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CHAPTER 1
INTRODUCTION

The L, spaces are defined in terms of theif finite-dimensional subspaces. How-
ever, in the category of separable infinite-dimensional Banach spaces, the £, spaces
for 1 < p < oo with p # 2 are those spaces which are isomorphic to complemented
subspaces of LF, but not isomorphic to the Hilbert space £2.

Rosenthal [RI], Schechtman [S], Alspach [A], and Bourgain {B-R-S] have
developed methods of constructing £, spaces for 1 < p < oo with p # 2 which have
a probabilistic aspect. These methods have enlarged the set of known L, spaces from
the cléssical examples [¢F, {2 @ (P, (52 Sl -- ) oer and L?] to a family indexed by the
countable ordinals. We will examine these constructions, provide some details, clarify
a few points, and to some extent interrelate the constructed spaces with respect to the

. c
relation —.

Preliminaries for £, Spaces
The £, Spaces

The L, spaces were introduced by Lindenstrauss and Pelczynski in [L-P], and
were studied further by Lindenstrauss and Rosenthal in [L-R]. The definition and

some basic results are presented below.

DEerFINITION. Let 1 < p < oo and 1l < A < oco. A Banach space X is an L,  space
if for each finite-dimensional subspace Z of X, there is a finite-dimensional subspace Y
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of X containing Z such that d(Y,{£) < A, where n = dim(Y’) and d(Y, ¢®) is the
Banach-Mazur distance between Y and £ Finally, a Banach space is an L, space if

it is an L, , space for some 1 < v < 00.

Let 1 < p < oo where p # 2. In [L-P, Example 8.2], it is shown that ¢*, £2 & (P,
(£2 el ) > and L? are mutually nonisomorphic £, spaces, although this is more
easily seen in light of the subsequent results of [L-R]. These spaces are the classical £,
spaces.

Let X be a Banach space. A bounded linear mapping P: X — X is called a
projection if P? = P. Let Y be a closed subspace of X. Then Y is called a
complemented subspace of X if there is a (bounded linear) projection P : X — X
mapping X onto Y. If Y is a complemented subspace of X, P: X — X is the
(bounded linear) projection mapping X onto Y, and Z is the null space of P, then
X =Y ®Z. Conversely,if X =Y & Z for some close>d subspace Z of X, then Y is a
complemented subspace of X (as is Z).

We will restrict our attention to separable infinite-dimensional £, spaces for
1 < p < oo with p # 2. For these spaces, [L-P] and [L-R] each contribute one

implication in the following characterization, but in greater generality.

Theorem 1.1. Let 1 < p < oo where p # 2, and let X be a separable infinite-
dimensional Banach space. Then X is an L, space if and only if X is isomorphic to a

complemented subspace of L but X is not isomorphic to £2.
The essence of the forward implication [L-P, Theorem 7.1] is the following.

Proposition 1.2. Let 1 < p < oo and let X be an L, space. Then X is

isomorphic to a complemented subspace of L¥(i) for some measure .

ReMARK. In the above proposition, analogous statements for p = 1 and p = o©



are false. For p = 1, [L-P, Example 8.1 provides a counterexample. For p = oo,
any separable infinite-dimensional C'(K') space provides a counterexample, as noted in
[L-P]. However, by [L-P, Corollary 2 of Theorem 7.2], if X is an £, space, then X is
isomorphic to a subspace of LP(u) for some measure p.

The essence of the reverse implication [L-R, Theorem 2.1] is the following.

Proposition 1.3. Let 1 < p < oo and let X be (isomorphic to) a complemented
subspace of L¥ (i) for some measure . Then either X is an L, space or X is

isomorphic to a Hilbert space.

REMARK. in the above proposition, modified versions hold for p = 1 and p = o©
[L-R, Theorem 3.2]. If X is (isomorphic to) a complemented subspace of L'(u) for
some measure p, then X is an £, space. If X is (isomorphic to) av complemented
subspace of a C(K) space, then X is an L., space.

Let us assume the hypotheses of Theorem 1.1. The hypothesis that X is infinite-
dimensional excludes a class of spaces which are trivially £,. The hypothesis that X
is separable allows us to replace the L? (1) of Proposition 1.2 by L? = LF(0,1). As
noted in [L-P] and [L-R], the £, spaces are precisely the spaces which are isomorphic
to Hilbert spaces. However, the only separable infinite-dimensional Hilbert space
(up to isometry) is £2. Thus we may replace the Hilbert space of Proposition 1.3 by £2.

The conclusion of Theorem 1.1 now follows.
The Relations < and <

Let X and Y be Banach spaces. We write X — Y if X is isomorphic to a closed
subspace of Y. We write X < VY if X is isomorphic to a complemented subspace of Y.

Of course if X < Y, then X — Y. If X < Y, then X* < Y*. However if X < Y,
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it does not follow that X* — Y™*. If X is a closed subspace of Y with X < Y, it does
not follow that X itself is a complémented subspace of Y. The relations — and <, are
reflexive and transitive, but not antisymmetric.

Wewrite X =Y if X —>Yand Y — X. WewriteXEchfX'-caYand
Y < X, We write X ~ Y if X is isomorphic to Y. The relations =, =, and ~

are equivalence relations. Let [ ], [ ]z , and [ ]2 denote equivalence classes under

~, =, and =, respectively. Then [X]  C [X]_ C [X]_..
X =X andY = Y/, then X — Y if and only if X’ — Y’. Similarly, if
X=X andY =Y’ then X < Y if and only if X' < Y'. Thus — and < induce

partial orderings on equivalence classes under = and =, respectively.
The Classical £, Spaces

Let 2 < p < oo. Then ¢£? and the classical separable infinite-dimensional Ly
spacesr are related by — as in diagram (1.1) below, where X — Y denotes X «— Y but
Y 4 X, X =Y denotes X — Y and Y «— X, and the absence of a relation symbol
between X and Y implies X «» Y and Y <& X, unless some relation is implied by the
transitivity of <. The same conventions will apply in future diagrams relating spaces

by —.

02
2o — (ﬁz@gz@...)ep — LP. (1.1)

/!
Y24

Let 1 < p < oo wherep # 2. Then ¢? and the classical separable infinite-
dimensional £, spaces are related by < asin diagram (1.2) below. Conventions
analogous to those described above will apply in this and in future diagrams relating

spaces by < (with <>, 5, and =, replacing <, —, and =, respectively).



f2
™ 2 c 2 g2 c
Caor = (E <> 69"')[” = LP. (1.2)

/
/P

The positive relations asserted to exist above follow routinely from well-known

results. Of course £2 < £2 @ F and £7 < (2 @ /7. Letting F denote the scalar field,
ColP~CPoFoFo )y olo(lPele o~ Cala ).

Khintchine’s inequality [W, I.B.8] for the Rademacher functions {r,} shows that
[rn]r» ~ £2. Moreover, for 2 < p < oo, the orthogonal projection of L* onto [r,],» is

bounded. Hence for 2 < p < 00, and for 1 < p < 2 by duality, £2 < LP. Tt follows that

(CPolo ), > (L"OLP® ) ~ LP.

Some of the the negative results are another matter, although ¢2 < (7, fF <+ (2,
2 HLP £ 02 and £2 @ £F 4 (P, all follow from the fact that £7 & £2 for 7,5 € [1,00)
with 7 # s. The fact that (2@ 2 @ ---),, > £2 @ £ for 2 < p < oo is [RI, Lemma for
Corollary 14], presented below as Lemma 2.23. The fact that L? o/ (@£ &---),

for 2 < p < o0 is [L-P 2, Theorem 6.1].
Elementary Constructions

Fix 1 < p < 0o where p # 2.

Let X and Y be separable infinite-dimensional Banach spaces such that X N
and Y < L[P. Then X @Y < LP @ LP ~ LP. Note that since £2 is prime, if X £ (2
and Y o (% then X @Y £ £2. Hence if X and Y are L, spaces, then X @Y isan £,

space.
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A result of Pelczynski [P, Proposition ()], presented below as Lemma 2.8, states
that for Banach spaces V and W which are isomorphic to their squares in the sense
that VOV ~Vand WaW ~W,if VS Wand W<V, then V ~ W.

Suppose X and Y are as above and are isomorphic to their squares. If X < Y,
then X @Y ~ Y [since X @Y and Y are isomorphic to their squares,
XeY SY@Y ~Y,andY < X@Y]. If X and Y are incomparable in the sense
that X 7Z> Y and Y 7Z> X, then X @ Y is isomorphically distinct from both X and
Y [since X &Y ~ X would imply that YV’ < X, and X @Y ~ Y would imply that
xS Y]. Hence if X and Y are £, spaces which are isomorphic to their squares, then
the £, space X @Y is isomorphically distinct from both X and Y if and only if X and
Y are incomparable in the sense mentioned above.

From the list £2, (7, 2 @ (7, (P ® 2@ ---),,, LP of five spaces, the only

Y
incomparable pair of spaces is {£2,(7}. However, {2 @ ¢ has already been included in
the list.

Let Z be a separable infinite-dimensional Banach space such that Z < LP. Then
(Z®Z@® - )p < (LPOLP @---)p» ~ LP. Note that {7 S (Z®Z @), whence
(Z@Z& - )p #L*and (ZSZ & ---)p is an L, space. The space ((* S LS ---), is

an example. However, from the list £, 7, 2 & F, (P ® > @ ---) », L of five spaces,

ZP ’
no space arises from this method of construction which has not already been included

in the list.
Preliminaries for Banach Spaces

We now introduce some terminology used in the study of Banach spaces. The
presentation is unavoidably terse and a bit disjointed. General references for this

material include [L-T] and [W]. Throughout the following discussion, X and Y will



denote Banach spaces.

A Banach space is a complete normed vector space. Classical examples include
the space L”(0,1) for 1 < p < oo, with [|f]|, = (f(o,l) [f]”)% for1 < p < o0 and
Ifll., = esssup|f]| for p = oo, and the space £P for 1 < p < oo, with
Ha: i = (Elai[”)% for 1 < p < oo and |[{a;}|;.c = supla;] for p = oo. Here
[ denotes Lebesgue integration. Functions f,g € L?(0,1) are identical as elements
of LP(0,1) if they agree except on a set of measure zero, which is to say that strictly
speaking, the elements of L”(0,1) are equivalence classes of functions.

Given Banach spaces X1, Xs,...and 1 < p < oo, (X1 @ X2 @ --),r is the set
of all sequences {r;} with z; € X; such that ||{z;}|| = (3 Hmiﬂ’}’(i)% < 00. The sum
(X1 X2 @---),» is a Banach space, and will also be denoted (E@ Xi)lp.

Suppose T : X — Y is a linear operator. Then T is said to be bounded if
ITl| = sup,ex\ (0} % < 0o. A linear operator is bounded if and only if it is
continuous.

Suppose T': X — Y is a bounded linear operator. Then T is said to be an
isomorphism if 7" has an inverse 7-! : Y — X which is a bounded linear operator. If
T is a bijection, then T is an isomorphism by the open mapping theorem. If there is
an isomorphism S : X — Y, then X and Y are said to be isomorphic, and we write
X ~Y. If X ~ Y, the Banach-Mazur distance between X and Y is
d(X,Y) = infg {||S]|||S7?||}, where the infimum is taken over all isomorphisms
S: X-Y.

Suppose T : X — Y is a bounded linear operator. Then T is called an isomorphic
imbedding of X into Y if T is an injection onto a closed sﬁbspace Y’ of Y. If there is
an isomorphic imbedding S: X — Y, we write X — Y.

Suppose P : X — X is a bounded linear operator. Then P is called a projection



if P2 = P. Suppose P : X — X is a projection. Then P(X) is a closed subspace of
X, and each £ € X has a unique representation as ¢ = y + z where y € P(X) and
P(z) = 0. Moreover, I — P : X — X is a projection as well, where I : X — X is the
identity mapping. The range R = P(X) and null space N = (I — P)(X) of P are said
to be complemented subspaces of X, and X = R® N. We write R < X and NS X.
More generally, we write Y S XY is isomorphic to a complemented subspace of X.

The Rademacher functions ry : [0,1] — {—1,1} for k£ € N are defined by
re(t) = sgnsin(2k7t).

For expressions A and B and constants K; and K9, we write A %: B to signify
that A < K1B and B < KA. We also write A ~ B if K; and K exist but are not
specified. If so indicated, A =~ B will refer to an approximation rather than to a pair
of inequalities.

Khintchine’s inequality states that for 1 < p < oo, there is a constant K, such
that for all scalars aq,as, ..., for the Rademacher functions r1,74,..., and for all
N € N, 1/K, (vazllaif)% < ||25V=1 amt

K, N 2\ 3
2 (SLlal)”

A sequence {z;} in X is said to be a (Schauder) basis for X if for each z € X,

1
, <K, (vazl ]ai[2> *. This inequality

N
could also be expressed as “Zi=1 a;r;

there is a unique sequence {a;} of scalars such that z = > a;x;, with convergence in
the norm of X.

Given a sequence {z;} in X, the closed linear span of {z;} in X will be denoted
[z;] v, or simply [z;] if the context is clear. Such a sequence is called a basic sequence
if {z;} is a basis for [z;] .

Given a sequence {z;} in X, the series > z; is said to converge unconditionally
if any of the following equivalent conditions hold: (a) 3" €;xz; converges for all {—1,1}-

valued sequences {¢;}, (b) >_ z,(;) converges for all permutations ¢ of N, or (¢) 3" z,(;)



converges for all increasing sequences {n(7)} in N.

A basis {z;} for X is said to be unconditional if for each sequence of scalars for
which 3" a;z; converges, the convergence is unconditional. If {z;} is an unconditional
basis for X, then for Pg : [z;] — [z;] defined by Pg (32, a;z;) = Y icE @iTi, we have
suppen 1 Pall < 0.

Suppose {z;} is a basic sequence in X. A sequence {y;} in X is called a block
basic sequence (with respect to {z;}) if y; # 0 for all j € N and there are disjoint
nonempty finite Ey, Es,... C N with max E; < min Ej for j < j' and scalars a;, as,. ..
such that y; =3, p a:x; for all j € N. Suppose {y;} is a block basic sequence
(with respect to {z;}). Then {y;} is a basic sequence. If {z;} is unconditional, then
{y;} is unconditional as well.

Suppose {z;} and {y;} are bases for X and Y, respectively. Then {z;} and {y;}
are said to be equivalent if for all sequences {a;} of scalars, > a;z; converges if and
only if Ziaiyi converges. If {z;} and {y;} are equivalent, then there is a natural
isomorphism between X and Y by the closed graph theorem.

Suppose {z;} and {y;} are normalized bases for X and Y, respectively, which
are equivalent. Let K be a positive constant. Then {z;} and {y;} are said to be K-
equivalent if for all sequences {a;} of scalars such that Y a;z; and ) a;y; converge,
IS el 2 I apil

A random variable is a measurable function on a probability space (£, p). For
N € N, random variables Xl,XQ; ..., Xn on £ are said to be independent if for all
Borel sets By, Bs,...,Bn, p (ﬂf;l {t:X;(t) € B,'}) =TI, 1w ({t: Xi(t) € B;}).
Random variables X;, Xs,... on Q are said to be independent if X, X,,..., X are

independent for each N € N.



10

Overview of Chapters

We briefly discuss the content of the succeeding chapters.

Chapter II reviews the construction of Rosenthal [RI]. Rosenthal’s work is based
on the study of the span in L? for 2 < p < oo of sequences of independent mean zero
random variables. A \few nonclassical £, spaces were found by Rosenthal, principal
among them the space X,. Chapter II includes a complete ordering of these spaces
with respect to the (partial order) relation S,

Chapter III reviews the construction of Schechtman [S]. Schechtman takes
Rosenthal’s space X, and iterates a tensor product operation to produce a sequence of
L, spaces. Chapter III includes a section on the sequence space realization of
Schechtman’s spaces, expanding on a remark found in [S].

Chapter IV reviews the construction of Alspach [A]. Alspach’s work generalizes
the construction of Rosenthal, and generates spaces by means of a notion of
independent sum, but has only been available in manuscript form. A few nonclassical
L, spaces were found by Alspach, principal among them a space denoted D,. Chapter
IV includes a complete ordering of these and Rosenthal’s spaces with respect to <,

Chapter V reviews the construction of Bourgain, Rosenthal, and Schechtman
[B-R-8S]. These authors iterate and intertwine a notion of disjoint sum and a notion of
independent sum to generate a family of £, spaces indexed by the countable ordinals,
and distinguish these spaces isomorphicaLlIy by means of an isomorphic invariant,
introduced in [B-R-~S], which assigns an ordinal number to each separable Banach
space.

Each chapter has a diagram relating the spaces under discussion with respect to

<% These diagrams are (1.2), (2.27), (3.2), (4.10), and (5.5).



CHAPTER II
THE NONCLASSICAL £, SPACES OF ROSENTHAL

Let 1 < p < oo where p # 2. Rosenthal [RI] was the first to extend the list
of separable infinite-dimensional £, spaces beyond the four previously known isomor-
phism types: L?, £7, (@ (P, and (2 & 2 & "')e*" The principal £, spaces which
Rosenthal constructed are X, and By, to be discussed presently. Using the newly re-
vised list of six £, spaces, Rosenthal constructed a few more such spaces by forming

direct sums (pairwise and in the sense of £* for sequences) of these six.
The Space X,

In contrast to most classical Banach spaces, X, does not have a preferred stan-
dard realization. Let 2 < p < oco. One realization of X, is as the closed linear span
in L? of a sequence {f,} of independent symmetric three-valued random variables
such that the ratios || fnll, /|l fall, approach zero slowly (in a sense to be made pre-
cise). On the other hand, given positive weights w,, approaching zero slowly in the
same sense, another realization of X,, is as the set of all sequences {z,} in £* for which
the weighted ¢2 norm (3 Iwnxn|2)% is finite. For the conjugate index g, X, is defined

to be the dual of X,,.
The Space X, ,,

We first examine the sequence space realization of X,.

11
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DEFINITION. Let 2 < p < oo and let w = {w,} be a sequence of positive scalars.
Define X, ., to be the set of all sequences z = {z,} of scalars for which both " |z,|?

and Y. |waz,|” are finite. For z € X, ., define the norm HxHXP _, to be the maximum
1 1 o
of (Z [z:n}p) " and (Z ]wnwn]2> *

Thus {|z|| X, 18 the maximum of the % norm of = and the weighted £2 norm of
z. Under this norm, it is a routine matter to show that Xp,w 15 a Banach space with
unconditional standard basis. The isomorphism type of X, ,, depends on the sequence

w = {wy,} of weights, as partially outlined in the following proposition [RI].

Proposition 2.1. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars.
(a) If infw, > 0, then X, ,, is isomorphic to £2.
(b) If S w, 727 < oo, then X, is isomorphic to 7.
(c) If there is some € > 0 for which {n:w, > €} and {n:w, < €} are both infinite and

2
for which Y, w, 77 < 00, then X, is isomorphic to £2 & f°.

W<€

(d) Otherwise, w satisfies condition (x):

for each € > 0, Z wnp—z-% = 0. (%)

wn <€
Proof.

(a) Suppose infw, =C > 0 and let z = {z,} € X, .. Then

1
2

el < el = (Sleal’) < & (Slwnzal?)

Hence
(len$n|2>% <llzllx, , < max{g,1} (Z lwnwn|2>% ,

50 Xp,. is isomorphic to £2 via the mapping {z,} — {wnzn,}.
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(b) Suppose ani% < oo and let ¢ = {z,} € X, .. Then by Holder’s inequality

with conjugate indices p’ =% > 1 and ¢’ = we have

_P_
p—2’

=2 2
P

T lunnl* = T wnea? < (Swa’#) 7 (2 feal’%)
Let K = (anr‘)#)%z. Then (Z ]wnzn|2)% <K (Z !znlp)%. Hence
Izl < lllx,, < max{l, K} ||z(le,

50 Xp. i isomorphic to £# via the formal identity mapping.

(c) The hypothesis of part (c) is equivalent to the hypothesis that N is the disjoint
union of two infinite sets N; and N, for which inf,en, w, > 0 and
D oneN, w,ﬁ% < oo. Thus part (c¢) follows from parts (a) and (b) and the uncon-
ditionality of the standard basis of X, ..

(d) Condition (x) is equivalent to the conjunction of the negations of the hypotheses

of parts (a), (b), and (c). d

Remark 1. We will show later that for fixed 2 < p < oo, all spaces X, ,, for w
satisfying condition () are mutually isomorphic, but isomorphically distinct from £2,
P, and 2@ P (aswellas (202 - ')eP and L?). Thus part (d) is indeed a different
case, and part (d) does not split into subcases.

ReEMARK 2. Let 2 < p < oo. If infw, = 0 (as occurs in parts (b), (c), and
(d)), then X, ., contains a complemented subspace isomorphic to ¢, since some sub-
sequence of w satisfies the hypothesis of part (b). Hence in parts (b), (¢), and (d),
X, is not isomorphic to £2. We will show later that the spaces X, ,, are isomor-

- phic to complemented subspaces of L”. Thus only part (a) does not yield an £, space,
while parts (b) and (c) yield known £, spaces, and part (d) yields a previously un-
known L, space. The spaces X, ,, for w satisfying condition (*) will be our sequence

space realizations of X,.
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Rosenthal’s Inequality

Rosenthal proved the following fundamental probabilistic inequality
[RI, Theorem 3], which (in its corollary) relates X, ., with the closed linear span of a

sequence of independent mean zero random variables in L? (2 < p < 00).

Theorem 2.2. Let 2 < p < 0o. There is a constant K,, depending only on p,

such that if fi,..., fn are independent mean zero random variables in L?, then
N P (N 2\ 2

< Kymax{ (S 1A0)7 (S0 113) |, and

> pumac{ (S, 150)” (S0 1 18)

If in addition fi,..., fy are assumed to be symmetric, then the constant % can

(a) ”Zle fn
(b) |0y Fn

p

be replaced by 1.

REMARK. It is shown in [J-S-Z] that K, is of order p/log p.

The proof of Rosenthal’s inequality will not be presented, but we deduce its

corollary [RI].

Corollary 2.3. Let2 < p < o0, let {f,} be a sequence of independent mean
zero random variables in L?, and let w = {w,} = {anHz/anHp}. Then [fn]» Is

isomorphic to X, .,, and {fn} in L” is equivalent to the standard basis of X, ,,.

Proof. Without loss of generality, suppose each f, is of norm one in L?, so that
wn = || fally- Let f € span{f,} and express f as Z:le ¢nfn. Then by Theorem 2.2,
we have

“ZnN=1 Cnfn I%P max { (271:;1 |Cn|p)% , (271:7-_-1 {Cn’wan) %} .

p

Hence [f,]» is isomorphic to X, ,, via the mapping > ¢, fn — {cn}, and {f,} in L? is

equivalent to the standard basis of X, ,,. 3
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REMARK 1. Let 2 < p < oo. Given a sequence w = {w,} of positive scalars
for which supw, < 1, {w,} can be realized as {anHz/an]lp} for {fn} satisfying the
hypotheses of Corollary 2.3. If supw, > 1, then X, ,, ~ X, ,,+ for some sequence
w' = {w]} satisfying supw] < 1. Thus there is a complete correspondence between
the sequence spaces X, ., and the function spaces [f,];» for {f,} satisfying the hy-
potheses of Corollary 2.3.

REMARK 2. For fixed 2 < p < o0, the spaces [fn]bp for {f»} satisfying the
hypotheses of Corollary 2.3 and w = {w,} = {an][z/]lfn”p} satisfying condition (x)

of Proposition 2.1 will be our function space realizations of X,.
The Complementation of X, ,, in L”

Let 2 < p < oo. In its sequence space realizations, it is not so clear that X, is
an L, space. However, we will soon show that in its function space realizations, the
complementation of [f,];» in L? follows if the sequence {f,} satisfies certain addi-
tional hypotheses. On the other hand, in its function space realizations, the isomor-
phic structure of X, is not so clear. We will go back and forth between realizations,
depending on their relative advantages at the time.

Suppose f, is a symmetric three-valued random variable. Let a, be the positive
value attained by |f,| and let u, be the measure of the set on which f, is nonzero.

Then for 1 < r < oo, we have

e

an”,- = (anrﬂn)% = QpfinT-

=2

Let 2 < p < co. Then w, = ||fni[2/]|fn”p = pniTF = tn 2* . Hence

2P
Wn?~2 = [y,
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This provides an interpretation for condition (%) of Proposition 2.1 in terms of prop-
erties of a sequence {f,} of independent symmetric three-valued random variables,

namely

for each € > 0, Z fy = OO.

pn <€

Let ¢ be the conjugate index of p. Then

1l il = %0034 = %t = (ctnstn?)” = Sl

This provides a way to interrelate the LP, L?, and L? norms of a symmetric three-
valued random variable. We will find this useful in the proof of the next theorem,
where we show that a certain projection is bounded in both L? and L? norms. We will
make explicit use of the fact that if f, is a symmetric three-valued random variable of

norm one in L?, then

Ml 1
AT AR

H I (2.1)

T

ReEmark. If the scalars are complex, the hypothesis that f, is a symmetric three-
valued random variable can be replaced by the hypothesis that f,, is a mean zero
random variable for which |f,]| is {0, o, }-valued for o, # 0.

Rosenthal proved the following theorem [RI, Theorem 4], which (in its corollary)
establishes that for 2 < p < oo, the spaces X, ,, are isomorphic to complemented
subspaces of LP. To prove the theorem, we use the following probabilistic inequality

[RI, Lemma 2b], which we state without proof.

Lemma 2.4. Let1 < ¢ <2 and let fy,..., fy be independent mean zero random

variables in LY. Then

=20 5], <2 (Satsr)

q
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If in addition fi,..., fn are assumed to be symmetric, then the constant 2 can be

replaced by 1.

Theorem 2.5. Let 1 < p < oo and let {f,} be a sequence of independent sym-
metric three-valued random variables in L¥. Then there is a projection P: L — L?
onto [f,);» with |P|| < Cp, where Cy = 1, C, = K, (the constant in Theorem 2.2) for

2 < p < oo, and C, = C, for conjugate indices p and q.

Proof. If p = 2, the orthogonal projection m: L? — L? onto [f,]; satisfies the
requirements. We will presently show that for 2 < p < oo, the set-theoretic restriction
of w to L? yields a bounded projection P: L? — L* onto [f,],;» with ||P|| < K. This
will suffice to prove the theorem in the general case, since the adjoint then induces a
projection Q: L? — L7 onto [f,],« with [|Q] = || P]|.

Let 2 < p < 00, s0 that L? C L%. Let w = {w,} = {||fn||2/]|fn||p}. Without
loss of generality, suppose f, is real-valued with [|f,[|, = 1. Then w, = [|fall,. Let

m: L? — [f,];» be the orthogonal projection defined by

_ ' fn fn
") =2 (/ SOTET, (”‘“) ol

Then ||7(g)ll, < llgll,- We will show that if g € LP, then n(g) € L* and

Im@l, < Kylgl, Thus

1
P(g)=)_ (/0 9(t) “f"nz(t) dt) fn

defines a mapping P: L? — [f,];». Set-theoretically, P is the restriction of = to L?. Tt
will follow that P is a projection and ||P|| < K.

Fix g € L? and let

1
B fu
2o = /0 o072 )
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so that 7(g) = . xnfn. We will show that {z,} € X, ., and ”{‘T"}“Xp,w < lall,.-
Corollary 2.3 will then yield [[7(g)[l, = |22 zafnll, < Kpl{zn}x, , < Kpligll,-

First we examine the weighted ¢ norm of {z,}. Let

= 1 fn =z =z
= [ O F O =2l = v

Then

(Sluneal?)* = HaHls = S o

=@l < lglla < loll,. (22)

Next we examine the £ norm of {z,}. We verify that {z,} € P by testing

against £7. Let {c,} € £?. Using Lemma 2.4 and equation (2.1), for each N € N

N 7\ 7
- (g "l )

N q
(£
< [HeaHles-

N

fn
g 1l

Now by Hoélder’s inequality and the observation above, for each N € N

N
2 enn| = Z / anHo

Se fn
= Cn d

N

Jn
Z FAT
< llglll{en}lga-

< llgll,

Hence {z,} € £ and
[{zn e < ligll,,- (2.3)

Combining (2.2) and (2.3), we see that {z,} is indeed in X, ,, and

Hza}ix, . < llgl,
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Now by Corollary 2.3 (and the inequality appearing in its proof), we have

KP
“z xnfn”p ? ll{xn}l’}(?,w, so that
(), = 12 znfall, < Kpll{za}lx, , < Kollgll,-

Hence P(g) = m(g) € [fa];» and P is a projection from L? onto [f»];» with ||P|| < K.
O

REMARK. If the scalars are complex, the hypothesis that each f,, is symmetric
and three-valued can be replaced by the hypothesis that each f, is mean zero and |f,|
is {0, oy }-valued for a,, # 0, but without the hypothesis of symmetry we have
1Pl < 2C,.

We deduce the following corollary [RI].

Corollary 2.6. Let2 < p < oo and let w = {w,} be a sequence of positive
scalars. Then X, ,, is isomorphic to a complemented subspace of L*. If infw, = 0,
then X, ., is an L, space. In particular, if w satisfies condition (*) of Proposition 2.1,

-
then X, ., Is an L, space.

Proof. First suppose that supw, < 1. Then {w,} can be realized as
{ | Falla/ I fnll p} for a sequence {f,} of independent symmetric (whence mean zero)
three-valued random variables in L”. Hence X, ,, is isomorphic to [f,];» by Corollary
2.3, and [f,]» is complemented in L” by Theorem 2.5.

Now suppose that supw,, > 1. Let Ny = {n:w, <1} and Ny = {n:w, > 1}. Let
wio] = {Wn}nen, a0d wpy = {wn},en,, and let {1} = {1}, .y be the sequence with
constant value one. Let w' = {w},}.., = {min{w,,1}}._,, whence supw/, < 1 and

Xpw' < LP. Then

(o4
~o ~ " ~o p
Xp,w Xp,w[o] ® Xp,wm }‘p,w[o] ® Xp,{l} pw’ — L7,
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where for an N-tuple v = {vy,...,un} of positive scalars, X}, , is defined in the
obvious way, and X, o = {0}.

If inf w, = 0, then X,,,, contains a complemented subspace isomorphic to ¢,
whence X, ,, is not isomorphic to ¢2. Hence if inf w, = 0, then Xp,w is an L, space by

Theorem 1.1. Finally, note that if w = {w,} satisfies condition (*) of Proposition 2.1,

then inf w, = 0. O

The Mutual Isomorphism of the Spaces X, ,,

We will show that for fixed 2 < p < oo, all spaces X, ,, for w = {w,} satisfying
condition (%) of Proposition 2.1 are mutually isomorphic, and isomorphically distinct
from the previously known L, spaces. These two results are our next major concerns.
The following proposition [RI, Lemma 7] will be used in the proofs of both of these

results.

Proposition 2.7. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars. Suppose that {E;} is a sequence of disjoint nonempty finite subsets of N. Let

bj = Y nek, w,7%e, and bj = b;/|lb;]l,», where {e,} is the standard basis of X, ,,.

2 \ 55

ST
Let v; = (ZneEj wnv-2) " and v = {v;}. Then

(a) {Z)J} is an unconditional basis for [131] ~ which is isometrically equivalent to

p.w

the standard basis of X, 5, and

(b) there is a projection P: X, ., — [5j]x with ||P|| = 1.

Pyw

Proof. First we establish some notation. Let {2, be the Hilbert space of all se-

1

quences z = {z,} of scalars for which [|zf|, = (Z |wnxn12) * < oo, where the inner

product in £s,, is defined by (z,y) = 3 ZpFnwn® (where z = {z,}, ¥ = {yn}, and bar
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is complex conjugation). Motivating the choice of the b; is the fact that

22 4
1e; e = ZnEEj Wn o=t = ZnEEj W P W, = HijZ,M

2
Let ¢; denote the common value of ||b;||%, “bf”i,w’ and > ¢k, w,7-2. Note that
v; = ojz% by our definitions.
(a) The unconditionality of {I;J} follows from the unconditionality of {e,} in X, 4.
We now examine the isometric equivalence of the bases. Let J € N and let

Al,...,As be scalars. Then

J 14 P
2
oAb = Aj D warZe,
7j=1 o 7=1 nek; o7
J
=L NP X w
j=1 n€k;
d P
= > Alfo; (2.4)
=1
and .
2 2
J J 5
E )\jbj = 2 )\j 2 WnP~2€n
]=1 e2,w ]=1 nEEJ 22,1.0

[ j|2 > wn;i_zwn2
nGE_-,‘
2
P Y warr
nek;

A
|2

=2
=1
J
=1
J
- I\120;.

>
2

Normalizing each b; in £” and noting that ||b;{|,» = oj%, we have

g |7 J
2 Aibiil =30 PP (2.5)
j=1 /P J=1
and
J 2 J J J
- o —2
Y bl = X I = 2 NPT = 2 A (2:6)
j=1 22,,‘, =1 o; P ]=l i=1
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Thus

?
ZP

J . J - J -
2 Ajb; 2 Asbs 2 Ajb;
j=1 J=1 j=1

Xpw ) { Eng}
J % J 9 H
:max{(gll/\jlp> s (gllvj/\j’ ) }

Hence {I;J} in X, ,, is isometrically equivalent to the standard basis of X ..

We wish to define a projection P: X, ,, — [bj]X,, . with |[P]| = 1. Recalling the
inner product ( , ) previously introduced on 2, let m: 43, — [b;],  be the

orthogonal projection defined by

—~/ b b
mie) = ; <m b, . > Tbsllz, .,

Then [im(2)|,, , < llzlly, - We will show that if 2 € £% N {5, then 7(z) € £F and

flr(z)ll» < ||lz]l». Thus

o bj .
P =) < Bl > "

Jj=1
defines a mapping P: £ N4y, — [bj]epm2 _ - Set-theoretically, P is the restriction

of 7 to ££ N4y ,,. It will follow that if z € £ N Ly, = X, 4, then

1P@)lx, ., = max{IP@,, IP@} < max{llel, . lole } = Iallx, .

Fix z = {zn} € ££ Ny, and let

b.
Aj = z, 2 3
? < Hbj||32,w'>

so that Z;=1 A;jb; is a partial sum of 7(z). We now show that n(z) € f? and

|7(z)]l» < llzll,p- As in equation (2.4), we have

p

J
2 Asb;
J=1

J
=3 AlPay,
Yid j=1
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where
b; 1
A= {1z, =2 = — (z,b;)
’ < ’Hbjllfg,w> o
1 2
= ;___—EnEEj TnWn P~% Wn
J
1 2(p—1
=_E'n_EEj TpWn P72 .
Oy

Now by Hoélder’s inequality, for ¢ = ;_{'—1 we have

1 2(p-1)
l/\Jl = lEnEE~ InWn P2
o; J

1 H 2p=1) 0\ §
S 0__ (EnEEj ,xﬂ|p> ’ (EnEEj Wn P2 q>
2

1 3 2p_ P
= = (Tues; 120) " (Tuer, wn )
2
1 p\F _ 221
= ;- (EnEEj l.’L‘n] > Uj P
2
1 1
= =1 (Tnes, l2al") "
aj;r

Hence |)\;[Po; < 2oneE, |z,|?. Referring again to equation (2.4), for each J € N

p

J J J
bl =X <Y X el < el (2.7)
=1 o J=1 Jj=1nek;
Hence 7(z) = Y372, A;b; € £7 and [|7(z)ll,p < (|2, O

We continue with results leading to the conclusion that for fixed 2 < p < o0, all

spaces Xp,, for w = {w,} satisfying condition () of Proposition 2.1 are mutually iso-

morphic. The following result of Pelczynski [P, Proposition (*)] indicates the approach

to be taken.

Lemma 2.8. Let X and Y be Banach spaces. Suppose X S YandY < X,

where X ~ XX andY ~Y®Y. Then X ~Y.

Proof. Let X’ be a closed subspace of X such that X ~Y @ X’. Then

X~Y®X' ~YaY®X' ~Y ®X. Similarly, Y ~ X @Y. Hence

X~YeX~XpY~Y. a

First we examine the matter of mutual complementation [RI, Theorem 13].
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Proposition 2.9. Let 2 < p < oo and let w = {w,} and w' = {w],} be sequences

of positive scalars satisfying condition (x) of Proposition 2.1. Then X, . < Xpw-

Proof. By condition (), we may choose a sequence {E;} of disjoint nonempty

finite subsets of N such that for each j € N,

(W)™ < 3 w7 < (20) 7.
nek;

=2
2p.\ 2
Then for v; = (ZneEj ’u}np—Z) " w; < v; < 2w;. Hence for v = {v;} and

T € Xpw, l]:tHXW, <llelly,, < 2||:cHXP’w,. Thus X, ' ~ X, , via the formal identity

mapping. For Bj as in Proposition 2.7, X, , ~ [Bj] < Xp,w- Hence X, o < Xpw-

p.w

O

Next we examine the matter of X, ,, being isomorphic to its square. As a pre-
liminary, we show that a certain symmetric sum of X, ,, is complemented in X, ,,
[RI, Proposition 12]. This symmetric sum is a special case of a more general sum
which we now define.

Let 2 < p < oo. For each sequence v = {v;} of positive scalars, define a space {5,

o0

as in the proof of Proposition 2.7. For each k € N, let v(*) = {vgk)} be a sequence
1

Jj=
of positive scalars, and let X be a closed subspace of X, o6, Let

(X16Xy0-- ')p,2,{v<’=>} be the Banach space of all sequences {z;} with z; € X such

1

that [ze}) = max{ (Shonll) " (Shoul? )7} < oo. 1 each o6 i identica

to a fixed sequence v, we will denote (X; & X & -- ')p,2,{v<’=>} by (X1 Xo®---)

P2’

Proposition 2.10. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars satisfying condition (x) of Proposition 2.1. Let

Xopw=(Xpuw®Xp 0 ®-- .)p,2‘w. Then Xp’w S, Xpw-

Proof. By condition (*), we may choose a sequence { Ny} of disjoint infinite
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subsets of N such that for each ¢ > 0 and for each &,

oo
Hence for each k, we may choose a sequence {Ej(k)} of disjoint nonempty finite
Jj=1

subsets of N such that

nGE](k)

p=2 -
Then for vg-k) = (ZneEJ(.’“’ wnr_%) 2P , wj < vj(-k) < 2w;. Hence for k) = {vj(-k)}j___l
and zx € Xpw, 7kllg, , < ||55kue2,v(,c) < 2||zll,, - Hence

(vaw @ XP,UJ @ o ') ~ (Xp,v(l) @ Xp)v(?) @ tt ') (28)

p2,w pyzy{v(k)}

via the formal idehtity mapping.
Let bgk) = ZneE§’°) wnp%zen (where {e,} is the standard basis of X, ,,). Let

(k) _ (k)
B = g /

2.6), for each k there is an isometry Tx: X, ) — pLk) 7 €N with
D, J

pPyw

()
bj

lep. Then by part (a) of Proposition 2.7, and equations (2.5) and

ITu@e)le = el and (T, = lonlle,

® for ¥ € Apﬂ,(k). Hence

7(1) 7.(2) |
(Xpﬂ;(l) e Xp,‘u(z) @D -- .)p,Z,{v(k)} ~ ([b] ]Xpyw Sx [bj ]Xp’w D - -)p - (2.9)

via the isometry {yx} — {Tk(yx)}-
The direct sum on the right side of (2.9) should be thought of as an internal

direct sum of subspaces of X, ,,. We next show that

([ggl)]x,ﬂ,w ® [5§2)]Xp,w e .)p,z,w " [Egk) ‘b e N] X (2.10)

Pyw
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via the mapping {zx} — >_ 2. For each k, let zx = > oo /\(.k)ggk) € [Eg-k) 1j € N}

j=1"3 o
Then by equations (2.5) and (2.6), and part (a) of Proposition 2.7, we have
o0 % o0 2
{20} = max { (S i) (£ 1l ) }
k=1 k=1
p P 2 2
maxd (S Sa@i@] ) [ 5] S awi
k=1|l1=1 oP k=1 l{j= w
1
) p\? =)
= max{(Z > 1/\(k)' ) 5 (Z ) ‘Uj(k)/\gk) )
k=1j=1 \k=1j=1
=y A(k)g§k)
k=1j5=1 Xpo
= E Zk .
k=1 Xpow
Hence the mapping {zx} — Y zx is an isometry.
By part (b) of Proposition 2.7, we have
[13§’°’ k€ N} S Xy (2.11)

pw

Combining (2.8), (2.9), (2.10), and (2.11) yields

c r
- Xpw-

(Xp,w @ Xp,u) ®-- )

p,2w

The complementation of X’,,,w in X, . is the key to showing that X, ., is iso-

morphic to its square [RI, Proposition 11].

Proposition 2.11. Let 2 < p < oo and let w = {w,} be a sequence of positive

scalars satisfying condition (x) of Proposition 2.1. Then X, ~ Xp 0w @ Xp 4.

Proof. Let X'p,w be as in Proposition 2.10. Then Xp,w < Xpw- Let Y bea
closed subspace of X, ,, such that X, ,, ~ X'p,w & Y. Note that X,,,w ~ Xpw® X',,,w.
Hence

Xpw® Xpw ~ Xpw @ Xy @Y ~ Xp oy @Y ~ X, .
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REMARK. After noting that X, ,, ~ X,pw ® X, 0, we now see by Lemma 2.8 that

The above results immediately yield the following theorem [RI, Theorem 13].

Theorem 2.12. Let 2 < p < oo and let w = {w,} and w’' = {w,,} be sequences

of positive scalars satisfying condition (x) of Proposition 2.1. Then X, , ~ X, -

Proof. The spaces X, and X, ., satisfy the hypotheses of Lemma 2.8. 0
REmMARK. For p, w, and w’ as above, there is a constant C,, depending only on
p, such that d (X, 4, Xp,w) < Cp, where d (X, 4, Xp ) is the Banach-Mazur distance

between X, ., and X, .

DEFINITION. Let 2 < p < 00. Define X,, to be (the isomorphism type of) X, ., for
any sequence w = {wp} of positive scalars satisfying condition (x) of Proposition 2.1.

For the conjugate index g, define X, to be the dual of X,,.

By Theorem 2.12, X,, is well-defined.
The Isomorphism Type of X,

We now present results leading to the conclusion that for 2 < p < oo and for
w = {w,} satisfying condition (*) of Proposition 2.1, X, ., is isomorphically distinct
from the previously known L, spaces. The first result [RI, Corollary 8] establishes an

unusual property of X, ...

Proposition 2.13. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars satisfying condition () of Proposition 2.1. Then for each N € N,
(a) there is a basic sequence {EJ} in X, ., 2N-equivalent to the standard basis of £2,

such that for all distinct j1,...,j5 € N, {bju ceny EjN} is isometrically equivalent
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to the standard basis of £%;, and
(b) there is a basic sequence {d;} in X} ,,, 2N-equivalent to the standard basis of £2,
such that for all distinct j1,...,jn € N, {d;,,...,d;y} Is isometrically equivalent

to the standard basis of £%;, where ¢ is the conjugate index of p.

Proof. Fix N € N. By condition (x), we may choose a sequence {E;} of disjoint

nonempty finite subsets of N such that

1\ 7 1
p= 2p_

—_— < p—2 < —,

(ZN) = ZneEj UntT SN

Define b;, Bj, v;, and v as in Proposition 2.7. Recalling that

20\ 55
v; = (ZneEj Wn, P—2) , we have

1< - < 1 2P<1
oN == \N =4

Hence infv; > 5% > 0, supv; <1, and supvjp_% <%

(a) By part (a) of Proposition 2.7, {I;j} is a basic sequence in X, ,, which is isomet-
rically equivalent to the standard basis of X, ,,. Since infwv; > 0 and supv; < 1,
the proof of part (a) of Proposition 2.1 shows that the standard basis of X, ,, is
equivalent to the standard basis of £2, with lzlx,. 2%\/ lz]l,2 for every sequence
x = {z,} of scalars. Hence {7)]} in X, ., is 2N-equivalent to the standard basis
of £2.

Let j1,...,7~8 € N be distinct and let z;,...,z5 be scalars. Then by Hoélder’s
inequality with conjugate indices P = & and Q = 5'5-2’ and the fact that

2p_
supv;?-2 < %, we have

2
N 2 N N 28\ p N P
Z"=1 |’an$n| = Z71,=1 Ixnzvjn2l S (Zn:l lxn{ 2) ’ (Zn:l v]."2p‘2) '
2
P

N p=2
< (T leal

(Zha%)”
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Thus by part (a) of Proposition 2.7 and the above observation, we have

D e N KN P e b

= (Zileal)”

Hence {bjm ey ij} is isometrically equivalent to the standard basis of £;.

p,w

Define ¢5 ,, and its inner product ( , ) as in Proposition 2.7. Let d; = bj/”bj”?;l

and consider d; as an element of X, with action ( ,d;). Then <I~)j,dj:> = 0 for

Jj#J', and

N N [ T
(o) = g, %) = 1" =

Let {an} be a sequence of scalars and let j;,...,75 € N be distinct. We are

trying to prove that

0o
“Z Undn
n==1

2 (T k)’
X;,w T n=1 On

and

R

The proofs of these two relationships are quite similar. We introduce a shorthand

to allow us to handle them simultaneously. Let 5’ denote 3 o, in the first set-
ting and 22;1 in the second setting. Let 7,, denote n in the first setting and j,

in the second setting. Then for sequences {7, } of scalars, we have
I andr |« =sup{|(5, X ands, )| s I2llx, , =1}
> sup{[(L nbrns & e, )| 1 [| 2 el =1} (212)
= sup{ |5 tntn ¢ | ' b, =1}

We will show that equality holds at (2.12). It will then follow by part (a) that

1572 andall, | = sup{ 202y mainl || oy waball, =1}
2N

2 sup{ IS5 il (55 bl =1)
= (5 feaf)
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and
|2 endilx, = sup{| S0y a5 | S0y b, =1}
= sup{l St 1 (DN al?)* = 1}

= (B, lanl®)?,

which is what we are trying to prove.
We now show that equality holds at (2.12). It suffices to find a projection
P': X, — Xp. of norm one which is the set-theoretic restriction to

Xpw = £f N4y, of the orthogonal projection n': £y, — €3, onto [i)"]e in the
2,w
. N
first setting and onto span {bjn} in the second setting. For then we will have

n=]
sup l Z and;, I “"L'HX,,,W = 1}
= sup{ |, (P (% and-,))| ¢ 1l =1}

{
{

= sup{| P' (), o Tn)l : HxHXNu = 1}
{

IN

sup{ (P (2), ' andtr,)| : 1P (@), =1}

= SUP{|<ZI 77157'"7 ZI and‘rn>| : || EI ’YnETn ||X,,_w = 1}7
Wilence equality will hold at (2.12). Let P": X, ,, — X, ., be defined by

bs
P(z) = ZI T, b .
l1br1I%, .,

In either setting, P’ is essentially the projection P of part (b) of Proposition 2.7,

the only difference between the settings being the choice of {E;} on which the
projection is based. In either setting, ||P’|| = 1, as can be seen by (2.7). Thus

equality indeed holds at (2.12). O

Following Rosenthal [RI], we say that a Banach space X satisfies P, if for each
¢ > 0 and each sequence {f,} in X equivalent to the standard basis {e,} of £2, there is
a subsequence {gn} of {f,} such that {g,} is (1 + €)-equivalent to {e,}.

The following result [RI] restates part (b) of Proposition 2.13 in terms of Ps.
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Corollary 2.14. Let 2 < p < oo and let w = {w,} be a sequence of positive

scalars satisfying condition () of Proposition 2.1. Then X, ,, is not isomorphic to any

w

Banach space satisfying P.

Proof. Suppose X, is isomorphic to a Banach space Y satisfying P,. Let

K=d(X;

p,w?

Y), the Banach-Mazur distance between X, , and Y. Let € > 0. Choose

N € N such that (1+¢) (K +¢€) < d (£%,%), the Banach-Mazur distance between £%

and ¢}, where ¢ is the conjugate index of p.

Choose a basic sequence {d;} in X7, as in part (b) of Proposition 2.13. Then
{d;} is equivalent to the standard basis of £2, but for all distinct ji,...,j8 € N,

{dj,,...,d;y} is isometrically equivalent to the standard basis of £},.

Choose an isomorphism T: X, — Y such that ||T|| [|T7}|| < K +e. Let

{y;} = {T(d;)}. Then {y;} is equivalent to the standard basis of £2.

Suppose {y;, } is a subsequence of {y;} such that {y;.} is (1 + €)-equivalent
to the standard basis of £2. Then the standard basis of (% is (1 + €)-equivalent to
{Uiis->Uin b {Ujrs- - Yjn t 18 (K + €)-equivalent to {d;,,...,d;,}, and {d;,,...,d;y}
is isometrically equivalent to the standard basis of £%,. Hence the standard basis of %
is (1 + €)(K + €)-equivalent to the standard basis of £%;, contrary to the choice of N.

g

It is a fairly routine matter to show that for 2 < p < oo, £3, it and (62 &) Zp)*
satisfy Py. We will show that for 2 < p < oo, ((* B B -- );,, satisfies Py as well.
Thus for 2 < p < oo, the duals of the classical sequence space L, spaces satisfy P,. It
follows that for 2 < p < oo and w satisfying condition () of Proposition 2.1, X, ,, is
isomorphically distinct from the classical sequence space £, spaces. Rather than take

this approach, however, we will show that (52 elg-- );,, satisfies Py for 2 < p < oo
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as a lemma for a somewhat stronger result.

The following example [RI, Sublemma 1] motivates the argument.
Example 2.15. The space £? satisfies Ps.

Proof. Let {e,} be the standard basis of £2. Suppose {f,} is a basic sequence in
% equivalent to {e,}. Then {f,} is weakly null, inf ||f,]l,» > 0, and sup||fnllz < oo.
Let € > 0 and choose § > 0 and v > 0 such that (1+6)? < 1+¢€ and (1+7v)% < 1+6. By
the method of Bessaga and Pelczynski [B-P, Theorem 3], choose a subsequence {g,}
of {fn} such that {g,} is (1 + §)-equivalent to a block basic sequence {b,} of {e,}. It
remains to show that {b,} has a subsequence which is (1 + §)-equivalent to {e,}.

Note that {b,} is equivalent to {e,}, whence inf ||b,||,» > 0 and sup ||bn]l,z < oo

Choose a subsequence {by(n)} of {bn} such that 0 < L = lim Hbc,[(n)ﬂg2 exists, with
1
L——-—l e < “ba(n)Hp < L(l + "}’)
for all n. Then for scalars A1, As,..., we have

IS et = (S, elcl) 5 2 (0, )

Hence {bq(n)} is (1+6)-equivalent to {e,}, but {ga(n)} is (1+6)-equivalent to {by(n)
50 {ga(n)} is (1 + €)-equivalent to {e,}. O
The following result [RI, Sublemma 1] is similar, but is more technical than

motivational. In our first application, r = 2.

Lemma 2.16. Let 1 <7 < oo and let X be isomorphic to £". Suppose {fn}
is a sequence in X which is weakly null but not norm null. Then {f,} has a basic

subsequence equivalent to the standard basis {e, } of £".

Proof. Note that M = sup ||fal|x < oo since {f,.} is weakly bounded. Let {g,}
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be a subsequence of {f,} such that inf|jg.||y > 0. Choose 0 < § < 1 such that
§ < inflign]lx. Fix an isomorphism 7T:¢" — X and its inverse S: X — £7.
By the method of Bessaga and Pelczyriski [B-P, Theorem 3], choose a basic sub-
sequence {h,} of {g,} such that {h,} is equivalent to a block basic sequence {b,} of

{T(en)}, with ||hn — bs|lx < % for each n. Then for each n,

onllx = hnllx = Ihn = ballx > 6 = g _ g

and

' ]
ballx < llhnllx +11bn = hallx < M+ 5.

Hence {S(b,)} is a block basic sequence of {e,}, inf ||S(bn)|l,» > 0, and
sup ||S(bn )|~ < co. Hence {S(bn)} is equivalent to {e,}, so {b,} is equivalent to {e,}.
Since {h,} is equivalent to {b,}, {hn} is equivalent to {e,}. O

Let 1 < ¢ < oo andlet N € N Let I’ be an index set, either {1,...,N} or N. We
now introduce some notation for X = ( ;Ber £2>£"(r)’ that is, X = ([" DD [")Z},V
(N summands)or X = (* 26 -- -)eq. Denote a generic z € X by {x(j)}jer, with
each £U) € ¢2. For each J € T, define m5: X — £2 by ({x(j)}j€r> = z(). Let {ex}
be the standard basis of £%. Let {e; ;} be the standard basis of X, with m;(e; ;) = &;

and 7;:(e; ;) = Op2 for 7,5 € T’ such that j # j'.

The following somewhat idealized example provides a model to be approximated.

Example 2.17. Let 1 < g<ooandletT, X = ( ;Ber £2)£"(1")’ 7;: X — £% and

{ei;} be as above. Let {o;} . be a sequence of nonnegative real numbers such that

1

a = (Ejer aﬁ) * > 0. Suppose {b[k] } is a basic sequence in X which is disjointly
supported with respect to {e; ;}, such that for each j € T, ”7rj (b[k])llﬁ = a; for all k.

Then {bp)} is 1-equivalent to the standard basis of (2.
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Proof. For scalars A1, Ao,..., we have

o) i o0 q %
> Aebpgll = [ X0 |im (Z /\kb[k]> ]
k=1

X J€Er k=1 2

1

=[5 (& st )] (213

j€
[ (Emre)"]
=12 aj"} q [i l/\klz} :
| j€T

k=1
1
o 2 2
~a| £ ]
k=1
Hence {b[k]} is 1-equivalent to the standard basis of £2. O
The following lemma [RI, Sublemma 3] shows the relevance of Example 2.17

for '={1,..., N} to the space (E2EB€2EB---)€q for1<g<2.

Lemma 2.18. Let1 < ¢ < 2 andlet X = ({*®{*®---) . Denote a generic
z € X by {zW,z3, .}, with 2,z ... € (2. For eachn € N, define P,: X — X
by P, ({z®,2®,...}) = {z®,...,2(,0,0,...} and define Q,: X — X by
Qn(z) = z — P,(z). Suppose Y is a subspace of X isomorphic to £2. Then

liMnoeo |Qnly ]l = 0 and limn—eo [|[Paly ] = 1.

Proof. For each n € N, 1 — [|Q.]y|l < |Pu]yll € 1. Hence it suffices to show that
limp— oo [|@nly |l = 0. Fix an ordering of the standard basis {e; ;} of X.
Suppose the conclusion is false. Then we may choose 0 < § < 1 and
Y1,Y2,--- € Y of norm one such that ||Qn (yn)||x = 6 for each n, and (by the
reflexivity of Y') such that {y»} is weakly convergent. Choose positive integers
ni < no < ... such that for &k < &/, “an, (ynk)“X < %.
Let di = Yny, — Ynae_, and let Ty = Qn,,. Then {di} is weakly null,

6 7

”Tk (dk)“X Z ”Q‘nzk (yn2k)”X - ”Q‘nzk (y‘nzk—l)”X > 6 - g = gé’
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and for k < &',

)

6 )
”Tk’ (dk)”X < ”any (ynzk)”){ + Ilank’ (yn2k—-1)||X < g + -8— = Z

Note that [|d|lx > | Te(di)llx > %6, whence {di} is not norm null. Hence by the
method of Bessaga and Pelczyniski [B-P, Theorem 3] and Lemma 2.16, we may choose
a subsequence {dq(x)} of {di} such that {d,)} is equivalent to a block basic se-
quence {Ja(k)} of the standard basis {e; ;} of X, and such that {da(k)} and {Ja(k)}

are equivalent to the standard basis {e;} of {2, where Ja(k) =dog) 1

supp d.a(k)’

do(k) — Ja(k)“x < %, and there is a C > 0 such that for each K € N,

= CK?,
22

K -
|t

X . CHZil o

Hence

Ta(k) (da(k) - Ja(k)) “X > =0~ == -4,

Tak) (Ja(k)) HX 2 ’T"(’;) (d"(k)) HX B l

and for k < £/,

et <

Let bagk) = (Tagx = Tate+1)) (dacey)- Then

s ) <

- 3 6 6
Tae+1) (da<k>) ”X >-1=7

bags) | 2 |[Tace) (dace) || |

Hence for each K € N,

K . K q ' 6 .1
IS0 deos = (T ewl) " > 2

K
>
e

Thus for each K € N, gK i < CK %, which is impossible for sufficiently large K.

(]

We have laid the groundwork for the following result [RI, Lemma 10].
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Proposition 2.19. Let 1 < ¢g< 2. Then X = (52 ei’g- --)lq satisfies Ps.

Proof. Define m;: X — (% and the standard basis {e; ;} of X as in the dis-
cussion preceding Example 2.17. Let {ex} be the standard basis of £2. Fix an ordering
of {e; ;}.

Suppose {f[k]} is a basic sequence in X equivalent to {ex}. Then {f[k]} is weakly
null, inf || fix|| x > 0, and sup || fx]| , < 0. Let € > 0. Choose 6 >0, >0, and 7 > 0
such that (1+6)2 < 1+¢ (1+9)> <1+6,andn = %,sothat 1 +29 =1+~ and
14+n<1+9.

By the method of Bessaga and Pelczyniski [B-P, Theorem 3], choose a subse-
quence {g[k]} of {f[k]} such that {gp} is (1 + 6)-equivalent to a block basic sequence
{b)} of {ei;}. It remains to show that {bjj} has a subsequence which is (1 + 6)-
equivalent to {ex}.

We will choose a subsequence of { b[k]} in such a way as to approximate the
situation of Example 2.17 for T" = {1,..., N}, after the application of the projection
Py of Lemma 2.18 for sufficiently large N.

Note that {b[k]} is equivalent to {ex}, whence inf“b[k]HX > 0, sup ”b[k]Hx < 00,

and [b[k]]x ~ {%*. By Lemma 2.18, we may choose N € N such that for all z € [b[kl]x,

1
14~

lzllx < IPn(@)llx < llzlix,

where Py is as in Lemma 2.18. Choose a subsequence {b{a(k)]} of {b[k]} such that for
each j € {1,...,N}, L; = limj—oo || 7; (b[c,((k)])]]é2 exists. Let
1

. 3 N 3
el =\ 2L -
J=1

Then L > ﬁ inf][b[a(k)]llx > 0 and some L; is nonzero. Let J;1 = {1<j<N:L; >0}

N
£= g [P Gl = i ( I o)

and Jo = {1<j<N:L; =0}. Choose a subsequence {b[g(k)]} of {b[a(k)]} such that



for each j € Ji,

1
le +7 < ”Wj (b[ﬁ(k)])up < Lj(1+7n)

for all &, and for each j € Jy,

‘ 1
T147

Ln

L =0 < im; (Ga)lle < %7

for all k. Then for scalars A;, Ag, ..., we have

L’é (él’\”z”ﬂ (b[ﬂ(kn)“})%qr 2 {‘E (,i l? (Lijlfr?)zfqr

= 1=1

and

W

IA

{Z (i il || (%(k)l)“iz)%q}

j€J1 \k=1

5 (8 pefles )]

i
e

k=1

= (5 s el |

> (i’f lAklz(Lj(Hn))?)i }
JEJ1 \k=1

+ Ln (121 |/\k12) %
<1+ (kij M)%

(compare with equation (2.13) and its consequents). Noting that

[=.°]

1
Akbia(i))
k=1

<
1+7 -

X

Py (Z Akb[mk)])
k=1

< 2 Aebiacr
X k=1

X
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by the choice of N, and

l Py (E Akbwk)]) H
k=1 X

1
g |«
1?2

- |5 (& pofles o)

j (; Akbwk)])

[ N
>
=1

[

1
q]q

(compare with equation (2.13) and its antecedents), we have

(1+2)L (é |,\k|2)%

1 o0
— IS ARb <
+w”k§1 ebraen)|

and

N

1 s 2
— L AL
1+n7 (kgll g )

< “ > Aebiagiy)
k=1 X

Hence

o0

k=1

<1 (2 W ) <(1+7) H 5 Mebis|

Thus {b[g(k)]} is (1 + 8)-equivalent to {ex}, but {g[ﬂ(k)]} is (1 + é)-equivalent to
{b[g(k)]}, S0 {g[g(k)]} is (1 + €)-equivalent to {ex}. O
The preceding proposition, together with the following lemma [RI], will lead to

the main result concerning the isomorphic distinctness of X, .

Lemma 2.20. Let 1 < ¢ < 2. Suppose X is a Banach space satisfying P,.

Suppose Y is isomorphic to a quotient space of {?. Then Z = X @Y satisfies P,.

Proof. Let {e,} be the standard basis of £2. Suppose {z,} is a basic sequence in
Z equivalent to {e,}. Let ¢ > 0 and choose § > 0 such that (1+6)2 < 1+e.

Express each z, as z,, ® y, with £, € X and y,, € Y. Then there is a bounded
linear operator T: {2 — Y such that T'(e,) = y, forall n [e, = 2n = Tp, D Y = Yu.
The adjoint T* induces a bounded linear operator from a closed subspace of ¢ to ¢2,

where p is the conjugate index of ¢. Hence T™ is compact since 2 < p < 00
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[R, Theorem A2]. Thus T is compact as well. Moreover, {e,} is weakly null. Hence
limp o0 [4nlly = limn— oo [|T(en)lly = 0.

Choose a subsequence {ya(n)} of {yn} such that {za(n)} = {xa(n) &3] ya(n)} is
(1 + 6)-equivalent to {Za(n)}. Choose a subsequence {Zg(ny} Of {Za(n)} such that
{xﬁ(n)} is (1 + 8)-equivalent to {e,}, as we may since X satisfies P. Then
{2p(n)} = {@p(n) B Ys(n) } 18 (1 + €)-equivalent to {e,}. |

Finally we present the theorem [RI, Theorem 9] which (in its corollary)
establishes that for 2 < p < oo and w satisfying condition (%) of Proposition 2.1, X, .

is isomorphically distinct from the classical sequence space £, spaces.

Theorem 2.21. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars satisfying condition (x) of Proposition 2.1. Let V be a closed subspace of €.

Then X,,, is not a continuous linear image of ((2 @ £2 & -- -)L,p oV.

Proof. Equivalently, we show that for Y isometric to a quotient space of 9,
where ¢ is the conjugate index of p, X, is not isomorphic to a closed subspace of

(52@52@'”)124@}/'

Let Y be isometric to a quotient space of £7. By Corollary 2.14, X3 18 not iso-

morphic to any Banach space satisfying P,. However, ((* @ (> @---),, @Y satisfies P,
(as do all of its closed subspaces) by Proposition 2.19 and Lemma 2.20. a
The following corollary [RI, Corollary 14] extracts only part of the information

available from the preceding theorem.

Corollary 2.22. Let 2 < p < oo and let w = {w,} be a sequence of positive
scalars satisfying condition (x) of Proposition 2.1. Then X, ., is isomorphically distinct
from £2, P, {2 @ P, and (€269€269---)

e

Proof. Each of the spaces £2, (7, (2@ (F, and (> 2 & -++),» is a continuous
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linear image of (Z2 Sl - ')z” @ £°. However, X, ,, is not such an image, as

established by Theorem 2.21. 0
Complementation and Imbedding Relations for X,

The following lemma [RI, Corollary 14] distinguishes the isomorphism types of
two classical sequence space £, spaces, and is used in the proof that

(€2€B€2®-~)2p ¥+ X, for 2 < p < oo.
Lemma 2.23. Let 2 <p < co. Then (?@ 2 ®---),, > 2 B L.

Proof. Suppose T: (> @2 @ ---),, — £* ® {F is an isomorphic imbedding. Let
Pl - 020 {OZP} and Q: 42 @ fF — {Ozz} @® £ be the obvious projections, with
P + Q = I, the identity operator on £2 @ ¢F.

For each N € N, let Xy be theset of all sV @ sP @ --- € (> D ),
with (™ = 0,2 if n < N. Then each Xy is a subspace of (€2 02D -- ')z" isometric to
(Cela--),.

We will show that limy_ o ||PT|x, |l = 0. Assuming this for now,

IImpy o ”PIT(XN)H = 0 as well, so we may choose N € N such that

17wy = Qlrexw || = [1Plrexw || < 1. Hence Qlrxy): T (Xn) — {Ozz} @ ¥ is an
isomorphic imbedding, and for an isomorphic imbedding R:£> — (2@ 2 & -- ~)Zp, the
operator QT R: (> — {022} @ £* is an isomorphic imbedding as well. However, no such
imbedding exists, and the lemma will follow.

It remains to show that limy_ ||PT|x |l is indeed zero. Suppose
limy_. ||PT|x |l # 0. Then we may choose € > 0 and a normalized sequence {zx}

with x € Xn such that ||PT (V) g0y = € for each N. Let

TN (EZ OLD-- -)Zp — (52 G0l ')zP be the truncation operator defined by
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w(sWeosPe--)=sWa. .. 0s™M @0,: &0,z @---. Choose positive integers
N1 < Ny < --- such that for Zn, = 7n,,, (&N, ), 3 < ”ij“(”@fz@"'),v <1 and
IPT (En )l g0y 2 % Then {Zy, } is equivalent to the standard basis of £¥. Hence

PT[[ induces a bounded linear operator from £” into £2, so

iNk] (12@12@...)11,

PT;[ must be compact. Hence some subsequence { PT (i‘Nk(a))} of

5Nk](12@z2@...)zp

{PT (Zn,)} converges in norm. Since {Zy, } is weakly null, {PT (Zn,)} is weakly null
as well. Hence { PT (a”cNk(a))} must converge to Oy2qr in norm, contrary to
IPT (ZN)ll 2oy = 5 for all k. O

We are now ready to see how X, is related to the classical £, spaces under the

relations < and <. Recall that X =Y means X — Y and ¥ — X.

Proposition 2.24. Let 2 < p < co. Then
(a) X, — 2P,
(b) o r S X,
(c) X, =027,
(d) X, 2t

D p2
4 X
) (X°6), # X,
S p2

() X, 5 (2°0) .
() L? 4+ X, and

(h) parts (b), (d), and (f) hold for 1 < p < 2 by duality.

Proof.

() We norm £2 @ £ by [la @bl = maX{HaHéz,HbH,_,p}. Let w = {w,)} be
a sequence of positive scalars satisfying condition (*) of Proposition 2.1. Then
Xpw ~ Xp. Define T: X, o, — 2 & F by T ({zn}) = {wnzn} & {2,}. Then T is

an isometry. It follows that X, — £2 @ ¢°.
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(b) Let w = {wn} be a sequence of positive scalars such that wy; = {wsn—2} satisfies
. 2p
inf wyn—2 > 0, wgy = {w3zn-1} satisfies ) (w3n—1)?~2 < 00, and wiz) = {wsn}
satisfies condition () of Proposition 2.1. Then w satisfies condition (*) as well.

Hence

Xp ~ Xpw ~ Xpwpy ® Xp g @ Xp g ~ 2ol X,

It follows that £2 @ &F < X,,.

(c) The fact that X, = ¢%> & {F is an immediate consequence of parts (a) and (b).

(d) Suppose X, <= £2 @ £F. Then X, is a continuous linear image of £2 @® P, contrary
to Theorem 2.21. Tt follows that X, < £2 @ P,

(e) Suppose (Z@ EQ)ZP  X,. Then (E@ £2>£p — X, — (%@ {F by part (a), so
(Z@ €2)£p — (2 @ {F, contrary to Lemma 2.23. It follows that (E@ EZ)ZP b X,

(f) Suppose X, S (Z@ €2)£p. Then X, is a continuous linear image of (Z@ 52)

e’

contrary to Theorem 2.21. It follows that X, '7& (Z@ 62)£F.

(g) Suppose L? — X,. Then (Z@ €2>£p — LP — X, s0 (Z@ £2)£F — X, contrary
to part (e). It follows that L? + X,,.

(h) Parts (b), (d), and (f) are the parts involving <. g

Building on diagrams (1.1) and (1.2), for 2 < p < oo we have

EZ

N
2@ P 2] 2 — P
oL — (Z )[,, , (2.14)

i

e X,

and for 1 < p < co where p # 2, we have

72 (ZGB 52)

Cor . (2.15)
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The Space B,

Let 2 < p < oo. The Banach space By is of the form (X; @ Xy & --),», where
each space Xy is isomorphic to £2, but {Xn}3_; is chosen so that
supyen d (XN,EQ) = o0, where d (XN,EQ) is the Banach-Mazur distance between Xy
and #2. Each space Xy is of the form X, o~y where v™) is an appropriately chosen
constant sequence. The specifics are outlined below. For the conjugate index ¢, B, is

defined to be the dual of B,.
The Space X, .~

Let 2 < p < oo and fix N € N. Let ’U§~N) = (%)% for each j € N, and let v(™)

be the constant sequence {’U;-N)} . Then X, v is isomorphic to £ by part (a) of

i=1

Proposition 2.1.
The following observation [RI] concerning X, v is analogous to Propositions
2.7 and 2.13, but starts with v(™) and produces w(") rather that the reverse. The

lemma eventually leads to information about B,.

oo

Lemma 2.25. Let2 < p < oo and fix N € N, Let v(V) = {vgN)} where
i=1

=2 0o
’UJ(»N) = (ﬁ) %» as above. Then there is a sequence w") = {ng)} of
n=1
-~ o0
positive scalars satisfying condition () of Proposition 2.1, a basic sequence {ng)}
i=1
o0

in X, vy, and a basic sequence {dg.N)} in X;,w(,v) such that

i=1
(a) {EEN)} - is isometrically equivalent to the standard basis of X, .y,
J=

(b) there is a projection Py: X, ,,(v) — [5§-N) 1] € N] N of norm one,
pow(N)

(c) {5§N)} _ is 2N-equivalent to the standard basis of £?, but for all distinct
]:

J1s---5JN €N, {55?’),,551:)} is isometrically equivalent to the standard basis

of /%, and
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(d) {dgm}w is 2N-equivalent to the standard basis of {2, but for all distinct
j=1

jresin €N, a0 Y

5 e dgy } is isometrically equivalent to the standard basis

of {3, where g is the conjugate index of p.

Proof. Choose a sequence {E( )} ) of disjoint nonempty finite subsets of N
=

and a sequence w™) = {wSLN)} of positive scalars satisfying condition (*) of

__.L
Proposition 2.1 such that for each j € N, 3 e B ( (N)) = 4. [We may take

7

2p
B of cardinality j and (wSLN)) R JLN forn € EJ( ).] Then for each j € N,

-2

D—<
2p
’U§N) = (ZHEE(N) ( (N)) ) . Let b(N) ZnEE<N) (wglN)) P_ €n and

5§N) = (analogous to b; and Z)j in Propositibn 2.7), where {e, } is the

standard basis of X, ,,(~). Then parts (a) and (b) follow from Proposition 2.7.

Note that {E( )} satisfies the condition in the proof of Proposition 2.13. Let
7=1

ng) and Z)E-N) be as above (analogous to b; and l~>j in Proposition 2.13), and let

dg-N) = (analogous to d; in Proposition 2.13, and considered as an

element of X7 (N)) Then parts (c) and (d) follow from Proposition 2.13. ]
The Space B,

The following definition was suggested above, but we now present it formally.

DEFINITION. Let 2 < p < oo. For each N € N, Jet vV) = { (N )} where
Jj=1

2

o) = (%)’3_? as above. Define B, to be (Xp,v(l) o) Xp,v(” P -- ')e’" For the

.7

conjugate index q, define B, to be the dual of B,.

The following proposition [RI] is the first step in showing that B, is an £, space.

The subsequent proposition [RI] is somewhat stronger.

Proposition 2.26. Let 1 <p < co where p # 2. Then B, S LP.
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Proof. First suppose 2 < p < oo. For each N € N, let v(V) be as above. Then
as \in the first part of the proof of Corollary 2.6, for each N &€ N there is a sequence
{ fJ(N)}:; of independent symmetric three-valued random variables in L” such that
X, o(m) ~ [fJ(N) 17 € N} Lr < L?, where the isomorphism is uniform in N by the proof

p

of Corollary 2.3, and the complementation is uniform in N by Theorem 2.5. Hence

B, = (X D @Xp,v(z) & "')Zp < (XL ® "')gp ~ L?,

r

and B, <<, LP. The result now holds for 1 < P < 2 by duality. O

Proposition 2.27. Let 1 < p < co where p # 2. Then B, < (ZGB Xp)gp.

Proof. First suppose 2 < p < 0o. For each N € N let ™, w() and

{Eg.N)} be as in Lemma 2.25. Then by parts (a) and (b) of Lemma 2.25, there is a

j=1
projection Py: X, v — [EgN) 1] € N] X of norm one, and there is an isometry
o)
Tn: [Bg-N) 1] € N] — X, v . Thus by the remark following Theorem 2.12, for

X, w()

any sequence w satisfying condition (*) of Proposition 2.1,
B, = (Xp’v(l) 7 Xp,u(2) P -- ')Z” < (Xp,w(u &>, Xp,w@) P-- .)K"

~ (Xp,w O Xpw®-- ')£P :

Hence B, < (Xpw ® Xpw ®-+*)»- The result now holds for 1 < p < 2 by duality.
O

REMARK. Alternatively, the proof of parts (a) and (b) of Lemma 2.25 could be
slightly modified to produce a sequence w = {w,} of positive scalars satisfying
condition (*) of Proposition 2.1 such that B, < (Xpw ® Xpw ®---) e, without the
passage through (X, .o @ X, w@ &) -

Let 2 < p < 00. We will show that B is not isomorphic to any Banach space

satisfying P,. This will distinguish B, isomorphically from ¢2, £7, ¢2> @ ¢°, and
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(Pele- ~)£p. The proof follows the same pattern as the proof that X7 is not
isomorphic to any Banach space satisfying P;. The following proposition [RI] is

analogous to Proposition 2.13.

Proposition 2.28. Let 2 < p < oo. Then for each N € N,

(a) there is a basic sequence {ng)} - in By, 2N-equivalent to the standard basis
J:
2 e ) : (N) S(NY) s .
of £%, such that for all distinct ji,...,jn € N, (b3 "/,...,b; 7 ¢ Is isometrically

equivalent to the standard basis of 4, and

(b) there is a basic sequence {dg-N)} in By, 2N-equivalent to the standard basis
Jj=1
{(N)

of £2, such that for all distinct ji,...,jn €N, {d(.N) ,d

Jr 0T IN

} is isometrically

equivalent to the standard basis of £};, where q is the conjugate index of p.

Proof. Fix N € N. Let v™), w™, 3™ and d" be as in Lemma 2.25. Let

Tn: [BE.N) 1j € N] — X, ,(v) be the isometry cited in the proof of Proposition
pyw(N)
2.27, and let Sy: [BE.N) 1j € N] — X v be the isometry Sy = (Tﬁl)*. Let

X w(M)

LNt X, yvy — Bp and Ky : X;’v(m — B; be the obvious isometric injections.

Now {BS-N)}FI and {dgN)}jzl have the properties asserted in parts (¢) and (d)

of Lemma, 2.25. Let ng) = N (TN (BS-N))). Then the sequence {5§N)}w in B, is
=1

isometrically equivalent to {BEN)} , and part (a) follows.
=1
Let 4 be the restriction of d) to [B(-N) RS N] . Then {J(-N)}oo
: j j J X o i S e
is isometrically equivalent to {dgN)} by the argument in the proof of part (b) of
i=1

Proposition 2.13, where it is shown that equality holds at (2.12). Let

[ o]

d) = KN (SN (JEN))) Then the sequence {dgN)}

e s .
j in B; is isometrically

=1
equivalent to {JE-N)} and {dg-N) }oo R and part (b) follows. O

7=1 ij=

The proof of the following corollary [RI] is virtually identical to the proof of

Corollary 2.14, with B} replacing X ,, dgN) replacing d;, and Proposition 2.28
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replacing Proposition 2.13.

Corollary 2.29. Let 2 < p < co. Then By is not isomorphic to any Banach

space satisfying Ps.

The following theorem [RI] now follows as in the proof of Theorem 2.21, with B}

replacing X, ,, and Corollary 2.29 replacing Corollary 2.14.

Theorem 2.30. Let 2 < p < oo and let V be a closed subspace of . Then B,

is not a continuous linear image of ((*® * & ---) , D V.
The following corollary [RI, Corollary 14] is analogous to Corollary 2.22.

Corollary 2.31. Let 1 < p < oo where p # 2. Then B, is isomorphically distinct

from £2, 47, 2 (7, and (2@ L2 -- ')e’" In particular, B, is an L, space.

Proof. First suppose 2 < p < co. Then each of the spaces £2, &7, £2 & (P, and
(Polfo-- ~)£p is a continuous linear image of (2 £ - -)‘g,, @ £7, but by Theorem
2.30, B, is not such an image. Finally, B, <, LP by Proposition 2.26, but the fact that
B, # £? has just been established. Hence B, is an L, space. The result now holds for
1 < p < 2 by duality. J

We now know that B, is isomorphically distinct from the classical sequence space
L, spaces. We present next some results to distinguish B, isomorphically from X, and
LP. The first result [RI] will distinguish B, from X,, and the three subsequent results

will refine the distinction.

Proposition 2.32. Let 1 < p < oo where p # 2. Then (Zz BB ~)£p <, B,.
-2
Proof. First suppose 2 < p < co. Let vV) = {vgN)}oo where UE'N) = (%)”2—,
7=l

as above. Choose a doubly indexed sequence {ESN)} Nen of disjoint nonempty finite
JNE
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subsets of N such that for each JJN € N,

(MY7-Z _ 1
ZjeEgM (UJ' ) B Z:‘EE‘J"” n=t

28\ 5
[We may take E(JN) of cardinality N.] Let u(JN) = (zjeE("” (UJ(-N)) ,,_2) and let
J
™ = {uf"1™  Then infu§® > 1. Hence by part (a) of Proposition 2.1, and th
= uy . y > L y part (a) of Proposition 2.1, and the

inequality appearing in its proof, X, .~ is isometric to £2. Moreover, by Proposition

2.7, X, um) < X, »(v), and the implied projection is of norm one. Hence
c a
(EZ &) ZZ &b -- ')ep ~ (Xp,u(l) @ Xp,u(2) b - ')E?’ — (Xp,'u(l) 2] Ap,v(z) b -- ')z? = Bp‘

The result now holds for 1 < p < 2 by duality. U
The following lemma [RI] is a modification of Lemma 2.18. The proof is virtually

identical, with ¢" replacing ¢ and K~ replacing K3,

Lemma 2.33. Letl < ¢<r <2andlet X = (X;,vm @ X;,v(Z) @ -- .)e"’ where
p Is the conjugate index of q. Denote a genericx € X by {x(l),x(z), .. .}, with each
=) e X;,v(,c). For each n € N, define P,: X — X by
P, ({z(l),x(g),...}) = {zM,...,2("0,0,...} and define Q,: X — X by
Qn(z) =z — P,(z). Suppose Y is a subspace of X isomorphic to {. Then

limy oo |@nlyll = 0 and lim,, o || Py || = 1.
As a corollary, we have the following [RI].

Lemma 2.34. Let 1 <q <7 <2. Then{" & B,.

p,v

Proof. Suppose " — B,. Then " — X = (X* ay @ X; o D -)z'?’ where p is
the conjugate index of g, since By = B, ~ (X; o D X; o O ) LLet Ti0m - X
’ ] gq

be an isomorphic imbedding and let ¥ = T(¢"). Foreachn € N, let P,: X — X

and Q,: X — X be as in Lemma 2.33, with P, + Q, = I, the identity operator on
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X. By Lemma 2.33, we may choose N € N such that ||I|y — Pyly|| = ||@Qn~]y|l < 1.
Hence Py|y:Y — Pn(Y) is an isomorphism. Now Y ~ £" and Py(Y) ~ £2, so Py|y
induces an isomorphism between " and 2. However, no such isomorphism exists, and
the lemma follows. O

We state without proof [RII, Corollary 4.2].

Lemma 2.35. Let 1 < ¢<r <2. Then!{ — X,.

The following observation [RI] will distinguish B, from L*.

Lemma 2.36. Let 2 <p < co. Then (2 X,,)ZP — (2° e2)2p.

Proof. By part (a) of Proposition 2.24, X, — £2 & (. Hence, letting F denote

the scalar field,

~~
™
85}
>
~—
(
~~
™
85}
<
2]
&~
=
—

Collecting our results and deducing simple consequences yields the following.

Proposition 2.37. Let 2 < p < co. Then
(@) By~ (2°0),,,
(b) (x°€), < B,
() B, = (2°¢) ..
(@ B, & (2°¢) .
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(¢) Xp— By,
(f) Bp #~ Xp,
() Xp 7 By,
(h) L? 4 B,, and

(i) parts (b), (d), and (g) hold for 1 < p < 2 by duality.

Proof.

(a) We know B, < (ZGB Xp)zi’ — <Z$ 52)2,, by Proposition 2.27 and Lemma 2.36.
It follows that B, — (2 2)

2

(b) Part (b) is a restatement of Proposition 2.32.
(c) The fact that B, = (ZGB Zz)ﬁp is an immediate consequence of parts (a) and (b).

(d) Suppose B, < (ZGB 52)2,; Then B, is-a continuous linear image of (ZGB Ez)lp,

contrary to Theorem 2.30. It follows that B, ¢ (ZEB 52)2,;

(e) We know X, — 2@ S (Ze Zz)ep < B, by part (a) of Proposition 2.24 and
part (b) above. It follows that X, — B,.

(f) Suppose B, — X,. Then (Ze 52)2,, < B, — X, < £2 @ {F by part (b) above

and part (a) of Proposition 2.24, so (ZGB Zz)ep — (? @ (P, contrary to Lemma

2.23. Tt follows that B, ¥+ X,.

(g) Suppose X, S B,. Then X, < B,, where ¢ is the conjugate index of p. Hence
forl < g<r<2,{ — X, < B, by Lemma 2.35, so {” — B,, contrary to
Lemma 2.34. It follows that X, £ B,.

(h) Suppose L? — B,. Then L? — B, — (ZGB Ez) - by part (a) above, so
L? — (Zé 52)2,,» contrary to [L-P 2, Theorem 6.1]. It follows that L” < B,.

(i) Parts (b), (d), and (g) are the parts involving <. ]
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Building on diagrams (2.14) and (2.15), for 2 < p < oo we have
I B,

N Hh
2 D D p2 P
cor - ($%¢), - I (2.16)

o
I X,

and for 1 < p < oo where p # 2, we have
2 ~® 42 ¢
¢ (Z g)zP_}BP

(2.17)

Sums of B,

We now present results leading to the conclusion that B, ~ B, ® B, and
(Ee BP) , ~ Bp. Along the way, we will show that the sequence used in the
¢
definition of B, can be modified to some extent without changing the isomorphism

type of the space.

Lemma 2.38. Let 2 <p < oo. Let r = {r,} and s = {s,} be sequences of
positive scalars, and suppose that infnéN s, =0. For each n € N, let (") be the
constant sequence {Tp,Tn,...} and let s™) be the constant sequence {s,,sn,...}. Let
Bpr=(Xp, 0 ®@X, @) and By s = (X, ,) ® X, 020 D+ ) - Then

C
By < Bps.

Proof. Fix a subsequence {sq(s)} of {s} such that for each n € N, s4(n) < Tn-
2 22

Let Sy(n) = 3;(—:) and R, = r2~*. Then S4(ny < Ry, for each n. Let {K,} be the

sequence of positive integers such that for each n € N,

KnSa(n) <R, < (Kn + l)Sa(n) < 2KnSa(n) < 2"_2-22‘Knsa(n)~
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o0

Fixn € N. Let {Ej(n)} be a sequence of disjoint subsets of N such that each
=1

EJ(-") has cardinality K,,. Then for each j € N,

Z Scx(n) <R, < 2;% Z Sa(n)-

(n) (n)
keEj keEj

' =2
Let t, = (ZkeEﬁ") Sa(n)) " [which does not depend on j]. Thent, < r, < 2t,.
Hence for t(n) = {tn7tn7"'} and z e Xpyt(n)’ “‘T”Xp,t('n) S ”x“ngr(ﬂ-) —<_ 2“1‘“Xp,t('n).

Thus Xy ~ Xp,t(n) via the formal identity mapping. Moreover, Xp’t(,,) <, Xp,s(am))
by Proposition 2.7, where the implied projection is of norm one.
Release n as a free variable. Then for each n € N, Xprim) ~ Xp s <, Xy, s(atn)),
where the isomorphism X, .(»y ~ X, ;) is uniform in n. It follows that
Bpr=(Xpr0 X, .0 @) o ~ (X0 @ X, 20 &)
S (X, st B X g(atz) B+ Ver

c

S (Kt & Xy 8-+

= Bps.

REMARK. For 2 < p < o0, the space B, is of the form B, ; where s = {s,} and

B, s are as above, with inf,ens, = 0.

Lemma 2.39. Let2 < p < oo. Let 7 = {r,}, (") and B, be as in Lemma

2.38. Then B,, ~ By, & B,,,.

Proof. Recall that B, , = (Xp’,.(l) & X, »®-- -)[P. For each n € N, let

o0
{z,(c")} represent an element of X, ,.(»). Define a projection P: B,, — B, , by

P ({z,(cl)} & {z,(f)} D ) = ({xg)} 2> {xg)} oS- '), where for k,n € N, xgc") = z,(c")

if k is even and xgc") = 0if k is odd. Then the image of B, . under P is isomorphic to

B,.r, as is the kernel of P. Hence B, , ~ By, & B, .. (]
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By the remark above, we have the following corollary (true for1 < p < 2 by

duality) of Lemma 2.39.
Corollary 2.40. Let 1 < p < co where p # 2. Then B, ~ B, ® B,,.
We also have the following corollary of Lemmas 2.38 and 2.39.

Corollary 2.41. Let 2 < p < co. Let 7 = {r,} and s = {s,} be sequences of
positive scalars such that inf,enrn, = 0 and inf,,en s, = 0. Let r(m), s(7) B, ., and

B, s be as in Lemma 2.38. Then B, , ~ By ;.

Proof. The spaces B, , and B, , satisfy the hypotheses of Lemma 2.8. U
REMARK 1. Recalling the remark above, one consequence of Corollary 2.41 is
that for 2 < p < oo, and for 1 < p < 2 by duality, the isomorphism type of B, does not
depend on the specific sequence {(%) = }00 used in its definition, but only on the
N=1
fact that the infimum of the sequence is zero.

REMARK 2. Let 2 < p < co. Then B, is of the form (Xp,w(l) &b Xp,wm @ - ')e*’

where for each N € N, w™) is a sequence {w,(cN)} of positive scalars. The above

remark gives a sufficient condition for B, ~ (Xp,w(n DX, ) D ')e” in the case

where each w"¥) is a constant sequence. Although the details will not be given,

B, ~ (Xp,wu) & Xp,wm) ®-- -)Ep if and only if the following two conditions hold:
(a) for each N € N, w™) fails condition (%) of Proposition 2.1, and (b) there is an
increasing sequence {a(N)}¥_; of positive integers and a sequence {Sn}x_, of
infinite subsets of N such that for each N € N, ¢y = liminfieg, wia(N)) >0,

but limy o cy = 0.

Just as B, @ By ~ By, (B, @B, @ --+) ~ B,, as shown below.

Corollary 2.42. Let 1 <p < oo wherep # 2. Then (B, ® B, @-+-)» ~ By.
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Proof. First suppose that 2 < p < co. Then B, is of the form B, ; where
s = {s,} satisfies inf en sp, = 0, and s(™) and B, , are as in Lemma 2.38. Let S be the
sequence {s1; 81, S2; 81,52,83}...} = {{sn}£=1}:=1. Then S has infimum zero as well.

Hence B, s ~ B, s by Corollary 2.41. It follows that
(Bps ®Bp s ®-- -)gp = ((Xp,s(l) & Xp’s(z) & -- ')2” &b (Xp,su) &y Xp’s@) @ - ')Z” @-- .)ZP

® ® ’
~ (ZTEN L1gn<T Xp,stm ) e

~ BP,S
~ By s.

The result now holds for 1 < p < 2 by duality. g

Sums Involving X, or B,

As observed by Rosenthal [RI}, a few more £, spaces can be constructed by
forming sums involving X, or B,. The resulting spaces are (269 ZQ)ZP ® X,, B, ® Xp,
and (269 Xp)zp. The following proposition [RI] shows that these spaces cannot be

distinguished by the relation —.

Proposition 2.43. Let 2 < p < oo. Then

(a) B, ® X, < (ZGB X,,)gp (whence the same is true for 1 < p < 2 by duality),

(b) (2@ e?)ﬂp, B,, (2@ ZZ)ZP & X,, B, ® X,, and (269 X,,)zp are equivalent under
=, and

(c) letting Y denote any of the five spaces of part (b) and letting X denote either

&P or X, wehave X - Y — L but I & Y o+ X.

Proof.

(a) By Proposition 2.27, we have B, $ X, < (Z@ Xp)z" DX, ~ (Z@ Xp)lp.



(b) Consider the chains

(EGB ﬁ)e” = By < B, ® X, < .(E@ Xp)

yid

and

(Eeaﬁ)ep - (EGB ZQ)@” & Xy, = By 0 Xp = (EGB X”)

P
established by part (b) of Proposition 2.37 and part (a) above. Now
(EGB X”)ﬂ’ — (EGB 62)” by Lemma 2.36, which completes each of the two
cycles. It follows that the listed spaces are equivalent under =.

(c) We know &2 & (7 < (E@ e2)ep < IP but LP o (2‘9 e2)£p %> (2@ (P as in
the discussion of diagrams (1.1) and (1.2). The result now follows from the fact

that X = ¢2 @ P by part (c) of Proposition 2.24 and Y = (EGB éz)lp by part (b)

above. |

Building on diagram (2.16), for 2 < p < oo we have

2 B,
Cor - (2@}”@)” = B,oX, = (E@Xp)ep - I
/
o )]y,, (=® e?l)”” o X,

(2.18)

As we have seen, the relation — is inadequate to distinguish (E@ 52)12‘0 ® X,

B, ® X,, and (E@ Xp)ep isomorphically. We will distinguish these three spaces via
the relation <. The next three results will distinguish B, ® X, and (E@ Xp)e’" The

first result is a corollary of Lemma 2.34.

Lemma 2.44. Let1 < ¢ < r < 2. Suppose S:{" — B, is a bounded linear
operator. Then given a sequence {¢,} of positive scalars, there is a normalized block
basic sequence {z,} of the standard basis {e;} of £" such that HS(xn)HBq < €, for

each n € N.
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Proof. It suffices to show that there is a normalized block basic sequence {z,}
of the standard basis {ex} of £" such that HS(mn)lqu < ﬂ;:_ﬂ for each n € N, for the
result will then follow upon passing to an appropriately chosen subsequence of {z,}.

We define {z,} by induction, where each z, is of the form Eke E, M€k, each E,
is a finite subset of N, each {A\z:k € E,,} is a set of nonzero scalars, and
max E; < minE; for 1 <1 < j.

Let 21 = EkeEl Arer be a normalized block of {ex}. Then []S(xl)HBq < ”%ﬂ
Suppose normalized disjointly supported blocks zi,...,zn have been chosen, where
Tn = D pep, M€k and HS(:vn)[[Bq < ﬂ%” for each 1 < n < N, and max E; < minE;
forl < ¢ < j < N. Let M = maxEy. Then as we verify below, we may choose
41 € span{ex:k > M + 1} of norm one such that 1S (@n+)llp, < 'zlvh?]i

Suppose for a moment that no such zy 41 exists.\ Let Xpr1 = ek 2 M + 1},
which is isometric to £". Then for each normalized z € Xy, |S(z)|5, > %'zlvhi'-uf
Hence S|x,,,, induces an isomorphic imbedding of ¢" into B,. However, by Lemma

2.34, no such imbedding exist. Thus zx 41 can be chosen as claimed, and the result

follows. O
Lemma 2.45. Let 1 < ¢ <r < 2. Then (E® E’)eq ¥+ B, & X,.

Proof. Suppose (Z@ ZT>£q — B, ® X,. Let T: (Z@ Zr)e" — B, ® X, be an
isomorphic imbedding. Let Q: B, & X, — B, @ {qu} be the obvious projection. Then
QT: (ZEB Zr)eq — B, ® {0x, } is a bounded linear operator.

We will show that there is a subspace X of (ZEB Er)eq, isometric to (EEB Zr)eq,
such that HQ‘T(X)” < 1, whence (I — Q)|r(x) induces an isomorphic imbedding of

(ZEB Er)eq into X,. However by [S, Proposition 2], presented below as Lemma 3.7, no

such imbedding exists, and the lemma will follow.
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Let {em,n} be the standard basis of (2@ Er)gq, where for each n € N, {emn} -,
is isometrically equivalent to the standard basis of £”. By Lemma 2.44, for each n € N
we may choose é normalized block basic sequence {xi")}:o:l of {€m,n}oo, such that
HQT (xi’”) HB,, < TT—:I[lI_2m Let X = [:ri"):k,n € N]. Then X is isometric to

(269 Er)eq. Let {/\S)} &) {/\f)} ®-- €L DL @®--), be of norm one. Then

(=)
Jor (=)

1
”T—1”2k+n

18
18
D
z
Q
N

B,

o (L220)

n=1k=1

3
||
oo
e
il
hid

B,

78

IN

q

18 108
8 I

A
3
Il
e
-
Il
o

1
S Tr

Hence [|QT|x|| < iy so [|Qlreo || < |77 [|@TIx[| < 1. Thus (I - @)lrx)
induces an isomorphic imbedding of (263 Kr>eq into X,, where I is the formal identity

mapping, but no such imbedding exists. O
Proposition 2.46. Let 1 < p < oo where p # 2. Then (2@ Xp>e” oL B, & X,.

Proof. First let 1 < ¢ < 2 and suppose (2@ X")eq < B, ® X,. For
1<g<r<2,{ — X, by Lemma 2.35, so (263 Kr)lq — (263 Xq)gq < B, & X,
Hence (263 £T>eq — B, @ X, contrary to Lemma 2.45. It follows that
(269 X")eq oL B, @ X,4. The result now holds for 2 < p < co by duality. O

The next two results will distinguish (EGB 132> o ® X, and B, ®X, isomorphically.

The lemma isolates some preliminary calculations.

Lemma 2.47. Let 2 < p < oo with conjugate index q, and let n € N. Let
. B=2
X,.v(m be as in the definition of By, and let v, denote (%) *» | the value taken by the

constant sequence v Let B,, be the closed unit ball of X, »(my- Then for M, € N
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_2p
such that M,, <v,*™* =n,

M, 1
sup | > dml = M.
{dm}€B, im=1
Moreover, for K € N and {)\} € £2,
1
K n 1 K 2 F
sup z Z /\kdk,z =Tn"? (Z ]/\kl ) .
{dk,e}EB, [k=11=1 k=1

Proof. Let M € N and let {d.,} be a sequence of scalars. Then by Holder’s

inequality, .
= M3 (mé ldml”) ’

M v 1 1
sup | > dp| <mind Ms, —M?2
{dm }EB, Im=1 Un
—2p 1.1 p=1_ 1 =2
Let M, € N such that M,, < v,?7*. Then M¥ * = M,* * = M,** < ;}1—, S0
i 1
M; < ;-M;?. Hence with no loss of sharpness,
M, i
sup > dm| < M7
{dm}€Bn {m=1
~ 1 11 -1 ~
Let d,, = —A;}:M,f =M; = M,?forl < m < M,, and d,, = 0 otherwise.
M ~ 1D M ~ 2 2 _ L1 2
Then > 2, .dm‘ =1land > 2 |dmvs| = vIM7 = (vnM,f 2) < 1, whence
~ - 1
{dm} € B,,. Moreover, Z:{;l dml = M} . Hence
M, 1
sup dm! > M3,
{dm}€Bn Im=1
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It follows that

M., L
sup | > dml =M. (2.19)
{dm}EB, Im=1

Let K € N, let{\x} € ¢2, and let {dk ¢} be a sequence of scalars. Note that

%n% —n% i =n"F =ni. Then by Hdlder’s inequality,
K n K n q % K n » %
5 S < (£ ) (£ £ 1)
k=1£=1 k=14£=1 k=1¢=1
1 K 711- n » 7
= (£ pur) (£ & 1)
k=1 k=1¢=1
and
K n . 1 K n
ST ST Mkdie] = — | 20 D Awdi evn
k=12=1 Un |k=1¢£=1

IN
S I —_
M=
=
>
ol
e
S———”’
N
M=
NgE
By
=
[aY
]
3
~—’

I
[ —
3
N[
= N
=
>
bl
T
Sa—”’

- Suppose {di ¢} € B,,. Then (Zf;l > et [dk,gl”); <1 and
1 L
(SH Sy ldewnl?) T < 1. Hence [0, S0 Audee| < 0¥ (T35, 1l7) " and

|z,{‘=1 s Akdk,z} <n} (zle [Ax[?) . 1t follows that
K , z
()
k=1

< n7 min { (é |/\k|q>

w2 mlz)%.

k=1

o

K
sup |y
{dk,e}€BR k=

k=1

> Aedi e
=1

Let dkyg = in‘%:\k forl1 <f/<nandl<k<K,and Jk,g = 0 otherwise, where

Ai is the complex conjugate of . Note that vin'% =n"% n~% =n~%. Hence

(£3

k=1¢=1
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and

k=1£=1

(£3

k=1{=1

- Thus for (Zle [/\k|2>% <1, {Jkig} € B,. Moreover, for (Z£{=1 |/\k|2>% =1,

K n . K n 2 1 K 2 1 2 ;
S Medie| = 2 onTE T =07 3 AT =nT {30 [Nl
k=1£=1 k=1 ¢=1 k=1 k=1
Hence
K =n 1 K 5 ;
sup Z Z /\kdk,l 2 na (Z l/\kl )
{dk,l}EBn k=1¢=1 k=1
It follows that
K n 1 K 9 é
sup Z Z /\kdk,g =N (Z |/\k| ) (220)
{dk,[}EBn k=14=1 k=1

Proposition 2.48. Let 1 < p < oo where p # 2. Then B, oL (ZGB £2>£,, e X,.

Proof. By duality, it suffices to show that B, oL (ZGB €2>Zq BXgforl<g<2
Let 1 < ¢ < 2 and suppose B, < (Zea €2>Zq @ X,. Let p be the conjugate index of g.
For each n € N, let v, and B, be as in Lemma 2.47. Now By ~ B, ~ (ZGB X;’U(,,)Lq,
so (£F X;N))eq < (2@ e2)£q ® X,. Let T: (L7 X;,v(,,)Lq - (2° e2)£q & X, be
an isomorphic imbedding with complemented range. Let
Q: (Zea g2>£q & X, — (ZEB €2>Zq @ {0x,} be the obvious projection. Then
QT: ( ® ;;?’(")>eq — (ZED EQ> y 3] {qu} is a bounded linear operator.

We will show that there is a subspace Y of (ZGB X;,v("))eq isometric to
(ZED Z2>Zq such that HQiT(Y)H < 1, whence (I — Q)|r(y) induces an isomorphic
imbedding of (ZED Z2> . into X, where I is the formal identity mapping. However

by [S, Proposition 2], presented below as Lemma 3.7, no such imbedding exists, and

the proposition will follow.
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Let {em n} be the standard basis of (Ze X;,’U(n))eq, where for each n € N,
{em)n}z=1 is isometrically equivalent to the standard basis of X; (ny and equivalent
to the standard basis of £2. Let {€n n} be the standard basis of (26 X”’”("))e?’

where for each n € N, {€n,n}.._; is isometrically equivalent to the standard basis of

X, -

p

For K € N, let I'(K) denote a subsvet of N having cardinality K. Let M € N

Then for fixed n € N, letting ( , ) denote the action of X> (., on X, ,m),

oo
Z €m,ni| = SUp < dkék,na z em,n>

mer(M) {dr}€BA | \ k=1 meT (M)

= sup > dk
{dr}€B |keT(M)

M
= sup di
{dr}€By, k=1

_ (2.21)

— 2B
Now for fixed n € N, letting M,, < vn?"> = n as in Lemma 2.47, equations (2.21) and

(2.19) yield

mel(M,,)
or upon normalization,

=1. (2.22)

meT(M,)

We now introduce a construction which will be used in two different settings. Fix

~ _2p_ o)
n € Nand let M, = v, ?~° = n. Let {E,ﬁ")}k be a sequence of disjoint subsets of
=1
N, each of cardinality M,. Let {7(m)} be an increasing sequence of positive integers.
. =1
For each £k € N, let zi”) = M,"* ZmEE<n) €r(m),n- Lhen each xfc") is of norm one
k

by equation (2.22), and {mgl)} is equivalent to the standard basis of £2. Recalling

equation (2.20) for the last step, for K € N and {\;} € £2,
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1

L1 K
= Mn ! Z )\k Z €r(m),n
)

K m
2o ARy
k=1

1 e K
=n"7 sup <Z de€ony - Ak D eT(m)’n>

{d¢}€Bn | \£=1 k=1 ‘mGEin)

K
1
=n"97 sup |>, A . d¢
{d[}EBn k=1 EEEE'")

= <é | Ak|2> % (2.23)

Hence {xgc")}:il is in fact isometrically equivalent ‘to the standard basis of £2.

We now distinguish two exhaustive but not mutually exclusive cases. In the first
case, there are infinitely many n € N such that limy, o |QT(ém,n)]] = 0. In the
second case, there are infinitely many n € N such that Iimsup,,cn |QT(em,n)|| > 0.

We will show that in either case, there is an increasing sequence {n(i)};~, of pos-
itive integers and a sequence {Xn(i)}:;l of subspaces of (Z@ X;,v“))eq such that for
each 7 € N, X,,(;) is a subspace of [e, 7(s):m € N] isometric to £2 with
HQ]T(Xn(i))H < ]|T“1H HQzjn(i)” < 21—, ’It will follow that there is a subspace
Y = (ZGB Yn)ﬂ of (ZGB X;’U(n))zq isometric to (ZGB [2) v such that
1Qlrey || < ITY QT Iy || < 1. [Yag) = Xy and Yy = {0} if k ¢ {n(5)}.] As noted
before, the proposition will then follow.

The first case.

Fix n € N such that lim,, o }QT (em »)|l = 0. Choose a subsequence

{eamyn}oe; Of {emn}or_, such that for each m € N,

QT (catmy)| =

< - .
Qm+nnp ”T—1”
2

v ~527 (m) %
Let M, = v, "~ =n. Let {Ek }k ) be a sequence of disjoint subsets of N, each

of cardinality Mn, such that for each k € N, inf E,(c") > k. Then for each m € E,(cn)

bl
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QT (ea(m),n)]| ! . For each k € N, let xin) = Mn_% ZméEi") Ea(m),n-

< —
2k+tnny | T-1)]
(n) o

Then each z;" is of norm one by equation (2.22), {xi") } is isometrically equiv-

alent to the standard basis of £? as in equation (2.23), and for each xi"),

Jor (s)| =127 T QT (atma)| Sn7F T QT (eatma)|

meE(™ meE("
1 1

< n_En‘—_l_—'
AN V|
1

= S

Let {Ax} € £2 be of norm one. Then

Jor (£ nei)| = | S ner (7)) <. lor ()]
_ 1
20 [T

Letting X, = [a:,(cn) k€ N], it follows that {|Qlrox)|| < [T I1QT|x. 1l < 5=
Release n € N as a free variable. Let {n(i)};=, be an increasing sequence of pos-

itive integers such that for each ¢ € N, lim;, ”QT(em,n(i))H = 0. Then for each

i € N, there is a subspace X,,(;) of (ZEB X;,v(n)>[q isometric to £2 such that Xn@) Is a

subspace of [em,n(i): me N] with HQIT(Xn(x))

< T QT x| < s < - Thus
the proposition follows in the first case.
The second case.

Fix n € Nsuch that ¢, = limsup,,cn||QT (ém,n)]] > 0. Then ¢, < ||QT).

Given 0 < € < 1, we may choose a subsequence {ea(m),n}w

m=1

of {€m,n}on_, such that
lim,, o HQT (ea(m)m)“ = ¢p, with sup, oy ]“QT (ea(m),n)” — cn! < €c,, and such
that {QT (eq(m),n) }:zl is a basic sequence [B-P, Theorem 3], whence

QTl[ea(m) Lmen] is an isomorphic imbedding and {QT (eq(m)m) } ..

m=

L8 equivalent to

the standard basis of £2. Now by Proposition 2.19, given 0 < € < 1 and such a
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sequence {ea(m)’n}oo we may choose a subsequence {eﬁ(m),n}:=1 such that

m=1’

{QT (eg(m)n) }on_y 18 (14 €)-equivalent to the standard basis of £2.

2

~ _ 2P 0
Let M, = v, ?"* = n. Let {E,(c")} be a sequence of disjoint subsets of N,

each of cardinality M,. Given 0 < € < 1 and {eﬁ(m),n}:j=1 as above, for each k € N

~ =1
let :c(") Mn * 3 5o €5(m),n- Then each :cgc") is of norm one by equation (2.22),
k

(o)

isometrically equivalent to the standard basis of £ as in equation (2.23), and for each

o,

for ()] =55 £ arenmalw i ides =it e a2

mEE,(C")

where the approximation can be improved to any degree by the choice of (¢ and)

(ol
(%

Given 0 < € < 1, we may choose a sequence {:ck } as above such that
k=1
1.1
oz («) - 3227

imbedding and {QT (a:,(c")) }oo is equivalent to the standard basis of £2. Thus by

~ L 1
< eMi ‘c,, where QT |[ ] is an isomorphic

:ci"):kEN

Proposition 2.19, given 0 < ¢ < 1 and such a sequence { (")}k X , there is a sub-
sequence {xf/’z,)c)}k such that {QT (:c%)c)) }k is (1 + €)-equivalent to the standard
=1 =1

basis of £2. Recalling (2.24), it follows that for {)\;} € £2,

Jor (£5)] -

where the approximation can be improved to ény degree by the choice of (¢ and)

=),

Now {:vi")}k . is isometrically equivalent to the standard basis of £2 as noted

~ 11
2 g

o0 3
kZ_:I/\kQT IE (k) Il <k 1!/\”) Mn Cny (2.25)

above, and the same is true of {a:sé,)c)}:_l Let X, = [ (TE,)C) ke N]. Then by

(2.25), it follows that

1 1

1QT|x, || = M2 %c, < nt=3 QT (2.26)
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where the approximation can be improved to any degree as in (2.25).

Release 7 as a free variable and note that limp—.con?™3 |QT|| = 0. Hence by
the hypothesis of the second case and by (2.26), we may choose an increasing sequence
{n(3)};2, of positive integers such that for each i € N,

Cn(i) = limsup,,en | @T (€m,n(i))|| > O and there is a subspace X, of (2@ X;,U("))Zq
isometric to £2 such that Xn(:) is a subspace of [em,n(i): m € N] with

< 2. Thus the proposition follows in the second

| < IT7HHIQTx.

QI X ncey)

case, and in the'general case. |
Collecting our results and deducing simple consequences yields the following.

Proposition 2.49. Let 1 < p < oo where p # 2. Then
(2) B, & (2°¢) .
) (2°€) o X, & (£°0)
() B, & (2%8) , @ X,
@ (7€), 0 X, & B,
(e) By ® X, /> B,
() By® X, & (2° ) , ®X,, and
8 (2° Xp)g,, & B, ® X,
Proof.
(a) Part (a) is a restatement of part (d) of Proposition 2.37.
(b) Part (b) follows from part (f) of Proposition 2.24: X,, ¢ (269 EZ)ZP.
(c) Part (c) is a restatement of Proposition 2.48.
(d) Part (d) follows from part (g) of Proposition 2.37: X, & B,.

(e) Part (e) follows from part (g) of Proposition 2.37: X, & B,.

(f) Part (f) follows from part (c) above.
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(g) Part (g) is a restatement of Proposition 2.46. |

Building on diagram (2.17), for 1 < p < oo where p # 2, we have

B, I?

J N e
o), nes, = (5°%),
le N J

o (2@ [")ep B X,
e N s
3 X,
(2.27)

Concluding Remarks

Fix 1 < p < 0o where p # 2.

If X and Y are separable infinite-dimensional £, spaces, then X @Y is a
separable infinite-dimensional £, space as well. Suppose X and Y are as above and
are isomorphic to their squares. If X and Y are incomparable in the sense that
XY and Y & X, then X @Y is isomorphically distinct from both X and Y, while
if X <Y, then X ®Y ~ Y.

From the list 7, 2 & 7, (Ze ﬁz)ep, X,, By, (EEB Xp)f,n L? of seven spaces, the
only incomparable pairs of spaces are {(Z@ Ez)fp ,Xp} and {Bp, X,}. As has been
shown, (EEB 52)ep ® X, and B, @ X, are isomorphically distinct from each of the
seven listed spaces and from each other. Augmenting the list of seven spaces with the-
two new ones, the only new incomparable pair of spaces is {Bm (EEB 52)£P ® Xp}.
However (E@ [")ﬂ < B,, s0 B, ® (E® [")ZP ~ B, whence
B, ® ((ZEB £2)£P ® Xp) ~ (Bp ® (E@ ﬁ)[,,) ® X, ~ B, ® Xp, which has already
been included in the augmented list.

If Z is a separable infinite-dimensional Banach space such that Z S Lp , then
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(Zea Z) , is a separable infinite-dimensional £, space. However, from the augmented
e
list of nine spaces above, no space arises from this method of construction which has

not already been included in the list.



CHAPTER III
THE TENSOR PRODUCT CONSTRUCTION OF SCHECHTMAN

Let 1 < p < oo where p # 2. Schechtman [S] constructed a sequence of isomor-
phically distinct separéble infinite-dimensional £, spaces by iterating a certain tensor
product of Rosenthal’s space X, with itself. Using X;@” to denote X, ® --- ® X,

(n factors), the resulting sequence is {X;@”}Zo:l.

For closed subspaces X and Y of L?, X ®Y is defined to be the closed linear span
in LP([0,1] x [0,1]) of products of the form z(s)y(t) wherez € X andy € Y. Itisa
fairly routine matter to show that if X and'Y are separable infinite-dimensional £,

spaces, then X ® Y is a separable infinite-dimensional £, space. More work is required

;0 show that for m # n, XF™ £ X"

The Tensor Product Construction

We begin with some preliminary definitions and lemmas. For each k¥ € N, let

*® =10,1F. Let m,n € N,

DEeFINITION. Let 1 < p < oo and let X and Y be closed subspaces of L¥(I"™) and

F(I™), respectively. Define the tensor product X ® Y of X and Y by

XQY =[z(s)y(t):z € X,y €Y, 6 € It € I 13 (fmny-

Jenote the element x(s)y(t) by =z ® y.

68
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Let X and Y be as above, and let Z be a closed subspace of L?(I*) for some
keN Then X @ (Y ®Z)=(X®Y)® Z. Thus the expressions X ® Y ® Z and
®fi , X are unambiguous. The tensor power ®fv=1 X will also be denoted X®V,
The following lemma will be used in the proof of the fact that the tensor product

of complemented subspaces of L? is a complemented subspace of L? (1%).
Lemma 3.1. Let 1 <p < co. Then LP(I™) ® LP(I™) = LP(I™*").

Proof. Note that LP(I™) ® LP(I™) is a closed subspace of LP(I™*™). Thus it
will suffice to show that -LP(I"‘) ® LP(I™) is dense in LP(I™*™). Let f € LP(I™*™)
and let ¢ > 0. Choose g € C(I™*") such that ||f — gl jr(ym+n) < §. By the Stone-
Weierstrass theorem, choose h € spang(ym+ny {R1(8)ha(t) : h1 € C(I™), hy € C(I™)}
such that {lg — hllpr(pmsny S 119 = Rllpeo(gmsny < 5. Then |f = hllpo(miny <. u

The tensor product preserves the property of having an unconditional basis, as

shown in the following lemma [S, Lemma 3].

Lemma 3.2. Let1 < p < oo and let X and Y be as above. Suppose {:rl} and
{y;} are unconditional bases for X and Y, respectively. Then {z; ® y;}, jen 1S an

unconditional basis for X @ Y.

Proof. Note that [z; ®y;:4,7 € N = X ®@ Y. Let {r} be the sequence of
Rademacher functions. Then by the unconditionality of {z;(s)} for each ¢, Fubini’s

theorem, and a generalization of Khintchine’s inequality, for scalars a; ;
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;;ai’j(wi®yj) Lp(1m+n)=// ;;M,jxi(s)yj(t) dsdt
~ / / / / X S0 (Oeils)| dsdudva
- / / / / ;;ai,jxi(s)yj(t)n(u)rj(v)p du dv ds dt

~ / / (;;mi,jxi(s)w(wf ds dt.

z
2
I3, > ai(zi ® y;) = 0, then IS <Zl > Iai’jxi(s)yj(t)|2) dsdt = 0 by the
inequalities above, and a; ; = 0 for all 4,5 € N. Hence {z; ® y;}, jen 18 a basis for
X ® Y. The unconditionality of {z; ® y;}, ;eN is similarly clear from the inequalities

above. O

DEFINITION. Let 1 < p < co. Let X and X' be closed subspaces of L*(I"™), and
let Y and Y’ be closed subspaces of L (I"™). Suppose S: X — X' and T:Y — Y’ are
bounded linear operators. Define the tensor product ST : X @Y — X' ®@Y' of §

and T by _
so7) (T (6 it)) = T S(@) 6T
for sequences {z;} in X and {y;} in Y such that ), z;(s)y;(t) € L (I"™*").

The tensor product of bounded linear operators is bounded and linear, as shown
in the following lemma [S]|. Moreover, the tensor product of projections is a projection,
and the tensor product of isomorphisms is an isomorphism, as shown in the subsequent

lemma [S, Lemmas 1 and 2].

Lemma 3.3. Let 1 <p<ocandlet X, X', Y, Y’ S, and T be as above. Then

S ®T is well-defined and linear, with ||S @ T|| < |IS||IT}l-
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Proof. Fori € N, let z; € X and y; € Y. Then S ® T is formally linear by an
easy computation. Suppose only finitely many elements of {z;} and {y;} are nonzero.

Then by Fubini’s theorem,

p

2 S(xi)(s)T(y:)(t)| dsdi

p

H(S o) (Saleu))

=S
[ NE—
<117 [ |70
~1si7 [ |
157 | |
ot [l (5
<ISPITP [ |Saiom

= 1siP i [ [

= ISI7 TP

dt
LP(I™)
p

dt
LP(Im™)

2T (yi)(t)zi(s)

ds dt

P
dt ds

2 T(yi)(t)zi(s)

p

ds
Lr(Im)
P

ds
LP(I)
P

dtds

S zi(s)ui(t)

S z(s)ui()

LP(Im+n) )
Ifz = >, zi(s)yi(t) = 0, then (S ® T)(z) = 0 by the inequality above, whence
(S ® T)(0) = 0 independently of the representation of 0, and S ® T is well-defined.

Moreover, ||S ® T|| < [|S]|||T]| by the inequality above. O

Lemma 3.4. Let1 <p<ooandlet X, X', Y, Y’ S, and T be as above.
(a) If S and T are projections, then S ® T is a projection.

(b) If S and T are isomorphisms, then S ® T is an isomorphism.

Proof.

(a) Suppose S and T are projections. Then

(ST =(SeT)(S®T)=52®T?>=S®T. Hence S ®T is a projection.
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(b) Suppose S and T are isomorphisms. Then S® T and S™! ® T~! are formal
inverses, and ||S7! @ T~ < ||S7|||T~!|| by Lemma 3.3. Hence S™* @ T~}
is bounded and S ® T is an isomorphism. U
REMARK. Let 1 < p < co. Suppose X — LP(I™) and Y — LP(I™). By part (b)
above, X ® Y is well-defined up to isomorphism if we identify X ® ¥ with X' @ Y’
for closed subspaces X' and Y’ of LP(I™) and L”(I™) isomorphic to X and Y,
respectively.
The tensor product of complemented subspaces of L? is complemented, and the
tensor product of £, spaces is an £, space, as shown in the following proposition

[S, Lemma 1].

Proposition 3.5. Let 1 < p < oo where p # 2. Suppose X and Y are
separable infinite-dimensional L, spaces. Then X ®Y is a separable infinite-

dimensional L, space.

Proof. It is clear that X ® Y is separable and infinite-dimensional. Let X’ and
Y’ be complemented subspaces of L? isomorphic to X and Y, respectively. Then there
are projections Px.: L¥ — X’ and Py.: L — Y’. By part (a) of Lemma 3.4,
Px: @ Py: IP @ LP — X' ® Y' is a projection as well, so X’ ® Y’ is a complemented
subspace of L? ® LP, which by Lemma 3.1 is equal to L”(I?). Hence
XY ~X' QY S IPQLP = LP(I2) ~ L7,

It remains to show that X ® Y # ¢2. By [L-P, Proposition 7.3}, £ < Z for every
infinite-dimensional £, space Z. Now 7 <> X and [yo] < Y for yo € Y \ {0}, whence
O~ Q[y] > X QY. It follows that X @ Y o £2. O

Of course it follows that X;?" is an £, space for 1 < p < oo with p # 2.
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The Isomorphic Distinctness of X™ and X"

We now present results leading to the conclusion that the various tensor powers

of X, are isomorphically distinct. The main result is Theorem 3.10 below.

First we state some facts about stable random variables.
Let 1 < T < 2. Then there is a distribution g such that fR e du(a) = e~ =l
and a random variable f:[0,1] — R having distribution . Such a random variable f is
said to be T-stable [W, III.A. 13 and 14].

If f is a T-stable random variable, then f € L foreach 1 <t < T < 2. Let {f,}
be a sequence of independent T-stable random variables. Then foreach 1 <t < T < 2,
[fn]p: is isometric to T [W, IILA. 15 and 16].

Let 1 <t < T <2,and let {f,} be a sequence of independent identically
distributed T-stable random variables normalized in L*. Then the sequence {f,} in L*
is isometrically equivalent to the standard basis of ¢, and equivalent to the standard

basis of £* for all 1 < ¢ < T < 2 [RII, Corollary 4.2].

The following lemma is [S, Proposition 1].

Lemma 3.6. Let 1 <g<r<s<2. Let X and Y be closed subspaces of L?
isomorphic to " and £°, respectively. Then " @£* ~ X QY ~ (Z@ Z’)e via

equivalence of their standard bases.

Proof. Choose a sequence {z;} in X of independent identically distributed r-
stable random variables normalized in L?, and a sequence {y;} in Y of independent
identically distributed s-stable random variables normalized in L”. Then
X ~Ar ~zi)pe and Y ~ £° ~ [y5], 4.

For scalars a;,j, by the r-stability and g-normalization of {z;} with ¢ < r, we



have

q q

szai,j (z: ®y;) du dv

=// Zi:%:ai,jmi(U)yj(v)

z// Z;(%:ai,jyj(v)) z;(u)
-/ (2o}

L3(1?)
q

dudv

) dv.

Hence by the concavity of ( )#, and the s-stability and r-normalization of {y;} with

Zai,jyj(v)

r < s, we have
g

~[(zfpame| ) o
- (5] |pasme| o)
-(2(zmr))

Moreover, by the triangle inequality and the s-stability of {y;} with ¢ < s, we have

z/<z T>% dv
= H{?a‘””(”) } i
{/ %:ai)jyj(v) q dv}.—

{(5r) )

=1

q

1

22 (T ®y;)

LI(12)

9
p

Y3}

q

222 a5 (T ®y;)

> ai;y;(v)

LA(12)

dv

v

eq

Q

z
eq
a4
r

[l

(5 (per))

Hence {z; ® y;} is equivalent to the standard basis of (269 65) , and
lf‘

£T®€S~X®Y~(Z@€S)er. O
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Let 1 < p < oo and let {z;} be a sequence in L?. Then {z;} is said to be
uniformly p-integrable if for each € > 0, there is an N € N such thatg
f{t:|:c,~(t)|>N} |z; ()" dt < €P for each 1 € N.

A basis {z;} for a space X is said to be symmetric if for all permutations 7 of

scalars a;, Y, 7 (a;) z; converges if and only if ), a;z; converges.

The following lemma is [S, Proposition 2].

Lemma 3.7. Let 1 < g <r < s < 2. Then there is no sequence {xi’j}i)jeN

of independent random variables in L? equivalent to the standard basis of (293 fs)er.

Proof. Suppose {z;;}, jen 1 @ sequence of independent random variables in
L? equivalent to the standard basis of (Eea Zs)cr, where for each j € N, {z;;},cy is
equivalent to the standard basis of £5. Now £7? & (Eea Zs)l . Hence {xi»j}i,jeN is
uniformly g-integrable [J-O, third lemma).

Let € > 0, and choose N € N such that f{lfﬂi,j[>N} |z; ;1% dp < €? for all 4,7 € N.
Let § = & for some D € N, and let {I.}}, be a partition of the interval [~ N, N] into
K = D(2N + 1) intervals of equal length |I;| = 2& = D(22TN+1) < 6.

Let p = 6%9. For each j € N, choose a subsequence {xi,j}ieMj of {z;;};cn Such

that for each ¢,¢' € M; and k € {1,..., K},

(e € L)) = w({ao, € L)) < 5.

Then {xi»j}ieMj ;e is still equivalent to the standard basis of (EEB Zs) . Without
> er

loss of generality, suppose 1 € M; for each 7 € N.
Choose a subsequence {x1,;},.; of {z1,;},.y such that for each j,j' € L and

kef{l,...,K},

({22 € 1) = p({ary € DI < £.
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Then {z; ;} 1, 1s still equivalent to the standard basis of (Ze Z’)Zr. Without

loss of generality, suppose 1 € L. Note that for each j,5' € L, ¢ € M;, ¢ € Mj, and
ke{l,...,K},

ln({zi; € Ie}) — p ({zir 5 € I} < p-

For each k € {1,..., K}, let cx be the center of Ix. Let {z; ;} be a

sequence of {ci,...,ck }-valued independent random variables in L? such that for each

j€L,ieMj and k€{1,...,K},

p{zi;=c})=p({z11 € L}),

and such that {z; ; = ¢} is chosen either as a subset of {z; ; € It} or as a superset of

{z;; € It}. Then {2 ;} ; 1s identically distributed, whence {Z-,:,j}ieMj L isa

iEijje JE

symmetric basis, and for each j € L, 1 € M;, and k € {1,..., K},
lu({zij € Ie}) — ({2, = ek })| < p.
Hence for each j € L, i € M;, and k € {1,..., K},

p({zi; € Ie}\ {25 =cx}) <p.

Now for each j € L and i € Mj,

Q=

22 = islly < (Jgou 15wy 1205 = 2031%)

1

- (fo:l<{z,~,jezk}n{z.~,z~=ck}) 125 = xi’j{q)
K q %
- kz=:1 (f{a:,»,jelk}\{z.»,jmk} 2.5 = 2451 )

)
< 2+ 3 —+—Kp%(2N—+-1),

where Kpi (2N +1) = D(2N + 1)62(2N + 1) = §(2N + 1)2.
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Fix J € N and assume {1,...,J} is a subset of L and each M. Then

J J J J
DL WiiTi = Yl ) GijZig
i=1j=1 1=1j5=1 q
J J
< X 2 ez — 2l

s
||
A
.
I
—

IA
Mo
M~

.;
Il
-

w
I
—

la; 5l max; jeq, .0y 1235 — zi 5],

IA
M-
TN
=
E)
S
~—
wf
3

7] (1= 5)+(-3) (2e + g- + 62N + 1)2> .

For any J € N and v > 0, we can choose ¢ > 0 and § > 0 such that
IJ](l_%)+(1_%) (2¢ + £ +6(2N +1)*) < 7. Hence we can find a symmetric sequence

equivalent to the standard basis of (z@ Zs)”, contrary to fact. g

A basis {e;} for a Banach space F is said to be reproducible if for each Banach
space X with basis {x;} such that F — X, there is a block basic sequence {z;} with
respect to {z;} equivalent to {e;}. For r,s € [1,00), the standard basis of (z@ Zs)lr
is reproducible [L-P 2, Section 4].

The following proposition has been extracted from the proof of [S, Theorem).

The subsequent corollary is essentially [S, Remark 1.

2n
Proposition 3.8. Let 1 < ¢ <2 and let n € N. Then @ {™ o/ X®" for

i=1
g<r1<rg < -+ <19y, L 2.

Proof. Suppose n = 1. Let g <71 < s < 2andsuppose {" @ £* — X . Then
by Lemma 3.6, (z@ ZS)F — X,;. Now X, ~ [z;;],, for some sequence {z;;} of in-
dependent random variables in L?. By the reproducibility of the standard basis {e; ;}
of (E@ Zs)”, there is a block basic sequence {z; ;} with respect to {z; ;} equivalent
to {e;;}. However, {z; ;} is a sequence of independent random variables in L? equiv-

alent to {e;;}, contrary to Lemma 3.7. Hence the result holds for n = 1.
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Suppose the result is true for n = k — 1, but there are

2%
q<711 <7y < <o < 2such that @ £ — X?k via a mapping 7.

1=1

2k
. be the standard basis of ) £,

J1,32,--,J2k €N

Let {e;, ®ej, @+ ®ej,, } ®
and let yj, 5, 5 =T (€5, ®ej, ® - @ej,,) for ji,J2,...,jox €N,

Let {z;} be a basis for X,. For each m € N, let P, be the obvious projection of
X&* onto [z, @z, ® -+ @ zj, : max{j1,J2,---,Jx} < m], and let Qm, be the obvious

projection of X&* onto [z;, ® z;, ® -~ ® ;, : min{j1,72,...,Jk} > m].

Recalling that X, ~ X, & X, for each s € N
X8~ (X, @ X,) ® XEED ~ X2 @ XE°.

Hence for each s,t € N,

t

ByYyR®s ., Y®s
DEXP ~ X
1=

. )
Note that for each m € N, (I — Qm)(X2*) ~ ZEBX;@(’C_I) for some ¢ € N, whence
=]
(I = Qm)(XPF) ~ XPETD.

Let {e;, ®ej,} be the standard basis of {™* ® £"* with order determined by

Ji,J2€N
a bijection ¢: N — N x N.
For each j € N, let Y; = [y¢(j)>j3,j4,-~-,j2k 193,04y Jok € N], which is

2(k—1)
isomorphic to  ® {"**. Then by the inductive hypothesis, for each j,m € N

=1

2(k—1)
Yie ® i+ oL X;B(k—l) ~ (I = Qm)(X?k),
=1

whence (I — Qm)|y; is not an isomorphism.

Let {¢;} be a sequence of positive scalars. Let mg = 0 and Q.,, = I. Choose
z1 € Y with ||z]] =1 and my € N such that ||[(I — Qm,)(z1)|| < % and
NI — P, )(z1)|l < %. Choose z; € Y3 with |[z2|| = 1 and a positive integer my > m;

such that |[(I — Qm,)(22)]l < % and ||(I = Pm,)(22)|| < %. Continuing as above, we
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may inductively define a sequence {z;} and an increasing sequence {m;} of positive
integers such that for each j € N, z; € Y; with ||z;|| = 1, H(I - Qmj_l)(zj)“ < ¥, and
(I = P, )(2;)|| < . Hence for each j € N, ||[(I = Qm,_, © Pm;)(25)]| < € ||Pm, |-
Thus for an appropriate choice of {€;}, {2,} is equivalent to {(@m;_, © Pm,)(z;)}.
However, {z;} is equivalent to the standard basis {e;, ® €;,}; ; oy of £ ® £, and
{(Qmj_l.o P.,)(z;)} is a sequence of independent random variables. Hence there is a
sequence of independent random variables equivalent to the standard basis of

M ® L7, contrary to Lemma 3.7. O
Corollary 3.9. Let 1 < q < 2. Then for each n € N, X,?("H) ¥ X2,

Proof. Let ne€Nand let g <7y <ry <--- <7y, <2. Then for each 1 <17 < 2n,
2n 2n
€ — X, by Lemma 2.35. Hence @ £ — X2?". However, @ (™ ¥ X&™ by
i=1 =1

Proposition 3.8. It follows that X2 < X &,

Now suppose that X&) X®". Then there is a chain
RPN ng(n+2) — Xq®(n+1) — X‘;en.

In particular, X®?" — X®" contrary to fact. It follows that X,?(nH) g X I O

Note that X — X Q@ Y [where 1 < p < 00, X and Y are isomorphic to closed
subspaces of L?, and dimY > 0], since X ~ X ® [yg] = X ® Y for yo € Y \ {0}. Hence
forn € Nand 1 < p < oo with p # 2, X;?" < X,?(M_l).

For 1 < ¢ < 2, we have
Xg—= XS -5 X2 — ... - L (3.1)

Note that (X®Y)* ~ X*®Y™ [where 1 < p < 0o, and X and Y are isomorphic to

closed subspaces of L”]. Let 2 < p < oo with conjugate index gq. Then for each k € N,
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(X8E)" ~ (X;)®k ~ X&*. Let n € N. Then the fact that X2+ 4, X2" follows
from (X§C0)" ~ XPCH o, X~ (X7,

For 1 < p < oo with p # 2, we have
X, 5> X2 5 X8 5. 5 1P (3.2)

Finally we have the main result [S, Theorem].

Theorem 3.10. Let 1 < p < oo where p # 2. Then {XI;@"}:__I is a sequence of

mutually nonisomorphic L, spaces.

Proof. Each XI?" is an £, space by Proposition 3.5. For m # n, the fact that
X2 o X2" follows from Corollary 3.9 and the discussion leading to diagrams (3.1)
: : Rm ®n ®(m+1) ¢ @n & ®m
and (3.2). In particular, if X2™ ~ X" for m < n, then Xp — X2 — X3P,

contrary to fact. U
The Sequence Space Realization of X"

For n € N, XS" has a realization as a sequence space, as follows from Proposition
3.13 below. This proposition is essentially contained in [S, Section 4], although the

presentation via Lemmas 3.11 and 3.12 owes more to Dale Alspach.

Lemma 3.11. Let 2 < p < oo and k € N. Let {z;} be a sequence of normalized
independent mean zero random variables in L*. Let {y;} be an unconditional basic
sequence in LP(I*) with closed linear span Y = [yj]Lp(Ik)' Let {r;} be the sequence of

Rademacher functions. Then for scalars a; ;

!

=% max (Z
i

22 ai (@i ®yj)

LP(I5+1)
1

4 P
du)
Y

)

= (Sasslailaria)) v

7 1

2 0i5Y;
J
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Proof. For each i € N, let f;(t) = 3_;a;;y;(t). Then for each t € [0,1],
{z;(s) fi(t)}io, is a sequence of independent mean zero random variables in L”. Thus

by Theorem 2.2 [Rosenthal’s inequality], for each ¢ € [0, 1]

il )
Nmax{(Z/lx(s B ds) (2/|x )2 ds) }

Hence

(e B
~max{(z [ [mnr dsdt) ( [ (= [ monor as)° dt)P}.

Now

p
Zay

Y

[ [ a0 dsdt =1l 1l n, = 1500y =

and

[ (5 mosor o) = [ (Simgimor) «
<[/

2 llzsly fut)rs(u)

-/ ¥ il e v3(0)rio)
> (S basl, n<u>> wll

Y

p
dudt

P
dt du

du.
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Hence

22 aii(z: @y5)

LP(Ik+1)

_ ( [/ XX 01250050
([ prergnme

- (// S ai()fi(t) pdsdt);
- {(Z [ [nor det)%,( [ (= [monor d) dt);‘:}

~ max ’ % / Qi 3 N3 T U 'p ’LL% .
~ {(2 Y) (/ = (S o >)yg d) }

Y
Let {r,} be the sequence of Rademacher functions. Kahane’s inequality

[

P
ds dt)
TN
ds dt)

2 i jY;
J

[W, Theorem III.A.18] states that for each 1 < p < oo, there is a constant C, such

that for each Banach space X and for each finite sequence {z;} in X,

(f “Z] r5(u)z;

P

a0)” 2,

du.

Lemma 3.12. Let 1 <p < co and let {r;} be the sequence of Rademacher

functions. Then for scalars a; ;

/(5

L

) duz(;;yai’jlz) .

2 a; 575 (u)
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Proof. Let {e;} be the standard basis of £>. Then by Kahane’s inequality,

/ (; 2) | du =/ 2 (; atj?‘j(ﬂ)) &

2o (S

p
du

> aq,5m5(u)
7 e
p

£2

2 ri(u) (Z ai,je,-) du) ”
7 i £2

2 z

/;Tj(U) (;ai,{-ei) du

£2

2
du
ZZ

2
2

A=

Qa3
——~ T
—

4
2

’ 2 (2 az‘ﬂj(ﬂ)) &

/
/; ¥ai,jrj(u) 2 du)

2
2

2/ ;ai,ﬂj(u) 2 du)

Proposition 3.13. Let2 < p < co andn € N. Let {z;} be a sequence of
normalized independent mean zero random variables in L?. For each i € N, let

w; = ||z;]|,. Then for scalars a;,

..... in

X @iy, (T, ® e ® z;,)

2]y.009ln

LP(1m)

E\»r
2
R~ max ( > ( 2 lais il T wz) )
n ik KESn \ig:fESE eese

.where the max is taken over all subsets S, of {1,...,n}, and Sg = {1,...,n}\ Sn.



Proof. For n =1 [with ¢; = 4], the statement is

i

o ((glailzwf)}%)%,(?(laif)g)p
= max { (X} |a;[? w?) % , (z; lailp) %} ’

which is immediate from Corollary 2.3 [Rosenthal’s inequality].

Z a;T;
k2

Assume the statement is true for n = N. We wish to prove the statement for
n=N+1.

Let {r;} be the sequence of Rademacher functions. By Lemma 3.11,

Z Z Aig,ingt (x'il ®--® miN) ® Tinys A max {Elsz}

21,..,0N IN41 LP(IN+1)
where .
P r
El - Z Z a‘il ..... iN+1 (l‘il ®.”®$iN)
IN+1 [[E1seetN LP(IN)
and
p
Ey, = / ‘ Z (Z Qiy,intr “miN+1 ”2 TiN+1(u)) (zi1 ®--® miN) du
Tlyeeey TN IN+1 LP(IN)
Let
Aiy i@ = X @iy i [T [l Tines (@)
IN+1
and
(SA _
il,{\.,.,iN_,_l Qiy,oinga I miN+1H2 1 wi.
33

By the inductive hypothesis, and then a rearrangement, we have

IN+1 Sw ik:kESN

Y\ 7
\ .
E, ~ Z max > ( > ail,..l,iN+1| II wi) )

1
E\?r
s 2 2
~ n;ax Z latl """" 7-N+ll H wil
N i kESNU{N+1} \ig:iLESY LeSE,
‘ 1
B\~
2
= ) ) 2
- ;Ila,X. . Z . Z la11,~~»1N+1| H wil
NAL ik kE€ESN41 \ir:£ESF LESS .

N+1€Sn41

84



By the inductive hypothesis, a rearrangement, and Lemma 3.12, we have

/

[maxi = ( S Ay @ 1] wa) du

ZkkESN lgfeslcv ZES}:\,

o

P
E2 du

LP(I)

Y Aiyin (@) (2 ® - ® Ty
yrmy N

i1

L]
=

X

. 3 1
2 r
5 -
% max > /( > A @) T1 w?l) du }
N ik:kESN ’l.gfesfv ZGS}’V

1
2\ % P
= > S AT B, @) | du
= max i 21,00 NF1 N1
S~ ix:kESN uZESf\, IN+1
1
E\?
~ gy |
~ néax Z i1yt NH1
N ikt k€ESN \4g:LESGU{N+1}
1
E\ »
2 2
= IIéaX Z Z Iail,-~~yiN+1l w;,
N i k€SN \ig: LESGU{N+1} LESSU{N+1}
1
E\»
- 2 2
- Sr’?vax. kzs zzsc |ai1""'iN+1| ¢ ;‘:I i
+1: i kESN+1 \ iz LE €
N+1¢Sn41 * N1 N+1
Hence
: Z Qiy,..hin41 (xil @ ®931'N+1>
21,00 N+1 LP(IN+1)
~ max {E1, Es}
1
E\
~ 2 2
~ max > > |a¢1,,.,,iN+1| II w
N+1 tr:kESN41 i[:ZESfV_H ZESICV_H
a

For 2 < p < o and n € N, Proposition 3.13 yields a representation of X,‘?”
as a sequence space, taking {z;} to be a sequence of normalized independent mean
zero random variables in L? with w = {w;} = {||z;||,} satisfying condition (*) of

Proposition 2.1.
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In particular, for n = 2 and S» C {7, j}, for scalars a; ;

~ max {Ns,=0), Vis,={i)] NSa= {511 MSa=1i)1} -
L*(12)

Y ai;(z:@y;)
i

where
1
2

2
= (glai,jl w?“ﬁ-) ,

L

oy
NS——— N’
S
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CHAPTER IV
THE INDEPENDENT SUM CCNSTRUCTION OF ALSPACH

Let 2 < p < oo andlet @ = [[2,(0,1]. Alspach [A] developed a general
method for constructing complemented subspaces of L”({2), given spaces X; of mean
zero functions which are complemented in L”[0,1] in a special way. The construction
produvces spaces Z; of mean zero functions which are similarly complemented in L?(£2),
such that Z; is isometric to X;, each function in Z; depends only on component 7 of
§2, there is a common supporting set .S; for all functions in Z;, and the measure of
S; approaches zero slowly as 7 increases. The independent sum of {X;};; is then
[Zi 21 € N|pp(q)-

The rate at which the measure of S; approaches zero is controlled by a sequence
w, which plays a role similar to the role of w in Rosenthal’s space X, ,,. Indeed,
Alspach’s construction generalizes the construction of Rosenthal’s space X, ,,.

All of the £, spaces of Chapter II can be constructed as independent sums in the
above sense. The principal new separable-infinite-dimensional £, space constructed by
- Alspach as an independent sum is D,, which is the independent sum of copies of £2,
with £2 realized as the span of the Rademachers in L”. Also new is B, @ D,. The
method of taking independent sums has the potential to generate a sequence of £,
spaces by iteration. However, no general method has been developed for distinguish-

ing the isomorphism types of the resulting spaces.
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The Independent Sum (zea Xi)

Iw

Fix2 < p < 0o. Let @ = []2,[0,1]. For t = (t1,t2,...) € Qandi € N,
let m; :  — [0,1] be the projection 7;(t) = t;. Let L§[0,1] be the space of mean
zero functions in L”[0, 1]. For 0 ‘< k < 1, identify L”[0, k] with the space of functions
in L?[0,1] supported on [G, k]. Let {X;} be a sequence of closed subspaces of L§]0, 1].

2

Let w = {w;} and {k;} be sequences of scalars from (0, 1] such that k; = w?™. Let

T, : L?[0,1) — LP[0, k;] C L?[0,1] be defined by

~LX 7/

B R T < ks
T =4 kS (&) Ho<a<h

0 ifk; <s<1

Let Y; = T;(X;) and let ¥; = {§; = ys o m; : y; € Yi} C LP(Q).

DEFINITION. Let p, , 7;, {Xi}, w = {w;}, {k;}, T3, Y;, and Y; be as above.
Suppose
(a) for each i € N, the orthogonal projection of L?[0,1] onto X; C L?[0,1}, when
restricted to LP[0,1], yields a bounded projection P; : L*[0,1] — X, C L”[0,1] onto X;,
and
(b) the sequence {P;}; satisfies sup;cy || Bl < o0.

Define (Z@ Xi)I , the independent sum of {X;} with respect to w, by

W

(z° Xi)],w =[Visien| .
REMARK. The mapping 7; is an isometry, and the spaces X;, Y;, and f’l are 1so-

metric. If ; € Y; for each ¢ € N, then {#:};2, is a sequence of independent mean zero

random variables. The sequence w plays a role similar to the role of w in Rosenthal’s

2 ~
space X, . In particular, w?™* is related to the measure of the support of §; € Y;.

2

Example 4.1. Let 2 < p < 00, let 71 be the first Rademacher function

o1y — 1p2,1, let X = [r1]pepo), and let w = {w;} be a sequence from (0,1]. Then
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(269 X > is isomorphic to €%, {7, {* ® {*, or X,, where each can be realized by an

Iw

appropriate choice of w as in Proposition 2.1.

Proof. Let {k;} and {T;} correspond with w = {w;} as above. Let y; = T;(r1)

and §; = y; o m;. Then (Ze X> = [§i 11 € N|pr(q)- Now {§:};2; is a sequence of

Iw
independent symmetric three-valued randem variables in LP(Q2), with §; supported on

2p_ p=2 1.1
a set of measure k; = w?~’. Moreover, w; = k,*? =k} * = ”?11'”1,2(9)/“?]:'“[,?(9)-

Hence (Ze X >

isomorphic to £2, {F, {2 & {F, or X,, depending on w as in Proposition 2.1 and the

~ X, . (essentially) by Corollary 2.3, so (Z@ X > is

Iw Iw

definition of X,. O

The Cemplementation of (ZEB X,-)I in LP(Q)

,w

Fix2<p<ooand0 <k <1 Forl<r < oo, identify L"[0, k] with the space of
functions in L™[0, 1] supported on [0, k], and for a measure space E, let L{(E) be the

space of mean zero functions in L™(E).

Let T: L1[0,1] — L[0,%] C L![0,1] be defined by

_[kFf(2) fo<s<k
T()s) {0 Y dfk<s<1

For 1 <r < oo, let T = T|prj0,1)-

Lemma 4.2. Let p, k, and T be as above. For1 < r < oo, let f,g € L"[0,1].
Then
@) 1T =+ £,
(b) T, : L"[0,1] — L"[0,k] C L"[0,1],
(c) T, maps L"[0,1] onto LT[0, k],
(d) T, is an isometry,

(e) Tp = T2|rr0,1)



90

(f) f has mean zero if and only if T(f) has mean zero, and

(g) f and g are orthogonal if and only if T(f) and T(g) are orthogonal.

Proof. Part (a) follows from the computation

ITCI, = Jy TN ds = [ [F75 7 (8)] ds =75 [F1£@ dt = k5" 511

Part (b) follows from (a) and the defirition of T. Considering T, as a mapping from
L"[0,1] to £7[0, k], T, has inverse T,7* : L"[0,k] — L"[0,1] with T"1(h)(t) = k7 h(kt),
and (c) follows. Taking r = p, (d) follows from (a). Part (e) is clear. As in the
computation for (a), but taking r = 1 and deleting the absolute values,
JET(f)(s)ds = k% [ f(t)dt, and (f) follows. Finally, [FT(f)(s) - T(g9)(s)ds =
ETF Y F(8)-g(8) ds= k7% f) f(t)- g(t)dt, and (g) follows. O

Let R : L'[0,1] — L[0, k] be defined by R(f) = 1o - f. For 1 < 7 < oo, let
Ry = R|prj0,)-

Let X be a closed subspace of L§[0,1] such that the orthogonal projection P, of
L?[0,1] onto X C L?[0,1], when restricted to LP[0, 1], yields a bounded projection

P, :L?[0,1] - X C L”[0,1] onto X. Let ¥ = T(X).

Lemma 4.3. Letp, k, T, R, X, Py, P,, and Y. be as above. Let 1 < r < o0.

Then

(a) R, : L"[0,1] — L"[0,k] is a projection of L"[0,1] onto L"[0,k] with ||R.|| = 1,

(b) R is the orthogonal projection of L?[0,1] onto L2(0, k],

(c) Rp = Ra|rr0,1]

(d) Y is a subspace of LE[0, k] isometric to X,

(e) the closure of X in L%[0,1] is contained in L]0, 1],

(f) the closure of Y in L?[0,k] is contained in L3[0, k],

(8) To (X) =Y, where X and Y are the closures of X and Y in L?[0,1],
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(h) ToP,T; ! is the orthogonal projection of L?[0, k] onto Y C L?|0, k],
(j) TpPpr_l = (T2P2T2—1) IL”[O,k]: and

(j) T,P,T; ! maps L”[0,k] onto Y.

Proof. Part (a) is clear. For f,g € L2[0,1], (f — R2(f)) L Ra(g), so
(f = Ra(f)) € (Ra (L0, 1]))l, and (b) follows. Part (c) is clear. Part (d) follows
from the fact that T, : L”[0,1] — L”[0,k] is an isometry which preserves mean zero
functions. First noting that X C L2[0,1] and Y C L3[0, k], parts (e) and (f) are
clear. Part (g) is clear. For f,g € L2[0,k], (Ty*(f) = P2 (T;X(F))) L P2 (T (9)),
so (f = (BPT5Y) (f)) L (ToPT5t) (g), and (h) follows after noting (g). Parts (i)
and (j) are clear. O

For r € {2,p}, let Q. = T.P,T'R..

Lemma 4.4. Letp,r, k, T, R, X, P., Y, and Q, be as above. Then
(a) Qp: LP[0,1] =Y C LP[0,1] maps L?[0,1] onto Y,
(b) 1Qpll = 1P,
(c) Q2 is the orthogonal projection of L?[0,1] onto Y C L?[0, 1],
(d) Qp = Q2|r7[0,1), and

() Q1) =0.

Proof. Note that T, 'R, : L”[0,1] — L”[0,1] is surjective, with right inverse T}.
Thus (a) follows, and Q,T, = (T,FT, 'R,) T, = T,P, (I, 'R,T,) = T,P,. Since
T, is an isometry, (b) follews. Part (c) fcllows from the fact that Ry and To P, Ty ! are
orthogonal projections mapping L*[0,1] onto L2[0,%] and L?[0,k] onto Y C L2?[0, k],
respectively. Part (d) follows from the fact that R, = Ry rro,1) and T,P, Tt =

T——l

- . R, P g3 P P
(TP T5 1) |z7[0,k}- Noting that 1+3 1pg 5 & k? - Ljo,1] Bk 0, (e) follows. a
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The relevant subspaces of L”[0, 1] are related as in the diagram

P,

I’ 3 x cI2o,1) c P, 1]

Q
RATTY S N LT (4.1)

]

o TR v crzpk e 1l

We now perform a similar construction for each ¢ € N.

Let {k;} be a sequence of scalars from (0,1]. Then for r € {1,2,p}, {k:} deter-
mines sequences {T; .} and {R;,} of mappings, where T}, and R;, are simply T, and
R,, respectively, with k; replacing k. Let {X;} be a sequence of closed subspaces of
L%[0,1] such that the orthogonal prcjection P; 4 of L?[0,1] onto X; C L2[0,1], when
restricted to L”[0,1], yields a bounded projection P; , : L?[0,1] — X; C L?[0,1] onto
X;. Let Y; = T, ,(X;), and for r € {2,p}, let Q;, = T;.P;, T, 'R;,. Then X, Y,
P, ., and Q;, are simply X, Y, P,, and Q., respectively, with k; replacing k. Thus as
in diagram (4.1), we have the diagram

P, 2 x; cIZo,1] cLPo,1]

Qi,p
Rip lT T,’Tpl \( l Tip

L7[0, k] Y,  cLE[0, k] c LP[0, 1),

and Lemmas 4.2, 4.3, and 4.4 hold, with the obvious notational changes.

Let 1 <r <ooandleti€N. LetIl,:L"[0,1] — L"[2] be the isometry
I;-(f) = f om. Thenfor f,g € L7[0,1], f has mean zero if and only if II; .(f) has
mean zero, and f and g are orthogonal if ard only if II; . (f) and II; .(g) are
orthogonal.

Given a closed subspace Z; , of L"[0,1], let Zi’, = II,,(Z;r) C L"(92). Let
L7[0,1] =1L, (L7[0,1]) and L} ;[0,1] = I, . (Lj[0, 1]).

Given closed subspaces Z; . and Z] . of L"[0,1] and a mapping

Li,r : Zi,r — Z;

1,T?

let I:i,, : Z,, — Zi,r be the mapping f/i,, = Hi,,L,-,,Hi_,rl. Then
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diagram (4.2) induces the diagram

Iro,1) ¥ X, clp0,1] c Lo
h iz im, (3)
P[0, k] Yi, < LB,k c LP[0,1],
and results analogous to Lemmas 4.2, 4.3, and 4.4 hold.
Let E; : L}(Q) — L}[0,1] ¢ L*() be the projeétion onto L}[0,1] =TI, ; (L}[0,1])
of norm one defined by E;(f) = &g, f, where £, is conditional expectation with
respect to the o-algebra B; = {HJ‘?‘_’__IBJ- : B; C[0,1] is measurable, B;=[0,1] for j#i}.

For 1 <7 < o0, let E; . = E;|; ). [See Chapter V, The Complementation of Rf,

in L?, Preliminaries, for properties of conditional expectation.]

Lemrma 4.5. Let p, II; ,, f/{[O, 1], B;, and E; be as above for1 < r < oo with

conjugate index s, and let f € L"(Q2). Then

(a) E;,: L"(Q) — L™(Q) with ||E; .|| =1,

(b) E;, maps L"(Q) onto L7[0,1] = II; . {L"[0,1]),

(c) f has mean zero if and only if E; .(f) has mean zero,

(d) if {fi};=, is a sequence in L™ (), then {E;.(f;)};c, is independent,

(e) Ef, = Eis,

(f) E; 4 is the orthogonal projection of L*(Q) onto L?[0,1], and

(8) Eip = Eislir(q)-

Proof. By the convexity of | |", [ |Ei(f)]" < [oE:i(|f]") = fn [fI", and (a)
follows. The fact that E;, maps L™(Q) into L7[0,1] = II, . (L"[0,1]) follows from the
choice of the g-algebra B;. For f € L7[0,1] = I, (L"[0,1]), E;.(f) = f, and (b)
follows. Since [, Ei(f) = [q f, (c) follows. Part (d) follows from the choice of the o-

algebra B;. Noting that [, f-E} (9) = [, Ei,,(‘f)-g = [ Ei(f)-9= o Ei (B:(f)-g) =
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Jo Ei(f) - Ei(9) = [o i (Bi(g) - f) = o Bi(9) - f = [q Eis(g) - f for g € L*(Q),
(e) follows. Part (g) is clear.

Now E; 5 : L3(Q) — L2[0,1] € L*(Q) maps L*(Q) onto L?[0,1] = II; » (L?[0,1])
by parts (a) and (b). Let f € L2(Q). Then [ (f — Ei(f)) = 0 for all B € B;, and
o (f = Ei(f) -9 = Oforali g € £2[0,1]. Hence f — Ei(f) € (ig[o,u)l, and (f)
follows. O

For r € {2,p}, let S;, = Qi,rEi,r, where Q~i,r and F; , are as above.

Lemma 4.6. Let p, v, P;, Y;,, and S;, be as above. Let f € L"(Q) and
g € LY(Q), where q is the conjugate index of p. Then
(a) Sip: LP(Q) — Y;, C LP(Q) maps LP(Q) onto Y; ,,
(b) S; 2 is the orthogonal projection of L?({2) onto T,p C L*(Q),
(c) Sip= i,2lLP(Q),
(d) 1Sipll < [1P:l;
(e) Sip(1) =0,
() [Si-(f)=0,
(8) [ Sip(9) =0,
(h) {Si-(f)};2, Is independent, and
(1) if {g:};o, Is a sequence in L(R), then {S:p(gi)}zl is independent.
Proof. Part (a) is clear Since S; 2 = QiyzE,-,z is the composition of orthogonal
projections, where L?(Q) T L2[0,1] surjectively and L2[0,1] U f’_i,; surjectively, (b)

follows. Part (c) is clear. Noting that ||S; || < [|Qip|| | E:pll = [| @il = l1Q:ll = 1121,

(d) follows. Since E;,(1) = 1 and Q; (1) = 0, (e) follows. Since ¥;, c 5[0, k;] and

Y;, C L3[0,k;], (f) follows. Noting that J8i(9)=[g-Sip(1)=[g-0=0,

(g) follows. For reference, S; . = Q; . E;, and Si, = E:pr . Part (h) follows from an

1)p
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analogous property of E; , which Qi,r preserves. Recalling that E; ; has an analogous
property and E, = E; g, (i) follows. O

For r € {2,p}, let S, = 3.2, Si,,. We show below that the formal series defines a

bounded linear operator on L"(2).

Lemma 4.7. Let p, f’i;p, and Sy be as above. Then S, is the orthogonal

projection of L*(Q) onto f/;,p CL*Q):i€ N] o)’

Proof. For f € L*(Q), So(f) = Y ioq Si2(f), where

Siolf) € Yip © L2[0,k;] C L3(Q), S;a(f) is the orthogonal projection of f onto
the span of S; 5(f) in L2(£), and {S;2(f)}i2, is an orthogonal sequence of random
variables. Hence 53 : L?(Q2) — I;i’p CL?):ie N] . is the orthogonal projection

2 + A% 2 .,
of L*(R) onto |, C L2(:2):i € N] pay O

Theorem 4.8. Let 2 < p < oo and let w = {w;} be a sequence of scalars from
(0,1]. Let {X,} be a sequence of closed subspaces of L}(0,1] satisfying the hypotheses

(a) and (b) in the definition of (ZGB Xi>1 . Then (26 Xi>1 is a complemented

y W

subspace of L* () via the projection S,.

Proof. Let f € LP(Q). Then {S;,(f)};o, is a sequence of independent mean

1

zero random variables in LP(§2). Hence (essentially) by Theorem 2.2 [Rosenthal’s

inequality],
155Dl gy = “ £ 5:,(6)
i=1 L7 ()

’ » 1 1
K o0 P o0 2
< max { (E 150y ) s (£ 150 } .
By the orthogonality of {S; ,(f)}:-, and the fact that S, = S2|pr(q) where Sy is

orthogonal projection,

=

(E15titnm) = | £ 50t

poiy 5Py < Wiy < Wl ey
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'y
Let G = { (012, 00 € ), (T2 ooy " < 1}, where ¢ is the conjugate
index of p. Then for g; € LY(Q), {57, (gi)}:1 is a sequence of independent mean zero

random variables in L?(Q). Hence by Holder’s inequality and (essentially) Lemma 2.4,

(E”S,p( ”U’(Q)) = 8sup

{g:}€G |1

18

(S p(f)s 9i)

Il
ha

= sup
{g:}€G

TN

f,is,pgz>)

=1

o

< sup
{gt}EG

1
<2 swp (S 150)ling) Wlirey

{9:}€G

1
<253, su (S0t 1l

S p(9i) 11|27 e
i=1 L)

< 2sup || Bl “f“u’(n)-
€N

It now follows that ||S(f)ll 70y < Kb max {2sup;en || Fill , 1} (| fll pp(q)- Hence

S, : LF(Q) — [f’i,p 11 E N} L@ maps LP(§2) onto [f’i‘p NS N] @) with
ey - .

IS5l < Ky max {25upsen 1P 1), and (S°X), = [Fiprien] |,

is complemented in LP{Q). d

Independent Sums with Basis

Now suppose in addition to the hypotheses (a) and (b) in the definition of
(E@ Xi)I i the sequence {X;} of closed subspaces of L}[0, 1] satisfies
(c) for each ¢ € N, X; has an unconditional orthogonal basis {z; »}o.,
Then of course X; = [z;,:n € N 70,1
Letting Y; = T; (X;) as before, and letting y; », = T; (; ), we have
Y = [gin:n €N z?[0.1)> and {9in}ow, is an unconditional orthogonal basis for ¥;

isometrically equivalent to {z; .} .,
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Letting Y; = {§; = ys o m; : y; € Y;} as before, and letting §; n = yin © i,
we have V; = [fin :n €N} (qy and {@in},, is an unconditional orthogonal basis for
Y; isometrically equivalent to {y; »} oo, and {z;n}>o .

In this context, (EGB X,-) = [§in:i,n € N]L”(Q)’ and {fin}; ,en I8 an

Iw

unconditional orthogonal basis for (EGB Xi)

s
-2

REMARK. Noting that y; , = T} (z;,») and k;** = w;, by part (a) of Lemma 4.2
we have ”gi,n”m(g) = ”yi,nllg = wj “xi,nllz-

Proposition 4.9. Let 2 < p < oo and let w = {w;} be a sequence of scalars from
(0,1]. Let {X;} be a sequence of closed subspaces of L{[0,1] such that each X; has an
unconditional orthogonal basis {z; n}or,- Let §in = (Ti (zin)) o 7 € LP(Q), where T;
and 7; are as in the definition of (E@ Xi‘)l K Then for K, as in Theorem 2.2 and for

scalars a; n,

K, /
X maxq [ Y
LP(Q) 2 [ i

Proof. Let z; = Y__ a; n% .. Then {z;} is a sequence of independent mean zero

1
P\ 7
b

2 2 %
(z w? 3 lail uzi,nnz)
1 n

22 @inbin
2 n

E ai,nxi,n
n P

random variables in L”(Q2). Hence (essentially) by Corollary 2.3 [Rosenthal’s

inequality],

2z

i

K, , \? . \?
? max E ”zi”LP(Q) ) E ||z‘i||L2(Q) '
L (@) : '

Note that ||z,~||’]:,,(m =15, ai,ng},-,nn’zp(ﬂ) =>., a,-,nxi,nﬂg. Moreover, by the
orthogonality of {# »}..., and by the remark above,

2 -2 20~ 12 2 2
I|zi”L2(Q) = ”En ai,nyi,n||L2(Q) =3 lain] ”yi,n|lL2(Q) = w? Zn ainl ”zi,nuz-
The result now follows from the displayed inequality. a

Corollary 4.10. Let 2 < p < 0o and let w = {w;} be a sequence of scalars from

(0,1]. Let {X;} be a sequence of closed subspaces of L}j[0,1] satisfying the hypotheses
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(a) and (b) in the definition of (Ze Xi) such that each X; has an unconditional

~(£x),

r—<
28\ 2r
Proof. Let §; , be as in Proposition 4.9. Let K = (Z w}’”) . By Halder’s

inequality with conjugate indices p’

, W

2z
orthogonal basis {#;n},.;- Suppose Y wf™* < co. Then (ZGB X,-)

= B and ¢ = %3, and the orthogonality of

{zin}o.,, for scalars ¢; , we have
2 1l
2 2 2 2 2585 = P\’
(Sut (Slawnlleinlt)) < ( (£0177) 7 (2(Shanl feanl?)
(27)7 (2(z

> inTin

n

1

P\ 7
2
”ai,nmi,n”2)

= :

(s
=% (¥ )
< (gfgumn])

Hence by Proposition 4.9 and the above bound, for K = max {1, K} we have
. N L
K Py\? 2 2 2
§ max (_4 i nLi, ) ) <Z w? 2 laial “mi,n”2>
LP(Q) i n p 7 n

1
- P\ P
K
~ Z Z a; nTin .
1 i n P

It follows that (Zﬂa Xi)l L (Z@ Xi)e”' O

Laz nTin

Example 4.11. Let 2 < p < o and let w = {w;} be a sequence of scalars from

(0,1] such that Zw;’_z'% < oo. Then (Z® ZQ)KP, (ZGB Xp)ep, B,, X, ® (ZGB Ez)e’”

and X, ® B, can be realized as (Z@ Xi\) for appropriately chosen X;.

Proof. Let {z,} be the sequence of Rademacher functions and let
X = [ta]» ~ 2. Then (z@ X)I ~ (z%?)ﬁ
Let {z,} be a sequence of independent mean zero random variables in L” such

that v = {v,} = {|]mn”2 / [|a:n||p} satisfies condition (*) of Proposition 2.1, and let

X = [ealr ~ X, Then (2°X)  ~(Z°X,),,



99

For each i € N, let {x;,} .., be a sequence of independent mean zero random

=S} 2p_
1
n

variables in L? such that v = {v;,}7, = {!,f’fi,nl|2 / ||9:,-,n|]p} _ satisfies v/? = 1
foreach n € N. Let X; = [zin:n €N » ~ X, ,». Then
(ZGB Xi) Lw (ZGB X”*”(i))ﬂ’ ~ Br.

Let {21, }o-, be a sequence of independent mean zero random variables in L”
such that () ={vl,n},i°=1={||$l,n||2 / ”1171,n||p}:°=1 satisfies condition () of
Proposition 2.1, and let X; = [z1,, : 7 € N, ~ X,. For each i € N\ {1}, let {z;n},_,
be the sequence of Rademacher functions and let X; = [z;,:n € N] L~ ¢2. Then
(ZGB Xi)[ w (ZGB Xi)eP - (Xp o x° 32)5” ~ % ® (Ze 42)”_

Let {21,,}°7, be a sequence of independent mean zero random variables in L?
such that v ={v; ,}°° = {”271,11”2 / ||ar:1,n||p}:o=1 satisfies condition (%) of
Proposition 2.1, and let X1 = [z1n:n €N];» ~ X,. Foreachi¢ € N\ {1}, let
{zin}o2, be a sequence of independent mean zero random variables in L” such that

@ © | / ® satisfies 0727 = 1 f N, and 1
oW ={vn}, = {|,:B,~,n||2/ ”xi’"””}n=1 satisfies v/ * = ; for each n € N, and let

(=), -

. @
(AP & 2?22 Xp,'u("))ep ~Xp ® <Zi22 Xp,v(‘))ep ~ Xp & Bp. .

Xi=[Tin:n€Np ~ X, y». Then (ZGB Xi)

~
W

The Independent Sum (Z@ X)I

Let 2 < p < 0o. Suppose X is a close‘d subspace of L}[0,1] satisfying
(a') the orthogonal projection of L2[0,1] onto X C L?[0,1], when restricted to L?[0,1],
yields a bounded projection P : L?[0,1] — X C L?[0,1] onto X, and
(c') X has an unconditional'orthogdnal ncrmalized basis {z,}.
We adopt notation as before, with X replacing X; and z, replacing Z; n. In particular,
Uin = (T; (zn)) o m; € LP(Q), where T, and ; are as in the definition of (ZQB Xi)

Y

For 2 < p < 00, we will show that for a fixed closed subspace X of Lj[0,1]
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satisfying the hypotheses (a’) and (c’) above, all spaces (E@ X ) for sequences

W

w = {w;} from (0, 1] satisfying condition (*) of Proposition 2.1 are mutually
isomorphic. The following results follow the pattern of Propositions 2.7, 2.9, 2.10, 2.11,
and Theorem 2.12, where it is shown that the isomorphism type of X, ,, does not

depend on w as long as w satisfies condition ().

Proposition 4.12. Let 2 < p < oo and let w = {w;} be a sequence of scalars
from (0,1]). Let X be a closed subspace of L}[0,1] satisfying the hypotheses (a’) and

(') above. Suppose {E;} is a sequence of disjoint nonempty finite subsets of N such

2B e
that 3 ,cp, w/™ < 1foreach jo€ N. Let zjn = 3 ;cp, w?™" fi,n and let Z;, be the
—2
2B

2p
normalization of z; ,, in LP(§Y). Let v; = (ZieEj wf”) and v = {v;}. Then

(a) {%,n} Is an unconditional basis for [z, : j,n € N] ( which is equivalent

=°X)

I,w

to the standard basis of (ZEB X)I , and

. e (o (5 .4
(b) there is a projection P : (Z X) Lo [Zjn 2 Jymn €N] (ZGB X)
I,w

Proof. First we establish some notaticn. Let Y}, (..} be the Banach space of all

sums of the form y =Y. 3" a; n¥:n (for scalars a; ,) such that

1 1

ly, ., = (SilSneindinlirg)” = (SilS0aineal?)” < co. Let Yau for)
be the Hilbert space of all sums of the form y = >, 3" a; i » (for scalars a; ) such
1 1

that [ylly, , ., = (SIS0 tinbinlling) = (Siw? Saleinl lzal})” < oo,

where the inner product in ¥3 4 (-} is defined by

(Yar yo) = 2o [ (X @iinFiin) (X biniin) = 1 0 T i,nbin 2l

(where yo = >, >, @infin, Yo = 2_; O, bi,n¥in, and bar is complex conjugation).
Let || [I| be the norm on (ZEB X)I . defined by

lylll = max{||y||ypy{zn} Aolly, . . } By Proposition 4.9, || || is equivalent to the

standard norm on (ZEB X ) . Without loss of generality, we will proceed in the

Iw
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context of (Z@ X) erdowed with the norm ||| |||

Iow
2

_L
We now find the normalizing factor for z; .. Let 0; = 3 ;cp. . Noting that

2+ -4 = 1 = |jznll, 2 ||lznlly, and a” > a , we have

p—2 p 2’
1
4
b

1
p—2 p ’ P_2—% 2
n b 1 nll2
w?™" [ zall, Z}; w!™" ||zl
€

Z w _zﬂ’l-n

i€E;

251l = = max

N
£
7o

£

N

1

[}
)
2.
s

S———

/
&,
(ze

1
= max{ ; ”Ilznllp, o} ”17n||2}

u

||
-—\ ,—-J\_-\ ,——/\-‘

Sy

1
Hence Zjn =0, P2zjn =0, * ZzEE wf” 2?:/1 n-
(a) The unconditionality of {Z;,} follows from the unconditionality of {#; »} in

(Z@ X ) . We now examine the equivalence of the bases. For scalars a; ,, we
w

have
p P
. -1 2
> inZin =122 ay n0; * > W Gin
jn jon i€E;
Yo {zn} ! Yo, {zn}
p
1 2
-2 -~
= Z Z g F wlp aJvnylyn
j i€EE; n
! YP,{In)
1 _2 p
— =3
- Z Zaj szp AjnTn
j i€E; I n p
1 2p_ p
- —2
=30 wl™ |13 a0
J €E; n p
P
—_ Z Zaj nln (44)
J n p
p
_ ~(v)
- Z Z Qj,n Jmn ’
2 n
YPv{zn)
- 2r 2 _p=2
and noting that 2 + =253 and 1 =52,
2 2
— - P—2 ~
‘ZZaang-z =113-22am0; 7 Y W i
> n n i€
Y2, {zn} ’ ’ Y2, {zn}
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2
1z
= Z ZJ‘Pwip_zajngzn
j i€E; n Yarw (zn}
-1 2 2 )
=3 w? S o Pwp P aj . Nzl
a iEEJ'
-2 2
=220;7 3 wiT Ylajal lzall;
7 icE; n
p2 2
=2 (%) Slasal honl
J o\
= Z vi Y lay, ol ”xnllz (4.5)
2 n
2
= ~(v)
= Z > aj, nYjn )
7 Y2y”y(¢n)
where ﬂgvz is analogous to %;, with v replacing w. Hence
22 ainZinlll =maxg (323 a5nEn 122 2 asnin
7 7 Yooy 077" Y2,0.(zn}
= max { S Y aad N a0
e Yoeny 077 Y20, 42n)
|
= [T eimii] -
where ||| |||, is analogous to ||} ||| with v replacing w. Hence {Z;,} is equivalent

to the standard basis { } of \Z&B X)I .
(b) Let w : Youfan) — [Zjm i Jym € N]Yz'w'(%) be the orthogonal projection onto

[2jn:dm € N]me,{zn) defined by

Z Z Ao 2in) Zjn-

n 2_7 ns <3, n)

& 3y <
Lety € (T°X) =Y, 0y N Yo geny Then In@)ly, (o) < lolly, o o)

We will show that ||7T(y)||yp o S ||y||yp (en) 38 well, whence

Illw(y)“l = max{||7r(y)||yp’{:n} ’ ”W(y)”}’z,w,{zn) }

% max {”ynyp,{:n) ’ ||y||Y2,w,(=n)} = ”ly“l .
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’

Thus letting P : (ZEB X)I — [zjn:j,m EN] (Z@ X) be the restriction of
Iw

to (Ze X )1 , P will satisfy our requirements.

W

Fixy =>;2m0n¥in € (Ze X)I . Let \jn = (¥,25n) / (2j,n>2j,n), 50 that

»

= ; >n Ajn%jn- Noting that 2+ p—fg = %pl’% and 2+p%2 = p—{%, we have

Xim =Y, 2jn) [ (21 Zim)

-2
= <2Laznyzn’ 5‘ wp 2gz'n.>/< Z w; *2g1n’ Z wip_zgi,n>
i€ E; t€E; i€EE;
— P_z—f 2 2 p—i—f ”2
=| ¥ wlanw] ||xn||2 > wiw!™ |lzall
‘iEEj icE 7
w, = (

-1
=0; Z wé Qin-
t€EE;

Thus we have

@y, ., =[S Minzin

P»{En}

2 p %
=1 wP ™ 1D AjnTnl
J i€E; n P
P P
= /Za Yot Y w-z”p:;a z
Y3 i i i,ntn
k J n ‘LEE_-,‘ p
/ P\ 7
_ { 1-p 2—(5—:2‘12
A5 ||S T w0 aea| |
\ 3 n iEE_.,' P

where by Holder’s inequality, letting ¢ be the conjugate index of p and noting
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that (p—l)q=pand5—=p——1,

2(p—1 P /~ 2 p_—21 P
2w inzal = 2w T 2 QinTn
n i€E; r 7 iEE; n
1 1P
[ / 2p=1)\ 7\ ¢ P\ P
< > (wz 7 ) > 12 ainTns
J i€EE; i€EE; I n
2
/ 2 \? p
=1 > wr > / > ainZn
iekl; / iEE; n
) P
= 0'5) Z Z Qi nTnll
i€EE; |l n p
whence

1 1

P\ ? P\ 7
\ < (Z Zai,na:n = ”y”}’p,{:n} .
»/ tlln P

Ir@ly, .., < (Z 5 |

Z ai,na:n
n

Jj i€E;
O
REMARK. We have actually shown that for (263 X ) and (29 X )I endowed
W U
with the norms ||| ||| and ||| |||, respectively, {2; .} is isometrically equivalent to the

standard basis of (Z@ X )I , and there is a projection
)

P (Z@ X)z,w — [Zn:jmEN| (Z@ X) with ||P|| = 1.
. S Iaw

Proposition 4.13. Let 2 < p < co and let X be a closed subspace of L§[0,1]
satisfying the hypotheses (a') and (¢') abeve. Let w = {w;} and w' = {w.} be
sequences of scalars from (0, 1] satisfying condition (x) of Proposition 2.1. Then

(=°%),,, = (2°%), .

Proof. By condition (), we may choose a sequence {E;} of disjoint nonempty

2 2 2

i\ 7% 2p
finite subsets of N such that for each j € N, (%1) o < ZieE,- wl™* < (w;) ?~2  Then

w

2p_ 2p ’
for v; = (Zz‘eEj w;"2> , 5 < vy Swl. Letv = {v;} andlet y € (29 X)

Then 3 HyII(Z@ X) < IIyII(Ze X) <yl (Zea X) . Hence

!

Iw!

I, w
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(=7%),,., ~ (%),

4.12. It follows that (Z@ X)

. However, (ZEB X)I < (ZEB X>1 by Proposition

: ’w,&(z@x)m.‘ O

Let 2 < p < oo and let X be a closed subspace of Lj[0, 1] satisfying the

1
’

I

hypotheses (a’) and (c’) above. For each sequence v = {v;} from (0, 1], define spaces
Y, {z.} and Yy, (o} as in the proof of Proposition 4.12. For each k € N, let
k) = {ng)}oo be a sequence from (0,1], and let Y be a closed subspace of
i=1
(Z@ X) L Let (Y19Y,®-- ')p,z,{v(k>} be the Banach space of all sequences {yx}
. ! P .11; 2 %
with yx € Yi such that ||{yx}|| = max L(Z ”yk”yp,{:n}> , (Z ”yk”y?'v(k)‘{:n}) < oo0.
For each sequence v = {v;} from (0,1}, let S(X,v) denote (Z@ X>1 , and let

S(X,v) denote (S(X,v) ® S(X,v) -~ )p.2,{v}> Where {v} is the sequence {v,v,...}.

Proposition 4.14. Let 2 < p < oo and let X be a closed subspace of L[0,1]
satisfying the hypotheses (a') and (') above. Let w = {w;} be a sequence of scalars

from (0,1] satisfying condition () of Proposition 2.1. Let S(X,w) and S(X,w) be as
(

above. Then §(X,w) < S(X,w).

Proof. By condition (*), we may choose a sequence {N} of disjoint infinite

subsets of N such that for each ¢ > 0 and for each k,

o0
Hence for each k, we may choose a sequence {E;k)} of disjoint nonempty finite
i=1

subsets of Vi such that for each 7,

2
(ﬂ)”‘z < 5w <wi?
2 L - 7
ie B
p—2
k 2p_"\ 3p >
Then for v](- ) = (ZzEE(k) wz.p_zj\ . o< y;.k) < w;. Hence for v(¥) = {,U-Ek)}jzl and
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yk € S(X,w), %“yk“yzyw‘{:n} < ||1/k“y2 o e < lluklly, .., Hence

5(X,w) = (S(X,0) © S(X,10) @), 5 () ~ (S(X,v(l)) ® S(X,v(2)) & ")p,z,{um}

(4.6)

via the formal identity mapping.

Let zj(kyz =3 ieE® w;?~27; , and let z( ) be the normalization of z( ) in LP(Q).

»T

Then by part (a) of Proposition 4.12, for each k there is an isomorphism
Jr: S (X, o) — [ 3% . ine Nl . Moreover, for y;, € S (X, v¥),

ITe(ellly, ..., = luklly, ., and Wk(’yk)ﬂv

«2,w,{zn}

“’ykllyzw(k)'{:n} by equations (4.4)

and (4.5), respectively. Hence

(5 (X,v(l)) S5 (X’”m) @"')p,a,{uw} - ([Zglr)l] s T [ (2)]5(" P m)p,z{w}

(4.7
via the isometry {yix} — {Jk(yx)}-
The direct sum on the right side of (4.7) should be thought of as an internal
direct sum of subspaces of S{X,w). We next show that
([55.1,{] o[2] e ) ~ 88 jon,k e N| (4.8)
15X ,w) 5(X,w) p.2,{w} ' 5(X,w)

via the mapping {sx} — )_ sr. For each k and for scalars agiz, let -

(k) (k) s(k) | .
=) 2n i € [ 1jhn€ N] S Then by equations (4.4) and (4.5),
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— z a(k) 5 (k)

7,m J"

[{sk} = max { (Z [lsk”:‘}z,{h)) ’ ; (Z Hskllgfz,w‘{,n)) %}
2 3
Yz.w,{cn))

1
p P
) P>
k
Iypy{zn)
1

:max{(z];%j ;agﬁzxn ,,)— (zk;;(vw)) ; ]anz)z
l
5

k) ~(k
DIIEC
jn R

1 1

2 ) 2
Y2yW,{?='n}

= “Z sk”S(X,w)’
S(X,w)

k) ~(k
PRI SRC
i n

(k) z(k)

Jn Jy

where ||| ||| is as in the proof of Prcposition 4.12. Hence the mapping {sg} — 2_ sk is
an isomorphism.

By part (b) of Proposition 4.12, we have

(21 ke NJ & (s X)I’w = S(X,w). (4.9)

S(X,w}

Combining (4.6), (4.7), (4.8), and (4.9) yields S(X,w) < S(X,w). O

Proposition 4.15. Let 2 < p < oo and let X be a closed subspace of L}[0,1]
satisfying the hypotheses (a') and (¢’) above. Let w = {w;} be a sequence of scalars
from (0, 1] satisfying condition (x) of Proposition 2.1. Then
(=7x),,~(=7%),,0(27%),,

Proof. Let S(X,w) and S(X,w) be as in Proposition 4.14. Then
S(X,w) < S(X,w). Let Y be a clcsed subspace of S(X,w) such that
S(X,w) ~ S§(X,w) @Y. Note that S(X,w) ~ S(X,w) ® S(X,w). Hence

S(X,w) ®S(X,w) ~S(X,w)®SX,w)®Y ~5X,w)®Y ~ S(X,w). O

Theorem 4.16. Let 2 < p < 0o and let X be a closed subspace of L0, 1]

satisfying the hypotheses (a') and (') above. Let w = {w;} and w' = {w}} be
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sequences of scalars from (0, 1] satisfying condition (x) of Proposition 2.1. Then

(z°x),,~ (%)

~/ .
7
W Iow

Proof. The spaces (ZEB X )I and (ZEB X ) ) satisfy the hypotheses of

ILw
Lemma 2.8. |

DEFINITION. Let 2 < p < co. Let X be a closed subspace of L}{0,1] satisfying
(a') the orthogonal projection of L?[9,1] ento X C L?[0,1], when restricted to L?{0,1],
yields a bounded projection P : L?[0,1] — X C L*[0,1] onto X, and
(¢') X has an unconditional orthogonal rormalized basis {z,}.
Define (ZGB X)I, the independent sum cf X, to be (the isomorphism type of)
(ZEB X ) for any sequence w = {w;} of scalars from (0, 1] satisfying condition (*) of

Iw

Proposition 2.1.

By Theorem 4.15, (Z@ X )I is well-defined.
The Space D,

DEFINITION. Let 2 < p < oo, let {z,} be the sequence of Rademacher functions,
and let X = [z,],» ~ £2. Define D, to be {/ZGB X)I. For the conjugate index ¢, define
\

D, to be D;.

Proposition 4.17. Let 1 < p < oo where p # 2. Then
(a‘) XP - Dp’
(v (2° e?)ﬂ < D, and

() (£°¢), & X, < D,

Proof. It suffices to prove the rasult for 2 < p < o0, since the result for

1 < p < 2 will then follow by duality.
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Suppose 2 < p < oo. Realize D, as (Z@ X)I , where X and {z,} are as in the

W
definition of D,, and w = {w;} is a sequence of scalars from (0, 1] satisfying condition

(x) of Proposition 2.1. Then D, = [§;» :i,n € N]me), where

Tin = (Ti (zn)) o m; € LP(Q), and T; and 7; are as in the definition of (Z@ Xi>

Iw

(a) Let Dz(,l) = [fip1:1€ N]me). Then D,(,l) is a complemented subspace of D, by
the unconditionality of {fi; .}, and DS = (Z® X(l)) where X = [z4],,

and 21 = ljg 1) — 1j3,1)- As noted in Example 4.1, (Z@ X(l)) ~ X,. Hence

s W

[

X, ~DM S D,

2p_
(b) Choose an increasing sequence {ix} of positive integers such that 3 w?™*

< 00,
and let ' = {w;, }. Let D = [§i,n : k,n € N| ;5 ). Then Dy, is a complemented
subspace of D,, by the unconditionality of {; »}, and
D = (}:Gﬁ X)[ ~ (269 X)ﬂ ~ (}jB z?)ﬂ by Corollary 4.10. Hence
(EGB £2)£P ~ D; < Dp.

(c) By Proposition 4.15 and parts (a) and (b) above,

(269 /32)[? ®X, < D,®D, ~D,.

For 2 < p < 00, it is clear that D, ¢ B, since otherwise X, < D, < B, by

part (a) of Proposition 4.17, so X, < B,, contrary to part (g) of Proposition 2.37.

We now present results leading to the conclusion that B, s D, [A]. We begin
with a definition and some preliminary observations used in the proof of the

subsequent lemma.

Let 2 < p < oo and let {r,} be the sequence of Rademacher functions. Given a
sequence w = {w;} of positive scalars, let §; , = T;(r,) o m;, where T; and 7; are as in

the definition of (Z@ Xi> . Let Py : D, — D, be the zero mapping. For each

Iw
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m €N, let P, : Dy — D, be the natural projection of D, onto
[fin:1€{l,...,m}, n¢€ N]D,,' A sequence {z;} in D, will be said to be strip
disjoint if there is an increasing sequence {my} in N such that
H(Pm,e = Pr,_,) (Zk)“D,, > (1- 51?) “Zk”D,, for all k € N.

Let 2 < p < 00, let w be a positive scalar, and let {w} = {w,w,...}. Let {e,}
be the standard basis for X, (.,}. Let T : X, (,; — D, be an isomorphic imbedding.
Suppose € > 0 is such that for each m € N, ||P,, (T (en))llp, < e for infinitely many
neN

Then we may choose increasing sequences {y(n)} and {m(n)} in N such that
T (ex(n)) = Tn + Yn, Where Tn = Prn) (T (e4(n)))s llanDP < ¢, {yn} is strip disjoint,
and {z,} and {y.} are block basic sequences with respect to the standard basis of D,.

There are constants K and C such that for each finite F C N,

I <

Dy

+
DP

> Yn

ne€F

2 Tn

neF

3

Dy

g

2 €y(n)
F

ne

2 T (e(m)
Xp.{w} nel

where {letting |F'| denote the cardinality of F]

-

<K (n%jp nxnllf;,,) E <K ( > 52) o K|F|te,

neF

> }

neF

Dp

and

_sCmm { (= nynn;)% , (n% ol }

< Cmax {IFI 171 P s ol

lEyn

‘nEF

Thus for F' such that [F|* w > |F|* and |F|* maxner |vall, > [F|7 |71,

177

TP w < KIFF e+ CIF|F max [lyall,,
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50

S ”T‘lﬂ_lw—Ke
{Lneagfllynllz 2 o) -

Hence we may choose an increasing sequence {3(n)} in N such that for all n € N

ol 2 L

Lemma 4.18. Let 2 < p < 0o. Let {e; ,} be the standard basis for B, and let

—2
w; = (l)% Suppose T : B, — D, is an isomorphic imbedding. Then there is an

1

¢ > 0 such that for all but a finite number of 1 € N, there is an m; € N and an infinite

K; C N such that || Py, (T (ei,n))llpp > wie for all n € K.

Proof. Suppose the conclusion is false. Then for each ¢ > 0, there is an infinite
N, € N such that for all ¢ € N, all m € N, and all infinite K C N, thereisann € K
such that ||P, (T (em))HDp < wje.

Fix € > 0 and let ¢; = 57. For ¢ € N, choose a(i) € N, such that {a(i)} is an
increasing sequence in N. Let ¢ € N. Then for each m € N,
| P (T (ea(iyn)) “D,, < Wa(n& = —52¢ for infinitely many n € N.

We may choose increasing sequences {v;(n)} and {m;(n)} in N such that
T (ea(i)ritn)) = Tin + Yim, Where @in = Prn) (T (€a(,n(m)), Iinllp, < =526,
{vin}; nen is strip disjoint, and {zi;n}, cn and {¥in}; ey are block basic sequences
with respect to the standard basis of D,,.

There are constaﬁts A and C, and there is an increasing sequence {f3;(n)} in N,

such that for alln € N

T—l - a(i —I{}f_"_gl
lio:m |, > [Ea wé) se

By the fact that L is cf type 2 [W, 111.A.17,23], and by Hélder’s inequality for
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conjugate indices p’ = & and ¢’ = 52—2, there is a constant K such that for scalars a;

Z Z @ nTin
n

%

1
2
2 2
<K <Z 2 1ainl ”xi,n”DP>
2 n
P

D

W

<K ( Y Y lainl (f—l))
— Ke (z_ ( L ol wi<,~)> (-;—.-)2)

1 \

i
2

2

/ B\~» 2\ 7
< Ke (l 2 (; Iai,nl2w§(i)) ) (? (71.')2"2)

\\

ip -;1; p=2
2 2p_\ ?r
= Ke |2 (Dlasal wl 2 (z)™

- ~ (1) Z

F
~
o

20\ 7P
SKﬁ Zzai,nea(i),n (Z (flf)P-2>
2 n p 1
22\ 7P
= Ke ZZai,nea(i),a,,»(n) <Z (%)”"2>
s n B, i

Thus given 6 > 0, (1, 3, Guniallp, < 8]/ S @t meaq o] g, 10 €
sufficiently small. Define § : [ea(i),.ﬁ(n) 1i,n € N] B, D, by
S (X ¥on @in€a(i)mi(n) = 2oi 2om Gin¥in- Then for e sufficiently small, S is an
isomorphic imbedding. Since {y;n}; ,cy is strip disjoint, [y :4,n € N]D,, ~ Xp, for
some v. However, [ea(i),.ﬁ(n) : i,nve N] B, ™~ B,. Since X, , — ¢ & ¢* by Proposition
2.1, Theorem 2.12, and part {a) oi Proposition 2.24, B, ~ [ea(i)m(n) 11,n € N] B,
[Yin:t,n € N]D,, ~Xpy = 2@®LF, s0o B, — (2@ P, contrary to Lemma 2.23 and part

(a) of Proposition 2.37. O

p=-2

Lemma 4.19. Let 2 < p < oo. Let w = {w;} wherew; = (1) * , and let
Uin be as above. Let {E,} be a sequence of disjoint nonempty finite subsets of N. Let
{zk,e} be a sequence in D,, which is normaiized with respect to ||| ”le such that for
eachl €N, 2,0 € [Jin:1€ En€ N]Dp for allk € N and {Zkl}keN is equivalent to

the standard basis of £2. Then there is an infinite L C N, and for each ¢ € L there is
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an infinite K, C N, such that {zk.»”}kem ¢c 1, 1S equivalent to either the standard basis

of £2 or the standard basis of (E&B p)e?'

Proof. By passing to a subsequence, we may assume that {zx ¢} is a block basic
sequence with respect to the standard basis of D,.
Let 2k0 = D ;cp, Vik,e Where v; k0 = >° o , binGin for Nixe C N and scalars

1

bin. Let Ajge= (EnEN; i [bi,n[2) 5. Then for scalars ag ¢

Y oake Y, 'Ui,k,l{
¢k i€E, lip,
|

S ake 3o 2 binfin
D, ¢k i€EE;nEN; k1 D,

2 Y akedinbin

L i€E; k n€EN; ;¢

D,

/ \%p 7 3
= max k k Z |ak ebi n[2 l ’ (E E w? E E ‘ak,lbiynﬁ)
£ i€E; \ k n€EN; 1 ; £ iEF, k n€EN; k¢

2\ % ( 3
2
= max (Z Z <E Iak f' /\1 k g) ) ) E E wi2 E |ak,l| /\?,k,l)
‘ £ i€E,; £ i€eE, k

Asa special case of the above,

(
L= flzk,ell 5, = max i (162;1 ATk z\ ( > WA k,£>

/ 1EE(

l

(Z /\1 k l) ’
i€FE,

whence A; k¢ < 1for k,?/ € Nand ¢ € E,. Let {ex} be a sequence of positive scalars

N

with limit zero. For each £ € N, choose an increasing sequence {a,(k)} in N and

scalars A; for ¢ € E, such that |/\i‘al(k),ﬂ - Ail < ¢ for k € Nand ¢ € Ey. Then

ZZak,ezae(k),e}
L k 'DP

1
2

= max (Z ) (Z |ax,el* A2 az(k)ﬂ)

¢ icE; ¢ icE, k

\ 7

) 2 2 wz22|ak,fl2/\?,a,(k),£)
(

\

TN TN
~
o
o
'S
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where the approximation can be improved to any degree by the choice of {ex} and
{as(k)}. As a special case of the above,
1= “lzaz(’“)af”l]), /R max { (ZieEl Af)% ) (ZiEEg wiA?) 2 }, where the approximation
can be improved to any degree by the choice of {ex} and {a,(k)}. Hence {zq,(x),e}

can be chosen to be equivalent to the standard basis of (Zea €2)I w where W = {W,}

’

and
1
(L‘iEEi wiA})?
1
(ZiEEz Af) F

If infoey Wy > 0, then {Zai(k),g} is equivalent to the standard basis of £2.

W[=

If infren We = 0, then {zq,(k),¢} is equivalent to the standard basis of (Zea EQ)ZP.
O

REMARK. As a special case of the first display in the above proof,

l”Ui,k,ZmDp = max {A; x 2, WiAi k,e} = Aij,e-

Lemma 4.20. Let 2 < p < o0. SupposeT : B, — D, is an isomorphic
imbedding. Then B, has a complemented subspace X isomorphic to By, and D, has
a closed subspace Y isomorphic to £> & X, , or (ZGB éz)e” @ X, for some v, such that

T(X)CY.

Proof. Chcose (as we may by Lemma 4.18) € > 0 and N' C N with finite
complement such that fer each ¢ € N, there is an m; € N and an infinite K; C N such
that || P, (T(ei,n))”Dp > w;e for all n € K;.

For each i € N and n € Kj, let T (e; n) = %in + Yin, Where z; , = P, (T (€5,0)).
For each i € N, choose an infinite H; C K; such that y; , = r;, + 8;, for n € H;,

where ]]ri,nlle < Heforn € H, and {s;},cp. is strip disjoint. Choose infinite

ne
Gi C H; for i € N' such that {sin};cn neg, 18 strip disjoint.

Now fort € N and n € G;, T'(€;,n) = Zin + Tin + 8in, where
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Tim = Py (T (€5,0))s Irinllp, < te, and {8in}ien neg, I8 strip disjoint.

For each i € N, choose an infinite F; C G; such that {xi,n/ Hxi,nHDp }neF; is
(1 + %)-equivalent to the standard basis of £2. Choose (as we may by Lemma 4.19)
an infinite N ¢ N, and for each ¢ € N” choose an infinite E; C F;, such that
[in 1 € N',n € Ej], is isomorphic to 2% or (Z@ EQ)ZP. Now
[z;n:1€N' R € Ei]D,, ~[zin+trin:ieN ne Ei]D,,’ since
“Ti,n”Dp < $e< ”L;“—DP— for i € N and n € E;, and {r; ,}, has an upper £
estimate.

Let X =[e;n:i €N ,n€ Ei]B,, ~ Bp, and let
Y=[zin+rin:i€eN' ne Ei]D,, Glsin:ieN ne Ei]D,,' Then
T(X)=[Zin+Tin+tsin:1 €N nE Ei]D,, CY, and

Y ~ [#in i €N, n € Bi]p, @ [sin:1€N',n€ Ej]p is isomorphic to 2o X,, or

(Z@ 122) v @ X,,, for some v. ad
Proposition 4.21. Let 1 <p < oo where p # 2. Then B, 7Z+ D,.

Proof. Suppose 2 <p < o0 and B, < D,. Then
B, < (Z@ 132\)ep @® X, . for some v by Lemma 4.20, but X, ,, < X, for all v by
Proposition 2.1, Theorem 2.12, and part {b) of Proposition 2.24. Hence
B, < (Z@ Ez)ep @ A, contrary to Proposition 2.48. The result for 1 < p < 2 now

follows by duality. O
Sums Involving D,

A few more £, spaces can be constructed by forming sums involving D,. The
. . @ ¢ )
resulting spaces are B, @ D, and (Z ‘Xp)e" & Dp.

[A]-

ZP

We first present results leading to the conclusion that D, oL (Ze Xp)
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Given E C N, let Pg : (Z@’ 62)” — (Z® 62)” be the natural projection onto
the subspace (Z‘B Xi)er with X; = ¢2 if i € E and X; = {0} otherwise. Given M € N,
let Ppr = Py, m)-
Given F C N, let P : (Z® Xq)eq = (Z® Xq)eq be the natural projection onto
the subspace (Ee Yi)e“ with ¥; = X, if i € F and Y; = {0} otherwise. Given N € N,

let Py =Py

Lemma 4.22. Let 1< g <r <2. Then (¥° 52)” 4 (2@ Xq)eq.

Proof. Suppose (Ze Ez)er — (26 Xq)eq' Let T : (Ze 52)” — (265 Xq)cq
be an isomorphic imbedding. Then given n € N, P, o T : (2® Ez)er — (265 Xq) . is
not an isomorphic imbedding, essentially by Lemma 3.7. Thus given ¢ > 0 and m € N,
there is an & € ( 7@ 52)” with Pr(z) = 0 such that [P} (T ()|l < gpzsry llzl-
Hence there is an M € N with m < M such that
IPUT(Pa @)l < gy [1Pu(@)]] < § 1T(Pu(@)]l. Letting y = Py (z) and
E={m+1,...,M}, Pg(y) = y>a'nd WP (TNl < $1IT(y)ll. Now thereisan N € N
with n < N such that [|Py(T(y))l| > (1—£) |T(y)|. Letting F = {n+1,...,N},
A= ITWI < IPE(TNI < T @)II-

Given €1, €2,... > 0, we will inductively find disjoint nonempty finite sets
By, Es,... C N with max E; < minEj for i < ¢, y3,9,... € (Z@ﬁ)” with
Pg.(y:) = vi, and disjoint noneimpty finite sets Fy, Fs,... C N with max F; < min F;/
fori < 7', suchh that (1 — ) |T(y:)l] < ”P",(T(y,-))“ < IT'(y;)|| for each ¢ € N.

Given €; > 0, the argument above with n = 1 and m = 1 shows how to find a
finite £y C N and y; € (ZEB Zz)p with Pg, (y1) = y1, and a finite F; C N, such that

(1= e) Tl < |PE (T} < 1T ()]l

Let {e;} be a sequence of positive scalars and let k € N. Suppose F1,..., F,
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Y1,---,Yk, and F1,..., Fy satisfying our reguirements for all ¢ € {1,...,k} have been
found. The argument above with » > max 5, and m > max F shows how to find a
finite Ex41 C N and yx41 € (Eea £2>2f with max Ey < min E;4; and
Pg,., (Ye+1) = Yr+1, and a finite Fy41 C N with max Fi < min F44, such that
(1~ D IT Grsn)ll < [[Ph,., (T @er))|| < IT @esn)ll Thus (B}, {}, and {F)
can be found as claimed.

For {¢;} approaching zero rapidiy and {y;} normalized, [y;] ~ £", but

[T (y:)] ~ [Pp, (T (9:))] ~ ¢°. Hence {7 — {%, contrary to fact. It follows that no such

isomorphic imbedding T exists. g

Lemma 4.23. Let 1 < ¢ < oo and let {z;} be unconditional in L?. Let C be the

sign-unconditional constant for {z;} and let K, be Khintchine’s constant for L?. Then

|

Proof. Let {r;} be the sequence of Rademacher functions. Then by the

for scalars d;,

4

1
2 2

19 cixg f/E{dia:i(S)|2)

chquj \\i

Z d;;

q
ds = ”z ldixilz

g
2

unconditionality of {z;}, Fubini’s theorem, and Khintchine’s inequality, we have
q
; d:; & ds) dt
q
= /(/ Edi.’ti(s)’l‘i(t) dt) ds

:z / (;ldixxs)«?) s

1
2
'S
2

|* ¢

5 / (J/ tz dirs(Hmi(s)

a

[

1

Lemma 4.24. Let 1 < ¢ <7 < 2. Then (Z@ 62)2 s D,.

Proof. Let p be the conjugate index of g, let {r,} be the sequence of

Rademacher functicns, let @ = []:-,[0,1], and let {N;} be a sequence of disjoint
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infinite subsets of N with N = UieN N;. For each i € N, let {Tiv”}nEN = {Tn}neN,-’ and
2

—=P_
let 2 : [0,1] — R be the normalization in L? of 1jgx,j, where k; = w/™* and {w;} is a

sequence of poesitive scalars satisfying condition () of Proposition 2.1.

Let u = (u1,uz,...) and v = (v1,2,...). Now {2i(u;)r;(vi)};cn, being a
sequence of independent symmetric three-valuved random variables, and is equivalent to
the standard basis of X, (,,,}- Thus by [RiI, Corollary 4.2], we may choose a
sequence {a;} of scalars and a sequence {F;} of nonempty finite intervals in N with
N =, Fy and 1 + max F; = min Fj 41, such that for y;(u,v) = ZieFj a; z;(u;)Ti(vs),
{yj(u,v)} is a (perturbation of) a sequence of independent r-stable normalized random
variables in L?(Q?). Then for scaiers bj , letting ¢; = (Zn |bj,n]2> %, by Khintchine’s

inequality, Lemma 4.23, and the r-stability of {y;(u,v)}, for £ = (¢; n)ieN, nen, We have

L2 bin X aizi(ui)ri(vi)Ti,n(ti,n)\

L9(3)

bin 2o izi(ui)ri(vi)Tin(tin)
IEFJ

q
dt) du dv
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jn i€ F;
/
=/ / Z Z cha‘t ‘L(ul)rl(vl)lz) du dv
aJa \ 7 ieF,

Q

Z Z Cjaizi(ui)ri(vi)

j i€F;

14

= |3 ¢y (x, i ~ les]” %qz inl N .
%:JyJ( U)lLQ(m) (ZJ: ) <;(;'b'> )

Hence

[z @iz (s (V)i n(tin) : o € N] ~(z%e) .
i€ F; q e
LYO3)
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Moreover, by the choice of {z;},

— D,.

{ Y aizi(u)ri(vi)rin(tin) : j,m €N
L9(03)

iEF;

It follows that (2%¢2) D, O

Proposition 4.25. Let 1 < p < oo where p # 2. Then D, ‘72—> (Zea Xp)e"'

Proof. Suppose 1 < ¢ < 2 and D, < (Zea Xq)zq' Thenforl < ¢ < 7 < 2,
(z%2), - p, = (2° X,),, by Lemma 4.24, s0 (zoe), - (=° Xq)eq,

contrary to Lemma 4.22. Hence D, 72 (263 Xq)zq’ and the result for 2 < p < ®©

[r

holds by duality. J

Next we present results leading to the conclusion that (Zea Xp)lp 4 B, @ D,
[A].

Let 1 < ¢ <7 <2, and let p be the cenjugate index of g. Let {e;} be the
standard basis of £". Let {z; ;} be the standard basis of D,, and let {z;"j} be the
corresponding dual basis of Dy, where for each j €N, [z, ;: 7 € N]D, ~ 02,

Given E C N, let Fg : {* — {” be the natural projection onto the subspace
fgy = [e; 1 ¢ € Elyr. Given M €N, let Py = Py ar)-

Given F C N, let P, : D, — D, be the natural projection onto the subspace

D,SF) = [z;“’j 11 €N, 7€ F]D . Given N €N, let Py = P{Il,...,N} and let

D) — pft-NY,

Lemma 4.26. Letl < ¢ < r < 2. SupposeT : {" — D, is an isomorphic
imbedding. Then for each sequence {¢;} of positive scalars, there is a normalized block
basic sequence {y;} in {" and a sequence {F;} of disjoint nonempty finite subsets of N
with max F; < min Fys for i < 4', such that {7 ~ [y;],» ~ (T(yi)lp, ~ [Pr. (T(yi))]Dq via

equivalence of natural bases, with (1 — &) |T (y;)|| < || Pf, (T ()| < T (yi)ll for each

1 €N
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Proof. Givenn € N, D™ ~ 2,50 P, o T : £ — D{ is not an isomorphic
imbedding. Thus given € > 0 and m € N, there is an z € £” with P,,(z) = 0 such that
P, (T (2))] < =] |z}ll. Hence there i an M € N with m < M such that
IPLT(Pu @) < grery 1Par(@| < § IT(Pas(2))]l. Letting y = Pag (x) and
E={m+1,...,M}, Pg(y) =y and |P,(T'(y))ll < 5$liT(y)||- Now there isan N € N
with n < N such that [Py {T(y))|| > (1-£)IT()||. Letting F = {n+1,...,N},
A =TI < IPRHTE) < I1T@)I-

Given €1, €9,... > 0, we will inductively find disjoint nonempty finite sets
Ey,Es, ... C N with max E; < min E;s for i < ¢, y1,92,... € €7 with Pg,(y;:) = y:, and
disjoint nonempty finite sets Fy, F3,... C N with max F; < min F; fpr ¢ < i/, such that
(1= ) 1T < || Ph (T ))]| < IT(w:)! for each i € N

Given €; > 0, the argument above with n = 1 and m = 1 shows how to find a
finite E; C N and y; € £" with Pg,(y1) = ¥1, and a finite F; C N, such that
(1= e) 1Tl < || PR (T))|| < 1T

Let {€;} be a sequence of positive scalars and let £ € N. Suppose Es,..., E,
Y1,--->Yk, and Fy, ..., Fy satisfying our requirements for all i € {1,...,k} have been
found. The argument above with n > max Fy and m > max E) shows how to find a
finite Ex4+1 C N and Yr+1 € (" with max Iy < min Ex4y and Pg,,, (yk+1) = Uk+1, and
a finite Fi41 C N with max Fj, < min Fi 41, such that
(1= ) IT (@ead)ll < [P, @ @es))]) < IT @ern)ll- Thus (B}, {u}, and {F3)
can be found as claimed.

For {¢;} approaching zero rapidly and {y;} normalized,

0~ {yilpe ~ [T (y:)] D, ~ [P, (T {3:))] p Via equivalence of natural bases. 0O

Lemma 4.27. Let 1 < ¢ <r < 2. Then (2@ z")lq & D,.
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Proof. Suppose (Z@ E")eq — D,. Let T : (ZQB Zr)eq — D, be an isomorphic
imbedding. Let {e; ;} be the standard basis of (E@ Zr)e‘“ where for each j € N,
{€:,5};en 1s isometrically equivalent to the standard basis of {r. For each 7 € N,
let £7;) = [e;,; : 4 € N], and for a sequence { egj )}iEN of positive scalars, choose
(as we may by Lemma 4.26) a normalized block basic sequence { @ )} in ﬂ’(' )
and disjoint nonempty finite subsets Fl(j ),Fz(j ), ... of N with max Fi(j ) < min Ff/ )
for i < ¢/, such that

£l ~ [ O ENL() ~ [T (ygﬂ) ;ieN] b, "~ [P'Fi(j) (T (yEa‘))) ;ieN} N via

equivalence of natural bases, with

=) e ()] <[

For €’/ approaching zero rapidly and for infinite subsets M7, Ma,... of N chosen

(J) I' “T (J) l for each i € N.

F(J

so that {Fi(j )} is disjoint,
iEM_,', FjEN

(=® er)eq ~ [T () iem;, je N] b~ [P'F'_m (7(59)) rieM;, je N}  via

equivalence of natural bases. Hence the standard basis of (Z@ f")ﬂ is equivalent to

the span in L? of a sequence of independent random variables, contrary to Lemma 3.7.

It follows that (3% er)ﬂ D, O
Lemma 4.28. Let 1 < ¢ <r < 2. Then (E@ f")fq ¥+ By ® D,.

Proof. Suppose (Z® é")ﬂ — B, ®D,. Let T : (Z@ E")ﬂ — B, @ D, be an
isomorphic imbedding. Let Q : B, & Dy, — B, & {ODq} be the obvious projection.
“Then QT : (Z@ Z’)[q — B, @ {0p, } is a bounded linear operator. As in the proof of
Lemma 2.45, there is a subspace X of (Z@ Zr)z?’ isometric to (ZQB Er)zq, such that
HQ[T(X)” < 1, whence (I — Q)|r(x) induces an isomorphic imbedding of (ZQB f")eq

into D,. However by Lemma 4.27, no such imbedding exists. It follows that

(ZEB er)ﬂ & B,®D, O
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Proposition 4.29. Let 1 < p < oo where p # 2. Then (Z@ X”)e’ % B, ® D,.

Proof. First let 1 < ¢ < 2 and suppose (Z@ Xq)eq < B, ® D,. For
l1<g<r<2{ < X, by Lemma 2.35, so (Z@ E’)eq — (Z@ Xq>£q < B, ® D,.
Hence (ZEB r) o B, ® D,, contrary to Lemma 4.28. It follows that

/el
(ZEB Xq) & B, ® D,. The result new holds for 2 < p < oo by duality. O
eq
Finally, we distinguish D,, B, ® D,, and (Zea Xp)e” ® D, from each other and

from the L, spaces of Kosenthal.

Proposition 4.30. Let 1 < p < oo where p # 2. Then
(a) Dy & By,
(b) By > Dy,
(¢c) By ® X, /> Dy,
(d) B, ® D, #> Dy,
) (2°X,),, & Dy,
() Dy (2°X,)
(5) By® Dy (2% X,) .
) (£2%,), 0D, % (£7%,)

(1) DP%BP®XP7

e’

(i) B, ® Dy & B, ® X,,,
(k) D, & (%) X,
(1) (28 Xp)e” R B, & D,, and
(m) (Z®X,),, Dy % B, & D,.
Proof. Suppose 2 < p < co.
(a) Suppose D, < B,. Then X, < D, < B, by part (a) of Proposition 4.17, so

X, < B,, contrary to part (g) of Proposition 2.37.
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(b) Part (b) is a restatement of Proposition 4.21.
(c) Part (c) is immediate from part (b).
(d) Part (d) is immediate from part (b).
(e) Suppose (ZGB Xp)z? < Dp.. Then B, < (ZGB Xp)ep < D, by Proposition 2.27,
so B, < D,, contrary to part (b) above.
(f) Part (f) is a restatement of Proposition 4.25.
(g) Part (g) is immediate from part (f).
(h) Part (h) is immediate from part (f).
(i) Suppose D, < B, & X,. Then D, S B, @ X, N (ZGB Xp)e*’ by part (a) of
Proposition 2.43, so 2, < (ZGB Xp)zp, contrary to part {f) above.
(G) Part (j) is immediate from part ().
(k) Suppose Dy <= (22 £2)” ® X,. Then D, < (% £2)” ®X, < B,® X, by
Proposition 2.32,'s0o D, <+ B, @ X,, contrary to part (i) above.
(1) Part (1) is a restatement of Proposiiion 4.29.
(m) Part {m) is immediate from part (1.

The result for 1 < p < 2 follows by duality. O

Building on diagram (2.27), for 1 < p < co where p # 2, we have

B, C o (Ex),
N\ / N\
B, ® X, (=° X,,)ep ®D, 5 ILP
/ N /
(EEB 52)” ® Xp B, e D,
N /
DP

(4.10)



CHAPTER V

THE CONSTRUCTION AND ORDINAL INDEX OF BOURGAIN,

ROSENTHAL, AND SCHECHTMAN

Let 1 < p < oo and let B and By, Bs,... be separable Banach spaces with
B «— L? and B; — L?. Bourgain, Rosenthal, and Schechtman [B-R-S] iterate and
intertwine two constructions, a disjoint sum of B with itself and an independent sum

of By, Bs, ..., to produce a chain {R?} of separable £, spaces. An ordinal index

a<w
is introduced which assigns to each separable Banach space B an ordinal number

hp(B). The index h,( ) proves to be an isomorphic invariant, and is used to select a
subchain {Rf (a)}a@” of [infinite-dimensional] isomorphically distinct spaces. Thus

Bourgain, Rosenthal, and Schechtman show that there are uncountably many

separable infinite-dimensional £, spaces {up to isomorphism)].
Preliminaries

We let w; denote the first uncountable ordinal, and we let w denote the first
infinite ordinal [except in some contexts where w will denote an element of a space .

A strict partial order on a nonempty set X is a relation < on X which is
transitive and anti-reflexive.

A tree is a nonempty set T with a strict partial order < such that for each z € T,
{y € T:y < z}is well-ordered by <. We say that a tree (T, <) is a CFRE (countable
finite-ranked elements) trec if T is finite or countable, and for each z € T,

124
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{y € T:y <z} is finite.

Let (T, <).Be a tree. A subtree of 7" is a nonempty subset S of 7" with partial
order < [suitably restricted] such that for each z € S, the set {y € T:y <z} is
contained in S.

Let (T, <) be a tree. A branch of T is a maximal totally ordered subset of T.
~ Suppose (T, <) is a CFRE tree. We say that B is a finite branch of T if B is of the
form {y € T : y 2 «} for scme z € T. We call {y € T : y < z} the finite branch of T
generated by x. Note that a finite branch of T need not be a branch of T', although a

finite branch of T is a brancn of some subtree of T.

Let < be a relation on a nonempty set X.

An infinite <-chain 21 < 23 < ---in X is a sequence {a’n}neN in X such that
Tp 4 Znqq for alln € N A finite <-chain z; < --- < zx in X is a sequence {:vn},]:r=1 in
X such that z, «z,4; foralll <n < N. Anz € X is <-terminal in X if there is no
y € X such that x < 3.

The relation < is well-founded in X if there is no infinite <-chain 27 < zo <@ ---
in X. Note that if « is well-founded, then < must be anti-reflexive and there can be no

finite <-chain z; 94 +-- < N with 27 = zxN.

For n € N, an n-string is an n-tuple which is not delimited by punctuation. We
will identify a 0-string with the empty set. For n € N U {0}, let D,, be the set of all
n-strings of 0’s and 1’s. Then D, = {t1---, :t; € {0,1} forall 1 < i< n} forn € N,
and Dg = {0}. Fix n € NU{0}. Then D, has cardinality 2". There is a natural
identification of D, with S, = {0,...,2" — 1}, namely t;---t, — > ., t;2"7 for
n € N, and {0} — 0. Thusforn € N, ¢; - -' tn € D, is the n-place binary expansion

[possibly with leading 0’s] of some r € S,,.
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Let n,m € NU{0}. Givent € D,, and s € Dy,, let t's be the element of D4,

formed by the concatenation of ¢ and s.

Let (Q,M,,u) and (€', M', ') be probability spaces, and let X and X’ be spaces
of measurable functions on £ and €', respectively. We say that X and X’ are
dist

distributionally isomorpkic, denoted X ‘~° X', if there is a linear bijection 7' : X — X’

such that dist(T'z) = dist(z) for all z € X.
The Grdinal Index

Before introducing the ordinal index h,, we introduce a general ordinal index h

based on essentially the same concept, but applicable to a simpler class of spaces.
A General Ordinal Index h

Let < be a relation on a nonempty set X.

For each ordinal o, we define a subset H,(<) of X. Let Hyo(«) = X. a=0+1
and Hp(<) has been defined, let H, (<) = {z € Hg(<) : z ay for some y € Hp(«)}.

If o is a limit ordinal and Hpg(<) has been defined for all § < a, let
Ho(9) = Np<q Hola)

If B < a, then Hg(<) D Hy(<«). The members of the nonincreasing family (Hq(<))
cannot all be distinct. For suppose the members are distinct. Then there is a family
(o) of distinct elements of X, with zo € Hqy(<) \ Ha+1(<). Thus for a sufficiently
large ordinal I', {z, : @ < '} has cardinality larger than the cardinality of X, contrary
to {ro : @ < '} C X. Hence there is a least ordinal y such that H,(<) = H,4+1(<). Let
h(<) denote this least ordinal -y, and let S(«) denote the stable set H.,(<). Then the
cardinality of h(<) is bounded by the cardinality of X. Note that if H,(<) = H,4+1(<),

then H, (<) = H,(q) for all o > 7.
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Suppose < is not weli-founded. Then there is an infinite <-chain z; < 5 9 --- in
X. For such a chain, {z1,z3,...} C Hg(<) for all a. Thus {z1,z,,...} C S(«) and
S(<) # 0. For the converse, suppose S(<) # @. Let € S(«). Then z is not <-terminal
in $(«), so there is some y € S(«) with £ <« y. By induction, there is an infinite <-chain
21 4x9 < ---in S(«) C X. Thus < is not well-founded. It follows that < is well-founded
if and only if S(«) = 0.

Let < and <’ be reiations on nonempty sets X and X', respectively. A function
7: (X,q) — (X', <) preserves relations if 7o <’ 7y whenever z 1y.

The following lemma [B-R-S, Lemma 2.4] establishes a property of the ordinal

index h with respect to relation-preserving maps.

Lemma 5.1. Let < and < be relations on nonempty sets X and X', respectively.
Suppose 7 : (X,<) — (X',<') preserves relations. Then 7 (Hq(<)) C H,(<') for all
ordinals . If in addition <' is well-founded, then h(<) < h(<').

Proof. Clearly 7{Hg(«)) = 7(X) C X' = Hy(<'). Suppose a = § + 1 and
7 (Hp(<)) C Hp(<'). Then 7 : Hg(q) — Hp(<') [suitably restricted]. Since 7 preserves
relations, if x is not <-terminal in Hz(<), then 7(z) is not <’-terminal in Hg(<'). Hence
T (Ha(q)) C Ho(<'). Suppose a is a limit ordinal and 7 (Hg(«)) C Hg(<') for all 8 < a.
Then 7 (Ho (<)) = 7 (nm Hy(9)) € Npea T (Ha(9)) C Npen Ha(<) = Hal<).

Suppose <’ is well-founded. Let v = h(<) and 4’ = h(<’). Then
T(Hy (<)) C Hy(<d') = 0. Thus H, (1) = @ as well. Hence v < 4’ and h(«) < h(<).

O
Motivation from L?

Let 1 < p < 00. Let {gn},cn be the sequence of normalized functions in L?

. o1 1 k
given by g1 = lp1p, 92 = 2P1po,1/2), 93 = 2% 1p/20) -+ 5 Gn = 27 1 b (rg1) 28],
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., where n = 2% 4+ 7 such that kK € NU {0} and 0 < r < 2*. For n, k, and  as

above, 2n = 25+ 4 2r where 0 < 2r < 2F*! and 2n 4+ 1 = 28*! 4 (2r + 1) where

(k+1) ( )
0<2r+1< 2% Thus gy, =2+ Liorjor+1 (2r41)/20+1] = 2 5 Lirjak (r4+1/2)/25)

(k+1) (k+1)
Gom+1 =277 l{ars1)/2r+,(ara2)/26+1] = 277 lirg1/2)/2% (r41)/2k] and

gn = 2% (9an + 92n+1)- This reflects the fact that suppg, = suppgan U supp gan+1

with the union being essentially disjoint]. The coefficient 277 is simply a
g

normalization factor. Thus the functions g1, ¢o,... can be arranged in a binary tree
[level 0:] [
[level 1:] g2 g3

[level 2:] g4 gs ge g7

according to their supports, where the functions at level k£ are of the form gox,, with
0<r <2k
Indexing by binary expansions, g; = 275 (g¢-0 + g¢-1), where ¢ is the binary
expansion of n € N, and £°0 and ¢'1 are the binary expansions of 2n and 2n + 1,
respectively. The corresponding tree is
[level 9:] g1

[level 1:] g10 g1
llevel 2:] g100 gio1 g110 g111

where the functions at level & are of the form g;., where s is the k-place binary
expansion of r for 0 < r < 2%,
Dropping the superfluous leading 1’s and indexing by strings of 0’s and 1’s,
gs = 27% (g9s-0 + gs-1), where s is a string of 0’s and 1’s. The corresponding tree is
[level 0:] g0

[level 1:] go 91
(level 2:]  goo go1 g10 911

Y

where the functions at level k are indexed by k-strings of 0’s and 1’s.
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Level k itself can be thought of as a 2*-tuple of elements of L?. Recalling that

Dy, is the set of all k-strings of 0’s and 1’s, the cardinality of Dy is 2%. Thus level &
)D

can be thought of as a function from Dy, to L?, or an element of (L?)”*. Letting uy

denote level k,

w = 99 g
u = ( gc y g1 '
( goo > Gor G100 , 91 ) (5.1)

b

where for each s € Dy, ui(s) = 2% (up+1(8°0) + ur+1(s°'1)). Moreover, for each

s € Dy and each d € N,

up(s) = 2;% > ugga(s'r). (5.2)
r€Dy

Furthermore, for each k € NU {0} and each ¢ € RP*,

/

The Space (Eé, <>

p

=T les)f / () = T Je(s)f (5.3)
sED;

seDy

>, cls)ur(s)

SED

For n € NU {0}, recali that D, is the set of all n-strings of 0’s and 1’s, and there
is a natural identification of D,, with {0,...,2" — 1}, namely ¢, ---t, — Y ., t:2"~"
for n € N, and {0} ~ 0. For a vector space B, B~ is the set of all functions from D,
to B, which can be identified with the set of all 2"-tuples (bg,...,byn_1) of elements of
B. We identify BP¢ with B.

We do not assign an independent meaning to D, but given a vector space B, we
let B? denote | Jo—, BP~.

Let B be a vector space. If u € BP, then u € BP~ for a unique n € NU {O},
denoted |u|. Define < on B? by u < v if |u| < |v| and for k = |v| — |u],

u(t) = 2% 2sep, V(t's) forall t € Dlul. Then < is a strict partial order.
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DEFINITION. Suppose B is a separable Banach space, 1 < p < 00, and 0 < § < 1.

Let Fé be the set of all u € BP? such that

6( > |c<t>:")" < s( > W);%)
t€ Dy B teDyy

9 . . . .
for all ¢ € RPixI. Let < on B be the strict partial order < on BP [suitably restricted].

-

2 cthu(t)

t€Dyy

REMARK. For B = L?, equation (5.2) implies that ug < u; < ---, and equation

(5.3) implies that ), € ?1 for all ¥ € NU {0}, whence (Fl, <) is not well-founded.
A Characterization of L? — B

The following proposition [B-R~S, Proposition 2.2] characterizes those spaces
B for which L? — B. Essentially, the issue is whether or not B contains a sequence

which simulates the behavior of the sequence {ux(t)};>0ep, in L

Proposition 5.2. Let B be a separable Banach space and let 1 < p < oo. Then

L? — B if and only if there is a 0 < § < 1 such that (Fé, <) is not well-founded.

Proof. Suppose I? — B. Let T : L — B be an isomorphic imbedding with
[T] <1, and let 0 < § <1 be such that §{|z||, < [|T(z)]l5 < ||z, for all z € L”. Let
7 : (L”) — BP be defined by (ru)(t) = T(u(t)) for u € (L*)” and t € Dy,;. Then 7
preserves order by the linearity of T

Let u € L? . Then for all ¢ € Rl

6( 5 |c<t>|")p
t€D|y

> c(t)u(t)

t€D)y)

=( > 1c<t>|i’>’.
t€ D}y

B

2 c(t)u(t)

t€Dyy)

P
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. . =6
Since ”EtEDM c(t)(’ru)(t)“B = “T (EtED[u] c(t)u(t)) ”B, it follows that ru € B".
Hence 7: L7 — B° [suitably restricted].

As noted in the remark above, there is a sequence {ux} in ﬁl with ug < u; <

: 5l =5 . =6 =6 .

.--. Since 7 : L — B preserves order, Tug < Tu; < ---in B . Hence (B , -<> is not
well-founded.

For the converse, suppose thereis a § < § < 1 such that (Eé, -<) is not well-
founded. Then there is a sequence {v;} in B’ with vg < v; < ---. Let {r(k)} be the
increasing sequence in N U {0} with r(k) = |vg| for all k. For {ux} as in (5.1),
let {dr} be the subsequence of {ux} such that |@x| = r(k) = |vk] for all k. For
k € NU{0}, let Xy = [ﬂk(t) 1t e Dr(k)] P let By = [vk(t) it e Dr(k)]B, and let

Ty : X, — By be defined by

Tk( 2 C(t)ﬂk(t))= 2 c(Bue(t)

t€Dr(k) tE€D (k)

for ¢ € RP~ . Then Ty is well-defined and linear, and T} = T;|x, for ¢ < j. Since
DI
6 (Tiena )

1

= (ZtEDr(k) [C(t)lp); by equation (5.3), and
p

< [Srepny 0 0], < (Srpy 1ot we have

<

> c(t)ux(t) |

t€ Doy

6 <

B

2 ct)uk(t)

t€ Dy (k)

b

Tk( > C(t)ﬁk(t)>

\t€D, i)

p p

whence 6 ||z||, < [|Tk(z)l| g < ||z, for £ € NU {0} and z € X.

Given = € (Jgwy Xk, z € X for some k € NU {0}. Let T : U2y Xk — U2, Bx
be defined by T(z) = Ti(z) for & € Xx. Then §ja]|, < “:f’(x)“B < ||, for all
z € Upeo X Since Jzo, Xy is dense in LP, T extends to an isomorphic imbedding of

[Pinto B. O
The Ordinal Index h,(6, )

The ordinal index h(<) serves as a model for the ordinal index h,(é, B), for which
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the underlying set is B’. The ordinal index hy(B) is then derived from the indices

hy (6, B).

DEFINITION. Suppose B is a separable Banach space, 1 < p < 0o, and 0 < 6 < 1.
Let H{(B)=B'. Ifa = 8+ 1 and H4(B) has been defined, let
H!(B) = {u € Hg(B) :u < v for some v € Hg(B)} If o is a limit ordinal and Hg(B)
has been defined for all § < o, let H3(B) = gq HE(B)-

DEFINITION. Suppose B is a separable Banach space, 1 < p < oo,and 0 < 6§ < 1.

Let h,(6, B) be the least ordinal « such that HS(B) = HS_,(B).

The following proposition [B-R-~S, Proposition 2.3] leads to one half of the

characterization contained in Theorem 5.5.

Proposition 5.3. Let B be a separable Banach space. Let 1 < p < oo and

0<6§<1. IfL? < B, then hy(6, B) < w;.

Proof. Suppose L” + B. Let B, be a countable dense subset of B. Let B:m

be the countable set of all u € BP such that

g( > |c<t>1f’)p < sz( > Ic(t)lp)
t€D)y B t€D)y)

for all ¢ € RP1«I. Let < be the relation on B_“,‘S’2 defined by u <« v if (a) |u| < |v| and

1
4

2 c(thult)

te Dy

(b) for k = |v| — |u| and for §, = 54—+, “u(t) ~27% > seDy v(t's)“B < by for all
te Dlul'
We will show that < is well-founded and there is a relation-preserving map
—5 ——5.2 .
T (B , <) — (Bw ,4). It will follow by Lemma 5.1 that h,(6, B) < h(<) < w;.
First we sh\ow that < is well-founded. Suppose < is not well-founded. Let

. . L. 58,2 . . .
uy <ug <--- be an infinite <-chain in B, "~. We will show that there is a corresponding
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. . .. 56 .-
infinite <-chain #; < @y < ---in B, whence L? < B by Proposition 5.2, contrary to

hypothesis. It will follow that « is well-founded.

Given 4,7 € N with ¢ < j, let A(¢,7) = |uj| — Ju;]. Fixi € N. For i < j € N and

7 (1,7 i
t€ Dy, let @0(5) =277 T, cp, . wi(t's). Then @ < u;. For t € Dy,

&P - a0

B
_ Al _AG+)
=277 T w(ts)—27"F > uja(t)
s€Dagi,5 2€Da(,i+1) B
_A(.‘"z _AGD+AG I+
= |l2=7% > us(ts) — 2 S > uiti(tsT)
s€DA(, ) s€Da(:,5) €D ,i+1) B
_AGS) _AQ 1)
<2 PJ Z uj(t"s) -2 J; Z uj+1(t‘s'7‘)
s€Da(,5) | T€Day,i+1) B
Ai,d ..
<27 PJ . 2A(Z’J) . 5|uj|

[uj]
< ﬂ“i‘.&u”.

Hence for i <j <k € Nand t € Dy,

[s00-s0, < £ 0 -dthol,
J+k—-1

< Z 21“11!.5[”"!
n=j

< 32 glunl+1 . gg=(unl+1)

rn=j

=53 2= (unl+D)

n=j

Now lim;_,o 6219 = 0, s0 {agf')(t)} is Cauchy. Let Ti(t) = limy—.o0 & (1)

J=i+

Releasing 7 as a free variable, u;(t) is defined for all 7 € N and all t € Dyy,)-
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Fix 4,7 € N with ¢ < j. Then for t € D},),

R _A!i,k
u;(t) = hm u(z (t) = lim 27" » > u(tx)
k—oo &€ DA (i k)
AGd)I+AG,E)

= lim 27~ > > wk(tsr)

koo s€Dai,5) T€Dag,k)
PNCE)) ) _A3G.K
=277 Y limpoee2” 7 > ug(trscr)
s€Dai.5) T€DA(,k)
_AGL)
=277 S limkseo u(’)( s)
$€Da(i,5)
_aGg) —
=277 > T(ts).
$€IA(i,])
Hence u; < wu;. More generally, @, < % < ---. As noted previously, it follows that

L? — B, contrary to hypothesis, so < is well-founded.

We next show that there is a relation-preserving map 7 : <§6, <) — (F;m,q).
Let u € B'. For each t € Dy, choose v(t) € B, such that [Ju(t) — v(t)|| g < €}u), where

€0 = 68U+ for £ € N. Let 7u = v.

First we show that ru € B—w6’2. Note that 2¢ . ¢, = 28~ (+1)§ « % < 1. Thus for

t € Dy, and c € RPiw,

Y c(t)u(t) =l X octul)+ X ct) (v(t) - ult)
t€Dyy B |[t€Dp LD B
gl >ocu®)) + X @) €
te Dy B tE Dy
\ 7 ;
< lc(t)lp) +olud gy - (E lc(t)l”)
teD)y) teDy)
_ c el g
kEEDW le(®)] ) 1+2 | |)

< 2( > e )
t€Djy)
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and
> C(t)v(t)‘ =| X c@ul) - X c)(ut) —v(t))
t€D |y lB t€Djy tED |y B
2 2 eut = X le(®)] €l
t€D|y) B €D

1
P

3

26( > lc(t)l”> —2'”'~f|ur( > IC(t)I”>
tED|y t€D)y)

(g, o) )

( > |c<t)|") gy
t€D|y)

. =6 .
We next show that 7 preserves relations. Suppose u,v € B with u < v. Let

v
Lo | O

. ——5,2
Hence ru =v € B, .

k = |v| — |u|. Then for all ¢ € Dy,

ru(t) =277 3 ru(ts)
s€Dy

b

ut) - 277 T wit's)
s€EDy

+275 ZD lo(ts) — To(ts)ll 5
selg

< lrult) —w(®)l g +

B
_k k
S +0+277 2% - ¢

< €l + 25 - €k

1 A ) §
=0 <8|u|+1 + 8|u|+k+1> < 58|u|+1 < 4{u|+1 = 5|u| = 5""“!'
Hence 7u < 7v and 7 preserves relations. As noted previously, since < is well-founded,

it follows that hp(6, B) < h(d) < w;. O

The following lemma [B-R-S] provides useful information about the behavior of

hy(6, B) as a function of 6.

Lemma 5.4. Let B be a separable Banach space and let 1 < p < 0. Suppose
0 < 8 < 63 < 1. Then H(B) D H%(B) for each ordinal . If in addition L? ++ B,

then hy(61,B) > hy(82, B), whence h,(6, B) is a nonincreasing function of é.
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Proof. Let 0 < §; < 6; < 1. Then H3*(B) = B" 5B = H{*(B). Suppose
a=/p+1and Hgl (B)D ng(B). If x € H%(B), then x is nonmaximal in ng(B), S0
x is nonmaximal in_Hgl(B), whence z € H%:(B). Hence HS*(B) > H%(B).
Suppose a is a limit ordinal and Hy!(B) D H*(B) for all 8 < o= Then
H%(B) = Npeo Hy (B) D Nyea HY (B) = H(B). 1t follows that for each ordinal o,
HZ(B) D> HZ2(B).

Suppose L? < B. Then by Proposition 5.2, (B , -<) is well-founded for all
0<6<1,s0 H,‘i:(B) = 0 for ; = hy, (6;, B). Thus HSL(B) > H2(B)=0,50 1 > 7

and h,(61,B) > hy(6,, B). Hence h,(6, B) is a nonincreasing function of 6. O
The Ordinal Index h,,

Finally we define the ordinal index A,.

DEFINITION. Suppose B is a separable Banach space and 1 < p < oo. IfL? 4 B,

let hy(B) = supg<s<y hp(6, B). If L” — B, let hy(B) = wy.

We presently show that if L? < B, then {h,(6,B):0 < § <1} is bounded,
whence h,(B) is well-defined. Note that the hypothesis L? ¢ B is equivalent to
asserting that for each 0 < § < 1, there is an ordinal a such that Hé(B) = 0.

The following two results [B-R-~S, Theorem 2.1] establish a countability criterion

for h, and the monotonicity of h,,.

Theorem 5.5. Let B be a separable Banach space and let 1 < p < oo. Then

hy(B) < w1, with h,(B) < wy if and only if L” 4 B.

Proof. If L? — B, then h,(B) = w;. Henceforth suppose L? <+ B. Now h,(6, B)
is a nonincreasing function of 6 by Lemma 5.4, and A,(6,B) < w; forall0 < § < 1 by

Proposition 5.3. Hence h,(B) = supgcs<; hp(6, B) = sup,en by (£, B) < wy. O

1
n
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Theorem 5.6. Let X and Y be separable Banach spaces and let 1 < p < oo. If

X &Y, then hy(X) < hy(Y).

Proof. Suppose X — Y. If L” — Y, then h,(X) < w; = h,(Y) by Theorem 5.5.
Henceforth suppose L? 4 Y, whence LP ¥~ X. Then by Proposition 5.2, (?7, -<) is
well-founded for each 0 < v < 1.

Let T : X — Y be an isomorphic imbedding with ||T'}| < 1, and let 0 < < 1 be
such that for each z € X, nljzllx < |T(2)lly < llzllx- Let 7: XP — Y be defined by
(tu)(t) = T(u(t)) for w € XP and t € D|,|. Then 7 preserves order by the linearity of
T.

Fix0<é<1landletue 76. Then for all ¢ € RPIwi,

” ( > ;cw-”)p
t€ Dy,

<

2. c(B)u(?)

teD[ul

T > ct)ult)
tED)y

X Y X

§

Since HZteDM c(t)(Tu)(t)' v = “T (ZteD,u, c(t)u(t))”y, it folléws that ru € Y.

Ed . . . § .
Hence 7 : X — Y7 [suitably restricted]. Since 7 preserves order and (?ﬂ ,-<) is

well-founded, h,(6, X) < k,(76,Y) by Lemma 5.1. Releasing é as a free variable,
hp(X) = SUPp<s<1 hy(6,X) < SUPo<s<1 hp(n6,Y) = SUPg<y<n hy(v,Y) = hp(Y)v since
hy(7,Y) is a nonincreasing function of v by Lemma 5.4. a

REMARK. It follows that h,( ) is an isomorphic invariant.
The Disjoint and Independent Sum Constructions

Let (2, 1) be a probability space, iet (2%, zV) be the corresponding product

space, and let ({0,1},m) be the probability space with m(0) = % = m(1). Suppose
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1< p < 00, and let B and By, Bs,... be closed subspaces of L*().
Given by, b; € B, let b(w, €) be the element of LP(€ x {0,1}) such that
b(w,0) = Z%bo(w) and b(w,1) = Zibl(w) for all w € Q. Let by & b, denote the element

b(w,€) of LP(Q x {0,1}) corresponding to bo,b, € B.

DEFINITION. Let 1 < p < oo and let B be a closed subspace of L* (). Define the
LP-disjoint sum (B @ B), to be any space of random variables distributionally

isomorphic to the subspace B of LP(Q x {0,1}) defined by

B = {b{w,€) € LP(Q x {0,1}) : b(w, €) = by & by for some by, b, € B}.

Note that 1o @ 1g = 27 - Iox 0,1}, and if b(w, €) = by @ by, then

b0 ® b5, = llb(ws )3, = / b, &)
} Ox{0,1}

= [ pwer+ / b, O
Qx{0} Qx{1}
1 P ]‘ P
=3 2|bo(w)|” + 3 2 |b1(w)}
Q Q

= ||bollg + 161l -

Hence for b € B, ||bD 0|5 = ||bll g = |0 D bl

Given i € N and b; € B;, let b; be the element of L? (M) such that

bi(wr,wa,...) = by(w;) for all wy,ws,... € Q.

DEFINITION. Let 1 < p < oo and let By, B,,... be closed subspaces of L (). For

each i € N, let

B; = {bELP (QN) : b= b; for some b; € Bi}.

Define the LP-independent sum (Za Bi>1 | to be any space of random variables )
nd,p

distributionally isomorphic to [Bi 1t € N] .
LP(QN)

Finally, the spaces RE, for 0 < a < w; are defined as disjoint or independent

sums, depending on whether a is a successor or limit ordinal, respectively.
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DEFINITION. Let 1 < p < oco. Let R = [1];». Suppose0 < a < w;. Ifa=f+1
and R} has been defined, let RE, = (Rf, ® R;) . If a is a limit ordinal and R} has
p

been defined for all § < a, let R?, = (E§<a RP/})I W
nd,p

REMARK 1. It is shown in [B-R-S, Proposition 2.8] that for 1 < p < co and
a < wy, RP has an unconditional basis.

REMARK 2. Technically, R’; = (E? <a RZ{)Ind,p for an enumeration {G;} of the
ordinals less than ¢, but it is clear that the definition of RE does not depend on the
order.

The following two results serve as lemmas for the subsequent theorem [B-R-S,

Proposition 2.7}, which distinguishes R?, irom L” isomorphically. Proposition 5.7 is

a corollary of [J-M-S-T, Theorem 9.1]. Proposition 5.8 is [B-R-~S, Theorem 1.1].

Proposition 5.7. Let 1 < p < co. Suppose X is a closed subspace of L* such

that LP < X. Then L? < X.

Proof. Let Y be a closed subspace of X such that L? ~ Y C L”. By [J-M-S-T,
Theorem 9.1}, choose a closed subspace Z of Y such that L? ~ Z where Z is
complemented in LP. Let P be a projection from L? onto Z. Since P(Z) = Z and
Z C X C LP, the restriction of P to X is a projection from X onto Z. Hence

IP~Z S X, O

Proposition 5.8. Let 1 < p < oo. Let X be a Banach space with an
unconditional Schauder decomposition {X;} such that L” <> X. Then either LP < X;
for some 14, or there is a block basic sequence with respect to {X;} equivalent to the

Haar basis of L?, with closed linear span complemented in X.

The proof of Proposition 5.8 consumes [B-R-S, Section 1], and will not be

presented here.
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Theorem 5.9. Let 1 < p < oo where p # 2, and let @ < w;. Then L* 4 RE.

Proof. Clearly L” & (1],» = R.

Suppose a = +1 and L? ¥ R}. Suppose for the moment that L” < R?. Then
LP « RP C LP for some RP distributionally isomorphic to R?. Hence L? < RP by
Proposition 5.7. Now R, = (Rg @ Rg)p, so I[P <& (Rg e Rg)p, whence LP <» R, by
Proposition 5.8, contrary tc the inductive hypothesis. Hence L? ¥ RP.

Suppose « is a limit ordinal and L? RZ for all § < a. Suppose for the momeht
that L < RP. Then L? <> RP, as above. Let {;}32, be an enumeration of the
ordinals less than «, with Gy = 0. Let Xo = R} = R{ = [1]», and for i > 1, let
X; = (Rgi>0, the space of mean zero functious in Rg;' Now LP < ( ?;0 Xi)Ind,p’
since RZ = (z;‘;@ Rg)lnd,p - ( i Xi)xnd,p’ but L < X; for i > 0. Let
X; = {z € L? ([0,1]") : = = &, for some z; € X;}, with notation as in the definition of
(*5)

respect to {f(z} [with at most zp nct mean zero] equivalent to the Haar basis of

i>0

.. Then by Proposition 5.8, there is a block basic sequence {z;};5, with
nd,p -
L?. Hence L? ~ [z;:1 > 0] p(go,u%y ~ [2i 1% 2 1 oo vy Since {2}, is a sequence
of independent mean zero random variables in L ([0, 1]V), [2; : ¢ 2 1] 1p (0. 18y = Xp
[by Corollary 2.3, Proposition 2.1, Theorem 2.12, and part (b) of Proposition 2.24 for

2 < p < 00, and by [RII, Corollary 4.3] for 1 < p < 2].

Hence L” — X, directly contrary to part (g) of Proposition 2.24 for 2 < p < o0,
and indirectly contrary to the same result for 1 < p < 2 as we presently show. Thus it
will follow that LP < RP.

Suppose L* — X, for1 < s < 2, and let r be the conjugate index of s. Then
L* — X, C L°, whence L* < X, by Proposition 5.7. Hence L" < X, contrary to

part (g) of Proposition 2.24. a
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REMARK. As shown in [B-R-8], Theorem 5.9 is true for p = 1 as well, but the

proof is not identical.
The Interaction of the Constructions and the Ordinal Index

The disjoint and independent sum constructions are designed to force the ordinal
index h, (R%,) to increase [not necessarily strictly, but in the sense that the set
{hp (RE) : @ < w1} has no maximum)]. The first results in this direction are the

following proposition [B-R-S, Lemma 2.5] and corollary [B-R-S].

Proposition 5.10. Let1 < p < 00,0 < § £ 1, and a < w;. Suppose B is a

closed subspace of L*. Then for each e € HS(B), there is some & € HS, (B & B),.

Proof. Suppose e = zg € BP0, Let 7e = (2o ® 0,0 D o) € (B & B)}?l. Then

7e(0) =z ®0 € (B® B), and 7¢(1) =0® 20 € (B® B),. Let

2o D xg
= ST (5.4)
r

@

1

Then e € (B® B)f0 and € =277 (7e(0) + 7e(1)). Hence & < Te.
Let k € N and suppose e = (z0,...,Z9t_1) € BP*. Then e(t) € B for t € Dy.
Let 7e = (2o ®0,...,T9x_1 B 0,0 D zg,...,0D x9x_;) € (BD B)f'"“. Then for

t€ Dy, 7e(0°t) =e(t) @0 € (B B), and 7e(1't) =0 e(t) € (B B),. Let

_ ro+x Tok_o + Tok_ o+ Lok _ -
e:( 0 T 1@0,...,—————” 2 - Zia 1690,069 0 T 1,...,069——-———————-2k 2t$2k 1).
27 2% 279 2%

Then € € (B & B)f" and e(t) = 2% (re(t 0) + Te(t'1)) for t € Dy. Hence € < Te.

We will show that if e € HS(B), then e € HS (B & B),. Since & < e, it will
follow that € is 2 nonmaximal element of H? (B @ B),, s0 €€ H{ ,(B® B),.

First we show that 7 preserves order. Suppose e < d. Without loss of generality
suppose |d| — |e| = 1. Then for t € Dy, e(t) = 2_%(d(t'0) +d(t'1)). Thus for t € Dy

e(0t) = e(t) @0 = AN + (@) ©0) _ 7d(0°:0) +7d(0°¢°1)
2% 2%
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Te(l't) =

0Pe(t) =
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(0@ d(t0)) + (O@d(t-l)) Td(1°t°0) +rd(1 't 1)

2-15 210

Hence for s = (0°t) or s = (1°t), Te(s) = 92 % (rd(s°0) + 7d(s'1)), so Te

and 7 preserves order.

<7d

We now show by induction on « that if e € HS(B), then 7e € HS (B @ B),.

> cbt)yre(bt)]] =

teD;
b€{0,1}

Suppose o = 0 and let e € H(B) = B’. Then for k = le| and ¢ € RPk+1,
, .
, P
( c(0°t)Te(0" t)) ( > C(l't)Te(l't))
teDy teED, %)
®
P
= < c(0°t)(e(t) )) + ( > C(l't)(0696(t)))
teD,C ) teDy ®
P
= ( 3 c(O't)e(t)) @ ( > c(l‘t)e(t)>
teD, tEDk &
1P P
={ 3 c0te(t)]| +| 5 e(lt)e(t)
t€Dy g ||t€Dw B
2 T 1Of + T e
teD, teD;
teD;,
be{0,1}

Hence re € (B® B), = H (B & B),.

Suppose a = f + 1, where if d € H}(B), then 7d € H} (B ® B),

. Let e € H(B).

Then e € Hj(B), there is some d € Hg(B) such that e < d, and 7d € Hg (B® B),

Since T preserves order, Te < 7d. Thus 7€ is a nonmaximal element of Hg- (B B)p,

whence e € HS (B ® B),.

Suppose « is a limit ordinal, where for each 8 < «, if d € HZ(B), then

7d € Hj (B® B),

Te € Hj (B® B),

. Let e€ H5(B). Then e € Hg(B) for all 8 < a, and

for all 8 < a, whence e € H (B @ B),.
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Hence if e € Hé(B), then 7e € HS (B &® B),. Now as previously noted,

if e € H5(B), then € < Te € HS (B ® B),, s0é¢€ H! (B ® B),. O

Corollary 5.11. Let 1 < p < co and o < wy. Suppose B is a closed subspace of

L? such that L? &> B. If h,(B) > a, then h, (B & B),>a+1.

Proof. Suppose h,(B) > «. Then hy(6,B) > o for some 0 < § < 1. Thus
Hé(B)#0,s0 H,, (Bo B), # 0 by Proposition 5.10. Hence
by (6(B@B),) >a+1,50h(B&B),>a+1. O

ReMARK. It follows that if h,(B) is a successor ordinal, then
hp(B) < hp (B @ B),, while if h,(B) is a limit ordinal, then h,(B) < h, (B @ B),.
Thus this result is not sufficient to force h, (RE) to increase.

For each ordinal @ < w;, we define a probability space Q. Let Qo = [0,1]. If
a = 4+ 1 and 3 has been defined, let Q, = Q3 x {0,1}. If a is a limit ordinal and
Qp has been defined for all 8 < a, let Qo = []5., 2s-

The following theorem [B-R-S, Theorem 2.6] leads almost immediately to the
subsequent corollary [B-R-S, Theorem B(2)], which is the key to forcing h, (RE) to

increase in the sense mentioned previousiy.
Theorem 5.12. Let1<p< oo and a < wy. Then 1q_ € H} (RP).

Proof. First we show that 1g, € RE. Clearly 1o, € [1];» = R}. Suppose
a=f+1andlg, € Rj. Then lq, = 2_%(195 ®1lq,) € (RZ @ Rg)p = RP. Suppose
a is a limit ordinal and 1o, € R} forall § < a. Fix § < a, s0 1g, € Rf. Now R} is
distributionally isomorphic to some closed subspace RZ of R?. Let T': RZ - RZ C R,
be the distributional isomorphism. Then T'(1q,) = 1q, € RZ C RP. Hence 1q_ € RE.

We now show that 1q, € H (RZ). Clearly 1o, € [» = H} ([1],+) = H} (BS).

Suppose @ = 3+ 1 and 1, € Hé (RZ). Then 1q, € RZ, S0 IQB = 2_%(19‘3 ® 1q,) for
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1q, as in equation (5.4). Hence by Proposition 5.10, 1q, = 27% (1o, ®1q,) =1g, €
H! (RZ ® Rg)p = HJ (R?). Suppose « is a limit ordinal and 1q, € Hj (Rg) for all
f<a Fix f<a,s0lq, € Hj (R;) Let T: R — RZ C R? be as above. Let

A\ D A\
T (Rﬂ) — (RE)" be defined by (7u)(t) = T'(u(t)) for u € (Rﬁ) and t € D).
. —1 ] —1 —1 .
Since T is an isometry, 7 maps R} into R& . Hence 7: R, — Rg [suitably
D
restricted]. Since 1, € (R’Z,) 0, Tla, = T(la,) = lq,. Since T is linear, 7 preserves
order. Thus by Lemma 5.1, 7 (Hé (R’ﬁ’)) C Hj(RR). Hence 1g, = 7lo, € Hj(RE).

Now 1, € H} (RP) for all 8 < a. Hence 1q, € ., Hi (RR) = HL (RR). O
B B<a "B

Corollary 5.13. Let 1 < p < oo where p # 2, and let @ < wy. Then

hy (RE) > a +1.

Proof. By Theorem 5.9, L? v~ RE, and H! (RP) # 0 by Theorem 5.12. Thus
hy (1,RE) > «, whence h, (RE) > hy (1, R2) > a4 1. O

We collect our main results concerning the ordinal index h,, the spaces R?, and
their interaction. The proof of the subsequent theorem [B-R-S, Theorem A] will make

implicit use of these results.

Proposition 5.14. Let 1 < p < oo where p # 2. Let B, X, and Y be separable
Banach spaces. Let o, 5 < wy. Then
(a) LP <> B if and only if hy(B) < wy,
C(b) if X — Y, then hy(X) < hy(Y),
(c) L? & RE,
(d) if a < 8, then R < RP,
(e) hy(RP) < wy, and

(f) hp(R?) > a+1.

Proof. Parts (a), (b), (c), and (f) are restatements of Theorem 5.5, Theorem 5.6,
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Theorem 5.9, and Corollary 5.13, respectively. Part (d) is clear from definitions. Part

(e) is clear from parts (c) and (a). O

Theorem 5.15. Let 1 < p < oo wherep # 2. There is a strictly increasing
function T : w; — wy such that for v,6 < wy,

(a) if ¥y < 6, then Rf(,y) L RZ(5) but R¢(5) o Rf(,y), and
(b) if Y is a separable Banach space such that Rf(a) — Y for all o < wy,

then [P — Y.

Proof. Let 7(0) = w < wi [so R}, is infinite-dimensional]. If 7(5) has been

defined with 7(8) < wi, let 7(B+ 1) = A, (Rﬁ(ﬁ)) < w;. Then
hp (Rf(ﬂ+1)> > 7(B+1)+1 > 1(B+1) = hy (R’T’(ﬂ)) More generally, if 0 < @ < w; and
7(8) has been defined with 7(8) < wy for all B < a, let T(a) = Supsea by (Rf(ﬂ)> <w
[each h, (Rf(ﬂ)> < wp and {f: B < a} is countable]. Then
by (R(0y) 2 7(0) +1 > 7(2) = supseq by (B (g))s 50 by (RE(0)) > hp (RE(5)) for
all 8 < a. Thus R’T’(a) o Rf(ﬂ) for all 8 < a, so 7(a) > 7(B) for all § < @, and 7 is
strictly increasing.

(a) Suppose ¥ < § <wy. Then 7(v) < 7(6) and R? ) < RE 5, but R? o % RY
as shown above.

(b) Let Y be a separable Banach space such that R’T’(a) — Y for all @ < w;. Then

a<7(a)+1§hp<Rp

) < Bp(Y) < wi forall @ < wi. Thus hy(Y) = wi,

whence P — Y.

REMARK. Let 1 < p < 0o where p # 2. We will show that RP, < LP for all
@ < wy. Thus part (a) will yield uncountably many isomorphically distinct £, spaces

[at most one RE ~ ¢2]. By [J-M-S-T, Corollary 9.2], if LP < Y <> L? then Y ~ L”.
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Thus part (b) will imply that there is no separable £, space Y, other than L itself,

such that Rf(a) — Y for all o < wy.
The Complementation of R?, in L”

This section is devoted to the proof that R S IPforl < p < oo and a < wi.
We proceed by showing that R? ~ Z7. < Z{ ~ L” for spaces Z}_and Z{ to be
defined. The major components of the proof are Theorem 5.22, Proposition 5.25, and

Proposition 5.26.
Preliminaries

Let T be a countable set, and let {0, 1}1r be the standard product space.

Wé say that a measurable function f on {0, l}F[r dependson E C T if f(z) = f(y)
for all z,y € {0, 1}1r such that z|p = y|p. We say that a measurable set S C {0, l}T
depends on E C T if the indicator function 1g depends on E. Thus S C {0, l}T
depends on E C T if 15(x) = 15(y) for all =,y € {0, l}F[r such that z|g = y|E.

It is easy to check that given E C T, the set A of all measurable S C {0, 1}1r
which depend on F is a og-algebra, which we call the o-algebra corresponding to E.
Given E C T, let AEg be the o-algebra corresponding to E. It is easy to check that

(a) if AC BCT,then 44 C Ap, and
(b) if A,B C T, then Asnp = A4 N Ap.
Let f be a measurable function on {0, 1}1r and let £ C T. It is easy to check that

(c) f is Ag-measurable if and only if f depends on E.

Let (2, M, 1) be a probability space. Given a sub c-algebra A of M, let £4 be
the conditional expectation operator with respect to A.

Let A be a sub g-algebra of M. Then for each integrable function f on £,
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(a) £4f is A-measurable, and
(b) [g€af = [gfforall§eA
Moreover, £4f is essentialiy defined by these two conditions.

Let A and B be sub o-algebras of M, let f and g be integrable functions on §2,
and let 1 < p < oo. Conditional expectation has the following properties ([Ch], [Db],
and [Stn]):

(c) if f is A-measurable, then £4f = f,

(d) EAlaf =Eaf,

(e) if f € LP(92), then £4f € LP(2), with [[EafIl, < If]],,

(f) if f,g € L*(2), then [g€af = [ f€ag,

(g) if f € L%(Q), then f = Eaf + f', where f' € L?(Q2) such that [ f'h = 0 for all

A-measurable h € L2(Q),

(h) if A C B, then £4f = Egf if and only if £5f is A-measurable, and

(i) if A C B, then E4Epf =Eaf = EBEAS.
Suppose £4 and £z commute. Then £4E€5f, which is equal to £g€4f, is in turn A-
measurable and B-measurable, whence A N B-measurable. Now F' = £4f is integrable
on ), ANB C B, and EgF = EEaf is AN B-measurable. Thus
EanBf = EanBéaf = EanpF = EpF = EpEaf. Hence

(J) if E_AEB = EBEA, then EAEB = E.AHB - EBE_A.

Let ({O, 1}N ,,M,ﬂ.) be the standard product space. Let A and B be subsets of
N, with corresponding o-algebras .4 and B, respectively. Let f be an integrable
function on {0, I}N‘ Consider f as a function of t = (¢;,ts,...) where ¢; € {0,1}. Then

Eaf is given by integration with respect to those ¢; such that : € N\ A. Hence

(a) EA€Bf =EBEAS, and
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(b) Ealf = Eansf =EBEAS.
The Isomorphism of Z§ and L”

Let {A,} be a sequence of sets. We say that {A,} is monotonic if it is either
nondecreasing or nonincreasing, and {A4,} is compatible if there is a permutation 7
such that {AT(n)} is monotonic.

The following result [Stn, Theorem 8] substitutes for [B-R-S, Lemma 3.2]. We
do not present the proof, but apply the result in the proof of the subsequent corollary,
which substitutes for [B-R-S, Lemma 3.3]. This alternative approach was suggested in

a remark of [B-R-S].

Proposition 5.16. Let 1 < p < oo, let (2, M, u) be a probability space, and
let {f»} be a sequence of integrable functions on Q. Suppose {A,} is a compatible

sequence of sub o-algebras of M. Then there is a constant A,, depending only on p,

I (= wAnfnl?)% (;wf

Corollary 5.17. Let1 < p < oo, let (2, M, u) be a probability space, let

such that

<4

P P

{f.} be a sequence of integrable functiors on €, and let {B,} be a sequence of sub
o-algebras of M. Suppose {L,}, {R.}, and {7} are sequences of sub o-algebras
of M such that

(a) each of {L,}, {R,}, and {T,} is compatible,

(b) for each n, &¢, Er,, and £, commute, and

(c) foreachn, B, =L, "R, NT,.

}

Then for A, as above,

1

(g

[N

<
lp

(; 1£ann12)

P
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Proof. By part (C), 53" = 5CnﬂRnﬂTn' By part (b), EL AR AT, = 55,‘573"57;‘.

Thus g, = €¢,Er, E7,- Hence by Proposition 5.16 (applied three times), we have

l

Let n € N. Then n has a unique expression as n = 2* + r for k € NU {0} and

1

(Slen.ul?) ” - li (Stee. (ex. (e tal)

1

(zr)

3
< A3

P 4

0 <r < 2% For n = 2% +r as above, let A(n) = k.

Let Dy = {1}. For k € N, let D} = {to---tx : to=1and t; €{0,1} for 1 <¢ < k}.
Let D' = Urwo Di-

Now D’ has a natural strict partial order < defined by sg- - sk, < to---tk, if
ki <koand s; =¢t; forall 0 <7< k. ~

Let v : (N,<) — (D', <) be defined by y(n) = tg---tx € Dj for k = A(n), where
to- - tx is the binary expansion of n. Then « is a bijection, and v~ preserves order.
Let < be the strict partial order or N induced by < via v [m <n <= (m) < v(n)].
Then < extends <.

The following application of Corollary 5.17 substitutes for [B-R-S, Scholium 3.4].

The result serves as a lemma for Theorem 5.22.

Proposition 5.18. Let 1 < p < o0, let ({0, l}N,M, u) be the standard product
space, and let {f,} be a sequence of integrable functions on {0, 1}N. Givenn € N, let
B, = {m € N:m =< n}, and let B, be the corresponding sub o-algebra bofM. Then
for A, as above and N € N,

|

[N

3
SAP

(2 Ifnlzf

Proof. Given k € NU {0}, let Ay = {m € N: A(m) =k}, and let

(é lsanfgf)

Hp P
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Tiy = {m € N: A(m) < k}. Given n €N, let A(n) = {m € N: A(m) = A(n)}, and let
T,={meN:m<n},
B,={meN:m=n}
as above, which is the branch of (T,,, <) generated by n,
Ln={mEN.:m_-‘fn'forsomen’EA(n) with n’ <n},
the union of the branches B, for n’ € A(n) with n’ <n, and
R, = {mEN:mﬁn' for some n’ € A(n) with n’ > n},

the union of the branches B, for n’ € A(n) with n’ > n.
Fix K € NU {0}. For each n € Tigj, choose N(n) € Ak such that n X N(n).

Then given n € Tik], By(n) is an extension of B, to a branch of T{kj, and
B, = BN(n) NnT, = LN(n) ] RN(n) NT,.

Note that {Ln}yea,» {BN}nea,r and {Tn}nET[K] are each monotonic. Hence
{LN('"')}TLET[K]’ {RN(n)}nET[K]’ and {T"}HET[K] are each compatible.

Forn € T[K], let B, Ln, Rn, and 7, be the o-algebras corresponding to B,
L,, R,, and T, respectively. Then {EN(n)}nET[K]’ {RN(")}TLET[K]’ and {’I;l}neT[K] are
each compatible. Moreover, for n € Tik}, Bn = LN(n) N RN(@m) N Tn, and €Ly iy ER ey
and &7, commute.

Hence for N =2K+1 _1 ¢ Tik) and fy, ..., fn integrable on {O,I}N,

1 1

H(Eﬁ':l €5, fnlz)z < A3 (zf);l | f,,1|2):’l by Corollary 5.17. Releasing

P l P
K € NU {0} as a free variable, we have the same result for arbitrary N € N. O

The following square functicn inequality [Burk, Theorem 9] is quoted in [B-R-S,
Scholium 3.5]. We do not present the proof, but apply the result in the proof of

Theorem 5.22.
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Proposition 5.19. Let 1 < p < oo, let (2, M, ) be a probability space, and let
{T.}.2, be a nondecreasing sequence of sub c-algebras of M. Suppose {gn} ., is a

sequence in LP(Q) such that g, is T,-measurable for alln € NU {0} and €7, _, g, = 0

for all n € N. Then there is a constant K,, depending only on p, such that

(o) (o)’

Forn € N, let B,, T,,, B, and 7, be as above. Then for n € N, T, is the subtree

<K,

<12 gn
» " p

1
KP

P

{1,...,n} of (N, <), B, is the branch of T}, generated by n, and 7, and B, are the o-
algebras corresponding to T,, and B,, respectively. Let Ty = By = @ and let Ty and By
be the trivial algebras. Let

Z8 = |f : f is B,-measurable for some n € N]Lp({o 13%)

= [f : f is measurable and depends on B,, for some n € N]L”({O,l}")'

Let Ag =T = {constant functions on {0, I}N}. For n € N, let
A, = {f on {0, 1}N : f is T,-measurable and &7, _, f = 0}

and

I, = {f EA,:fis Bn-measurable} .

Suppose f is measurable and n € N. Then (Errn - 57'"_1) f is T,-measurable, and
Era, (1. —E1,) f =€, f —E1._,F =0, whence (7, — €r,_,) f € A,. Note that

if feA,, then f = (Eq'n - 57;1_1) f. Hence for n € N,
A, = {(57,1 —€r._)f:fon {0,1}" is measurable}.

The following lemmas for Theorem 5.22 have been extracted from the proof of

[B-R-S, Theorem 3.1].
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Lemma 5.20. Let 1 < p < oo, and let Z§ and ', be as above. Then
Zh=[ph:n> OJLP({O’I}N).
Proof. Note that I, C ZE fer n € NU {0}, whence [, : n > O]Lp({oyl}N) C Zk.
We now show that Z§ C [T, :n > O]Lp({o’l}N), whence Z8 = [, : n > O]Lp({o’l}N).
Let n € N and let f be B,-measurable. Now B, C T,, so B, C 7,, whence

f is T,-measurable and &7, f = f. Moreover, £7, f is Tg-measurable, whence &7, f is

constant, and [ &7, f = [ f, whence €1, f = [E7,f = [ f. Thus

f:ff*E%f+57nf=ff+é(5ﬁ—Eﬁ-x)f-

Let1 < i < n. Then (éx, —&7,_,) f € A;. We now show that (7, — €7,_,) f is
B;-measurable, whence it will follow that (€7, — £7,_,) f € Ts.

Note that f = &g, f, whence
(1. ~€r_,) f=(ér, —€1._,) Es.f = €188, f — E1._, 8. f = Eninp. | ~ €1y, ]

Suppose first that 1 € B,. Then T; N B, =T;_1 N B,, so T, N B, = T,_1 N B,,, whence

(61, —=€1._,) f = Eom, f = E1._,0B,.f =0,
which is B;-measurable. Next suppose that ¢ € B,,. Then T;NB,, = B;, so T;NB, = B;,
and T;_: N B, C B;,so 7,1 NB,, C B;, whence
(61, — €7.) f = Eqins. f — Exisom.f = Es.f — Ep;f

for some B; C B;. Now &g, f is Bi-measufable, and &g f is Bi-measurable, whence
B;-measurable. Thus (7, — £7,.,) f is B;-measurable [now in both cases]. As noted
above, it follows that (€7, — €7,_,) f € T

We now have

f=ff+ jzl(gq; —qu_l)fe [Fi:OSiS’rL]Lp({O’l}N).
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Thus f € [, :n > O]LP({O,I}N). It follows that Z8 C [T, :n > O]LP({O’l}N), whence

Z§ = [Fn n Z O]LP({O,I}N)' D

Lemma 5.21. Let 2 < p < oo, and let A; be as above. Then {Ai}izo is an

unconditional Schauder decomposition of L? ({0, I}N).
Proof. Suppose f,g € L? ({O,I}N), andleti € N. If f € A;and g € A; for
i < j €N, then £7,_,g = 0 and f is 7;_;-measurable, so
[fa=[Ffl9-€r,.9)=[fg—[feér,ng=[fg—[gér,..f=[Ffg—[gf =0,
whence f and g are orthogonal. If f € A; and g € Ay, then g is constant, and
ff = f&]’i_lf, but £7,_,f =0, so
[fo=9[f=g[&r_f=0,

whence f and g are orthogonal. Hence {A;},, is orthogonal.
Suppose f € L? ({0,1}‘“). Let fo = £7,f € Ao, and for i € N, let

fi=(Ex,—&7,_,) f € Ai. Thenforn €N,

S fi=Enf+ Y (En.—€5_,) f =€ ]
1=0 =1

Note that L? ({0,1}‘“) cL? ({0,1}N). If f e IP ({0, 1}N), then
limn—eo If — &7, fl|, = 0, whence f = Yoo fiin LP ({O, 1}N). By the orthogonality
of {Ai};50, the representation f = g [l with f/ € A,; is unique. By Proposition
5.19, the convergence is unconditional. Hence {A;} ;>0 i an unconditional Schauder
decomposition of L” ({0, I}N). a

REMARK. The above result can be viewed as a consequence of the
unconditionality of the Haar system.

We are now prepared te prove the following theorem [B-R-S, Theorem 3.1],

which is a major component of the proof that RP, < LP.
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Theorem 5.22. Let 1 < p < oo, and let Z§ be as above. Then
z5 < ({0,1)Y).

Proof. First suppose 2 < p < co, whence L” ({0, 1}N> C L? ({0, I}N). Fix
i € NU{0}. Let f € A; and let g =Ep,f. Hi=0, thenT'; = Ay, €5, f = f, and &g, |a,
is the identity mapping. Suppose i € N. Then g is B;-measurable. Now B; C T;, so
B; C T;, whence g is T;-measurable. Moreover, £71,_,9 = &1,_,€8,f = €8, €7._, f = 0.
Thus g is a B;-measurable element of A{, whence g € I;. If f € Ty, then &, f = f.
Hence for i € NU {0}, &g, |a, is the orthogonal projection of A; onto I';.

By Lemma 5.21, {A;},5, is an unconditional Schauder decomposition of
L2 ({O, 1}N>. For f € L? ({O,I}N), let {f:} be the unique sequence with f; € A; such

that f =5 2, f;. Let w: L? ({0, 1}N> — L? ({0,1}N> be defined by

rf =Y Eg.fi

i=0
Then = is the orthogonal projection of L* ({0, 1}N> onto [I'; :4 > O]Lz({o’l}N), where
Li 42 0] a0 0ym) = Z§ by Lemma 5.20.
.. E N » N
Let P be the restriction of 7 to L ({O7 1} ), let f €L ({0, 1} ), and let {f;}

be as above. Then by Proposition 5.19, Proposition 5.18, and Proposition 5.19 again,

(f: |ssifil2) 2 (z: lfil2>2
1=0 r 1==() -

where the constants K, and A, are as in the cited propositions. Hence

for n € N we have

7

1=0

<K,

p

< KpAS < KZAS

’
P

Y. €. fi
1==0

IPfll, < KA fll,, and P: L* ({0, 1}N> — LP ({0, 1}N> is bounded. Of course
P is a projection, and P maps L” ({O, I}N) onto [I'; : 7 > O]Lp({oyl}N)’ where
L;:0> O]LP({O‘I}N) = Z§ by Lemma 5.20.

For 2 < p < oo with conjugate index g, the adjoint of P induces a bounded

projection of L? ({O, 1}N> onto Zg. O
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ReMARK. While Z% < P is our major concern, in fact Z§ ~ L?.
The Complementation of RE, in Z§

Recall that a tree (T, <) is a CFRE tree if T is finite or countable, and for each
z €T, {y€eT:y <z} isfinite. Let (T, <) be a CFRE tree. For t € T, let B, be the

finite branch of T generated by ¢. For 1 < p < o0, let
ZE =[f : f is measurable and depends on B, for some t € T]Lp({oyl}T).

The space Z¥. is similar to the previously defined space Z§.

Let S be a nonempty subset of N. Then (S, <) is a CFRE tree, where < is the
previously introduced partial order on N [suitably restricted]. The ﬁn.ite branches of S
are precisely those sets of the form B,, N S for n € S, where B,, is the finite branch of
(N, <) generated by n. For 1 < p < oo, L? ({0, 1}5) is isomorphic to the subspace of
L? ({O, I}N) consisting of those functions which depend on S, and Z% is isomorphic to

the space
Zg = [f : f is measurable and depends on B, N S for some n € S]Lp({o,l}N).
The following lemmas [B-R-S, Lemmas 3.6 and 3.7] lead to the subsequent
proposition [B-R-S, Theorem 3.8, which is a component of the proof that R?, < LP.

Lemma 5.23. Let 1 <p < oo and let @ # S C N. Then Z5 < Z¥.

Proof. Let S be the o-algebra corresponding to S, and let P : Z§ — Z§ be
defined by Pf = Esf. Note that Z& C Z&. If f € ZE depends on B,, then Pf
depends on B, N S, which is either the empty set or a finite branch of S of the form

B, NS for some m € S, whence F maps Zk into Z~§. Now Pf = f for f € Z~§ Hence



156

P maps Z§ onto ZE, and P? = P. Finally, I1P£ll, = ll€sfll, < lIfll,, whence || P|| =1.
Hence Z% ~ Z% S Zy. O

ForneN, let N, = {t;---t,:t; €Nforall1 <i<n}. Let N ={J_, Nn, and

define a strict partial order < on N by s1+-+8, < t1---tm if n < m and s; = t; for all

1<1<n.

Lemma 5.24. Let (T, <) be a CFRE tree. Then (T, <) is order-isomorphic to a

subset of (N, <).

Proof. Clearly T is order-isomorphic to a subset of A”. We will show that A is
order-isomorphic to a subset of D’. The result will then follow upon noting that D’ is
order-isomorphic to N endowed with <.

We describe a subset S of D’ such that N is order—isomorphic to §. Given
te D, let S(t) = {t1,t01,¢°001,...}. Then S(t) is a countable set of distinct and
mutually incomparable successors of . Moreover, if s and t are distinct and
incomparable elements of D', then S(s) and S(t) are disjoint, and the elements of
S(s) U S(t) are mutually incomparable elements of D'. For A C D', let
S(A) = Usea S(a). Finally, let S = S(1) U S(S(1)) U---. Then N is order-isomorphic

to & C D', and the result follows as noted above. O
Proposition 5.25. Let 1 < p < 0o and let T be a CFRE tree. Then Z% S AR

Proof. If trees T and T" are order-isomorphic, then Z% ~ Z%,. Thus by Lemma
5.24, we may choose T’ C N such that Z5 ~ ZZ,. Now Z&, <> ZP by Lemma 5.23.
Hence Z& < ZE. O

REMARK. By Proposition 5.25 and Theorem 5.22, for 1 < p < o and T a CFRE
tree, ZP. < LP ({0, 1}N), whence Z2 < L7 ({0, 1}T).

The following proposition [B-R-S, Lemma 3.9] is the final component of the



157

proof that RP < LP.

Proposition 5.26. Let 1 < p < o0 and a@ < wj. Then there is a well-founded

CFRE tree T, such that RP is distributionally isomorphic to Z;a.

Proof. Clearly R = [1];» is distributionally isomorphic to Z7, where T = 0.
Moreover, R} = (R§ @ Ry),, is distributionally isomorphic to Z7, where T = {1}.

Suppose = S+ 1 > 1, where RZ is distributionaliy isomorphic to Z;B for
some well-founded CFRE tree (Tg, <3). Without loss of generality, suppose R} = Z%a.
Choose 6 ¢ Ts. Let T,, = T3 U {0}, and let <, extend <z by declaring § <, 7 for all
T € Ts. Then (T,, <4) is a well-founded CFRE tree. For thecase a = 8+ 1 > 1, it
remains to show that R, is distributionally isomorphic to Z%. .

Let 0,1 € {0,1}{0} be defined by ¢(8) = 0 and 1(8) = 1, so that 3(§) = j. Note
that {0, 1}{0} = {0,1}. Let eg,e; : {0,1}{0} — {0,1} be defined by eg(t) = 1 — t(f) and
e1(t) = t(8). Then e;(5) = 1 if i = j and e;(7) = 0 if i # J. |

Given s € {0,1}" and t € {0,1}{3}, we associate (s,t) € {O,I}T‘3 X {0,1}{0} =
{0,1}7% x {0,1} with the element [s,t] € {0,1}7 which extends both s and t. Thus
there is an association J : L? ({O,I}Tﬁ X {ﬁ,i}) — LP ({O,I}T"). Let (Z%3 ) Z;iﬁ)p
be identified with the subspace of L? ({0, 137 x {0, T}) which is related to Z7 as in
the definition of (B & B),. Let |22, @ Z:’;ﬁ]p =J (2,0 Z:’}ﬁ)p. Then
2,0 Z{;ﬂ].p (70 Z:’;B)p.

Let by, by € Zé’wﬁ. Then b; ®e; € Z:’;Q, where (b; ® e;) [s,t] = 2]5bi(s)ei(t) for
s € {0, l}Tﬁ and t € {0, 1}{0} ={0,1}. If b= by ® eg + b; ® €3, then
bls, 7] = 27 bo(s)eo(7) + 27 b1(s)ex(3), so bis,0] = 27 bo(s) and bfs, 1] = 25b;(s), whence
be [Zé’wﬁ ) Z:’}ﬁ]p. Conversely, if b € [Z:’}E ® Z:I;ﬁ]p’ then b= by ® eg + b, ® e; for

bo(s) = 2_%b[s,(—)] and b (s) = 2—%b[s, 1]. Hence
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[Z;B GBZ%?L = {bo Reg+by ®ey :bo, by € Zﬁ} C Z7. .

Then b; € Z5,, and f =by ® eg+ by B e1, 50 f € |78, @ Z;ﬁ]p. Thus
zZh C [er,iﬁ ® Z;B] , whence Z7. = [Z?B ® Zf’}ﬁ] . For the case a = 8+ 1 > 1, it now
p p

follows that R; = (R & RY) = (28,023, (2, 02| =72
p p p

\

Suppose « is a limit ordinal, where for each 3 < «, RZ is distributionally
isomorphic to Zé’wﬂ for some well-founded CFRE tree (T, <). Without loss of
generality, suppose RY, = Z;’}B for all § < «, and suppose T, N T = @ for all v # 8 with
v,8 < a. Let T, = U/a<aT/3, and let 0 <, 7 if there is some 8 < « such that 0,7 € T}
with 0 <g 7. Then (T, <4) is a well-founded CFRE tree.

Note that B is a finite branch of T, if and only if B is a finite branch of T3 for
some 3 < «. Thus f depends on a finite branch B of T, if and only if f depends on

a finite branch B of Ty for some 8 < «, s0 Z§ = [Zf’}ﬁ f<a Since

] LP({o,l}Ta)'

dist [
~ (E[KQ Z%,) . Hence

. 2 e . y 4 .
{Ts}p<q is disjoint, [ZTB 1B < Oé] L7 ({0,1)7=) Ind,p

P _{gp dist 3 P — ® p — pp
2r, [ZTB p< a] LP({0,1)7) (25<°’ ZTB)Ind,p (25“‘ Rﬁ)lnd,p R =
The following theorem [B-R-8, Theorem B(3)] is now almost immediate.

Theorem 5.27. Let 1 < p < 00 and o < wy. Then RE, < LP.

Proof. By Proposition 5.26, we may choose a well-founded CFRE tree T, such
that RE ~ Z%. . Then Z7. < Z§ by Proposition 5.25, and Z§ < LP ({0,1}N> by

Theorem 5.22. Hence R?, < LP ({0, M~ O
Concluding Remarks

Let 1 < p < oo where p # 2.

Conceivably Rf(a) ~ {2 for some o < wj, but in light of part (a) of Theorem
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5.15, this is possible only for & = 0. Thus as in the remark following Theorem 5.15,
{Rf (a)}0<a<w1 is an uncountable chain cf isomorphically distinct £, spaces, and there
is no separable L, space Y, other than L? itself, such that R” (@) = Y forall a < w.

By Theorem 5.27 and part (a) of Theorem 5.15, for v < § < w; we have

RY . = R = IP. (5.5)

The isomorphism type of RE, for w < a < w; is not well understood. Recent work
by Dale Alspach indicates that R? ~ X,,.

We know that {h, (R2)} is a nondecreasing chain of ordinals such that

alwy
{hp (R?) : @ < w1} has no maximum, but little is known about the specific values of
hy (RE) for w < o < wy, or precisely where the increases occur.

Part (b) of Theorem 5.15 reflects one way in which { R} reaches toward L?.

a<w1
However, it is not known whether for each separable £, space Y o L7, there is an

a < wi such that Y — RP, nor whether there is an a < wj such that ¥ — R? for

uncountably many £, spaces Y.
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