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PREFACE 

The overall objective of the research is to extend the designs and models of 

the mixture experiments ·while the components are classified into categories. The 

multiple-centroid design, simplex-lattice by simplex-centroid design and their 

corresponding models are developed. The method of calculating estimates of 

parameters in the two models corresponding to the two designs is generalized. 

Method of using ratios of components as design variables is developed and 

illustrated. A method for obtaining ON-optimal designs is suggested and DN­

optimal designs for models being linear, linear with cross-product terms, and 

quadratic are obtained. The design and model using mixture components and 

mixture-related variables as design variables are developed. 
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CHAPTER I 

THE RESEARCH PROBLEM 

The use of experimental designs has proven to be an efficient method to 

improve the quality of products and process. The objective of an experimental 

design, in general, is to obtain the best operating conditions possible, considering 

economical factors, by which better products are obtained. This is accomplished 

through the analysis of data collected at critical design points. 

Box and Draper ( 1987) describe the iterative nature of the experimental 

learning process. It consists essentially of the successive and repeated use of the 

sequence 

CONJECTURE--> DESIGN--> EXPERIMENT-> ANALYSIS. 

Traditional designs such as randomized blocks, Latin squares, and factorial designs 

have been used by statisticians and engineers as building blocks in the iterative 

learning process. 

The mixture experiment is another method used in the iterative learning 

process. In a mixture problem, the measured response is assumed to depend only 

on the proportions of the ingredients present in the mixture and not on the amount 

of the mixture. Designs of experiments on mixtures are different from traditional 

designs since orthogonal designs cannot be obtained without transforming the 

mixture variables into nonmixture variables. 

The purpose of using design of experiments with mixtures is to obtain a 

sequence of settings of components called design points where one can collect 

I 
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observations and fit the observations into a desired model which describes the 

relationship between the measured response and the mixture component 

proportions. The model is then verified for adequacy using a lack-of-fit test. If the 

model is appropriate, then one can predict the measured response by the fitted 

model as long as the setting of the mixture component proportions is inside the 

factor space. 

1.1 The Response Surface Problem 

The analysis of experimental designs is based on response surface 

methodology. In a general response surface problem, one would like to describe an 

observable response y through a set of predictor variables x1, x2, ... , xq. Response y 

is thus considered to be a function of predictor variables. The response y is usually 

assumed to be a continuous and quantitative variable. The predictor variables are 

either quantitative or qualitative and they are controllable or observable by the 

experimenter. The relationship between the response y and_ predictor variables is 

expressed as 

Yk = f(xkl, Xk2, ... , Xkq )+ &k, k=l, 2, ... , N, (1.1) 

where Yk is the k 1h value ofN observations of the response, xk; is the value of the 

/h predictor variable for the k1h observation, and &k is the observation error which 

is not explained by the regression function. 

An appropriate model is generally selected to approximate the true 

relationship between response y and the predictor variables. Usually a model linear 

in the parameters is chosen. A linear response model may be written in matrix form 

as 

Y=Xp+&, (1.2) 
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where Y is an Nx 1 vector of observed response values, X is an Nxp matrix of 

known constants, pis a px 1 vector of unknown parameters, and & is an Nx 1 vector 

· of random errors. It is usually assumed that E(e)=O and Var(e)=dV, where Vis a 

NxN matrix. Most often V=IN(the NxN identity matrix). Since E(e}=O, the model 

( 1.2) can be alternately expressed as 

T/ = E(Y) =X p. (1.3) 

IfVar(e)=ct/N, then the.ordinary least squares estimator of p· is given by 
A 

P=(xTx)-IxTr, (1.4) 

and has variance 

(1.5) 

If xo is a point within the factor space constructed by the values of design points 

(predictor variables), the predicted response and its variance for the expected mean 

response at xo are 
A TA 
y(xo) =xo p, (1.6) 

and 
A A 

Var[y(xo)] = Var[xJ Pl 
= xJ (XTx)-1 xoo-2 (1.7) 

Designs of experiments are usually used to set up the values of predictor 

variables such that the response y is predicted through those predictor variables 

efficiently and precisely. Orthogonal designs of predictor variables are often 

employed such that the factor effects of predictor variables are not confounded 

with each other. Computer-aided design of experiments permits one to obtain 

designs which meet certain criteria under the assumption that the response model 

is true. One design which minimizes the generalized variance of the elements of 

the estimated parameters in the model is called a D-optimal design. A sequential 



design is often desirable through augmenting the initial design when the initial 

fitted model is suspected to be inadequate. 

1.2 Mixture Experiments 

4 

The mixture problem is one subproblem of the response surface problem. A 

mixture experiment involves mixing two or more components (ingredients) 

together to form some end product, and measuring one or more properties of the 

resulting mixture or end product. In the general mixture problem, the measured 

response is assumed to be dependent only on the proportions of the ingredients 

present in the mixture and not on the amount of the mixture (Cornell 1990, 

Scheffe' 1958). Examples of mixture problems are the tensile strength of an alloy 

of different metals, the wear-resistance of a mixture of different kinds of rubbers, 

and the octane rating of a blend of different gasoline stocks. The effect of a 

fertilizer which is a mixture of certain components, on the yield of a crop would 

not be an example, because this yield would depend not only on the proportions of 

the components but also on the total amount of the mixture. The purpose of a 

mixture experiment is to predict empirically the response y to any mixture of 

components. 

In a mixture problem, the response to a mixture of q components is a 

function of the proportions x1, x2, ... , Xq of components in the mixture. Since x; 

represents the proportion of the /h component in the mixture, the following 

constraints hold: 
q 

0 ::; Xj ::; 1 ( i = 1, 2, ... , q ); L Xj = I. 
i=l 

(1.8) 

The factor space in the mixture problem is thus reduced from q dimensions 

of unconstrained components to q-1 dimensions of constrained components since 
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the sum of the values of all components equals unity. The ( q-1 )-dimensional space 

constructed by the q components is called a ( q-1 )-dimensional simplex. 

One method to model the mixture problem is using the q components of 

mixture as the predictor variables, called mixture variables, directly to describe the 

measured response. Scheffe' (1958) introduces the simplex-lattice design and its 

associated model for three components. In a q-component mixture problem, the 

proportions used for each component take the (m+ 1) equally spaced values from 0 

to 1, x;=O, 1/m, 2/m, ... , 1, and all possible mixtures with these proportions for each 

component are used. Such a design is called a { q', m} simplex-lattice design 

where the superscript l represents lattice. It can be shown that the number of 

design points in the { q1, m} lattice is 

( q+m-1) = (q+m-1)!. 
m m!(q-1)! 

Scheffe' (1958) derives a canonical polynomial model which can be fitted 

by the design points on the { q1, m} simplex-lattice. The first-degree canonical 

polynomial for design points on the { q', 1} simplex-lattice is 
q 

y = Lf31x; + e. 
i=l 

The second-degree canonical polynomial model for design points on the { q1, 2} 

simplex-lattice is 
q q 

Y = L/3; x; + I Lf3ux;x J + e. 
i=l ; < j 

Similarly, the cubic model for design points on the { q', 3} simplex-lattice is 
q q q q 

y= IJJ;x;+ LLf3uX;XJ+ I I IPukX;XJXk+ IIoux;x/x;-xJ)+e. 
i=l i < j i < j < k i < j 

A special case of the cubic model which is referred to as a "special cubic 

polynomial" is 
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q q q 

y = LP; X; + I LPux;X j + I I LPukX;X jxk + G. 

i = 1 i < j i <j < k 

The number of parameters in the {q1, m} canonical polynomial can be shown to be 

( q + :-J which is exactly the same as the number of the design points on the 

{ q1, m} simplex-lattice. 

Scheffe' (1963) develops the simplex-centroid design and its corresponding 

model for any number of components. The design points in the q-component 

simplex-centroid design correspond to q pennutations of (I, 0, 0, ... , 0), (~) 

pennutations of (1/2, 1/2, 0, ... , 0), (~) pennutations of (l /3, 1/3, 1/3, 0, ... , 0), ... , 

and so on, with the overall centroid point (liq, liq, ... , liq). The polynomial model 

associated with the q-component simplex-centroid design is 
q q q 

Y = LP;X; + LLPux;XJ + 2_ LLPukxixjxk + ... + P12 ... qX1X2.--Xq + G. 
i=I i < j i <) < k 

It can be shown that the number of distinct design points in the q-component 

simplex-centroid design is equal to the number of parameters in the corresponding 

model which is equal to 2q -1. 

For the simplex-lattice and simplex-centroid designs, the design points are 

uniformly distributed on the boundary of the factor space. There is no design point 

inside the simplex except at the overall centroid. Both models have the property 

that the model corresponding to its design has the number of parameters in the 

model equal to the number of distinct design points such that the parameters in the 

model are determined uniquely from the design points of its associated design. 

Kenworthy ( 1963) introduces factorial arrangements with mixtures using 

ratios as design variables. The response is thus a function of ratios and indirectly is 

a function of components in the mixture. Lambrakis (1968a) develops a multiple-
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lattice design for experiments with mixtures of n "major" components (categories) 

where each major component is itself a mixture of several other components and 

each category of components contributes a fixed proportion to the total mixture. 

Each category is represented in every mixture by one or more of its member 

components. This type of mixture problem is also called the mixture problem for 

categorized components. Suppose one would like to make a fruit cocktail 

consisting of two major·categories - liquids and solids. The liquids can be at least 

one of three kind ofliquors (minor components) while the solids can be at least 

one of two kind of fruits (minor components). Also assume that the proportion of 

liquid in the mixture is 80% while the proportion of solids is 20%. Then this is a 

mixture problem with two categories. For example, the {/, 3} simplex-lattice for 

the first category of components and the { q1, 2} simplex-lattice for the second 

category of components, will be combined into the {p1, q1; 3, 2} double lattice. The 

factor space of the {p1, q1; 3, 2} double lattice can be expressed as 

U1 + U2 + U3 = 1, VI+ v2 = 1, and U;, V; ~ 0. 

The canonical polynomial corresponding to the {p1, 3} simplex-lattice is 
p p p p 

y = La;U; + LLaijU;UJ + LLLaijku;u1uk + LL"ijU;U/U; ~u1)+e, 
i=1 i < j i <j < k i < j 

and the canonical polynomial corresponding to the { q1, 2} simplex-lattice is 
q q 

y = L't V; + LLrij v;v1 + e. 
i=1 i < j 

Then, the regression function for the {p1, q1; 3, 2} double lattice is 
p q p q p q 

y= L 'Ia;,1u;v1 +LL Lai,Jku;vJvk +LL Iaij,ku;u1vk+ ... + 
i=IJ=I i=IJ < k i < J k=I 

p q 

L LL LLaijk,JmU;UJUkV/Vm +e. 
<J<kl<m 

Another method to depict the shape of the surface over the simplex consists 

of q-1 transformed variables. The q-1 transformed variables are called mixture-



related variables (M.R.V.) since they are transformed orthogonally from mixture 

variables. Standard designs such as a factorial design can be used on the q-1 

variables for exploring response. Claringbold ( 1955) develops one method to 

transform the q dependent variables to q-1 M.R.V.'s. 

Cornell and Good ( 1970) develop another method for mixture experiments 

where mixture components are categorized. The experimentation is performed in 

an ellipsoid region which is expressed analytically by 

f (x; -_xo;)2 ::; 1, 
i=l h, 

where x0; and h; are chosen by the experimenter so as to give appropriate location 

and spread to the interval of interest for the ;th component x; in the particular 

application. The ellipsoid is totally inside the multiple simplexes constructed by all 

sets of components in categories. A transformation is made from q mixture 

variables to q-k mixture-related variables where k is the number of categories. The 

transformation makes rotatable response surface designs possible. Process 

variables are introduced into this problem by Cornell ( 1971 ). 
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While the measured response in the mixture problem depends only on the 

proportions of components present in the mixture, sometimes the measured 

response might also depend on the variables which are not components of the 

mixture. Example such as the yield of a crop depends not only on the component 

proportions of fertilizers but also on the amount of fertilizer. The quality of alloy 

depends on its ingredients and the temperature and pressure in the manufacturing 

process. The variables other than component proportions which might have effects 

on the measured response to mixture are called process variables. Scheffe' ( 1963) 

illustrates a simplex-centroid by factorial design where process variables are in a 

factorial arrangement. Piepel and Cornell ( 1987) obtain D-optimal designs for the 

mixture amount problem. 



1.3 The Problem with Current Designs on Mixture Experiments 

for Categorized Components 

The Mixture problem for categorized components is first introduced by 

Lambrakis (1968a). Lambrakis develops a multiple simplex-lattice design for this 

problem where the region of the interest is any point in the multiple simplexes. 

Suppose the components in the q-component multiple simplex-lattice design are 

divided into k categories and each category has q; components in it such that 

q1 + q2 + ... +qk = q. Also assume the {q/, m;} simplex-lattice design is selected on 

the components of the ;th category. The number of design points required in the 

multiple simplex-lattice design becomes 

A(q; +m; -IJ. 
i=l m; 
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For a 9-component and 3-category multiple simplex-lattice design with 3 

components in each category, if a {3', 2} simplex-lattice design is selected on the 

components in each category, the number of design points required for the { /, /, 

3'; 2, 2, 2} triple simplex-lattice design is 216 which is large and quite often it 

becomes infeasible to experimenters. Thus alternative designs and models should 

be considered instead of the multiple simplex-lattice design. 

Cornell and Good (1970) expand the mixture problem for categorized 

components where the region of interest is an ellipsoid inside the multiple 

simplexes. The factor space of interest defined by the mixture components in the 

problem is no longer a set of multiple simplexes but a fraction of the multiple 

simplexes. Because of this one cannot explore the response surface over the whole 

set of multiple simplexes. Cornell ( 1971) expands process variables into 

consideration and the region of interest on the components is an ellipsoid. 
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In addition to the work of Lambrakis (1968a) and Cornell and Good (1970), 

there are other possible designs and models which can be used in the mixture 

problem for categorized components. For example one can use ratios as design 

variables in this problem. 

1.4 Research Objectives 

· The overall objective of the research is to extend the designs and models of 

mixture experiments while the components are classified into categories. To 

complete this objective, several subobjectives and tasks must be met. The 

subobjectives are: 

( 1) Develop q-component designs and models using mixture variables as 

design variables. This will include : 

( 1.1) Simplex-lattice by simplex-centroid designs and the associated 

models. This requires that the first set of components form a 

simplex-lattice design and the second set of components form 

a simplex-centroid design and then combine them into one 

design. 

(1.2) Multiple-centroid designs and the associated models. For 

double-centroid design, this requires the first set of components 

form a simplex-centroid design and the second set of 

components form a simplex-centroid design. Then they are 

combined into one design. 

(1.3) Interpretation of the coefficients in the fitted regression model 

associated with the multiple-centroid design. 

(2) Develop designs and models using ratios as design variables. This 

requires transforming the mixture variables into ratio variables, and use 
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of the ratio variables as design variables. Then standard designs can be 

applied to the ratio variables. 

(3) Develop D-optimal designs and models. This require choosing a set 

of candidate design points. The D-optimal designs are obtained by the 

DETMAX algorithm ( already available in the MIXSOFT software 

package) based on the assumption that the model under consideration is 

true. 

( 4) Develop designs and models using both mixture components and 

mixture-related variables as design variables at the same time. For 

example, one can use mixture variables as design variables on the 

components in the first category and use mixture-related variables as 

design variables on the components in the second category. This makes 

the designs similar to mixture experiments involving process variables. 

( 5) Compare the performance among the multiple-lattice design, multiple­

centroid design, design using ratios of components, D-optimal design, 

and the design using both mixture components and mixture-related 

variables as design variables. 

1.5 Contributions 

All the of above items are new developments not previously covered in the 

literature. This research provides benefits to both theoreticians and practitioners, 

resulting in contributions to the area of experiments with mixtures. This study 

becomes the first of its kind to provide the following in the mixture problems for 

categorized components : 

(I) Simplex-lattice X simplex-centroid design and the associated 

models. 



(2) Multiple simplex-centroid designs and the associated models. 

(3) Designs and models using ratios as design variables. 

( 4) D-optimal designs. 
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(5) Designs and models using both mixture components and mixture-related 

variables as design variables at the same time. 

(6) Comparison among the multiple-lattice design, multiple-centroid design, 

designs us inf ratios of components, D-optimal designs, and designs 

using both mixture components and mixture-related variables as design 

variables. 

All of these are new developments that provide alternative methods to 

practitioners in the designing and modeling of mixture problems with components 

in categories. 



CHAPTER2 

LITERATURE SURVEY 

The problem of mixture experiments is first introduced by Claringbold 

(1955). The first formal theory for experiments with mixtures of q components 

whose purpose is the empirical prediction of the response to any mixture of the 

components is presented by Scheffe' (1958). Since then, various extensions and 

modifications of mixture problems have been developed. The mixture problem , in 

general, is divided into two areas: 

(I) The values of all components are bounded between O and I. This kind 

of mixture problem is called the unconstrained mixture problem. 

(2) The values of some components are bounded with positive lower bounds 

or upper bounds. This kind of mixture problem is called the constrained 

mixture problem. 

Claringbold (1955) presents a problem with mixtures in a paper on the joint 

action of related hormones and notes that the factor space for experiments with 

mixtures is a simplex. In a q-component mixture (q~3) let x; be the proportion (by 

volume, weight, moles, etc.) of the ;th component in the mixture and also let x; 

denote the ;th component itself, so that 

X; ~ 0 (i=l,2, ... ,q), and X1 + X2 + ... +Xq = 1. (2.1) 

The factor space for q=3 could be plotted in a 3-dimensional space as shown in 

Figure 2.1. The triangle ABC in Figure 2.1 which is constructed by restriction 

(2.1) is a simplex since any pair of the 3 vertices has a distance the same as that of 

13 
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x1=l 

(1,0,0) 

Figure 2.1 Factor Space of a Three-Component Mixture Problem 
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every other pair of vertices on the triangle. Triangle ABC is generally plotted as in 

Figure 2.2. 

For mixture experiments, one generally would like to obtain a designed 

experiment which has design points uniformly and symmetrically distributed on 

and inside the factor space. However, the best design is based on the personal 

objective of the experimenters. The following designs and models are important 

subjects which one musf understand while applying mixture experiments to one's 

problem. 

2.1 Simplex-Lattice Design and the Associated Model 

Scheffe' (1958) proposes a simplex-lattice design for exploring the whole 

factor space (simplex) where the design points are uniformly distributed on the 

boundary of the factor space. In a q-component mixture problem, the proportions 

used for each component take the (m+ 1) equally spaced values from O to 1, x;=O, 

1/m, 2/m, ... , 1, and all possible mixtures with these proportions for each 

component are used. Such a design is called { q1, m} lattice design. {31, 2}, {31, 3} 

and { 4', 2} lattices are pictured in Figure 2 .3. When the design points of the { q 1, 

m} simplex-lattice are plotted onto the (q-1) dimensional simplex, these design 

points appear in a symmetrical pattern with respect to the vertices and the sides of 

the simplex. It can be shown that the number of design points in the { q1, m} lattice 

IS 

( q+m-1) = (q+m-1)!. 
m m!(q-1)! 

Scheffe' (1958) also derives a canonical polynomial model which can be fitted by 

the design points on the { q1, m} simplex-lattice. The general linear regression 

function in q variables is 
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(0,1,0) 

x2=1 

Figure 2.2 Simplex of Three Components· 
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{3 1, 2} Lattice {3', 3} Lattice 

x.i=I 

{4', 2} Lattice 

Figure 2.3 Some {q1, m} Lattices 
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q 

TJ= Po+ LP;x;. (2.2) 
i=l 

q q 

Since the restriction LX; = 1 applies, multiplying Po in equation (2.2) by Ix;, 
i=l i=l 

equation (2.2) becomes 
q q 

rJ= PoLX; + LP;x; 
i=l i=l 

q 

= I <Po + P/)x; 
i=l 

q * 
= LP;x;. (2.3) 

i=l 

Equation (2.3) is then the first-degree canonical polynomial for design points 

on the { q, 1} simplex-lattice. 

The general second-degree polynomial in q variables is 
q q 2 q 

TJ= Po+ LP;x; + L/J;;x; + LLPux;xf (2.4) 
i=l i=l i < j 

q q . 

Applying the identity LX; = 1 and x1 = x;(l- Ix}, equation (2.4) becomes 
i=l J=l 

f:t:i 
q q q q q 

TJ= Po(Lx;)+ LP;x; + IPux;(I- Ix}+ LLPux1x1 
i=l i=l i=l j:t:i i < j 

q q q q 

= L<Po +P; +/J;;)x;- L/J;;x;(Lx1)+ LL/J;1x;x1 
i=l i=l f:t:i i < j 

q * q * 
= LP;x; + LLPux;xJ. (2.5) 

i=l i < j 

Equation (2.5) is the second-degree canonical polynomial model for design points 

on the { q1, 2} simplex-lattice. Similarly, the cubic model for design points on { q1, 

3} simplex-lattice can be shown to be 
q q q q 

TJ= °Lfl;x; + LLPux;x1 +LL IPukx;x1xk + LL8ux;x/x; -x1). (2.6) 
i=l i < j i <j < k i < j 



A special case of equation (2.6) which is referred to as a "special cubic 

polynomial" is 
q q q 

T/ = L/J;X; + I Lflux;XJ + I I LflukX;XJXk. 
i=l i < j i <) < k 

Gorman and Hinman(l 962) also derive the quartic canonical polynomial for 

mixture experiments. 
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The number of parameters in the { q1, m} canonical polynomial is shown to 

be ( q +;-I) which is exactly the same number of the design points on the { q', 

m} simplex-lattice. If the observed mean responses ofthe design points in the{/, 

m} simplex-lattice are used to solve for the unknown parameters in the { q', m} 

canonical polynomial, the unknown parameters can be uniquely determined. 

If xi is set to 1, which forces x 1=0 for all j -:t: i, then T/ = /J;. The parameter /3; 

therefore represents the expected response to a pure component i and /J; is the 

height of the response surface above the simplex at the vertex where x;=l for i=:l, 

2, ... , q. 

2.2 Simplex-Centroid Design and the Associated Model 

Scheffe' ( 1963) proposes a new design for experiments with mixtures of q 

components consisting of 2q -1 points. The points correspond to q permutations of 

(I, 0, 0, ... , 0), (~) permutations of(l/2, 1/2, 0, ... , 0), (~) permutations of(l/3, 

1/3, 1/3, 0, ... , 0), ... , and so on, with the overall centroid point (liq, liq, ... , liq). In 

other words, the design consists of all possible subsets of the q components, 

present in equal proportions. Such mixtures are located at the centroid of a ( q-1 )­

dimensional simplex and the centroids of all lower-dimensional simplexes 



contained within the ( q-1 )-dimensional simplex. Figure 2.4 pictures the simplex­

centroid designs for three components and four components. 

20 

The polynomial model associated with the q-component simplex-centroid · 

design is 
q q q 

7]= L/J;X; + LL/JiJx;x1 +LL LfJiJkx;x1xk + ... +f]12 ... qx1x2 ... xq· (2.7) 
i= 1 i < j i <J < k 

The number of unknown parameters in equation (2.7) is 2q -.1 which is the same as 

the number of design points in the q-component simplex-centroid design. Thus, 

parameters in equation (2. 7) can be uniquely determined while the measured mean 

responses of the design points are fitted to equation (2. 7). 

2 .3 Axial Design 

The { q1, m} simplex-lattice and q-component simplex-centroid designs 

have design points on the boundary of simplex, except at the overall centroid. 

Cornell ( 1975) suggests a new design consisting of points mainly inside the 

simplex. The axis of component i is defined to be the imaginary line extending 

from the base point x;=O, x1=ll(q-1), for allj:t:i, to the vertex where x;=l, x1=0, 

for allj:t:i. The base point is the centroid of the (q-2)-dimensional boundary which 

is opposite the vertex x;=I, x1=0, for all j:t:i. The length of the axis is the shortest 

distance between the base point and vertex opposite to it. An axial design is a 

design where points are located only on the component axes. The simplest form of 

axial design is one whose points are positioned equidistant from the overall 

centroid (liq, liq, ... , liq) toward each of the vertices. Figure 2.5 presents a picture 

of a three component design with IO design points. 

Data collected from an axial design would thus be fitted to Scheffe's 
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X,J=l 

Figure 2.4 Simplex-Centroid Designs for 3 and 4 Components 



A= (7/9, 1/9, 1/9) 
B = (5/9, 2/9, 2/9) 
C = (1/9, 7/9, 1/9) 
D = (2/9, 5/9, 2/9) 
E = (1/9, 1/9, 7/9) 
F = (2/9, 2/9, 5/9) 
G = (1/3, 1/3, 1/3) 

Figure 2.5 Three-Component Axial Design with IO Points 
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canonical polynomial depending on the number of design points in the axial 

design. The least-squares method is used to obtain the estimates of parameters and 

the corresponding variance-covariance matrix. 

The axial design is particularly useful in computing component effects and 

in screening experiments, especially when first-degree models are to be fitted. 

2.4 Symmetric Simplex Design 

Murty and Das (1968) develop a design which is the general case of the 

simplex-lattice and the simplex-centroid designs while symmetry conditions are 

imposed on the mixture variables. They define the symmetric simplex design as 

follows: 

"Let the· point ( x1u, x2u, ... , Xnu) of a design, for a mixture experiment in n 

components where d of the x;u's are non-zero elements, be called a d1h 

ordered mixture and denoted by Sd. Further, let d1 of the X;u's of Sd be 

each equal to q1, d2 of the X;u's equal to q2 , and so on, and dh ofthe X;u's 

equal to qh so that d1 +d2 + ... +dh = d and d1q1 +d2q2 + ... +dhqh =I.Let 

all the d 1h ordered mixtures Sd that are obtainable by permutation of the 

different fractions in the mixture over the n components be written in the 

form of a group called the group Gd, each mixture Sd forming a row of Gd 

and the ;th component being represented by the ;th column of Gd. Then it 

is seen that the number of rows in the group Gd is given by 

wd =(~t~:1t-(,td2)J .. (n-(d1 +<~r---+dh-1>) 

A symmetric simplex design for mixture experiments consists of 

some or all the group Gd, d=l, 2, ... , n, where every group Gd is obtained 

by permuting the different fractions over the n components in a d 1h ordered 



mixture with d1 components taking a proportion q1, d2 of them taking a 

proportion of q2 , and so on, dh of them taking a proportion qh such that 

d1 +d2 + ... +dh = d and d1q1 +d2q2 + ... +dhqh = I." 
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It can be seen that given a point P of a group Gd, all such points on the 

simplex which are symmetrically placed as P with respect to every one of then 

vertices areincluded in the group Gd, and hence in the designs. 

Murty and Das atso illustrate with examples to show that the simplex-lattice 

and simplex-centroid designs proposed by Scheffe' and the radial-lattice and 

radial-centroid designs proposed by Plackett (Scheffe' 1963) are just particular 

cases of symmetric simplex designs. 

2.5 Mixture Experiments Using Ratios 

In some mixture experimentations, one is likely to be interested in one or 

more of the components, not so much from the standpoint of their proportions in 

mixtures, but from their relationship to the other components in the mixtures in the 

form of their proportions. Kenworthy (1963) illustrates an example of experiments 

with mixtures using ratios. For the three component case, let x1 x2 and x3 denote 
' ' 

the proportions of the three components in the mixture. Transformation from the x; 

variables to the ratio variables r1 and r2 can be 

r, - X2 .., - X3 
1--, '2 --. 

X1 X1 

The number of ratios r; should be one less than the number of components in the 

system and each ratio r; contains at least one of the components used in the other 

ratios. 

A simple first-degree model in r1 and r2 usually is 



and a second-degree model in r1 and r2 generally is 

2 2 y = a0 + a1r1 + a2r2 + a 11r1 + a22r2 + a 12r1r2 + e. 

Note that the mixture variables x; are mutually dependent since the restriction 
q 

25 

L x; = I. Standard orthogonal designs can be used with the ratio variables on the 
i=l 

basis of staying within the experimental area. Equal spacing of ratio variables is 

desirable so that coding .on ratio variables provides easier regression analysis. 

2.6 Designs Using Mixture-Related Variables 

Claringbold (1955) shows a method of orthogonal transformation from q 

mixture variables X; to ( q-1) mixture-related variables. He includes the following 

two-step procedures. 

Step I: Define the location of the origin of the new system to be at the centroid of 

the simplex by introducing the intermediate variables t; where 
I 

t; = q(x; - -) = qX; - I . 
q 

Step 2: The axes of the original components are rotated so as to define the simplex 

using only q-1 variables, making the axis of variable q orthogonal to 

the simplex (variable q then is removed from further consideration). 

ffw; are the q-1 variables by Claringbold's transformation from q mixture 

variables, a second-degree model on the q-1 mixture-related variables usually 

would be 
q-1 q-1 q-1 

y = a0 + L a;w; + L a;;wf + L L aijw;w 1 + &. 

i=l i=l i < j 

Standard designs such as factorial designs and central composite designs 

can be employed with mixture-related variables as long as all design points are 

within the simplex. 
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Draper and Lawrence ( 1965a and 1965b) perform another transformation to 

generate a system of ( q-1) variables from the q-component system. The 

transformation produces a design region that is not necessarily centered at the 

centroid of the composite space. Thompson and Myers ( 1968) develop a 

technique using q-1 variables to fit a polynomial model over some e11ipsoidal 

region of interest within the factor space. They also show that for the first and 

second order polynomial models, the estimation procedure can be simplified for 

the case of rotatable designs. 

2.7 Designs and Models While Process 

Variables Are Also Considered . 

to Be Factors 

Process variables such as temperature, pressure, and amount of the mixture 

might also have an effect on the measured response to the mixture. Scheffe' ( 1963) 

introduces designs and regression equations including n p~ocess variables and the 

q mixture variables. He also introduces fractional replication of the designs in the 

case where the process variables are all at ·two levels. For a mixture problem 

involving three process variables each with I, J, and K levels respectively, a 

complete simplex-centroid by IJK experiment is one in which at each of the 2q -1 

points of the simplex-centroid design a complete IJK experiments are made with 

the process variables. If the process variables are denoted as z;, i=l, 2, 3, the model 

associated with the complete simplex-centroid by IJK experiment where q=3 is 

Y = (/J1x1 + P2x2 + /J3x3 + f312x1x2 + /313x1x3 + /323x2x3 + /3123X1f2X3) * 

q 

(a0 + La;z; + LLaijz;z1 +LL LaiJkz;z1zk)+e 
i i<j i<j<k 



q O q O 0 
= L/J; X; + I L/JyX;XJ + f)ijkX;XJXk + 

i=l i < j 
3 q I q I I 
L(L/J;x; + L LfliJx;x J + f)ijkx;x 1xk )z1 + 
l=l i=l i < j 

q q 

I IcIP:mx; + I IPimx;XJ + P~1x;XJXk)Z/Zm + 
I < m i=l i < J 

q 123 q 123 123 
(L/J; x; + I bPiJ x;x J + f)ijk x;x jXk )z1z2z3 + & .. 

i=l i < j 

Murty and Das (1968) illustrate a complete symmetric simplex X factorial 

design. Piepel and Cornell ( 1987) show D-optimal designs consisting of mixture 

variables and amount of the mixture. 
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Cornell and Gorman ( 1984) have a detailed discussion of fractional design 

plans for process variables in mixture experiments. A split-plot design approach 

where one could either embed the mixture blends in each of the processing 

conditions or embed the processing conditions within each of the mixture blends is 

shown by Cornell (1988). 

2.8 The Mixture Problem for Categorized Components 

Some mixture experiments involve two or more classes of components. 

Consider a reactor with two different kinds of incoming materials. One major 

category is a fluid type consisting of2 components u1 and u2 (u1 and u2 represent 

proportions and u1 + u2 = I). The other major category is a gas type consisting of 2 

components v1 and v2 ( v1 + v2 = I). Each category has at least one member present 

in the mixture and each category contributes a fixed proportion present in the 

mixture. The mixture problem could be generalized into any number of major 

categories where each major category contributes a fixed proportion to the total 



mixture and is represented in every mixture by one or more of its member 

components. 
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Lambrakis ( 1968a) develops a theory called multiple-lattice design to 

empirically predict the response to any mixture of k major components. Assume 

two categories are considered in a mixture problem. Suppose one simplex-lattice 

from the first set of components u1, u2, ... , up and another simplex-lattice from the 

second set of components v1, v2, ... , vq. Also if all possible mixtures which can be 

produced by mixing each mixture from the first simplex-lattice with each mixture 

from the second simplex-lattice with proportions c1 and c2 , respectively, then the 

design is called a double-lattice design. For example, the {/, 3} simplex-lattice for 

the first category of components and the { q1, 2} simplex-lattice for the second 

category of components, will combine into the {/, q1; 3, 2} double lattice. 

The canonical polynomial corresponding to the {p1, 3} simplex-lattice is 
p p p p 

Y ="a- U· + "" a--U·U. + "" O··U·U ·(U· -u ·)+" " "a··kU·U ·Uk+ & L,i11 LJL.Jy11 LJL.Jl)lj 1 J LJLJL.Jl) 1] , 
i=l i < j i < j i <j < k 

(2.8) 

and the canonical polynomial corresponding to the { q', 2} simplex-lattice is 
q q 

y = L't V; + LLrij V;VJ + &. (2.9) 
i=I i < j 

Multiplying the right sides of the polynomials (2.8) and (2.9), and then replacing 

the products of the coefficient by a single coefficient, the regression function for 

the {p1, q1; 3, 2} double lattice is 
p q p q p q 

y= L La;,1u;v1 +LL Lai,Jku;v1vk +LL LaiJ,ku;u1vk+ ... + 
i=Ij=l i=Ij < k i < j k=I 

p q 

LLLLLaijk,/mU;UJUkVJVm + &. (2.10) 
i< j< k I< m 
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The number of design points required in the multiple simplex-lattice design with k 

categories becomes 

A (qi + m; - 1) , 
i=l m; 

where the { qf, m;} simplex-lattice is used in the ;th category such that 

ql +q2 + ... +qk = q. 

Cornell and Good (1970) perform a technique for mixµire problems for 

categorized components where the factor space is an ellipsoid region. Mixture 

related variables which are obtained from the orthogonal transformation of mixture 

variables are used as design variables in the technique. Cornell ( 1971) also 

discusses the mixture problem with process variables for categorized components. 

2.9 Computer-Aided Design 

The model for mixture experiments can be written in matrix form as 

Y=Xp+e, 

where Y is an Nxl vector, the design matrixX is Nxp, Pis a pxl vector, the error 

term e is an Nxl vector, N is the total number of observations in the mixture 

experiment and pis the number of parameters in the regression model. Then the 

least squares estimator of p and its variance-covariance matrix are given by 
I\ I\ 

P= cxTx)-ixry, Var(ft) = cxTxr-10-2. 
I\ 

The predicted response at some point Xo is Y(Xo) and 
I\ 

Var[y(X())] = X6 (XT X)-l xou2 

The design optimality criteria A-, D- ,G- ,V-optimality are each concerned with the 

choice of the elements in the matrix X that minimize various functions of 

(X7xr1. More specifically: 
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(1) A-optimality is when the trace of (X T xr 1 is minimized, in which case 
I\ 

the average variance of the elements of p is minimized. 

(2) D-optimality is when the determinant det( X TX ) is maximized, or when 

det ( X TX)- l is minimized, thereby minimizing the generalized 
I\ 

variance of the elements of p. If the errors are normally distributed, the 

D-optimal design minimizes the volume of the conference ellipsoid for 
.. 

the unknown parameter fi. 

(3) G-optimality seeks to minimize the maximum prediction variance, max 

{ d = xJ (X T X)-1 x0o-2 } , over a specified set of design points. 

( 4) V-optimality seeks to minimize the average value d, d = 

xJ ( X TX)-l Xoo-2 , over a specified set of design points. 

The advantage of these four optimality criteria is that they can generate 

nearly optimal ( as orthogonal as possible) designs based on the model using as 

few runs as possible. The assumption required for all optimal designs is that the 

model under consideration be true. 

Mitchell ( 197 4) develops an algorithm (DETMAX) for the construction of 

D-optimal experimental designs. Welch (1982, 1983, and 1984) develops a 

branch-and-bound searching algorithm (ACED) to construct a catalog of all A-, D-, 

G-, V-optimal n-point designs for a specified design region, linear model and 

number of observations. Both DETMAX and ACED algorithms can be employed 

on mixture and non-mixture problems. Piepel and Cornell ( 1987) obtain D-optimal 

designs for mixture-amount experiments using the DETMAX algorithm. 

2.10 Other Important Designs and Models of Mixture Problem 

There are other important designs and models which are indirectly related 



to the research but are worthwhile mentioning. Lambrakis ( 1968b) proposes a 

design where the proportion of each component in the mixture has to be greater 

than zero. Lambrakis (1969) proposes an alternative to the simplex-lattice design 

where extreme vertices of component i are replaced by x; = 0, x 1 = - 1-, for all 
q-1 
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J -:t i. Kurotori ( 1966) develops experiments with mixtures of components having 

lower bounds. McLean and Anderson ( 1966) propose extreme vertex designs of 
.• 

mixture experiments for constrained components. Snee and Marquart ( 1974) 

propose extreme vertex designs for the linear mixture model. Snee ( 197 5) develops 

experimental designs for quadratic models in constrained mixture spaces. For 

blocking designs, one could refer to Nigam (1970 and 1973), Saxena and Nigam 

(1973), Singh, Pratap, and Das (1982), John (1984), Czitrom (1988), and Draper, 

Prescott, Lewis, Dean, John, and Tuck ( 1993 ). 

Draper and St. John (1977) propose a mixture model with inverse terms to 

model an extreme change in the response behavior as the value of one or more 

components tends to a boundary of the simplex region. Cornell and Gorman 

(1978) suggest an alternative model form for modeling the additive effect of one 

component in a multicomponent system. Becker (1968) proposes a homogeneous 

model of degree one for modeling the additive effect of one component and at the 

same time accommodating the curvilinear blending effects of the remaining two 

components. Cox ( 1971) proposes a mixture polynomial model for measuring 

component effects. Aitchison and Bacon-Shone ( 1984) develop a log contrast 

model for experiments with mixtures. Morris (1975) develops an interaction 

approach to gas modeling ( octane blending models). 
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2.11 Summary 

The literature survey presents the problems, contributions and needs to the 

objectives of the research. For a mixture problem with two three-component 

categories, a double-lattice design requires I 00 design points and thus has 100 

parameters in the corresponding model. This is sometimes infeasible to 

experimenters for economical reason. The disadvantage of orthogonal design using 

q-1 variables is that the experimental region of the design is not large compared to 

the simplex. Although the multiple simplex-lattice designs and rotatable designs 

using q-1 variables are developed in the literature, other alternative designs and 

models which are not shown in the literature could also be generated and used in 

the mixture problem for categorized components. The following subjects which are 

done in this research are the other alternative designs and models which are not 

available in the literature for the mixture problem with categorized components. 

(I) Develop the simplex-lattice by simplex-centroid designs and the 

associated models. 

(2) Develop multiple-centroid designs and the associated models. 

(3) Develop designs and models using ratios of components as design 

variables. 

( 4) Obtain D-optimal designs and models. 

( 5) Develop designs and models using both mixture variables and mixture­

related variables as design variables. 

( 6) Compare the performance among the multiple-lattice design, multiple­

centroid design, design using ratios of components as design variables, 

D-optimal design, and the design using both mixture components and 

mixture-related variables as design variables. 



CHAPTER3 

DESIGNS AND MODELS USING MIXTURE 

VARIABLES AS DESIGN 

VARIABLES 

Lambrakis ( 1968a) develops the multiple-lattice design for mixture 

experiments with categorized components. In a multiple-lattice design, first, a 

simplex-lattice design is selected for each category based on all the minor 

components in each category. Then all the simplex-lattice designs are combined by 

factorial arrangement to form a multiple-lattice design. The total number of design 

points in a multiple-lattice design is the multiplication of the number of design 

points of the simplex-lattice design in each category. A multiple-centroid design 

and simplex-lattice by simplex-centroid design are developed in this chapter. Also 

their corresponding models are given and examples illustrate their use. 

3 .1 Introduction of the Mixture Problem with 

Categorized Components 

Mixture experiments with components classified into categories while each 

category contributes a fixed proportion to the mixture is called the mixture problem 

with categorized components. Suppose q components are classified into k 

categories and each category contributes proportion c; (i=l, 2, ... , k) to the mixture. 

Also assume each category consists of q; (i=l, 2, ... , k) "minor" components such 
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that q1 + q2 + ... +qk = q. Let uij represent the /h minor component in the /h 

category and its corresponding proportion, then 
q; 
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Iuu = C; for i=l, 2, ... , k, (3.1) 
J=l 

and 
k 

I:c; = 1. 
i=l 

Divide both sides in equation (3 .1) by c;, then 
qi U·· 
"_JJ_=l .c: . 1 2 k 

U·· 
Replace ....!}_ by xi}, then 

C· l 

£.., 1or 1= , , ... , . 

J=l C; 

qi 
Ixu = I for i=l, 2, ... , k. 
J=l 

(3.2) 

(3.3) 

From equation (3.3), one can think each category forms a sub-mixture with q; 

components in the sub-mixture, and mixtures are formed by the k sub-mixtures. 

The xu is then the component and the proportion relative to the ;th sub-mixture 

assigned to the /h minor component in the ;th category. 

and 

The mixture problem with categorized components could then be written as 
qi 
Ixu = 1 for i=1, 2, ... , k, 
J=l 

k qi 
L LCtXij = 1, 
i=lj=l 

(3.4) 

where O $; xu $; I (i=l, 2, ... , k; j=l, 2, ... , q;). 
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3 .2 Multiple-Centroid Designs and Their Associated Models 

Assume that the proportion of c; contributed to the mixture for each 

category is fixed in advance and, for i= 1, 2, ... , k, the proportion ( xn, x;2, ... , xiq; ) as 

a vector can be values from the q; permutations of(], 0, 0, ... , 0), from the (~J 
permutations of (I /2, I /2, 0, ... , 0 ), from the ( ~) permutations of (I /3, 113, 1/3, ...• 

0), ... , and finally the value (liq;, liq;, ... , liq;). In other words, the proportion xij 

can take values from the centroids of the { qf, m;} simplex-centroid where m; is 

the degree of the fitted regression equation on the design points to the ;th sub­

mixture. Combining the centroids in each { qf, m; } simplex-centroid for all 

categories by factorial arrangement establishes the 

{ C C C. } It" l t "d ql, q2, ... , qk, mi, m2, ... , mk mu Ip e-cen rm . 

Since the number of design points of the { qf, q; } simplex-centroid design 

is 2q; - 1, the total number of design points of the 

, c c c. } 1 · 1 ·d d · h · l. ql, q2, ... , qk, m1, m2, ... , mk mu tip e-centrm es1gn t en 1s 
k n (2q; _1). (3.5) 

i=I 

Let Tit be the expected response to the sub-mixture contributed by the minor 

components of the i1h category, the regression equation fitted to the { qf, q,} 

simplex-centroid design is 

_ q; di) qi-I q; di) di) 
Tit - LP) Xtj + LLP)kXijXtk+ ... +p12 ... q/t1Xt2 ... Xtq;' 

.i=l 1~.f<k 

for i = 1, 2, 3, ... k, or 

(i) /J X·· X·· X·· 
· · · lJI 1J2 ··· 1J r ' JIJ2---Jr 

(3.6) 

for i = 1, 2, 3, ... k. 
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The number of parameters in equation (3.6) is 2q1 -1 which is exactly the same as 

the number of design points of the { qf, q;} simplex-centroid design. 

Suppose 'I is the overall expected response to the mixture with categorized 

components, the fitted regression equation to the mixture is the multiplication of 

the fitted regressions to the sub-mixtures. That is, the model for the 

{ qf, qq, ... , qk; q1, q2, ... , q k } multiple-centroid design is 

di) P' X·· X·· X·· · · · Y1 Y2··· Yr · 
Jl.12···lr 

(3.7) 

One would observe that the total number of parameters in equation (3.7) is 

exactly the same as the total number of design points of the 

{ qf, qq, ... , qk; ql, q2, ... , q k } multiple-centroid design. Thus the parameters of 

equation (3. 7) for the { qf, qg,, ... , qk; ql, q2, ... , q k } multiple-centroid design 

can be determined uniquely. 

The mixture problem with components in two categories using multiple­

centroid design is illustrated in the next section. One might call it a double­

centroid design. 

3 .3 Double-Centroid Design and the Associated Model 

Suppose a { qf, m1 } simplex-centroid is from the first category of 

components ( x11, x12, ... , x1q1) and another { qg,, m2 } simplex-centroid is from the 

second category of components (x21, x22, ... , x2q2 ) and also all possible mixtures 

which can be produced by mixing each mixture from the first simplex-centroid 

with each mixture from the second simplex-centroid with proportions c1 and c2 , 

respectively, then one has a double centroid. The double centroid is denoted by 

{ qf, qg_; m1, m2 } . 
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The notation for the expected response to a mixture introduced by Scheffe' 

( 1958) is used here. For example, from the { qf, 3} simplex-centroid for the first 

set of components and the { q2, 2 } simplex-centroid for the second set of 

components, the { qf, q2; 3, 2 } double-centroid design is obtained. The { qf, 3 } 

simplex-centroid contains q1 pure mixtures 1/; with proportions XJi = I, ( ~1) 

binary mixtures 1/ij (I :5 i < j :5 q1) with proportions xii = x1 p = I 12 , and ( q;) 
ternary mixtures 17ijk (I ~ i < j < k ~ q1) with proportions xli = x11 = xlk = 1/3. 

The { q2, 2 } simplex-centroid contains q2 pure mixtures 17; with proportions 

x2; = I, and ( ~) binary mixtures 1/ij ( I :5 i < j :5 q2 ) with proportions 

x2; = x21 = 1/2. Mixing each mixture from the { qf, 3} simplex-centroid with 

each mixture from the { q2, 2 } simplex-centroid with proportions c1 and c2 

respectively, the { qf, q2; 3, 2 } double-centroid is obtained and contains mixtures 

as shown in Table 3.1. 

The polynomial model associated with the first category of components in 

the { qf, q2; 3, 2 } double lattice is 

- ql dl) dl) dl) 
171 - LPi xii+ L L PiJ xlixIJ + Pi;kxlix1;xlk (3.8) 

i = 1 l-5,i < J -5,ql 

and the polynomial model associated to the second category of components is 

_ q2 (2) d2) 
172 - LP; x2; + L L PiJ x2;x2; · (3.9) 

i = 1 l-5,i <j '5aq2 

Since the mixtures in the { qf, q2; 3, 2 } double-centroid are obtained by mixing 

each mixture from the { qf, 3 } simplex-centroid with each mixture from the 

{ q2, 2 } simplex-centroid, one will obtain the fitted regression model for the 

{ qf, q2; 3, 2 } double-centroid by multiplying both the right sides of equations 
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Table 3. I The { qf, q§_ ~ 3, 2 } Double-Centroid 

Number of Response to Mixtures Proportions of Components 
Mixtures of Mixtures 
q1.q2 TJ;,/ I s i s q1, I s J $ q2) xii= 1,x21 = 1 

q2 
q1.( 2) 

T/i ,jk (I s i s ql, 1 s j <ks q2) xli = I, x21 = x2k = 1/2 

ql 
( 2 ).q2 

'lij,k(I 5',_ i < j $ qi, } $ k $ q2) X}i = XJj = 1/2, X2k = } 

(q1)_(q2) 'liJ,kl(l s i < J ~ q1, 1 s k < 1 s q2 ) xli = x1J = 1/2, x2k = x21 = 1/2 

2 2 

qi 
( 3 ).q2 

'lijk,f(I $ i < j < k $ qI, 1 s / $ q2) xii = x1J = x1k = 1/3, x21 = I 

(q1)_(q2) 'liJk,1mO s i < J < k s q1, X}i = Xlj = X}k = 1/3, 

3 2 Is/< msq2) x21 = X2m = 112 
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(3.8) and (3.9). Then the fitted model for the { qf, qt 3, 2} double-centroid 

design becomes 

qi nO) "'. di) dl) ) * 
T/ = (LPi xii+ L ~ PiJ xlixIJ + PiJkxlixIJxlk 

i=I ISi<JSq1 

q2 (2) (2) 
(LP; x2; + pij x2;x21). (3.10) 
i=I 

Multiplying the right side of equation (3.10) and replacing the coefficients by 

single coefficients, equation (3.10) becomes 
qi q2 qi q2 

7'/= L LAJxlix2J + L L LfiiJkxlix21x2k + L L Lfiij,kxlixljx2k + 
i=IJ=I i=Il$j<kSq2 ISi<JSq1 k=I 

q2 

L L L LPiJ,klxlix11x2kx21 + L L L LPijk,/X1iX11x1kx21 + 
l$i<JSq1 lSk<ISq2 lSi< j< kSq1 l=l 

L L L L Lfiijk,fmXJiXJjXJkX21X2m · 
l$i < j < ksq1 1$/ < mSq2 

(3.11) 

For q1 = q2 = 3, the design points are obtained by the factorial arrangement of two 

simplex-centroids and are shown in Figure 3.1. The {3C, 3C; 3, 2} double-centroid 

has 42 design points as shown in Table 3.2. The polynomial model for the {3C, JC; 

3, 2} double-centroid design is 

11= ('41\11 + /-}x12 + fl':/\13 + J4Yx11x12 + J4~x11x13 + liVx12x13 + #i~3X11X12x13) * 
<Pi2)x21 + Pi2)x22 + ~ 2)x23 + pg)x21x22 + fli~)x21x23 + fii1)x22x23) 

= P1,1x11x21 + P1,2x11x22 + P1,3x11x23 + ... +fi123,I2x11x12x13x21x22 + 

(3.12) 

One can obtain the coefficient estimates of the fitted regression model for 

the { qf, q~; m1, m2 } double-centroid design by using the least-squares method. 

An example is shown in the next section on how to get and interpret the coefficient 

estimates of the fitted regression model for the multiple-centroid designs. 



X12=l 

• 
xu=x12=x13=1/3 

Figure 3.1 Constituent Points ofthe {3c, 3 c; 3, 2} Double-Centroid 

40 
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Table 3.2 Design Points of the {3c, 3 c; 3, 2} Double-Centroid 

Run xu XI2 X13 x21 x22 X23 
No. 

1 1 0 0 1 0 0 
2 1 0 0 0 1 0 
3 1 0 0 0 0 1 
4 1 0 0 112 112 0 
5 1 .. 0 0 112 0 ·1/2 
6 l 0 0 0 112 112 
7 0 0 1 1 0 0 
8 0 0 1 0 1 0 
9 0 0 1 0 0 1 
10 0 0 1 112 112 0 
11 0 0 1 112 0 112 
12 0 0 1 0 112 112 

37 113 113 113 1 0 0 
38 113 113 1/3 0 1 0 
39 113 1/3 113 0 0 1 
40 113 1/3 1/3 112 1/2 0 
41 1/3 113 . 1/3 112 0 1/2 
42 113 1/3 113 0 112 1/2 



3.4 Interpretation of the Coefficients in the Fitted Regression Model 

Associated with the Multiple-Centroid Design 

One can interpret the coefficients of the fitted regression model in a 

multiple-centroid design. For ease in understanding the meaning of the 

coefficients, the {2C, 2c; 2, 2} double-centroid design is illustrated. The design 

points of the {2C, 2c; 2,'2} double-centroid are shown in Table 3.3. 

The polynomial model associated with the {2C, 2c; 2, 2} double-centroid 

design is 

17 = P1.1x11x21 + P1,2x11x22 + P1,12x11x21x22 + P2,1x12x21 + P2,2x12x22 + 

42 

Pi,12x12x21x22 + P12,1x11x12x21 + P12,2x11x12x22 + P12,12x11x12x21x22 · (3.13) 

Note that xn + x12 = I and x21 + x22 = I are true for the {2C, 2c; 2, 2} double­

centroid design. Employing the design point in the first run and its associated mean 

response in Table 3.3 (i.e. xn =I, x21 = I, and 771 l) into equation (3.13), one 
' 

obtains 

771,1 = P1,1-
I\ 

Let T/ denote the observed mean response to mixture and p the least-squares 

estimate of p, then 

(3.14) 

Similarly, applying the values in the second, fourth, and fifth runs in Table 3.3 into 

equation (3 .13 ), one has 
I\ I\ 

/31,2 = ql,2• /32,1 = q2,l 

and 

(3.15) 

Also assigning the values of the third run in Table 3.3 into equation (3.13), one 

obtains 
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Table 3.3 Design Points ofthe {2 c' 2 c; 2, 2} Double-Centroid 

Run xn x12 x21 x22 Mean 
No. Responses 

1 1 ·o 1 0 771,1 
2 .. 1 0 0 1 771.2 
3 1 0 1/2 1/2 771.12 
4 0 1 1 0 772,1 
5 0 1 0 1 772,2 
6 0 . 1 1/2 l/2 772.12 
7 1/2 1/2 1 0 7712,1 

8 1/2 1/2 0 1 7712.2 
9 1/2 1/2 1/2 1/2 T/u.,12 



- JI\ I\ 11\ 
771, 12 = ;jfl1,1 + P1 ,2 }t 4 P1 .12 · 

By substituting equations (3 .14) and (3 .15) into equation ( 3 .16 ), one gets 
I\ 

P1,12 = 4 q1,12-2(111,1 + q1,2). 

Similar equations such as the following four equations could be obtained by 

applying the values of the last four runs in Table 3.3. 

A 

P12,2 = 4 q12,2 - 2( 771,2 + q2,2) · 
I\ 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

P12,12 = 16 q12,12-8(111,12 + q2,12 + q12,1 + 7712,2}t4(q1,1 + q2,1 + 771,2 + 112,2) · 

(3.21) 

From equation (3.14) and (3.15), one would observe that the least-squares estimate 

of P;,1 is the observed mean response to the mixture while the /h component in 

the first category and the /h component in the second category take the 

proportions of one relative to its corresponding sub-mixture. 

The estimate of PiJk in equation (3 .17) and (3 .18) measures the curvature 

between x21 = 1 and x2k = 1 at xu = 1. Similarly, the estimate of PiJ,k in equation 

(3.19) and (3.20) measures the curvature between xli = 1 and x11 = I at x2k = 1. 

Also one finds that all the estimates of p are contrasts of the mean response vector 

17 except P;,1 . 

Similarly, one can expand the interpretation of the coefficient estimates in 

the fitted regression model associated with the multiple-centroid design by 

applying the values of the design points and the observed mean responses to the 

fitted regression equation. 



3.5 Simplex-lattice by Simplex-centroid Design 

and the Associated Model 

The multiple-lattice method (Lambrakis, 1968a) and the multiple-centroid 

method (Section 3.2) have been developed for the mixture problem with 

categorized components. Another method similar to these two methods can be 

developed. Suppose there are two categories of components, ·and a { q(, m1 } 

simplex-lattice design is selected from the first category of components 
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(xn, x12, x13, ... , x1q1) and a { q~, m2} simplex-centroid design is selected from the 

second category of components (x21, x22, x23, ... , x2q2 ). Also, all possible mixtures 

which can be produced by mixing each mixture from the first simplex-lattice with 

each mixture from the second simplex-centroid, with proportions c1 and c2, 

respectively, results in a simplex-lattice by simplex-centroid design. 

For example, suppose two categories of components are considered in a 

mixture experiment with at least one non-zero component in each category. If one 

applies { qf ,2} simplex-lattice design on the first category of components and 

applies { q~, 3} simplex-centroid design on the second category of components, 

then combine the two designs in a factorial arrangement to be { qf, q~; 2, 3} design 

or { q{, 2} simplex-lattice by { q~, 3} simplex-centroid design. The polynomial 

equation corresponding to the { qf, q~; 2, 3} design is 

_ qi dl) dl) * q2 d2) n(2) 
17- (LPi x1; + L LPiJ X1;x11) (LPi X2; + L LPiJ x2;x21 + 

i=l I~i<j~ql i=I I~i<j~q2 

LL L /Jij~x2;x21x2k). (3.22) 
I~i<J<k~q2 
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The number of design points in the { q:, q~; mi, m2 } design and the number 

( ql +m1 - IJ 
of parameters in the associated model are equal to (2q2 - 1). This 

m1 

ensures that the estimates of parameters in the model can be determined uniquely. 

For q1 =q2 =3, the design points of the {31, 2} simplex-lattice by {JC, 3} 

simplex-centroid design are shown in Table 3.4. The polynomial equation 

corresponding to the {31., 3c; 2, 3} design is 

17 = (/Ji1)x11 +fli1)x12 + A1)x13 + fiiYx11x12 + fii~x11x13 + fli~x12x13) * 
(PF)x21 + P~2)x22 + P~2)x23 + Pif x21x22 + pg)x21x23 + P~~x22x23 + 

d2) 
Pi23X21x22x23). (3.23) 

Multiplying the right side of equation (3 .23) and then replacing the products of the 

coefficients by single coefficients, equation (3 .23) becomes 

11= P11x11x21 + P1 2xnx22 + P1 3x11x23 + ... +/323 13x12x13x21x23 + 
' ' ' ' 

(3.24) 

By substituting the component values at the design points of the 

{31, 3c; 2, 3} design and the measured response into equation (3.24), one can obtain 

the estimates of the coefficients in the model associated with the {31, 3c; 2, 3} 

design. This will be shown in the next section. 

3.6 Coefficient Estimates of the Fitted Equation Associated 

with the {31, 2} Simplex-Lattice by {JC, 3} 

Simplex-Centroid Design 

By applying the component values at the design points of the {31, 2} 

simplex-lattice by {JC, 3} simplex-centroid design in Table 3.4 into its 

corresponding model which is shown in equation (3.24), one obtains the estimates 

of coefficients in the model as 
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Table 3.4 {31, 2} Simplex-Lattice by {3c, 3} Simplex-Centroid Design 

Run No. xll x12 X13 x21 x22 X23 Mean Response 

1 1 0 0 1 0 0 171, 1 

2 1 0 0 0 1 0 171,2 

3 1 0 0 0 0 1 171,3 

4 1 0 0 112 112 0 171,12 

5 1 " 0 0 1/2 0 1/2 171, 13 

6 1 0 0 0 1/2 1/2 171,23 

7 1 0 0 113 1/3 113 171,123 

8 0 1 0 1 0 0 172,1 

9 0 1 0 0 1 0 172,2 

10 0 1 0 0 0 1 172.3 

11 0 1 0 1/2 1/2 0 772,12 

12 0 1 0 1/2 0 1/2 172,13 

13 0 1 0 0 1/2 1/2 172,23 

14 0 1 0 1/3 113 1/3 172,123 

15 0 0 1 1 0 0 173,I 

16 0 0 1 0 1 0 173,2 

17 0 0 1 0 0 1 173,3 

18 0 0 1 1/2 1/2 0 173,12 

19 0 0 1 1/2 0 1/2 173,13 

20 0 0 1 0 1/2 1/2 173,23 

21 0 0 1 1/3 1/3 1/3 173,123 

22 1/2 1/2 0 1 0 0 7712, 1 

23 1/2 1/2 0 0 1 0 1712,2 

24 1/2 1/2 0 0 0 I 1712,3 

25 1/2 1/2 0 1/2 1/2 0 1712,12 



Table 3.4 (Continued){/, 2} Simplex-Lattice by {3c, 3} Simplex-Centroid 
Design 

26 1/2 1/2 0 1/2 0 1/2 1712,13 

27 1/2 1/2 0 0 1/2 1/2 1712,23 

28 1/2 1/2 0 1/3 1/3 1/3 1712,123 

29 1/2 0 1/2 1 0 0 1713,1 

30 1/2 - 0 1/2 0 1 0 1713,2 

31 1/2 0 1/2 0 0 I 1713,3 

32 1/2 0 1/2 1/2 1/2 0 1713,12 

33 1/2 0 1/2 1/2 0 1/2 7713,13 

34 1/2 0 1/2 0 1/2 1/2 1713,23 

35 1/2 0 1/2 1/3 1/3 1/3 1713,123 

36 0 1/2 1/2 1 0 0 1723,1 

37 0 1/2 1/2 0 1 0 1723,2 

38 0 1/2 1/2 0 0 1 1723,3 

39 0 1/2 1/2 1/2 1/2 0 1723,12 

40 0 1/2 1/2 1/2 0 1/2 7723,13 

41 0 1/2 1/2 0 1/2 . 1/2 1723,23 

42 0 1/2 1/2 1/3 1/3 1/3 1723,123 
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I\ 

/Ji j = 11;,j' 
I\ 

/Jijk = 4 T/i,jk - 2( T/;J + 17;,k)' 
I\ 

/Ji,jkl = 27 T/i,jkl - 12( T/i,jk + T/i,jl + T/i,kl )+ 3( T/;J + 17;,k + T/i,1)' 

I\ - - -

/Jij,k = 4 T/ij,k- 2( 17;,k + 11j,k), 

I\ 

f3 · · kl = 16 ij · · kl- 8( ij · kl+ ij · kl+ ij ·. k + ij .. I) + 4( ij · k + ij. I+ ij · k + ij . I) , 1), lj, 1, .• ), l), lj, l, I, , ), ), 

and 
I\ 

/Jij,k/m = 108 T/ij,klm - 48( T/ij,kl + T/ij,km + T/ij,lm)+ 12( T/ij,k + T/ij,1 + 1'/ij,m)-54( 17;,k/m + 

T/ j,kfm)+ 24( 17;,k/ + 17;,km + 17;,lm + T/ j,kl + T/ j,km + T/ j,lm}-6( 17;,k + T/i,1 + 17;,m + 

- - -
11j,k+ 171,1+ 11j,m). (3.25) 

I\ I\ I\ I\ 

One may observe from equation (3.24) that /J;Jk' /J;Jkf, PiJ,k' /JiJ,kf, and 
I\ I\ I\ I\ 

/JiJ,klm are contrasts of the measured mean response vector 77. Also /J;J, /3;,;k , /JiJ,k 
I\ 

and /JiJ,kl have the same interpretation as those in the multiple-centroid design 

which is shown in Section 3.4. 

3.7 Generalization of the Least-Squares Estimates of the Coefficients in the 

Regression Models Associated with the Multiple-Lattice, Multiple­

Centroid, and Simplex-Lattice by Simplex-Centroid Designs 

For a q-component design, let the response to pure component i be denoted 

by 77;, the response to a I: I binary mixture of components i and j by T/ij (i < j), the 

response to a I: I: I ternary mixture of components i, j, k by T/ijk (i < j< k), and the 

response to 2: I and I :2 binary mixtures of components i and j, respectively by T/iij 

and T/ijJ (i < j). 
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The model corresponding to the { ql, 2} simplex-lattice design is 
q q 

71= LP;x; + LLPiJxixJ. (3.26) 
i=l i< j 

The least-squares estimates (LSE) of the coefficients in equation (3.26) which can 

be obtained from Scheffe' (1958) are 
I\ 

P; = T/;, 
and 

I\ - - -
pij = 4 T/ij- 2( T/; + T/ J). (3.27) 

The regression model corresponding to the { ql,3} simplex-lattice design is 
q q q q 

71= LP;x; + L LPijxixJ + L LYijX;x/x; -xj)+ L LLPijkx;xJxk. (3.28) 
i=l l~i< j l~i< j l~i<j< k 

The LSE of the coefficients in equation (3.28) which can be obtained from 

Scheffe' (1958) are 
I\ 

P; = T/;, 
I\ 9- - - -
pij = 1 "iij + T/ijj- T/; - T/ j)' 

I\ 9 - - - -
riJ = t,.37l;iJ-3 TliJJ- T/;+ Tl}, 

and 
I\ - 27 - - - - - - 9 - - -
pijk = 27 'lijk- =j;<..T/;ij+ 'lijj+ 'l;;k+ T/;kk + 'ljjk+ 'ljkk )+;j-.'l;+ T/1+ 'lk) · (3.29) 

The regression model corresponding to a q-component simplex-centroid 

design is 
q q q 

7/= LP;x; + L LPijxixJ + L LLPijkX;XJXk + ... +flt23 ... qx1x2 ... xq. (3.30) 
i=l l~i< j . l~i<j< k 

The LSE of the coefficients in equation (3.30) which can be obtained from 

Scheffe' ( 1963) are 
I\ 

/3; = Tl;, 
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I\ 

pi}= 417ij-2(11;+ 171), 
I\ 

pijk = 2717ijk-12(17ij+ 17;k + 171k)+3(11; + 111+ 17k), 

and 
I\ 

Pijkm = 256ijkm -l08(17ijk+ 11ijm+ 17;1cm+ 1711cm)+32(17ij+ 17;k+ 17;m+ 171k+ 

(3 .31) 

.- . 
The general formula for the LSE of the coefficients in equation (3.30) is 

given in Scheffe' ( 1963). 

Lambrakis (1968a) illustrates the {pl, ql; 3, 2} double-lattice and obtains the 

LSE of the coefficients in the corresponding regression model. In Section 3.3, the 

{ qf, q~; 3, 2 } double-centroid design is illustrated and the LSE of the 

coefficients in the corresponding regression model are also obtained. In Section 

3.5, the {31, 2} simplex-lattice by {3C, 3} simplex-centroid design is illustrated and 

the LSE of the coefficients in the corresponding model are obtained in Section 3.6. 

From the LSE of the coefficients in the corresponding models ofmultiple­

lattice, multiple-centroid, and simplex-lattice by simplex-centroid designs, one can 

observe that the LSE of the coefficients of any of the three models are equal to the 

product of the LSE of the coefficients in the individual models associated with the 

simplex designs. One might conjecture that the above statement is also true for the 

expanded designs and models in the mixture problem with more than two 

categories of components. 

For example, suppose (xi, x2, x3), (x4, x5, x6), and (x7, x8, x9) are 3 

categories with 3 components each in a mixture problem. One would like to 

perform the { 3C, 3} simplex-centroid by { 3/, 3} simplex-lattice by { 3c, 2} simplex­

centroid design (i.e. { 3c, 31, 3c; 3, 3,2} design) on the 9 components. There will be 
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... (3 + 3-1) .., / (2-' -1) 3 (2-' -2) = 420 design points in the { 3c, 3 , 3c; 3, 3, 2} design and 

the corresponding model of the design is 
3 3 

17 =(J:j3;x; + L Lfiux;x J + P123x1x2x3) * 
i=l Isi< J 

6 6 6 

( Lfikxk + L LfikJXkX/ + L LYk!xkx1(xk -x,)+ P4s6x4xsx6) * 
k=4 4sk< I 4sk< I 

9 .-9 

( LfimXm + L LfimnXmXn) 
m=7 7sm< n 
3 6 9 

= L L Lfi;fikfimX;XkXm + ... + 
i=lk=4m=7 

3 6 9 

I I I I I IPuYk!PmnX;XJXkX[(Xk -x,--)xmXn + ... 
lsi< J 4sk< I 7sm< n 

3 6 9 

= L L Lfii,k,mX;XkXm +. .. + 
i=Ik=4m=7 

3 6 9 

LL L L L Lfiij,kl,mnX;XJXkX/(Xk -x/)XmXn + ... 
lsi< J 4sk< I 7sm< n 

I\ 

Then, the estimates for Pij,kl,mn would be 
I\ I\ 

(3.32) 

PiJ,kl,mn= ( Pu ofthe model associated with the {3C, 3} simplex-centroid design) 
I\ 

* ( Ykt of the model associated with the {31, 3} simplex-lattice design) 
I\ 

* ( Pmn of the model associated with the {3C, 2} simplex-centroid 

design) 

- - - 9- - - - - - -
= [ 4 17ij- 2( 17; + 17}] *[ j...317kk/ - 317kll- 17k + 171 )]*[ 4 17mn - 2( 17m + 1711)] 
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(3.33) 

where 'ly,kkl ,mn is the observed response at X; = I /2, x 1 = 112, x k = 2/3, x 1 = 1/3, 

A 

Xm = 1/2, and Xn = 1/2. Also the P iJ ,kl ,mn is a contrast of the measured mean 

response vector T/. 

3.8 Summary 

The mixture problem with categorized components is introduced for the 

study. When the components in the mixture can be separated in groups by their 

nature, then the components in each group form an individual simplex mixture 

problem. The mixture problem in this case is called the mixture problem with 

categorized components. 

The multiple-centroid design and simplex-lattice by simplex-centroid design 

are developed in this chapter. Since each category forms a simp1ex mixture 

problem, the multiple-centroid design is formed by the factorial arrangement of the 

design for each category while applying a simplex-centroid design to each 

category. The simplex-lattice design by simplex-centroid design is formed by 



applying a simplex-lattice design on the first category and a simplex-centroid 

design on the second category. Then a factorial arrangement is made on the two 

simplex designs to complete a simplex-lattice by simplex-centroid design. 
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The corresponding regression models for the multiple-centroid design and 

simplex-lattice by simplex-centroid design are also developed in the study. The 

number of distinct design points of the multiple-centroid design and simplex-lattice 

by simplex-centroid design are the same as the number of parameters in their 

corresponding regression models. 

The interpretation of the coefficients in the fitted regression model 

associated with the multiple-centroid design are also performed in this chapter. 

One can apply similar logic to the interpretation of the coefficients in the fitted 

regression model associated with the simplex-lattice by simplex-centroid design. 

The calculation of the coefficient estimates by the least-squares method is 

illustrated on the regression models associated with the multiple-centroid design 

and the simplex-lattice by simplex-centroid design. Finally, the generalization of 

the least-squares estimates of the coefficients in the regres~ion models associated 

with the multiple-lattice, multiple-centroid, and simplex-lattice by simplex-centroid 

designs are also developed and illustrated. 

The advantage of using either multiple-centroid design or simplex-lattice by 

simplex-centroid design is that the two designs require less design points than the 

multiple-lattice design. Also the two designs provide simpler models than that of 

the multiple-lattice design. 



CHAPTER4 

DESIGNS AND MODELS USING RATIOS OF 

COMPONENTS AS DESIGN 

VARIABLES 

The multiple-lattice design introduced by Lambrakis ( I 968a ), the multiple­

centroid design and simplex-lattice by simplex-centroid design developed in 

Chapter 3 are some methods used in the mixture problem with categorized 

components. Kenworthy (I 963) illustrates an example of experiments with 

mixtures using ratios of components. By using a concept similar to that of 

Kenworthy, the method of ratios of components can also be applied to the mixture 

problem with components in categories. By using the ratio method, one is 

interested in one or more of the components, not so much from the standpoint of 

their proportions in mixtures ( or sub-mixtures), but from their relationship to the 

other components in the mixtures (or sub-mixtures) in the form of their 

proportions. An example is used to illustrate how to use the ratios of components 

in the mixture problem with categorized components. 

4.1 Example ofTwo Categories with Three 

Components in Each Category 

The use of ratios of components can be treated in a variety of ways. Let xii 

be the J'h (j=l, 2, ... , q;) component in the ;th category. For three components in 
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the first category whose proportions are denoted by x11 ,x12, and x13, several 

possible sets of transformations from the x1; (i=l, 2 and 3) variables to the ratio 

variables r1 and ~ include 

Set I r1 = x13 ' r2 = x13 
XJ I x12 

Set II XJ I Xt2 
r1 =-, r2 =-

x12 x13 
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Set III r1 = xu ' r2 = x12. (4.1) 
X12 +X13 X13 

In each set of ratios, each ratio r; , i= l or 2, contains at least one of the components 

used in the other ratio of the same set. The number of ratios r; in each set should be 

one less than the number of components in the category. If the number of ratios in 

a set is equal to the number of components q; in ;th category, the ratios form a 

redundant set because the sum of the component proportions is unity. Note that 

any type of ratio can be used in a set as long as there is a tie-in with a component 

in one of the other ratios in the same set. 

Suppose r1 and ~ are the ratios transformed from the first 3-component 

category, and ~ and r4 are the ratios transformed from the second 3-component 

category in a mixture problem where 

r1 = X13 ' ~ = X13 ' 
Xt 1 XJ2 

~ = X21 ' r4 = X21 . (4.2) 
X22 X23 

A simple first-degree model in r1, ~' ~ and r4 is 

y = ao + a111 + a2~ + a3~ + a4r4 + e 

which becomes, in terms of x11, x12, x13, x21, x22 and x23, 

y = ao + a1 x13 + a2 x13 + a3 x21 + a4 x21 + e. (4.3) 
~1 ~2 ~2 ~3 



57 

The model is fitted to the data collected at design points chosen using the r; . The 

coefficients a; (i=O, 1, 2, 3 and 4) in the first-degree model then can be 

determined. 

Suppose the four ratio variables are defined as in equation (4.2). The paths 

of values for the ratio variables r1 and ~ are defined along the rays emanating 

from the vertex x12 = 1 for r1 and from the vertex x11 = I for r2 . The paths of 

values for the ratio variables r3 and r4 are defined.along the rays emanating from 

the vertex x23 = I for 13 and from the vertex x22 = I for r4 . These rays are drawn 

in Figure 4.1. 

Alternatively, one can construct an orthogonal design such as factorial or 

central-composite design on the ratios of components. Data collected at the design 

points of the factorial design are then fitted to the model. For example, suppose one 

set of values of r1, 0.5 and 1.5, are combined with values of~, 1.0 and 2.0. Also 

let 13 have the set of values 0.1 and 2.0 in combination with values of r4 equal to 

0.1 and 2.0. The factorial design on the uncoded and coded ratio variables and the 

actual component values are displayed in Table 4.1. 

A second-degree model using uncoded ratio variables can be expressed as 
· 2 2 2 

Y = ao + a1r1 + a2~ + a313 + a4r4+a11r1 + a22':2 + a33~ + 
2 

a44r4 + a12r1r2 + a131}13 + a14r1r4 + a23~r3 + a24r2r4 + (4.4) 

a341374 + &. 

Data collected from the 16 design points can be fitted to equation ( 4.4) and least­

squares estimates of a can then be determined. 

Also a second-degree model using coded ratio variables of the form 
, t t t I I I I t I t t r I t 

(4.5) 
I I I I I I I I I t t 

a14r1r4 + a23r2r3 + a24r2r4 + a3413r4 + & 

can be fitted to the observations collected at the 16 design points. 



x11=l 

x12=l 

r4=0.1 
r3=0. l ~::;;~:::::!~~;;:~ 

Figure 4.1 Rays Defined by the Ratios r1 = x13 , r2 = x13 , r3 = x21 , and 
XII XJ2 X22 
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Table 4.1 Design Points of 24 Factorial Design Based on the Ratios of 

Components 

Run Uncoded Ratio Coded Ratio Component Proportions 
Variables Variables 

' ' ' ' 11 ~ ,:, r4 r1 ~ ,:, r4 xu Xl2 X13 x21 x22 

1 0.5 1.0 0.1 0.1 -1 -1 -1 -1 0.5 0.25 0.25 0.048 0.476 

2 0.5 1.0 0.1 2.0 .• -1 -1 -1 1 0.5 0.25 0.25 0.087 0.87 

3 0.5 1.0 2.0 0.1 -1 -1 1 -1 0.5 0.25 0.25 0.087 0.043 

4 0.5 1.0 2.0 2.0 -1 -1 1 1 0.5 0.25 0.25 0.5 0.25 

5 0.5 2.0 0.1 0.1 -1 1 -1 -1 0.571 0.143 0.286 0.048 0.476 

6 0.5 2.0 0.1 2.0 -1 1 -1 . 1 0.571 0.143 0.286 0.087 0.87 

7 0.5 2.0 2.0 0.1 -1 1 1 -1 0.571 0.143 0.286 0.087 0.043 

8 0.5 2.0 2.0 2.0 -1 1 1 I 0.571 0.143 0.286 0.5 0.25 

9 1.5 1.0 0.1 0.1 1 -1 -1 -1 0.25 0.375 0.375 0.048 0.476 

10 l.5 1.0 0.1 2.0 1 -1 -1 1 0.25 0.375 0.375 0.087 0.87 

11 l.5 l.O 2.0 0.1 1 -1 1 -1 0.25 0.375 0.375 0.087 0.043 

12 l.5 l.O 2.0 2.0 1 -1 1 1 0.25 0.375 0.375 0.5 0.25 

13 1.5 2.0 0.1 0.1 1 1 -1 -I 0.308 0.231 0.462 0.048 0.476 

14 1.5 2.0 0.1 2.0 1 1 -1 1 0.308 0.231 0.462 0.087 0.87 

15 1.5 2.0 2.0 O.l 1 1 1 -1 0.308 0.231 0.462 0.087 0.043 

16 l.5 2.0 2.0 2.0 1 1 ' 1 1 0.308 0.231 0.462 0.5 0.25 

, ,:, - I.OS 
,:, = 0.95 ' 

·, r4 -1.05 
r. ----
4 - 0.95 
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x23 y 

0.476 12.75 

0.043 · 8.76 

0.87 8.21 

0.25 8.01 

0.476 8.96 

0.043 8.72 

0.87 8.51 

0.25 12.54 

0.476 8.73 

0.043 8.64 

0.87 8.24 

0.25 12.09 

0.476 8.88 

0.043 12.58 

0.87 12.35 

0.25 22.76 



While equations (4.4) and (4.5) both seem to be useful models for the 

factorial design, equation (4.5) is better than equation (4.4) since the variables r;' 
I I 

and r;r1 in equation (4.5) are mutually orthogonal. 

To illustrate how to analyze the collected data from physical experiments 

and predict the mean response at any point inside experimental region. Suppose 

the actual response observed at each design point is as shown in Table 4.1. By 

applying the observed responses and coded ratio values in equation (4.5), the 

second-degree ·model for predicting the response y is 
A I t I t t t 1 I 
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y = 10.67 + l.l lr1 + l.24~ + 0.92,:, + 1.09r4 + 1.111)~ + 1.1611,:, + (4.6) 
I t t t I I I I 

1.1411r4 + 121~,:, + 1.15~r4 + l.l 71:,r4. · 

Suppose one wishes to estimate the mean response at point x11 =0.45, 

x12 =0.25, x13=0.30, x21=0.25, x22=0.50, and x23 =0.25. One transforms the 

xiJ(i=l, 2; j=l, 2, 3) values into their corresponding uncoded ratio values which 

are 
X13 0.30 2 X13 0.30 6 

r1 =-=-=-, ~ =-= . =-, 
X] 1 0.45 3 X}2 0.25 5 

,:, = x21 = 025 = 1 , r4 = x21 = 0.25 = I. 
X22 050 2 X23 0.25 

The next step is to transform the uncoded ratio values into their corresponding 

coded ratio values which are 
2 
--1 

I r1-l 3 
r1 = --= --= -0.666, 

0.5 0.5 
I r2 - 1.5 12 - 15 

r2 = = =-0.6 
05 05 ' 

,..· = r3 -1.05 = 05-1.05 = _0579 
3 0.95 0.95 ' 

r~ = r4 - 1.05 = 1 - 1.05 = _0_0526_ 
0.95 0.95 



61 

Final1y one substitutes the coded ratio values into equation ( 4.6) and which results 
I\ 

in y(x) =0.4168. 

4.2 Summary 

This chapter illustrates the method of ratios of components to design and 
·" ' 

model the mixture problem with categorized components. The ratios of 

components can be in any form as long as there is a tie-in with a component in one 

of the other ratios in the same category. There are no ties among the ratios of 

different categories. The number of ratios in a category should be one less than the 

number of components in the category. 

After the ratios of components in all categories have been carefully defined, 

the level values for each ratio are assigned based on the region of interest in each 

category. With equal spaced ratio values, one will then standardize the uncoded 

ratios into coded ratios which will make the coded ratio variables become mutually 

orthogonal. A classical design such as factorial design or central-composite design 

can be applied to the coded ratio variables. Data collected at the design points are 

fitted into the regression model corresponding to the design and then the estimates 

of the coefficients in the model are then determined. 

The ratio method provides an alternative way to explore the surface of the 

mixture problem with categorized components. Orthogonal designs can be 

employed by using the ratio method while multiple-lattice, multiple-centroid, and 

simplex-lattice by simplex-centroid designs can't. 



CHAPTERS 

COMPUTER-AIDED D-OPTIMAL DESIGNS AND 

THEIR CORRESPONDING MODELS 

The multiple-lattice design developed by Lambrakis (1968a), the multiple­

centroid design, and the simplex-lattice by simplex-centroid design developed in 

Chapter 3 require a large number of design points which quite often make these 

designs infeasible or uneconomical. The ratio method developed and illustrated in 

Chapter 4, however can use orthogonal designs such as factorial or central­

composite designs. Unfortunately, the experimental region defined by the ratio 

method cannot cover the extreme vertices defined by the original mixture problem. 

As such, it is not always a feasible method to experimenters when the extreme 

vertices are required to be in the experimental region. In this.chapter, D-optimal 

designs for the mixture problem with categorized components are developed and 

illustrated. By using the approach developed in this chapter, one can find at least 

one design which has minimum generalized variance of the estimates of the 

coefficients in a specified model, assuming that the relationship between the 

response of interest and the components in the mixture is correctly described by 

the model. 

5.1 A, D, G, V-Optimality and G-Efficiency 

A, D, G, V-optimality are described in Section 2.9 where these optimalities 
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are all variance-minimizing criteria. For example, D-optimal design points are 

obtained by selecting design points from candidate design points so as to maximize 

the determinant. IX TX I; where X is the design matrix expanded in the form of the 

model believed to adequately represent the relationship between the design 

variables and the response of interest. In this chapter, the DETMAX algorithm by 

Mitchell ( 197 4) is used to find D-optimal or near D-optimal designs. The 

DETMAX algorithm uses an exchange-of-point scheme. The DETMAX algorithm 

does not guarantee that a D-optimal design is generated in any one "try". The 

MIXSOFT software by Piepel ( 1994) is used to find D-optimal or near D-optimal 

designs for the mixture problem with categorized components where 20 tries are 

performed in the search of each D-optimal design. The MIXSOFT software is 

useful for both mixture and nonmixture problems. From the result of the 20 tries, 

one might be sure to obtain D-optimal designs when the maximum determinant 

value among the 20 tries is repeated many times in the 20 tries. 

Design properties such as the maximum and average values of 

d = x0(XT X)-1 x0 over all points xo in the candidate set, trace(XT X)-1 and% 

G-efficiency are also calculated after obtaining the D-optimal or near D-optimal 

design in each try. The % G-efficiency is defined as 100 p , where p is the number 
n 

of parameters in the assumed model form and n is the number of distinct design 

points in the design. 

5.2 Example of the Mixture Problem with Two 

Three-Component Categories 

Designs containing exactly N points and obtained using D-optimality 

criteria are called DN-optimal designs. The D-optimal designs offer alternative 
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designs to experimenters where smaller number of design points can be used than 

are required by multiple-lattice, multiple-centroid, and simplex-lattice by simplex­

centroid designs. 

Suppose there are two categories in a mixture problem with three 

components in each category. The three components in the first category are 

denoted by x1, x2 and x3 and the other three components in the second category 

are denoted by x4, x5 and x6. Then the restrictions hold: 

XJ + X2 + X3 = 1, 

and x;~O,i=l,2, ... ,6. 

Equation ( 5 .1) can be written as 

XI+ X2 :s; 1, 

X4 + X5 :s; 1, 

and x; ~ 0 , i= 1, 2, 4, 5. 

(5.1) 

(5.2) 

The first-degree model for the mixture problem in x1, x2, x4 ,and x5 is 

written as 

(5.3) 

where x1 + x2 :s; 1, x4 + x5 :s; 1, and x; ~ 0 (i=l, 2, 4, 5). 

The model with linear plus cross product terms for the mixture problem is 

written as 
Y = Po + P1x1 + P2x2 + ft4x4 + Psx5 + P12x1x2 + P14x1x4 + P1sx1x5 + 

P24x2x4 + P2sx2x5 + ft45x4x5 + e, 

where x1 + x2 :s; 1, x4 + x5 :s; 1, and x; ~ 0 (i= 1, 2, 4, 5). 

The quadratic model for the mixture problem can be 

(5.4) 



Y =Po+ P1x1 + P2x2 + fi4x4 + Psxs + P12x1x2 + fi14x1x4 + P1sx1xs + 

fi24x2x4 + P2sx2xs + fi45x4x5+P11xf + P22xi + fi44x] + Pssx'l + &, 

where x1 + x2::;; 1, x4 + x5::;; 1, and x; ~ 0 (i=l, 2, 4, 5). 
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(5.5) 

When the entire experimental region is to be explored, the factor space or 

design region is said to be unconstrained. With an unconstrained region in a single 

simplex mixture problem, one generally uses candidate points which depend on the 

type of the model assumed. For a linear model in a single simplex mixture problem, 

the candidate points generally are extreme vertices of the simplex. If the fitted 

model is quadratic, one generally uses extreme vertices and midpoints of edges as 

the candidate points. Although the candidate design points for single simplex 

experimental region are generally selected according to the model to be fitted, in 

this study, a set of candidate design points for obtaining D-optimal designs in the 

mixture problem with categorized components are not generated in the same way 

· as those for single simplex experimental region. First, the constituent points for 

each category are selected and then the final candidate design points are obtained 

by the factorial arrangement of the constituent points in one category with the 

constituent points in the other categories. For a q-component category, the 

constituent points in the category are selected as the union of the { qi, m} simplex­

lattice designs ( m::;;q). For example, in a three-component category, the 

constituent points of the category are the union of a {31, 1} simplex-lattice design, 

a { 3/, 2} simplex-lattice design, a { 3/, 3} simplex-lattice design. They are pictured 

in Figure 5.1 and shown in Table 5.1. 

The overall candidate design points for obtaining D-optimal design of the 

mixture problem with two 3-component categories are the factorial arrangement of 

the two sets of the constituent points corresponding to the two categories. Thus the 

number of candidate design points for the mixture problem is 169, regardless of 
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--~---------~~- 3 9 5 10 x3=l 

Figure 5.1 Constituent Points of A Three-Component Category 



Table 5.1 Constituent Points of Two Three-Component Categories 
for Constructing Candidate Design Points 

Number XJ x2 X3 

1 1 0 0 
2 0 1 0 
3 0 0 1 

4 1/2 1/2 0 
. .s 0 1/2 1/2 
6 1/2 0 1/2 
7 2/3 1/3 0 
8 1/3 2/3 0 
9 0 2/3 1/3 
10 0 1/3 2/3 
11 1/3 0 2/3 
12 2/3 0 1/3 
13 1/3 1/3 1/3 

Number X4 X5 X6 

l l 0 0 
2 0 1 0 
3 0 0 1 
4 1/2 1/2 0 
5 0 1/2 1/2 
6 1/2 0 1/2 
7 2/3 1/3 0 
8 1/3 2/3 0 
9 0 2/3 1/3 
10 0 1/3 2/3 
11 1/3 0 2/3 
12 2/3 0 1/3 
13 1/3 1/3 1/3 
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the model to be fitted. The purpose of using the new candidate design points which 

are different from those suggested in a single simplex experimental region is to 

check if the previous suggestion is still valid for D-optimal design in the mixture 

problem with categorized components where the experimental region is 

constructed by multiple simplexes. The overall candidate points are partially shown 

in Table 5.2. 

Candidate design points are denoted as (i, j) where i and j are the numbers 

in Table 5.1 and i is the constituent point from the first category and j is the 

constituent point from the second category. For example, the candidate design 

point (2, 5) is equivalent to x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1 I 2, and x6 = 1 I 2 . 

The values of x1, x2, x4 and x5 are substituted into equati~ns (5.3), (5.4), and 

(5.5) to obtain the matrix X and the determinant value of ( X TX) is calculated. 

Finally, the ON-optimal design for each assumed model is obtained. 

Computer software MIXSOFT is used to obtain ON-optimal designs for the 

three models by selecting a fraction of the 169 candidate design points which has 

the maximum determinant value of ( X TX ). Note that the PN-optimal design can 

have design points which are replicated. 

5 .3 Results of the Example 

Three models are selected to find thefr corresponding ON-optimal designs. 

The three models are linear, linear plus cross product terms, and quadratic which 

correspond to equations (5.3), (5.4), and (5.5), respectively. There are 169 

candidate design points for each model. Tables 5.3, 5.4 and 5.5 show the ON-­

optimal designs for the three models in the order of the number of design points N. 

For ON-optimal designs, N points out of all candidate design points are 

selected based on a certain model such that the determinant of ( X TX ) is 



Table 5.2 Candidate Design Points of the Mixture Problem with Two Three­
Component Categories for Obtaining D-Optimal Designs 

Number Candidate x1 x2 X3 X4 X5 X6 
Points 

1 (1, 1) 1 0 0 1 0 0 
2 (1, 2) 1 0 0 0 1 0 
3 (1, 3) 1 0 0 0 0 I 
4 (1, 4) 

" 
1 0 0 1/2 1/2 0 

5 (1, 5) 1 0 0 0 1/2 1/2 
6 (1, 6) 1 0 0 1/2 0 1/2 
7 (1, 7) 1 0 0 2/3 1/3 0 
8 (1,8) 1 0 0 1/3 2/3 0 
9 {I, 9) 1 0 0 0 2/3 1/3 
10 (1, 10) 1 0 0 0 1/3 2/3 
11 (1,11) 1 0 0 1/3 0 2/3 
12 (1, 12) 1 0 0 2/3 0 1/3 
13 (1, 13) 1 0 0 1/3 1/3 1/3 

157 (13, 1) 1/3 1/3 1/3 1 0 0 
158 (13, 2) 1/3 1/3 1/3 0 I 0 
159 (13, 3) 1/3 1/3 1/3 0 0 1 
160 {13, 4) 1/3 1/3 1/3 1/2 1/2 0 
161 (13, 5) 1/3 1/3 1/3 0 1/2 1/2 
162 (13, 6) 1/3 1/3 1/3 1/2 0 1/2 
163 (13, 7) 1/3 1/3 1/3 2/3 1/3 0 
164 (13, 8) 1/3 1/3 1/3 1/3 2/3 0 
165 (13, 9) 1/3 1/3 1/3 0 2/3 1/3 
166 {13, 10) 1/3 1/3 1/3 0 1/3 2/3 
167 (13,11) 1/3 1/3 1/3 1/3 0 2/3 
168 (13, 12) 1/3 1/3 1/3 2/3 0 1/3 
169 (13, 13) 1/3 1/3 1/3 1/3 1/3 1/3 
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Table 5.3 DN-Optimal Designs for the Mixture Problem with Two Three­
Component Categories While Model Is Linear 

N Preference Design Points 
Order 

6 1 (1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3) 
7 1 (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) 
8 1 (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) 
9 1 (I,)), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),.(3, 1), (3, 2), (3, 3) 
10 1 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), 

(3, 3) 
11 1 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 2), (2, 3), (3, 1), (3, 2), 

(3, 3), (3, 3) 
12 1 (1, 1),(1, 1),(1,2),(1,3),(2, 1),(2,2),(2,2),(2,3),(3, 1), 

(3, 2), (3, 3), (3, 3) 
13 1 (1, 1), (1, 1), (1, 2), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 3), 

(3, 1), (3, 2), (3, 3), (3, 3) 
13 1 (1, 1), (1, 2), (1, 2), (1, 3), (2, 1), (2, 2), (2, 2), (2, 3), (3, 1), 

(3, 1), (3, 2), (3, 3), (3, 3) 
13 1 (1, 1), (1, 2), (1, 3), (1, 3), (2, 1), (2, 1), (2, 2), (2, 2),(2, 3), 

(3, 1 ), (3, 2), (3, 3), (3, 3) 
14 1 (1, 1), (1, 2), (1, 2), (1, 3), (1, 3), (2, 1), (2, 1), (2, 2), (2, 3), 

(3, 1 ), (3, 1 ), (3, 2), (3, 3), (3, 3) 
14 1 (1, 1), (1, 2), (1, 2), (1, 3), (2, 1), (2, 1), (2, 2), (2, 3), (2, 3), 

(3, 1 ), (3, 2), (3, 2), (3, 3), (3, 3) 
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N 

12 
13 
13 
13 
14 
14 
15 
16 
17 

17 

18 

18 

19 

20 

20 

20 

Table 5.4 ON-Optimal Designs for the Mixture Problem with Two Three­
Component Categories While Model Is Linear Plus Cross Product 
Terms 

Preference Design Points 
Order 

1 Base Points+ (3, 4), (4, 3), {4, 4) 
1 Base Points+ (3, 4), (4; 1), {4, 3), (4, 4) 
1 Base Points+ (2, 4), (3, 4), (4, 3), (4, 4) 
1 Base_.Points + (I, 4), (3, 4), (4, 3), (4, 4) . 
1 Base Points+ (1, 4), (3, 4), (4, 2), (4, 3), (4, 4) 
1 Base Points+ (1, 4), (3, 4), (4, 1), (4, 3), (4, 4) 
1 Base Points+ (1, 4), (2, 4), (3, 4), (4, 1), (4, 2), (4, 3) 
1 Base Points+ (1, 4), (2, 4), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3) 
1 Base Points+ (I, 4), (2, 4), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), 

(4, 3) 
1 Base Points+ (I, 4), (2, 4), (3, 1), (3, 3), (3, 4), (4, 1), (4, 2), 

(4, 3) 
1 Base Points+ (1,3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4), (4, 1), 

(4, 2), (4, 4) 
1 Base Points+ (1, 4), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), 

(4, 3), (4, 4) 
1 Base Points+ (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), 

(4, 1), (4, 2), (4, 4) 
1 Base Points+ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), 

(3, 3), (4, 1), (4, 2), (4, 4) 
1 Base Points+ (I, 3 ), (I, 4 ), (2, 1 ), (2, 3), (2, 4 ), (3, 1 ), (3, 2), 

(3, 3), (4, 1), (4, 2), (4, 4) 
1 Base Points+ (I, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), 

(3, 3), (4, I), (4, 2), (4, 4) 
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N 

16 

16 

17 

17 

17 

18 

19 

19 

19 

20 

20 

20 

20 

21 

21 

21 

Table 5.5 ON-Optimal Designs for the Mixture Problem with Two Three­
Component Categories While Model Is Quadratic 

Preference Design Points 
Order 

1 Base Points+ (4, 4), (4, 5), (5, 4), (5, 6), (6, 5), (6, 6), (13, 3) 

1 Base Points+ (3, 13), (4, 4), (4, 5), (5, 4), (5, 6), (6, 5), (6, 6) 

1 Base.Points+ (2, 6), (4, 3), (4, 4), (5, 1), (5, 5), (6, 4), (6, 5), 
(6} 6) 

1 Base Points+ (2, 5), (3, 4), (4, 4), (4, 6), (5, 2), (5, 6), (6, 5), 
(6, 6) 

1 Base Points+ {I, 6), (3, 4), (4, 1), (4, 5), (5, 5), (5, 6), (6, 4), 
(6, 5) 

I Base Points+ {I, 6), (2, 5), (4, 3), (4, 4), (5, 2), (5, 6), (6, 4), 
(6, 5), (6, 6) 

1 Base Points+ (2, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), 
(6, 1 ), (6, 4), (6, 5) 

1 Base Points+ (1, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, I), (5, 4), 
(5, 5), (6, 3), (6, 4) 

1 Base Points+ (2, 6), (3, 5), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), 
(6, 2), (6, 4), (6, 6) 

1 Base Points+ {I, 6), (3, 5), (4, I), (4, 4), (4, 5), (5, 4), (5, 5), 
(5, 6), (6, 3), (6, 4), (6, 6) 

1 Base Points+ (1, 5), (3, 6), (4, 2), (4, 4), (4, 6), (5, 4), (5, 5), 
(5, 6), (6, 3), (6, 4), (6, 5) 

1 Base Points+ {I, 4), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), 
(5, 5), (6, 1), (6, 5), (6, 6) 

1 Base Points+ (2, 4), (3, 6), (4, 4), (4, 5), (4, 6), (5, 1), (5, 5), 
(5, 6), (6, 3), (6, 4), (6, 5) 

1 Base Points+ (1, 6), (2, 4), (3, 5), (4, 1), (4, 4), (4, 5), (5, 2), 
(5, 5), (5, 6), (6, 3), (6, 4), (6, 6) 

1 Base Points+ (1, 4), (2, 6), (3, 5), (4, 1), (4, 4), (4, 5), (5, 3), 
(5, 4), (5, 6), (6, 2), (6, 5), (6, 6) 

1 Base Points+ (1, 5), (2, 4), (3, 6), (4, 2), (4, 5), (4, 6), (5, 1), 
(5, 4), (5, 5), (6, 3), (6, 4), (6, 6) 
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Table 5.5 (Continued) DN -Optimal Designs for the Mixture Problem with Two 

Three-Component Categories While Model Is Quadratic 

N Preference Design Points 
Order 

22 1 Base Points+ (1, 6), (2, 5), (3, 3), (3, 4), (4, 3), (4, 4), (4, 6), 
(5, 2), (5, 5), (5, 6), (6, 1), (6, 4), (6, 5) 

23 1 Base Points+ (1, 6), (2, 1), (2, 5), (3, 3), (3, 4), (4, 3), (4, 4), 
(4,.6), (5, 2), (5, 5), (5, 6), (6, 1), (6, 4), (6, 5) 

23 1 Base Points+ (1, 2), (1, 6), (2, 5), (3, 3), (3, 4), (4, 3), (4, 4), 
(4, 6), (5, 2), (5, 5), (5, 6), (6, 1), (6, 4), (6, 5) 

24 1 Base Points+ (1, 1), (1, 5), (2, 2), (2, 6), (3, 3), (3, 4), (4, 3), 
(4, 4), (4, 6), (5, 1), (5, 4), (5, 5), (6, 2), (6, 5), (6, 6) 

24 1 Base Points+ ( 1, 1 ), (1, 5), (2, 2), (2, 6), (3, 3 ), (3, 4 ), ( 4, 3 ), 
(4, 4), (4, 5), (5, 1), (5, 5), (5, 6), (6, 2), (6, 4), (6, 6) 
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maximized. The ON-optimal design generally is not unique for each specified 

model. In the case that there are several ON-optimal designs which have the same 

det( X TX ) values, then the ON-optimal designs listed in the three tables are 

displayed in preference order based on other criteria such as the maximum and 

average values of d, d = x0( X T X)-1 x0 , % G-efficiency and trace (X T X)-1. If 

different designs have the same values for all criteria, then they are all listed in 

tables. 

For the model which is linear, one can observe from Table 5.3 that the ON­

optimal ( 6 :S N :S 14 ) designs consist of constituent points which are the extreme 

vertices of the two categories. This result matches the previous suggestion on the 

candidate design points for single simplex experimental region assuming that the 

model is linear. As expected, the D9-optimal design for the linear model is unique, 

and consists of the factorial arrangement of all the extreme vertices of the two 

categories. They are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2,3), (3, 1), (3, 2), and (3, 

3). One will call these 9 points "base points". 

For the model with linear plus cross product terms, Table 5.4 shows that the 

ON-optimal designs ( 12 :S N :S 20) consist of constituent points which are the 

extreme vertices and the midpoints of two extreme vertices in the two categories. 

This result also matches the previous suggestion on the candidate design points for 

single simplex experimental region assuming that the model· is quadratic. One also 

observes that the "base points" are always included in al1 ON-optimal designs for 

the model with linear plus cross product terms. 

For the model which is quadratic, Table 5.5 shows that the ON-optimal 

( 17 :S N :S 24 ) designs contain constituent points which are the extreme vertices 

and the midpoints of edges. However this is not true when N is 16. This discovery 

shows that one needs face centroids as the candidate points for D-optimal designs 

when the model is quadratic in the mixture problem with categorized components. 
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5.4 Summary 

Sometimes multiple-lattice designs, multiple-centroid designs and simplex­

lattice by simplex-centroid designs are not feasible due to the large number of 

design points required. The D-optimal designs offer a much smaller number of 

design points than the above three designs. Methods for constructing models and 

candidate design points and for searching D-optimal designs 'are developed for the 

mixture problem with categorized components. A mixture problem with two three­

component categories is illustrated; the D-optimal designs for linear, linear plus 

cross product terms, and quadratic models are obtained. 

The ON-optimal design can be nonunique for a certain model. The research 

also finds that face centroids need to be considered in the set of candidate points 

for D-optimal designs in the mixture problem with categorized components. For 

ON-optimal designs other than the above three models, one can use the same 

approach to obtain them based on personal interest. The purpose of the research is 

to develop the methods to establish the models and candidate design points in 

order to find the D-optimal designs. The research is not intended to obtain ON­

optimal designs for every possible model and any value ofN. · 



CHAPTER6 

DESIGNS AND MODELS USING BOTH MIXTURE COMPONENTS 

AND MIXTURE-RELATED VARIABLES AS 

DESIGN VARIABLES 

Process variables are factors in an experiment that will not form any 

proportion of the mixture but can affect the blending properties of the components 

when their values are changed. Thus, the settings of process variables can be 

independent of each other and independent of the components in the mixtures. 

For the q-component (x1,x2,···,xq) mixture experiment, the sum of the 

proportions of the q components is unity. This restriction makes the settings of the 

components in the mixture be dependent. If one transforms the q components into 

(q-1) variables ( w1, w2, ... , wq_1), then the (q-1) variables can be set values the 

same way as process variables. The (q-1) variables transformed from the q 

components in the mixture are called mixture-related variables (MRVs). 

In this chapter, designs and models using both mixture components and 

mixture-related variables are shown. Sections 6.1, 6.2 and 6.3 will review several 

transformation and design methods which are already available in the literature. 

Then, Section 6.4 shows the methods reviewed in these sections are applied to the 

mixture problem with categorized components. 
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6.1 Transformation from Component Variables to 

Mixture-Related Variables for 

Classical Designs 

77 

In order to apply classical designs such as factorial designs or central­

composite designs on the q component variables in the mixture problem, one first 

has to transform the q components in the mixture into ( q-1) mixture-related 

variables. To achieve this, the region of interest is either ellipsoidal or cuboidal 

inside the simplex constructed by the q components in the mixture. In the general 

q-component situation, an ellipsoidal region is expressible as 

f (xi -_xoi)2 ::; I 
i=l hl 

(6.1) 

where XQi is the center of the interval of interest for component i and 2hi 

represents the range of the symmetrical interval of interest for component i. Denote 

the vector xo = ( x01 , x02 , ... , xoq ) as the center of the ellipsoidal region. Note that 

the centroid of the ellipsoidal region can be the centroid of the simplex. Also 

xo1 +xo2+ ... +xoq = I is always true since x1 +x2+ ... +xq =I. 

One can redefine the ellipsoidal region as a unit spherical region in another 

system of variables since it is much easier to work with a sphere than an ellipsoid. 

To obtain the unit sphere, one defines the intermediate variables v;, 
Xj -Xo; . 

V; = , t= 1, 2, ... , q 
h l 

(6.2) 

such that the ellipsoidal region in equation (6.1) becomes a unit spherical region 

defined in Vi and centered at Vi = 0, I ::; i ::; q . The unit spherical region now is 

expressible as 
q 

I>l::; I (6.3) 
i=l 



and one has the condition that 

q 
since I(x; -xo;) = 0. 

i=l 

q 

Lhivi = o 
i=l 

Equation (6.2) can be expressed in matrix notation as 

v =H-\x-xo) 
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(6.4) 

(6.5) 

where v=(v1, v2 , ... , vq)r, x0 =(xo1,xo2, ... ,x0q)T andHisthediagonal 

matrix H = diagonal ( h1, hi, ... , hq ). For an experiment with N design points, let 

V be the N x q matrix whose uth row is vI where 

T ( )TH-1 Vu = Xu -Xo . (6.6) 

and let Xe be the N x q matrix whose uth row is ( Xu - x0 )T . The Xe will become· 

V = XeH-1 or Xe= VH . (6.7) 

The Xe is an N x q matrix of rank q-1 since the sum of each row in Xe is zero. 

The rank of Vis also q-1 since His of full rank. Because the rank of the matrix. V 

is q-1 there exists the single linear relation among the q columns of Vofthe form 

VHJ q = ON. One can choose a q x q orthogonal matrix T (see Appendix A for a 

derivation of the form of T) such that 

VT= [W, O] (6.8) 

where Wis an N x (q-1) matrix of rank q-1, and O is an N x I vector of zeros. To 

figure out that this is possible, note that 
q q 
I(x; - xo;) = Lhivi = 0 
i=l i=l 

defines a ( q-1 )-dimensional linear manifold in q-space. The transformation in 

equation (6.8) is a rotation of the intermediate variables about the origin v = 0. The 

rotation by T is chosen so that the constraint on the v's is expressed in the form 

Wuq = 0, (I~ u ~ N). By ignoring this zero coordinate, one is actually projecting 
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the q-dimensional unit sphere onto the ( q-1 )-dimensional manifold, producing 

again a unit sphere that is centered at w = 0 where w = ( w1, w2 , ... , w q-1 ). Hence 

the region of interest is now a (q-1)-dimensional unit spherical region. Thew; (i=l, 

2, ... , q-1) will be used to construct classical designs such as factorial designs or 

central-composite designs. 

One can enlarge the ellipsoidal region to its maximum as long as the 

ellipsoidal region is insiae the boundaries of the simplex. To' obtain the maximum 

ellipsoidal region inside the simplex, one has to calculate the radius of the largest 

sphere centered at w = 0 ( which is also v = 0) that will fit inside the simplex in the 

region space and by comparing it with p = l, where p = l is the radius of the unit 

spherical region of interest. In order to determine the radius of the largest ( q-1 )­

dimensional sphere, define P; as the distance, measured in thew; metric, from w 

= 0 or x = xo to the closest ( q-2)-dimensional face opposite the vertex where x; = 

l . Then, since h; ~ x0; define 

q 
where a= Lh;2 . If 

i=l 

P; = xo;{{+ 1 2}112, 
h; a-h; 

p * = min {p;, 1 ~ i ~ q} 

i=l, 2, ... , q (6.9) 

(6.10) 

then p* is the radius of the largest sphere. The largest sphere may be called the 

extended region of interest in the design space. 

Once the component variables (x;, i= 1, 2, ... , q) are transformed into 

mixture-related variables (w;, i=l, 2, ... , q-1) and the extended region of interest is 

set, one can set classical designs on the mixture-related variables. One can refer to 

Cornell and Good (1970) for the details of this section. 



6.2 Factorial Design on Mixture-Related Variables 

with Ellipsoidal Region of Interest 

In the· q component mixture experiment, the factorial design on the q-1 

mixture-related variables w; (i=l, 2, ... q-1) is 

-1 -1 -1 
1 -1 -1 

-1 1 -1 
1 1 -1 

-1 -1 1 

Dw=C 1 -1 1 

-1 1 , 1 

1 1 1 
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= c { W + interaction terms} (6.11) 

where c is a scalar quantity that is called the radius multiplier. The Wis a 2q- l x 

( q-1) matrix with the elements the same as those of the first ( q-1 ) columns of the 

2q- l factorial design. That is, the ( q-1) columns of the W matrix are contrasts of 

the observed mean responses for calculating the main effects ofw;, i = 1, 2, ... , q-1. 

The design points according to the design matrix Dw lie on a sphere of radius 

P . The design points are positioned symmetrically about the center w = 

(W1,W2, ... , Wq-1)=(0,0, ... ,0). 

The size of the design in terms of the spread of the points depends on the 

values of the radius multiplier c. If the largest sphere inside the simplex is desired, 

Cornell and Good (1970) show that the radius multiplier c is 



* 
c= p 

J0 
where p* is the radius of the largest sphere introduced in equation (6.10). 
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(6.12) 

In Section 6.1, transformation from the q mixture components to q-1 

mixture-related variables is reviewed. In order to have a factorial design on the 

mixture-related variables, one also has to obtain the settings of the components in 

the mixtures for physical experiments and which are transformed from the settings 

of the mixture-related variables. 

Suppose Wis a 2q- l x ,( q-1) matrix with elements the same as those of the 

first ( q-1) columns of the 2q- l factorial design. That is, Wis the same as Win 

equation (6.11) and can be the Wmatrix in equation (6.8). Substituting Vin 

equation (6.7) into equation (6.8), results in 
I 

Xe =[W, O]T H (6.13) 

where Xe is an N x q matrix of the form 

(6.14) 

and x; (i=l, 2, ... , N) is a 1 x q vector. Then applying equation (6.14) into equation 

(6.13), the settings of the components corresponding to the design Ware 

Xt XO 

X2 XO 

+[W, O]r'H (6.15) 



If one would like to perform a design with the largest sphere inside the 

simplex, the designed component values are 

I 

= +c[w·, O]T H 

* 
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= 
p I 

+ r::-, [W, O]T H 
...;q-1 ' 

(6.16) 

Xo 

where p * is shown in equation ( 6.10} . 

For example, suppose one would like to use the largest sphere inside the 3-

component simplex with factorial design on the design variables w J and w2 

centered at (x1, x2, x3) = (1/3, 1/3, 1/3). The settings of the components for 

physical experiments are 

Xll XI2 X13 1/3 1/3 1/3 -1 -1 0 

1/3 1/3 1/3 * -1 1 0 X21 x22 X23 +L = * 
X31 X32 X33 1/3 1/3 1 I 3 Ji 1 -1 0 

X4J X42 X43 1/3 1/3 1/3 1 1 0 

[-0.7071 -0.40825 057735] [I I 6 0 

I] 0.7071 -0.40825 0.57735 * 0 1/6 (6.17) 

0 0.81650 0.57735 0 0 

where Tis obtained through the method in Appendix A and H is assumed to be 



0 

1 I 6 

0 

83 

as long as the initial ellipsoid constructed by the constraints f (x; -_xo;) 2 
:s; 1 on 

i=l hi 

the components is inside the simplex. The Pi ( i= 1, 2, 3) are calculated by equation 

(6.9) as 

Thep the value of p * is 

p* = min{p1, P2, p3} = ../6 
By applying the value of p * into equation ( 6.17), one obtains the settings of 

the components as 

XJ1 

x21 

X3J 

X41 

x12 X13 0.6553 02471 0.0976 

X22 X23 0.4196 0.0114 0.5690 
= 

X32 X33 0.2471 0.6553 0.0976 

X42 X43 0.0114 0.4196 0.5690 

6.3 Factorial Arrangement on Components of 

Mixtures and Process Variables 

Scheffe' ( 1963) introduces designs and regression equations including n 

process variables and q mixture variables. Suppose a mixture problem with 2 

process variables each with 2 levels are denoted by z[ = -1 and Z/ =+I (]=I, 2). 

Also assume 3 components are considered in the mixture. Setting up design 

configurations in the process variables and mixture components involves setting up 



a mixture design at each point of a configuration in the process variables. For 

example, one may choose a simplex-centroid design for fitting the special cubic 

model in the mixture components 
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'T/sc = f31x1 + P2x2 + f33x3 + P12x1x2 + f313x1x3 + f323x2x3 + P123x1x2x3. (6.18) 

For the two process variables with 2 levels each, a factorial arrangement is 

employed for fitting the model in the two process variables: 

(6.19) 

Note that the subscript SC and PVin equations (6.18) and (6.19) are used to 

denote special cubic and process variables, respectively. The combined design 

denoted by a 22(z) by 3-component simplex-centroid is shown in Figure 6.1 and 

the design values are shown in Table 6.1. 

The combined model for both components and process variables is 

'T/(x,z) = P1(z)x1 + P2(z)x2 + f33(z)x3 + P12(z)x1x2 + /313(z)x1x3 + /323(z)x2x3 + 

(6.20) 

where /3;(z), Pij(z) and P123(z), i,j = 1, 2, 3, i <j, indicates they are functions of 

the settings of the two process variables. 

Then 
3 2 

'T/(x,z) = ~)r? + Irfz, + rJ2z1z2]x; 
i=l /=] 

3 2 
+ IIrri + LY~Z/ + rij2z1z2]X;X1 

i < j /=1 

2 

+[r?23 + Irb3z1 + rg3z1z2Jx1x2x3 
l=I 

3 3 

= Ir?x; + IIrix;XJ + rr23x1x2x3 
i=I i < j 

2 3 3 

+ 'I['Irfx; + IIrtx;x1 + rb3x1x2x3Jz1 
l=I i=I i < j 
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-1 

+I 

Figure 6.1. The 22 (z) by Three-Component Simplex-Centroid Design 
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Table 6.1 The 22(z) by Three-Component Simplex-Centroid Design 

Run Process Variables Component Variables 
z, z2 x, X? xi 

1 -1 -1 1 0 0 
2 -1 - -1 0 1 0 
3 -1 -1 0 0 1 
4 -1 -1 1/2 1/2 0 
5 ·:1 -1 1/2 0 . 1/2 
6 -1 -1 0 1/2 1/2 
7 -1 -1 1/3 1/3 1/3 
8 -1 I 1 0 0 
9 -1 1 0 1 0 
10 -1 1 0 0 1 
11 -1 1 1/2 1/2 0 
12 -1 1 1/2 0 1/2 
13 -1 1 0 1/2 1/2 
14 -1 1 1/3 1/3 1/3 
15 1 -1 1 0 0 
16 1 -1 0 1 0 
17 1 -1 0 0 1 
18 1 -1 1/2 1/2 0 
19 1 -1 1/2 0 1/2 
20 1 -1 0 1/2 1/2 
21 1 -1 1/3 1/3 1/3 
22 1 1 1 0 0 
23 1 1 0 1 0 
24 I . 1 0 0 1 
25 1 1 1/2 1/2 0 
26 1 1 1/2 0 1/2 
27 1 1 0 1/2 1/2 
28 I I 1/3 1/3 1/3 
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.., .., ., ., 
+[Irl2x; + IIr&2x;XJ + rB3x1x2x3Jz1z2. (6.21) 

i=l i < j 

One observes that the number of parameters in the combined model is the 

same as the number of design points. Thus the estimates of the parameters can be 

uniquely determined by the least-squares method. 

The first seven terms on the right-hand side of equation (6.2 I) are the linear 

and nonlinear blending portions of the model since these terms include the 

component proportions only. The remaining 21 terms represent the effects of 

changing the process conditions on the linear and nonlinear blending properties of 
3 

mixture components. More specifically, Ir?x; is the linear blending proportion 
i=l 

of the model and r? is the expected response to component i averaged over all 

combinations of the levels ofzI and 22. The terms 
3 

IIrix;XJ + rr23x1x2x3 
i < j 

are the nonlinear blending proportion of the model and ri is a measure of the 

nonlinear blending between components i and j averaged over all combinations of 

the levels of ZI and z2. The terms 
3 3 

[Irf X; + IIrix;xJ + rb3x1x2x3Jz1, !=I, 2 
i=l i < j 

measure the effect of changing the level of process variable I on the linear and 

nonlinear blending properties of the components. Term rf measures the change in 

the expected response to component i for a I-unit change in Z/, while ri measures 

the change of nonlinear blending of components i and j for a I-unit change in zr 
The terms 



measure the interaction effect of the two process variables on the linear and 

nonlinear blending properties of the three components. 
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Based on the methods described in Sections 6.1, 6.2 and 6.3, application of 

the available methods to the mixture problem with categorized components is 

presented in the next section. 

6.4 Designf and Models Using Both Mixture Components 

and Mixture-Related Variables 

as Design Variables 

In Section 6.1, transformation from components to mixture-related variables 

is shown. By defining an ellipsoidal region of interest inside the simplex, one sets a 

classical design such as a factorial design or central-composite design on the 

mixture-related variables. Then the corresponding component values for physical 

experiments are obtained through the transformation of the mixture-related 

variables. These are shown in Section 6.2. Also the factorial arrangement on the 

components of mixtures and process variables is shown in Section 6.3. The designs 

and models using both mixture components and mixture-related variables as design 

variables are developed by applying the above available methods. 

In the mixture problem with categorized components, one chooses the 

components in any one category and transforms the components into mixture­

related variables. Suppose q 1 components ( x1 I, x12, ... , x1q) in the first category 

are chosen to be transformed into q 1-1 mixture-related variables 

( w11, w12, ... , w1q1-1 ). Since the q 1-1 mixture-related variables are independent of 

the components in the other categories, they are set ( or designed) independently. 

One can then apply any classical orthogonal design on the q 1-1 mixture-related 



variables. The corresponding component values of the classical design on the. 

mixture-related variables are obtained through equation (6.15). 
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If there are two categories in the mixture and the components of the first 

category are transformed into mixture-related variables, one can apply the simplex­

lattice or simplex-centroid designs on the components of the second category. If 

there are three or more categories in the mixture and the components of the first 

category are transformed into mixture-related variables, the components in the 

other categories form another mixture problem with categorized components. One 

can thus employ any available designs for the multiple-category mixture problem 

discussed in Chapters 3, 4 and 5 to design the components in these categories. 

For example, suppose the mixture problem with two categories of 3 

components is considered. The components (x11 , x 12 and x 13) of the first category 

are transformed into 2 mixture-related variables (w1 and w2). The components in 

the second category are denoted by (x21 , x22, x23) and the simplex-centroid is 

chosen. Suppose one chooses a 22 factorial design on w1 and w2 with the largest 

ellipsoidal region of interest. Also, a factorial arrangement on the first group 

variables (w1 and w2) and the second group variables (x21 , x22, x23) is used. Then 

the combined design is denoted as a 22(w) by 3-component simplex-centroid 

design and is shown in Table 6.2. The model according to the illustration in 

Section 6.3 is 
3 3 

TJ= Ir?x2; + IIr8x2;X21 + r?23x21x22X23 
i=l i < j 

2 3 3 

+ ~)Irf x2; + LLYbX2;X21 + rb3x21x22x23]w1 
l=I i=I i < j 

3 3 

+[Irl2x2; + I'Ir&2x2;x21 + yg3X21x22x23]w1w2. 
i=I i < j 

(6.22) 
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Table 6.2 The 22(w) by Three-Component Simplex-Centroid Design 

Mixture-
Run Related Component Variables Component Variables 

Variables 
Wt w2 XJ J Xt? X13 X21 Xn X?.3 

1 -1 -1 0.6553 0.2471 0.0976 1 0 0 
2 -1 -1 0.6553 0.2471 0.0976 0 1 0 
3 -1 -1 

" 
0.6553 0.2471 0.0976 0 0 1 

4 -1 -1 0.6553 0.2471 0.0976 112 112 0 
5 -1 -1 0.6553 0.2471 0.0976 112 0 112 
6 -1 -1 0.6553 0.2471 0.0976 0 112 112 
7 -1. -1 0.6553 0.2471 0.0976 1/3 113 113 
8 -1 1 0.4196 0.0114 0.5690 1 0 0 
9 -1 1 0.4196 0.0114 0.5690 0 1 0 
10 -1 1 0.4196 0.0114 0.5690 0 0 1 
11 -1 1 0.4196 0.0114 0.5690 1/2 1/2 0 
12 -1 1 0.4196 0.0114 0.5690 112 0 112 
13 -1 1 0.4196 0.0114 0.5690 0 1/2 1/2 
14 -1 1 0.4196 0.0114 0.5690 1/3 113 113 
15 1 -1 0.2471 0.6553 0.0976 I 0 0 
16 I -1 0.2471 0.6553 0.0976 0 1 0 
17 1 -1 0.2471 0.6553 0.0976 0 0 1 
18 1 -1 0.2471 0.6553 0.0976 112 112 0 
19 l -1 0.2471 0.6553 0.0976 112 0 1/2 
20 1 -1 0.2471 0.6553 0.0976 0 112 112 
21 1 -1 0.2471 0.6553 0.0976 1/3 1/3 113 
22 I I 0.0114 0.4196 0.5690 1 0 0 
23 l l 0.0114 0.4196 0.5690 0 1 0 
24 1 1 0.0114 0.4196 0.5690 0 0 1 
25 1 1 0.0114 0.4196 0.5690 112 1/2 0 
26 l 1 0.0114 0.4196 0.5690 112 0 112 
27 1 l 0.0114 0.4196 0.5690 0 1/2 1/2 
28 1 1 0.0114 0.4196 0.5690 1/3 113 113 
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Suppose a third category with 2 components is added to the above example 

and the {3C, 2c; 3, 2} multiple-centroid design is used on the components of the 

second and third categories. Then the combined design is denoted by 22(w) by 

{3C, 2c; 3, 2} and is shown in Table 6.3. The model corresponding to the design 

becomes 

Tf = (ao +a1w1 +a21w2 +a12w1w2)* 

(b1x21 + bix22 + bJx23 + bi2x21x22 + b13x21x23 + b;i3x22x23 + bi23x21x22x23) * 
(c1x31 + c2x32 + c12X31x32). (6.23) 

The model in equation (6.23) has 84 parameters which is the same as the 

number of design points in Table 6.3. Thus, the parameters in equation (6.23) can 

be uniquely determined by the least-squares method. 

The interpretations of the parameters in equation (6.22) have to be carefully 

stated. For example, the term r? is the expected response to componentx2; 

averaged over all combinations of the levels ofw1 and w2· The component 

blending properties in the second category which are represented by the last 21 

terms in equation (6.22) are affected by the changes of the values ofw1 and w2 

rather than by the changes of the values of the process variables z1 and z2. 

This section on the factorial arrangement of mixture components and 

mixture-related variables is used to illustrate how one can apply available mixture 

designs and models involving process variables to the mixture problem with 

categorized components. Other mixture designs and models involving process 

variables such as the split-plot design approach (Cornell, 1988), the use of 

fractional designs in the process variables (Cornell and Gorman, 1984), and 

mixture-amount experiment (Piepel and Cornell, 1985 and 1987) can also be 

applied to the mixture problem with categorized components as long as one 

transforms the components of one category into mixture-related variables. 
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Table 6.3 The 22(w) by {3c, 3c; 3, 2} Design 

Mixture- Component Component Component 
Run Related Variables Variables Variables 

Variables 
Wt W? X11 X1? xn X?l Xn xn X11 X1? 

1 -1 -1 0.6553 0.2471 0.0976 1 0 0 1 0 
2 -1 -1 0.6553 0.2471 0.0976 1 0 0 0 1 
3 -1 -1 0.6553 0.2471 . 0.0976 1 0 0 1/2 1/2 
4 -1 -1 0.6553 0.2471 0.0976 0 1 0 1 0 
5 -1 -1 0.6553 0.2471 0.0976 0 1 0 0 1 
6 -1 -1 0.6553 0.2471 0.0976 0 1 0 1/2 1/2 
7 -1 -1 0.6553 0.2471 0.0976 0 0 1 1 0 
8 -1 -1 0.6553 0.2471 0.0976 0 0 1 0 1 
9 -1 -1 0.6553 0.2471 0.0976 0 0 1 1/2 1/2 
10 -1 -1 0.6553 0.2471 0.0976 1/2 1/2 0 1 0 
11 -1 -1 0.6553 0.2471 0.0976 1/2 1/2 0 0 1 
12 -1 -1 0.6553 0.2471 0.0976 1/2 1/2 0 1/2 1/2 
13 -1 -1 0.6553 0.2471 0.0976 1/2 0 1/2 1 0 
14 -1 -1 0.6553 0.2471 0.0976 1/2 0 1/2 0 1 
15 -1 -1 0.6553 0.2471 0.0976 1/2 0 1/2 1/2 1/2 
16 -1 -1 0.6553 0.2471 0.0976 0 1/2 1/2 1 0 
17 -1 -1 0.6553 0.2471 0.0976 0 1/2 1/2 0 1 
18 -1 -1 0.6553 0.2471 0.0976 0 1/2 1/2 1/2 1/2 
19 -1 -1 0.6553 0.2471 0.0976 1/3 1/3 1/3 1 0 
20 -1 -1 0.6553 0.2471 0.0976 1/3 1/3 1/3 0 1 
21 -1 -1 0.6553 0.2471 0.0976 1/3 1/3 1/3 1/2 1/2 
22 -1 1 0.4196 0.0114 0.5690 1 0 0 1 0 
23 -1 I 0.4196 0.0114 0.5690 1 0 0 0 1 
24 -l 1 0.4196 0.0114 0.5690 1 0 0 1/2 1/2 

84 1 1 0.0114 0.4196 0.5690 1/3 1/3 1/3 1/2 112 
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6.5 Summary 

For the mixture problem with categorized components, one can transform 

the components of one category ( for example, the ;th category) in the mixtures 

into (q; - I) mixture-related variables. The (q; - I) mixture-related variables then 

independent of the components in the other categories. Thus the designs for the 

mixture problem involving process variables can be applied to the (q; - 1) mixture­

related variables and one just deigns the (q; - I) mixture-related variables as 

process variables. Design of a factorial arrangement on mixture variables and 

mixture~related variables is illustrated. One can employ not only the design but 

also all other mixture designs involving process variables into the mixture problem 

with categorized components by transforming the components of one category into 

mixture-related variables. 



CHAPTER 7 

COMPARISON OF THE DESIGNS AND MODELS FOR 

THE MIXTURE PROBLEM WITH . 

CATEGORIZED COMPONENTS 

Lambrakis (1968a) introduces multiple-lattice designs for the mixture 

problem with categorized components. In Chapter 3, multiple-centroid designs and 

simplex-lattice by simplex-centroid designs are developed. A method of using 

ratios of components in the mixtures is developed in Chapter 4. ON-optimal 

designs for two three-component categories are obtained and are shown in Chapter 

5. Finally, designs and models using mixture components and mixture-related 

variables as design variables are developed in Chapter 6. One might question 

which design is better versus another in certain situations. Here one would like to 

investigate the differences among these methods and try, if possible, to find which 

design is better than another. The mixture problem with two categories, one with 3 

components and the other with 2 components, is illustrated for comparison among 

these designs. 

7.1 Review of Designs for the Mixture Problem 

with Categorized Components 

In order to compare different designs and models for the mixture problem 

with categorized components, six designs are reviewed. A mixture problem with 

94 
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three and two components in the first and second categories respectively is used 

as an example for all designs. The designs described in this section are compared 

with each other in Section 7 .2. 

7.1.1 The Multiple-Lattice Designs and the Associated Models 

The multiple-lattice design is the first design introduced in the literature for 

the mixture problem with categorized components. Suppose the mixture problem 

with two categories is considered. The first category contains three components 

(x1, x2 and x3) and the second category consists of two components (x4 and x5). 

Then, for the { 3 l, 2 l; 3, 2} double-lattice design, it contains ( 3 + 3 - 1) ( 2 + 2 - 1) = 
3-1 2-1 

30 distinct design points and the experimental region for the {31, 21; 3, 2} design is 

pictured in Figure 7.1. The values of the design points are shown in Table 7.1. 

The corresponding model for the {31, 21; 3, 2} design expressed in terms of 

the mean response to the mixture is 
T/ = {a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a123x1x2x3 + 

r12x1x2(x1 - x2) + y13x1x3(x1 -x3) + Y23x2x3(x2 -x3)} * 
{a4x4 + a5x5 + a45x4x5} (7.1) 

= fi14x1x4 + P1sx1x5 + fi24x2x4 + P2sx2x5 + fi34x3x4 + fi35x3x5 + 
fi145X1X4X5+ ... +fi2345X2X3X4X5(x2 - x3). 

Equation (7 .1) can be rewritten in terms of the response to the mixture as 
Y = {a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a123x1x2x3 + 

r12x1x2(x1 -x2)+ y13x1x3(x1 - x3) + Y23x2x3(x2 -x3)} * 
{a4x4 + a5x5 + a45x4x5} + & (1.2) 

= fi14x1x4 + P1sx1x5 + fi24x2x4 + P2sx2x5 + fi34x3x4 + fi35x3x5 + 
fi145XJX4X5+. .. +fi2345X2X3X4X5(X2 -X3) + & 

where i is random error. 
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Figure 7.1 The Experimental Region of the{/, i; 3, 2} Design Where Each Point 
of the 10 Points in the First Category Is Combined with Each Point of 
the 3 Points in the Second Category 
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Table 7.1 The Design Points of the {3/, 21; 3, 2} Design 

Component Values Component 
Run Values 

XJ x, x, XA. Xlj 

1 1 0 0 1 0 
2 1 0 0 0 1 
3 1 0 0 1/2 1/2 
4 .• 0 1 0 1 0 
5 0 1 0 0 1 
6 0 1 0 1/2 1/2 
7 0 0 1 1 0 
8 0 0 1 0 1 
9 0 0 1 1/2 1/2 
10 2/3 1/3 0 1 0 
11 2/3 1/3 0 0 1 
12 2/3 1/3 0 1/2 1/2 
13 2/3 0 1/3 1 0 
14 2/3 0 1/3 0 1 
15 2/3 0 1/3 1/2 1/2 
16 113 2/3 0 1 0 
17 1/3 2/3 0 0 1 
18 113 2/3 0 1/2 1/2 
19 1/3 0 2/3 1 0 
20 113 0 2/3 0 1 
21 113 0 2/3 112 112 
22 0 2/3 113 1 0 
23 0 2/3 113 0 1 
24 0 2/3 1/3 112 112 
25 0 1/3 2/3 1 0 
26 0 113 2/3 0 1 
27 0 113 2/3 1/2 1/2 
28 113 113 1/3 1 0 
29 113 113 113 0 1 
30 1/3 113 113 112 112 
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The right side of the model in equation (7 .1) contains 30 variables which is 

the same as the number of the distinct design points in the {31, 21~ 3, 2} design. 

The details for this method is shown in Section 2. 8. 

7.1.2 The Multiple-Centroid Designs and the Associated Models 

For multiple-centroid designs developed in Chapter 3;the {JC, 2c; 3, 2} 

design contains (23 -1x22 -1) = 21 distinct design points and the experimental 

region of the {3C, 2c; 3, 2} design is plotted in Figure 7.2. The values of the 

distinct design points for the {3C, 2c; 3, 2} design are shown in Table 7.2 . 

. The model for the {3C, 2c; 3, 2} design expressed in terms of the mean 

response to the mixture is 

T/ = (a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a123x1x2x3) * 
(a4x4 + a5x5 + a45x4x5) (7.3) 

= fi14x1x4 + P1sx1xs + fi14sx1x4x5+ ... +fi1234sx1x2x3x4x5. 

Equation (7.3) can be rewritten in terms of the response to the mixture as 
y = (a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a123x1x2x3) * 

(a4x4 + a5x5 + a45x4x5) + e (7.4) 

= fi14x1x4 + P1sx1x5 + fi145x1x4x5+. .. +fi12345x1x2x3x4x5 + e 

where & represents random error. Sections 3.2, 3.3 and 3.4 show the details on this 

method. 

7.1.3 The simplex-Lattice by Simplex-Centroid Designs 

and the Associated Models 

By using the simplex-lattice by simplex-centroid design presented in 

Chapter 3, one finds the {31, 2c; 3, 2} design is in effect the same as the {31, 21; 3, 

2} design since the { 2/, 2} simplex-lattice design is equivalent to the {2C, 2} 
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Figure 7.2 The Experimental Region of the {3c, 2c; 3, 2} Design Where Each 

Point of the 7 Points in the First Category Is Combined with Each Point 
of the 3 Points in the Second Category 
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Table 7.2 The Design Points of the {3C, 2c; 3, 2} Design 

Component Values Component 
Run Values 

x1 X2 x~ X4 X5 

1 1 0 0 1 0 
2 I 0 0 0 1 
3 1 0 0 1/2 1/2 
4 " 0 1 0 I 0 
5 0 1 0 0 1 
6 0 1 0 1/2 1/2 
7 0 0 1 1 0 
8 0 0 1 0 1 
9 0 0 1 1/2 1/2 
10 1/2 1/2 0 1 0 
11 1/2 1/2 0 0 1 
12 1/2 1/2 0 1/2 1/2 
13 1/2 0 1/2 1 0 
14 1/2 0 1/2 0 1 
15 1/2 0 1/2 1/2 1/2 
16 0 1/2 1/2 I 0 
17 0 1/2 1/2 0 1 
18 0 1/2 1/2 1/2 1/2 
19 1/3 1/3 1/3 1 0 
20 1/3 1/3 1/3 0 1 
21 1/3 1/3 1/3 1/2 1/2 
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simplex-centroid design. Also the { 3c, 21; 3, 2} design is equivalent to the { 3c, 3C; 

3, 2} design. One can refer to Section 3.5 for further details on this method. 

7.1.4 The Designs Using Ratios of Components as Design 

Variables and the Associated Models 

The method of using ratios of components as design variables is another 

alternative to the mixture problem with categorized components. For the mixture 

problem has three and two components in the first and second categories 

respectively, suppose the ratios are be defined as 

(7.5) 

: 

The value 0.01 is used to avoid zero values in the denominator of the three ratios. 

One can use any small value such as 0.001. A 33 factorial design is then applied to 

the 3 ratios. The level values for each ratio are O .1, 3. 0 and 5. 9 so that the 

experimental region is a little smaller than the multiple simplexes. One can use 

orthogonal design settings by letting z; = r;2~ 3 , i=l, 2 and 3. Figure 7.3 shows the 

experimental region of the 33 design and Table 7.3 shows the values of the design 

points. 

Assume a second-degree regression equation on variables z; (i=l, 2, and 3) 

is fitted to the data collected at the design points of the 33 factorial design. Then, 

the second-degree regression equation is 

Y = f31z1 + f32z2 + /J3z3 + f312z1z2 + /J13z1z3 + f32JZ2Z3 + /311zf + 
(7.6) 

where & is random error. The details for this method are shown in Chapter 4. 
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Figure 7.3 The Experimental Region ofthe 33 Factorial Design on r1, '2 and r3 
Defined in Equation (7.5) Where Level Values Are 0.1, 3.0 and 5.9 for 

Each r; and Each Point of the 9 Points in the First Category Is 
Combined with Each Point of the 3 Points in the Second Category 
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Table 7.3 The Design Points of the 33 Factorial Design on Ratio Variables 

Ratio Values Normalized Ratio Component Values 
Run Values 

r1 r1 r1 z1 z2 z-:; X1 x, X1 X4. Xe; 

I 0.1 0.1 0.1 -I -I -1 0.832 0.084 0.084 0.908 0.092 
2 0.1 0.1 3 -I -I 0 0.832 0.084 0.084 0.243 0.758. 
3 0.1 0.1 5.9 -1 -1 I 0.832 0.084 0.084 0.136 0.964 
4 0.1 3 0.1 -1 0 -1 0.236 0.025 0.739 0.908 0.092 
5 0.1 3 3 -1 0 0 0.236 0.025 0.739 0.243 0.758 
6 0.1 3 5.9 -1 0 I 0.236 0.025 0.739 0.136 0.964 
7 0.1 5.9 0.1 -I 1 -1 0.134 0.014 0.851 0.908 0.092 
8 0.1 5.9 3 -1 I 0 0.134 0.014 0.851 0.243 0.758 
9 0.1 5.9 5.9 -1 I 1 0.134 0.014 0.851 0.136 0.964 
10 3 0.1 0.1 0 -I -1 0.236 0.739 0.025 0.908 0.092 
11 3 0.1 3 0 -I 0 0.236 0.739 0.025 0.243 0.758 
12 3 0.1 5.9 0 -1 1 0.236 0.739 0.025 0.136 0.964 
13 3 3 0.1 0 0 -1 0.134 0.433 0.433 0.908 0.092 
14 3 3 3 0 0 0 0.134 0.433 0.433 0.243 0.758. 
15 3 3 5.9 0 0 1 0.134 0.433 0.433 0.136 0.964 
16 3 5.9 0.1 0 1 -1 0.092 0.306 0.602 0.908 0.092 

.17 3 5.9 3 0 1 0 0.092 0.306 0.602 0.243 0.758 
18 3 5.9 5.9 0 1 1 0.092 0.306 0.602 0.136 0.964 
19 5.9 0.1 0.1 1 -1 -1 0.134 0.851 0.014 .0.908 0.092 
20 5.9 0.1 3 1 -1 0 0.134 0.851 · 0.014 0.243 0.758 
21 5.9 0.1 5.9 1 -1 1 0.134 0.851 0.014 0.136 0.964 
22 5.9 3 0.1 1 0 -1 0.092 0.602 0.306 0.908 0.092 
23 5.9 3 3 I 0 0 0.092 0.602 0.306 0.243 0.758 
24 5.9 3 5.9 1 0 1 0.092 0.602 0.306 0.136 0.964 
25 5.9 5.9 0.1 1 I -1 0.069 0.466 0.466 0.908 0.092 
26 5.9 5.9 3 1 1 0 0.069 0.466 0.466 0.243 0.758 
27 5.9 5.9 5.9 I 1 0.069 0.466 · 0.466 0.136 0.964 

N . _ 1-0.0 l(r1 + ~) 
ote. x1 - , 

1+1)+~ 
X3 = (X] + 0.01)~, 

1-0.01~ 
X4 = ' 

l+~ 
X5 = (X4 + 0.01)~. 
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7.1.5 The D-optimal Designs and the Associated Models 

ON-optimal designs can also be applied to the mixture problem with 

categorized components. The candidate design points for the above case are shown 

in Table 7.4. 

Assume a quadratic model on component variables is used to obtain DN­

optimal designs . The rriodel is 
Y =/Jo+ /J1x1 + /J2x2 + /J4x4 + /J12x1x2 + /J14x1x4 + /J24x2x4 + 

(7.7) 
/J11xf + /J22x1 + /J44xJ + 8 

with the restriction that O :$; x1 + x2 :$; I and O :$; x1, x2, x4 :$; I . For further details 

on the construction of candidate design points and models, one can refer to 

Chapter 5. 

The D24-optimal, D42-optimal, D54-optimal and D6o-optimal designs for 

the quadratic model are obtained by the DETMAX algorithm through MIXSOFT 

software. These designs are used in comparison with other designs in the next 

section. 

7.1.6 The Designs Using Mixture Components and Mixture-Related 

Variables as Design Variables and the 

Associated Models 

The design using mixture components and mixture-related variables as 

design variables is developed in Chapter 6. Assume the three components (x1, x2 

and x3) of the first category are transformed into two mixture-related variables 

(w1 and w2) and a 22 factorial design is used on the variables w;. Also, assume the 

simplex-centroid design is applied to the two components (x4 and x5) 



Table 7.4 The Candidate Design Points for Obtaining DN-Optimal 
Designs 

Component Values Component 
Number Values 

X1 X2 X-:; X4 Xs 
1 1 0 0 1 0 
2 1 0 0 0 I 
3 1 0 0 1/2 1/2 
4 0 I 0 I 0 
5 . 0 I 0 0 I 
6 0 1 0 1/2 1/2 
7 0 0 1 1 0 
8 0 0 1 0 1 
9 0 0 I 1/2 1/2 
10 1/2 1/2 0 1 0 
11 1/2 1/2 0 0 1 
12 1/2 1/2 0 1/2 1/2 
13 1/2 0 1/2 1 0 
14 1/2 0 1/2 0 1 
15 1/2 0 1/2 1/2 1/2 
16 0 1/2 1/2 1 0 
17 0 1/2 1/2 0 1 
18 0 1/2 1/2 1/2 1/2 
19 2/3 1/3 0 I 0 
20 2/3 1/3 0 0 1 
21 2/3 1/3 0 1/2 1/2 
22 2/3 0 1/3 1 0 
23 2/3 0 1/3 0 1 
24 2/3 0 1/3 1/2 1/2 
25 1/3 2/3 0 1 0 
26 1/3 2/3 0 0 1 
27 1/3 . 2/3 0 1/2 1/2 
28 1/3 0 2/3 1 0 
29 1/3 0 2/3 0 I 
30 1/3 0 2/3 1/2 1/2 
31 0 2/3 1/3 1 0 
32 0 2/3 1/3 0 1 
33 0 2/3 1/3 1/2 1/2 
34 0 1/3 2/3 1 0 
35 0 1/3 2/3 0 1 
36 0 1/3 2/3 1/2 1/2 
37 1/3 1/3 1/3 I 0 
38 1/3 1/3 1/3 0 I 
39 1/3 1/3 1/3 1/2 1/2 
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of the second category. A combined design on w1, w2, x4 and x5 pictured in 

Figure 7.4 is called a 22(w) by two-component simplex-centroid design and values 

of the design points are shown in Table 7.5. 

The model corresponding to the 22(w) by two-component simplex-centroid 

design is 

Y = (rSx4 + r~xs + rSsx4x5) + (rlx4 + r!xs + rlsx4x5)w1 + 

(r~x4 + r~x5 + rlsx4x5)w2 + (rl2x4 + rfxs + rnx4x,5)w1w2 + &. 

Chapter 6 show all the details on the construction of the design and model. 

The five designs and their corresponding models described above are 

compared with each other in the next section. 

7.2 Comparison of the Five Designs for the Mixture 

Problem with Categorized Components 

(7.8) 

Responses for each design are generated by computer with the error terrri 

distributed as Normal (0, 1 ). For the { 3/, 21; 3, 2} and { 3c, 2c; 3, 2} designs, two 

observations are generated at each distinct design point. Two replicates are also 

generated for the 33 factorial design on the ratios of components and the 22(w) x 

two-component simplex-centroid design. ON-optimal designs, using N = 24, 42, 

54 and 60, for the quadratic model on the component variables are obtained by 

MIXSOFT software. The number of distinct design points, the number of 

replicates, the total number of observations, and the degree of model in terms of 

Xi's for the five designs are summarized in Table 7.6. 

From Table 7.6, one finds that the number of distinct design points are 

different for the five designs. The ON-optimal designs are chosen such that the N 

values used are equal to the total number of observations in the other four designs. 
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X-4=1 xs=l 

Figure 7.4 The Experimental Region of the 22(w) by Two-Component Simplex­
Centroid Design Where Each Point of the 4 Poipts in the First Category. 
Is Combined with Each Point of the 3 Points in the Second Category 
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Table 7.5 The Design Points of the 22(w) by Two-Component Simplex-Centroid 
Design 

Mixture-Related Component Values Component 
Run Variables Values 

W1 W:, X1 x, x~ X4 x, 
1 .;.l -1 0.6553 0.2471 0.0976 1 0 
2 -1 -1 0.6553 0.2471 0.0976 0 1 
3 -1 ::1 0.6553 0.2471 0.0976 1/2 1/2 
4 -1 1 0.4196 0.0114 0.569 I 0 
5 -1 1 0.4196 0.0114 0.569 0 1 
6 -1 1 0.4196 0.0114 0.569 1/2 1/2 
7 1 -1 0.2471 0.6553 0.0976 1 0 
8 1 -1 0.2471 0.6553 0.0976 0 1 
9 1 -1 0.2471 0.6553 0.0976 1/2 1/2 
10 1 1 0.0114 0.4196 0.569 1 0 
11 1 1 0.0114 0.4196 0.569 0 1 
12 1 1 0.0114 0.4196 0.569 1/2 1/2 
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Table 7.6 Summary of the Five Designs Used for Comparison 

Number of Total Number Degree of 
Design Distinct Number of of Model in 

Design Points Replicates Observations Terms of Xi's 
(N) 

{3l,2l~ 3, 2} 30 2 60 5 

{3C, 2C; 3, 2} 21 2 42 5 

Design of 
Using Ratios 27 2 54 0 

ON-Optimal 
Designs 18 ------- 24,42,54,60 2 

Designs of 
Using 12 2 24 4 

Components 
andMRVs 
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One observes that the corresponding models for the five designs are also different 

from each other. This makes it difficult to compare them with each other. 

In order to compare the five designs, define 

D1 = The {31, 21; 3, 2} design= Table 7.1 

D2 = The {3C, 2c; 3, 2} design= Table 7.2 

D3 = The design using ratios= Table 7.3 

D4·;,, ON-optimal designs (N = 24, 32, 54 and 60) 

D5 = The design using components and MRV s = Table 7 .5 

T 1 = Model corresponding to D 1 = Equation (7.2) 

T2 = Model corresponding to D2 = Equation (7.4) 

T3 = Model corresponding to D3 = Equation (7.6) 

T 4 = Model corresponding to D4 = Equation (7. 7) 

T5 = Model corresponding to D5 = Equation (7.8) 

Now, for each model, responses are generated for each design based on one of the 

five models (TI, T2, T3, T4 and T5). Then the responses generated are fitted to 

the regression equation corresponding to the assumed design and R] is calculated. 

For example, assume that T 2 is the true model to measure the relationship between 

response variable y and component variables (x;•s). Then, let observations be 

generated at the design points of the D1 design based on the T2 model. The 

responses generated are then fitted to the model (T1) corresponding to the D1 

design and R] is calculated. One can observe the R] value when using the D1 

design while the true model is T2 for a given set of parameter values (/3) in the T2 

model. Thus, one can calculate R] by using design Di (i = I, 2, 3, 4 and 5) while 

assuming that model Ti (i =I, 2, 3, 4 and 5) is actually true. For simplicity, the 

parameter vector (/3) is assumed to have equal element values in it and element 

values of I, 3, 5, 10 and 50 are used for evaluation. The error term (E) in the model 
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is always assumed to be Nonna] (0, 1 ). The R~ results for each /j value are shown 

in Table 7.7. 

From the R~ results in Table 7.7, one observes that: 

(I) In general, the larger the value of /j for a given Di (i=l, 2, 3, 4 and 5) 

design and Tj (j=l, 2, 3, 4 and 5) model, the larger the R~ value. This is 

because the error tenn is relative small compared to the parameter values, 

while /j is large, and.thus the error tenn has little effect oh the variation of 

responses. 

(2) The D1 design is always the best design among D1, D2, D3 and D4 designs for 

any one of the five models. Also the D 1 design is better than or equal to the D5 

design when the true model is either T1, T2, T3 or T4. However the D1 design 

is not better than D5 design when the true model is T 5. This is because the 

design points of the D 1 design are not inside the ellipsoidal experimental 

region of the D5 design except at the point (x1, x2, x3) = (1/3, 1/3, 1/3). 

(3) Although the D1 design seems better than other designs in tenns of R~ value, 

one has to pay more to choose this design since it contains the maximum 

number of distinct design points (and total number of observations). 

( 4) The R] · values using the D 1 or D2 designs when the true model is either TI or 

T2 are drastically affected by the size of the parameter values (/j). 

( 5) The R] values using either the D4 or D5 design when the true model is either 

T 1 or T 2 can be negative when the parameter values in the true model are 

small. This is rarely seen in general regression cases. This is due to that the 

responses generated at the design points ofD4 and D5 designs based on the 

model T1 and T2 when /j is small have large variation. That is, the error tenn 

has very much effect on the responses when /j is small. Another reason is that 

the actual model is far from the model corresponding to the design used. 

(6) The R] values using the D2 design when the Tl model is true are always the 
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Table 7.7 R~ Values Calculated by Using Di (i=l, 2, 3, 4 and 5) Design to 

Generate Data Based on Tj (j=l, 2, 3, 4 and 5) Model and Data Are 
Fitted to Ti Model · 

{) N Design T1 T2 T3 T4 T5 
1 60 D1 0.3072 0.3412 1.0000 0.7383 0.6778 
1 42 D, 0.0356 0.0356 1.0000 0.6312 0.6443 
1 54 Dl 0.1781 0.1794 0.8268 0.6458 0.6240 
1 ***** D4 -0.0727 -0.1025 0.9816 ***** 0.7368 
1 24 D5 -0.2500 -0.2436 1.0000 0.5051 0.9682 
3 60 D1 0.4818 0.5279 1.0000 0.9615 0.9582 
3 42 D2 0.2937 0.2937 1.0000 0.9421 0.9408 
3 54 Dl 0.3045 .· 0.2985 0.9766 0.9335 0.9239 
3 ***** D4 0.1857 0.0940 0.9816 ***** 0.9440 
3 24 D5 -0.4201 -0.4608 1.0000 0.9290 0.9963 
5 60 D1 0.6542 0.6823 1.0000 0.9859 0.9853 
5 42 D2 0.5275 0.5275 1.0000 0.9785 0.9777 
5 54 Dl 0.4297 0.4177 0.9914 0.9701 0.9675 
5 ***** D4 0.4482 0.3592 0.9816 ***** 0.9694 
5 24 D5 -0.1930 -0.3296 1.0000 0.9746 0.9987 
10 60 D1 0.8645 0.8684 1.0000 0.9965 0.9964 
10 42 D2 0.8105 0.8105 1.0000 0.9946 0.9943 
10 54 D3 0.6374 0.6450 0.9987 0.9894 0.9877 
10 ***** D4 0.7785 0.7353 0.9816 ***** 0.9807 
10 24 D5 0.5410 0.4251 1.0000 0.9938 0.9997 
50 60 D1 0.9934 0.9927 1.0000 0.9999 0.9999 
50 42 D2 0.9903 0.9903 1.0000 0.9998 0.9998 
50 54 D3 0.8184 0.9640 0.9999 0.9894 0.9943 
50 ***** D4 0.9854 0.9811 0.9816 ***** 0.9839 
50 24 D5 0.9845 0.9807 1.0000 0.9998 1.0000 

***** : See Table 7. 7 Continued. 
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Table 7.7 (Continued) R] Values Calculated by Using the D4 Design(True) to 

Generate Data Based on the T 4 Model with Data Are Fitted 
to the T 4 Model 

fi N R] 

1 24 0.6388 
1 

•' 

42 0.6708 
1 54 0.6723 
1 60 0.7233 
3 24 0.9507 
3 42 0.9509 
3 54 0.9571 
3 60 0.9519 
5 24 0.9827 
5 42 0.9818 
5 54 0.9818 
5 60 0.9836 
10 24 0.9957 
10 42 0.9954 
10 54 · 0.9954 
10 60 0.9959 
50 24 0.9998 
50 42 · 0.9998 
50 54 0.9998 
50 60 0.9998 



same as the R] values using the D2 design when the T2 model is true for any 

equal parameter values. This is seen by applying the design points of the D2 

design to the T1 and T2 models. 

The R] values in Table 7.7 are useful as a guide to show how the R] 
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values vary from one design to another design for a set of parameter values, while 

assuming a certain model can really measure the relationship between the response 

and the components in tfie mixtures. 

7.3 Summary 

The multiple-lattice design introduced by Lambrakis (1968a), the multiple­

centroid design, designs using ratios of components as design variables, ON­

optimal designs, and designs using mixture components and mixture-related 

variables as design variables are compared in this chapter. The mixture problem 

with three components in the first category and two components in the second 

category is used as an example for comparison for the five designs. The 

experimental region for each design is pictured, except for the ON-optimal 

designs. 

For each design, data are generated while assuming one of the five models 

is true. Then the data are fitted to the regression equation corresponding to the 

assumed design and R] is calculated. One can see how the R] values vary from 

one design to another. However, one cannot conclude that a design is better than 

another design since the number of distinct design points (and the total number of 

observations) are different from one design to another. One may choose a design 

based on the degree of the fitted regression equation required, the precision of 

forecasting, and the number of design points ( and the total number of 

observations) that one can afford. 



CHAPTER8 

SUMMARY, CONCLUSION AND FUTURE WORK 

A mixture experiment is an experiment in which the response is assumed to 

depend only on the relative proportions of the components in the mixture and not 

on the total amount of the mixture. A mixture-amount experiment is an experiment 

where the total amount of the mixture varies as well, and the response depends not 

only on the relative proportions of the components but also on the total amount of 

the mixture. The mixture problem with categorized components is an experiment 

where the components in the mixture can be classified into several groups by their 

nature. 

The purpose of a mixture experiment is to study the relationship between 

the response y and the components x in the mixture. A regression model is used to 

describe the relationship between the response y and the components x in the 

mixture. An efficient design is desired to collect data at design points and a 

regression model.is fitted. Parameters in the model are estimated usually by the 

least-squares method. One can use the fitted regression model to estimate the 

response at any point inside the experimental region. 

8.1 FIVE DESIGNS AND THEIR CORRESPONDING 

MODELS DEVELOPED IN THE STUDY 
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Lambrakis (1968a) introduces the mixture problem with categorized 

components. He develops the multiple-lattice design for this problem. One can 

think of the mixture problem with categorized components as an experiment where 

each category itself forms a mixture problem with a simplex region in it. In this 

study, five designs and their corresponding models are developed. They are: 

(I) Multiple-centroid design: First, use a simplex-centroid design for the 

components in each category. Then, the final multiple-centroid design is formed by 

the factorial arrangement of the points of the simplex-centroid design in one 

category with the points of the simplex-centroid design in other categories. The 

combined regression model for the multiple-centroid design is the multiplication of 

the model corresponding to the simplex-centroid design for one category with the 

models corresponding to the simplex-centroid designs for other categories. The 

total number of distinct design points of the multiple-centroid design is the same as 

the number of parameters in its corresponding regression model. 

(2) Simplex-lattice by simplex-centroid design: First, one chooses a 

simplex-lattice design for the components in the first category and a simplex­

centroid design for the components in the second category. Then, the final 

simplex-lattice by simplex-centroid design is formed by the factorial arrangement 

of the points of the simplex-lattice design in the first category with the points of the 

simplex-centroid design in the second category. The combined regression model 

for the simplex-lattice by simplex-centroid design is the multiplication of the model 

corresponding to the simplex-lattice design for the first category with the model 

corresponding to the simplex-centroid design for the second category., The total 

number of distinct design points of the simplex-lattice by simplex-centroid design 

is the same as the number of parameters in its corresponding regression model. 

(3) Design using ratios of components as design variables. First, formulate 

a set of ratios for the components in each category. The number of ratios in a 
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category should be one less than the number of components in the category. The 

ratios of components can be in any form as long as there is a tie-in with at least one 

component in one of the other ratios in the same category. There are no ties among 

the ratios of different categories. After the ratios of components in all categories 

have been carefully defined, the level values for each ratio are assigned based on 

the region of interest in each category. One then normalizes the uncoded ratios into 

coded ratio variables which makes the coded ratio variables mutually orthogonal. 

A classical design such as factorial design or central composite design and its 

corresponding model can be applied to the coded ratio variables. An example is 

also used to illustrate the ratios of design using components in the mixture. 

(4) Im-optimal design: First, one has to construct the constituent points for 

each category~ ~or the /h category with q; components in it, the constituent points 

are the union of the points in the { qf, m;} (m; ~ q;) designs where m; is the 

degree of the model corresponding to the lattice design. The final candidate design 

points are the factorial arrangement of the constituent points in one category with 

the constituent points in other categories. Then, one will choose a model which is 

assumed to correctly describe the relationship between the response and the 

components in the mixture. The ON-optimal design is a design with exactly N 

points chosen from the set of candidate points which maximizes the det(X 'X) based 

on the assumed model. The ON-optimal design can have points replicated many 

times in it such that the number of distinct design points in the ON-optimal design 

is less than N. The ON-optimal design can offer a smaller number of design points 

than other designs. 

( 5) Design using mixture components and mixture-related variables as 

design variables: First, one chooses the components of one category and 

transforms the components of the category into mixture-related variables. The 
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mixture-related variables can be designed as process variables. Then, one applies a 

simplex design or multiple-lattice design on the components in the other 

categories. Finally, one applies any design and its corresponding model involving 

process variables into the mixture components and mixture-related variables. An 

example of this design is illustrated. 

8.2 ACHIEVEMENTS AND FINDINGS RELATED TO THE 

FIVE DESIGNS DEVELOPED IN THE STUDY 

In addition to the five designs and their corresponding models developed in 

the study, the following achievements and findings are also realized. 

(I) The interpretation of the coefficients in the fitted regression model 

associated with the multiple-centroid design is achieved. The same logic also 

applies to the interpretation of the fitted regression model associated with the 

simplex-lattice by simplex-centroid design. 

(2) The calculation of the least-squares estimates of the coefficients in the 

regression models associated with the multiple-lattice, multiple-centroid, and 

simplex-lattice by simplex-centroid designs is generalized. 

(3) Face centroids are required in the set of candidate design points for 

obtaining ON-optimal designs when the model is assumed to be quadratic. 

( 4) The ON-optimal designs are obtained for the mixture problem with two 

three-component categories while the models are linear, linear plus cross product 

terms, and quadratic. 

(5) Comparison among multiple-lattice (D1) design (and its corresponding 

model T1), multiple-centroid (D2) design (and its corresponding model T2), 

design (D3) using ratios of components as design variables (and its corresponding 

model T3), D-optimal (D4) design (and its corresponding model T 4), and design 



119 

(D5) using both mixture components and mixture-related variables as design 

variables (and its corresponding model T5) is made. For each model, responses are 

generated for each design based on one of the five models. Then the responses 

generated are fitted to the regression equation corresponding to the design and 

R;,_ is calculated. 

(6) The R;,_ value using either the D4 or D5 design when the true model is 

either T1 or T2 can be negative when the parameter values in the true model are 

small. 

(7) The R;,. values using the D2 design when the Tl model is true are 

always the same as the R;,_ values using the D2 design when the T2 model is true 

for any equal parameter values. 

(8) Generally speaking, the multiple-lattice design is better than the other 

designs in terms of R;,_ value. However, one has to pay more to this design since it 

contains the maximum number of distinct design points. One cannot conclude 

which design is better than another design since the number of design points are 

different from one design to another. 

8.3 FUTURE WORK 

In this study, five designs and their corresponding models are developed in 

addition to the multiple-lattice design and its corresponding model which is 

already available in the literature. One can extend the research to the following 

areas: 

(I) Develop designs and models for the mixture problem with categorized 

components while lower-bound restrictions are placed on some or all of the 

components of one or more categories. 
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(2) Develop designs and models for the mixture problem with categorized 

components while upper-bound restrictions are placed on some or all of the 

components of one or more categories. 

(3) Develop designs and models for the mixture problem with categorized 

components when both lower-bound and upper-bound restrictions are placed on 

some or all of the components of one or more categories. 

( 4) Develop designs and models for the mixture problem with categorized 

components when multicomponent constraints are placed on some or all of the 

components of one or more categories. 

( 5) Develop screening designs for the mixture problem with categorized 

components when the number of components in some categories is large. 

( 6) Develop block designs for the mixture problem with categorized 

components. · 
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Appendix A 

A Form of the Orthogonal Matrix T 

In section 6.1, in order to produce a unit sphere centered at w = 0 where w = 
' (w1, w2, ... , wq_1), the matrix Tis used to rotate the axes of intermediate 

variables, the v;, to project the ( q-1 )-dimensional unit sphere onto the (q-1 )-

dimensional linear manifold. The transformation is shown in equation (6.8) to be 

VT= [W, O] (B. l) 
I 

where Wis an N x ( q-1) matrix of rank q-1 and O is an N x I vector of zeros. 

In order to derive a form for the matrix T, let T be partitioned as 

T= [Tt, T2] (B.2) 

where VTt = Wand VT2 = 0. The matrix Tt is q x (q-1) and T2 is q x 1. 

Sufficient conditions on the matrix Tare that Tis orthogonal and VT2 = 0. 
q 

One such matrix T2 can be obtained by using the relation L h;x; = 0 to find its 
i=l 

elements. Let 

q 
so that L k;x; = 0. The vector T2 can be defined simply as 

i=l 

125 

(B.3) 
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k1 

k2 

T2= (B.4) 

l~q 
so that VT2 = 0. Using the hi ( 1 ~ i ~ q ), the elements of the ( q-1) columns of the 

matrix T1 can also be constructed. The only requirement is that the matrix Tbe 

orthogonal. One such T1 can be obtained by letting 

-h2 -h1h3 -h1h4 

h1 -hih3 -h1h4 

0 h[ +hi -h1h4 

0 0 h[ +~ +h} 
* T1 = 0 

0 0 0 

and then normalizing the columns in equation (B.5). 

For example, suppose a 3-component mixture has restrictions on 

components like: 

(B.5) 



To obtain the elements of the vector T2 in equation (B.4), the quantity 

(hf + hi + 11§}12 equals J3 and thus 
.• 6 

1 

J3 [0.57735] 
T2 = ~ = 0.57735 

I 0.57735 

J3 
' * From equation (B.5), T1 is 

I I -- --
6 36 

* 1 I 
T1 = -- --

6 36 

0 
2 

36 

* By normalizing T1 , one will get TJ as 

I l 

- .Ji - .J6 [-0.7071 

Tt = --1 --1 = 0.7071 
.Ji Jf 0 
0 - .J6 

-0.40825] 
·-0.40825 

0.81650 

Combining Tt and T2 to get T results in 

[
-0.7071 -0.40825 

T= 0.7071 -0.40825 

0 0.81650 

0.57735] 
0.57735 

0.57735 

' ' 
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One can check the orthogonality of T= [Tt, T2] by verifying that TT =TT= I 

where I is the identity matrix. 



Appendix B. I 

A SAS Program for Calculating R71 Value 

***************************************************************** 

This program generates data using the DI (multiple-lattice) design assuming Tl 

(The model corresponding to the DI design) is the true model. Data generated are 

then fitted into the TI model. Then the parameters in the TI model are estimated 

and R] value is calculated. The components xl, x2 and x3 are the components in 

the first category and x4 and x5 are the components in the second category. 

***************************************************************** 

data; 

input xl x2 x3 x4 x5; 

ran=rannor( 12 ); 

y=50*((xI+x2+x3+xl *x2+xl *x3+x2*x3+xl *x2*x3+xl *x2*(xl-x2)+ 

xl *x3*(xl-x3)+x2*x3*(x2-x3))*(x4+x5+x4*x5))+ran; 

a=xl*x4· 
' 

b=xl *x5· 
' 

c=xl *x4*x5; 

d=x2*x4; 

e=x2*x5; 

f=x2*x4*x5· 
' 

g=x3*x4; 

h=x3*x5· 
' 
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i=x3*x4*x5· 
' 

j=xl *x2*x4; 

k=x 1 *x2 *x5; 

J=xl *x2*x4*x5· 
' 

m=xl *x3*x4· 
' 

n=xl *x3*x5· 
' 

p=xl *x3*x4*x5; 

q=x2*x3*x4; 

r=x2 *x3 *x5; 

s=x2*x3*x4*x5· 
' 

t=xl *x2*x3*x4· 
' 

u=x I *x2 *x3 *x5 · 
' 

v=xl*x2*x3*x4*x5· 
' 

w=xl *x2*(xl-x2)*x4; 

x=xl *x2*(xl-x2)*x5; 

z=xl *x2*(xl-x2)*x4*x5; 

aa=xl *x3*(xl-x3)*x4; 

ab=xl *x3*(xl-x3)*x5; 

ac=xl *x3*(xl-x3)*x4*x5; 

ad=x2*x3*(x2-x3)*x4; 

ae=x2*x3*(x2-x3)*x5; 

af=x2*x3*(x2-x3)*x4*x5; 

cards; 

l O O l 0 

0 IO I 0 

0 0 I I 0 

0.667 0.333 0 l 0 
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0.667 0 0.333 1 0 

0.333 0.667 0 1 0 

0.333 0 0.667 1 0 

0 0.667 0.333 1 0 

0 0.333 0.667 I 0 

0.333 0.333 0.333 1 0 

100 0 1 

0 100 1 

00101 

0.667 0.333 0 0 1 

0.667 0 0.333 0 1 

0.333 0.667 0 0 I 

0.333 0 0.667 0 I 

0 0.667 0.333 0 1 

0 0.333 0.667 0 1 

0.333 0.333 0.333 0 I 

100 0.5 0.5 

0 IO 0.5 0.5 

0 0 10.50.5 

0.667 0.333 0 0.5 0.5 

0.667 0 0.333 0.5 0.5 

0.333 0.667 0 0.5 0.5 

0.333 0 0.667 0.5 0.5 

0 0.667 0.333 0.5 0.5 

0 0.333 0.667 0.5 0.5 

0.333 0.333 0.333 0.5 0.5 

100 1 0 
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0 1 0 1 0 

0 0 1 1 0 

0.667 0.333 0 1 0 

0.667 0 0.333 1 0 

0.333 0.667 0 1 0 

0.333 0 0.667 1 0 

0 0.667 0.333 1 0 

0 0.333 0.667 1 0 

0.333 0.333 0.333 1 0 

10001 

0 100 1 

0 0 1 0 1 

0.667 0.333 0 0 1 

0.667 0 0.333 0 1 

0.333 0.667 0 0 1 

0.333 0 0.667 0 1 

0 0.667 0.333 0 1 

0 0.333 0.667 0 1 

0.333 0.333 0.333 0 1 

100 0.5 0.5 

0 1 0 0.5 0.5 

0 0 10.50.5 

0.667 0.333 0 0.5 0.5 

0.667 0 0.333 0.5 0.5 

0.333 0.667 0 0.5 0.5 

0.333 0 0.667 0.5 0.5 

0 0.667 0.333 0.5 0.5 
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0 0.333 0.667 0.5 0.5 

0.333 0.333 0.333 0.5 0.5 

proc reg; 

model y = a b c d e f g h i j k 1 m n p q r s t u v w x z aa ab 

ac ad ae af/noint; 

proc reg; 

model y = b c d e f g h i j k 1 m n p q r s t u v w x z 

aa ab ac ad ae af; 

run; 
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Appendix B.2 

A SAS Program for Calculating R74 Value 

*******************.********************************************* 

This program generates data using the D2 (multiple-centroid) design assuming Tl 

(The model corresponding to the multiple-lattice design) is the true model. Data 

generated are then fitted into the T2 model (The model corresponding to the 

multiple-centroid design). Then the parameters in the T2 model are estimated and 

R74 value is calculated. The components x 1, x2 and x3 are the components in the 

first category and x4 and x5 are the components in the second category. 

***************************************************************** 

data; 

input xl x2 x3 x4 x5; 

ran=rannor( 12 ); 

y=50*((xl+x2+x3+xl *x2+xl *x3+x2*x3+xl *x2*x3+xl *x2*(xl-x2)+ 

xl *x3*(xl-x3)+x2*x3*(x2-x3))*(x4+x5+x4*x5))+ran; 

a=xl *x4; 

b=xl *x5· 
' 

c=xl *x4*x5; 

d=x2*x4· 
' 

e=x2*x5· 
' 

f.=x2*x4*x5· 
' 

g=x3*x4; 

133 



h=x3*x5· 
' 

i=x3 *x4 *x5 · 
' 

j=xl *x2*x4; 

k=xl *x2*x5; 

l=x 1 *x2 *x4 *x5 · 
' 

m=x I *x3 *x4 · 
' 

n=x I *x3 *x5 · 
' 

p=xl *x3*x4*x5; 

q=x2*x3*x4; 

r=x2 *x3 *x5 · 
' 

s=x2*x3*x4*x5;. 

t=xl *x2*x3*x4· 
' 

li=x I *x2 *x3 *x5 · 
' 

v=x I *x2 *x3 *x4 *x5 · 
' 

cards; 

100 I 0 

0 IO 1 0 

0 0 1 I 0 

0.5 0.5 0 1 0 

0.5 0 0.5 1 0 

0 0.5 0.51 0 

0.333 0.333 0.333 1 0 

IO O 0.5 0.5 

0 IO 0.5 0.5 

0 0 I 0.5 0.5 

0.5 0.5 0 0.5 0.5 

0.5 00.5 0.5 0.5 
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0 0.5 0.5 0.5 0.5 

0.333 0.333 0.333 0.5 0.5 

100 0 1 

0 100 1 

0 0 1 0 1 

0.5 0.5 0 0 1 

0.5 0 0.5 0 1 

0 0.5 0.5 0 1 

0.333 0.333 0.333 0 1 

100 1 0 

0 101 0 

0 0 1 1 0 

0.5 0.5 0 1 0 

0.5 0 0.5 1 0 

0 0.5 0.5 1 0 

0.333 0.333 0.333 1 0 

100 0.5 0.5 

0 1 0 0.5 0.5 

0 0 1 0.5 0.5 

0.5 0.5 0 0.5 0.5 

0.5 00.5 0.5 0.5 

0 0.5 0.5 0.5 0.5 

0.333 0.333 0.333 0.5 0.5 

100 0 1 

0 100 1 

0 0 101 

0.5 0.5 0 0 1 
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0.5 0 0.5 0 I 

0 0.5 0.5 0 I 

0.333 0.333 0.333 0 1 

proc reg; 

model y = ab c d e f g h i j k I m n p q r s t u v/noint; 

proc reg; 

model y = b c d e f g h i j k 1 m n p q r s t u v; 

run; 
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