Figure 3.4. 

The point u denotes the unstretched state; 1 and 2 denote any two different stretched 

states. Since the material is assumed to be incompressible (assumption 10), the 

density is constant. Mass conservation requires: 

(3.35) 

where ez is measured relative to the unstretched state. Eq. (3.35) is a first order 

representation for the relation and thus can be applied to the cases with small strain, 

which are characteristic of web handling operations. 
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Figure 3.4 A Schematic Showing Strain at Three Different Positions 
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From Eq. (3.35), the strain at any time or position can be obtained from: 

(3.36) 

3. 3. 5 Elastic Response in the Contact Region 

Based on assumptions 2, 3, 4 and 9, the change in Uzz and the change in Ez 

across the contact region are related by: 

(3.37) 

where E is the Young's modulus; and auzz and .dez are defined as: 

(3.38) 

and 

(3.39) 

In Eqs. (3.38) and (3.39), o- indicates the position just before the web/roller contact 

region, and o+ indicates the position just after the web/roller contact region. 

From Eqs. (3.8) and (3.9), 

(3.40) 

Substituting Eq. (3.40) into Eq. (3.38) yields: 

(3.41) 

Under assumption 8, the mass cannot accumulate in the contact region. 
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Therefore, the mass conservation at the contact region can be expressed, with 

consideration of assumption 10, as: 

(3.42) 

By applying Eq. (3.36) in the contact region (1 = o-, 2 = o+) and taking note 

of Eq. (3.42), the strain at o+ can be written as: 

(e)o+ = [l + (e) -] (vz)o+ - 1. 
~ z o (vz)o-

(3.43) 

Therefore, from Eqs. (3.39) and (3.43), 

~e = [(vJo+ - 1]u + (eJo-1· 
z (vJo-

(3.44) 

Finally, the relationship of the stress change and the strain change across the 

contact region becomes: 

If the conditions in the upstream span are known, and the web velocities 

before and after the contact region are determined, the stress difference at the 

beginning of the current open span can be calculated from Eq. (3.45). 

Clearly, Eq. (3 .45) can be considered as a relationship governing the tension 

transfer effect, and also serves as a link for the span to span calculations. However, 

the key factor that controls the tension transfer is (vz)o+, and (vJo+ must be 

determined from the viscoelastic response in the open span, not just the elastic 

response in the contact region. 



3.3.6 Initial and Boundary Conditions 

and 

The boundary conditions for the free span were specified as: 

A(O+ ,t) = A0+(t), vz(O+ ,t) = v0+(t), 

(,:zz - ,:.u)(O+,t) = i:0+(t), 
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(3.46) 

(3.47) 

where L is the length of the span and the subscript L indicates the position at the end 

of the current span. At any time, t, the cross-sectional area, velocity and stress 

difference at z = o+ must be specified as functions of time. At z = L, only velocity 

needed be specified. The boundary conditions were selected based on the solution 

strategy that will be fully described in Chapter IV. Among the boundary conditions, 

only vL(t) is known prior to the solution in the case of open-loop control. 

In open-loop control, the variables at the position o+ are initially unknown and 

must be determined during the solution. Determination of these variables requires a 

trial-and-error technique for the interaction of responses in the contact region and 

open span. Once v0+(t) is known, Ao+(t) and (Tzz - TxJo+(t) can be determined from 

Eqs. (3.42) and (3.45). 

The initial conditions for the free span were specified as: 
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A(z,0) = A00(z), vz(z,O) = v00(z), 

(,;zz - i:xx)(z,0) = i:00(z), 

(3.48) 

where subscript 00 indicates initial values. A typical start-up procedure begins with 

position free initial values of the variables. However, the initial values of A, Vz and 

( T zz - T xx) are allow to be functions of position so that simulation of a transient 

procedure can be started from any initial state, for example, from a steady state. 

3.3.7 Summary of the Governing Equations 

Eqs. (3.4), (3.12), (3.33) and (3.34) are the governing equations for the 

viscoelastic response in an open span. Simultaneously solving of these nonlinear 

partial differential equations together with the initial and the boundary conditions, 

Eqs. (3.46)-(3.48), as well as the elastic response at the web/roller contact region, 

Eq. (3.45), can give the results for the boundary and initial value problem. 

3 .4 Non-Dimensionalization 

The governing equations were converted to dimensionless form for general 

analysis. By following Fisher and Denn's example (1976), with appropriate 

modifications, the dimensionless variables were defined as: 
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z vz (A.Jo+ 
~ = -, 4> = --, T .. = ,; .. --, 

L (v z.)0- v v Fs 

A (Vz.Jo-
a = -- 6=--t 

(A)0+' L ' 

(3.49) 

where the subscript s means steady state and ij = xx or zz. ~, cf,, Tij, a and (} can be 

thought of as dimensionless distance, velocity, stress, area and time, respectively. 

3 .4.1 Dimensionless . Governing Equations 

By using the dimensionless variables defined above, the governing equations 

(3.4), (3.12), (3.33) and (3.34) become: 

(3.50) 

a 
-[a(Tzz - T.n:)1 = 0, 
a~ ·. 

(3.51) 

I act>ln-1( aT xx aTXX act>) I act>r-1 act> T + De- - + 4>- + T - = -N - -
.a a~ aa a~ xx a~ a~ a( 

(3.52) 

and 

T + Detact>r-1(aTZZ + 4> aTU - 2T a4>J = 2N tact>r-1 act>. (3.53) 
zz a~ aa a~ · zz a~ a~ a~ 

Two dimensionless groups naturally appear in Eqs. (3.52) and (3.53): 
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(3.54) 

and 

N = DeG (A.Jo+. (3.55) 
F . 

s 

De is the Deborah number which reflects the ratio of the characteristic time of the 

material response to the characteristic time of the operation in steady state. N is the 

ratio of the characteristic viscous stress of the material to the applied tensile stress in 

the z-direction in steady state. 

3 .4. 2 Initial and Boundary Conditions 

The boundary and the initial conditions, Eqs. (3.46)-(3.48), were also 

converted to dimensionless form: 

and 

a(0+,6) = a0+(6), cl>(0+,6) = cl>0+(6), 

(Tzz - T_xJ(0+,6) = T0+(6), 

cl>(l,0) = cl>1 (0), 

(3.56) 

(3.57) 



a(~,0) = a00(~), <l>(~,O) = <1>00(~), 

(Tzz - Txx)(~,O) = T00(t). 

3.5 Governing Equation in Steady State 
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(3.58) 

In steady state, the general governing equations can be reduced to a single 

ordinary differential equation with dimensionless velocity as the only independent 

variable. By deleting the terms that involve differentiation with respect to 8, and 

replacing the partial derivatives with total derivatives, Eqs. (3.4), (3.12), (3.33) and 

(3.34) are reduced to: 

(a8<J>)' = 0, (3.59) 

(3.60) 

(3.61) 

and 

respectively, where the prime indicates differentiation with respect to ~ and the 

subscript s means steady state. 

Expanding the derivatives in Eqs. (3.59) and (3.60) and combining the two 

equations yield: 
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(3.63) 

Integrating Eq. (3.63) with respect to~ gives: 

(3.64) 

where c is an integration constant and can be determined from the boundary 

conditions 

(3.65) 

yielding 

1 
C = --. 

(«l>)o+ 
(3.66) 

The parameter c is of particular importance since the effect of the upstream 

conditions on the current span enters the calculations through c. Hence, c may be 

thought of as a tension transfer parameter. The parameter c is also an interaction 

factor that reflects the link between the elastic response in the contact region and the 

viscoelastic response in the open span. c remains undetermined until the solution is 

obtained. 

Subtracting Eq. (3.61) from Eq. (3.62) yields: 

(Tzzs - Tx;x) + Del«l>;ln-t[«l>s(Tzzs - Tx;x)1 - «1>;(2Tzzs + Tx;x)] 

= 3Nl«l>;ln-tcl>;. 
(3.67) 

By noting that 2Tzzs + Txxs = 3Tzzs - (Tzzs - TxxJ and substituting Eq. (3.64), 



56 

Eq. (3.67) becomes: 

which can be solved for T zzs: 

c(j>s 2c4>s N 
T = ---- + -- -.-. 

zzs , 1 t 3 De 3Del4>sln- 4>s 
(3.69) 

Differentiation of T zzs with respect to ~ gives: 

where the double prime indicates the second derivative with respect to ~. 

When cf>s' > 0, 

II 

+ ~;} T'_ =c[ I 
n4>s4>s 

zzs 3De( 4>~t-t 3De(<J>~t+t 
(3.71) 

When cf>s' < 0, 

II 

+ 2::t· T'_ =c{ I 
n4>s4>s 

zzs 3De 14>~ ln-1 3De l4>~1n+l 
(3.72) 

In either case, Eqs. (3. 71) and (3. 72) can be written as 

(3.73) 

Eqs. (3.69) and (3.73) can be substituted into Eq. (3.62) and manipulated to 
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give the governing equation for the dimensionless velocity of a viscoelastic web in an 

open span: 

(3.74) 

where sign( <f> ') equals to + 1, 0 or -1 when <f>' is positive, zero or negative, 

respectively. Eq. (3.74) is a second-order, nonlinear ordinary differential equation. 

The boundary conditions for the dimensionless governing equation in steady 

state are: 

and 

V 
<I> =D =....!!:. 

s Rs V 
sf) 

at ~ = o+, (3.75) 

at ~ = 1, (3.76) 

where DRs is the draw ratio in steady state in the span. Emphasis should be given to 

the fact that (<f>Jo+ is unknown before the actual solution of the governing equations 

for the viscoelastic response in the open span and the elastic response in the contact 

region. 

3.6 Chapter Review 

In this chapter, the governing equations, in dimensionless form, were written 

for unsteady-state and steady-state cases. In the unsteady-state analysis, the four 

coupled, nonlinear partial differential equations govern the mass conservation, force 
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balance and rheology of the free span. The elastic step changes at web/roller contact 

region were also given by the relationships between stresses and strains across the 

contact region. The selected boundary and initial conditions were specified for the 

governing equations. All the governing equations must be solved simultaneously. 

In steady state, the governing equations were reduced to a single, second­

order, ordinary differential equation. The boundary conditions were also given for 

the steady-state case. Simultaneous solving of the governing equation and the elastic 

step change at the contact region, together with the boundary conditions will give the 

solution for steady state. 

Since the elastic step change at web/roller contact region and the viscoelastic 

response in the open span are interrelated, the boundary conditions at the position of 

o+ for the viscoelastic calculations are not known prior to the solution. A special 

solution strategy will be used to overcome this difficulty as is fully described in the 

next chapter. 



CHAPTER IV 

NUMERICAL METHODS AND TECHNIQUES 

The governing equations developed in Chapter III are sufficiently complicated 

that an analytical solution is not possible without significant over simplification. 

Numerical methods, therefore, were necessary to solve the model equations. 

Since the governing equations for the steady-state and transient-state cases are 

different in the number of variables, classification and order, the solution methods and 

strategies were different. In the steady-state case, a fourth-order Runge-Kutta method 

was employed to solve the second-order ordinary differential equation (Section 4.1). 

The set of partial differential equations for the transient case was solved by using a 

finite difference method, which is presented in Section 4.2. The stability criteria are 

discussed in Section 4. 3. 

4.1 Steady State 

The governing equation for the steady-state case, Eq. (3.74), is a second­

order, nonlinear ordinary differential equation with the dimensionless velocity as the 

variable. Eq. (3.74) was solved by a standard fourth-order Runge-Kutta method 

(Gerald and Wheatley, 1989). The Runge-Kutta method is a linearization approach 

for solving ordinary differential equations and has been widely used in computer 
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solutions. For a given first-order, ordinary differential equation 

and boundary condition 

dy = g(x, y), 
dx 

y(xo) = Yo, 
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(4.1) 

(4.2) 

within each step, the variable at the end of the step is evaluated based on a weighted-

average combination of values of the given function estimated at four inter-points 

(4.3) 

In Eq. (4.3), ki are the values of the function at the inter-points and can be expressed 

as 

(4.4) 

(4.5) 

1 1 
'Ir = hg(x. + -h, y. + _'Ir), 
"'3 1 2 1 2 "'2 

(4.6) 

(4.7) 

where h = LU. Since the four evaluations of the function are required in each step, 

the fourth-order Runge-Kutta method is generally more accurate and efficient than 

those methods with a simple one step evaluation like the modified Euler method. The 

fourth-order Runge-Kutta method has a local error of 0[(..1x}5] and a global error of 
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O[(~x.)4]. 

In open-loop control, roller speeds are specified at ~ = o- and ~ = 1, which 

results in a boundary value problem in steady state. Two boundary conditions, Eqs. 

(3. 75) and (3. 76), are required for the solution of the governing equation, Eq. (3. 74). 

However, the fourth-order Runge-Kutta method is based on a step..:by-step procedure 

that needs both <f>s and </>s' at~ = o+ as initial values. Therefore, the boundary value 

problem must be transformed to an equivalent initial value problem. A shooting 

method (Gerald and Wheatley, 1989) was used for this purpose. In this method, an 

initial value of(</>' 8) 0+ is assumed and the calculated value of (</>J1 based on (</>Jo+ and 

(</>' 8) 0+ is compared with the specified value of (</>J1 ( = DRs). If these two values of 

( </>8) 1 do not meet to within the desired precision, (<I>' Jo+ is reassumed and the 

procedure is repeated until the desired precision is achieved. 

(3.69): 

The first derivative of <f>s at ~ = o+, (</>' 8) 0+, can be determined from Eq. 

( <I>~) o+ = sign{[3(T rzs>o• - 2]De + 3M 

1 

1~~~~·~~~~1n 
[3(T rzs>0• - 2]De + 3N 

(4.8) 

As shown in Eq. (4.8), the derivative can be evaluated from the initial stress, (Tzzs)o+, 

and the model parameters, De, N and n. Under assumption 12 in Chapter III, (Tzzs)o+ 

can be evaluated as below. 

By considering Eqs. (3.2), (3.9) and (3.10) as well as the symmetry of uxx and 

uyy, the isotropic pressure at z = o+ becomes: 
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(4.9) 

Therefore, from Eqs. (3. 7), (3.10) and (4.9), ('rzJo+ can be determined, in steady 

state, from: 

(4.10) 

and, Eq. (4.8) becomes: 

1 

(<l>~)o+ = 13~1~. (4.11) 

However, as shown in Chapter III, the boundary condition at ~ = o+ for the 

viscoelastic response in the open span is unknown until the governing equations for 

the viscoelastic response and the elastic response in the contact region are solved 

simultaneously. The determination of (cps)o+ requires that Eqs. (3.45) and (3. 74) be 

solved by a trial-and-error technique. Once the two boundary conditions at~ = o+ 

are met, ( 'Ps)o+ is finally obtained. 

To facilitate the use of the Runge-Kutta method, which is generally formulated 

for a first-order differential equation, Eq. (3. 74) was reduced to a system of two 

simultaneous first-order equations: 

(4.12) 

(4.13) 

where 
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[1 - 3(N/c) + sign(<l>J( 1 - 2De l<l>~ln)] <I>:, 
De<I>., De l<I>~ In n<I>., 

(4.14) 

Application of the Runge.:.Kutta method to the system of equations, Eqs. (4.12) and 

( 4.13), with the initial values of ( </>Jo+ and (<I>; s)o+ will give the dimensionless velocity 

at a set of points along the web line in an open span. 

The shooting procedure is shown in Figure 4.1. The procedure is repeated 

from the first span to the last span in the system. The results of one span serve as the 

input for the next span. Within a span, the model parameters and the model variables 

are determined only when the specified precision is reached. 

To accelerate the loop of steps (1) to (6), a searching technique was generated 

and a bisection technique was also used to determine the correct value of c, denoted 

c·. First, guess an initial value of c, choose a step change in c, and search for c· by 

marching step by step in both directions (increasing c and decreasing c). Check the 

deviations of (</>8) 1 from DRs at both ends of each step of c. Whenever the deviations 

at the two ends have different signs, c· must be within this step. Then use the 

bisection to locate c*. 

4.2 Transient State 

The governing equations for the transient case, Eqs. (3.50)-(3.53), are highly-

coupled, nonlinear, multi-variable, partial differential equations, and must be solved 

simultaneously in order to get a realistic solution for the initial value and boundary 



Adjustc 

No 

Assume c with a good initial guess of 2/(1 +DRs) 

(1) (<l>Jo+ = 1/c 

(2) Calculate (tzzs- 'txxs)o+ by applying Eq. (3.45) 

to steady state noting that (vzs)o+/(vzs)o- = (<l>s)o+ 

(3) Calculate De and N from Eqs. (3.54) and 
(3. 5 5) noting that F s = (As)o+( 'tzzs- 'txxs)o+ 

(4) Calculate (<I> 8')o+ from Eq. (4.11) 

(5) Solve Eqs. (4.12) and (4.13) using 
the Runge-Kutta method to get ( <l>s)1 

Yes 

(7) Calculate other quantities of interest: 
F s, V zs, As, Ezs, and ( 'tzzs - 'txxs) 

No 
i=i+ 1 

Figure 4.1 Shooting Procedure 
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value problem. 

Since the model is one-dimensional in· space, a finite difference method is 

suitable for the solution and preferred because of the simplicity of the method. 

Among the finite difference methods, MacCormack's explicit method (Maccormack, 

1969; Anderson et al., 1984) was chosen in this study since the solution scheme has 

been widely used and is particularly useful for nonlinear partial differential equations 

(Maccormack, 1969; Maccormack, 1982; Anderson et al., 1984). The explicit 

Maccormack method provides second-order accuracy with a truncation error of 

O[ (a~)2, (a8)2]. The explicit scheme was selected since the boundary conditions at 

both ends of the free span are not complete and the boundary conditions at the o+ 

position were determined in a trial-and-error procedure for balancing the elastic step 

change in the contact region and the viscoelastic deformation in the open span. 

Although the explicit Maccormack method was not proposed for equations like 

those of the present model, the idea and the approach can be adopted for this study. 

The explicit approach uses a two step difference scheme and conducts the calculation 

explicitly from some initial point to a given point. The method can be illustrated in a 

simple example with a governing equation 

au au 
+ C - = 0, 

at O ax 
(4.15) 

where Co is a constant. At each time level, the first step of the difference involves a 

forward scheme and a predicting solution is obtained 
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Predictor 

_J_·+1 i At( i i) 
U: = U· - C -· - U· 1 - U1• , , , o Ax 1+ 

(4.16) 

In the second step, a backward difference scheme is used to get a correcting solution 

based on the predicting solution 

Corrector: 

_J_·+1 1[ i _j+l At _j+l _j+l l ui = - u, + u-, - Co-(u-i - u-,_1). 
2 Ax 

(4.17) 

The predictor gives a temporary value of u at the time level j + 1. The corrector 

provides the final value of u at the time level j + 1. The discrete solution can be 

obtained by conducting the solution procedure throughout all time levels G) and points 

in space (i). The explicit MacCormac~ method is conditionally stable with equation 

parameters limited within some given region.· 

Since the governing equations of the present model are highly coupled, a 

decoupling strategy was required for solving the set of the equations. The strategy is 

in two parts: (1) Txx and Tzz are treated as independent variables in the White-Metzner 

model by assuming temporarily that cp is known; and (2) a is treated as an 

independent variable in the mass conservation equation by also assuming temporarily 

that </> is known. At each position step, <I> is adjusted until the force balance is 

satisfied to within the required precision. Hence, the four governing equations are 

simultaneously solved in each step in an iteratively decoupling procedure. 
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4.2.1 Discretization of the Governing Equations 

To facilitate the application ·Of the Maccormack method, Eqs. (3.50)-(3.53) 

are reformed to (see Appendix A for details): 

aa aa ac1> 
- + cf>- + -a = 0 ae a~ a~ ' 

(4.18) 

(4.19) 

aTXX + aTXX + (act> + _!_1a4>1l-nlT = _!{_ a4> 
ae cf> a~ a~ De a~ xx De a( 

(4.20) 

and 

c3Tu. + cf> aTu. - (2 acl> - _!_1acl>11-n)T = 2_!{_ acl> (4.21) 
ae a~ a~ De a~ u. De a~ ' 

respectively, where 

F I=-. 
Fa 

(4.22) 

In the Maccormack explicit finite difference scheme, the predictor-corrector 

approach is achieved by: 

and 

au 
ae (4.23) 

for the predictor, 
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au 
ae (4.24) 

for the corrector, 

where u represents the independent variables appearing in the governing equations (a, 

T xx or T,.z in this problem). The superscripts j and j + 1 denote the time levels G + 1 is 

the current time level and j is the previous time level). The subscripts i and i + 1 

denote the position points (i is the current point and i-1 is the previous point). The 

overline indicates the predicted value. 

By applying the difference approaches defined by Eqs. (4.23) and (4.24) to 

Eqs. (4.18) to (4.21), the finite difference formulations can be obtained as shown in 

Sections 4.2.1.1 to 4.2.1.4. 

4.2.1.1 Discretization of Eq. (4.18) 

(a) Predictor: 

,a,;+1 af+1 - a{ ..J+l J+t 
+ 'Vi a~ + < cl>,,; «; = o, (4.25) 

where cf,~ = act,Ja~, which can be determined by a first-order backward difference: 

~+1 _ ~+1 
(cl> y+t = 'Pi 'Pi-1 

~i a~ 
(4.26) 

or a higher order backward difference. 

Eq. (4.25) can be rearranged to: 
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(4.27) 

(b) Corrector: 

"_j+l - _j+l - j _j+l _j+l 
..lai «, ai ,.j+l «i - llt-1 ·+1 ·+1 (4.28) 

AO + '1-'i A~ + (<I>,~ d; = O, 

or, 

4.2.1.2 Discretization of Eq. (4.19) 

(4.30) 

4.2.1.3 Discretization of Eq. (4.20) 

(a) Predictor: 

(4.31) 

or, 
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(T,j(' " [ ;8 + (<f>it' + iJ<f>Etir~r 
(4.32) 

. [(TJ; _ 4>{+1 (TJ;+1 - (TJ; _ ~(4> y/1]. 
ae I a~ ' De ~ i 

(b) Corrector: 

(4.33) 

or, 

(4.34) 

4.2.1.4 Discretization of Eq. (4.21) 

(a) Predictor: 

(4.35) 

or, 
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(T ~+1 = [-1 - 2("' y/t + _1 l(ct> t•11-n]-1 
rr.h ae "'' i De ' i 

(4.36) 

(b) Corrector:. 

(4.37) 

or, 

4.2.2 Treatment of the Boundary Conditions 

The boundary conditions for the transient analysis, Eqs. (3.56) and (3.57), are 

incomplete for the viscoelastic response since the stresses and the cross-sectional area 

at~ = 1 are unknown. The variables Tij, a and cf> at~ = o+ are also undetermined· 

until the solution is reached. The incomplete boundary conditions make the solution 

of the viscoelastic response indirect. In other words, the solution for the viscoelastic 

response in the open span cannot be obtained from Eqs. (3.50) to (3.53) only. The 



elastic step change at the web/roller contact region, Eq. (3.45), must be solved 

simultaneously. The use of the explicit finite difference approach together with the 

trial-and-error technique resulted in a solution. 
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The explicit approach needs only the boundary conditions at ~ = o+. As 

described in the beginning of Section 4.2, the decoupling strategy treats Tm Tzz and a 

as independent variables in the corresponding equations for the solution procedure. 

Therefore, (TxJ0+, (Tzz)o+, and 3o+ are required for the solution of the viscoelastic 

response in the open span. In the trial-and-error procedure, the viscoelastic response 

and the elastic step change are balanced through an iteration until c/>1 meets the 

specified value, c/>0-DR, where DR = vdv0, with the required precision. The three 

boundary conditions, (TxJo+, (Tzz)o+, and 3o+, are unknown prior to the solution, but 

can be temporarily estimated, during the trial and error procedure, from the elastic 

step change in the contact region based on the input from the upstream span. 

Actually, these three boundary conditions can be derived from c/>o+ in each iteration, 

which is the adjustable parameter in the trial-and-error procedure. (TxJo+ and (Tzz)o+ 

can be separated from (Tzz-TxiJo+ by a similar way as described in steady- state 

formulation (Section 4.1) based on assumption 12 in Chapter III. 

In open-loop control, the tension in the span is unknown, therefore, the elastic 

step change in the contact region is also undetermined prior to the solution. 

However, the trial-and-error method reconciles the elastic response in the contact 

region and the viscoelastic response in the open span. Whenever c/>1 reaches cp0_DR 

through the trial-and-error procedure, the corresponding c/>o+ is finally determined, 
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and then the elastic step change can be obtained from ¢o+· 

4.2.3 Solution Strategy 

The solution procedure involves two major parts. One is to determine the 

boundary conditions at the beginning of the open span for the viscoelastic calculation. 

The boundary conditions are dependent upon the balance of the elastic response in the 

web/roller contact· region and the viscoelastic response in the open span, and are not 

known until the two responses are balanced in the trial-and-error, iterative calculation. 

The other major part is to calculate the viscoelastic response using the finite 

difference method for the open span. This part involves several iteration loops for 

getting the solution that simultaneously satisfies the mass conservation, force balance 

and rheological equation of state in each step. 

The solution procedure is shown in Figure 4.2. The loop of steps (a) to (e) 

was automatically executed by a searching-bisection method similar to that in the 

steady-state analysis. Whereas, the loop of steps (i) to (iv) was implemented by 

another searching method: (1) Choose a searching range of ¢o+, denoted [(¢0+)L, 

(cf,0+)iJ. (2) Divide the range into two equal subranges. (3) Do steps (i) to (iv) based 

on the values of cf,0+ at the central points of the subranges, (cf,0+)a and (cf,0+)h. (4) 

Compare the deviations of the calculated values to the specified values of cf,1 at the 

central points and determine the larger deviation. (5) Reset the searching range to 

[(cf,0+)a, (cf,0+)iJ if the lager deviation occurs at the left central point, or [(cf,0+)L, 

(cf,0+)h] if the larger deviation occurs at the right central point. (6) Repeat the 
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Begin 

(i) Assume ( <l>0t )i+ I 

(ii) Calculate the elastic response at the contact region and B.C. 
for the viscoelastic calculation in the open span. 

(a) Assume q,/1 

.------,i (b) Calculate ( <l>;)t+ 1 from Eq. ( 4.26) 

(c) Solve Eqs. (4.32) and (4.34) for (TxJt+1 

Solve Eqs. (4.36) and (4.38) for (TzJ/1 

(d) Solve Eqs. (4.27) and (4.29) for ~+I 

..-----'-__,......,......__, No 
Adjustq,t+1 (e) f= ~+1 [(Tu:)t+l - (fxx)j+l]? 

.__--1i=i+l.._------------~N:;..;.;;;...o< 

No 
Adjust ( <1>0t)i+ 1 1---< 

Yes 

Last point? 

Yes 

Yes 
~k:..:=~k~+..:..21...r-----N_o~ Last span? 

j =j+ 1 No 

Calculate the 

End 

Figure 4.2 Solution Procedure 
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searching procedure until the larger deviation becomes smaller than the given 

tolerance. 

4.3 Special Concerns 
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Generally, there are three major concerns for numerical methods: consistency, 

convergence and stability. These issues are of paramount importance since successful 

and accurate numerical solutions are critically dependent upon the simulation 

conditions as constrained by these requirements. 

For finite difference methods, the numerical models are said to be consistent if 

the truncation error approach zero as the spatial and time increments go to zero; 

convergent if the discretization error approach zero as the spatial and time increments 

go to zero; and stable if the round-off error does not grow exponentially for fixed 

time as the spatial and time increments go to zero (Street, 1973). 

In this section, these three concerns are addressed for the finite difference 

formulations developed in the foregoing sections. Among them, the stability is of 

particular interest since the numerical simulation conditions are mainly constrained by 

the stability criterion. Although the explicit scheme is straightforward and does not 

require a matrix method for the solutions, the time increment is usually bounded to 

prevent the solution from becoming unstable. 

4.3.1 Consistency 

The explicit Maccormack method is of second-order accuracy in both spatial 



and time discretization meaning that the truncation error is O[(A~)2, (A8)2] 

(Maccormack, 1969; Maccormack, 1982; Anderson et al., 1984). As A~ and AO 

approach zero, the truncation error will go to zero with second-order accuracy. 

Therefore, the difference scheme is consistent. 

4.3.2 Stability 
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A complete analysis of stability of the finite difference scheme for the 

governing equations is not available since the equations are nonlinear and complex 

making the analysis intractable. An estimation, however, was conducted in this study 

based on an approximate analysis for the stability criterion. 

There are several available methods for analyzing stability criterion, e.g., the 

von Neumann method (Forsythe and Wasow, 1960; Crochet et al., 1984), matrix 

method (Anderson et al., 1984; Gerald and Wheatley, 1989), and energy method 

(Richtmyer and Morton, 1967). In this study, the von Neumann method was adopted. 

Generally, inclusion of lower order terms in the governing equations will 

affect the stability. However, if the lower order terms do not change severely with 

the independent variables or have smaller coefficients resulting in bounded values, the 

stability criterion will be insignificantly affected or unaffected by the lower order 

terms (Richtmyer and Morton, 1967; Crochet et al., 1984). 

In the present study, the coefficients of the first-order and zero-order terms in 

the governing equations are determined by the velocity derivative, a<f,ta~, as well as 

the model parameters, De and N. In the model, De and N remain constant and the 
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smooth deformation suggests that ocp/o~ does not change significantly if the draw 

ratio, DR, is small enough. Therefore, the first-order and zero-order terms can be 

eliminated from the equations in order to conduct an approximate analysis for the 

stability. Based on this analysis, the governing equations, Eqs. (4.18), (4.20) and 

(4.21), reduce to a common form for all of the independent variables: a, Txx and Tzz, 

au au 
ae + <I> a~ = o, (4.39) 

where u represents a, Txx or Tzz, The three equations represented by Eq. (4.39) are 

linear although the three variables are coupled implicitly by cp, meaning that the 

system behavior is nonlinear. However, if the solution strategy described in Section 

4.2.3 is employed, the three equations are decoupled resulting in a linear system of 

equations. 

The Neumann method requires constant coefficients in the linear difference 

equations (Crochet et al., 1984). If the coefficients are functions of independent 

variables, they can be treated as nearly constant within a step and the method can be 

applied locally (Maccormack, 1969; Crochet et al., 1984). Maccormack pointed out 

that if this locally linearized difference method is unstable, the general nonlinear 

difference equations are also expected to be unstable (Maccormack, 1969). Since the 

velocity distribution is smooth, cp can be treated locally as a constant. Thus, Eq. 

(4.39) can be analyzed using the Neumann method. 

The stability criterion of the explicit Maccormack finite difference method for 

Eq. (4.39) has been investigated using the Neumann method (Maccormack, 1982; 
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Anderson et al. , 1984): 

(4.40) 

Note should be made that cf> has been locally Hnearized. In a span, cf> is changing 

from cf>o+ to cf>o .. .DR for the viscoelastic response. As an estimation for the global 

procedure, I cf> I may be replaced by DRs, thus 

(4.41) 

The relationship in Eq. (4.41) bounds the time incremental size to a value dependent 

on the spatial increment and draw ratio. Well controlled values of ilfJ and il~ should 

result in the desired accuracy and stability of the numerical solutions. 

As analyzed above, Eq. (4.41) is only an estimation of the stability criterion 

for the explicit Maccormack finite difference formulation applied to the governing 

equations. Consideration of the lower order terms and the nonlinear behavior of the 

governing equations will modify or alter the stability criterion. If the factors are 

restrained to limitations mentioned above, the stability criterion should not be 

significantly affected. 

4. 3 .3 Convergence 

There is a definite linkage between the stability and the convergence. Lax's 

Equivalence Theorem (Richtmyer and Morton, 1967; Street, 1973; Anderson et al., 

1984) states this relationship: 



"Given a properly posed initial-value problem and a finite-difference 

approximation to it that satisfies the consistency condition, stability is the necessary 

and sufficient condition for convergence. " 

As the explicit Maccormack finite difference formulation for the governing 

equations has been proven to be consistent and stable (if AO < A~/DRs, estimated), 

based on Lax.'s Equivalence Theorem, the formulation is also convergent. 

The developed finite difference formulation has been shown to be consistent, 

convergent and conditionally stable. 

4.3.4 Numerical Testing 

To verify the stability criterion, Eq. (4.41), several numerical examples are 

given in this section. The unsteady-state cases are evaluated with emphasis on the 

stability. However, the steady-state cases are also investigated for the purpose of 

determining A~. Appropriate values of spatial and time increments are suggested 

based on the numerical testing. 

At steady state, the fourth-order Runge-Kutta method was used on a single­

span system as shown in Figure 4.3. The tensions were calculated for different 

coordinate increments in the z-direction, A~, while keeping the other conditions 

unchanged. The relative tolerance for the dimensionless velocity was set to be 

1 x 10-s. The tension results are shown in Table 4.1. 
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2.25m/s 

De=0.135 
Dils= 1.111 

Sm 

G = 0.55 x 109 Pa, 
m = 1.65 ~ 108 PaS, 
n= 1, 
E = 1.65 x 109 Pa, 
Ao = 1 X 10·4 m2, 

Enny State: Unstressed. 

2.50m/s 

Figure 4.3 A Single-Span System at Steady State 
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Table 4.1 Steady-State Tensions with Different ~e 

0.500 
0.333 
0.250 
0.200 
0.100 
0.050 

2067.25868 
2066.77025 
2066.77025 
2066.77025 
2066.77025 
2066.77025 

Table 4.1 clearly shows that A~ = 1/3 is small enough for the tension 

calculation. Although the fourth-order Runge-Kutta method has a global error of 

O[(A~)4] that requires A~ to be 0.1 to achieve 104 accuracy for the dimensionless 

velocity, the tolerance of velocity error for the solution iteration (1 x 10-5) made the 

tension saturated to five decimal places as A~ = 1/3. The situation was due to the 

fairly linear distribution of velocity in this case. Simulation has also shown that 
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Deborah number and draw ratio could .affect the requirement for the size of A~ since 

those factors could influence the linearity of the velocity distribution. As De 

decreases or DR increases, A~ should be reduced to achieve the required accuracy. 

The increments of A~ and AO at unsteady state have also been determined from 

numerical experiments. To verify the relationship in Eq. (4.41), an example was 

examined as shown in Figure 4.4. Different sizes of A~ and AO were chosen to 

simulate the system and the stable conditions are listed in Table 4.2. 



. v81 = 2.250 mis 

V· 1 

0 

De= 13.5 
Di= 1.008 

Sm 

G = 0.55 x 1C>9 Pa, 
m = 1.65 x 1010 PaS, 
n= 1, 
E = 1.65 x 109 Pa, 
Ao= 1 X 10·4 m2, 

Entry State: Unstressed~ 
Initial State: Unstressed. 

Start-Up Procedure 

t8 = 1 Sec 

V82 = 2.268 mis 

Time 

Figure 4.4 A Single-Span System Subjected to a Start-Up Procedure 
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Table 4.2 Stable Conditions for Different A~ and AB 

0 .. 0496 0.0992 0.1984 

0.045 Stable Stable Stable 

0.090 Unstable Stable Stable 

0.180 Unstable Unstable Stable 

A tolerance of 1 x 10-6 was used for solution iterations for both cJ,i at each point and at 

~ = 1 to prevent the stable condition from the disturbance due to the deviations of cf,. 

From Table 4.2, the unstable conditions really occurred when Ji() > iiVDRs, 

therefore, the stability criterion was verified to be accurate and could be used in the 

numerical simulation in this study as a control for the increments of the coordinate 

and time variables. 

Since the explicit Maccormack method has accuracy of 0[('1~)2, ('10)2], the 

size of a~ should be smaller than that for the fourth-order Runge-Kutta method to 

achieve the required precision. By considering both steady-state and unsteady-state 

simulation, a~ was chosen to be less than 0.05 for most cases in this study. 

4.4 Chapter Review 

In this chapter, the numerical formulations have been developed for the model 

equations. In steady state, two equivalent first-order differential equations were set 

up to replace the second order governing equation and the fourth-order Runge-Kutta 
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method was used to solve the system of equations. The shooting method was adopted 

to solve the boundary value problem with the step by step numerical scheme. The 

searching and bisection procedure was also .. created to implement the trial-and-error 

approach in determining the interaction of the elastic step change at web/roller contact 

region and the viscoelastic response in an open span. 

For the unsteady-state governing equations, the finite difference formulations 

were developed based on the explicit Maccormack approach. The finite difference 

scheme was achieved by the two-step, predictor and corrector procedure. A 

decoupling technique was used to solve the set of governing equations simultaneously. 

The balance of the responses in the contact region and the open span was determined 

by the trial-and-error method. 

Finally, the stability criterion for the finite difference scheme was estimated 

from an approximate analysis and an empirical study. The stability criterion requires 

that the time increment be constrained by the spatial increment and the draw ratio. 

Numerical testing for the stability criterion was also conducted and appropriate values 

of .6.~ and .6.8 were suggested. 



CHAPTER V 

NUMERICAL RESULTS AND DISCUSSION 

In this chapter, the results of the simulation of viscoelastic behavior in 

common web handling systems are presented. First, the model, solution methods and 

program code were verified by comparison to examples from the open literature. 

Second, model parameters were estimated from experimental data in the literature. 

Steady-state operation was examined and, finally, several industrially relevant 

transient cases were considered. 

In the steady-state case, attention was mainly paid to the effects of the 

viscoelasticity of materials on the operating conditions of systems. As a starting 

point, the viscoelastic material response within a single span was examined and 

compared to the response of a Hookean material and experimental observations. The 

viscoelastic response was characterized by the irrecoverable or permanent deformation 

and was correlated by the Deborah number. The effect of the power law exponent, n, 

on the viscoelastic response was also examined. The system response was found to 

be very sensitive to n. Then the study was extended to multi-span cases in which the 

operating conditions were shown to be very sensitive to even very small irrecoverable 

deformations. Tension transfer was also examined through examples with emphasis 

on the viscoelastic effects, and compared to Hookean results. The observed effects 
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were interpreted in terms of the model parameters and the draw ratio. 

In order to investigate the viscoelastic behavior of web handling systems under 

transient conditions, various single-span and multi-span systems were simulated in 

start-up, the transition from one steady state to another, and a sinusoidal disturbance 

about a steady· state. The tension variations during the transient procedures were 

calculated as a function of the viscoelastic properties of the web and were compared 

to those obtained from an elastic model based on Hooke's law. The phenomena of 

slackness of the web line, as well as the influence of slackness on subsequent spans 

were stressed in the numerical simulation. The tension interactions in multi-span 

systems were also examined through examples. General results showed that long time 

scale transitions (start-up and transition between steady states) are more readily 

affected by the viscoelasticity while short time scale transition (e.g. sinusoidal 

disturbance) does not affect the average tension but produces the short term tension 

variation. 

5 .1 Verification 

There is a remarkable lack of data in the open literature concerning the 

operating behavior of web handling systems. However, three limiting cases are cited 

here for the purpose of making comparisons with the model developed in this study, 

VEM (which stands for "ViscoElastic Model"). 

Fiber spinning can be considered to be a single-span system without a step 

change at the entry point since the beginning of the span is taken as the point of 
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maximum swell. Hence, the material response is continuous across the beginning 

point of the span. The total deformation is due solely to the viscoelastic response in 

the open span. 

The second case involves simulation to determine the tension in an open span 

using Hooke's law. In this case, the deformation is a result of the purely elastic 

response at the web/roller contact region. The two limiting cases represent the two 

major responses of viscoelastic materials that the VEM model attempts to capture. 

For the unsteady-state case, a purely elastic, analytical solution was introduced 

to verify the transient prediction of the viscoelastic model in the limit of a purely 

elastic material. The transient behavior of a two-span system was examined in a 

start-up procedure. 

The VEM model has been verified (as shown below) to be accurate in these 

limiting cases. The simulation results also demonstrated that the VEM model will 

converge to the corresponding elastic mod~,l when the model parameters were 

properly specified. 

5 .1.1 Example: Fiber Spinning 

Although the geometry of fiber spinning process is different from that in a web 

handling system, the viscoelastic response in the open span can be characterized by 

the same underlying principles. Fisher and Denn (1976) modeled the viscoelastic 

response of a steady-state fiber spinning process using the White-Metzner rheological 

equation of state. The governing equation for the dimensionless velocity is identical 



to that of the VEM model with c = 1 (no step change at web/roller contact region) 

and the assumption of positive tension. 

To compare Fisher and Denn's model and the VEM model, simulation was 

carried out with the data listed below: 

Material: Polystyrene at 170 °C, 

m .;,. 4.7 x 1()3 PaS113, n = 1/3, 

G = 2.648 X 1Q3 Pa, (Tzzs)o = 1, 

DRs = 5.85, (vzJo = 0.0029 mis, 

L = 0.2 m, (A8) 0 = 1.178 x 10-5 m2• 

88 

Both models predicted the dimensionless inverse tension N = 0.2974 (De = 

0.3). The dimensionless velocities simulated by the two models are shown in Figure 

5 .1. Good agreement can be seen in Figure 5 .1, indicating that the VEM model has 

been properly programmed. 

The viscoelastic response in processing a solid material would not be expected 

to be as severe as in this case, and the draw ratio in the fiber spinning case (5.85) is 

much larger than those in common web handling systems. Also, the stress ratio at 

the beginning of the span ((Tzzs)o = 1 and (Txxs)0 = 0 in this case) is different from 

the common assumptions for solid materials. However, the successful simulation of 

this case by the VEM model shows that the capacity and broadness of the model are 

sufficient for simulating the viscoelastic responses of extensional flow deformations in 

various applications. 
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Figure 5 .1 Velocity Profile for a Polystyrene Melt in a Fiber Spinning Process 
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5 .1.2 Purely Elastic Model Case 

A two-span web handling system is shown in Figure 5.2, which represents an 

actual industrial operation (Shin, 1991). The polypropylene film was pre-stretched 

before it entered the two-span system. In steady-state operation, the tension in the 

first span, Fsi, was measured to be 667.2 N. The tangential velocities of the rollers 

were constant at 2.301 mis, 2.292 mis and 2.286 mis, respectively as shown in 

Figure 5.2. There was no slippage between the web and rollers and thus the 

tangential velocity of the roller represented the web velocity at the contact point. 

To predict the tension in the second span, F92, based on a purely elastic 

material, the model parameter, m, was allowed to be very large. The measured data 

were: 

E1 = 7.998 x 108 Pa, E2 = 1.655 x 109 Pa, 

DRs = 0.9974, (AJ0- = 1.016 x lo-4 m2• 

The other simulation data were: 

G2 = 5.516 x 108 Pa, m = 102° PaS 
' 

n = 1, (Tzzs)o+ = 213, 

At the end of the first span, the first normal stress difference, (Tzzs - Txxs)0-, and 

strain, (ezJo-, were calculated to be: 

F'sl 6 
('t'us - -r.u)0- = (A)o- = 6.567 x 10 Pa, (5.1) 

and 
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Figure 5.2 An Example in Modeling Web Hmdling Symems 
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(5.2) 

respectively. 

Based on these data, the tension of the second span, F sz, was predicted to be 

224.0 N and the tension transfer parameter, c, to be 1.0026 indicating that the draw 

ratio was achieved at the very beginning of the span. A flat velocity profile was 

observed in the open span as would be expected for a purely elastic material. 

An elastic model (Shin, 1991) predicted the tension of the second span to be: 

V V - V 
F F sl + A -,;_2 s2 sl = 227.6 N. 

s2 = sl- ~: 
vs2 vs2 

(5.3) 

The slight difference in the two predicted values of F sz is due to the effect of 

the entry strain which is not accounted for in the elastic model. 

The actual measured value of F82 was 200.2 N. The model predictions are 

11.9% and 13.7% higher than the measured tension for the VEM model and for 

Shin's model, respectively. The difference between the elastic predictions and the 

actual value is to be expected since the material response is not purely elastic. The 

operating temperature for the polypropylene film (31 °C) was much higher than the 

glass transition temperature, -10 °C, (Mark et al., 1984). Therefore, the 

viscoelasticity of the material would be expected to allow the stress to relax from the 

elastic level. 

Although the VEM model, applied under the purely elastic restriction did not 
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predict the correct tension for the real system in the example, the results were in good 

agreement with those of Shin's model (purely elastic). 

The two preceding examples have· provided successful verifications for the 

viscoelastic model for the two limiting conditions that represent the two possible 

extremes in the material response. 

5.1.3 Transient Procedure 

The prediction of the VEM model for a two-span system, during a start-up 

procedure and in the limit of an elastic material, is illustrated in this section and 

compared to an analytical solution. 

The system configuration and material properties are shown in Figure 5.3. 

The span lengths are 7.5 m each. The web had a cross-sectional area of 1.0 x 104 m2 

at the unstressed entry state and a Young) modulus of 1. 65 x 109 Pa. The initial 

system state was unstressed. All tangential roller velocities were linearly increased 

from zero to the steady-state values, 2.50 mis, 2.52 mis, .and V83 , respectively. 

To simulate the purely elastic performance of the system, a very large value of 

m (1 x 1050 PaS) was provided for the viscoelastic model, resulting in an 

approximation of Hooke's law. Three cases were simulated with different draw ratios 

in the second span. The tensions in the two spans are shown in Figure 5 .4 along with 

the analytical solutions. The analytical equations are derived in detail in Appendix B. 

Perfect agreement between the VEM model predictions and the analytical 

solutions for different roller velocity distributions can be seen in Figure 5.4. Clearly, 
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Initial State: Unstressed 

Vs3 

Figure 5.3 A Two-Span System with an Elastic Material 
Undergoing a Start-Up Procedme 
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from Figure 5.4, the VEM model can accurately simulate the transient responses in 

the elastic cases. The results of the comparison further demonstrate that a large 

enough value of m can make the viscoelastic model converge to an elastic model in 

the unsteady state. 

5.2 Estimation of Model Parameters 
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The parameters, G, m and n, can be estimated from experimental data in the 

literature (Shin, 1991). Direct measurements would have been preferable. However, 

the appropriate instrument was not available to this study (see Section 6.2) and the 

estimated values were sufficient for the requirements of this work. 

For the polypropylene film described in Section 5.1.2, the Young's modulus in 

the second span was reported to be 1. 655 x 109 Pa. The tension in the second span 

was measured and found to be 200.2 N. The modulus, G, can be related to the 

Young's modulus in the limit of a deformation occurring in an infinitely small period 

of time. Under these conditions, the White-Metzner equation reduces to 

J:c1> = 6 lc1f (5.4) 

If the deformation is small enough, the zz component of Eq. (5.4), after integration, 

becomes 

..11:'zz = Gayzz. (5.5) 

Hooke's law states that, in a uniaxial deformation, 
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(5.6) 

From Eqs. (3.7) and (3.9), the symmetry of uxx and uyy, as well asp = -(uxx + uyy + 

u'CT.)/3, .duzz can be obtained as: 

3 Ao = -A't' . u 2 u 

Also, by definition: ez = ov/oz and i''CT. = 2ov/oz, ae can be related to .d'Yzz: 

Therefore, Eq. (5.6) becomes 

E A't' = -1::,.y 
u 3 u· 

By comparing Eqs. (5.5) and (5.9), G can be related to E: 

E 
G = -. 

3 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Second, m and n can also be estimated from the data on a two-span system 

found in Section 5 .1.2 and by applying the viscoelastic model with the tension being 

constrained at 200.2 N. Since there is no restriction on the values of m and n other 

than m > 0, an infinite number of combinations of m and n are possible. However, 

the parameters may be roughly limited by intuition. For example, n should be about 

one with possibilities ranging from about 0.3 to 2.0. Some of the possibilities are 

listed in Table 5 .1. 
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Table 5.1 Estimation of m and n 

n m (PaSn) Ao (Sec) 

0.3 not calculable 
0.7 8.7 X 108 1.6 
1.0 1.5 X 1010 27.2 
1.3 2.6 X 1011 470 
1.7 1.2 X 1013 20848 
2.0 2.0 X 1014 358956 

Values of m and n may vary from case to case and even from span to span in 

the same system since m and n are sensitive to thermal and rheological history. In 

polymeric materials, the orientation and crystallinity will significantly affect the 

material properties both in magnitude and anisotropy. Therefore, the values of G, m 

and n should be carefully measured. In this work, the numerical simulation was 

conducted based on the model parameters estimated in this Section or were taken 

from the range of values in Table 5.1 for trend studies. 

5.3 Steady-State Analysis 

The simulation has been conducted in single-span and multi-span cases in 

steady state. In single-span cases, the deformation behavior has been found quite 

different from the elastic case as demonstrated in Section 5.3.1. The viscoelastic 

deformation is characterized by the irrecoverable deformation and correlated by the 

Deborah number in Sections 5.3.2. The effect of the power law exponent, n, on the 

irrecoverable deformation was found to be very significant and is presented in Section 

5.3.3. The model parameter N is shown in Section 5.3.4 as a function of De. 
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The effects of viscoelasticity on multi-span system behavior are shown in 

Sections 5.2.5 to 5.2.7. The operating conditions were found to be sensitive to even 

very small irrecoverable deformations produced in the upstream spans. As a result of 

the irrecoverable deformation, the spans may be in an undesirable slack condition and 

the slackness may further affect the operating conditions in the subsequent spans if 

draw ratios are small enough. Tension transfer was also studied and the simulation 

revealed that the amount of tension transferred was different from the elastic case. 

5.3.1 Single-Span Behavior 

A single-span system is shown in Figure 5.5. The stress and strain before the 

web enters the system were assumed to be zero and the power law exponent was set 

to 1.0. The tangential velocities of the rollers are v80 and vsL• respectively. The 

length of the span is L. 

Figure 5 .5 also shows the characteristic strain behavior which results from the 

simulation of an open span. The strain in the span clearly shows two parts: an 

instantaneous, purely elastic strain at the web/roller contact region, Ee, and a 

viscoelastic strain developed in the open span, Eve· Ee is recoverable. Whereas Eve is 

only partially recoverable. The total strain, Et, is the sum of Ee and Eve· The strain 

ratio, Ev/Et, can be calculated and is shown irt Table 5.2 for DRs = 1.00667. The 

relaxation time (Xo = m/G) is also listed in Table 5.2 for a specific case of (vzJ0- = 3 

mis and L = 5 m. 



· Entry State: 
Unstressed 

I\ I\ 

.. , 
, .. 

' I 

£ 

/\ 

0 

n=l 

L 

Figure 5.5 A Case Study of a Single Span 

100 

VsL 



101 

Table 5.2 Strain Ratio in a Single-Span System 

De Ao (Sec) Eve/ Et (%) 
( (Vzs} o- = 3 m/s, L = 5 m) 

6 10 14.2 
30 50 3.20 
60 100 1.63 

300 500 0.329 
600 1000 0.166 

As can be seen in Table 5.2, the strain ratio, ev/Et, decreases when De or Ao 

increases. The relative contribution of the viscoelastic strain to the total strain is a 

strong function of the Deborah number. As the Deborah number increases to infinity, 

Eve disappears and the system behaves as a Hookean solid. 

For a typical value of the relaxation time, 100 seconds, Ev/Et is approximately 

1 % . Although the viscoelastic deformation may be small in a single span, the tension 

distribution is very sensitive to this small amount of strain as is demonstrated in 

Sections 5.3.5. to 5.3.7. 

The sudden change in strain upon entering a span, followed by a gradual 

change in strain over the span is in agreement with experimental observation 

(Hauptmann and Cutshall, 1977). 

5.3.2 Irrecoverable Deformation · 

The viscoelastic deformation observed in Section 5.3.1 can be characterized by 

irrecoverable deformation and can be related to the Deborah number as well as the 

draw ratio. The irrecoverable or permanent deformation, Ep, in the web material 
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relative to an unstressed state arises from the viscous component of the viscoelastic 

deformation. Generally, the irrecoverable deformation can be determined from an 

"unloading" procedure in which the purely elastic deformation is recovered. 

To measure the relevant contribution of Ep to the total strain, Et, a ratio E/ Et is 

obtained as (see Appendix C for details of the derivation) 

•, = cDj 1 + (e,,)0- - ~(,,.. - ,,.,)0-] - 1 (5.11) 

Et [1 + (Ez.J0-]D.Rv - 1 

In Eq. (5.11), (rzzs - Txx8) 0_/E is the elastic component of the entry strain at o-. 

Therefore, the quantity in the square brackets of the numerator is 1 plus the 

irrecoverable strain present upon entering the span. 

Eq. (5.11) clearly shows that E/Et is a function of the draw ratio, tension 

transfer parameter and entry state (strain and stress)~ Since the tension transfer 

parameter, c, reflects the balance of the viscoelastic response in the open span and the 

elastic step change at the contact region, c is a function of De. Therefore, E/ Et can 

be related to De when the draw ratio, power law exponent, and entry state are given. 

If the entry state is unstressed, i.e., (EzJO- = 0 and (Tzzs - Txxs>o- = 0, Eq. (5.11) 

reduces to: 

EP = _cD_Rs_-_1 (5.12) 
Et D.Rv - 1 

Figure 5. 6 shows the relationship of E/ Et to De with DRs as a parameter, in a 

single span, if the web is initially unstressed and n = 1. When De approaches zero 

(the Newtonian fluid limit) and infinity (purely elastic solid limit), the ratio reaches 
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100% and zero, respectively, as would be expected. As DRs increases, the total 

elastic component (Ee plus part of Eve) and EP will each increase. However, Figure 5.6 

demonstrates that EP will not increase to the same extent as the elastic component. 

The degree to which the material can viscoelastically respond to the tension in 

the span is limited by the length of time the material remains in the span. Since 

increasing DRs does not significantly affect tspan, the viscoelastic response of the 

material is constrained and the elastic component, which can be instantaneously 

achieved, must become proportionally larger to achieve the required total strain. 

5.3.3 Effects of the Power Law Exponent, n 

The power law exponent, n, can also affect the viscoelastic behavior of 

systems as illustrated in this section. n reflects the dependence of the viscosity of the 

material on the strain rate and also appears in the governing equation as an 

independent parameter. The effect of n on single-span system behavior can be 

examined by considering the relationship of E/Et to De and n for a draw ratio, DRs = 

1.1, as shown in Figure 5. 7. To achieve the fixed draw ratio, 1.1 in this case, a 

shear thinning material (n < 1) responds with smaller irrecoverable deformation than 

a shear thickening material (n > 1) for constant De. This result would seem to be 

counter intuitive. However, the explanation follows from examination of Eq. (5 .13), 

a working equation formed from the power law viscosity, Eq. (3.32), Eq. (3.49), and 

Eq. (3.54), 
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(5.13) 

In this case, <f>s' is less than one due to the smaller draw ratio (DRs = 1.1). 

Therefore, the viscosity decreases as n increases for a constant De, resulting in an 

easier means for the material to relax through an irrecoverable strain. 

The results in this section show that the system behavior can be affected 

significantly by the power law exponent in the range of reasonable values (0.3 to 

1.3). Further evidence of the sensitivity of the system behavior is presented in 

Appendix D. Therefore, the determination of the power law exponent is important. 

Experimental measurements of n are strongly recommended for practical applications 

of the model. 

5.3.4 Stress Ratio 

The effect of viscoelasticity on the tension level is examined in this section. 

The general relationship of the tension level to the viscoelasticity can be observed 

from the dimensionless inverse tension, N, as a function of De. A working equation 

for N can be derived by substituting Eq. (3.54) into Eq. (3.55), 

n-1 (v , -Jn 3 2 m _u'_O_ 

L N= --~-~~ (5.14) 

[ <AS •. ] 

The numerator is the characteristic viscous stress of the material and reflects the 

relative degree of difficulty in viscously deforming the material. The denominator is 
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the applied tensile stress. 

The relationship of N to De and DRs for a single span is shown in Figure 5. 8 

for an unstressed entry state. For a fixed DRs (fixed total strain), N increases almost 

linearly with De since the characteristic viscous stress increases due to the difficulty 

in the viscous deformation (see Table 5.2) while the applied tensile stress does not 

change as dramatically as the characteristic viscous stress. On the other hand, N 

decreases as DRs increases for fixed De (fixed characteristic viscous stress). In this 

case, the applied tensile stress must increase to achieve the required total deformation 

making N smaller. 

5.3.5 Effects of Irrecoverable Deformation 

In order to demonstrate the significance of the viscoelastic deformation, the 

system configuration shown in Figure 5. 9 was considered with material parameters 

characteristic of a polypropylene film at room temperature. The system consists of 

two open spans with lengths of 7.5 m each. The web enters the first span in an 

unstressed state with a cross-sectional area of 1.0 x 104 m2 • The material parameters 

are given in Figure 5.9. 

The tangential velocities of the three roller sets were taken as 2.500, 2.520 

and 2.501 mis, respectively. The Deborah number of the first span, under these 

conditions, is 10. The draw ratio in the first span is greater than one (1.008) but, in 

the second span, DRsz is less than one (0.9925). The velocity distribution forces the 

web to stretch in the first span and then allows contraction in the second span. 
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The viscoelastic model predicted the tension in the two spans to be 1191 N and 

-48 N, respectively. While the model based on Hooke's law gives tensions of 1310 N 

and 66 N, respectively. The Hookean model predicted a tension in the first span 

approximately 10 % greater than the viscoelastic model. This result is expected since 

the viscoelastic model allows for a stress relaxation mechanism which is absent from 

the Hookean model. However, the tensions in the second span, as predicted by the 

two models, are quite different. The negative tension given by the viscoelastic model 

indicates that the web must be compressed in order to meet the length and velocity 

specifications. Since a web cannot sustain a negative tension, due to the flexible 

nature of thin films, the second span must be in an undesirable slack or sagging state. 

(Note that the term "sagging" as used here does not refer to gravity since body forces 

have been assumed negligible.) 

The slackness in the second span is due to the irrecoverable deformation 

produced in the first span. The web line must be operated under conditions such that 

the draw ratio in the second span will be greater than some minimum value that will 

wind up the irrecoverable part of the deformation. However, Hooke's law cannot 

predict the irrecoverable deformation and predicts that the velocity of the third roller 

need only be equal to or greater than the velocity of the first roller. In this case 

study, the small irrecoverable deformation in the first span due to the viscoelasticity 

of the material significantly affects the system behavior. The results explain the 

failure of some open-loop control systems that were designed with Hooke's law and 

clearly illustrate the need for more realistic models of the system behavior. 
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The minimum draw ratio required in the second span to prevent slackness, 

DRsZ,mim is closely related to the irrecoverable deformation and draw ratio of the 

previous span. DRsZ,min can be expressed as (see Appendix E for details of the 

derivation): 

(5.15) 

When the entry state of the system is unstressed, the draw ratio reduces to 

1 + e 1 
D - C - P 

&2,min - 1 -
D&1 

(5.16) 

As was discussed in Section 5.3.2, c1 is a function of De. Therefore, DRsz,min 

can be related to De. The relationship of DRsz,min to De1 and DRsl is shown in Figure 

5.10. For a fixed De1, DRsz,min decreases as DRsl increases. Figure 5.10 shows that 

De1 = 100 is a close approximation to the limiting case of De1 = oo , when DRsz,min = 

1/DRst (purely elastic). In design, a larger De is desirable to reduce the tendency of 

slackness under a given set of operating conditions. Large Deborah numbers can be 

achieved by increasing the operating speed or reducing the span length. 

In the example of Figure 5. 9, the minimum draw ratio of the second span was 

0.9928, while the actual draw ratio (0.9925) was within the slack region in Figure 

5.10. 

If the system is in a prestressed entry state, DRsz,min will decrease if c1 is the 

same and the minimum value will occur under the purely elastic prestressed condition, 

DRs2,min = cif[l + (Ezs)10J. The trend can be explained by examining Eq. (5.15). (Tzzs 
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- 7xx8) 10_/E is the elastic component of the total entry strain, (Ez8) 10_. Therefore the 

term in the braces changes from 1 at the unstressed entry state to 1/[1 + (Ezs)10_] at the 

purely elastic prestressed entry state. If the entry strain is completely irrecoverable 

(no entry stress), DRs2 min is identical to the minimum draw ratio from an unstressed 
' 

entry state. 

For multi-span systems, a general conclusion can be drawn that the minimum 

draw ratio will be larger than those predicted by the purely elastic model. The 

difference of the two models will become greater in downstream spans since the 

irrecoverable strain is cumulative. 

5.3.6 Effects of Slackness in Multi-Span Systems 

In a multi-span system, if slackness occurs in a span due to the viscoelasticity, 

the operating conditions of the subsequent spans will be influenced as is illustrated in 

this section. The purely elastic model may not predict any such downstream effects. 

The difference between an elastic and viscoelastic responses can be illustrated by 

considering the three-span system shown in Figure 5 .11. The operating conditions 

and material properties are given in Figure 5 .11. The draw ratio in the first span is 

greater than one (1.008) requiring the web to stretch from the unstressed entry state. 

The web then contracts in the second span due to the draw ratio less than one 

(0.9925) in the span. The third span has a draw ratio of one and the tension level 

depends on the operating condition in the second span. 

The tension predictions are summarized in Table 5.3. 
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Table 5.3 Tension Predictions in the Second and Third Spans 

2nd Span 

3rd Span 

Viscoelastic Model 

0 (-48 N)* 

0 

Elastic Model 

66 N 

66 N 

(* Calculated tension is -48 N but should be treated as 0.) 

The viscoelastic simulation reveals that the second span and the third span are 

slack (zero tension) since the draw ratios are smaller than the required minimum 

values. However, the purely elastic model still gives a positive tension of 66 N in 

each of the two spans meaning that steady-state operation is possible. 

In this case, the slackness in the third span is solely due to the slackness in the 

second span since there is no further stretching in the third span and the tension in the 

third span only depends on the tension transfer (as discussed in Section 5. 3. 7) from 

the second span. If the draw ratio in the third span is kept the same (DRs3 = 1) but 

V83 and v84 are increased by 0.001 mis, the two spans are no longer slack with 

tensions of 12 N and 11 N, respectively. Therefore, the slack condition in the 

upstream span can propagate into the subsequent spans under certain conditions. A 

similar trend can be expected in systems with more open spans; especially in systems 

with small velocity differences. The inescapable conclusion is that even very small 

viscoelastic deformations may significantly affect the system operation. 
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5.3.7 Tension Transfer 

The tension in the current span of interest is affected by the viscoelastic 

response of the material and the tension transferred from the previous span. Within 

any span, the tension must balance the elastic step change across the roller and the 

viscoelastic deformation within the span so that the kinematic conditions at the span 

ends can be met. This section shows that the tension transfer in the viscoelastic case 

is different from that in an elastic case. 

The effect of the tension in the previous span could be examined by an 

example with the same system configuration and operating condition as shown in 

Figure 5. 9 except that the tangential velocity of the third roller set is allowed to vary. 

Several cases are shown in Table 5.4. 

Table 5.4 Tension in the Second Span 

Case 

1 
2 
3 
4 

vs3 t m/s 

2.530 
2.520 
2.510 
2.500 

Viscoelastic 
Model 

1673 
1084 

490 
-108 

Hooke an 
Model 

1956 
1310 

657 
0 

In the four cases, the tensions predicted by Hook's law (i.e. m = oo) in the 

second span are 1956 N, 1310 N, 657 N and zero, respectively. The deviations of 

the Hookean results from the viscoelastic results for the tension in the second span are 

16.9%, 20.8%, and 34.2%, respectively in the first three cases. In the fourth case, 
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however, the deviation is so great that steady-state operations would not be possible 

based on the viscoelastic prediction but would still be possible based on the Hookean 

prediction. 

In the first span, the tension predicted by Hooke's law is 1310 N and the 

deviation in tension is 9.92%. No matter how V83 changes, the deviation in the 

second span is larger than that in the first span as long as no slackness occurs as 

shown in Figure 5.12. Hence, viscoelasticity is increasingly important along the web 

line from the beginning to the end because of the accumulation of the irrecoverable 

deformation. 

5.3.8 Summary 

The effects of viscoelasticity on system behavior in steady state have been 

demonstrated in Section 5.3 through numerical simulation for single-span and multi­

span systems. The deformation behavior has been found quite different from that in 

an elastic case. The irrecoverable deformation and tension level are a strong function 

of Deborah number, power law exponent, and draw ratio in a single-span system. 

Generally, the Deborah number is a good indicator for the effect of the viscoelasticity 

since this dimensionless group reflects a combined contribution of material properties, 

operating condition and system configuration. However, the power law exponent, n, 

is also an independent model parameter that will affect the viscoelastic response. 

Although the viscoelastic deformation may be very small in the first span of a multi­

span system, the effect can be dramatic in the subsequent spans. The tension in the 
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second span predicted by the viscoelastic model differs significantly from the 

predictions of the elastic model reflecting the fact that the transferred amount of 

tension deviates from that in the elastic case. A small amount of irrecoverable 

deformation will result in slackness in the subsequent spans under the conditions 

where the elastic model will still predict stable operation. To prevent slackness, the 

draw ratio in the second span must be greater than a minimum value determined by 

De. In design, larger Deborah numbers are preferred since the viscoelastic effect 

becomes less significant in the large Deborah number region. 

5.4 Unsteady-State Analysis 

In unsteady state, the deformation history of a web particle varies with time. 

Therefore the viscoelastic effects on the system behavior during transient procedures 

must differ in both magnitude and trend from those in steady state. To reveal the 

transient performance of the model, three common industrial procedures are 

simulated: start-up, transition between two steady states, and a sinusoidal disturbance 

about a steady state. The simulation results have shown that in long time scale 

events, e.g., start-up and transition between steady states, the transition time is a 

function of Deborah number. The short time scale disturbance does not affect the 

average tension but produces the short term variation (amplitude) of the tension. The 

amplitude of tension can be related by the Deborah number and disturbance 

parameters. The start-up procedure is analyzed in Section 5.4.1. The transition 

between steady states, as another long time scale event similar to the start-up 
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procedure in nature, is presented in Section 5.4.2. The short time scale disturbance is 

examined in Section 5 .4. 3. 

5.4.1 Start-Up Procedure 

Start-up procedures are quite different from system to system depending on the 

system configuration and control schemes. As an example, a linear velocity ramp and 

open-loop control were assumed. The velocity functions are schematically shown in 

Figure 5.13. The tangential velocities of all rollers were linearly increased from zero 

to their steady-state values over a time period ts (or the corresponding dimensionless 

time period, Os, see Eq. (3.49)). During the start-up period, the draw ratio was kept 

identical to the steady-state value. 

In Section 5.4.1.1, the effects of Deborah number on transition time, measured 

from initial state to steady state, are examined. A three-span system is simulated in 

Section 5 .4.1.2 to examine the transition behavior of the system affected by 

viscoelasticity and the results are compared to the elastic simulation. 

5.4.1.1 Effect of Deborah Number on Tension Variation 

In this section, the dimensionless transition time of the system to a start-up 

procedure is correlated by the Deborah number in the following example. 

A general single-span system with length Land roller velocities v1 and v2 is 

shown in Figure 5.14. The dimensionless time period, Os, was set to be 2.25 and the 

draw ratio was kept to be 1.00222. The material was taken to be initially unstressed, 
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and entered the span in an unstressed state. The power law exponent was set to one. 

The effect of Deborah number on tension variation can be seen in the 

relationship between . the dimensionless tension f ( = F IF J and the dimensionless time 

() ( = (Vz8) 0_/L)t) as shown in Figure 5 .15. Figure 5 .15 clearly shows that the 

transition time of the system response decreases with decreasing Deborah number, 

indicating that the smaller the Deborah number is, the quicker the steady state is 

reached. As De decreases, the material becomes more fluid like or the residence time 

of a particle in the open span is longer thus the system response tends to adapt more 

rapidly to the current conditions. From this analysis, the longest transition time 

occurs when the Deborah number is infinity. 

From the discussions in this section, the Deborah number has been proven to 

be a good indicator for viscoelastic effect on transition time during start-up procedure. 

No matter how the individual parameters in De change, the tension variation in the 

dimensionless form can be consistently correlated by the Deborah number. 

5.4.1.2 Viscoelastic Behavior in a Three-Span System 

The effects of viscoelasticity on multi-span systems during a start-up procedure 

are examined in this section by considering a three-span system . The major concerns 

are the influence of irrecoverable deformation on subsequent spans and tension 

transfer during the transition. Simulation has revealed that the tension transfer is 

slower than the tension response to the kinematic condition in the current span. 

Therefore, short time slackness in the subsequent spans may appear in the beginning 
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of the procedure. If the draw ratio is smaller than the minimum required value, the 

slackness will persist. The slackness can also propagate to the next span if the draw 

ratio is small enough. 

The viscoelastic behavior of a three-span system during the start-up procedure 

can be examined via the example shown in Figure 5.16. The initial and entry states 

are both unstressed. The model parameters and the entry cross-sectional area are 

given as: 

G = 0.55 X 109 Pa, m = 1.65 X 1010 Pasn, n = 1 

E = 1.65 x 109 Pa, Ao = 1 x 104 m2• 

The steady-state values of v1 and v2 were 2.50 m/s and 2.52 m/s, respectively. Vs3 

" 

and v84 were allowed to vary, as specified in the following paragraphs, in order to 

examine the effect of the viscoelastic response of the first span on the subsequent 

spans. The Deborah numbers for the first two spans are 10.00 and 10.08, 

respective! y. 

The simulation results for the first two spans are shown in Figures 5 .17 and 

5.18 along with the purely elastic results which can be obtained either from an 

analytical solution (Appendix B) or from the viscoelastic model at the elastic limit 

(i.e. m = oo ). 

In the first span, the tension variation follows the same general trend described 

in Section 5 .4.1.1 since the tension in the first span is not affected by the downstream 

spans. The tension in the second span, however, is more sensitive to the viscoelastic 

response in the first span due to the tension transfer and kinematic requirement. 
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In the case of V83 = 2.501 mis, the viscoelastic model predicts slackness in the 

second span at all times (including t = oo, see Section 5.3.5). Although the slack 

condition is also predicted by the elastic model during the first 16 seconds, the web is 

eventually tightened and reaches steady state. The persistent slackness in the 

viscoelastic web is due to the irrecoverable deformation in the first span. The draw 

ratio in the second span is always insufficient to wind up the irrecoverable 

deformation produced in the first span. 

The period of slackness in the elastic situation, on the other hand, is due to the 

dynamic response of the tension transfer. As long as V83 is not less than V81 , the 

tension in the second span in steady state is positive regardless of the draw ratio in 

the second span. However, due to the sluggish rising of F1 at the very beginning of 

the start-up period, the tension transferred to the second span cannot balance the 

decrease of the deformation due to the smaller draw ratio (less than one). The net 

effect is that the slackness lasts longer than ts (5 seconds). 

If V83 is increased to 2.51 mis, there is still slackness in both the viscoelastic 

and elastic predictions. However, the duration times are almost identical and much 

shorter (6.3 seconds) than that in the previous case. This result is attributed to the 

larger draw ratio in the second span. Although less than one, DRsz is still large 

enough to compensate for the irrecoverable deformation in the first span. In fact, 

DRsz is slightly larger than DRsZ,min in the steady-state analysis. However, DRsz is not 

yet sufficiently large to overcome the tension transfer resulting in the short slackness 

period at the beginning of the start-up procedure. After the slackness period, the 
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tension in the second span varies with time in a manner similar to the general trend 

observed in single-span systems. 

As V83 is increased further, the slackness disappears due to the sufficiently 

large draw ratio in the second span. The tensions in the second span for the cases of 

V83 = 2.52 mis and V83 = 2.53 mis show that the general trend is like the trend in the 

single-span system. The only difference in the two cases is that the tension changes 

slower for V83 = 2.52 mis than for V83 = 2.53 mis because no further stretching exists 

in the second span for V83 = 2.52 mis (DRsz = 1). The conclusion from these data is 

that the web material responds to the kinematic requirement in the current span more 

readily than the tension transfer from the upstream span in the beginning of the start­

up procedure. 

The operating situation in the second span can further affect the third span. In 

the case of V83 and v84 both equal to 2.51 mis, a slackness condition also occurs in the 

third span during the first 6.3 seconds as shown in Figure 5.19. The draw ratio in 

the third span in this case is one and is larger than the minimum value required for 

positive tension in steady state. The tension predicted by the viscoelastic model 

differs from the elastic result only after the slack period. The tension variation in the 

third span is the same as the tension in the second span in elastic situation due to a 

draw ratio of unity and relaxes from F2 in the viscoelastic analysis. 
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5.4.1.3 Summary 

The simulation in Section 5.4.1 has demonstrated that the transition time of the 

system response in the start-up procedure can be correlated by the Deborah number. 

The smaller the Deborah number, the shorter the transition time. In multi-span 

systems, unfavorable slackness may occur at all times if the draw ratio is smaller than 

the minimum value as analyzed in the steady-state analysis. Moreover, if slackness 

occurs in some span, the following spans will respond to this slackness depending on 

their draw ratios. The larger the draw ratios are, the lower the tendency for 

slackness. If the tension in a span relies on the tension transferred from the previous 

span, the viscoelastic behavior of the current span is greatly affected by the 

viscoelastic history in the previous spans. 

5.4.2 Transition from One Steady State to Another 

The viscoelastic effect on the transient behavior of systems from one steady 

state to a new steady state due to velocity changes of the rollers is examined in this 

section. The velocity function for the transient procedure is shown in Figure 5.20. A 

linear change in the velocity is assumed during the time period of zero to ts (or Os). If 

there are more than one velocities involved in the variation (i.e. more than one 

roller), each velocity is assumed to change proportionally from t = zero to ts (or O = 

zero to OJ. 

The transition between steady states, as another long time scale transient 

procedure, is very similar to the start-up procedure in nature. The effects of Deborah 
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number and transient time of velocity on the transition time of systems are stressed in 

this section. The transition time in this case is measured between the two steady 

states. 

The general trend of tension variation is examined in Sections 5.4.2.1 and 

5.4.2.2 for single-span systems. A three-span system and a four-span system are 

studied in Appendix F for transient behavior during the transition. 

5.4.2.1 Effect of Deborah Number on Tension Variation 

The simulation has shown that tension variation during the transient period is a 

strong function of Deborah number, which is an indicator for the viscoelastic response 

of open span. The transition time of system can be correlated by De as shown in the 

following example. 

To illustrate the effect of Deborah number on tension variation, a general 

single-span system, as shown in Figure 5.21, is examined. Initially the system was in 

steady state with a draw ratio of 1.00222. The velocity of the second roller was then 

allowed to increase linearly by 1.11 % over a dimensionless time period of 1. 35. The 

new draw ratio is 1.01333. The trend in tension variation, as shown in Figure 5.22, 

is similar to that in the start-up procedure although the draw ratio is not constant in 

this case. Figure 5.22 clearly shows that the system adapts to the change in the 

velocity much faster for a smaller Deborah number than for a larger De since the 

material is more fluid like or the residence time of a particle in the open span is 

longer in the small De region. 
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5.4.2.2 Effect of Transient Time of Velocity on Tension Variation 

In addition to the Deborah number, the transient time of the velocity, Os, is 

another factor that affects the transient behavior of the system. Figure 5.23 illustrates 

the transition between two steady states for the same system as in Figure 5.21 with a 

Deborah number of 13.5 but the velocity increase (1.11 %) at the ending roller is 

achieved in different dimensionless transient times. The transition data show that the 

new steady state is not affected by the transient time of the velocity. However, the 

response time of the system (transition time of the system) to the velocity change is 

very sensitive to 08 • Even for a step change in v2 (08 = 0), the system cannot respond 

instantaneously but gradually changes to the new steady state. The elastic memory is 

responsible for this behavior, and therefore, based on this analysis the longest 

response time can be expected for the purely elastic materials for each 08 • 

5.4.2.3 Summary 

In summary, the system behavior during the transition between two steady 

states can be significantly affected by viscoelasticity of materials and transient time of 

velocity. The transition time of system response during the transient procedure is 

highly dependent on the degree of viscoelasticity in the system and can be correlated 

to Deborah number. As De or the transient time of the velocity decreases, the 

transition time of the system decreases. 
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5.4.3 Sinusoidal Disturbance about a Steady State 

A sinusoidal function was used to simulate the variation in the velocity of a 

roller. The actual situation corresponding to this kind of velocity function exists in 

systems with rollers eccentrically mounted on the shafts, inaccurately machined, or 

with imperfect surfaces. 

The simulation has shown that the velocity disturbance does not affect the 

average tension but produces a short time scale variation. The amplitude of the 

tension was correlated by Deborah number and disturbance parameters. A phase 

angle difference exists between the tension and velocity variations due to the influence 

of viscoelasticity and is strongly related to the angular velocity of the disturbance. In 

this section, the effect of the short time scale disturbance on system behavior will be 

illustrated through examples. Single-span behavior is illustrated in Section 5.4.3.1 

and interpreted in terms of dimensionless groups. A three-span system is analyzed in 

Section 5.4.3.2 through simulation with emphasis on the different behavior from 

elastic results and long term transitions. A numerical analysis for a four-span system 

can also be found in Appendix G for the tension variation in indirectly disturbed 

spans. 

5.4.3.1 Effects of Deborah Number and Disturbance Parameters on Tension 

The effects of viscoelasticity on the tension variation can be analyzed based on 

model and disturbance parameters. Consider a general single-span system as is shown 

in Figure 5.24. v2 is changing sinusoidally about V82 • The average draw ratio is 
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specified to be 1.00222 and the power law exponent is one. The disturbed roller is 

assumed to be eccentrically mounted with a maximum radius, (R~, and a minimum 

radius, (RiniIJ, as shown in Figure 5.25. The average radius is 

(R + R.) R = max mm 
avg 2 

(5.17) 

If the surface of the roller is assumed to be perfectly circular, the center offset is 

(5.18) 

The tangential velocity of the second roller can be expressed as 

(5.19) 

where w is the angular velocity, 

(5.20) 

is the average tangential velocity, and 

(5.21) 

is the amplitude of the velocity variation. 

The draw ratio can be expressed as 

(5.22) 

where w1 = [L/(vzs)0_]w, which can be thought of as a dimensionless angular velocity. 

Since the tension variation is a function of model parameter, De, and the 
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boundary condition, DR, the dimensionless tension can be correlated by the 

dimensionless groups of De, o/Ravg, and W1. The dimensionless group, o/Ravg, 

reflects the bumpy degree of the disturbance and w1 reflects the frequency of the 

disturbance. 
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The dimensionless tension as a function of dimensionless time in this system is 

shown in Figure 5.26 with Deborah number as a parameter for o/Ravg = 0.05% and 

w1 = 10.0222. The variation of the average tension in the beginning of Figure 5.26 

should be ignored since the data were affected by the on set of the disturbance in the 

simulation. 

Figure 5.26 shows that the average tension is unaffected by the velocity 

disturbance. However, the amplitude of the tension varies with Deborah number, 

indicating that the Deborah number has influence on the short-term tension variation. 

The amplitude of tension variation is plotted in Figure 5.27 as a function of 

De, o/Ravg, and w1, respectively. As can be seen in Figure 5.27, the amplitude of the 

tension variation, .:if, decreases as De or w1 increases. However, .:if increases 

linearly with increasing o/Ravg· As o/Ravg increases, the bumpy effect of the 

disturbance is enhanced. Therefore, .:if is enlarged since the tension is more 

disturbed. 

Another viscoelastic effect on the tension variation can be seen in Figures 

5.26. The tension change is not instantly reflected in the velocity change. There is a 

phase angle difference, ,f;, between the velocity (or draw ratio) and the tension 

variations. The phase angle difference increases with increasing Deborah number as 
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shown in Figure 5.28. The largest phase angle difference corresponds to the purely 

elastic material because the purely elastic case (infinite Deborah number) has the 

longest memory. 

The measurement of the phase angle difference may be a potential, on-line, 

practical means of determining the viscoelastic properties of materials from 

experimental data. A strain rate variation in the open span can be linearly related to 

the velocity variation, vampsin(wifJ). Therefore, the tension variation, .df, can be 

linearly related to the velocity variation if the strain rate is small enough: 

(5.23) 

where 'Y/c is the characteristic viscosity in the open span. Eq. (5.23) can be 

manipulated to display the in-phase and out-of-phase parts 

(5.24) 

where 

(5.25) 

and 

'h = tamtr. (5.26) 
'h 

For a Newtonian fluid, 'Y/i is equal to the viscosity µ, and f/2 is zero (Bird et al., 1987) 

since the system response will be in phase ( 1/1 = 0). As the Deborah number 
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increases, the simulation results revealed that ,f; increases for a fixed disturbance, 

indicating that the ratio 'Y/zl'Y/i increases. Appropriate manipulation of experimental 

data will give an estimation of the viscoelastic properties of the web materials. 
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Generally, the complex viscosity, I 'YI* I ( or the phase angle difference ,f;) is a 

function of w1• The phase angle difference as a function of the dimensionless angular 

velocity for the system in Figure 5.24 with De = 13.5 and o/Ravg = 0.05% is shown 

in Figure 5.29. ,f; increases deeply with increasing w1 at the smaller w1 region and 

decreases slightly at the larger w1 region. The maximum value of ,f; occurs at about 

w1 = 10 in this case. 

5.4.3.2 Viscoelastic Behavior in a Three-Span System 

If a roller is driven at a varying velocity in a multi-span system, the 

disturbance will affect the tensions in the two spans separated by the roller. A three­

span system, shown in Figure 5.30, is studied in this section to illustrate the effect of 

velocity disturbance on tension transfer. The third roller was set to vary sinusoidally. 

The amplitude and the angular velocity of the disturbance were 0.008367 m/s and 

5.02 rad/s, respectively, which corresponds to a 0.5 m radius roller with 1/600 m 

center offset running at an average tangential velocity of 2.51 m/s. The Deborah 

numbers are 10, 10.08 and 10.04, respectively, in the three spans. The material 

properties are listed in Figure 5.30. 

The tension variations simulated for the system together with the elastic 

predictions are shown in Figure 5.31. As seen in Figure 5.31, the tension transfer 
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for the average level also follows the same general trend as in the undisturbed case, 

except for the slight variation at the beginning due to the on set of the disturbance in 

the simulation. Examination of the instantaneous velocity variation reveals that the 

draw ratio in the second span periodically falls below the minimum value to maintain 

positive tension (0.9928). However, no slackness occurs in the second span. While 

under the same draw ratio, the system with the same configuration is in a slack 

condition in steady state or transition between two steady states. The slack situation 

in the disturbance case, therefore, can be expected to occur only when the average 

draw ratio is less than the minimum value. The short-term variation of the 

disturbance does not affect the average-tension transfer since the time scale for the 

velocity variation is too short to allow for the viscous deformation to develop. 

5 .4.3.3 Summary 

In summary, a disturbance in the velocity of a roller can cause variations in 

tension in the spans separated by the roller. The simulation has demonstrated that the 

average tension is not affected by the disturbance. The short-term variation of tension 

(amplitude) can be correlated by the Deborah number and disturbance parameters. 

The phase angle difference, Vt, can be related to De and is strongly affected by w1• 

As the disturbance does not affect the average tension, tension transfer and slack 

condition are also not affected by the short time scale disturbance as examined in the 

multf-span system. 
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5 .5 Chapter Review 

In this chapter, the VEM model has been successfully verified in the limiting 

cases and has been used to simulate the system behavior for viscoelastic materials. 

The model parameters were estimated from experimental data. Viscoelastic and 

purely elastic simulation have been conducted in order to compared the effects of the 

viscoelastic properties of the materials. The effects of viscoelasticity have been 

correlated by the Deborah number. The viscoelastic behavior was also found to be 

sensitive to the power law exponent. In steady state, the simulation results have 

shown that the deformation distribution, tension level and tension transfer are quite 

different from elastic cases. The irrecoverable deformation, although is small in 

amount in the first span, could significantly influence the operating conditions in the 

subsequent spans in a multi-span system .. Undesirable slackness may occur if draw 

ratio is smaller than a minimum value and further affect the subsequent spans. 

Unsteady-state simulation has also indicated that long time scale transient operations 

such as start up and transition between two steady states could be significantly 

affected by the viscoelasticity. However, the short time scale variations such as 

disturbance of roller velocity do not influence the average tension but induce the 

amplitude of the tension, which can be correlated by the Deborah number and the 

disturbance parameters. The phase angle difference was also related to the Deborah 

number and angular velocity of the disturbance. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study was successful in modeling the effects of viscoelasticity on web 

handling system behavior. The theoretical analysis and numerical simulation provided 

a deeper understanding of the essence of the viscoelastic effects. The general trends 

of viscoelastic effects have been obtained in this study to provide guidance and 

suggestions for system design and operation. 

The significance of this work is the determination of the relationship between 

the viscoelasticity of web handling systems and the Deborah number through the 

theoretical modeling and numerical simulation. The system behavior can be 

correlated by the Deborah number, which is a good indicator for the viscoelasticity of 

the web handling systems. The viscoelastic modeling for multi-span systems provides 

an accurate analysis for system behavior influenced by viscoelasticity that the 

currently existing purely elastic models cannot capture. 

Based on the analyses, simulation and discussions conducted in the previous 

chapters, major conclusions can be summarized below. 

1. A mathematical model, VEM, was developed to account for the effects of 
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viscoelasticity of the materials in web handling systems. The White-Metzner equation 

was chosen as the rheological equation of state with a power law function for the 

viscosity. The model was successfully verified in limiting cases. Model parameters 

were estimated from experimental data in the literature. The model can converge to 

the corresponding elastic model by setting the model parameter, m, to infinity. 

2. The irrecoverable deformation and tension level in steady state as well as 

the transition time of the system in long time scale transient procedures were 

correlated by the Deborah number in dimensionless forms. The irrecoverable 

deformation was also found to be strongly sensitive to power law exponent and is 

cumulative throughout the system. 

3. Tension transfer is affected by viscoelasticity since the stress can relax 

through irrecoverable deformation, making the amount of tension transferred smaller 

than that in an elastic case. 

4. Although viscoelastic response in a single span may not be severely 

different from the elastic prediction, the small viscoelastic deformation produced in 

the first span can greatly affect the operations in subsequent spans in a multi-span 

system. 

5. The draw ratio of a span to retain positive tension (non-slack) is larger in 

the viscoelastic case than in an elastic case since the extra irrecoverable deformation 

from the previous span must be wound up by a larger draw ratio. The minimum 

draw ratio was given as a function of Deborah number and operating conditions. 

6. Undesirable slack condition may occur in spans with smaller draw ratios 



and may further affect the subsequent spans. The irrecoverable deformation can 

worsen the situation compared to purely elastic cases. 
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7. The short time scale disturbance does not affect the average tension but can 

influence the amplitude of the tension, which was correlated by the Deborah number 

and the disturbance parameters. The phase angle difference was related to the 

viscoelasticity changing with De and can be significantly affected by the angular 

velocity. 

8. This study has suggested that a viscoelastic model is necessary for 

simulating the system behavior with even slightly viscoelastic materials. Purely 

elastic models may give poor predictions in some situations. This study has 

demonstrated that the viscoelastic effects on the system behavior depend not only on 

material properties but also on system configuration and operating conditions. 

6.2 Recommendations 

Further investigations should be conducted on two major assumptions made in 

this study: 

Assumption 6: There are no heat effects, i.e., the web temperature is constant 

within a span; 

Assumption 8: The length of web/roller contact region is zero. 

First, heat effects should be introduced into the present isothermal model. The 

main concern is the viscoelastic properties of the materials that may be significantly 

affected by temperature change. Two specific expectations are temperature 
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distribution and its influence on model parameters. 

So far, the governing equations are set up only for the isothermal processes. 

An adequate energy equation then must be introduced into the model to account for 

the temperature change. Three aspects should be specifically considered: heat 

generation within web materials, heat transfer within web materials, and heat transfer 

between web surface and environment. 

Second, web/roller interaction is another major concern. Until now, the 

model has assumed that (a) there is no slippage between web and roller surfaces, (b) 

the roller speeds are specified (open-loop control), and (c) the contact region is of 

zero length. Actual interaction between web and roller(s) is complicated. Several 

factors should be investigated including: slippage between web and roller surfaces, 

dynamic responses of rollers, and material behavior in the web/roller contact region. 

In addition, other detail studies should also be conducted such as inclusion of 

unwinding and winding rolls and dancer subsystems. The present model does not 

specify the nature of rollers only that they represent a means of applying forces and 

providing conveyance on the web line. Although the treatment captures the essence 

of general rollers or rolls in real systems, specific treatments for those rollers and 

rolls will be helpful for industrial uses. 

Experiments should be another important issue in the near future. The work 

involves verification of the model and evaluation of model parameters. A data bank 

for most common web materials should be incorporated into the model based on the 

experimental evaluations to facilitate industrial applications. 
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Finally, the inclusion of the viscoelastic model into the well-developed 

software package for web handling systems, WTS (Lin and Campbell, 1994), is 

highly recommended.· The viscoelastic model will doubtlessly enhance the package in 

accurately simulating web handling systems for analysis and design. 
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APPENDIX A 

TRANSFORMATION OF EQS. (3.50)-(3.53) TO EQS. (4.18)-(4.21) 

Eqs. (3.50) to (3.53) are rewritten as below: 

(3.50) 

(3.51) 

I 
a<1> 

1
n-l( ar xx ar xx a<1> l I a<1> 

1
n-l a<1> T + De- -- + <I>- + T - = -N - -

xx a~ ae a~ xx a~ a~ a( 
(3.52) 

and 

I a<1>rn-l( aru aru a<1>J - I a<1>r-l a<1> T + De- -- + <I>- - 2T - - 2N - -. 
u a~ ae a~ u a~ a~ a~ 

(3.53) 

First, by expanding the derivative in the second term of the left hand side of 

Eq. (3.50), Eq. (4.18) can be obtained 

aa aa a<1> 
- + <I>- + -a = 0. 
ae a~ a~ 

(4.18) 

Eq. (4.19) can be derived by directly non-dimensionalizing Eq. (3.11), an 

equivalent of Eq. (3.51). Introducing the dimensionless variables, a and Tij, in Eq. 

(3.49) into Eq. (3.11) and denoting f = F/F8 yield Eq. (4.19) 
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(4.19) 

For Eqs. (3.52) and (3.53), both sides of the equations are divided by 

De I a<1>1a~ I n-l assuming a<1>1a~ to be non-zero. Then the left hand sides of the two 

equations are rearranged by collecting terms based on aT/aO, aT/a~, and Tij. The 

final forms of the two equations are Eqs. (4.20) and (4.21): 

aT xx aT xx ( a<1> 1 I a<1> 11-n) -- + <I>- + - + -- T -
ae a~ a~ De a~ xx 

(4.20) 

and 

aTU + aTU - (2 a4> - _1 1a<1>1l-nlT = 2!!_ a4> (4.21) 
ae <I> a~ a~ De a~ u De a( 

respectively. 



APPENDIX B 

AN ANALYTICAL SOLUTION OF THE PURELY ELASTIC MODEL 

The governing equation for the purely elastic analysis can be written as (Shin, 

1991): 

(B.1) 

where the subscript i indicates the current span. The subscript z for indicating the z-

direction has been dropped for convenience. 

Consider a two-span system shown in Figure B.1 for an example. The lengths 

of the two spans are the same and are denoted by L. The system is subjected to a 

start-up procedure from an unstressed initial state 

Initial Condition, (B.2) 

and an unstressed entry state 

E0(z = 0) = 0, Boundary Condition. (B.3) 

The tangential velocities of the three rollers are linearly increased from zero to 

their steady-state values. The velocity functions are given as: 
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vsi 
v. = -t, 

I t 
s 

Application of Eq. (B.1) to the two spans gives: 

(1) Fort < ts 
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(B.4) 

(B.5) 

(B.6) 

(B.7) 

Introducing the velocity function, Eq. (B .4), into Eqs. (B. 6) and (B. 7) and 

noting the unstressed entry state give: 

de 1 V 2 
+ - 8-te 

dt Lt l 
s 

(B.8) 

de2 v 3 
+ - 8-te = 

dt Lt 2 
s 

V - V V 
s3 s2 t + .2!..te . 

Lt Lt 1 
s s 

(B.9) 

Eq. (B.8) can be integrated to: 

(B.10) 

where C1 is an integration constant. From the initial condition, Eq. (B.2), C1 is 

determined as 



Thus Eq. (B.10) becomes 

Further, by introducing Eq. (B.12), Eq. (B.9) can be integrated as 

The integration constant, C2, can be evaluated from the initial condition as 

C = 2 

Therefore, Eq. (B.13) becomes 

vs3 - vsl VS2 - vsl 
+----

vs3 vs3 - vs2 

In the case that V82 and V83 are identical, Eq. (B.15) becomes nonsense. 
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(B.11) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

However, reintegration of Eq. (B.9) without including the term in that (v83-V82) is 

yields another expression for e2: 

(B.16) 



(2) Fort > ts 

By considering Eq. (B.5), Eqs. (B.6) and (B.7) can be simplified to 

vs2 
+ -e L 1 

vs3 
+ -e L 2 

Integration of Eq. (B .17) yields 

L 

C3 can be evaluated from the continuity of the strain at t = ts, 

( 
V - V l vs2.2 

C = e T _ s2 sl e VL • 
3 1 ' 

vs2 
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(B.17) 

(B.18) 

(B.19) 

(B.20) 

where En can be obtained from Eq. (B.12) at t = ts. Then, Eq. (B.19) becomes 

(B.21) 

With the similar procedure, the strain in the second span can be also obtained 

as 
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(B.22) 

where e2T can be evaluated from Eq. (B.15) or (B.16) at t = t8 • 

The nonsense will also arise when V82 = V83 • The strain function for the 

second span in this situation, however, can be obtained from the integration of Eq. 

(B.18) without including the term in that (v83 - V82) is 

(B.23) 

Once the strain function is obtained, tension can be calculated by 

(B.24) 

where Ai and Ei are the cross-sectional area and Young's modulus in the ith span, 

respectively. 



APPENDIX C 

IRRECOVERABLE DEFORMATION 

The irrecoverable deformation can be determined from an "unloading" 

procedure in which the purely elastic deformation is recovered. 

In a span, a particle of the web experiences a deformation history under a 

tension from the beginning to the end of the span. The deformation of the particle is 

accumulated throughout the span from its entry state. At the end of the span, the 

irrecoverable strain, Ep, is evaluated by 

(C.1) 

where dEe is the recovered elastic strain. If the unloading is assumed linear and to 

obey Hooke's law, dEe can be written as 

de = e 
(C.2) 

where (As)L is the cross-sectional area at the end of the span. 

To measure the relative contribution of EP to the total strain, Et, a ratio, E/ Et, is 

introduced. 

From Eqs. (3.49), (3.59), (3.66) and (3.76), 
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1 ---
(<l>.Jo• 

= c, (C.3) 

1 (C.4) 

By substituting Fs = (As)o+('Tzzs - 'Txxs>o+ together with Eqs. (C.3) and (C.4), dEe can 

be obtained as 

(C.5) 

By substituting Eq. (3.45) in steady state and noting that (vzs)o+f(vzs)o_ = (<l>s)o+ = lie, 

Eq. (C.5) becomes 

Eq. (C.6) gives an appropriate expression for finding dEe. 

Et can be found by applying Eq. (3.36) at z = o- and z = L (for 1 and 2, 

respectively) in steady state, and then substituting Eq. (C.4), 

(C.7) 

Finally E/ Et is obtained as 

+ ( e >o- - _!_( 't - 't >o-] - 1 
1.S E us xxs (C.8) 



APPENDIX D 

EFFECT OF n ON e/et AT VERY HIGH DRs 

In Section 5.3.3, the effect of the power law exponent, n, one/et at DRs = 1.1 

has been described. As DRs increases, the situation is different depending on the 

Deborah number. For larger De, the elastic step change dominates the deformation 

so that cps' (see Eq. (5 .13)) is smaller due to the smaller viscous deformation rate for 

a given draw ratio. As long as cp/ is less than one, the relationship between e/et and 

n for a given De is in the same trend as in Figure 5.7. Figure D.1 shows the 

relationship between e/et and n for De = 10. The simulation for the case with De = 

10 reveals that cp/ is always less than one for DRs up to 10. On the other hand, if De 

is small enough, cp/ may be larger than one, resulting in an opposite trend of the 

relationship as shown in Figure D.2 for De = 1. In Figure D.2, the trend is reversed 

for DRs = 5.0 and 10.0 compared to that for DRs = 1.1 and 2.0 since cp/ becomes 

larger than one in the cases of larger DRs· The reason that cp/ becomes larger in this 

case is due to the larger viscous component of deformation, which results in a larger 

deformation rate. Thus, as n increases, the viscosity increases making the viscous 

deformation more difficult. 
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APPENDIX E 

MINIMUM REQUIRED DRAW RATIO 

In a two-span system, the minimum draw ratio required in the second span to 

prevent slackness, DRsZ,mim is closely related to the irrecoverable deformation and 

draw ratio of the previous span. If the draw ratio in the second span is less than the 

minimum draw ratio, DRsz,mm, the tension in the second span, by definition, is zero 

resulting in 

(E.1) 

Zero tension in the second span also indicates that the dimensionless velocity, <f>s, is 

always equal to the draw ratio, DRsz,min, after~ = o+ in the second span. Hence, 

from Eqs. (E.1) and (3.45) (applied in the second span at steady state) and by 

recalling that (</>8) 20+ = (vzs)zo+l(vzs)20_, the minimum draw ratio can be found: 

(E.2) 

Since the term ( r zzs - r xxs)20./E corresponds to the elastic component of the total strain 

at the end of the first span, 
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Therefore, 

1 + eP1 
D&2,min = --~-

1 + (ez.)20-

By applying Eq. (C.7) in the first span (Et is identical to (Ezs}20_), DRsz,min can be 

obtained as 

D - 1 + ep1 

&2,min - [1 ( ) ]D 
+ ezs 10- &J 

Another form of DRsZ,min can be found by referring to Eq. (C.8), 
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(E.3) 

(E.4) 

(E.5) 

(E.6) 



APPENDIX F 

SIMULATION FOR MULTI-SPAN SYSTEMS IN 

TRANSITION BETWEEN TWO STEADY STATES 

F .1 Viscoelastic Behavior in a Three-Span System 

If a roller in a multi-span system experiences a velocity change, not only the 

immediate upstream span is affected but also the downstream spans. Since the draw 

ratios in the two spans separated by the roller are changed, the tension variations will 

respond to the velocity change and the viscoelastic behavior will be different from the 

elastic result due to the deformation history as demonstrated in this section. 

Consider the three-span system in Figure F .1. Initially the system was in 

steady-state operation with tangential velocities of rollers being 2.50 mis, 2.52 mis, 

2.51 mis and 2.51 mis, respectively. The velocity of the third roller then was 

linearly decreased by 0.009 mis in 1 second. The system response due to the velocity 

change is simulated and shown in Figure F.2. 

The tension in the first span, as expected, experiences no change confirming 

that effects do not propagate upstream. The tension in the second span, however, is 

reduced from the initial steady-state level. Since the new draw ratio (0.9925) in the 

second span is less than the minimum required value for take up of the slack 
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(0.9928), the span is slack when the transition is finished. However, the elastic result 

indicates no slackness. 

In the third span, the tension based on the purely elastic simulation eventually 

returns to the initial level after the dynamic response ( overshooting) to the velocity 

change. In the new steady state, even though the new draw ratio is greater than the 

initial draw ratio in the old steady state, the tension transfer from the second span 

compensates for the effect of increasing the draw ratio on tension. The phenomenon 

can be explained by considering the fact that ~v3 results in a decrease in F2 and an 

increase in F3 at the new steady state. However, the increasing amount in F3 just 

balances the deduction in tension transferred from F2 since the total draw ratio in the 

second and the third span, v84/vs2, does not change. The history independence of the 

elastic response secures the net effect of tension change in this case. The same 

conclusion can be drawn for the case of increasing v3 • Similar phenomena have also 

been examined by Shin (1991). 

The overshooting of F3 during the transition results in the slower response to 

tension transfer from the second span than the response to the change of draw ratio in 

the third span. The elastic memory is responsible for the dynamic variation in 

tension. In theory, a purely viscous material exhibits no dynamic response and purely 

elastic material has the largest response. 

The viscoelastic response in the third span, however, is different from the 

elastic result. Although the tension variation follows the same qualitative tendency as 

for the elastic analysis, the tension does not return to the initial value after the 
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transition since no tension is transferred from the second span due to the slackness. 

The tension in the new steady state is greater than the initial value because of the 

higher draw ratio in the third span. Generally, even if the second span is not slack, 

tension in the third span in the new steady state will not remain unaffected since the 

irrecoverable deformation will influence the tension level. 

The viscoelastic effect on the system controlled by the progress set-point 

coordination scheme (Shin 1991) was also examined. In the set-point coordination 

scheme, the change of the roller velocity will be automatically propagated to the 

rollers in downstream spans. If some roller has a change in velocity during a 

transient procedure, all rollers downstream will be adjusted to adapt to this velocity 

change. In this case, both v3 and v4 were lowered by 0.009 m/s so that the draw ratio 

in the third span was always one. This trend in velocity change can be thought of as 

a progress set-point coordination scheme with v4 adapting v3 during the transition. As 

no further stretching exists in the third span at any time, the tension in the third span 

will totally depend on the tension transferred from the second span in the elastic case 

or allow for relaxation in the viscoelastic case. However, in the case of slackness in 

the second span, the third span eventually goes to a slack condition after the transition 

as is shown in Figure F.3. The third span, as predicted by the elastic model, 

however, is still under tension since v4 is larger than v1• 

F.2 Transition between Two Steady States in a Four-Span System 

In this section, a propagation of dynamic response of tension to the subsequent 
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spans during the transition is studied. The dynamic response is initiated by a 

variation in the velocity of a given roller. A four-span system is examined for this 

purpose as shown in Figure F.4 with material properties: G = 0.55 x 109 Pa, m = 

1.65 x 1010 PaS, n = 1 and E = 1.65 x 109 Pa. From steady state, v3 was increased 

to 2.525 mis within 5 seconds to reach a new steady state. 

In the elastic analysis (m = oo ), as shown in Figure F.5, the increase in v3 

causes an increase in F2 • The subsequent spans, not only the third span that is 

immediately affected by the draw ratio but also the fourth span, experience variations 

of tension due to tension transfer. However, F3 and F4 eventually return to the initial 

values in the new steady state meaning that v3 does not permanently affect the 

subsequent spans after a short disturbance. 

On the other hand, in the viscoelastic case, shown in Figure F.6, the results 

are different. In addition to the different tension levels, F3 and F4 cannot reach the 

initial values after the transition. The increase in F2 causes more irrecoverable 

deformation in the second span, which makes F3 and F4 lower than the initial values. 

This effect can be expected to propagate throughout the whole system as long as all of 

the subsequent spans are not slack. 

F.3 Summary 

During the transition between two steady states, undesirable slackness may 

occur and propagate throughout a multi-span system if the system is operated under 

smaller draw ratios in the spans after a slack span. Those situations cannot be 
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predicted by the elastic model. 



APPENDIX G 

ADDITIONAL SIMULATION FOR SINUSOIDAL DISTURBANCE CASES 

G .1 Sinusoidal Disturbance in a Single-Span System 

In a single-span system, if the disturbance occurs at the entry roller, the 

analysis can be conducted similarly to that for the ending roller being disturbed but 

the Deborah number should be evaluated by the average velocity of the entry roller. 

Figure G .1 shows the tension variation due to the velocity disturbance at the entry 

roller or ending roller for the same Deborah number (13.5) for the system in Figure 

5.24. The simulation data were specified as: 

Vs1 = 2.250 mis, Vs2 = 2.255 mis, L = 5 m, 

Ao = 1 X 104 m2, n = 1, Vamp = 0.001128 mis, 

w = 4.51 radls. 

As shown in Figure G .1, the amplitudes and the average levels of the tensions 

in the two cases are almost the same. However, the variations of the tensions are 

always opposite in sign. 

G.2 Sinusoidal Disturbance in a Four-Span System 

A four-span system, sketched in Figure G.2, is studied in this section to 
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examine the tension transfer in the spans after the disturbed span during a sinusoidal 

disturbance. The third roller is subjected to a sinusoidal disturbance about the steady 

state. The amplitude of the velocity is 0.00756 mis and the angular velocity is 5.04 

rad/s, which can be achieved by an eccentric roller with 0.5 m radius and 0.0015 m 

center offset. The Deborah numbers are 10, 10.04, 10.08 and 10.12, respectively. 

The viscoelastic simulation for the system shows, as illustrated in Figure G.3, 

that in the fourth span the tension is almost unaffected by the disturbance. The 

amplitude of F4 is so small as to be negligible. Unlike the transition between two 

steady states, the disturbance is too fast to allow for the viscous deformation to occur. 

Therefore, the tension variations in the second and the third spans almost each other 

counteract with a very small difference that is transferred to the fourth span. The 

small amplitude of F4 is due to the elastic memory from the disturbance and the phase 

angle difference is between those of the tension variations in the second and the third 

spans. Figure G.4 shows that F4 , simulated for the elastic material (m = oo ), varies 

almost in the same way as in the viscoelastic situation (De is 10.12 in the fourth 

span). 
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APPENDIX H 

COMPUTER CODES 

A typical computer program for the numerical simulation of steady-state and 

unsteady-state cases is listed in this appendix. The program was designed in a 

functional structure and coded in FORTRAN language. The algorithms and solution 

strategy of the program were described in Chapter IV in detail. 

Subroutines are explained as below: 

MAIN - Control the computation. 

INPUT - Input data from a data file. 

SSA - Steady-state calculation. 

USSA - Unsteady-state calculation. 

SRHBSC - Searching and bisection procedure. 

RKSYS - Fourth-order Runge-Kutta procedure. 

FUNC RKS - Functions solved by the fourth-order 

FDM 

OUTPUT 

Runge-Kutta method. 

- Finite difference procedure. 

- Output the results to a file. 

FRCBLC - Check force balance at a point in space. 

The input data are described as below: 
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Line 1 - G, PWM, PWN, E: 

G - Elastic modulus, G, 

PWM - Power law coefficient, m, 

PWN - Power law exponent, n, 

E - Young's modulus, E. 

Line 2 - AOO, EPSOO, SIGOO: 

AOO - Initial cross-sectional area, Aoo, 

EPSOO - Initial strain in the z-direction, (Ez)oo, 

SIGOO - Initial stress difference, (rzz-rxJ00 • 

In the start-up procedure, the values of variables at entry 
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state were treated as the same as at the initial state. If the two 

states are different, user can introduce other variables to 

define the data for the entry state. 

Line 3 - NSPAN,NTIME,NMAX,NSRCH,NBISC,NSTEP, 

NSHOOT ,NFDM: 

NSPAN - Number of spans, 

NTIME - Number of time levels, 

NMAX - Number of points from ~ = 0 to ~ = 1, 

NSRCH - Number of iterations for searching, 

NBISC - Number of iterations for bisection, 

NSTEP - Number of steps for determining step 

length of searching, 



NSHOOT - Number of iterations for shooting, 

NFDM - Number of iterations for c/>i. 

Line 4 - VS(IS),IS=l,NSPAN+l: 

VS(IS) - Steady-state values of tangential 

velocities of rollers. 

Line 5 - ALENG(IS),IS=l,NSPAN: 

ALENG(IS) - Lengths of spans. 

Line 6 - TTOTAL,TS,TOLDR,TOLPHI: 

TTOTAL - Total time, 
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TS - The time period over which the velocity changes linearly 

with time, 

TOLDR - Tolerance for c/>1, 

TOLPHI - Tolerance for c/>i. 

The code listed in this appendix was used for start-up procedures. However, 

user can slightly modify the subroutine USSA to change the velocity function for 

other transient procedures such as transition between two steady states or disturbance 

about a steady state. Of course, communications of different subroutines should also 

be adjusted based on the modification. The INPUT subroutine should be implemented 

to accommodate the new variables if necessary. 

Special thanks should be given to Dr. Guohai Liu for his ideas of coding the 

Runge-Kutta method. 

The program code is listed as follows: 



*********************************************************** 

C PROGRAM WVE62.FOR, APRIL 19, 1994. UPDATED OCTOBER 5, 
C 1994. 
C STEADY-STATE AND UNSTEADY-STATE ANALYSES FOR WEB 
HANDLING C SYSTEMS. 
C STEADY STATE: FOURTH-ORDER RUNGE-KUTTA METHOD. 
C UNSTEADY STATE: EXPLICITY Maccormack FINITE DIFFERENCE. 
C VARIABLES: 
C T-TIME 
C VOT-VO(T) 
C VOL-VL(T), 
C A - AREA (NON-D) 
C R - TAUXX (NON-D) 
C S - TAUZZ (NON-D), 
C PHI - VELOCITY (NON-D) 
C RPVS - TAUXX (AT PREVIOUS TIME LEVEL) 
C SPVS - TAUZZ (AT PREVIOUS TIME LEVEL) 
C APVS - A (AT PREVIOUS TIME LEVEL) 
C PHIITR - PHI (IN LAST ITER. STEP) 
C FT - TENSION (N-D, AT U.S.S.) 
C VS - ROLLER SPEED (AT S.S.) 
C ALENG - LENGTHS OF THE SPANS 
C AOO - (1) ENTRY CROSS-SECTIONAL AREA 
C (2) INITIAL C-S AREA IN THE WHOLE SYSTEM 
C EPSOO - ENTRY STRAIN(Z) 
C SIGOO - (1) ENTRY (TAUZZ-TAUXX) 
C (2) INITIAL (TAUZZ-TAUXX) IN THE WHOLE SYSTEM 
C AOM - AO(-) 
C EPSOM - EPSO(-) 
C SIGOM - (TAUZZ-TAUXX)O(-) 
C SIGOP - (TAUZZ-TAUXX)O(+) 
C P - PHIOP, OR PHIO(+) 
C PHIOM - PHIO(-) 
C ASOP - A (AT S.S) 
C FS - TENSION (AT S.S.) 
C NSPAN - # OF SPANS 
C NTIME - # OF TIME LEVELS 
C NMAX - # OF COORD. STEPS 
C NSRCH - # OF SEARCHES 
C NBISC - # OF BISECTIONS 
C NSTEP - # OF SUBREGIONS 
C NSHOOT - # OF ITERATIONS FOR SHOOTING PHIOP IN USSA 
C NFDM - # OF ITERATIONS FOR SYSTEM EQS. IN FDM 
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C G, PWM, PWN, E - PHYSICAL PROPERTIES 
C TOLDR - TOLERANCE FOR CONVERGENCE OF PHU-DR 
C TOLPHI - TOLERANCE FOR CONVERGENCE OF PHI AT EVERY STEP 
C OF POSITION 
C DES - DEBORAH NUMBER (AT S.S.) 
C ANS - RECIPROCAL TENSION (AT S.S.) 
C YW, RK, YV, FRK - USED IN R-K METHOD FOR S.S. ANALYSIS 
C TTOTAL - TOTAL TIME OF THE U.S.S. ANALYSIS 
C RA TIO - SPECIFY THE RANGE OF PHIO( +) 
C RSTP - RATIO STEP 
C 
C*********************************************************** 
C 
C MAIN PROGRAM 
C 

IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 

C 

$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 
COMMON /C5/ NSPAN ,NTIME,NMAX,NSRCH,NBISC, 

$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS),ANS(NS) 
COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 

OPEN(20,FILE = 'wve6.out') 
C INPUT DATA 

CALL INPUT 
C STEADY-STATE ANALYSIS 

CALL SSA 
C UNSTEADY-STATE ANALYSIS 

CALL USSA 
C OUTPUT 

C 

C 

CALL OUTPUT 
CLOSE(20) 

STOP 
END 

C***********************************************************C 



SUBROUTINE INPUT 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(1-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXl,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHl(NL),RPVS(NS,NL), 
$ SPVS(NS,NL), APVS(NS,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP ,P, 
$ ASOP(NS),FS(NS),PS(NS) 
COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 

$ NSTEP ,NSHOOT ,NFDM 
COMMON /C6/ G,PWM,PWN,E,TOLDR,TOLPHI, 

$ DES(NS),ANS(NS) 
COMMON /C7/ YW(NL,2),RK(4,NL), YV(2),FRK(2) 

C 
OPEN(lO,FILE= 'wve6.dat') 

C THE UNITS OF THE DATA SHOULD BE CONSISTENT. 
READ(lO, *) G,PWM,PWN,E 
WRITE(20, '(1X,A,2E15.9,F10.5,El5.9)') 'G,m,n,E = ', $ 

G,PWM,PWN,E 
READ(lO, *) AOO,EPSOO,SIGOO 
WRITE(20, '(1X,A,3El5. 9) ') 'AOO,EPSOO,SIGOO = $ 

',AOO,EPSOO,SIGOO 
C IN UNSTEADY-STATE ANALYSIS, THE ENTRY VALUES AND INITIAL 
C VALUES OF THE VARIABLES MAY BE DIFFERENT. IF SO, 
C MODIFICATIONS ARE NEEDED. 

READ(lO, *) NSPAN ,NTIME,NMAX,NSRCH,NBISC,NSTEP, 
$ NSHOOT ,NFDM 

WRITE(20, '(lX,A,/lX,818)') 'NSPAN,NTIME,NMAX, 
$ NSRCH,NBISC,NSTEP,NSHOOT,NFDM = 

$ ',NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP ,NSHOOT ,NFDM 
READ(lO,*) (VS(IS),IS=l,NSPAN+l) 

WRITE(20, '(lX,A) ') 'VS(IS) = ' 
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WRITE(20, '((1X,14,F20.9))') (IS,VS(IS), IS= 1,NSPAN + 1) READ(lO, *) 
(ALENG(IS),IS = 1,NSPAN) 

WRITE(20,' (lX,A)') 'L(IS) = ' 
WRITE(20, '((1X,14,F20. 9)) ') (IS,ALENG(IS), IS= 1,NSPAN) 

READ(lO, *) TTOTAL,TS,TOLDR,TOLPHI 

C 

WRITE(20, '(1X,A,/1X,2F15. 9,2E15.9)') 
'Ttotal,Ts,TOLDR,TOLPHI = ', 

$ TTOTAL,TS,TOLDR,TOLPHI 



C TIME AND COOR INCREMENTS 
DT = TTOTAL/NTIME 
DXI = 1.0/(NMAX-l) 
WRITE(20,'(1X,A,2F20.9)') 'DT,DXI = ', DT,DXI 

C STEADY-STATE DRAW RATIOS 
WRITE(20, '(lX,A)') 'DR(IS) = ' 
DO 100 IS=l,NSPAN 
DRS = VS(IS + 1)/VS(IS) 
WRITE(20, '(1X,I4,F20.15)') IS,DRS 

100 CONTINUE 
C 

C 

CLOSE(lO) 
RETURN 
END 

C***********************************************************C 
SUBROUTINE SSA 
IMPLICIT REAL *8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 

C 

$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN ,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS),ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 

C ENTRY STATE: AREA, STRAIN AND STRESS 
AOM = AOO 
SIGOM = SIGOO 
EPSOM = EPSOO 

C 
DO 900 IS=l,NSPAN 

C DEBORAH NUMBER AND DRAW RA TIO FOR THE CURRENT SPAN 
DES(IS) = 3.0**((PWN-1.0)/2.0)*PWM/G 

$ *(VS(IS)/ALENG(IS))**PWN 
DR = VS(IS+ 1)/VS(IS) 

C SEARCHING FOR PHIOP 
CALL SRHBSC(YW(NMAX,2),DR) 

C CALCULATE VARIABLES FOR NEXT SPAN AS WELL AS FOR U.S.S.A. 
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ASOP(IS) = AOM/P 
FS(IS) = SI GOP* ASOP(IS) 
EPSOM = (l.O+EPSOM)*YW(NMAX,2)-1.0 
AOM = AOM/YW(NMAX,2) 
SIGOM = FS(IS)/ AOM 

900 CONTINUE 

C OUTPUT THE GENERAL INFORMATION OF THE SYSTEM 
WRITE(20,'(1X,A)') 'DES(I)=' 
WRITE(20, '((1X,I4,F20.9))') (I,DES(I), I= l,NSPAN) 
WRITE(20, '(lX,A) ') 'ANS(I) =' 
WRITE(20, '((1X,I4,F20.5))') (l,ANS(I), I= 1,NSPAN) 

WRITE(20,' (lX,A)') 'FS(I) =' 

C 

C 

WRITE(20,'((1X,I4,F20.5))') (I,FS(I), I=l,NSPAN) 
WRITE(20,'(1X,A)') 'ASOP(I)=' 
WRITE(20,'((1X,14,F20.12))') (l,ASOP(I), I=l,NSPAN) 

RETURN 
END 

C***********************************************************C 
SUBROUTINE USSA 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT) ,DT, TS ,IS,IT ,DXI,DTHETA, VOT, VLT ,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 

C 

$ RPVS(NS ,NL) ,SPVS(NS ,NL) ,APVS(NS ,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS) ,ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 
COMMON /CS/ Rl,Sl,AAl 
DIMENSION RATIO(NS),RSTP(NS) 

C INITIAL CONDITIONS (NON-D) 
DO 50 IS=l,NSPAN 
DO 50 J=l,NMAX 
APVS(IS,J) = AOO/ASOP(IS) 
RPVS(IS,J) = -1.0/3.0*SIGOO*ASOP(IS)/FS(IS) 
SPVS(IS,J) = -2.0*RPVS(IS,J) 
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50 CONTINUE 
C 
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C INPUT RATIO STEP FROM KEYBOAD. THE RATIO STEP IS USED TO C 
HELP NARROW THE RANGE IN WHICH PHIO(+) IS LOCATED. 

WRITE(*,*) 'RA TIO STEP (IS) = ' 
DO 22 IS=l,NSPAN 
READ(*,*) RSTP(IS) 

22 RA TIO(IS) = RSTP(IS) 
C 
C ITERATION FOR ALL TIME LEVELS 

DO 1000 IT=l,NTIME 
WRITE(*,*) ' TIME LEVEL=' ,IT T(IT) = IT*DT 

C ENTRY STATE 
AOM = AOO 
SIGOM = SIGOO 
EPSOM = EPSOO 

C 
C ITERATION FOR ALL SPANS 

DO 900 IS=l,NSPAN 
WRITE(*,*) ' # OF TIME, $SPAN = ', IT ,IS 

C ASSUME THAT ALL ROLLER SPEEDS ARE LINEARLY INCREASED TO 
C THE STEADY-STATE VALUES WITHIN TS IN THE START-UP 
C PROCEDURE. USER CAN REDEFINE THIS PART FOR OTHER 
C PROCEDURES 

C 

IF(T(IT) .LE. TS) THEN 
VOT = VS(IS)*T(IT)/TS 
VLT = VS(IS+l)*T(IT)/TS 

ELSE 
VOT = VS(IS) 
VLT = VS(IS+ 1) 

END IF 
DR= VLT/VOT 
PHIOM = VOTNS(IS) 
DTHETA = DT*VS(IS)/ ALENG(IS) 

RATIO(IS) = RATIO(IS)-RSTP(IS) 
C SHOOTING FOR PHIOP. 
C RA TIO IS INCREASED BY THE RA TIO STEP WHENEVER PHIO( +) IS 
C ABSENT IN THE RANGE 
123 RA TIO(IS) = RA TIO(IS) + RSTP(IS) 

IF(RATIO(IS) .GT. 5.0) THEN 
WRITE(*,*) 'FDM FAILED: RATIO(IS)>5.0 < < <?> > >' 
STOP 

END IF 



C SET UP THE SHOOTING RANGE FOR PHIOP. SEVERAL DIFFERENT 
C CONDITIONS ARE CONSIDERED SEPARATELY: (1) DR= 1, (2) DR 
C < > 1. THE RANGE IS LABLED BY [BLEFT, BRIGHT]. 

IF(DR .LE. 1.0) THEN 
BLEFT = PHIOM 
IF(DR .EQ. 1.0) THEN 
SCALE = PS(IS)-1.0 

ELSE 
SCALE = DR-1.0 

END IF 
BRIGHT= PHIOM*(l.O+RATIO(IS)*SCALE) 
IF(DR .EQ. 1 .AND. PS(IS) .EQ. 1) THEN 
BLEFT = PHIOM*(l.0-RATIO(IS)) 
BRIGHT = PHIOM*(l.O+RATIO(IS)) 

END IF 
ELSE 
BLEFT = PHIOM*(l.O-RATIO(IS)*(DR-1.0)) 
BRIGHT = PHIOM*(l.O+RATIO(IS)*(DR-1.0)) 

END IF 
C !TERA TIO NS FOR SHOOTING 

DO 300 1=1,NSHOOT 
C IN LEFT SUBRANGE 

BMID = (BLEFT+BRIGHT)/2.0 
P = (BLEFT+BMID)/2.0 
CALL FDM(PHIOM*DR,ERROR,IRT) 
ERRl = ERROR 

C WRITE(*,*) 'I,PL,ERRl =' ,I,P ,ERRl 
IF(IRT .EQ. 0) THEN 
WRITE(*,*) 'IT,IS,LAST $RATIO(IS)=' ,IT,IS,RATIO(IS),' RETRY' 

C ADJUST THE RANGE AND REDO THE PROCEDURE 
GOTO 123 

END IF 
IF(ERRl .LE. TOLDR) THEN 

C WRITE(20,'(1X,A,2F20.15)') 'P, ERROR=' ,P,ERRl 
WRITE(*,*) 'USSA SHOOTING SUCCESSFUL!' 
GOTO 400 

END IF 
BNL = P 

C IN RIGHT SUBRANGE 
P = (BMID+BRIGHT)/2.0 
CALL FDM(PHIOM*DR,ERROR,IRT) 
ERR2 = ERROR 

C WRITE(*, *)'I,PR,ERR2 = ',I,P ,ERR2 
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IF(IRT .EQ. 0) THEN 
WRITE(*,*) 'IT ,IS,LAST $RA TIO(IS) =',IT ,IS,RA TIO(IS),' RETRY' 

C ADJUST THE RANGE AND REDO THE PROCEDURE 
GOTO 123 

END IF 
IF(ERR2 .LE. TOLDR) THEN 

C WRITE(20,'(1X,A,2F20.15)') 'P, ERROR=',P,ERR2 
WRITE(*,*) 'USSA SHOOTING SUCCESSFUL!' 
GOTO 400 

END IF 
BNR = P 
IF(ERR2 .LE. ERRl) THEN 
BLEFT = BNL 

ELSE 
BRIGHT= BNR 

END IF 
300 CONTINUE 

WRITE(*,*) 'USSA SHOOTING FAILED' 
WRITE(*,*) 'IT,IS,LAST RATIO(IS)=',IT,IS,RATIO(IS),' $RETRY' 

C ADJUST THE RANGE AND REDO THE PROCEDURE 
GOTO 123 

400 CONTINUE 
C MEMORIZE VARIABLES AS THE PREVIOUS VALUES FOR NEXT TIME 
C LEVEL. SPECIAL CONSIDERATIONS ARE TAKEN IN NAGTIVE 
C TENSION CASES (SLACK). IF THE SPAN IS SLACK, THE PROGRAM C 
MUST MEMORIZE THE SLACK CONDITION UNTIL THE SPAN BECOMES 
C TIGHT AGAIN. 

IF(IS .EQ. 1) THEN 
FPRE = SI GOO* AOO 

ELSE 
FPRE = FT(IS-1,IT)*FS(IS-1) 

END IF 
IF(FPRE .LE. 0.0) THEN FPRE = 0.0 
EPSCUR = EPSOM-FPRE/(E*AOM) 
AOMNXT = A00/(1.0+EPSCUR) 
IF(IT .EQ. 1) THEN 
FPSUDl = SIGOO*AOO 

ELSE 
FPSUDl = FT(IS,IT-l)*FS(IS) 

END IF 
FPSUD2 = FT(IS,IT)*FS(IS) 
IF(FPSUD1 .LT. 0.0 .AND. FPSUD2 .GE. 0.0) THEN 
DO 460 I=l,NMAX 
RPVS(IS,I) = 0.0 
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SPVS(IS,I) = 0.0 
APVS(IS,I) = AOMNXT/ASOP(IS) 

460 CONTINUE 
RA TIO(IS) = RSTP(IS) 

ELSE 
DO 500 I= 1,NMAX 
RPVS(IS,I) = R(I) 
SPVS(IS,I) = S(I) 
APVS(IS,I) = A(I) 

500 CONTINUE 
END IF 
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C CALCULATE VARIABLES FOR NEXT SPAN AT THE SAME TIME LEVEL. 
C SET UP THE ENTRY VALUES FOR THE NEXT SPAN. 

C 

IF(FPSUD2 .LE. 0.0) THEN 
AOM = AOMNXT 
EPSOM = EPSCUR 
SIGOM = 0.0 
ELSE 
AOM = A(NMAX)*ASOP(IS) 
EPSOM = AOO/AOM-1.0 
SIGOM = (S(NMAX)-R(NMAX))*FS(IS)/ASOP(IS) 
END IF 

C AT THE LAST TIME LEVEL, OUTPUT THE VARIABLES (OPTIONAL) 
IF(IT .EQ. NTIME) THEN 
WRITE(20,'(1X,A,14)') 'SPAN = ',IS 
WRITE(20,'(1X,A)') ' a Phi $ Txx 

Tzz' 
DO 444 1=1,NMAX 
WRITE(20, '(1X,4F19.14)') A(I),PHI(l),R(I),S(I) 

444 CONTINUE 
END IF 

900 CONTINUE 
1000 CONTINUE 

C 

C 

RETURN 
END 

C***********************************************************C 
SUBROUTINE SRHBSC(PHil ,DR) 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(1-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 



C 

$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G,PWM,PWN,E,TOLDR,TOLPHI,DES(NS),ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 

C REFERENCE VALUE: CENTRAL POINT IN [l, DR] 
PO = (1.0+ DR)/2.0 
P = PO 

C CALCULATE DEVIATION (ERROR) AS THE REFERENCE. 
CALL RKSYS 
ERRORO = (PHil-DR)/DR 
IF(DABS(ERRORO) .LE. TOLDR) THEN 
WRITE(*,*) 'SSA SEARCHING SUCCESSFUL!' 
WRITE(20, '(1X,A,14,F20.15)') 'IS, P = ',IS,P 
WRITE(*,*) 'FINAL P=' ,P 
PS(IS) = P 
GOTO 1000 

END IF 
Pl= PO 
P2 = PO 

C CALCULATE THE SEARCHING LENGTH. 
IF(PO .NE. 1.0) THEN 
SEARCH = (P0-1.0)/NSTEP 

ELSE 
SEARCH = 0.00005*PO 

END IF 
C ITERATIONS FOR SEARCHING PHIO(+) 

DO 200 I= 1,NSRCH 
WRITE(*,*) 'SSA SEARCH:(# OF SPAN, ITERATION)= $ 

',IS,I 
C LEFT SEARCHING. 

P = Pl-SEARCH 
WRITE(*,*) 'PL= ',P 
CALL RKSYS 
ERROR! = (PHil-DR)/DR 
IF(DABS(ERRORl) .LE. TOLDR) THEN 
WRITE(*,*) 'SSA SEARCHING SUCCESSFUL!' 
WRITE(20,'(1X,A,14,F20.15)') 'IS, P = ',IS,P 
WRITE(*,*) 'FINAL P=',P 
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PS(IS) = P 
GOTO 1000 

END IF 
IF(ERRORl/ERRORO .LT. 0.0) THEN 
PL = Pl-SEARCH 
PR= Pl 
ERRORL = ERRORl 
ERRORR = ERRORO 
GOTO 700 

ELSE 
Pl = Pl-SEARCH 

END IF 
C RIGHT SEARCHING. 

P = P2+SEARCH 
WRITE(*,*) 'PR= ',P 
CALL RKSYS 
ERROR2 = (PHil-DR)/DR 
IF(DABS(ERROR2) .LE. TOLDR) THEN 
WRITE(*,*) 'SSA SEARCHING SUCCESSFUL!' 
WRITE(20, '(1X,A,I4,F20.15)') 'IS, P = ',IS,P 
WRITE(*,*) 'FINAL P=',P 
PS(IS) = P 
GOTO 1000 

END IF 
IF(ERROR2/ERRORO .LT. 0.0) THEN 
PL= P2 
PR = P2+SEARCH 
ERRORL = ERRORO 
ERRORR = ERROR2 
GOTO 700 

ELSE 
P2 = P2+SEARCH 

END IF 
200 CONTINUE 

WRITE(*,*) 'SSA SEARCHING FAILED' 
STOP 

700 CONTINUE 
WRITE(*,*) 'SSA SEARCHING SUCCESSFUL!' 

C BISECTION PROCEDURE. 
DO 800 I=l,NBISC 

',IS,I 
WRITE(*,*) 'SSA BISECTION: # OF SPAN, ITERATION $= 

P = (PL+PR)/2.0 
CALL RKSYS 
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ERROR = (PHil-DR)/DR 
IF(DABS(ERROR) .LE. TOLDR) THEN 
WRITE(*,*) 'SSA BISECTION SUCCESSFUL! ' 
WRITE(20,'(1X,A,14,F20.9)') 'IS, P= ',IS,P 
WRITE(*,*) 'FINAL P=',P 
PS(IS) = P 
GOTO 1000 

ELSE IF(ERROR/ERRORL .LT. 0.0) THEN 
PR= P 

ELSE 
PL= P 

END IF 
800 CONTINUE 

WRITE(*,*) 'SSA BISECTION FAILED' 
STOP 

1000 CONTINUE 
C 

C 

RETURN 
END 

C***********************************************************C 
SUBROUTINE RKSYS 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(1-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT, TS ,IS,IT ,DXl,DTHETA, VOT, VLT ,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 

C 

$ RPVS(NS ,NL) ,SPVS(NS ,NL) ,APVS(NS ,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS) ,ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 

EPSOP = (1.0+EPSOM)*P-1.0 
SI GOP = SIGOM + E*(EPSOP-EPSOM) 
ANS(IS) = DES(IS)*G/SIGOP 
TINL = 2.0/3.0 
W3 = (3.0*TINL-2.0)*DES(1S)+3.0*ANS(IS) 
IF(W3 .LT. 0.0) THEN 
YW(l,1) = -1.0/DABS(W3)**(1.0/PWN) 

ELSE 
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YW(l,1) = 1.0/W3**(1.0/PWN) 
END IF 
YW(l,2) = P 
DO 10 I=2,NMAX 
DO 25 K=l,2 

25 YV(K) = YW(I-1,K) 
CALL FUNC RKS 
DO 30 J=l,2 

30 RK(l ,J) = DXI*FRK(J) 
DO 35 K=l,2 

35 YV(K) = YW(I-1,K)+0.5*RK(l,K) 
CALL FUNC RKS 
DO 40 J=l,2 

40 RK(2,J) = DXI*FRK(J) 
DO 45 K=l,2 

45 YV(K) = YW(I-1,K)+0.5*RK(2,K) 
CALL FUNC RKS 
DO 50 J=l,2 

50 RK(3,J) = DXI*FRK(J) 
DO 55 K=l,2 

55 YV(K) = YW(I-1,K)+RK(3,K) 
CALL FUNC RKS 
DO 60 J=l,2 

60 RK(4,J) = DXI*FRK(J) 
DO 70 J=l,2 
SUMK = RK(l,J)+2.0*RK(2,J)+2.0*RK(3,J)+RK(4,J) 
YW(I,J) = YW(I-l,J)+SUMK/6.0 

70 CONTINUE 
10 CONTINUE 

C 

C 

RETURN 
END 

C***********************************************************C 
SUBROUTINE FUNC RKS 
IMPLICIT REAL*8(A=-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 
$ RPVS(NS ,NL) ,SPVS(NS ,NL) ,APVS(NS,NL) 

COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 
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C 

COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP ,NSHOOT ,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS) ,ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL), YV(2),FRK(2) 

Wl = DES(IS)*DABS(YV(l))**PWN 
W2 =DES(IS)*YV(2) 
IF(YV(l) .LT. 0.0) THEN 
ISIGN = -1 

ELSE 
ISIGN = 1 

END IF 
FRK(l) = (1.0-3.0*ANS(IS)*P/W2+ ISIGN*(l.O/Wl-2.0*Wl)) $ 

*YV(1)**2.0/(PWN*YV(2)) 

C 

C 

FRK(2) = YV(l) 

RETURN 
END 

C***********************************************************C 
SUBROUTINE FDM(DR,ERROR,IRT) 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 

C 

$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 
COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P ,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN ,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP ,NSHOOT ,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS) ,ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL), YV(2),FRK(2) 
COMMON /C8/ Rl,Sl,AAl 

C (1) STEP CHANGES AT ROLLER; (2) SET B.C. 
SIGOP = SIGOM + E*(P/PHIOM-1.0)*(1.0+ EPSOM) 
AOP = AOM*PHIOM/P 
A(l) = AOP/ASOP(IS) 
FT(IS,IT) = AOP*SIGOP/FS(IS) 
R(l) = -1.0/3.0*SIGOP*ASOP(IS)/FS(IS) 
S(l) = -2.0*R(l) 

C WRITE(*,*)' AOP,SIGOP= ',AOP,SIGOP 
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PHl(l) = P 
c-

DO 10001=2,NMAX 
C ITERATION FOR PHI(I) WITHIN THE ITH STEP: 

PT = 1.0105*PHl(l-1) 
CALL FRCBLC(I,PT ,EFB) 
ERO= EFB 
IF(DABS(ERO) .LE. TOLPHI) THEN 
PHI(I) = PT 
GOTO 1000 

END IF 
SP = 0.002*PHl(l-1) 
PTl = PT 
PT2 = PT 
DO 100 K=l,NFDM 

C LEFT SEARCHING FOR PHI(I): 
PT= PTl-SP 
CALL FRCBLC(I,PT ,EFB) 
ERl = EFB 
IF(DABS(ERl) .LE. TOLPHI) THEN 
PHI(I) = PT 
GOTO 1000 

END IF 
IF(ERl/ERO .LT. 0.0) THEN 
PTL = PTl-SP 
PTR = PTl 
ERL= ERl 
ERR= ERO 
GOTO 666 

ELSE 
PTl = PTl-SP 

END IF 
C RIGHT SEARCHING FOR PHI(I): 

PT= PT2+SP 
CALL FRCBLC(l,PT ,EFB) 
ER2 = EFB 
IF(DABS(ER2) .LE. TOLPHI) THEN 
PHl(I) = PT 
GOTO 1000 

END IF 
IF(ER2/ERO .LT. 0.0) THEN 
PTL = PT2 
PTR = PT2+SP 
ERL= ERO 
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ERR= ER2 
GOTO 666 

ELSE 
PT2 = PT2+SP 

END IF 
100 CONTINUE 

WRITE(*,*)'PHI(I) SEARCHING FAILED AT I=',I 
IRT = 0 
RETURN 

C BISECTION FOR PHI(I) 
666 CONTINUE 

DO 200 K=l,NFDM 
PT = (PTL+ PTR)/2.0 
CALL FRCBLC(I,PT ,EFB) 
ER= EFB 
IF(DABS(ER) .LE. TOLPHI) THEN 
PHI(I) = PT 
GOTO 1000 

ELSE IF(ER/ERL .LT. 0.0) THEN 
PTR = PT 

ELSE 
PTL = PT 

END IF 
200 CONTINUE 

WRITE(*,*)'PHI(I) BISECTION FAILED AT I=',I 
IRT = 0 
WRITE(*,*) 'IT,IS,I = ',IT,IS,I 
RETURN 

1000 CONTINUE 
IRT = 1 

1100 ERROR = DABS((PHI(NMAX)-DR)/DR) 
C WRITE(*, *)'PHI(l),PHI(NMAX),ERROR', 

C 

C 

$ PHI(l),PHI(NMAX),ERROR 

RETURN 
END 

C***********************************************************C 
SUBROUTINE OUTPUT 
IMPLICIT REAL*8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT,TS,IS,IT,DXI,DTHETA,VOT,VLT,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 
$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 
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C 

COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS),ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 

DO 100 K=l,NSPAN 
WRITE(20, '(1X,A,I4)') 'SPAN = ',K 
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WRITE(20, '(lX,A)') ' No. Time $Tension (N-D) Tension 
(D)' 

DO 50 J=l,NTIME 
IF(FT(K,J)*FS(K) .GE. 0.0) THEN 
FNON = FT(K,J) 
FD = FNON*FS(K) 

ELSE 
FNON = 0.0 
FD= 0.0 

END IF 
WRITE(20, '(1X,I4, 1X,F15.6,2X,F20.15,2X,F20.6)') 

$ J, T(J), fnon, fd 
50 CONTINUE 
100 CONTINUE 

RETURN 
END 

C 
C***********************************************************C 

SUBROUTINE FRCBLC(I,PT ,EFB) 
IMPLICIT REAL *8(A-H, 0-Z), INTEGER*4(I-N) 
PARAMETER (NL=lOOl, NS=5, NT=lOOO) 
COMMON /Cl/ T(NT),DT, TS,IS,IT ,DXI,DTHETA, VOT, VLT ,PHIOM 

COMMON /C2/ A(NL),R(NL),S(NL),PHI(NL), 
$ RPVS(NS,NL),SPVS(NS,NL),APVS(NS,NL) 

COMMON /C3/ FT(NS,NT) 
COMMON /C4/ VS(NS),ALENG(NS),AOO,AOM,AOP, 

$ EPSOO,EPSOM,SIGOO,SIGOM,SIGOP, 
$ P,ASOP(NS),FS(NS),PS(NS) 

COMMON /C5/ NSPAN ,NTIME,NMAX,NSRCH,NBISC, 
$ NSTEP,NSHOOT,NFDM 
COMMON /C6/ G ,PWM,PWN ,E, TOLDR, TOLPHI,DES(NS),ANS(NS) 

COMMON /C7/ YW(NL,2),RK(4,NL),YV(2),FRK(2) 
COMMON /C8/ Rl,Sl,AAl 



C 
IF(I .EQ. 2) THEN 
Rl = R(l) 
Sl = S(l) 
AAl = A(l) 

END IF 
PHIDRV = (PT-PHI(I-1))/DXI 
IF(I .EQ. NMAX) THEN 

RDRV = (RPVS(IS,NMAX)-RPVS(IS,NMAX-1))/DXI 
SDRV = (SPVS(IS,NMAX)-SPVS(IS,NMAX-1))/DXI 
ADRV = (APVS(IS,NMAX)-APVS(IS,NMAX-1))/DXI 

ELSE 
RDRV = (RPVS(IS,I + 1)-RPVS(IS,I))/DXI 
SDRV = (SPVS(IS,I + 1)-SPVS(IS,I))/DXI 
ADRV = (APVS(IS,I + 1)-APVS(IS,I))/DXI 

END IF 
Wl = 1.0/(1.0/DTHETA + PHIDRV + DABS(PHIDRV)**(l.0- $ 

PWN)/DES(IS)) 
W2 = 1.0/(2.0/DTHETA+PHIDRV 

$ + DABS(PHIDRV)**(l.0-PWN)/DES(IS)) 
W3 = ANS(IS)*PHIDRV /DES(IS) 

C PREDICTOR FOR TAU XX: 
R2 = Wl *(RPVS(IS,I)/DTHETA-PT*RDRV-W3) 

C CORRECTOR FOR TAUXX: 
R(I) = W2*((R2+RPVS(IS,I))/DTHETA-PT*(R2-Rl)/DXI-W3) 
Wl = 1.0/(1.0/DTHETA-2.0*PHIDRV 

$ + DABS(PHIDRV)**(l.0-PWN)/DES(IS)) 
W2 = 1.0/(2.0/DTHETA-2.0*PHIDRV 

$ + DABS(PHIDRV)**(l .0-PWN)/DES(IS)) 
C PREDICTOR FOR TAU ZZ: 

S2 = Wl *(SPVS(IS,I)/DTHETA-PT*SDRV + 2.0*W3) 
C CORRECTOR FOR TAU ZZ: 

S(I) = W2*((S2+SPVS(IS,I))/DTHETA 
$ -PT*(S2-Sl)/DXI +2.0*W3) 

C CALCULATE A FROM MASS CONSERVATION: 
C PREDICTOR: 

AA2 = 1.0/(1.0/DTHETA+PHIDRV) 
$ *(APVS(IS,I)/DTHETA-PT*ADRV) 

C CORRECTOR: 
A(I) = 1.0/(2.0/DTHETA+PHIDRV) 

$ *((AA2+APVS(IS,I))/DTHETA 
$ -PT*(AA2-AA1)/DXI) 

C CHECK IF a(Tzz-Txx) = f ? 
EFB = (A(I)*(S(I)-R(I))-FT(IS,IT))/FT(IS,IT) 
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C 

C 

IF(DABS(EFB) .LE. TOLPHI) THEN 
Rl = R2 
Sl = S2 
AAl = AA2 

END IF 

RETURN 
END 
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APPENDIX I 

AN EXAMPLE PROBLEM 

A solution procedure for a start-up process is illustrated in this appendix. The 

simulated case is a single-span system with L = 5 m, V81 = 2.250 mis, and V82 = 

2.255 mis. The entry and initial states are both unstressed. The material properties 

are listed as below: 

G = 0.55 X 109 Pa, m = 1.65 X 1010 Pas, 

n = 1, E = 1.65 x 109 Pa. 

The roller tangential velocities were linearly increased from zero to their steady-state 

values over five seconds. The total time simulated is 16 seconds. The increments for 

time and space, d0 and df, are 0.045 and 0.05, respectively. The tolerances for both 

</>1 and <Pi were set to be 1 x 10-6• 

By following the instruction in Appendix H, the input file, "wve6.dat", can be 

generated as: 

---------------------wve6.dat ---------------------------

0.55e9, 1.65el0, 1.0, 1.65e9 

1.0e-4, 0.0, 0.0 

1, 160, 21, 50, 50, 5, 60, 100 

2.25, 2.255 
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5.0 

16.0, 5.0, 1.0e-6, 1.0e-6 

The execution was done on RS6000 using the executable code, wve62, in 

about 10 minutes. The controlling factor, "Ratio Step (IS)", was set to be 0.02 at the 

beginning of the unsteady-state computation. 

The output file, "wve6.out", is listed as below. The description for the 

symbols in the output file can be found in Appendix H. 

--------------------------wve6. out ------------------------

G,m,n,E = 
.550000000E+09 .165000000E+ 11 1.00000 .165000000E+ 10 

AOO,EPSOO,SIGOO = 
. lOOOOOOOOE-03 . OOOOOOOOOE +00 . OOOOOOOOOE +00 

NSPAN,NTIME,NMAX,NSRCH,NBISC,NSTEP ,NSHOOT ,NFDM = 
1 160 21 50 50 5 60 100 

VS(IS) = 
1 2.250000000 
2 2.255000000 

L(IS) = 
1 5.000000000 

Ttotal, Ts, TOLDR, TOLPHI = 
16. 000000000 5. 000000000 .1 OOOOOOOOE-05 . lOOOOOOOOE-05 

DT,DXI = .100000000 .050000000 

DR(IS) = 
1 1.002222222222222 

IS,P= 1 1. 002069444 



DES(I)= 
1 13.500000000 

ANS(I)= 
1 2174.49664 

FS(I)= 
1 340.75316 

ASOP(I)= 
1 .000099793483 

SPAN= 1 
a Phi Txx Tzz 

1.00000386964 1.00206556680 -.33270875699 .66541751398 
.99999623629 1.00207344845 -.33270603291 .66542767665 
.99998860273 1.00208133017 -.33270337712 .66543793876 
. 99998096945 1.00208921195 -. 33270083172 . 66544835749 
.99997333878 1.00209709379 -.33269800810 .66545819981 
.99996570805 1.00210497569 -.33269536288 .66546833622 
.99995807532 1.00211286530 -.33269319314 .66547939963 
.99995044651 1.00212074732 -.33269056161 .66548950213 
.99994281995 1.00212862941 -.33268775380 .66549918313 
.99993519301 1.00213651156 -.33268518022 .66550930209 
.99992756689 1.00214439377 -.33268264383 .66551949606 
.99991994195 1.00215227605 -.33268010934 .66552968366 
.99991231805 1.00216015838 -.33267762724 .66553993098 
.99990469547 1.00216804078 -.33267516009 .66555014866 
.99989707464 1.00217592324 -.33267263422 .66556021484 
.99988945544 1.00218380576 -.33267006955 .66557020392 
.99988183662 1.00219168835 -.33266766926 .66558053547 
.99987421967 1.00219957099 -.33266523042 .66559078201 
.99986660521 1.00220745370 -.33266268799 .66560078613 
.99985899346 1.00221533647 -;33266000878 .66561047280 
.99985138248 1.00222321930 -.33265752170 .66562052058 

SPAN= 1 
No. Time Tension (N-D) Tension (D) 
1 .100000 .000964037680396 .328499 
2 .200000 .002885538386188 .983256 
3 .300000 .005757361759988 1.961839 
4 .400000 .009566486680851 3.259811 
5 .500000 .014294995587837 4.871065 
6 .600000 .019933444689306 6.792384 
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7 .700000 .026460075554364 9.016354 
8 .800000 .033853276089448 11.535611 
9 .900000 .042091056176905 14.342661 

10 1.000000 .051140133576479 17.426162 
11 1.100000 .060988957569664 20.782180 
12 1.200000 .071593111169883 24.395579 
13 1.300000 .082929089112996 28.258349 
14 1.400000 .094975259791373 32.363120 
15 1.500000 .107691630283712 36.696264 
16 1.600000 .121032440059620 41.242187 
17 1.700000 .134981451564769 45.995357 
18 1.800000 .149481701640989 50.936363 
19 1.900000 .164518537249411 56.060212. 
20 2.000000 .180046132865865 61.351289 
21 2.100000 .196022499125377 66.795287 
22 2.200000 .212412111017261 72.380099 
23 2.300000 .229162806190463 78.087951 
24 2.400000 .246259185240264 83.913596 
25 2.500000 .263651901470147 89.840220 
26 2.600000 .281289321815626 95.850226 
27 2.700000 .299165872134782 101.941717 
28 2.800000 .317203027448654 108.087935 
29 2.900000 .335390904993051 114.285512 
30 3.000000 .353704221646196 120.525833 
31 3.100000 .372074982089681 126.785727 
32 3.200000 .390502623572286 133.065004 
33 3.300000 .408938976369308 139.347250 
34 3.400000 .427323770764927 145.611927 
35 3.500000 .445674584536576 151.865025 
36 3.600000 .463916483203514 158.081009 
37 3.700000 .482045809621382 164.258635 
38 3.800000 .500051180465464 170.394022 
39 3.900000 .517866834278797 176.464762 
40 4.000000 .535482823274815 182.467466 
41 4.100000 .552890599782596 188.399221 
42 4.200000 .570085761110858 194.258527 
43 4.300000 .587017441552609 200.028050 
44 4.400000 .603672849142959 205.703433 
45 4.500000 .620033375353641 211.278334 
46 4.600000 .636059907506463 216.739426 
47 4.700000 .651753985091623 222.087232 
48 4.800000 .667142098493928 227.330781 
49 4.900000 .682160753102183 232.448435 
50 5.000000 .696844374961658 237.451925 
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51 5.100000 .710824136029821 242.215573 
52 5.200000 .724162420774536 246.760636 
53 5.300000 .736903440828575 251.102179 
54 5.400000 .749029822401479 255.234282 
55 5.500000 .760625279882228 259.185470 
56 5.600000 .771687895463468 262.955092 
57 5.700000 .782236201333646 266.549460 
58 5.800000 .792299984262241 269.978726 
59 5.900000 .801895075585907 273.248284 
60 6.000000 .811016948903818 276.356591 
61 6.100000 .819751181661714 279.332809 
62 6.200000 .828058191777213 282.163448 
63 6.300000 .835978124083370 284.862190 
64 6.400000 .843529750104055 287.435431 
65 6.500000 .850729247999306 289.888683 
66 6.600000 .857597378335979 292.229020 
67 6.700000 .864183395758970 294.473226 
68 6.800000 .870462018764134 296.612687 
69 6.900000 .876449728228733 298.653018 
70 7.000000 .882155097065188 300.597140 
71 7.100000 . 887571357253270 302.442748 
72 7.200000 .892738065997250 304.203320 
73 7.300000 .897683199113608 305.888390 
74 7.400000 .902409060816770 307.498742 
75 7.500000 .906918375907740 309.035306 
76 7.600000 .911217928883387 310.500392 
77 7.700000 .915328224574947 311.900988 
78 7.800000 .919210682707606 313.223948 
79 7.900000 .922952305479675 314.498918 
80 8.000000 .926512840670504 315.712182 
81 8.100000 .929913883611876 316.871098 
82 8.200000 .933128406124181 317.966456 
83 8.300000 .936192912635112 319.010697 
84 8.400000 .939146875708833 320.017269 
85 8.500000 .941933897203706 320.966955 
86 8.600000 .944600639585029 321.875656 
87 8.700000 .947167888185578 322.750454 
88 8.800000 .949612933007652 323.583611 
89 8.900000 .951939148681306 324.376276 
90 9.000000 .954159636587821 325.132915 
91 9.100000 .956248840962252 325.844818 
92 9.200000 .958271450605845 326.534028 
93 9.300000 .960169620941832 327.180836 
94 9.400000 .962009966041575 327.807939 
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95 9.500000 .963734194072352 328.395475 
96 9.600000 ~965384348629256 328.957771 
97 9.700000 .966982159574580 329.502230 
98 9.800000 .968516200401008 330.024959 
99 9.900000 .969944044341862 330.511502 

100 10.000000 .971337552627003 330.986344 
101 10.100000 .972669014956684 331.440044 
102 10.200000 .973930927667507 331.870045 
103 10.300000 .975114490401523 332.273347 
104 10.400000 .976232345777157 332.654260 
105 10.500000 .977302219202291 333.018823 
106 10.600000 .978329225421814 333.368779 
107 10.700000 .979301849792012 333.700203 
108 10.800000 .980261464508569 334.027195 
109 10.900000 .981175049905112 334.338502 
110 11.000000 .982053198389934 334.637734 
111 11.100000 .982888568227358 334.922389 
112 11.200000 .983655577207819 335.183750 
113 11.300000 .984419378441258 335.444018 
114 11.400000 .985118546102146 335.682261 
115 11.500000 .985776691372482 335.906526 
116 11.600000 .986434875335227 336.130804 
117 11.700000 .987064756201609 336.345438 
118 11.800000 .987665877775508 336.550272 
119 11.900000 .988211154178148 336.736077 
120 12.000000 .988732104366407 336.913593 
121 12.100000 .989252754785609 337.091006 
122 12.200000 .989724596533404 337.251787 
123 12.300000 .990172495711414 337.404410 
124 12.400000 .990598289882118 337.549501 
125 12.500000 .991004121017893 337.687789 
126 12.600000 .991428732913952 337.832477 
127 12.700000 .991829780883639 337.969136 
128 12.800000 .992206262079940 338.097423 
129 12.900000 .992537834812079 338.210407 
130 13.000000 .992889678634671 338.330299 
131 13.100000 .993192446191170 338.433468 
132 13.200000 .993484192335011 338.532882 
133 13.300000 .993793084128814 338.638137 
134 13.400000 .994048014453535 338.725006 
135 13.500000 .994322695545015 338.818604 
136 13.600000 .994591141184036 338.910078 
137 13.700000 .994819269340581 338.987813 
138 13.800000 .995059830502271 339.069785 



228 

139 13.900000 .995257739780850 339.137223 
140 14.000000 .995454954340102 339.204425 
141 14.100000 .995669592395014 339.277564 
142 14.200000 .995874315083122 339.347323 
143 14.300000 .996064959339045 339.412286 
144 14.400000 .996246533623501 339.474158 
145 14.500000 .996394071282445 339.524432 
146 14.600000 .996538210435266 339.573548 
147 14.700000 .996673151295946 339.619529 
148 14.800000 .996827138517214 339.672001 
149 14.900000 .996975196198090 339.722452 
150 15.000000 .997119335004228 339.771568 
151 15.100000 .997225416038669 339.807715 
152 15.200000 .997333289770847 339.844474 
153 15.300000 .997435328555546 339.879244 
154 15.400000 .997556983780669 339.920698 
155 15.500000 .997672139414622 339.959938 
156 15.600000 .997748977334258 339.986120 
157 15.700000 .997853662327407 340.021792 
158 15.800000 .997959073824787 340.057712 
159 15.900000 .998029026906794 340.081548 
160 16.000000 .998130103627435 340.115990 

-----------------------------------------------------------
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