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PREFACE 

The nitroaromatic compound 1,3,5-trinitrobenzene (TNB) has been detected as an 

environmental contaminant at military installations, test grounds and munition production 

waste sites. Current information concerning the effects of TNB are based on assumptions 

of generality that structurally similar compounds behave alike and the toxicity information 

for TNB is derived by analogy to similar nitroaromatics. This study was designed to 

evaluate the target organs for toxicity in rats orally exposed to TNB. The dissertation is 

composed of five manuscripts which are complete and need no supporting material. 

Chapters II and V have been published in 'The Journal of Toxicology and Environmental 

Health' and 'Toxicologic Pathology' respectively. Chapters III and IV have been 

formatted for submission to 'The Journal of Toxicology and Environmental Health' and 

Chapter VI for 'Veterinary Pathology'. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Nitroaromatic compounds play an extremely important role in the chemical 

industry. The fundamental importance of nitroaromatics derives from the fact that they 

are the chemical industry's only commercial source of aromatics with nitrogen bound to 

the ring. Nitroaromatics are used to make several thousand consumer products, which 

account collectively for nearly 10 percent of the chemical industry sales (Hartter, 1985). 

Nitroaromatic compounds have long been used as intermediates in the preparation 

of a great number of substances in the chemical industry as well as in the production of 

high explosives. Explosives and propellants have important military applications, the 

former are also widely used in mining and construction. In the course of production, 

handling, loading of military or civilian devices and ultimate dispersal or disposal, 

explosives and propellants are released to the environment. They are disseminated by 

natural processes and partially converted to secondary products (Rosenblatt et al., 1991). 

The mutagenic and carcinogenic potential of this class of compounds, especially 

that observed in the nitrated biphenyl's, fluorenes, and naphthalene's, has brought about 

an increased interest in the risks and hazards that nitroaromatic compounds present to 

human populations and their environment (Spanggord et al., 1985). The inference that the 

results of animal experiments can be applied to humans is a fundamental principle of all 

toxicologic research. For most hazardous chemicals, adequate human data are not 

available, and risk analyses must rely on information from laboratory studies of rats or 

mice. Nitroheterocyclic compounds are no exception. 
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1,3,5-Trinitrobenzene (TNB) is a man-made nitroaromatic compound that is 

usually associated with the production of munitions and armaments. TNB can enter the 

environment in wastewater effluent from facilities that synthesize, produce or demilitarize 

munitions, or from the disposal of solid 2,4,6-trinitrotoluene (TNT) wastes (Ryon et al., 

1984; Spalding and Fulton, 1988; Spanggord et al., 1982). In addition to the munition 

plants, TNB was identified as a by-product in waste-water effluent from the synthesis of p

nitrobenzoic acid, an intermediate used for the synthesis of pharmaceuticals (Wennersten, 

1980) 

1,3,5-TNB (CAS Number 99-35-4) is known by the synonyms trinitrobenzene, 

symmetrical trinitrobenzene, sym trinitrobenzene (Budavari et al., 1989; Sax and Lewis, 

1989; Weast, 1989). TNB is a dimorphic solid with a molecular weight of213.11. It can 

be prepared by the decarboxylation of trinitrobenzoic acid or by the oxidation of 2,4,6-

trinitrotoluene. TNB is a yellow crystalline solid at room temperature; it is soluble in both 

polar and nonpolar solvents and sparingly soluble in water (Sax and Lewis, 1987; 

Windholz et al., 1983). 

TNB is a class A explosive that is less sensitive to impact, but more powerful and 

brisant than TNT (Budavari et al., 1989; Fedoroff et al., 1962). TNB has been classified 

as a high explosive and has been used in military and commercial explosive compositions 

(Budavari et al, 1989; Sax and Lewis 1987). TNB has also been used as an explosive for 

oil wells and mining (USDHHS, 1993). Other uses for TNB include use as a vulcanizing 

agent in the processing of natural rubber and as an indicator in acid-base reactions in the 

pH range of 12.0 -14.0 (USDHHS, 1993). TNB is classified as an EPA hazardous waste, 

and disposal must be carried out according to EPA regulations (USDHHS, 1993). TNB 

has been identified in 14 of the 13 00 hazardous waste sites on the National Priorities List 

(NPL) (USDHHS, 1993). 

An anthropogenic environmental contaminant, exposure to TNB can occur 

through contact with wastewater effluents released from facilities that synthesize, produce 
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or demilitarize munitions, or from the disposal of solid TNT wastes (Ryon et al., 1984; 

U.S. EPA, 1989). Data on oral, dermal, or inhalation exposure of experimental animals or 

humans to TNB are limited to a few Russian (Korolev et al., 1977; Senczuk et al., 1976) 

and English abstracts (Kinkead et al., 1994; Qualls et al., 1993). Most of the toxicity data 

derived for TNB is by analogy to two structurally similar compounds 1,3-dinitrobenzene 

and 2,4,6-trinitrotoluene. 

HEMATOLOGICAL EFFECTS: 

Methemoglobinemia 

One of the typical signs of nitroaromatic p01somng 1s cyanos1s due to 

methemoglobinemia. Methemoglobinemia due to nitrobenzene (NB) poisoning in humans 

has been recognized for more than a century. Nitrobenzene-induced methemoglobinemia 

has also been reported in a variety of animal species, including cats, rabbits, rats, dogs, and 

mice, although mice appear to be more resistant to methemoglobinemia than other species 

(Medinsky and Irons, 1985). A relationship between the metabolism and toxicity of NB 

has been demonstrated by the absence of NB-induced methemoglobinemia in axenic 

animals (Reddy et al., 1976), suggesting that intestinal microfloral metabolism of 

nitrobenzene is essential for methemoglobin · production. Cecal microflora sequentially 

reduce NB to aniline through the intermediates nitrosobenzene and phenylhydroxylamine 

(Levin and Dent et al. 1982) and these intermediates are known . to produce 

methemoglobinemia. 

In common with NB, the three isomers of dinitrobenzene 1,2-DNB, 1,3-DNB and 

1,4-DNB have been reported to induce methemoglobinemia both in vivo and in vitro 

(Facchini and Griffiths 1981 ). Blackbum et al (1988) reported cyanosis 

(methemoglobinemia) and splenic enlargement with 1,3-DNB and 1,4-DNB but not 1,2-

DNB in rats receiving a single oral dose of 50 mg/kg of the isomers contradicting the 
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results of Facchini and Griffiths (1981). Watanabe et al (1976) concluded that the 1,3-

DNB (m-DNB) and 1,4-DNB (p-DNB) isomers are potent methemoglobin formers in 

vivo, while the third isomer, 1,2-DNB(o-DNB) has much less capacity. Among the 

dinitrobenzene isomers, the commercially important 1,3-DNB is a potent inducer of 

methemoglobin both in vivo and in vitro (Facchini and Griffiiths, 1981; Goldstein and 

Rickert, 1985). However, Cossum and Rickert (1987) demonstrated an inter-species (and 

inter-isomer) differences in the in vitro production ofmethemoglobin between rat, monkey 

and human erythrocytes. 

Methemoglobinemia associated with exposure to the widely used military 

explosive TNT is well known. A significant methemoglobinemia was observed with TNT 

in rats fed 300 mg/kg/day for 13 weeks (Levine et al. 1984) and also in dogs fed 32 

mg/kg/day for 6 months (Levine et al. 1990). In contrast to the above nitroaromatics, 

information on methemoglobin formation with TNB both in vivo and in vitro is rather 

limited and incomplete. Methemoglobin was not significantly elevated 5 hours after a 

single intraperitoneal injection of TNB (21.3 mg/kg) in rats (Watanabe et al., 1976). 

Senczuk et al (1976) (translated from Russian) reported that a single oral dose of TNB at 

0.4 micro mole/kg (85 microgram /kg) induced methemoglobin formation in Wistar rats. 

A recent report also suggests significant methemoglobinemia 5 hours after a single dose 

(71 mg/kg) and 24 hours after 4 daily doses (Qualls et al., 1993). 

Hemolytic Anemia 

The most frequently reported consequence of exposure to nitroaromatic 

compounds is a significant anemia. Poisoning with nitrobenzene, the simplest archetype of 

the nitroaromatics has been recognized for a long time; Blood dyscrasias have been 

reported during the stages of acute and chronic nitrobenzene poisoning, including 

decreases in circulating hemoglobin, and in erythrocyte and platelet counts; hemolytic 
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anemia; and bone marrow hyperplasia (Shimkin, 1939; Hamblin, 1949; Parkes and Neill, 

1953). 

In common with NB, the three isomers of dinitrobenzene, 1,2-DNB, 1,3-DNB and 

1,4-DNB have been reported to induce anemia on prolonged exposure (Watanabe et al., 

1976). As early as 1949, Kiese reported hematological changes in dogs given daily or 

intermittent subcutaneous injections of0.1-6.0 mg/kg of 1,3-DNB for as long as 144 days. 

He noted similar effects in dogs given acute doses of 10 and 20 mg/kg subcutaneously 

(Kiese 1949a,b). Cody et al (1981) reported that 1,3-dinitrobenzene produced reductions 

in hematocrit and hemoglobin values in rats after administration in the drinking water for 8 

weeks (at 50, 100, 200 mg/L) or 16 weeks (at 3, 8, 20 mg/L). 

Among the nitroaromatics, the hematological effects 2,4,6-trinitrotoluene have 

been extensively documented in humans (Hathway, 1985). The earliest such report of 

laboratory findings in TNT-exposed workers was by Minot in 1919 (Minot, 1919). In 

experimental animals adverse effects on standard hematological parameters were observed 

in rats (Dilley et al. 1982; Levine et al. 1984, 1990), mice (Dilley et al. 1982), and dogs 

(Dilley et al. 1982; Levine et al. 1990) after intermediate (13 weeks) oral exposure to 

TNT. Compensatory responses occurring as a result of anemia (including reticulocytosis, 

macrocytosis, and increased levels of nucleated erythrocytes) were observed in Fischer-

344 rats fed 125 mg/kg/day of TNT for 13 weeks (Levine et al. 1990). Similar to 

methemoglobinemia, reports of anemia after oral, inhalation or dermal exposure to TNB in 

humans or laboratory animals are confined to tersely reported studies (Qualls et al., 1993; 

Fogleman et al., 1955). 

Fogleman et al (1955) conducted studies using TNB in dogs. They reported 

derangement of erythrocyte morphology, hemoglobin values within normal limits, and 

erratic methemoglobin values. The source, isomer or purity of the compound (TNB) was 

not mentioned in their report. A significant anemia with reductions in PCV, red cell 

numbers and hemoglobin was reported in rats receiving daily doses of TNB at 71 mg/kg 
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for 4 days in a report by Qualls et al (1993). In retrospect, the current information on 

hematological effects ofTNB is by analogy to the two structurally similar compounds 1,3-

DNB and 2,4,6-TNT. The isomer specificity observed with dinitrobenzenes by Cossum 

and Rickert (1987) and Blackburn et al (1988) give conclusive evidence that simple 

extrapolation of toxic effects based on the structure-activity relationship may not be valid 

with nitroaromatics. 

Mechanism of Hemolytic Anemia 

Hemolytic anemia (and methemoglobinemia) is a significant toxic side-effect that 

has been known to accompany treatment with a variety of nitroaromatics. A wide variety 

of drugs and xenobiotics undergo oxidation-reduction reactions which leads to red cell 

destruction and hemolytic anemia. Interaction between the xenobiotic and hemoglobin is 

of prime importance in the process, which is usually characterized by hemoglobin 

oxidation to methemoglobin, and formation within red cells of Heinz bodies, which 

represent inclusions of denatured and precipitated hemoglobin called hemichromes. 

Hemichromes cross-link the major erythrocyte membrane-spanning protein, band 3, into 

clusters. These clusters provide the recognition site for antibodies directed against 

senescent cells. These antibodies bind to · the red cell and trigger its removal from 

circulation (Low et al., 1985). The denaturation of hemoglobin to hemichromes, and 

subsequent destruction of such cells has been conclusively proven with the oxidant drug 

phenylhydrazine (French et al., 1978, Low et al., 1985, Naughton et al., 1990). 

Erythrocytes incubated with phenylhydrazine (up to 6 hours) showed no detectable 

hemolysis (Dornfest et al., 1983) and experiments performed in vivo demonstrated that 

erythrocytes although not directly lysed by phenylhydrazine, are rapidly removed from the 

circulation by macrophages after exposure to this drug (Azen and Schilling, 1963, 1964; 

Jacob and Jandl, 1962). While a great deal of attention has been focused on the 

methemoglobinemia associated with these compounds, especially with nitrobenzene and to 

I 
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a lesser extent with 1,3-DNB a mechanistic approach to characterize the hemolytic anemia 

has never been undertaken. 

REPRODUCTIVE EFFECTS 

Testicular Toxicity 

Nitroaromatic compounds constitute an important class of chemicals known to 

produce testicular damage in experimental animals. Members of this series which possess 

such toxicity include, nitrobenzene (Bond et al., 1981 ), dinitrobenzene (Linder et al., Hess 

et al ), nitrotoluenes (Ciss et al., 1980), dinitrotoluenes (Ellis et al., 1978; Rickert et al., 

1984) and trinitrotoluenes (Levine et al., 1984). 

Bond et al (1981) described degenerative changes in the germinal epithelium of 

rats exposed to a single oral dose of 300 mg/kg of nitrobenzene. Similar toxic effects 

have been observed in rats and mice exposed to nitrobenzene by inhalation (Medinsky and 

Irons, 1985). Reduced testis weight and testicular atrophy was observed in rats fed TNT 

in the diet for 13 weeks and the testicular atrophy was not reversible after a 4 week 

recovery period (Dilley et al., 1982). Similarly testicular atrophy with degeneration of the 

seminiferous tubular epithelium was observed in rats administered 125 and 300 mg/kg/day 

of TNT for 13 weeks (Levine et al., 1984). 

Among the nitroaromatics, the testicular effects of 1,3-DNB have been the subject 

of numerous and in-depth investigations in rats and mice. Reproductive toxicity in the 

form of reduced testis and epididymis weight was consistently observed in rats exposed to 

a single oral dose (ranging from 32-50 mg/kg) of 1,3-DNB (Blackbum et al. 1988; Linder 

et al., 1988; Rehnberg et al., 1988). Cody et al. (1981) reported testicular atrophy in the 

rat after subchronic exposure to m-DNB via the drinking water. In a reproduction study, 

subchronic gavage exposure (5 days/week) resulted in interruption of spermatogenesis and 

infertility at a dosage level of 3 mg/kg/day and decreased sperm production at 1.5 
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mg/kg/day (Linder et al. 1986). A single oral dose of 1,3-DNB can also produce 

devastating effects on male reproductive system of the rat. In an extensive study of the 

acute effects and long term sequelae (Linder et al., 1988; Hess et al., 1988) a single oral 

dose of 1,3-DNB (48mg/kg) produced marked effects on pachytene spermatocytes and 

older germ cell types within 24 hours. Epididymal sperm quality was diminished by 16 

days and fertilizing ability was lost by 5 weeks. 

Detailed histological and ultrastructural investigations indicated that the somatic 

Sertoli cell was the initial target site within the testis for 1,3-DNB toxicity (Foster et al., 

1986; Blackbum et al., 1988). These cells showed extensive vacuolation within 24 hours. 

An initial lesion to this cell, produced by 1,3-DNB, resulted in a complete disruption of the 

spermatogenic process at later times (Blackbum et al. 1988). The utilization of primary 

Sertoli-germ cell co-cultures (Foster et al., 1987a) indicated that direct addition of them

DNB produced an analogous morphological response to that encountered in vivo (i.e. 

Sertoli cell vacuolation, germ cell exfoliation, and phagocytic vacuoles containing 

degenerate spermatocytes). The testicular toxicity of dinitrobenzenes is isomer specific. 

Initial studies indicated that a single oral dose (50 mg/kg) of 1,2-, 1,3-, 1,4-

dinitrobenzenes resulted in decreased testicular weight and histopathological changes to 

the testis only in animals treated with the 1,3 isomer (m-DNB) (Blackbum et al., 1988). 

These findings of an isomer specificity for testicular toxicity with dinitrobenzenes suggests 

a different mechanism may be involved with TNB. The U. S. Health and Human 

Services(USDIIlIS, 1993) and the U. S. Environmental Protection Agency (U. S. EPA, 

1989) report no studies regarding reproductive effects in animals after exposure to TNB. 

The reproductive effects of TNB are, limited to a few brief reports(Kinkead et al., 1994, 

1995; Reddy et al., 1993, 1994). 
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Reversibility of Testicular Toxicity 

The reversibility of nitroaromatic compound induced testicular toxicity is varied 

depending on the compound. The ability of the testis to recover from the toxic insult has 

been reported by other investigators for nitrobenzene and other nitroaromatic compounds. 

Bond et al (1981) proposed that testicular changes are reversible in rats receiving single 

oral doses ofnitrobenzene. Later, Levin et al (1988) reported substantial recovery (>90% 

regeneration of seminiferous epithelium) by 100 days after a single oral dose of 

nitrobenzene. In a rat fertility study, a five fold increase in fertility index was reported 

after 9 weeks of recovery from inhalation exposure to nitrobenzene, but reversibility was 

not studied histologically (Dodd et al., 1987). Rats administered 6 mg/kg of 1,3-DNB 

(Sci/wk for 12 weeks) followed by a 5 month recovery period had partially reversible 

testicular effects (Linder et al., 1986). Later studies by Linder et al (1988) reported 

normal fertilizing ability by 13 weeks after a single oral dose (48 mg/kg). In an extensive 

study of the acute effects and long term sequelae (Linder et al., 1988; Hess et al., 1988) a 

single oral dose of 1,3-DNB (48 mg/kg) diminished epididymal sperm quality by 16 days 

and loss of fertilizing ability by 5 weeks. Normal fertilizing ability was recovered in most 

animals by 5 months post-treatment, in a few animals the effects were not readily 

reversible, suggesting permanent reproductive damage (Linder et al., 1990). The 

testicular effects of TNT are not reversible in rats allowed 4 weeks of recovery after 

exposure to TNT for 13 weeks (Dilley et al., 1982). There is no information on the 

reversibility of the testicular toxicity after cessation of treatment with TNB. 

NEUROLOGICAL EFFECTS: 

CNS Effects 

Aromatic and heterocyclic nitro compounds cause a variety of toxic effects. Of 

particular importance is the neurotoxicity associated with these heterocyclic compounds. 
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Neurotoxic effects have been reported as a consequence of human nitrobenzene exposure 

since the early 1900's (Hamilton, 1919; Donovan , 1920) Likewise, neurotoxicity has 

been associated with experimental nitrobenzene poisoning in laboratory animals. Bond et 

al (1981) and Morgan et al (1985) reported petechial hemorrhages in the brain stem, 

bilateral malacia and reactive gliosis in the cerebellar peduncles of rats treated with 

nitrobenzene. 

Similarly the dinitrobenzenes, specifically 1,3-DNB (m-DNB) is also implicated as 

a neurotoxin. Physical signs of neurotoxicity following exposure to 1,3-DNB are 

manifested as slow movement, loss of equilibrium or ataxia, flaccid paralysis of fore limbs 

and splaying of hind limbs (Linder et al., 1988; Philbert et al., 1987a, b). Morphologic 

(microscopic) examination revealed bilaterally symmetrical vacuolated lesions involving 

cerebellar roof, vestibular and superior olivary nuclei and the inferior colliculi (Philbert et 

al., 1987a, b). Frequent petechial hemorrhages, with erythrocytes usually being limited to 

enlarged Virchow-Robin spaces were also reported. Later studies by Ray et al (1992) 

implicated altered auditory function, with its associated metabolic consequence exercising 

a significant role in the development of brain stem damage in auditory pathways following 

1,3-dinitrobenzene intoxication. 

Neurotoxic signs are also reported with the explosive 2,4,6-trinitrotoluene (TNT). 

Dogs receiving 20 mg/kg/day were inactive (Dilley et al., 1982) and were ataxic when 

treated at 32 mg/kg/day for 6 months (Levine et al., 1990). Fischer-344 rats receiving 300 

mg/kg/day of 2,4,6-trinitrotoluene for 13 weeks had brain lesions which consisted of focal 

vacuolation and malacia (Levine et al., 1984). 

While much has been reported with nitrobenzene, dinitrobenzene (1,3-DNB) and 

2,4,6-trinitrotoluene (TNT), information on the neurological effects of TNB are confined 

to abstracts (Chandra et al., 1994; Kinkead et al., 1994). Physical signs of neurotoxicity 

reported for TNB include head tilt, loss of equilibrium (Kinkead et al., 1994), walking on 

toes, hunched back and knuckling of feet (Chandra et al., 1994). Petechial hemorrhages in 
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the brain stem and bilaterally symmetrical necrosis in the cerebellar peduncles were 

observed histologically (Chandra et al., 1994). 

Etiopathogenesis and Reversibility 

The changes observed with TNB, had topographical similarities to those produced 

by 1,3-dinitrobenzene (Philbert et al., 1987a), nitrobenzene (Morgan et al., 1985), and 

pyrithiamine (Watanabe, 1978). It has been suggested with 1,3-DNB (Romero et al., 

1991), nitrobenzene (Morgan et al., 1985) and pyrithiamine (Watanabe et al., 1981), that 

the earliest changes probably occur in endothelial/glial cells, neuronal alterations being 

secondary to the endothelial/glial damage. 

The nitroaromatic compound (DNB, NB, TNB) induced encephalopathy is 

accompanied by widespread vacuolation and necrosis of the neuropil in white matter of 

the brain. Vacuolation of the white matter (spongy degeneration) has been attributed to 

both pathological processes and to artifacts of fixation, such as perfusion with 

hyperosmolar fixatives (Schultz and Karlsson, 1965). In pathological conditions, the 

vacuolation has been identified ultrastructurally as swollen astrocytic processes, distended 

extracellular spaces, vacuolated oligodendrocytes, dilated axons, swollen neuronal 

dendrites and demyelination (Lampert and Schochet, 1968a, b; Tanaka et al., 1977). The 

vacuolation of the neuropil and the Virchow-Robin spaces expanded with erythrocytes 

indicates brain edema due to displacement of the denser neuropil components by water 

(Bothe, Bosch and Rossmann, 1984). 

Prior studies with the structurally analogous nitroaromatics DNB or nitrobenzene 

have not addressed the contribution of blood brain barrier (BBB) breakdown (vasogenic 

edema) in the evolution of the tissue changes. At present little is known about how 

vascular changes with TNB lead to brain damage. Increased permeability of the blood 

brain barrier (BBB) leading to brain damage has been implicated in a variety of unrelated 

conditions including hypertension (Sokrab et al., 1988), Clostridium spp toxin (Finnie and 
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Hajduk, 1992), infusions of hyperosmolar solutions (Salahuddin et al., 1988), cerebral 

ischemia and hypoxia (Loberg et al., 1993), infarction (Nordborg et al., 1991) and 

cryogenic brain lesions (Loberg et al., 1992; Loberg and Torvik 1991). Increased 

permeability leads to exudation of plasma proteins into the parenchyma and uptake of 

these proteins causes permanent nerve cell injury (Nordborg et al., 1991; Salahuddin et al., 

1988; Sokrab et al., 1988). The extravasation of serum albumin into the neuropil and its 

uptake by neurons and glial cells has been demonstrated immunohistochemically 

(Salahuddin et al., 1988; Loberg et al., 1993, 1992). Demonstration of the intimate 

relationship between vascular disturbance (breakdown of BBB) and secondary tissue 

damage, would elucidate a possible mechanism for the brain damage. 

Astrocytes play a role in the induction and maintenance of the BBB (Janzer and 

Raff, 1987), homeostasis of water and ion balances (Kimelberg, 1983; Hertz and 

Schousboe, 1975) and repair after tissue damage (Montogomery, 1994). Astrocytic 

response to brain damage is evaluated by immunohistochemical staining for the 

intermediate filament glial fibrillary acidic protein (GFAP) (Norenberg et al., 1994). A 

good correlation exists between the production of edema and astrocytic response as 

judged by GFAP immunoreactivity (Schmidt-Kastner et al., 1990). Astrogliosis is the 

hallmark of injured brain tissue leading to the formation of a glial scar (Montogomery, 

1994). Glial scar would act to seal off the injured tissue from the adjacent normal brain 

(formation of a new glia limitans). 

CONCLUSIONS 

Nitroaromatic compounds have long been used as intermediates in the preparation 

of a great number of substances in the chemical industry as well in the production of high 

explosives. The mutagenic and carcinogenic potential of this class of compounds has 

brought about an increased interest in the risks and hazards that nitroaromatic compounds 
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present to human populations and their environment. The nitroheterocyclic compound 

TNB has been detected as an environmental contaminant at military installations, test 

grounds and production waste sites. Current information concerning the effects of TNB 

are based on assumptions of generality that structurally similar compounds behave alike 

and the toxicity information is derived by analogy to similar nitroaromatics. The incidence 

of disease end points and health effects criteria in humans resulting from low-dose 

exposure to TNB is unknown. Attainment of this goal is difficult in large part because 

extrapolation based on experimental animal studies and detailed mechanisms of action is 

lacking. 

This study was designed to evaluate the target organs for toxicity in rats orally 

exposed to TNB. Emphasis was largely placed on the three triads, hematological, 

neurological and reproductive effects, since nitroaromatic compounds consistently affect 

these systems. An approach to elucidate a possible mechanism and reversibility of the 

observed toxic effects has been attempted. 
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CHAPTER II 

HEMA TO LOGICAL EFFECTS OF 1,3,5-TRINITROBENZENE (TNB) IN RA TS 

IN VIVO AND IN VITRO 

INTRODUCTION 

1,3,5-Trinitrobenzene is a nitroaromatic compound detected as an environmental 

contaminant of surface water, ground water and soil. The waste waters discharged from 

2,4,6-trinitrotoluene (TNT) manufacturing processes contain a large number of aromatic 

compounds, including TNB. TNB is found in aquatic systems as a byproduct of 

biotransformation and photolysis of TNT. TNB is not easily biodegradable, it persists in 

the environment and can eventually leach out and contaminate ground water near 

production waste disposal sites and military test grounds (Chudoba and Pitter, 1976; 

Garman et. al., 1987; Layton et. al., 1987). TNB is an anthropogenic environmental 

contaminant and exposure can occur through contact with waste water eflluents released 

from facilities that synthesize, produce or demilitarize munitions or from the disposal of 

solid TNT wastes ( Ryon et. al., 1984; US EPA 1989) 

The U.S. Department of Health and Human Services ( 1993) reported finding no 

studies of the respiratory, hematologic, hepatic, neurologic, reproductive or systemic 

effects ofTNB. Therefore most of the toxicity information derived for TNB is by analogy 

to the structurally similar compounds 1,3-dinitrobenzene (DNB) and 2,4,6-trinitrotoluene 

(TNT). Toxicity data on TNB are limited. TNB has been found to have an oral LD50 of 

284 mg/kg for combined sexes in rats (Fitzgerald et. al., 1992). In a tersely reported study 

with TNB, toxic effects were reported to include formation of methemoglobin, 
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derangement of erythrocyte morphology and histopathologic changes in spleen and 

kidneys in dogs (Fogleman et al., 1955). Our recent acute studies showed that TNB at 71 

mg/kg for 10 days produced encephalopathy in male F-344 rats (Chandra et al., 1995). In 

subchronic studies we have observed hematological and histopathological changes in the 

liver and testis (Reddy et. al., 1994). The purpose of this study is to evaluate the 

hematologic effects of TNB under different acute exposure periods. This experiment is 

one of a series of toxicological studies on TNB currently being conducted. 

TNB is structurally related to nitrobenzene (NB), DNB and TNT, hence we 

hypothesized the mechanism of toxicity to be similar. A major component of toxicity with 

NB (Beauchamp et al., 1983; Bond et al., 1981) and DNB (Cody et al., 1981; Watanabe 

et al., 1976) and TNT (Dilley et al., 1982; Levine et al., 1984, 1990; Morton et al., 1976) 

is the development of anemia and methemoglobinemia. DNB is a potent inducer of 

methemoglobin (MIIB) both in vivo and in vitro (Cossum and Rickert, 1987; Facchini 

and Griffiths, 1981; Goldstein and Rickert, 1985). On the contrary, NB requires 

metabolism by intestinal microflora before producing methemoglobin (Reddy et al., 1976). 

In our pilot experiments rats treated with TNB developed MHB, but it is not known 

whether metabolism by intestinal bacteria . was involved. In order to determine whether 

TNB is an inducer of methemoglobin, experiments utilizing rat blood were conducted in 

vitro. 

A second component of this study was to elucidate the mechanism of the 

hemolytic anemia which we observed with TNB, which is common to a number of other 

nitroaromatics. The work of Rachmilewitz and co-workers (1969, 1971, 1974) clearly 

demonstrated that the hemichromes formed are common intermediate molecular species 

within the hemoglobin denaturation pathway. Hemichromes are low spin derivatives of 

ferrihemoglobin (high spin form, i.e. methemoglobin) with unique spectral properties in 
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the visible region as well as by electron spm resonance measurements. Since 

methemoglobin is the intermediate product before transition to hemichrome, we 

speculated that TNB is an inducer of hemichrome. 

MATERIALS AND METHODS 

In Vivo 

TNB (99.83% purity) was obtained from Naval Surface Warfare Center (Silver 

Springs, MD) and the purity of the compound was confirmed by HPLC at U.S. Army 

Biomedical Research and Development Laboratory. TNB was mixed with com oil in a 

Potter-Elvehjem tissue grinder to form a suspension. The TNB com oil mixture was 

prepared daily just prior to dosing. 

Male Fischer-344 rats after one week of acclimation (initial body weight 220 g) 

were used in all the experiments. The oral LD50 values for TNB in rats has been reported 

to be 284 mg/kg for combined sexes (Fitzgerald et al., 1992). The one-fourth LD50 value 

(71 mg/kg) and the one-eighth LD50 value (35.5 mg/kg) were selected for these studies. 

The rats were randomly assigned by body weight to four exposure periods of 5 hours, 1 

day, (single dose) or 4 days, and 10 days (multiple daily doses). Within each exposure 

period, four rats were assigned to each of three TNB dose groups of 0, 35.5, and 71 

mg/kg. The rats were gavaged with TNB in corn oil by a feeding needle (1.35 ml/kg). 

Control rats received the same volume of corn oil. Rats had free access to water and 

standard commercial diet (Purina Rat Chow). Rats receiving daily oral doses of TNB for 

4 and 10 days were fasted for 12 hours prior to euthanasia. At the end of each exposure 

period, rats were anaesthetized by CO2 and blood was collected via cardiac puncture in 

EDT A tubes. Euthanasia was by the resulting exsanguination. 
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Hematologic evaluation included complete blood counts using a Coulter counter. 

Manual differential counts of 100 white blood cell were performed. Blood (wet mount) 

was stained with New Methylene Blue for the examination of Heinz bodies. Additionally 

an aliquot of whole blood (0.1 ml) was placed in 10 ml of chilled ( 4°C) phosphate buffer 

(1/60M) with saponin for methemoglobin assay according to the method of Buetler and 

Gelbart (1990). Methemoglobin levels were assayed within 24 hours of blood collection 

(Sleight and Sinha, 1968). Serum was submitted for an automated chemistry profile 

(Kodak® Ektachem ® 500, Eastman Kodak, Rochester, NY). Assays included glucose, 

serum urea nitrogen, creatine, sodium, potassium, chloride, total CO2, amylase, calcium, 

phosphorus, total protein, albumin, aspartate aminotransferase, alanine aminotransferase, 

lactate dehydrogenase, creatine phosphokinase, alkaline phosphatase, gamma 

glutamyltransferase, bilirubin, cholesterol and triglyceride. 

In vitro 

Male Sprague-Dawley rats (300 g) were deeply anaesthetized with Metofane® 

(Pittman-Moore, Mandelein, IL) and blood was collected via cardiac puncture in 

heparinized tubes. The pooled blood samples were centrifuged at 2000 x G for 5 minutes 

to separate the plasma and the huffy coat. The erythrocytes were washed with O. 9% saline 

and suspended at the original hematocrit in phosphate buffered saline (110 mM sodium 

chloride, 20 mM disodium hydrogen phosphate and 4 mM potassium dihydrogen 

phosphate, with 10 mM glucose, pH 7.4) based on the method of Grossman and follow 

(1988). After preincubation for 5 minutes at 37°C, 100 microliters of 1 mM TNB 

( dissolved in methanol) was added to 3 ml of the RBC suspension. Control tubes were 

incubated with methanol (100 microliters) alone. The blood tubes were incubated at 37°C 

under air in a shaking incubator. Samples (0.1 ml) of the red cell suspension were 

removed at different intervals (upto 9 hours) for the assay of methemoglobin. 

Methemoglobin levels were measured as previously mentioned in the in vivo experiments. 
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At the end of the incubation period the samples were centrifuged and the absorbance of 

the supernatant was measured at 414 nm to detect hemolysis against erythrocytes ly~ed 

with distilled water (100 % hemolysis) based on the method of Breslin et al. (1991). 

For spectrophotometric examination ofthe interaction of TNB with hemoglobin, 1 

ml of 0.5% suspension of erythrocytes in phosphate buffered saline (pH 7.4) was 

incubated at 3 7°C for 3 hours with 100 microliters of sodium nitrite ( 1 mM) or TNB 

(lmM) in a quartz cuvette. Spectral recordings were made at 0, 30, 60, 90, 120 and 180 

minutes. The reaction (spectra) of the erythrocytes with the test chemicals was followed 

as described by Winterbourn (1990). This method makes it possible to distinguish 

hemoglobin, methemoglobin, hemichromes and choleglobin. Hemichromes are ferric 

hemoglobin derivatives in which the heme iron is coordinated either to the distal histidine 

or to an endogenous ligand, while the term choleglobin is used to describe denatured 

hemoglobin in which the porphyrin ring is hydroxylated or broken open. Choleglobin does 

not have any absorption spectra in the visible region and its formation is suggested by an 

increase in absorption at 700 nm. Sodium nitrite was used as a negative and positive 

control for hemichromes and methemoglobin respectively. All spectral measurements 

were performed on a Shimadzu MPS 2000 recording spectrophotometer with a built-in 

incubator (Shimadzu Corp. Japan). 

Statistical differences were determined using PC-SAS (SAS Institute Inc. Cary, 

NC). All data were tested for homogeneity of variances prior to analysis of variances 

(Proc. GLM, SAS). When significant F-values were obtained, the method of Least Square 

Means (LSM) was used to determine significant differences between treatment means. P

values of::;; 0.05 were considered to be significant, unless otherwise mentioned. 
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RESULTS 

Clinical Signs 

Rats which received 71 mg/kg of TNB exhibited depression, rapid breathing, pale 

ears and eyes and dark feet (cyanotic) within 30 minutes of dosing. The same clinical 

signs were exhibited an hour later by rats dosed with 35.5 mg/kg of TNB. The clinical 

signs lasted for approximately 6 hours after dosing. In addition, three rats (dosed at 71 

mg/kg) in the ten day exposure period developed neurologic signs on days 5 to 7. 

Neurologic signs included walking on toes, hunched back, partial disuse of rear legs and 

knuckling of the feet (1 rat). In two of these rats, the signs disappeared by the eighth day. 

One rat was euthanatized on day 7 prior to the termination of the experiment due to the 

severity of the neurologic signs. 

In Vivo 

Hematological Parameters 

There was no change in the hemogram at 5 hours and 24 hours after a single oral 

dose of TNB. A highly significant dose dependent anemia was observed in rats killed 24 

hours after 4 and 10 daily doses ofTNB at 35.5 and 71 mg/kg (Table 1). The anemia was 

characterized by a pronounced decrease in red cell numbers, hemoglobin, and hematocrit. 

Other red cell indices, Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin 

(MCH), Mean Crpuscular Hemoglobin Concentration (MCHC) were altered both in the 4 

day and 10 day exposure periods, but did not correlate with the dose or exposure period. 

In the 4 day study, the MCHC was significantly elevated at both doses of TNB, while the 

MCH was significant only at the high dose. In the 10 day study, both the MCV and 

MCH, but not the MCHC, were significantly elevated over the corresponding controls. In 

the same exposure period (10 day), the reticulocyte count was statistically significant. 
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Other alterations in the 10-day study were a dose dependent thrombocytosis and elevated 

nucleated RBC's. 

Blood samples collected 5 hours after a single dose of TNB had a dose dependent 

leuk:openia ( data not shown). There was an absolute decrease in all cell types, but 

lymphocytes were predominantly decreased. Differential leukocyte count revealed a 

significant lymphopenia. In the rats killed 24 hours (1 day) after a single dose or after 4 

daily doses, a similar but less pronounced effect was observed and the leukopenia was 

significant only in the high dose group. On the contrary, a dose dependent leukocytosis 

(P<0.07) was present in the IO-day exposure periods. In all the exposure periods (Sh or 

24h after a single dose and 24 hours after 4 or 10 daily doses of TNB), the absolute and 

percentage counts of immature neutrophils (bands), monocytes, eosinophils and basophils 

were not significantly affected by treatment with TNB (data not shown). There was no 

evidence of Heinz body formation in blood smears examined from all four exposure 

periods. 

Clinical Chemistry 

A definitive trend in the serum chemistry values was not observed (Table 2). 

Elevated CO2 and total bilirubin was observed at the low dose of TNB in the 5 hour 

study( data not shown). Rats killed 24 hours after a single oral dose had significantly 

decreased serum ca++ at both dose levels ofTNB (35.5 and 71 mg). The serum ca++ was 

also decreased in rats receiving oral doses of 71 mg/kg of TNB for 4 days, but not in the 

10-day exposure period. The serum triglyceride was the predominant chemistry parameter 

consistently affected by TNB in both the 4-day and 10-day studies. This effect was dose 

dependent. Other alterations included an elevated blood glucose and a decrease in BUN 

at 71 mg/kg ofTNB for 10 days (data not shown). 
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Methemoglobin 

Significant MHB was present only in rats killed 5 hours after a single dose of TNB 

(Table 3). The effect at this time showed a positve dose response. The mildly elevated 

methemoglobin observed 24 hours after a single dose was not significant (P<0.06). Rats 

receiving daily oral doses of TNB for 4 or 10 days had minimal methemoglobin 24 hours 

after the last dose. 

In Vitro 

When suspensions of red blood cells were incubated with sodium nitrite or TNB 

(lmM), the color of the solution changed to a light brown tint within 30 minutes. As 

hypothesized, there was a progressive increase in methemoglobin levels with time (Fig 1 ). 

The formation of methemoglobin in vitro was also confirmed by the spectroscopic changes 

with a peak absorption at 630 nm. At the end of the incubation period, erythrocytes 

incubated with sodium nitrite, control (methanol) and TNB had negligible hemolysis. 

Figures 2 and 3 show the spectroscopic changes induced in hemoglobin by 

addition of sodium nitrite and TNB respectively in the visible region (500-700 nm). This 

range was chosen because it demonstrates all the oxidation products of hemoglobin. The 

hemoglobin absorption spectrum before the addition of TNB (0 time) has two absorption 

peaks at 540 nm and 577 nm. Progressively the hemoglobin absorption peak changes so 

that by 30 min. there is an increase in the absorption at 630 nm indicating the formation of 

methemoglobin, whereas the intensity of hemoglobin peaks at 540 nm and 577 nm have 

decreased. Repetitive scanning of the TNB spectra at 60 and 90 minutes of the reaction 

demonstrated two isosbestic points at 523 and 589 nm indicating the presence of two 

reaction products (hemoglobin and methemoglobin), which were also characteristic of the 

sodium nitrite spectra (Rachmilewitz, 1969, 1971). However, with time at 120 and 180 



30 

minutes the TNB spectra (Figure 3) no longer passed through the isosbestic points, 

indicating the presence of a third component (hemichrome). On the contrary, the sodium 

nitrite spectra (Figure 2) always passed through the isosbestic points (523 and 589 nm). 

In RBC's incubated with TNB, the absorption at the longer wavelength (577 nm) became 

less intense than the absorption at the shorter wavelength (540 nm), with a concomitant 

shallowing of the trough at 560 nm, a change that is characteristic of the development of a 

hemichrome. A similar pattern of hemoglobin oxidation spectra has been observed with 

other oxidant drugs (acetylphenylhydrazine - French et al., 1978; Peisach et al., 1975: 

menadione - Winterbourn et al., 1979; Phosphine - Chin et a!-, 1992; Potter et al., 1991). 

The absorption at 700 nm also marginally increased indicating the formation of 

choleglobin. An identical spectra to that of TNB was also obtained with 

acetylphenylhydrazine used as a positive control. 

DISCUSSION 

This initial experiment was designed to test the hypothesis that oral exposure to 

TNB will result in hematologic alterations, which have been reported with other 

nitroaromatics viz. nitrobenzene (Beauchamp et al., 1983; Shimkin, 1939; Hamblin, 1949; 

Parkes and Neill, 1953), dinitrobenzene (Cody et al., 1981; Watanabe et al., 1976) and 

TNT (Dilley et al., 1982; Hathway, 1977; Levine et al., 1984). Results reported here 

indicate that there are considerable similarities in the mechanism of toxicity of TNB with 

NB, DNB and TNT. 

TNB caused a dose and time dependent anemia with reductions in hematocrit, 

hemoglobin and red cell count. The significant anemia was present in rats receiving TNB 

for 4 and 10 days, but not in rats killed 5 or 24 hours after a single dose. Similar results 

were also observed in rats fed diet containing TNB (50 to 100mg) for 14 days (Reddy et 
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al., 1994). Elevated reticulocyte count and increased circulating nucleated red cells were 

also present on day 10 in anemic animals. The increased reticulocyte count reflects 

accelerated erythroid production in the bone . marrow in response to the anemia. 

Responding anemias are also commonly associated with increased numbers of circulating 

nucleated red cells; however bone marrow endothelial insult, possibly as a direct effect of 

the compound or a result of methemoglobin induced hypoxia, could also contribute to this 

finding. The significant methemoglobinemia produced by TNB could also have 

contributed to the accelerated bone marrow erythropoiesis, which is hypoxia driven 

The splenomegaly observed at necropsy and lack of hemoglobinuria suggest 

hemolytic anemia of extravascular origin. TNB was a potent inducer of methemoglobin, 

but methemoglobinper se does not lead to hemolysis (Beutler, 1969). Results from the in 

vitro study confirm this hypothesis. There was no apparent hemolysis when erythrocytes 

were incubated with TNB in vitro even though there was significant production of 

methemoglobin. The hemolytic anemia observed with TNB is analogous to that reported 

with phenylhydrazine (PHZ). PHZ, like TNB, is a potent oxidant drug but does not cause 

hemolysis in vitro (Dornfest et. al., 1983). It has been reported that PHZ can cross link 

red cell band 3 protein (senescent antigen) resulting in the binding of autologus 

immunoglobulin G (IgG) and complement deposition. Recognition of this complex by 

macrophage Fe receptor mechanism triggers rapid erythrophagocytosis of the opsonized 

RBC's in the spleen and liver (Naughton et al., 1990). Results from the in vitro study 

reported here confirms this hypothesis. 

The most prominent finding in the leukogram was present in the 5 hour study. 

There was a significant leukopenia, entirely due to a lymphopenia. The lymphopenia with 

a mature neutrophilia observed in the 5 hour study indicates a stress leukogram, even 

though there was an overall leukopenia, instead of a leukocytosis traditionally observed 
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with glucocorticoids. Stress induced lymphopenia is maximal in most species at around 4-

8 hours and is resolved or diminished by 24 hours. In rats killed 24 hours after a single 

dose, the stress leukogram was significant only at 71 mg/kg of TNB. Rats treated with 

TNB for 4 days did not have significant changes in the leukogram. A non-significant 

dose-dependent leukocytosis was present in the 10 day study. This leukocytosis, with the 

concurrent anemia may be due to the stimulation of the immune system, as has been 

observed with PHZ (Dornfest et al., 1986; Naughton et al., 1990). A significant dose

dependent thrombocytosis was observed in the 10 day study. Reactive thrombocytosis 

commonly occurs secondary to splenic contraction in responding anemias, and 

inflammatory conditions since high numbers are sequestered in the spleen (Bithell, 1993). 

Perhaps the most significant serum chemistry abnormality was the decrease in 

serum triglyceride observed both in the 4 day and 10 day study. This response is 

consistent and dose dependent. A decrease in food intake and altered hepatic metabolism 

might have contributed to decreases in triglyceride levels, even though body weight 

changes were minimal. Many hypolipidemic agents are known to cause peroxisomal 

proliferation in the liver and TNB is possibly a peroxisomal proliferator. A decrease in 

BUN was observed in the 10-day study. This is attributable to a metabolite of TNB 

having a diuretic effect (A similar result was obtained in pilot experiments with TNB). 

The mild decrease in the serum calcium observed in the 24-hour and 4-day studies is not 

clinically significant. 

As hypothesized TNB was a potent inducer ofMHB in vivo. The methemoglobin 

was markedly elevated in rats 5 hours after a single dose. The methemoglobin values 24 

hours after a single dose (1 day) after 4 or 10 daily doses had returned to control levels. 

This is probably due to the high levels of the enzyme methemoglobin reductase present in 

rodents (Smith, 1991) and/or rapid metabolism ofTNB. 
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Results of the in vitro study indicate that, unlike NB (Reddy et al., 1976), TNB 

does not require metabolism by intestinal bacteria to produce methemoglobin. There was 

a progressive increase in the methemoglobin levels with time when rat erythrocytes were 

incubated with TNB (Fig 1). Similar results have been reported by Watanabe et. al., 

(1976) when the hemolysate was incubated with TNB. At the end of the incubation, 

samples were centrifuged to detect the presence of hemolysis. An apparent lack of 

hemolysis in the samples treated in vitro treated further confirms that TNB is not directly 

hemolytic even with significant oxidative damage with high methemoglobin levels. 

The interaction of erythrocytes with TNB led to a slow but progressive loss of 

hemoglobin with concomitant formation of a hemichrome. The increase in absorption at 

630 nm (isosbestic points at 523 and 589) indicates that methemoglobin was the first 

product of the interaction and the hemichrome formed later. In TNB toxicity the 

methemoglobin reduction mechanism is overwhelmed because of the continuous and 

constant presence of the oxidant; therefore, instead of being reduced methemoglobin is 

slowly transformed into hemichromes. The methemoglobin was only a transient 

intermediate before the formation of hemichrome in erythrocytes incubated with TNB. 

There was no evidence of hemichrome formation with sodium nitrite. 

Further, band 3 clustering, an event which triggers IgG opsonization (mentioned 

above), can be caused by hemichrome binding (Low, 1991). Thus hemichrome formation 

and band 3 clustering can trigger red cell removal. This correlation has been rigorously 

tested by Low and co-workers (Low et al., 1991). In ultrastructural studies, Rifkind 

(1965) showed that the site of recognition of phenylhydrazine-treated RBC's by 

macrophages is directly over the site where hemichromes cluster on the membrane. Thus, 

these in vitro studies all point to the denaturation of hemoglobin (formation of 
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hemichromes) by TNB which in turn leads to antigen clustering (band 3) and mediating 

red cell removal. The proposed sequence is schematically shown in Fig 4. 

It has long been known that administration of nitrite to animals induces MHB but 

not hemolytic anemia (Beutler and Mikus, 1961). Even though nitrite can induce very 

high levels of methemoglobin, there is little evidence for hemoglobin denaturation leading 

to hemichrome formation (Winterbourn et al, 1985). Peisach et al., (1975) suggest that 

the presence of an aromatic nucleus of acetylphenylhydrazine (also TNB) endows this 

molecule with denaturing properties. Other hydrazines with a large bulk which lack the 

aromatic nucleus act only as oxido-reductants. Similar to acetylphenylhydrazine the 

mechanism of action of nitro compounds is one in which the unlike hemoglobin chains of 

the a.2~2 tetramers are separated during incubation. These isolated chains are unstable in 

the ferric state and spontaneously form hemichromes (Rachmilewitz et al., 1971). 

Hemichromes are the main constituents of Heinz bodies, but there was no evidence 

of Heinz body formation in rats with TNB either in vivo or in vitro in our studies. A 

similar discrepancy was also observed with phosphine, where human erythrocytes 

developed Heinz bodies but not rat erythrocytes, even though both human and rat cells 

showed evidence ofhemichrome formation (Potter et al, 1991 and Chin et al., 1992). 

Similarly we observed the formation ofhemichromes with DNB and TNT (1 mM) 

(data not shown). Based on these results it is reasonable to extrapolate the findings to 

other nitroaromatics like DNB and TNT where a significant hemolytic anemia is observed. 

In conclusion, our results indicate the blood to be a prime target for TNB toxicity. 

Detailed studies on the interaction of the hematopoietic system on the overall toxicity are 

required. 
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Table 1: Effects of oral administration of TNB to male rats on hematology parameters 

Single doses 5 hrs after Single doses 24 hrs after 4 dail! doses1 24 hrs after 10 dail! dosess 24 hrs after 
0 35.5 71 0 35.5 71 0 35.5 71 0 35.5 71 
m2'k2 mwkg m2'kg m2'k2 m2'kg m2'k2 m2'k2 m2'k2 m2'k2 m2'kg m2'k2 m2'k2 

WBC 8.8 6.3 4.95 8.63 7.58 5.5 11 10.6 7.5 6.47 10.6 10.7 
(103) (0.92) (1.42)* (1.05)** (1.0) (1.5) (1.50)* (1.67) (2) (2.6) (2.11) (2.9) (1.3) 

CWBC 8.8 6.3 4.9 8.63 7.53 5.5 10.3 10.5 7.3 7.66 9.5 8.5 
(103) (0.5) (1.1)* (0.92)** (1.15) (0.8) (1.50)* (1.33) (1.9) (2.4) (0.52) (1.3) (2.3) 

RBC 8.8 8.7 8.72 8.50 8.89 8.8 8.87 8.4 8.1 8.66 7.7 6.8 
(106) (0.3) (0.2) (0.32) (0.24) (0.2) (0.1) (0.27) (0.1)* (0.0)** (0.45) (0.19)** (0.1)** 

HGB 15.7 15.6 15.83 15.2 15.9 15.5 15.52 15 14.7 15.7 13.9 13.5 
(g/dl) (0.5) (0.5) (0.61) (0.37) (0.3) (0.3) (0.32) (0.2)* (0.2)** (0.96) (0.21)* (0.3)** 

HCT 44.2 43.4 43.98 43 45.03 44.3 45.73 42.8 41.8 44.25 39.7 37.5 
(%) (1.0) (1.3) (1.31) (1.20) (I.I) (0.6) (1.04) (1.0)** (0.4)** (2.06) (0.87)* (0.6)** 

MCV 50.4 49.7 50.48 50.6 50.65 50.3 51.55 51.1 51.5 51.05 51.4 55.2 
(fl) (0.4) (1) (0.42) (0.14) (0.4) (0.1) (0.65) (0.5) (0.6) (0.32) (0.39) (0.9)** 

MCH 17.8 17.9 18.15 17.9 17.88 17.6 17.52 17.9 18.1 18.12 18 19.9 
(pg) (0.1) (0.3) (0.11) (0.08) (0.1) (0.1) (0.24) (0.1) (0.2) (0.32) (0.49) (0.4)** 

MCHC 35.4 35.9 35.98 35.33 35.35 35.1 33.97 35 35.2 35.5 34.9 36.1 
(gm/di) (0.4) (0.1) (0.32) (0.12) (0.5) (0.1) (0.48) (0.5)* (0.1)** (0.77) (0.8) (0.3) 

PLT 800 726 811 641 834.5 818 762.2 880 945 632.75 911.3 968 
(103) (52) (58) (31.57) (177) (31.9) (49) (98.6) (73.5) (0.0) (136.75) (35)* (56)** 

RE TIC 1.2 1.2 2.05 1.8 1.5 1.8 1.65 1.5 2.5 1.35 4.1 4.5 
(%) (0.7) (0.5) (1.13) (1.09) (0.6) (0.8) (0.72) (0.4) (0.6) (0.58) (1.73)* (2.0)* 

Data expressed as Mean (S.D.). Significantly different from control mean within same exposure period* P<0.05; ** P<0.005. 
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Table 2: Effects of oral administration of TNB to male rats on serum calcium and triglyceride levels. 

Camg/dl 

Trig mg/di 

Single dose, 5 hrs after Single dose, 24 hrs after 4 daily doses, 24 hrs 10 daily doses, 24 hrs 

0 35.5 71 0 35.5 71 0 35.5 71 0 35.5 71 

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 
11.5 11.4 11.3 12.1 11.5 11.5 12.1 11.7 11.4 11.35 11.4 11.7 
(0.5) (0.2) (0.25) (0.32) (0.3)* (0.2)* (0.49) (0.2) (0.2)* (0.11) (0.3) (0.1) 

189 
(108) 

249 
(58) 

264 
(98) 

95 
(16.4) 

94.8 
(11.6) 

93 
(13) 

93.7 
(15.3) 

59.8 
(14.8)* 

51 
(16)* 

82.75 
(11.29) 

61 
(3.9)* 

48.3 
(11.1)** 

Data exprssed as Mean (S.D.). Significantly different from control mean within same exposure period *P<0.05; **P<0.005. 
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Table 3: Methemoglobin (as % total hemoglobin) in F-344 treated with TNB 

TNBmg/kg 

Duration of TNB exp_osure 0 35.5 71 

Single dose, 5 hours after 0.51 (0.44) 20.56 (3.54)* 35.64 (10.6)** 

Single dose, 24 hours after 0.75 (0.45) 0.32 (1.42) 1.39 (0.58) 

4 daily doses, 24 hours after 0.54 (0.40) 0.40 (0.47) 1.14 (0.77) 

10 daily doses, 24 hours after 0.93 (0.67) 0.91 (0.24) 1.61 (0.78) 

Data expressed as Mean (S.D.). Significantly different from control mean within same exposure period *P<0.005; **P<0.0005 
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Figure 1. Methemoglobin (%) in rat blood incubated with TNB (lmM) in methanol. 

Each value represents the mean (SD) of 3 values. Control samples were incubated with 

methanol. 
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Figure 2. Progressive changes in the optical absorption spectra recorded during the 

reaction of erythrocytes (hemoglobin) with sodium nitrite (lm.M) dissolved in methanol. 

The arrowheads indicate the isosbestic points at 523 and 589 nm. See text for 

explanation. 
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Figure 3. Progressive changes in the optical absorption spectra recorded during the 

reaction of erythrocytes (hemoglobin) with TNB (lmM) dissolved in methanol. The 

arrowheads indicate the isosbestic points at 523 and 589 nm. See text for explanation. 



~ 
C 
cu 
-e 
0 en .c 
<( 

I\) 

0 
0 
0 

0 
0 
0 

.k----0 min 

~-:3Qmin 
A+--60min 
.-.ut--90 min 

Wavelength (nm) 

...... 
0 
p 
0 

47 



48 
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Fig 4. Hypothesis for the mechanism ofTNB-induced hemolytic anemia 



CHAPTER ID 

RAT TESTIS DURING EXPOSURE AND RECOVERY FROM 1,3,5-

TRINITROBENZENE (TNB) INTOXICATION. 

I. DOSE RESPONSE AND REVERSIBILITY STUDIES 

INTRODUCTION 

Nitroaromatic compounds constitute an important class of chemical intermediates 

known to produce testicular damage i°: experimental animals. Members of this series 

which possess such toxicity include, nitrobenzene (Bond et al., 1981; Levin et al., 1988), 

1,3-dinitrobenzene (Linder et al., 1986, 1988, 1990; Hess et al., 1988; Cody et al., 1981), 

nitrotoluene (Ciss et. al., 1980), and dinitrotoluene (Ellis et. al., 1978; Rickert et. al., 

1984). 

Among the nitroaromatics the testicular toxicity of DNB has been the subject of 

several recent investigations in laboratory animals (Blackbum et. al., 1988; Ellis and 

Foster 1992; Foster et. al., 1987, 1989; Hess et. al., 1988; Linder et. al., 1986, 1988, 

1990; Obasaju et al., 1991; Reader et. al., 1991). Effects of TNT on the testis, though not 

extensively investigated like DNB nevertheless have been documented (Levine et al., 

1984, 1990; Dilley et al., 1982). 

1,3,5-Trinitrobenzene (TNB) is a nitroaromatic compound, detected as an 

environmental contaminant of surface water, ground water and soil near trinitrotoluene 

(TNT) production sites and military test grounds. TNB has been classified as hazardous 

49 
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waste by the EPA and it has been identified in 14 sites on the National Priorities List 

(NPL) (USDHHS, 1993; U.S. EPA, 1989). Exposure to TNB can occur through contact 

with wastewater effluents released from facilities that synthesize, produce or demilitarize 

munitions, or from the disposal of solid TNT wastes (Ryon et al., 1984; U.S. EPA, 1989). 

Due to limited studies with TNB, testicular toxicity information derived for TNB is by 

analogy to the structurally similar compounds 1,3-dinitrobenzene (DNB) and 2,4,6-

trinitrotoluene (TNT). 

Testicular toxicity ofTNB is confined to a few tersely reported abstracts. Kinkead 

et al (1994) reported decreased testicular and epididymal weights, testicular degeneration 

and sperm depletion in Sprague-Dawley rats receiving 800 or 400 mg of TNB for 14 days. 

Sperm depletion and degeneration of the seminiferous tubules were observed 

histopathologically in similar experiments (Kinkead et al., 1995). Reddy et al (1993, 

1994) reported decreased testicular weight and degeneration of the seminiferous tubules in 

rats receiving TNB in the diet for 14 or 90 days. 

This report is a detailed histopathologic evaluation of the testicular effects of TNB. 

The purpose of this study was to document 1) the morphologic progression of 

degenerative changes after single and multiple doses of TNB and 2) the extent of 

reversibility after cessation of treatment. 
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MATERIALS AND METHODS: 

Chemicals 

1,3,5-trinitrobenzene (99.83 % purity) was obtained from Naval Surface Warfare 

Center (Silver Springs, MD) and the purity of the compound was confirmed by high 

performance liquid chromatography (HPLC). Just prior to use, TNB was ground to a fine 

powder and mixed with corn oil in a Potter-Elvehjem grinder. The oral LD50 value for 

TNB in rats has been previously determined to be 284 mg/kg for combined sexes 

(Fitzgerald et al., 1992). The one eighth (35.5 mg/kg) and one fourth (71 mg/kg) LD50 

doses were selected for use in these studies. The rats were gavaged with TNB in corn oil 

by feeding needle. Control rats received only the vehicle ( corn oil). 

Animals 

After a 2-week acclimatization to housing conditions (12 h light/12 h dark cycle, 

72°±2°F, 50±10% relative humidity), F-344 (initial body weight 220 g) rats were ranked 

by body weight and randomly assigned to one of three experimental groups. Animals 

were housed singly and provided with Purina Laboratory Chow and tap water ad libitum. 

Histopathology 

At the end of each exposure period, rats were deeply anesthetized using carbon dioxide, 

and euthanatized by exsanguination. At necropsy, the testis was excised and weighed. 

The testicles were fixed whole by immersion in Bouin's fixative for histopathologic 

examination. The epdidymis was collected in 10% neutral buffered formalin. Tissues 

were routinely processed, embedded in paraffin wax, sectioned at 5-6 microns, and stained 

with hematoxylin and eosin (H&E). Sections of testis were also stained with periodic 

acid-Schiff-hematoxylin (P AS-H) to aid in the discrimination of the stages of 

spermatogenesis according to Leblond and Clermont (1952}. Since accurate staging was 
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difficult in paraffin embedded sections, frequently the stage-dependent testicular damage 

was evaluated by grouping of tubules into the following stages: stages I-IV, stages V

VIII, stages IX-XIII and stage XIV (Leblond and Clermont, 1952). 

Experimental 

I Dose Response and Reversibility Study: 

A histopathologic evaluation was done after a single dose or multiple oral doses of 

TNB at 35.5 and 71 mg/kg. Forty six male Fischer-344 rats were randomly assigned by 

body weight to three exposure periods (12 rats per group) of 1 day, 4 days and 10 days. 

Within each exposure period, four rats were further separated into three TNB dose groups 

of 0, 35.5 and 71 mg/kg. This resulted in four rats/group/dose within each exposure 

period. 

A reversibility study was conducted with an additional 2 groups consisting of 5 

animals per group ( 4 treated and 1 control) Rats in group 1 and 2 were killed after 10 

consecutive daily oral doses of TNB (at 71 mg/kg) with a recovery period of 10 and 30 

days respectively. Limited control rats (1 per group) were used in the reversibility study 

since morphological (histopathological) changes were evaluated. 

Statistical differences in testicular weights between exposure periods were 

determined using PC-SAS (SAS Institute Inc. Cary, NC). All data were tested for 

homogeneity of variances prior to analysis of variances (Proc. GLM, SAS). When 

significant F-values were obtained, the method of Least Square Means (LSM) was used to 

determine significant differences between treatment means. P-values of~ 0.05 were 

considered to be significant, unless otherwise mentioned. 
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II Sequential (Histopathologi,cal) Changes: 

The objective in this study was to observe sequential changes in the seminiferous 

tubules, since rats in the first experiment had subtle changes at 4 days or had severe 

seminiferous tubular atrophy at 10 days. Twenty five male F-344 rats were randomly 

assigned by body weight to one of five different exposure periods. Within each exposure 

period, four rats were treated with 71 mg/kg of TNB and one rat which served as the 

control received com oil (vehicle). Rats in this experiment were killed after 4, 5, 6, 8, or 

10 doses of TNB. Histopathologic evaluation of the testicles was done on Bouin's fixed, 

paraffin embedded sections stained with either H&E or PAS-H. 

RESULTS 

Dose Response and Reversibility: 

Single dose of TNB 

The testicular weights were not significantly different between control and treated 

(35.5 or 71 mg of TNB) rats sacrificed 24 hours after a single dose (Table 1). 

Histopathologic examination did not reveal any treatment-related changes in the testis and 

epididymis. 

Four daily doses of TNB 

There was no treatment-related change in testicular weights or histopathology 

between rats receiving O or 35.5 mg/kg/day for 4 days. Testicular weights were 

significantly (P<0.05) decreased in rats receiving 71 mg/kg/day of TNB for 4 days 

compared to controls (Table 1 ). Histopathologic examination revealed degenerative 

changes in the seminiferous tubules of all four rats. There was necrosis (and degeneration) 

of pachytene spermatocytes in stages VIII-XIII, though stage VIII and IX were 

consistently affected (Fig 2). Seminiferous tubular lumina had one or more multinucleate 
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(syncytial) spermatidic giant cells. A few tubules had gaping holes between the spermatids 

and Sertoli cells indicating prior loss of pachytene spermatocytes. In addition to the 

necrosis of pachytene spermatocytes, round spermatids had marginated chromatin (halo · 

appearance). The residual bodies had been phagocytzied, but the step 19 spermatids were 

still in the lumina. This change was rarely present in the control rats, but was very 

frequently observed in the treated rats. Seminiferous tubules in stages I-IV were spared 

from the toxic effects observed in other stages. 

10 daily doses of TNB 

Testicular weights were significantly (P<0.05) decreased in rats receiving 35.5 or 

71 mg/kg/day of TNB for 10 days compared to controls (Table 1). The testicular lesions 

in rats receiving 3 5. 5 mg of TNB for 10 days were similar to the effects observed in rats 

given 71 mg/kg/day for 4 days. Other histopathologic changes included, a severe Sertoli 

cell vacuolation and degeneration of round spermatids having a marginated chromatin 

(halo spermatids) were observed in treated rats. These halo spermatids coalesced to form 

multinucleate syncytial cells in stages I-IV of the cycle (Fig 3). Necrotic round spermatids 

appeared as eosinophilic spheroids. The oval and oblong spermatids in stages IX-XIII had 

a kinked or a knobbed head (acrosomal cap). The changes in the epididymis reflect the 

changes in the testis. The caput epidiymis was completely devoid of sperm, but instead 

contained numerous exfoliated syncytial (multinucleate) spermatids which extend also into 

the corpus of the epididymis (Fig 4). The cauda epididymis was normal and the ducts 

were filled with sperm. 

The testicular changes observed in rats administered 71 mg/kg/day of TNB for 10 

days was markedly exacerbated compared to rat given 3 5. 5 mg/kg of TNB for 10 days. 

Virtually all the tubules were atrophic with a complete cessation of spermatogenesis in this 

group (Fig 5). The interstitial space was also increased due to this atrophy. The most 
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marked change observed was the complete absence of all round and elongate spermatids 

which were present at the lower dose (35.5 mg). The multinucleate cells were also 

missing and the tubules were lined by Sertoli cell nuclei and rarely a few spermatogonia. 

Binucleate and multinucleate cells formed by the fusion of spermatocytes were present 

(Fig 6). Examination of the epididymis revealed a pattern consistent with the observed 

testicular damage. The caput was completely devoid of sperm and contained numerous 

exfoliated germ cells. The shed germ cells were present in the caput, corpus and also in 

the cauda. 

Rats administered TNB at 71 mg/kg for 10 days also had a lesion in the ventral 

prostate. The epithelium of the ventral prostate had numerous scattered apoptic cells (Fig 

7) lining the acini. The apoptic cells either had pyknotic or karyorrhetic nuclei. This 

change was present in all the four rats given 71 mg/kg for 10 days. The dorsal prostate, 

lateral prostate, anterior prostate ( coagulating gland) and the seminal vesicles did not have 

any treatment related changes. 

Ten day recovery 

The testicular weights in rats given a ten day recovery after 10 daily oral doses was 

significantly (P<0.005) decreased compared to the control rats and rats killed after 10 

doses. The decreased testicular weight, however did not correlate with the 

histopathologic change since a significant regenerative attempt with numerous 

proliferating cells were present in the tubules. Seminiferous tubules were lined by Sertoli 

cell nuclei and spermatogonia in rats receiving 71 mg/kg for 10 days. In comparison the 

testiscles now had actively dividing spermatocytes. Numerous tubules had 3-4 generations 

of spermatocytes, but these had not matured into round or elongate spermatids (Fig 8). A 

few (probably less affected) tubules had round spermatids. Not all the tubules showed 

regeneration, since some were completely atrophic and were lined only by Sertoli cell 
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nuclei and spermatogonia. The tubules were widely separated by an interstitial edema. 

The absence of normal active spermatogenesis was evident as empty epididymal ducts. 

Thirty day recovery 

The testicular weights in rats given a thirty day recovery after 10 daily doses was 

significantly increased compared to the rats killed after 10 doses (P<0.005) and rats killed 

after a 10-day recovery (P<0.005). Round and elongate spermatids which were absent in 

the 10-day recovery group were now present in a majority (90%) of the tubules (Fig 9). 

The multinucleate (syncytial) cells were not present in the tubules. Staging of the cycle 

was possible in some tubules, eventhough all the fourteen stages were not present. A 

large percentage of tubules were in stages XI-XIII or either in XIV, with cells in meiosis. 

It appeared that elongate spermatids had not progressed to step 19, since stage VII or 

VIII was not present in all the four rats given the 30 day recovery. The absence of step 19 

spermatids, was also evident in the caput epididymis which was completely empty and 

lacked spermatozoa. The cauda still contained degenerate cells and necrotic debris. 

Similar to the 10-day recovery period, a small percentage ( approximately 5-10% of 

tubules) had markedly altered tubular architecture that were lined only by Sertoli cell 

nuclei and spermatogonia. Treatment related changes were not present in the accessory 

sex glands during the recovery. 

Sequential (histopathological) Changes 

Rats given daily oral doses for 5 consecutive days had more advanced changes 

than those dosed for 4 days. Vacuolation and rarefaction of the Sertoli cells was now 

clearly evident. A large number (60-80%) of tubules had necrotic round spermatids which 

had the appearance of eosinophilic spheroids along with the syncytial cells present at 4 

days. Large gaping holes with loss of synchrony indicated loss of pachytene 

spermatocytes. Seminiferous tubules in the early stages (1-V) are apparently normal and 
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unaffected at this time frame. Rats killed after 6 doses had a continuum of changes 

observed at 5 days. In this group all the tubules (100%) in the testis were consistently 

affected and the rarefaction of the Sertoli cell cytoplasm was more extensive (Fig I 0). 

Another change observed aafter 6 doses was the appearance of degenerate elongate 

spermatids in stages XI-XIII having a kinked or knobbed appearance. Rats killed after 8 

consecutive doses of TNB had tubules lined by Sertoli cell nuclei and few spermatocytes. 

Two distinct changes at this time frame were the complete absence of round and elongate 

spermatids and the appearance of binucleate spermatocytes. The changes in rats given 8 

doses, to a large extent resembled the changes observed at IO days. 

DISCUSSION 

An initiative was undertaken by this laboratory to understand more about the 

pathogenesis of the testicular lesion and its reversibility, with a view to the possible 

usefulness of this information in contributing towards the comprehensive toxicity of TNB. 

We have previously reported the hematological effects and neurotoxicity (encephalopathy) 

ofTNB (Chandra et al 1995 a, b). 

Testicular damage with other structurally analogous nitroaromatic compounds like 

nitrobenzene (Bond et al., 1981; Levin et al., 1988), TNT (Levine et al., 1984, 1990; 

Dilley et al., 1982) and 1,3-dinitrobenzene (DNB) (Cody et al., 1981; Hess et al., 1988; 

Linder et al., 1990, 1986) is well known. Studies by Blackburn et al (1988) indicated that 

a single oral dose (50 mg/kg) of o-, p-, or m-dinitrobenzenes resulted in decreased 

testicular weight and histopathologic changes in the testis only in animals treated with the 

meta isomer, although both the m- and p-dinitrobenzenes produced hematological effects. 
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These findings of an isomer specificity for testicular toxicity with DNB have 

practical implications. Previously toxicity (testicular) data derived for TNB was by 

extrapolation based on the studies conducted with DNB. Isomer specificity observed with 

DNB indicate simple extrapolation based on the chemical structure may not be true. 

There is wealth ofliterature on the testicular toxicity of 1,3-DNB which is being studied to 

this day. 

The morphological (histopathological) pattern we observed with TNB are 

remarkably similar to what has been reported with DNB (Hess et al., 1988; Blackburn et 

al., 1988). A longer duration and higher dose levels were required to produce the same 

histopathologic lesion with TNB. For example, a single oral dose of 1,3-DNB (48 mg/kg) 

caused severe damage by 24 hours with degenerating pachytene spermatocytes, chromatin 

margination in round spermatids, formation of giant cells and deformed spermatid heads. 

These regressive effects continued until 24 days, after which the tubules either recovered 

or became atrophic (Hess et al., 1988). Similarly Blackburn et al (1988) reported 

morphological changes with DNB in the testis at much lower doses than that reported by 

Hess et al (1988). Vacuolation of the Sertoli cell, degenerative changes in the 

spermatocytes were present as early as 12 hours at 25 mg/kg of 1,3-DNB. An identical 

change was observed at 48 hours after a single dose of 15 mg/kg of 1,3-DNB (Blackburn 

et al., 1988). In contrast, the changes observed with a single dose of DNB on days 1, 2, 

or 4, were present only after 4 daily doses of TNB (at 71 mg). Vacuolation of Sertoli 

cells and the kinked or knobbed spermatids observed with 1,3-DNB on the second day 

(Hess et al., 1988), were apparent after 6 daily doses of TNB. Based on the 

morphological findings it appears that 1,3-DNB is a more potent testicular toxicant than 

TNB. 
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Testicular lesions have also been reported with another structurally similar 

nitroaromatic compound 2,4,6-trinitrotoluene in rats (Levine et al., 1984; Dilley et al., 

1982; Levine et al., 1990). Reduced testis weight, testicular atrophy and hyperplasia of 

the interstitial cells were observed in rats receiving 0.25% of TNT in their diet and the 

testicular changes were not reversible after a 4 week recovery (Dilley et al., 1982). Levine 

et al (1984) have reported diminution of spermatozoa, spermatids and spermatocytes as a 

result of degeneration and necrosis in rats receiving 300 mg of TNT per day in the diet 

for 13 weeks. Atrophy of the seminiferous tubules, spermatocytic and spermatidic giant 

cells were also observed in their study. The Sertoli cells and spermtogonia appeared to be 

unaffected with TNT (Levine et al., 1984). In a more recent study by Levine et al (1990), 

rats receiving 125 mg of TNT for 13 weeks had degeneration of the germinal epithelium 

and the changes were characterized as minimal to mild (Levine et al., 1990). Although 

acute testicular changes with TNT are not reported, it is reasonable to conclude that TNB 

appears to be a more potent testicular toxicant than TNT, since a prolonged exposure (13 

weeks) at much higher doses (125 or 300 mg) is necessary to induce degenerative 

testicular changes with· TNT. 

The ability of the testis to recover from toxic insult has been reported by other 

investigators for nitroaromatic compounds. Rats allowed to recover after exposure to 

TNB had a decrease in the testicular weight, although histologic examination revealed 

partial restoration of germ cell production. Tubular architecture was relatively normal, 

except that they were lacking the mature spermatozoa. Hess et al (1988) have reported 

regeneration of seminiferous tubules with identifiable stages as early as day 16 with DNB, 

compared to 30 days with TNB in this study. However comparison between DNB and 

TNB is rather not appropriate, since rats in our study received 10 doses of TNB, whereas 

rats in their study received a single dose of DNB. On the contrary, recovery with TNB 

appears to be rapid, since repopulation with new germ cells was observed after a 10 day 
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recovery and elongate spermatids were present after a 30 day recovery. A small 

percentage of tubules remained atrophic in the DNB study by Hess et al (1988). A similar 

scenario (i.e. tubular atrophy) was observed with TNB which may indicate irreversible 

damage or perhaps a longer time period to repair the damage. Reversibility with TNB 

should be interpreted cautiously since rats were given only a 30 day recovery period. A 

recovery period of 154 days (12 cycles of the seminiferous epithelium) is recommended by 

Amman (1982) for evaluation of reversibility of germ cell damage. The presence of the 

regenerating germ cells at 10 and 30 days post-treatment indicate that effects are partially 

reversible. 

The mechanism( s) of action of TNB on the testis is not known. The closely

related compound 1,3-DNB exerts its principle effect on the testis with the Sertoli cell as 

the primary target (Rehnberg et al., 1988; Blackburn et al., 1988; Foster et al., 1987). 

Foster et al (1987) reported Sertoli cell damage following in vitro treatment which was 

comparable to the in vivo response reported by Blackburn et al (1988). Hess et al (1988) 

suggested that damage to the developing germ cells was an indirect effect of Sertoli cell 

dysfunction. 

The apparent initial sensitivity of pachytene spermatocytes to TNB toxicity (like 

DNB) suggests that Sertoli cell is also the target for TNB, since Sertoli cell functional 

changes might be manifested by loss of germ cells. The Sertoli cell is known to provide a 

'nurse' function for the developing germ cells and has been shown to be intimately involved 

in the control of spermatogenesis (Rich and De Krester, 1983). If the Sertoli cell is the 

target for the toxic action of TNB in the testis then damage to these cells could precipitate 

the range of effects seen in the germ cells. Further support for this view comes from the 

observation that the testis is able to recover from the toxic insult after cessation of 

treatment. Hess et al (1988) suggest, if spermatogonia were the target cells, recovery 
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following cessation of the treatment would not have been possible. In the accompanying 

adjunct study, we have utilized proliferating cell nuclear antigen as an endogenous marker 

to identify spermatogonia and pachytene spermatocytes. Observations from that study 

indicate that the spermatogonia proliferate even in completely atrophic tubules to form 

spermatocytes, but due to a lack of a 'nurse' function by the Sertoli cell these cells do not 

mature into spermatozoa. Russell et al (1990) pointed out that the Sertoli cells are 

resistant to many treatments that affect germ cells. These cells are often present when all 

germ cell types are missing. 

The presence of apoptic cells in the ventral prostate observed with TNB has not 

been reported earlier with DNB or TNT. Even though a direct toxic effect cannot be 

ruled out, this appears unlikely. Since castration induces apoptosis in the rat ventral 

prostate (Brandstrom et al., 1994), the apoptosis observed with TNB is suggestive of a 

secondary effect probably related to the severe atrophy of the seminiferous tubules. 

In conclusion, the present study confirms that acute exposure to relatively low 

levels of TNB has an adverse effect on the testis. Recovery studies indicate the effects are 

partially reversible, but long term recovery studies are required. Further, the sequelae of 

recovery including fertilizing ability would be a better measure of the reversibility. 

Detailed studies are needed to determine if the mechanism of testicular toxicity proposed 

for DNB is also applicable to TNB. 
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Table 1. Testicular Weights (g) in F-344 rats treated with TNB 

TNB mg/kg 

0 

35.5 

71 

Single dose 

2.65 (0.05) 

2.72 (0.13) 

2.69 (0.09) 

4 daily doses 

2.63 (0.02) 

2.69 (0.11) 

2.59 (0.13)* 

10 daily doses 

2.76 (0.17) 

2.53 (0.06)* 

1.38 (0.11)* 

65 

Data expressed as Mean (SD). * P <0.05 Significantly different from control mean within 

the same exposure period. 



Figure 1. Seminiferous tubules from a rat administered com oil (vehicle treated control). 

Note the continuity and the organized arrangement of the germ cells. Stages VII and VIII 

are present. Arrowheads indicate residual body. H&E. X280 

Figure 2. Seminiferous tubules from a rat administered TNB at 71 mg/kg for 4 days. 

Only pachytene spermatocytes are affected ( arrowhead), with condensed cytoplasm and 

nuclear pyknosis. Note the unaffected healthy tubule at a non susceptible stage (asterisk). 

H&E. X280 

Figure 3. Multinucleate (syncytial) cells from a rat administered 35.5 mg of TNB for 10 

days. H&E. X80 
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Figure 4. Seminiferous tubules from a rat administered TNB at 71 mg/kg for 10 days. 

More number of tubules are present due to decreased tubular diameter. H&E. Xl 10 

Figure 5. Higher magnification of fig 4. Note the prominence of Leydig cells due to 

tubular atrophy. Spermatocytic giant cells are also present. Note absence of round and 

elongate spermatids. Compare with fig 1. H&E. X280 

Figure 6. Caput epididymis from a rat administered TNB at 35.5 mg for 10 days. Ducts 

are completely devoid of spermatozoa (asterisk), instead contain multinucleate spermatids 

arrested in meiosis. H&E. X280 
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Figure?. Seminiferous tubules from a rat given a 10 day recovery. Only round spermatids 

are evident. Asterisk indicates an atrophic tubule. Tubular size is still less compared to 

the control. H&E. Xl 10 

Figure 8. Seminiferous tubules from a rat given a 30 day recovery. Germ cells have 

progressed to the elongate spermatid stage. An atrophic tubule is shown (asterisk). 

Compare with figs 1 and 5. H&E. Xl 10 

Figure 9. Ventral prostate from a rat administered TNB at 71 mg/kg for 10 days. 

Prostatic epithelium undergoing apoptosis (arrowheads). H&E. X300 





Figure 10. Seminiferous tubules from a rat administered TNB at 71 mg/kg for 6 days. 

Necrosis of pachytene spermatocytes, halo spermatids ( arrowhead) and marked 

vacuolation of Sertoli cell cytoplasm (asterisk). H&E. X250 
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CHAPTER IV 

RAT TESTIS DURING EXPOSURE AND RECOVERY FROM 1,3,5-

TRINITROBENZENE (TNB) INTOXICATION. 

II. IMMUNOLOCALIZATION OF GERM CELLS USING PROLIFERATING 

CELL NUCLEAR ANTIGEN AS AN ENDOGENOUS MARKER 

INTRODUCTION 

Proliferating cell nuclear antigen (PCNA) is a 36KD auxiliary protein to DNA 

polymerase-a (Mathews et al., 1984; Bravo et al., 1987), which is found in various 

concentrations within the cell throughout the cell cycle and in greatest quantities during S

phase (Celis and Celis, 1985). The use of monoclonal antibody to PCNA for examining 

cell proliferation in fixed embedded tissues has been recommended as an alternative to 

DNA-incorporated tritiated thymidine (Galand and Degraef, 1989; Foley et al., 1991) and 

5-bromo-2'-deoxyuridine (BrdU) (Foley et al., 1991). In particular, the introduction of a 

commercially available microwave-based system for retrieving antigens in formalin-fixed 

tissues (Shi et al., 1991), was shown to be effective with respect to PCNA (Greenwell et 

al., 1991). 

Potential applications of PCNA are wide-ranging in the field of diagnostic 

oncology. The use of PCNA in toxicology has been employed to assess cell proliferation 

to understand chemical carcinogenesis in rodent liver (Connolly and Bogdanffy, 1993; 

Jones et al., 1993; Greenwell et al., 1991; Foley et al., 1993) and other organs (Stefanski 
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et al., 1994; Takahashi et al., 1991). The use of PCNA as a tool to study cell proliferation 

after toxicant-induced testicular injury has received little attention. 

1,3,5-trinitrobenzene (TNB) is a soil and groundwater contaminant at certain 

military installations. In a companion article, we have reported germ cell necrosis and 

reversibility of testicular changes in F-344 rats treated with TNB. In this study we have 

utilized PCNA as an endogenous germ cell marker. Immunohistochemical localization of 

regenerating germ cells was evaluated using PCNA performed on Bouin's-fixed, paraffin 

embedded testis. Testis from rats allowed to recover from the TNB exposure were also 

evaluated. 

MATERIALS AND METHODS 

Experimental 

Male Fischer-344 rats were assigned, grouped, and dosed as described in the 

companion report. Selected archival rat tissues from three experimental groups were used 

in this study. Briefly, rats received TNB (71 mg/kg) or corn oil (control) by gavage. For 

this study, testis from rats that received a) corn oil (vehicle control) for 10 days, b) 10 

daily doses (group I), c) 10 daily doses of TNB followed by a 10-day recovery (group II), 

d) 10 daily doses of TNB followed by a 30-day recovery (group III), were utilized. At 

necropsy, testicles were excised, weighed, and immersion-fixed in Bouin's fixative. The 

next day testicles were cut into 3-mm thick slices using a razor blade and rinsed with 5% 

sodium thiousulfate to remove excess picric acid. Tissue slices were routinely processed 

and embedded in paraffin. PCNA staining was performed on 4-6 micron thick paraffin 

sections. 
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PCNA staining procedure 

The biotin-streptavidin (ABC Staining Procedure) method for 

immunohistochemical localization of PCNA was performed as described by Foley et al 

(1993) with minor changes, including an enhancing technique for antigen retrieval (Shi et 

al., 1991). For immunohistochemisry 4-6 µm thick paraffin-embedded sections containing 

both the testicles from each individual animal including both the caput and cauda 

epididymis were utilized. Tissue sections were placed onto poly-L-lysine-coated slides 

and dried overnight. The following day the sections were de-waxed in xylene and 

hydrated via a graded ethanol series. Endogenous peroxidase activity was blocked with a 

30 minute incubation (room temperature) in methanol containing 3% hydrogen peroxide. 

Slides were washed with distilled water for 5 min. Slides were then placed in plastic 

Coplin jars containing antigen retrieval solution (Biogenex Laboratories, San Ramon CA) 

and microwaved at high power for 10 min (as per manufactures specification). The 

sections were allowed to cool in the same jars and later washed with isotonic phosphate 

buffered saline (pH=7.4). Sections were pre-incubated for 30 minutes in normal horse 

serum (from which the secondary antibody was derived) to decrease nonspecific binding. 

Excess serum was blotted before primary antibody application. For the determination of 

PCNA sections were incubated with mouse anti-human PCNA (1: 100) which cross reacts 

with rat cells (product information for PC 10, Dako Corp., Carpinteria, CA). The 

incubation with the primary antibody was carried out at 37°C for 60 minutes. The bound 

antibodies were visualized with a commercially available avidin-biotin-peroxidase complex 

(Vectastain ABC-Kit, Vector Laboratories, Burlingame, CA). Immunolabelled peroxidase 

was visualized by using the commercially available chromogen Vector VIP (Vector 

Laboratories, Burlingame, CA), which yields an intense purple color; no counterstain was 

used. After a brief rinse with tap water, sections were dehydrated and coverslipped. 
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The specificity of the immunohistochemical reaction was evaluated by the omission 

of individual steps. Normal mouse serum was substituted instead of the primary antibody 

(i.e. anti-PCNA). Other control procedures included omission of biotinylated secondary 

antibody and avidin-biotin peroxidase complex. Sections from all the rats were 

immunohistochemically stained ( on the same day) using the same diluted antibody solution 

throughout to avoid variation in staining between sections. 

RESULTS 

Nuclear staining was observed on all sections except for those run as negative 

controls. The PCNA positive nuclei ranged in color from dark purple to purple-brown. 

The staining varied between different cells, with a speckled to uniform staining pattern. 

Testis from control rats 

Immunoreactvity was sharply defined, although the staining pattern differed 

between different germ cells. PCNA-positive cells were present in the basal part of all the 

seminiferous tubules. In individual tubules the staining was confined only to one germ cell 

type (spermatocytes) or two types of germ cells (spermatocytes and spermatogonia). The 

majority of the tubules had a single (circumferential) row of pachytene spermatocytes (Fig 

1 ). Occasionally certain tubules had a second somewhat irregular row of speckled 

leptotene spermatocytes. Spermatogonial staining was not present in all stages of the 

cycle. Spermatogonia appeared as oval, intensely stained cells adherent to the basement 

membrane in stages IX-XII and also in stages I-IV. The precise identification of the 

stages was not possible since sections were not counter-stained. In addition to 

spermatocytes and spermatogonia, only the nuclei of elongate spermatids in stages XI

XIII and rarely interstitial cells were also stained positively with PCNA. The nuclei of 

round spermatids, Sertoli cells, and elongate spermatids (except XI-XIII) did not stain 
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positively with PCNA. Other negatively stained cells were the endothelium and the myoid 

cells within the basement membrane of the tubules. 

Testis from rats treated with TNB for 10 days 

A severe testicular atrophy ( together with decreased weight) with complete 

cessation of spermatogenesis was observed on hematoxylin and eosin stained sections. 

Nevertheless, the tubules still contained PCNA-positive cells (Fig 2). In contrast to the 

control rats, the number of positive cells were reduced in all the seminiferous tubules. 

Both spermatogonial and spermatocytic cells were positive. There was a wide variation 

among the tubules, some were completely devoid of staining, whereas immediately 

adjacent tubules had positive cells. Unlike the controls, the positive cells were 

haphazardly arranged, with loss of synchrony and the presence of 3-4 generations of 

spermatocytes in the same seminiferous tubule. Similar to the control testicles, both 

speckled and diffuse staining pattern was observed. 

Testis from rats allowed a 10 day recovery 

Seminiferous tubules contained 3-4 generations of PCNA-positive spermatocytes 

in well organized (synchronous) fashion (Fig 3). PCNA-positive cells identifiable as 

spermatogonia were also present adjacent to the basement membrane of the tubules. 

Testis from rats allowed a 30 day recovery 

The staining pattern observed in these rats was identical to that observed in the 

control rats (Fig 4). The majority (98%) of the tubules contained a single 

( circumferential) row of spermatocytes and spermatogonial cells. The remaining few 

tubules (1-2%) had randomly scattered PCNA positive cells, which were probably in the 

process of recovering from the toxic insult. 
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DISCUSSION 

Assessment of cell proliferation both in VIVO and in vitro has involved 

incorporation of tritiated thymidine into cells during the DNA synthesis phase (S-phase) of 

the cell cycle, followed by autoradiography (Hall and Levison, 1990; Loury et al., 1987). 

This assessment can also be performed by use of 5-bromo-2'-deoxyuridine (BrdU), a non

radioactive analogue of thymidine which is readily incorporated into cells during S-phase 

and evaluated by standard immunocytochemical methods (Fredericks et al., 1990; 

Hanazono et al., 1990; Lanier et al., 1989). Owing to the requirement for invasive 

delivery procedures, physical stress of surgery (implantation of osmotic pumps), and the 

inability to utilize archival tissues for analysis, use of BrdU or tritiated thymidine is limited. 

In view of these limitations another useful marker of S-phase cells is an endogenous 

nuclear protein which is variably expressed at different phases of the cell cycle, the amount 

binding to chromatin increasing to a maximum at S-phase (Morris and Matthews, 1989). 

Matthews et al (1984) designated it as proliferating cell nuclear antigen (PCNA) 

In this study, identification of immunostained populations of germ cells was 

accomplished in the seminiferous tubules. Using PCNA (PClO), specific immunostaining 

of spermatogonia ( although it was not possible to identify the specific differentiation 

stage) and pachytene spermatocytes was observed. In contrast, neither round spermatids 

or Sertoli cell nuclei were immunostained with this antibody. Identical results were 

reported by Schlatt and Weinbauer (1994) in Sprague-Dawley rats using the same 

antibody (PCIO). Immuno-positive elongating spermatids were also reported by Schlatt 

and Weinbauer (1994). This was considered as non-specific staining due to the binding of 

the secondary biotinylated antiserum to the acrosome of elongating spermatids (Schlatt 

and Weinbauer, 1994). 
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The value of PCNA staining for the evaluation of spermatogenesis was evaluated 

in testicles of rats treated with TNB for 10 days and showing complete atrophy of 

seminiferous tubules. Hematoxylin and eosin-stained tissue sections from rats 

administered TNB for 10 days revealed complete atrophy and cessation of 

spermatogenesis. In these rats, PCNA immunostaining was still present in a number of 

spermatogonia and spermatocytes, showing that the mitotic activity of spermatogonia is 

not totally inhibited, and mitoses occurs even after pronounced inhibition of 

spermatogenesis. Similar to the toxicant induced atrophy in this study, Schlatt and 

Weinbauer (1994) induced maximal testicular regression (with decreased testicular weight 

and seminiferous tubular diameter) with a GnRH antagonist. Nevertheless, the 

seminiferous tubules still contained a number of PCNA-positive cells (Schlatt and 

Weinbauer, 1994). 

During the recovery phase, numerous positive cells were observed after 10 days of 

recovery. After 30 days of recovery, a staining pattern identical to the control rats was 

evident indicating normalization of changes. The kinetics of germ cell repopulation in rats 

allowed a 10 and 30 day recovery period indicate that spermatogonia (stem cell) are 

probably not a target for TNB toxicity. Therefore, failure of the few (2%) tubules to 

recover at 30 days may be related to factors other than a direct toxicity to the stem cell. 

Another possibility, is the short recovery period, since a recovery period of 154 days (12 

cycles of the seminiferous epithelium) is recommended for evaluation of testicular damage 

(Amman, 1982). 

In addition to PCNA (PCIO), other researchers have immunostained germ cells in 

testis using different antibodies. Using a monoclonal antibody (JCl) raised against a 

nuclear antigen present in proliferating cells, undifferentiated spermatogonia, some 

spermatocytes and spermatids were labeled in the human testis (Garrido et al., 1992). Oke 



81 

and Suarez-Quian (1993) specifically immunostained pachytene spermatocytes and 

spermatogonia using a monoclonal antibody 37B3 that recognizes a nuclear lamin. 

This study demonstrates that toxicological effects on the testis may be assessed by 

demonstrating alterations in PCNA staining, a good specific marker of germ cells. The 

commercial availability of antibodies to PCNA and the established protocols for staining 

(both in fresh and archival tissues) support its applicability. 
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Figure 1. Immunohistochemical (ABC method) staining of testis from a control rat. 

PCNA immunostaining is confined to the nuclei of spermatogonia (arrow) and 

spermatocytes (arrowhead). No counterstain. X280 

Figure 2. Immunohistochemical staining of testis from a rat administered TNB for 10 

days. The tubules still contain positive cells. Note the haphazard organization and the 

complete absence of round and elongate spermatids. No counterstain. X185 
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Figure 3. lmmunohistochemical staining of testis from a rat given a recovery period of 10 

days. There is active proliferation of germ cells in a synchronous fashion. Note the 

appearence of round spermatids. No counterstain. X170 

Figure 4. lmmunohistochemical staining of testis from a rat given a recovery period of 3 0 

days. Staining pattern is identical to the control rat. Compare with Figl. No 

counterstain. Xl 70 
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CHAPTERV 

1,3,5-TRINITROBENZENE-INDUCED ENCEPHALOPATHY IN MALE 

FISCHER-344 RA TS 

INTRODUCTION 

1,3,5-trinitrobenzene (TNB) is a nitroaromatic compound and a class A explosive 

that is less sensitive to impact, but more powerful than 2,4,6-trinitrotoluene (TNT) 

(Budavari et al., 1989; Fedoroff et al., 1962). The waste waters discharged from 

trinitrotoluene (TNT) manufacturing processes contain large numbers of aromatic 

compounds, including TNB. TNB has been detected as an environmental contaminant of 

surface water, ground water and soil near production waste sites and at military test 

grounds. It is also found in aquatic systems as a by-product of biotransformation and 

photolysis of TNT. TNB is not easily biodegradable; it persists in the environment and 

can eventually leach out of soil and contaminate ground water near production waste 

disposal sites (Chudoba and Pitter, 1976; Garman et al., 1987; Layton et al., 1987). It is 

an anthropogenic environmental contaminant, exposure to TNB can occur through contact 

with waste-water effluents released from facilities that synthesize, produce or demilitarize 

munitions or from the disposal of solid TNT wastes (Ryon et al., 1984; US EPA, 1989). 

Toxicity data on TNB are limited. Skin irritation, liver damage and anemia have 

been observed in munition workers exposed to TNB (Hathaway, 1977; Morton et al., 

1976), but encephalopathy in humans or experimental animals has not been reported. 
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Encephalopathy induced by nitrobenzene (NB) (Bond et al., 1981; Dreshbach and 

Chandler, 1918; Morton et al., 1985) and 1,3 dinitrobenzene (DNB) (Philbert et al., 

1987a, b) has been well documented. A single oral dose of NB causes bilaterally 

symmetric degeneration (malacia) and petechial hemorrhages in the cerebellum and 

cerebellar peduncles (Bond et al., 1981; Morgan et al., 1985). Later studies by Philbert et 

al (Philbert et al., 1987a) with DNB revealed no histologic alterations in conventional rats 

given a single oral dose (20 mg/kg), however germ free rats given the same dose had 

lesions in the brain sacrificed at 24 hours. There were bilaterally symmetrical vacuolated 

lesions in the hind brain and cerebellum. DNB and NB have been studied extensively. 

References to TNB-induced encephalopathy were not found in an extensive review of the 

literature. The aim of this report is to document the neuropathologic effects of TNB in 

rats. 

MATERIALS AND METHODS 

1,3,5-trinitrobenzene (99.83 % purity) was obtained from Naval Surface Warfare 

Center and the purity of the compound was confirmed by HPLC. TNB was ground to a 

fine powder and then mixed with com oil to form a solution in a Potter-Elvehjem grinder. 

The TNB com oil mixture was prepared daily just prior to dosing. The oral LD50 value 

for TNB in rats has been previously determined to be 284 mg/kg for combined sexes 

(Fitzgerald et al., 1992). The one eighth (35.5 mg/kg) and one fourth (71 mg/kg) doses 

were selected for these studies. Twelve male Fischer-344 rats (initial body weight 220 g) 

per group were randomly assigned by body weight to three exposure periods of 1 day, 4 

days and 10 days. Within each exposure period, four rats were further separated into 

three TNB dose groups of 0, 3 5. 5 and 71 mg/kg. The rats were gavaged with TNB in 

com oil by feeding needle. Controls received the same volume of com oil. The rats were 

allowed free access to water and standard commercial diet (Purina Rat Chow). All rats 
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were fasted for 15 hours prior to termination. At the end of each exposure period, rats 

were anesthetized by carbon dioxide, and whole blood was collected via cardiac puncture. 

The rats were euthanatized by exsanguination. Immediately after euthanasia, a complete 

necropsy was performed to determine weights of liver, spleen, kidneys, adrenals, testicle 

and brain. At necropsy, brain and the major parenchymal organs (liver, spleen, kidneys, 

adrenals, testicle, pancreas, lung, heart, stomach, duodenum, jejunum, ileum, cecum and 

colon) were collected in 10% neutral buffered formalin for histopathologic examination. 

All tissues were routinely processed, embedded in paraffin wax, sectioned at 5-6 microns, 

and stained with H & E. Sections of the brain were also stained with Luxol Fast Blue

periodic acid-SchiffHematoxylin stain. 

RESULTS 

One day study 

Rats which received 71 mg/kg exhibited depression, rapid breathing, pale ears, 

eyes and dark feet (cyanotic) within 30 minutes of dosing. The same clinical signs were 

exhibited an hour later by rats dosed with 35.5 mg/kg of TNB. Rats sacrificed 24 hours 

after single dose (35.5 or 71 mg/kg) had no gross or histologic lesions in the brain. 

Four day study 

Rats dosed with 71 mg/kg for 4 days showed depression, rapid breathing, pale 

ears, eyes and dark feet (cyanotic) within 30 minutes of dosing. Rats on 35.5 mg/kg also 

exhibited the same clinical signs after an hour of dosing on each day. There were no gross 

or microscopic lesions of the brain in either dose group. 
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Ten day study 

Similar clinical signs ( observed with rats from 24 hour and 4 day study) were 

exhibited soon after oral doses of 35.5 and 71 mg/kg of TNB was administered. In 

addition neurologic signs were also observed in three rats (3/4) dosed with 71 mg/kg of 

TNB. Three of the four rats exposed to .71 mg/kg of TNB developed clinical neurologic 

signs on days 5 to 7. Neurologic signs included walking on toes, hunched back, partial 

disuse of rear legs and knuckling of the feet (1 rat). In 2 of these rats, the signs 

disappeared by the eighth day. One rat was euthanatized on day 7 prior to the termination 

of the experiment due to the severity of the neurologic signs of the central nervous system. 

Rats orally given 3 5. 5 mg of TNB for ten days, had neither gross or microscopic lesions in 

the brain nor exhibited neurologic signs. 

Macroscopically all the four rats dosed with 71 mg/kg had petechial hemorrhages 

around the cerebellar peduncles and brain stem. On histologic examination, the cerebellar 

peduncles, inferior colliculi and brain stem were the only affected areas of the brain. The 

lesions were bilaterally symmetrical and well demarcated from the normal neuropil. The 

lesion is characterized by extensive vacuolation (malacia) of the white matter with 

neuronal necrosis (often with terminal synaptic boutons). Within this vacuolated lesion 

there were dense aggregates oflarge macrophages (gitter cells) with severe gliosis (fig 1). 

Along the edge of this necrotic focus, astrocytes with prominent glial filaments were 

present. Additionally within the vicinity ( cerebellar peduncle and brain stem), there was 

extensive rod-shaped glial (microglial) cell proliferation. Oligodendroglial changes were 

not apparent. Within the vacuolated focus, mitotic figures were rarely observed. Those 

seen were interpreted to be of macrophageal/astrocytic origin. Frequently hemorrhage 

accompanied the malacic lesions. Neurons adjacent to the areas of malacia had pyknotic 

and hyperchromatic nuclei. Eosinophilic axonal spheroids were also observed. Expanded 

Virchow-Robin spaces were present around many arterioles and to a lesser extent around 



92 

venules. Few of these vessels (arterioles) had well demarcated cuffs of erythrocytes with 

plump endothelial cells (fig 2). 

The lesions (listed in descending order of severity) were observed in medial 

cerebellar nuclei (nucleus fastigius), both anterior and posterior interposed cerebellar 

nuclei (nucleus interpositus), lateral cerebellar nuclei (dentate nucleus), vestibular nuclei 

(medial, lateral, superior, and spinal vestibular nuclei), dorsal cortex of inferior colliculi, 

olivary nuclei (lateral superior, superior paraolivary nuclei, medioventral periolivary 

nuclei), ventral cochlear, dorsal cochlear, pontine nuclei, paramedian reticular nuclei. Not 

all of these nuclei were uniformly involved in all the animals. The lesion was always 

present in the cerebellar nuclei, vestibular nuclei (medial and lateral), olivary nucleus 

(lateral superior) and inferior colliculi (3/4 rats). The severe demyelinating lesion was 

confined to the cerebellar nuclei and vestibular nuclei. The mild lesion was present in the 

olivary nuclei and inferior colliculi. In these two locations, the gliosis was very prominent, 

but the demyelination was minimal. Erythrocytic cuffs were also present around blood 

vessels with leakage of serum. Interestingly the dorsal cochlear nuclei had only 

perivascular hemorrhage, unlike the ventral cochlear which had the vacuolated lesion. On 

examining the sections stained with Luxol Fast Blue-periodic acid-Schiff-Hematoxylin the 

lesion was confirmed as malacia (rarefaction) with loss of myelin and intracytoplasmic 

periodic acid-Schiff positive material in the macrophages. Three of the four animals with 

the brain lesions had neurologic signs. 

DISCUSSION 

The present study shows that repeated administration of TNB at 71 mg/kg is 

neurotoxic in the rat. In this study only rats dosed with 71 mg/kg of TNB for 10 days had 

brain lesions (4/4). There was no evidence of brain lesions in rats receiving 35.5 mg/kg of 



93 

TNB over the same period. Similarly rats administered the same doses {71 and 3 5. 5 

mg/kg) for 1 or 4 days were free of brain lesions. The affected areas exhibited severe 

gliosis and numerous vacuoles, most of which could be identified as malacia (rarefaction) 

with loss of myelin. Petechial hemorrhages in the cerebellar peduncles and brain stem 

were also present. Additionally periarteriolar edema and sleeve-like arteriolar 

hemorrhages were observed in these regions. 

The brain lesions seen after giving TNB in this study have morphologic (histologic) 

and topographical similarities to those produced by DNB (Philbert et al., 1987a, b; 

Romero et al., 1991) and NB (Bond et al., 1981; Morgan et al., 1985) which share similar 

chemical structure. A single oral dose ofNB (550 mg/kg) induced ataxia in the rat within 

24 hr, petechial hemorrhages in the brain stem and cerebellum, and bilaterally symmetrical 

degeneration (malacia) lateral and dorsal to the fourth ventricle involving the vestibular 

nuclei at 48 hours. The malacia was attributed to the edematous swelling of a membrane 

bound tissue compartment (Morgan et al., 1985). Similarly bilateral malacia and reactive 

gliosis was found in the brain of a rat which received a single dose of NB (450 mg/kg) and 

was sacrificed five days later (Bond et al., 1981 ). Histologic lesions were present in the 

brains of germ free rats within 24 hours after a single oral dose (20 mg/kg) of DNB, but 

not in conventional rats sacrificed after 24-72 hours. Multiple doses of DNB by oral or ip 

routes produced histologic lesions in conventional rats after 48-72 hours of dosing. Those 

authors observed bilaterally symmetrical vacuolated lesions involving the cerebellar roof 

nuclei, vestibular nuclei, inferior colliculi, superior olivary· nuclei, paramedian reticular 

formation, ventral cochlear nuclei and nuclei of the spinal tracts of the trigeminal nerves 

(Philbert et al., 1987a, b). More recently Romero et al (1991) induced symmetrical brain 

stem lesions using a 3 x 10 mg/kg dose ( oral) schedule of DNB over two days in Fischer 

344 rats. They observed petechial hemorrhages and vacuolated neuropil as early as 12 hrs 

after the final dose. The brain damage in our experiment was evident only after 10 
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consecutive oral doses with TNB (71 mg/kg). The symmetrical brain stem lesions 

produced by TNB are analogus to the morphological changes in the rat brain caused by 

other similarly toxic nitroheterocyclic compounds (Bond et al., 1981; Philbert et al., 

1987a). But the time and dose required for the genesis of the lesion are highly variable. 

Eventhough NB, DNB and TNB share a similar chemical structure, they differ in 

their metabolism. Intestinal bacteria are the most quantitatively important site for NB 

reduction, on the contrary intestinal micro flora is not essential for the reduction of DNB 

(Rickert, 1987). This might explain the variability in the onset of the brain lesions. 

Studies by Blackbum et al (1988) also give credence to this hypothesis. They reported 

testicular damage resulting from dosing with DNB is isomer specific. They found that 

1,2-DNB and 1,4-DNB were without effect on the testis but that 1,3-DNB is a testicular 

toxicant. Studies with NB indicate that approximately 0.02% of the total NB administered 

was present in the cerebellum as the parent compound at 12 hours after administration 

(Morgan et al., 1985). This suggests that dose also may play a role, since rats given 35.5 

mg of TNB for 10 days did not have any brain lesions. Rats dosed at 3 5. 5 and 71 mg for 

4 days also did not have any brain lesions. Since brain damage is not evident after acute 

exposure (4 days), a longer duration of exposure may be necessary. Perhaps a massive 

dose is needed for the production of these lesions. The toxicokinetic studies revealed that 

[14 C] TNB residues in the brain of rats were about 0.001% of dose (52 mg/kg) after 4 

days (Reddy and Gunnarson, 1993). This suggests that multiple dose (71 mg/kg) for 10 

days might have accumulated to induce neurotoxicity. NB, DNB and TNB are analogus 

chemical compounds producing the same morphologic picture, perhaps with a common 

pathogenic pathway. But the final outcome should be treated as a separate disease entity. 

The formation of large vacuoles within myelin sheaths has been reported with the 

thiamine antagonist pyrithiamine which also induces petechial haemorrhages in the brain 
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stem. The changes produced by TNB resemble those described in mice treated with the 

thiamine antagonist pyrithiamine (Watanabe 1978; Watanabe and Kanabe, 1978; 

Watanabe et al., 1981a, 1981b). A similar spongy degeneration of the brain has been 

associated with liver disease (Hooper 1972). The reactive gliosis was more prominent 

with TNB. The serum enzymes alanine aminotransferase (AL), aspartate aminotransferase 

(AST) and lactate dehydrogenase (LDH) was normal in TNB treated rats (data not 

shown). The selectivity of the damage to these particular brain stem centers is less clear. 

It may merely be an indicator of the neuronal-glial-vascular relantionship and 

interdependency or to an indirect mechanism of toxicity which has yet to be determined. 

Little is as yet known about the biochemical events associated with the development of 

lesions induced by TNB. Nitroaromatic compounds can undergo redox cycling in the 

presence of diatomic oxygen to give the superoxide free radical (Mason and Josephy, 

1985) with consequent depletion of GSH and NADPH. 

The primary target for neurotoxicity of DNB are the macroglia, with swollen 

astrocytes and oligodendrocytes (Philbert et al., 1987a), interestingly astrocytes and 

oligodendrocytes were unaffected by NB (Morgan et al., 1985). In our experiment rats 

treated with TNB were also free from oligodendroglial changes. The reactive gliosis ( and 

malacia) observed with TNB has been described with nitrobenzene (Bond et al., 1981), 

but not with dinitrobenzene by Philbert et al (1987a). The time frame might explain this 

variability, since rats were sacrificed at 72 hours after dosing by Philbert et al {1987a), and 

sufficient time had not elapsed for the tissue to respond adequately. We hypothesize that 

the earliest lesion with TNB would be identical· to the changes observed with DNB, since 

one rat sacrificed 3 days prior to the termination of the experiment had minimal gliosis and 

a hemorrhagic lesion. Also the earliest lesion with DNB is the inferior colliculi (Romero 

et al., 1991), but in our experiment the lesion in the inferior colliculi was mild compared to 

the lesions observed in the cerebellar nuclei. Interestingly one rat sacrificed prior to the 
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termination of the experiment (i.e. on day 11) did not have any morphological changes in 

the inferior colliculi. 

The cyanosis resulting from TNB administration in the rat has been found to be 

due to the formation of methemoglobin. TNB is a less potent inducer of 

methemoglobinemia than 1,3 DNB and 1,4 DNB (Watanabe et al., 1976). Tissue anoxia 

due to prolonged methemoglobinemia is unlikely to be directly involved in the genesis of 

the present lesions (Bond et al., 1981; Philbert et al., 1987a). Sodium nitrite, at dosages 

which produced methemoglobinemia equilvalent to that of nitrobenzene did not produce 

any histopathologic changes in the brain observed with NB (Bond et al., 1981). In 

conclusion, detailed studies on the toxicity of TNB require further investigation and 

chronic experimental studies with TNB should focus on the neurological damage. 
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Figure 1. Photomicrograph of the nucleus interpositus. Note the focus of malacia 

comprised of numerous vacuoles containing infiltrates of glial cells. HE. Xl 7 5 

Figure 2. Photomicrograph of the medial vestibular nuclei. Hemorrhagic blood vessel 

with expanded Virchow-Robin space and extravasated erythrocytes forming cuffs. The 

erythrocytes also infiltrate the vacoulated neuropil. HE. Xl 80 
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CHAPTER VI 

NEUROTOXICITY OF 1,3,5-TRINITROBENZENE (TNB): 

IMMUNOIDSTOCHEMICAL STUDY OF CEREBROVASCULAR 

PERMEABILITY, NEURONAL DAMAGE AND GLIAL REACTION 

INTRODUCTION 

The nitroaromatic compound 1,3,5-trinitrobenzene (TNB) is used primarily in 

explosive compositions and munitions, and is also a by-product of both 2,4,6-

trinitrotoluene (TNT) synthesis and photolysis. Previously we have reported 

encephalopathy with TNB which is manifested morphologically as bilaterally symmetrical 

malacia, gliosis and circumscribed hemorrhage, with a unique topographic distribution in 

the brain of rats (Chandra et al., 1995).. The lesion was dorsal and lateral to the fourth 

ventricle involving the cerebellar nuclei, medial and lateral vestibular nuclei, and inferior 

colliculi. Furthermore, the distribution of the lesions within the CNS are reminiscent of 

those of pyrithiamine-induced acute thiamine-deficient encephalopathy (y./atanabe, 1978), 

1,3-dinitrobenzene (DNB) encephalopathy (Philbert et al., 1987) and nitrobenzene 

encephalopathy (Morgan et al., 1985). 

In conjunction with the scant general toxicity data on TNB, the pathogenesis of the 

CNS lesion is poorly understood. It has been suggested that the vascular bed may play an 

important role in the pathogenesis of the DNB-induced encephalopathy (Romero et al., 

1991). Prior studies with the structurally analogous nitroaromatics DNB or 
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nitrobenzene have not addressed the breakdown of the blood brain barrier (BBB) in the 

evolution of these tissue changes. 

During the past few years, a number of experimental and clinical studies have 

suggested that extravasated plasma constituents may exert a harmful effect on the brain 

tissue. The association between leakage of plasma constituents across the BBB 

(vasogenic edema) on the one hand and nerve cell death on the other hand has been 

demonstrated in several animal studies. Salahuddin et al (1988) showed that opening of 

the BBB by intracarotid infusions of hyperosmolar solutions caused nerve cell injury in 

areas where leakiness of the BBB was evident from extravasation of plasma proteins. 

Fredriksson et al (1988a) found cytolytic neurodegeneration in areas that showed leakage 

of plasma proteins in stroke prone hypertensive rats. Short-lasting (transient) blood brain 

barrier opening induced by adrenaline infusion, aortic clamping, epileptic seizures (Sokrab 

et al., 1988a, 1988b, 1990), or cerebral infarction (Nordborg et al., 1991), may cause 

neuronal damage with a spatial relationship to the extravasation of plasma proteins. 

Cerebellar Purkinje cells that are known to degenerate in epileptic patients are among 

those which are most heavily exposed to plasma constituents after epileptic seizures 

(Sokrab et al., 1990). Extravasation of plasma proteins has been demonstrated with the 

type D epsilon toxin of Clostridium perfringens (Finnie and Hajduk, 1992). Additionally 

it has been shown that rat albumin per se is neurotoxic in a concentration-dependent 

manner when injected into rat neostriatum (Hassel et al., 1994). Taken together these 

studies suggest that plasma components may be neurotoxic. Immunohistochemistry is an 

established method for demonstrating extravasated serum-proteins in histological sections 

(Salahuddin et al., 1988; Sokrab et al., 1988a; Loberg and Torvik 1991, 1992; Loberg et 

al., 1992, 1993). 
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Astrocytes play a role in the maintenance of the BBB (Janzer and Raff, 1987), 

homeostasis of water and ion balances (Kimelberg, 1983; Hertz and Schousboe, 1975) and 

repair after tissue damage (Montogomery, 1994). Astrocytic response can be evaluated 

by immunohistochemical staining for the intermediate filament, glial fibrillary acidic 

protein (GFAP) (Norenberg, 1994). 

This study focused upon, 1) relationship between the selective topographic distribution of 

the TNB-induced lesions and vascular permeability to albumin in the tissue changes, and 

2) the long term sequelae. 

MATERIALS AND METHODS 

Chemicals 

1,3,5-trinitrobenzene (99.83 % purity) was obtained from Naval Surface Warfare 

Center (Silver Springs, MD) and the purity of the compound was confirmed by HPLC. 

TNB was ground to a fine powder and then mixed with corn oil to form a solution in a 

Potter-Elvehjem grinder. The TNB corn oil mixture was prepared daily just prior to 

dosing. The oral LD50 value for TNB in rats has been determined to be 284 mg/kg for 

combined sexes (Fitzgerald et al., 1992). The one-fourth dose (71 mg/kg) was selected 

for this study since brain damage was not evident at the one-eighth dose (3 5. 5 mg/kg) in 

our earlier experiment (Chandra et al., 1995). 

Animals 

After a 2 week acclimatization to laboratory conditions (12 h light/12h dark cycle, 720±20 

F, 50±10% relative humidity), F-344 rats (initial body weight 220 g) were ranked by body 

weight and randomly distributed among the experimental groups. The animals were 
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housed one per cage and were provided with Purina Laboratory Chow and tap water ad 

libitum. 

Experimental 

A histopathologic evaluation was done after multiple oral doses of TNB at 71 

mg/kg. Thirty five male Fischer-344 rats were randomly assigned by body weight to seven 

experimental groups (5/group). Within each experimental group four rats were gavaged 

with 71 mg/kg of TNB and the control rat was gavaged with corn oil (vehicle). Rats in 

groups I, II, III, IV, and V, were killed 24 hours after 4, 5, 6, 8, and 10 doses of TNB 

respectively. The remaining 10 rats were used to study the long term sequelae. Rats in 

group VI and VII were killed after 10 consecutive daily oral doses of TNB ( at 71 mg/kg) 

with a recovery period of 10 and 30 days respectively. At the end of each exposure 

period, rats were deeply anesthetized with sodium pentobarbital (20-30 mg/kg) and 

perfused transcardially with 10% neutral buffered formalin. The skull was opened, and the 

brain was left in-situ until the next day when it was removed from the skull and immersed 

in the same fixative. 

Histology 

After removal, each brain was carefully sectioned into 2.0 mm thick coronal slices 

( according to Paxinos and Watson 1986) with a sharp razor blade for macroscopic 

examination. The brains slices were then dehydrated, routinely processed and embedded 

in paraffin. Paraffin sections were cut at 4-6 µm and stained with hematoxylin and eosin 

(H&E). Parallel serial sections of the brain were prepared for immunohistochemical 

studies. 
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Immunohistochemistry ABC Staining Procedure 

For immunohistochemisry 4-6 µm thick paraffin-embedded (serial) sections were 

immunohistochemically stained to detect albumin and GF AP. Tissue sections were placed 

onto poly-L-lysine coated slides and dried overnight. The following day the sections were 

dewaxed in xylene and hydrated via a graded ethanol series. Endogenous peroxidase 

activity was blocked with a 30 minute incubation in methanol containing 3% hydrogen 

peroxide. Between the remaining steps, sections were washed twice for 10 minutes each 

in isotonic phosphate buffered saline (pH = 7.4). Sections were pre-incubated for 30 

minutes in normal goat serum to decrease nonspecific binding. Excess serum was blotted 

before primary antibody application. For the determination of extravasated serum 

albumin, sections were incubated with rabbit anti-rat albumin (1: 16000) (Cappel, Organon 

Teknika Corporation, Durham NC, Catalog No. 55711). The glial reaction was 

demonstrated with antiserum to bovine glial fibrillary acidic protein (1: 1000) which cross 

reacts with rat GFAP (product information, Dako Corp., Carpinteria, CA). The 

incubation with the primary antibodies ( albumin and GF AP) was carried out at room 

temperature for 60 minutes. The bound antibodies were visualized with a commercially 

available avidin-biotin-peroxidase complex (Vectastain ABC-Kit, Vector Laboratories, 

Burlingame, CA). Immunolabelled peroxidase was visualized by using the commercially 

available chromogen Vector VIP (Vector Laboratories, Burlingame, CA) which yields an 

intense purple color. Harris' hematoxylin was used as a light nuclear counterstain. After a 

brief rinse with tap water, sections were dehydrated and coverslipped. 

The specificity of the immunohistochemical reaction was evaluated by the omission 

of individual steps. Normal rabbit serum was substituted instead of the primary antibody 

(i.e. rabbit anti-albumin or anti-GFAP). Other control procedures included omission of 

biotinylated secondary antibody and avidin-biotin peroxidase complex. Additionally, 

sections from all the rats were immunohistochemically stained (on the same day) using the 

same diluted antibody solution throughout to avoid variation in staining between sections. 
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RESULTS 

Clinical Signs 

The earliest clinical signs were observed approximately 30 minutes after dosing 

every day. The TNB-treated rats showed depression, rapid breathing, and cyanotic ears, 

eyes and feet. These clinical sign were due to the high methemoglobin levels observed 

after TNB exposure, which have been reported earlier (Chandra et al., 1995). The rapid 

breathing and depression usually subsided 2-3 hours after dosing. The cyanotic ears, eyes, 

and feet were visible up to 5 hours after dosing. 

A rat belonging to group VI started showing clinical signs of neurotoxicity after 

receiving four doses of TNB. This rat showed cardinal signs of TNB encephalopathy, 

which included walking on toes and hunched back. With progression of time, the rat 

became recumbent and died. Rats killed after 4, 5, 6, and 8 doses (i.e. groups I-IV) did 

not exhibit any clinical signs related to the central nervous system (CNS), except for the 

methemoglobinemia described earlier. On day 9 a rat belonging to group VI (10 day 

recovery) and group VII (30 day recovery) exhibited the cardinal signs including a 

generalized depression and flaccidity in the rear legs. On day 10 (i.e. after 10 doses) all 

treated rats in groups V, VI, and VII exhibited signs ranging from mild head shaking, 

walking on toes, and a pivotal movement (keeping the rear legs stationary, while moving 

in semi-circles with the fore legs), which was probably related to the flaccid paralysis of 

the rear legs. The fore limb grip reflex, righting reflex, and pinch reflex (in limbs and tail) 

did not appear to be impaired at any point in time. Signs persisted 24 hours after the last 

dose in these rats. During the recovery phase, rats in groups VI and VII had minimal 

clinical signs only on days 11-13, including dullness, lethargic movements and subtle 

tremors. No clinical signs were apparent during the subsequent recovery period in either 

group. 
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Gross Findings 

There were no gross lesions in the brain of rats belonging to groups I-IV. All four 

TNB-treated rats in group V had grossly visible, symmetrical petechial hemorrhages 

around the cerebellar roof nuclei ( cerebellar peduncle) and the inferior colliculi. The 

cerebral cortex was spared of hemorrhages. Hemorrhages (or other abnormalities) were 

not visible macroscopically in rats killed after a 10 day (group VI) or 3 0 day recovery 

(group VII) period. 

General Histology 

The brain of all control rats were histologically normal. Histopathologic 

examination of the brains from rats killed after 4, 5, 6, and 8 doses (i.e. groups I-IV) of 

TNB had no abnormalities. Rats killed after 10 daily doses (group V) had vacuolated 

neuropil and widened Virchow-Robin spaces containing erythrocytes. - The vacuolated 

lesions were confined to the cerebellar roof nuclei, medial and lateral vestibular nuclei, 

superior olivary nuclei and inferior colliculi. These lesions observed at 10 days, have been 

documented previously (Chandra et al., 1995) and will not be restated here. In the group 

VI rats, killed after a 10 day recovery period, resolution of the brain damage was evident. 

The affected foci in the cerebellar roof nuclei, vestibular nuclei, olivary nuclei and inferior 

colliculi (the predominantly affected regions), of the brain had an intense dense infiltrate of 

foamy macrophages and glial cells (Fig 1 & 2). Occasional shrunken intensely eosinophilic 

(necrotic) neurons were observed in the resolving necrotic foci. Yellow pigment 

(hemosiderin) was present within vessel walls. Also a few scattered Purkinje cells were 

intensely eosinophilic and shrunken with a clear halo around the cell boundary. In the 

group VII rats, killed after a 30 day recovery period, lesion resolution was complete, and 

vacuolation was minimal. The infiltrate of macrophages and glial cells was attenuated in 

two of the four rats. Few neurons in the susceptible nuclei were shrunken and eosinophilic 
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(Fig 3). The most dramatic change was observed in the cerebellum. There was scattered 

loss of Purkinje cells in the cerebellar folia leaving gaping holes and the cerebellum had a 

spongiotic appearance (Fig 4). This necrosis and loss of Purkinje cells was not uniform or 

diffuse, since normal healthy Purkinje cells were occasionally present next to dead or lost 

cells. Rarely, the cerebellar granular cells were also necrotic. The cerebral cortex, 

including the hippocampus, did not have any histopathologic changes in any treated rats. 

Immunohistochemistry 

Albumin immunoreactivity 

The brain of all control rats sacrificed at varymg times were 

immunohistochemically normal. Immunoreactive albumin was present in the meninges, 

choroid plexus and some vessel walls in the neuropil of the control rats. The ependymal 

cells rarely stained positive. Neurons and glia were never stained in the controls. Rats 

killed after 4, 5, and 6 doses of TNB had a staining pattern identical to the control rats 

(Table 1 ). In 2 of the 4 rats killed after 8 doses of TNB, immunoreactive albumin was 

faintly detected in the neuropil around the inferior colliculi and the olivary nuclei. Neurons 

and glial cells did not take up the stain. 

In group V (10 doses) in addition to the vacuolated lesion observed on routine 

H&E stain, there was a marked increase in the intensity and distribution of 

immunoreactive albumin in all four treated rats. Widespread areas of purple reaction 

product were seen in the cerebellar peduncle and the brain stem. The extravasation of 

albumin was not confined solely to those regions having a vacuolated appearance. 

Instead, the reaction product had a centrifugal spread to a limited distance into the white 

matter of the adjacent cerebellar folia and diffusely throughout the brain stem. Rat 

albumin immunoreactivity was present in the meninges and in the choroid plexus (positive 
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control). Numerous vessels, particularly arterioles, contained an extensive amount of 

immunoreactive albumin in the vessel wall (Fig 5). Immunoreactivity in the vessels was 

particularly pronounced in those regions of the brain susceptible to damage by TNB 

( cerebellar roof nuclei, inferior colliculi and olivary nuclei). An intense reaction product 

was present in arterioles as halos in the perivascular spaces. The neurons in the 

vacuolated lesion had intraneuronal albumin, which varied between individual cells. Some 

neurons contained purple fine cytoplasmic granules exclusively in the cell body sparing the 

nucleus and nucleolus (granular pattern) (Fig 6). These neurons had normal shape and 

size. The other pattern was observed in the shrunken neurons, wherein immunoreactvity 

completely obliterated nuclear and cytoplasmic detail ( diffuse pattern) (Fig 6). Glial cells 

(astrocytes, oligodendrocytes and microglia) in the spongy lesion contained albumin; 

however this was inconsistent among rats. In addition to the neurons in the vacuolated 

foci, the cerebellar Purkinje cells also had granular and diffuse patterns of 

immunoreactivity (Fig 7). The staining of the Purkinje cells was confined only to those 

cells in the immediate vicinity of the cerebellar roof nuclei indicating a centrifugal spread. 

Albumin positive Purkinje cells were brightly eosinophilic and somewhat distorted in 

morphology on the H&E stained sections. The cerebellar granule cells and the molecular 

layer did not stain positively for albumin, even though the Purkinje cells and the white 

matter were positive. The entire cerebral cortex was notably spared of immunoreactivity 

in all four rats. 

In contrast to the group V rats, group VI rats (i.e. those killed after a 10 day 

recovery period), the immunoreactivity to albumin was no longer present as a diffuse 

pattern in neuropil. Immunoreactivity to albumin in these rats appeared as scattered 

granular purple debris between and within the numerous macrophages, glial cells and new 

capillaries. It is noteworthy that the granular immunoreactivity to albumin was confined 

only to those regions of the brain susceptible to TNB encephalopathy. The staining 
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intensity of neurons and Purkinje cells varied among the rats, with some showing intense 

immunoreactivity to albumin and others faint. Animals given a 3 0 day recovery period 

(group VII) did not have any albumin immunoreactivity in the susceptible regions of the 

brain or in the neurons. These rats exhibited identical immunoreactivity to that observed 

in the control rats. 

GFAP Immunoreactivity 

In rats belonging to groups I-IV, the GFAP immunoreactivity appeared as faintly 

staining fibers scattered throughout the entire brain (Table 1 ). An identical staining 

pattern was also observed in the control rats of all the groups. Rats killed after 10 doses, 

had increased GF AP immunoreactivity characterized by the presence of markedly 

hypertrophic astrocytes with numerous prominent cell processes (Fig 8). These reactive 

astrocytes were present in the white matter of the cerebellar folia, and the margins of the 

vacuolated lesions. There was a complete loss of GF AP staining within vacuolated foci. 

In group VI rats (10 day recovery), a partial glia limitans characterized by intense 

immunoreactivity and thick bundles of glial filaments delineated the vacuolated foci from 

the adjacent neural tissue (Fig 9). In addition, reactive astrocytes were densely distributed 

in the surrounding neural tissue. · Rats belonging to group VII (30 day recovery), had 

variable immunoreactivity to GF AP. Although not intense, astrocytic processes were 

more prominent in the cerebellar roof nuclei, ventral cochlear nuclei, and olivary nuclei. 



112 

DISCUSSION 

The observations in this study confirm our previous clinical and histological descriptions 

of the encephalopathy with TNB. The TNB induced encephalopathy is accompanied by 

widespread vacuolation and necrosis of the neuropil in white and gray matter of the brain 

confined. to the cerebellar roof nuclei, vestibular nuclei, inferior colliculi, and olivary 

nuclei. In the present investigation we identified the regional distribution of the TNB 

induced lesions with the immunohistochemical stain for albumin. 

In the present study, we used an immunohistochemical reaction for extravasated serum 

albumin as a method of evaluating BBB. An exogenous tracer like horseradish peroxidase 

(HRP) was used to study vascular permeability in encephalopathy reported with DNB 

(Romero et al., 1991), nitrobenzene (Morgan et al., 1985), and pyrithiamine (Watanabe et 

al., 1981). The immunohistochemical method is considered to be the most sensitive one 

available for the detection of extravasated albumin and is valuable for morphological 

investigations. This method detects the extravasation of endogenous serum protein, which 

is the most direct marker in vivo, and is thought to reflect the accumulation of 

extravasated serum albumin up to the time when animals are killed (Chui et al., 1981; 

Kitagawa et al., 1991). 

BBB and extravasation of plasma proteins 

The results of this study indicated that a transient opening of the BBB (increased 

cerebrovascular permeability) occured in rats treated with TNB for 10 days. The 

extravasation occurred both in the gray and white matter of the susceptible regions/nuclei, 

with spread of plasma proteins in the surrounding tissue to variable distances. Similarly, 

transient opening of the BBB, leading to brain damage has been reported with infusion of 

hyperosmolar solutions (Salahuddin et al., 1988), hypertension (Sokrab et al., 1988b; 
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Fredricksson et al., 1988a), adrenaline induced hypertension (Sokrab et al., 1988a), 

epileptic seizures (Johansson and Nilsson, 1977; Mihaly and Bozoky, 1984), cerebral 

ischemia (Kitagawa et al., 1991; Loberg et al., 1993), and bicuculline-induced 

experimental seizures (Sokrab et al., 1990). 

After 10 days of recovery, the immunoreactivity was present as granular debris, 

and at 30 days post treatment, immunoreactivity was confined to the choroid plexus and 

meninges (similar to the controls). These results indicating a complete restoration of the 

BBB. A practical question at this point is whether the BBB in the 30 day recovered 

animals had been opened at all? . In the absence of extravasated albumin, other 

observations from this group and 10 day recovered animals confirm that BBB had been 

opened. In these rats the speckled immunoreactivity indicating active clearance of protein 

debris at 10 day posttreatment indicate a transient opening of the BBB, and more 

importantly the loss (necrosis) of neurons and Purkinje cells confirms previous irreversible 

neuronal damage. One can postulate that initial damage was followed by a complete 

closure of the BBB, disposal of extravasated proteins, and normalization of the eventual 

cellular changes. Identical results were obtained by Sokrab et al (1988b), where 

extravasated serum albumin was not detected 7 days after an episode of acute 

hypertension, and also in rats subjected to experimental seizures with bicuculline (Sokrab 

et al., 1990). Kitagawa et al (1991) did not detect albumin in the neuropil or neurons 3 or 

7 days after cerebral ischemia in gerbils even though other changes were present. Studies 

with isotope-labeled albumin indicated that extravasated proteins are cleared from the 

brain within a short time after a transient opening of the BBB (Lorenzo et al., 1972). 

Endothelial cell damage or a frank vascular rupture was not observed in this study 

or in our previous study. Even though the mechanism of action of TNB is not known, we 

believe that vascular distention leading to increased permeability of the cerebral 
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vasculature is the most likely cause. The increased blood flow in the brain of rats treated 

with the analogous compound DNB (Romero et al., 1991); and the use of organic nitrates, 

nitrites, and nitrosocompounds like nitro-glycerin, sodium nitroprusside as therapeutic 

vasodilators (Murad, 1990), suggest that the vasodilatation due to TNB may be linked to 

its exaggerated pharmacological action. An alternative hypothesis is the possibility that 

the guanylyl cyclase:nitric oxide vasodilator system (Collier and Vance, 1989) may have 

been stimulated by the altered redox potential within endothelial cells caused by TNB 

intoxication. Vascular distension has been implicated in the opening of the BBB by 

hyperosmolar solutions (Salahuddin et al., 1988). The vascular leakage probably occurred 

between separated endothelial cells as reported for HRP (Brightman et al., 1970; Nagy et 

al., 1979; Lehtosalo et al., 1982) or possibly by vesicular transfer as well (Lehtosalo et al., 

1982). Very close similarities exist between TNB induced encephalopathy and 

pyrithiamine induced encephalopathy (Wernicke's encephalopathy) in mice (Watanabe et 

al., 1978). Hemorrhagic lesions and increased vascular permeability (to HRP) were 

observed by Watanabe et al (1981) in these mice. However transmission electron 

microscopy revealed intact endothelial cells and tight junctions. To explain this 

phenomena, the authors suggest a transendothelial transport as the likely route (Watanabe 

et al., 1981). 

Fate of extravasated proteins 

Neurons, including Purkinje cells, were prime targets for the extravasated proteins. 

The neuronal and glial uptake of albumin was usually seen within and close to points of 

extravasation, but strongly positive neurons ( and Purkinje cells) were also present outside 

the actual leakage sites. Accumulation of protein tracers and albumin in neurons have 

been observed repeatedly in various experimental models of BBB damage (Brightman et 

al., 1970; Klatzo et al., 1962; Nag, 1984; Olsson and Kristensson, 1979; Tengvar, 1986; 

Chui et al., 1981; Sokrab et al., 1988a, 1988b; Salahuddin et al., 1988). In these studies, 
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the possibility was emphasized that transient opemng of the BBB induced neuronal 

damage. 

The distribution of albumin within the neurons in our study was similar to other 

reports (Salahuddin et al., 1988; Sokrab et al., 1988a, 1988b; Loberg and Torvilc 1991, 

1992; Loberg et al., 1992, 1993). The albumin immunostaining in the neurons was both 

granular (cytoplasmic only) and diffuse (entire cell). It is suggested that neurons with 

cytoplasmic albumin represent living cells which have accumulated proteins in lysosomes 

after vesicular transfer across the plasma membrane (Loberg and Torvik, 1991; 

Kristensson, 1984; Kristensson and Olsson, 1971; LaVail and LaVail, 1972; Mesulam, 

1982; Tengvar, 1986), whereas the diffuse form is likely the result of a protein influx in a 

cell with a severe cell membrane injury (Tengvar and Olsson, 1982; Clark, 1984; Klatzo et 

al., 1962; Olsson and Rossman 1970). In agreement with the interpretation that albumin 

is actively taken up by living cells, a large number of neurons which had a granular ( only 

cytoplasmic) staining with the anti-albumin serum looked normal. On the other hand, 

many neurons with diffuse immunoreactivity for albumin appeared shrunken and stained 

intensely with eosin suggesting a more severe injury. The mechanism proposed by 

Kitagawa et al (1991) to explain neuronal staining include a) passive diffusion through the 

damaged membrane as observed in the dead neurons, b) damaged neuronal processes and 

c) active uptake to reduce the vasogenic edema. The authors further state the granular 

immunostaining with intact nuclei are viable and responding actively to the extravasation. 

If the BBB opening persists for a longer period, these neurons could become irreversibly 

damaged. Hence the pathological mechanism of the irreversible nerve cell injury is related 

to the extravasation of plasma constituents. 
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Glial reaction 

Astrocytic response as assessed by immunohistochemical staining for GF AP has 

not been evaluated earlier with the analogous nitro-heterocyclic compounds DNB or 

nitrobenzene. GF AP immunoreactivity is present in normal rat brain at a moderate level 

(Bignami and Dahl, 1974), but increases progressively after brain damage. The most 

dramatic features of the acute lesion caused by TNB at 10 days is the astroglial 

hypertrophy and the strict limitation of this change to the defined brain areas. Serum entry 

into the neural tissue was one trigger for the glial response (Norenberg, 1994) as 

demonstrated by the fact that GF AP-staining coincided with the regions showing albumin 

extravasation. The second phase at 10 day post recovery had a glia limitans with thick 

filaments entrapping the resolving foci. This distribution is similar to that reported with 

alpha-chlorohydrin toxicity (Cavanagh et al., 1993), traumatic stab injury (Bignami and 

Dahl, 1976, Bignami et al., 1980) and around cysts in hypertensive rats (Fredricksson et 

al., 1988b). In this situation several tissue factors could be liberated which are known to 

stimulate glial cells, including hormones, second messengers, and several macromolecules 

(Nieto-Sampedro et al., 1985; Duffy, 1983; Cancilla et al., 1992). At 30 day post 

recovery the GF AP immunoreactivity, though moderate, was seen within more remote 

areas of the cerebellar peduncle and brain stem. This is probably related to factors 

stimulating glial proliferation (Giulian et al., 1986; Giulian and Young, 1986) or neuronal 

and dendritic injury (Yamamoto et al., 1986). These observations suggest a complex 

relationship between edema formation, neuronal injury, and glial response. 

The results of this study confirms the causal relationship between the extravasation 

(BBB breakdown) and the development of the changes. The presence of widespread 

vacuolation and associated extravasated serum proteins within the cerebellum and brain 

stem of TNB treated rats is an indication of vasogenic brain edema. The 

immunohistochemical demonstration of extravasated serum proteins confirms vasogenic 
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edema as opposed to cytotoxic edema in which no protein extravasation 1s present 

(Klatzo, 1967). Further disruption of the blood brain barrier appears to be a critical event 

in TNB toxicity with neuronal damage following later. 

In conclusion, we successfully established a reproducible encephalopathy in rats 

administered TNB and investigated albumin extravasation and glial reaction by 

immunohistochemical technique. In this study, we clarified the following points. 1) rats 

receiving daily oral dose of TNB had a 'transient' opening of the BBB characterized by 

leakage of protein. 2) distribution of albumin occurred selectively in regions susceptible to 

damage by TNB. 3) areas adjacent to extravasation contained neurons immunopositive 

for albumin, leading to permanent neuronal injury and loss. 4) gliotic response coincided 

with the vasogenic edema and vacuolated (spongy) lesion. 
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Table 1. Histopathological pattern of lesions in F-344 rats orally administered TNB at 71 mg/kg 

Exptl. gps. 

Doses of 

TNB 

Neurologic 

signs 

H&E lesion 

Anti

albumin 

(neuropil) 

Anti

alumin 

(neuronal) 

I 

4 

no 

none 

Anti-GFAP -

II 

5 

no 

none 

* see text for explanation. 

m 

6 

no 

none 

IV 

8 

no 

none 

V 

10 

yes* 

Vacuolated 

neuropil, necrotic 

neurons 

+ (2/4), + ( 4/4), 

minimal focal severe, diffuse 

+ ( 4/4), intense, 

multi-focal 

+ ( 4/4), reactive, 

hypertrophied 

VI VII 

10 + 10d recove!Y__JO + 3_9_c!_recove!Y 

yes* yes* 

Vacuoles, intense Necrotic Purkinje 

aggregates of gitter cells and neurons. 

cells and glia, Spongiosis of 

necrotic neurons cerebellum 

+ (3/3), moderate 

scattered debris 

+ (3/3), attenuated, 

random. 

+ (3/3), + (4/4), 

glia limitans, thick intense scattered 

filaments glia 

...... 
~ 



Figure 1. Dense aggregates of macrophages and glial cells in the resolving necrotic focus 

from a rat given a 10 day recovery. Note the adjacent less affected neuropil. H&E. X160 

Figure 2. A higher magnification of the same lesion as in Fig 1. H&E. X260 

Figure 3. Dark shrunken neurons ( arrowhead) of cerebellar roof nuclei from a rat given a 

30 day recovery period. The vacuolation is negligible. Gliosis is mild. Compare with fig 

1. H&E. X160 
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Figure 4. A typical lesion in the cerebellum from a rat given a 30 day recovery period. 

There is loss of Purkinje cells. Pyknotic Purkinje cells (arrowheads), which stained 

negatively with albumin. H&E. X160 

Figure 5. Pronounced albumin immunoreactivity in vessel from a rat killed after 10 doses 

of TNB. Arrowheads indicate albumin positive necrotic neurons. Anti-rat albumin. 

Hematoxylin counterstain. X300 

Figure 6. Immunostained neurons from the olivary nucleus in a rat killed after 10 doses of 

TNB. Note the granular (arrow) and diffuse staining (arrowhead) of the cells. Anti-rat 

albumin. Hematoxylin counterstain. Xl 60 



128 



Figure 7. Immunostained Purkinje cells in a rat killed after 10 doses of TNB. Negatively 

staining Purkinje cells (arrowheads) are amidst the positive Purkinje cells. Anti-rat 

albumin. Hematoxylin counterstain. Xl 60 

Figure 8. Astrocytic response after 10 doses of TNB. Note the negative staining in the 

lesion (asterisk). Anti-GFAP. Hematoxylin counterstain. Xl30 

Figure 9. Astrocytic response in a rat given a 10 day recovery. Note the sharp 

demarcation between the thick glial filaments and the resolving focus. Anti-GF AP. 

Hematoxylin counterstain. X200 
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CHAPTERVIl 

SUMMARYAND CONCLUSIONS 

1,3,5-Trinitrobenzene (TNB) is a nitroaromatic compound . that is usually 

associated with the production of munitions and armaments. TNB has been classified as a 

high explosive and it is used in military and commercial explosive compositions. TNB can 

enter the environment in wastewater effluents from facilities that synthesize, produce or 

demilitarize munitions, or from the disposal of solid 2,4,6-trinitrotoluene (TNT) wastes. 

TNB is classified as an EPA hazardous waste. TNB has been identified in 14 of the 1300 

hazardous waste sites on the National Priorities List (NPL). An anthropogenic 

environmental contaminant, exposure to TNB can occur through contact with wastewater 

effluents released from facilities that synthesize, produce or demilitarize munitions, or 

from the disposal of solid TNT wastes .. 

Toxicity data on oral, dermal, or inhalation exposure of experimental animals or 

humans to TNB are limited to a few Russian and English reports. Most of the toxicity 

data derived for TNB is by analogy to two structurally similar compounds 1,3-

dinitrobenzene and 2,4,6-trinitrotoluene. Therefore the broad objectives of this study were 

to characterize the acute toxic effects in rats orally exposed to TNB. 

The specific objectives of this study were to characterize the hematological effects, 

testicular effects and neurological effects and elucidate the mechanism of toxicity for the 

observed effects. Structurally analogous nitroaromatic compounds exert their principle 

affected with TNB also. 
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The first objective was to characterize the hematological effects both in vivo and in 

vitro. Male F-344 rats were gavaged with TNB at 35.5 and 71 mg/kg in corn oil. Blood 

was collected 5 h and 24 h after a single oral dose or 24 h after daily oral doses for 4 or 10 

d in four different set of experiments. A dose-dependent methemoglobinemia was present 

only in blood collected 5 h after a single dose. A highly significant dose-dependent anemia 

with reduced red cells, hemoglobin, and hematocrit was present in rats receiving TNB for 

4 or 10 d. A dose dependent decrease in serum triglyceride was present in rats receiving 

TNB for 10 d. To determine whether TNB is an inducer of methemoglobinemia in vitro, 

rat erythrocytes were incubated with TNB for 9 h. There was a progressive increase in 

methemoglobin formation in vitro. These results suggest, that unlike nitrobenzene, TNB 

can form methemoglobin in vitro and cecal microbial metabolism is not a prerequisite. 

There was no hemolysis when red cells were incubated with TNB. These results suggest 

that TNB is not directly hemolytic even with high methemoglobin levels and a different 

mechanism was probably responsible for the hemolytic anemia. 

Further studies were conducted to elucidate a possible mechanism for the 

hemolytic anemia. Since methemoglobinemia and hemolytic anemia were salient features 

of TNB toxicity, it was hypothesized that TNB causes denaturation of hemoglobin 

forming hemichromes leading to premature destruction of red cells. Hemichromes can 

cross-link the major erythrocyte membrane-spanning protein, band 3, into clusters which 

provide the recognition site for antibodies directed against the erythrocyte. Experiments 

were conducted in vitro to determine . whether TNB can cause hemichrome formation. 

Changes induced in hemoglobin by addition of TNB were spectroscopically recorded to 

identify hemichromes. Repetitive scanning of the TNB spectra revealed the formation of 

methemoglobin and hemichromes. There was only methemoglobin formation with sodium 

nitrite used as a negative control. Based on the in vivo and in vitro results, a hypothesis 

for the hemolytic anemia was proposed for the first time with nitroaromatics. 
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Testicular toxicity of TNB are confined to a few abstracts and detailed 

histopathologic evaluations were lacking. In this study testicular effects of TNB were 

characterized after single and multiple doses of TNB. Testicular effects were not evident 

at the light microscope level in rats killed after a single dose of TNB or after 4 daily doses 

at 3 5. 5 mg/kg of TNB. Rats receiving 4 daily doses of TNB at 71 mg/kg had the earliest 

evidence of testicular damage with necrosis and degeneration of pachytene spermatocytes 

including a significant decrease in testicular weight. When rats were dosed at 3 5. 5 mg/kg 

for 10 days, severe testicular lesions were present, in addition to the decrease in testicular 

weight. There was degeneration of round and elongate spermatids, and formation of 

multinucleate syncytial cells. The epididymis was devoid of sperm, instead contained 

exfoliated syncytial spermatids. Rats dosed at 71 mg/kg of TNB for 10 days had testicular 

atrophy and cessation of spermatogenesis. Histopathologic examination of the ventral 

prostate revealed apoptic cells. To assess the extent of reversibility in these atrophied 

testis, rats were allowed to recover for 10 or 3 0 days after 10 doses of TNB. A significant 

regenerative attempt with proliferating spermatocytes were present at 10 days and 

elongate spermatids were evident at 30 days. These reversibility studies indicate testicular 

effects of TNB are partially reversible. 

The closely related compound 1,3-dinitrobenzene exerts its principle effect on the 

Sertoli cell and it was hypothesized that Sertoli cell is the primary target with TNB also. 

To understand more about the target cell, testicles were immunohistochemically stained 

using proliferating cell nuclear antigen (PCNA) which detects cells in the S-phase. 

Testicles from treated and control rats had PCNA positive spermatogonia and 

spermatocytes. PCNA positive cells were also observed in atrophied testis. These results 

suggest that spermatogonia is probably not a target cell and spermatogonial mitosis occurs 
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even in the absence of spermatogenesis. This gave credence to the hypothesis that germ 

cell loss was an indirect effect due to Sertoli cell dysfunction. 

Neurotoxicity of nitroaromatic compounds is of particular importance. 

Encephalopathy has been reported with analogous compounds nitrobenzene and 1,3-

dinitrobenzene, but not with TNB. Male F-344 rats treated with TNB at 71 mg/kg for 10 

days had clinical signs of neurotoxicity with head tilt, ataxia, hind-limb splay, and walking 

on toes. Histologic examination of the brain from these rats revealed a structural damage 

associated with the functional change. Light microscopic examination revealed petechial 

hemorrhages in the brain stem and cerebellum, bilaterally symmetric degeneration and 

necrosis (malacia) with reactive gliosis in the cerebellar peduncles. The malacia was 

lateral and dorsal to the fourth ventricle involving the cerebellar nuclei, medial and lateral 

vestibular nuclei, and inferior colliculi. Blood vessels associated with the lesion had 

widened Virchow spaces, occasionally with extravasated erythrocytes. 

Further experiments were conducted to elucidate the pathogenesis of the 

encephalopathy. The cerebral vasculature has been suggested to play an important role in 

the pathogenesis of the 1,3-dinitrobenzene-induced encephalopathy. This study was 

conducted to understand the contribution of the blood brain barrier (BBB) and to assess 

the long term sequelae. In this experiment F-344 rats were killed after 4, 5, 6, 8, or 10 

daily doses of TNB (71 mg/kg). Also 5 rats were allowed to recover for 10 or 30 days 

after receiving 10 doses. Integrity of the BBB was assessed immunohistochemically for 

extravasated plasma albumin on paraffin sections. Serial sections were stained for glial 

fibrillary acidic protein (GFAP) and with H&E. Rats killed after 4-8 doses had no lesions. 

In the 10 dose group, lesions were multifocal often confluent foci of extravasated albumin 
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in susceptible nuclei. Albumin was present in vascular walls, extracellular space, neurons 

and Purkinje cells. Immunoreactivity in neurons was granular representing pinocytic 

uptake or diffuse due to nerve cell injury with uncontrolled albumin leak into the 

cytoplasm. Shrunken hypereosinophilic neurons were seen in areas of albumin 

extravasation with sponginess of the neuropil. There was no GF AP staining in the 

vacuolated foci, with hypertrophied astrocytes around the foci. After 10 d of recovery, 

vacuolated foci were infiltrated by glial and gitter cells. Albumin immunoreactivity was 

present as granular debris and neuronal staining was decreased. A glia limitans around the 

resolving foci had thick bundles of GF AP positive astrocytic processes. In rats allowed a 

30 d recovery, immunoreactivity to albumin was not seen and GFAP was mild. Instead, 

these rats had necrotic neurons in the susceptible nuclei and loss of Purkinje cells. These 

observations demonstrated a causal relationship between increased vascular permeability 

(vasogenic edema) and neuronal damage. Further disruption of the BBB appears to be a 

critical event with neuronal damage following later. 
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