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CHAPTER I 

INTRODUCTION 

This dissertation is composed of 3 manuscripts formatted for submission to 

· selected scientific journals. Each manuscript is complete as written and does not 

require additional support material. The order of arrangement for each manuscript is 

text, literature cited, tables, and figures. Chapter II, "Landscape structure and change in 

a hardwood forest-tallgrass prairie ecotone of northern Oklahoma," is written in the 

format of the Journal of Range Management. Chapter Ill, "Effects of land use change 

on breeding bird community structure in a forest-grassland ecotone," is written in the 

format of the Journal of Wildlife Management. Chapter IV, "Prediction of vegetation 

cover type and avian species occurrence in a rural and urban-influenced landscape," is 

written in the format of the Journal of Applied Ecology. 



CHAPTER II 

LANDSCAPE STRUCTURE AND CHANGE IN A HARDWOOD FOREST-TALLGRASS 

PRAIRIE ECOTONE OF NORTHERN OKLAHOMA 

Abstract 

Temporal changes in land use, vegetation cover types, and landscape structure 

were examined in a hardwood forest-tallgrass prairie ecotone in northern Oklahoma 

using a Geographic Information System (GIS). Our objective was to examine 

relationships between urban sprawl, changes in land use and vegetation cover type, and 

landscape structure between 1966 and 1990. Most cover types and measures of 

landscape structure changed relatively little in the last 24 years. Most of the urban­

influenced landscape in this study was managed for high-input agricultural products and 

resulted in a landscape with lower diversity, higher homogeneity, and greater patch 

fragmentation compared to the more rural landscape. Both native grasslands and 

forests were less fragmented in the rural landscape while forests were increasingly 

fragmented in the urban-influenced landscape. Native grasslands were less fragmented 

than forests for all years in both rural and urban-influenced landscapes. With increasing 

urban sprawl into rural landscapes, information on vegetation cover types and changes 

in landscape structure will better enable biologists to manage landscapes to preserve 

biological diversity. 
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Introduction 

Increased agricultural development of the Great Plains since the 1870's has 

caused a dramatic decline in the aerial extent of tallgrass prairie. This decline exceeds 

any other major ecosystem in North America (Samson and Knopf 1994). Large, 

extensively managed blocks of rangeland and forests have been fragmented into 

smaller blocks of intensively managed introduced pastures and cropland through 

changing land use and altered ownership patterns. Urban sprawl into rural landscapes 

may further change land use and vegetation cover type and may operate to alter 

landscape structure and diversity. Land use changes often reduce ecosystem diversity 

on a regional scale by replacing natural vegetation with managed systems of altered 

structure (Krummel et al. 1987, McNeely et al. 1990). These anthropogenic changes 

have caused concern about preserving and managing for biological diversity (Grove and 

Hohmann 1992, Urban et al. 1992, West 1993). Urban development of wildlands tends 

to decrease biodiversity by increasing landscape homogeneity, dominance, and 

fragmentation (Davis and Glick 1978). 

Although scientific literature contains extensive research on the effects of 

urbanization and fragmentation of contiguous forests, research is lacking in native 

grasslands (Samson and Knopf 1994) and grassland-forest ecotones (Risser 1990). 

Ecotones provide valuable insight to the complex dynamics of ecosystems including 

temporal changes in landscape structure and function (Wiens et al. 1985, Hardt and 

Forman 1989). Although ecotones are dynamic and typically have high community 

diversity (Risser 1990, Johnston et al. 1992), anthropogenic influences on change have 

not been well documented. Ecotones may also be used for early detection of global 

climatic change because many species are at the limits of their distributional ranges that 

are often climatically controlled (Hanson et al. 1992). 

3 



Changes in landscape structure may affect a wide variety of ecological 

processes (Turner 1989); but, relatively little is known about how components of 

landscape change over time (Baker 1992). Therefore, descriptions of changing 

landscape patterns form an important component of our understanding of ecological 

dynamics necessary to integrate the often conflicting demands of wildlife habitat, 

recreation, agriculture, and development. We used aerial photography from 1966 to 

1990 in a hardwood forest-tallgrass prairie ecotone as the data set for addressing the 

relationships between urban sprawl and changes in land use, vegetation cover type, and 

landscape structure. We hypothesized that 1) land use, vegetation cover type, and 

landscape structure in a hardwood forest-tallgrass prairie ecotone have changed 

temporally in northern Oklahoma, 2) urban-influenced and rural areas differ in temporal 

change in land use, vegetation cover types, and landscape structure; and, 3) native 

grasslands have become more fragmented than forests because of increased human­

intensive activities in native grasslands. 

Study Site 

Our study was centered around suburban Tulsa, Oklahoma, and the surrounding 

wildlands. The study included northeastern and southeastern Osage County, southern 

Washington County, and northern Tulsa County. The selection of the study area was 

based on areas with a suburban-wildland transition and areas with available historical 

aerial photoography. The study area included four U.S. Fish and Wildlife Service 

Breeding Bird Survey (BBS) routes: 024 (Collinsville), 025 (Barnsdall), 026 (Bartlesville), 

and 125 (Skiatook) (Fig. 1 ). Legal description of these survey routes are provided by 

Baumgartner and Baumgartner (1992). 
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The BBS routes lie on an ecotonal area between the Cherokee Prairie grassland 

formation and oak-hickory savanna of the Cross Timbers (Bruner 1931, Soil 

Conservation Service 1981). The Cherokee Prairie of Oklahoma extends as a long, 

narrow strip, 240 km southward from the Kansas state line with a width ranging from 48 

to 96 km throughout most of its length. The area is better adapted to support grasses 

than forests because of climate and underlying geology (Harlan 1957). The Cross 

Timbers of Oklahoma lie west of the Cherokee Prairie and the Lower Arkansas Valley, 

extending 288 km southward from Kansas with a width of 80 km. The region is a 

transitional oak forest with interspersed grasslands (Bruner 1931, Gray and Galloway 

1959). 

Survey routes varied in their proximity to Tulsa, a major metropolitan area in 

northern Oklahoma with a estimated population of 361,628 (U.S. Department of 

Commerce 1990). The Collinsville route is 24 km from Tulsa, in Washington County 

while the Bartlesville route is 74 km from Tulsa, in Osage County. Human population 

density of Washington and Osage County in 1990 was 3340 km-2 and 520 km-2, 

respectively. We considered the Collinsville route to be subjected to more urban 

influence than the Bartlesville route. Thus, we viewed the Collinsville route as an 

intensively managed landscape and Bartlesville route as an extensively managed 

landscape, and from this point forward, the 2 landscapes will be discussed as urban­

influenced or rural. Barnsdall and Skiatook routes are approximately 48 km from Tulsa 

and were selected as intermediate between urban-influenced and rural landscapes. 
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Methods 

Data Collection 

Black and white aerial photographs for 1966, 1973, 1980, and 1990 were 

obtained from the U.S. Department of Agriculture, ASCS, Aerial Photography Field 

Office, Salt Lake City, Utah. Photographs were 60.96 X 60.96-cm enlargements with a 

representative fraction (RF) of 1 :7,920. We used portions of photography that covered 

BBS routes (40.2 km in length) and 0.8-km on each side of the route boundary. The 

resulting coverage was approximately 6430 ha for each route. 

Topographic quadrangle maps, photo inspected in 1976, showed the natural and 

man-made features of the land at 1 :24,000 scale and were obtained from the Oklahoma 

Geological Survey, Norman, Oklahoma. The quadrangles indicate both geographical 

coordinates and specific features such as vegetation, water, roads, and towns. These 

maps were used for both gee-registration of the photography and to aid in photo­

interpretation. 

Features identified on each photograph included: BBS route, roads, buildings 

and houses, land use, and vegetation cover types. Land use and vegetation cover 

types were interpreted based on the classification scheme of Stems et al. (1983) (Table 

1 ). All interpreted polygons of interest were traced on overlying acetate and supervised 

photo interpretation was compared to the 1990 photography. 

Completed polygons were digitized using a digital scanner. Scanned images 

were edited, rectified, and vectorized using L TPlus (Line Trace Plus, version 2.22) and 

imported into the GIS GRASS (Geographic Resource Analysis Support System) 

(Shapiro et al. 1992). Vector maps were then patched together to form the complete 

route, labeled, and converted to a raster map with 5-m resolution. 
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Data Analysis 

Temporal changes in land use and vegetation cover types were examined using 

GIS to describe differences between and within routes for the 24-yr period. Landscape 

analysis was performed using the raster landscape ecological (r.le) spatial analysis 

package within GRASS (Baker and Cai 1992), which was developed for quantitative 

analysis of landscape structure. The r.le programs were used to generate landscape 

measures of mean patch size, fractal dimension, richness, Shannon diversity, 

dominance, contagion, angular second moment, and contrast. 

Mean patch size is the mean area (ha) of patches in the sampling area and 

serves as an index of fragmentation. It is calculated for all patches in the sampling area 

by dividing sample area size by the number of patches (Baker and Cai 1992). As 

patches become smaller because of fragmentation, mean patch size decreases. Fractal 

dimension is a measure of fractal geometry or patch shape complexity of a landscape 

(Mandelbrot 1983, Krummel et al. 1987). Fractal dimension (F) was calculated by 

regressing polygon area against perimeter length for each landscape patch. Values for 

fractal dimension range from 1 to 2. Landscapes dominated by simple patterns (circles 

and squares) have low values of F while landscapes dominated by complex or 

convoluted patterns have high values of F (Krummel et al. 1987). 

Shannon's diversity index (H) combines richness and evenness. Richness refers 

to the number of patch attributes present in the sampling area and evenness refers to 

the distribution of area among different patch types (Turner 1990a, 1990b). Richness 

and evenness are the compositional and structural components of diversity, respectively 

(McGarigal and Marks 1994). The larger the value of H, the more diverse the landscape 

(O'Neill et al. 1988). The dominance index (D) is based on the Shannon-Weaver 

diversity index (Shannon and Weaver 1962) but emphasizes deviation from evenness. 
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The dominance index measures the extent that specific land uses (or vegetative cover 

types) dominate the landscape (O'Neill et al. 1988). Large values of D indicate a 

landscape dominated by one or a few cover types while low values of D indicate a 

!andscape with many cover types represented in approximately equal proportions 

(Turner 1990a). 

Three texture measures were calculated for the regional landscape which 

included contagion, angular second moment, and contrast using eight-neighbor analysis 

to quantify the adjacency of similar patch types. Contagion (C) measures the extent to 

which cover types are aggregated or clumped in contiguous patches (O'Neill et al. 

1988). A landscape with well interspersed patch types will have a lower contagion 

compared to a landscape with poorly interspersed patch types (McGarigal and Marks 

1994). Angular second moment is a measure of landscape homogeneity. Larger values 

for angular second moment indicate more homogeneity (McGarigal and Marks 1994). 

Contrast measures local variation present in the landscape (Baker 1994). 

Temporal changes in land use, vegetation cover types, and landscape structure 

for the region were analyzed by comparing the mean of all 4 routes over all years. 

Comparisons also were made with 1900 data from Criner (1995) for the mean of the 

Collinsville and Bartlesville routes to investigate historical changes in cover types and 

landscape structure for the region. In addition, comparisons between 1966 and 1990 

were made between Collinsville and Bartlesville to assess the effects of urbanization on 

vegetation cover types and landscape structure. Mean patch size and fractal dimension 

were also determined for native grasslands and forests within both Collinsville and 

Bartlesville to assess the effects of urban influences on fragmentation in these 

landscape types. 
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Temporal Change in the Region 

Cover Types 

Results and Discussion 

Developed areas of the northern Oklahoma landscape increased by 27% from 

1966 to 1990 (Fig. 2). In comparison, there was a 3,270% increase in developed areas 

between 1900 and 1990. The increase in developed areas altered both vegetation 

cover types and landscape structure. Cropland decreased from 1966 to 1990 by 84% 

(Fig. 2). In comparison, total area of cropland decreased by 34% between 1900 and 

1966. Reduction in cropland in recent years may be the result of continued decrease in 

cultivation of marginal lands (Sampson and Knopf 1994). 

Decline of native grassland in our study area was well below national estimates. 

Declines in tallgrass prairie have been estimated at 82% to 99% in North America 

(Sampson and Knopf 1994). However, native grasslands declined_only 36% between 

1900 and 1990. The rate of loss has greatly decreased in recent years. Native 

grassland declined from 1,217 ha to 1,178 ha between 1966 and 1990 (Fig. 2). This 

suggests losses of tallgrass prairie are not widespread in this area and losses are lower 

on areas with marginal cropland, as in the hardwood forest-tallgrass prairie of 

Oklahoma, than in the tallgrass prairie region in general. 

From 1900 to 1966, a 22% expansion in area of forest into native grassland was 

observed along with a concomitant 36% decrease in native grasslands, which may have 

been related to the absence of brush treatment practices (primarily herbicides) (Rollins 

1987). An 87% increase in brush-treatment lands since 1966 resulted in reduction of 

forests from 34% of the area in 1966 to 27% of the area in 1990. In comparison, forest 

cover in 1900 was 29% of the area resulting in a difference of only 8% between 1900 
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and 1990. Bare ground decreased by 44% between 1966 and 1990, probably because 

of the 82% reduction in oil and gas activity. 

-Landscape Structure 

Landscape structure can be characterized by the composition and relative 

abundance of vegetation cover types and their spatial arrangement or geometry 

(Freemark et al. 1993). Natural and anthropogenic disturbances alter landscape 

structure and may have important ecological implications (Turner 1990b). Therefore, 

temporal changes in landscape structure must be considered in quantitative landscape 

studies (Dunn et al. 1990). Temporal changes observed in land use and vegetation 

cover types in our study resulted in altered landscape structure. 

Fragmentation occurs when areas of homogeneous habitat are broken into a 

mosaic of smaller, dissimilar habitat patches (Laudenslayer 1984, Temple and Wilcox 

1984). Mean patch size declined only 16% between 1966 and 1990 (Table 2). In 

comparison, between 1900 and 1966 mean patch size declined 77%. More local 

variation between patch types was also observed (angular second moment and 

contrast) between 1900 and 1966. Although landscape fragmentation and degree of 

heterogeneity have generally stabilized in recent years, the increase in local variation 

between patch types continued from 1966 to 1990 (Table 2). Patch complexity (i.e., 

fractal dimension), between 1966 and 1990, changed at a slower rate (0.1 per year) 

than between 1900 and 1966 (0.2 per year). 

A shift from native to more intensively managed landscapes generally results in a 

larger proportion of the landscape being dominated by fewer cover types (Laudenslayer 

1984). However, little change in landscape diversity and contagion occurred between 

1966 and 1990 (Table 2). Landscape dominance decreased by 15% between 1900 and 
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1966 indicating a landscape dominated by fewer cover types, primarily native 

grasslands, which comprised the majority of the landscape in 1900. The change in 

landscape dominance supports the observed 54% increase in Shannon diversity from 

1900 to 1966 (0.87 and 1.34, respectively). An 11 % increase in contagion also was 

observed from 1900 to 1966 indicating a landscape with more highly interspersed 

patches of land cover types and uses in 1900. In contrast, landscape dominance 

increased by 10% between 1966 and 1990 (Table 2) and approached its historical value 

indicating a landscape dominated by fewer land uses or cover types in 1990. 

Effects of Urbanization 

Temporal Changes in Cover~ 

A 50% increase in developed areas was observed in the urban-influenced route 

(Collinsville) while a 4% decrease was observed in the rural route (Bartlesville) between 

1966 and 1990 (Fig. 3 and 4). Therefore, these routes provided excellent study areas 

for investigation of the effects of urbanization on vegetation change and landscape 

structure. Because the urban-influenced route was located near Tulsa, it experienced a 

greater amount of human influx (i.e., urban sprawl) over the past 25 years compared to 

the rural route and resulted in different temporal changes in vegetation cover types. 

The urban-influenced route was subject to more intensive management 

practices, such as cropland and pasture land and hay meadows than the rural route. 

Cropland accounted for 17% of the urban-influenced route and only 1 % of the rural 

route in 1966. Both routes had a reduction in cropland between 1966 and 1990; 

however, the rate of loss in cropland was greater for urban-influenced route (78%) 

compared to the rural route (48%) (Figs. 3 and 4). Cropland in the urban-influenced 

route was converted primarily to pasture land and hay meadows. Pasture land and hay 
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meadows accounted for 21 % of the urban-influenced route and only 3% of the rural 

route in 1966. In addition, pasture land and hay meadows increased by 48% in the 

urban-influenced route but decreased by 46% in the rural route (Figs. 3 and 4). The 

increase in pasture land and hay meadows in the urban-influenced route resulted from 

the conversion of native grassland, cropland, and forests. This suggest the urban­

influenced route was managed for high-input agricultural products compared to a rural 

route. 

Deciduous forests accounted for 37% of the rural route and only 13% of the 

urban-influenced route in 1966. Forests were converted primarily to brush-treated lands 

in the rural route and to pasture land and hay meadows in the urban-influenced route 

from 1966 to 1990. However, the rate of decline in forest was greater for the rural route 

than the urban-influenced route because of differences in the amount of brush-treated 

lands between the routes. Brush-treated lands accounted for 12% of the rural route and 

only 1 % of the urban-influenced route in 1966. In addition, there was a 121 % increase 

in brush-treated lands from 1966 to 1990 in the rural route while the urban-influenced 

route showed relatively little change (Figs. 3 and 4). Native grasslands were the 

dominant cover type for both routes in all years (Figs. 3 and 4). However, there was 

very little change in native grasslands in the urban-influenced route while a 19% decline 

was observed in the rural route from 1966 to 1990. The decline in native grasslands 

along the rural route may be misleading because native grasslands subjected to 

herbicides or fire were photo-interpreted as brush-treated lands. Maintenance of 

tallgrass prairie dominance in this region requires fire or herbicides to prevent 

encroachment of woody species (Bragg and Hulbert 1976, Knight et al. 1994). 
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Temporal Changes in Landscape Structure 

Mean patch size is generally large in areas of natural vegetation influenced 

minimally by human activities (Pickett and Thompson 1978). With increased human 

activity, mean patch size decreases because the landscape is generally subdivided into 

smaller patches (Forman and Boerner 1981). Measures of mean patch size in our study 

indicated the urban-influenced route became more fragmented than the rural route since 

1973 (Table 3). In addition, mean patch size declined by 29% in the urban-influenced 

route and only 7% in the rural route from 1966 to 1990 suggesting landscape 

fragmentation was 4 times greater in the urban-influenced route. Human activities 

related to crop production and urban development also tend to simplify patch shapes 

resulting in lower fractal dimensions (Krummel et al. 1987, O'Neill 1988). However, 

patch complexity between routes was similar and slightly increased in both routes since 

1973 (Table 3). This suggests natural disturbance regimes including climate in the 

landscape may have influenced.patch complexity to a larger degree than human 

activities. 

Urbanization typically decreases diversity by increasing landscape 

fragmentation, homogeneity, and dominance (Davis and Glick 1978). Landscape 

dominance increased by 32% in the urban-influenced route (Table 3) suggesting a 

general trend for the landscape to be dominated by fewer land uses or vegetation cover 

types (O'Neill et al. 1988). Landscape dominance decreased by 11 % in the rural route 

suggesting a general trend toward land uses or vegetation cover types represented in 

more equal proportions. In addition, angular second moment increased by 19% from 

1966 to 1990 in the urban-influenced route suggesting a homogeneous, less diverse 

landscape. In contrast, angular second moment decreased by 17% from 1966 to 1990 

in the rural route indicating a landscape becoming more heterogeneous suggesting an 
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increase in landscape diversity. Although landscape diversity was 15% greater in the 

urban-influenced route compared to the rural route in 1966, landscape diversity declined 

by 11 % in the urban-influenced route while landscape diversity increased by 8% in the 

rural route from 1966 to 1990 (Table 3). Overall, the urban-influenced landscape is 

becoming less diverse, but the rural landscape is becoming more diverse since 1966. 

Fragmentation of Native Grasslands and Forests 

The Collinsville and Bartlesville routes were used to investigate fragmentation of 

native grasslands and forests in a urban-influenced and rural environment since 1966. 

Urbanization tends to simplify patch complexity and increase fragmentation of 

contiguous forests (Godron and Forman 1983). Forest patches were more complex in 

shape compared to native grasslands in the urban-influenced route (Table 4), 

suggesting there was more human impact and fragmentation in native grasslands than 

forests. However, native grassland fragmentation remained relatively unchanged while 

forest fragmentation increased by 26% from 1966 to 1990 (Table 4). Therefore, 

relationships between urbanization, patch complexity, and fragmentation in other 

ecosystems such as contiguous forests may not always be appropriate in the forest­

tallgrass prairie ecotone. 

Native grassland patches were more complex in shape compared to forest 

patches in the rural route for all years (Table 4) which we attribute to fire and other 

brush treatment practices. Disturbance patches created by prescribed burning can 

increase landscape heterogeneity and patch complexity because fire effects differ with 

respect to topography, fuel type, fuel load, climate, and season (Godron and Forman 

1983, Biondini et al. 1989, Baker 1992, Urban 1994). In addition, fragmentation of both 

14 



native grasslands and forests in the rural route decreased 57% and 37% respectively 

from 1966 to 1990. 

In both routes there was relatively little change in complexity of patch shape 

(fractal dimension) in either native grasslands or forests over time (Table 4). In addition, 

native grasslands were less fragmented than forests for all years based on mean patch 

size in both routes. Because native grasslands were less fragmented than forests one 

would expect to find increased road and residential growth in the forests compared to 

the native grasslands. However, our data indicated that roads were developed 

randomly with respect to cover type in the landscape. Human impact areas, including 

residential development, were primarily located in native grasslands in the urban­

influenced route in 1966 (Table 5). However, with the temporal increase in urbanization, 

forests were increasingly selected for human development from 1973 to 1990 (Table 5). 

This may account for the observed temporal increase in fragmentation of forests. 

However, in the rural route human impact areas were more evenly distributed between 

native grasslands and forests for all years (Table 5). Historically, forests were more 

fragmented than native grasslands for both routes (Criner 1995). Therefore, observed 

differences in fragmentation between cover types is most likely a function of 

geomorphologic processes such as soils and natural disturbance regimes including 

climate and fire (Godron and Forman 1983). 

Conclusions 

We found areas surrounding urban centers eroded in landscape quality, as 

defined by landscape fragmentation and diversity. In contrast, landscape quality 

improved in the rural areas dominated by ranching enterprises. Differences in 

landscape quality between landscapes (urban-influenced vs. rural) can be attributed to 
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differences in land use and associated management practices. Maintenance of the 

tallgrass prairie by prescribed burning, herbicide application, and grazing management 

most likely accounts for the observed improvement in landscape quality in rural 

(extensively managed) areas while the temporal increase in seeded pasture land and 

hay meadows accounts for the observed reduction in landscape quality in urban­

influenced (intensively managed) areas. Therefore, these and other similar landscapes 

will continue to diverge in landscape quality in the absence of societal pressure to halt 

urban sprawl into rural landscapes. 

Our analysis suggests biologists and conservationist should focus their concerns 

on fragmentation and biological diversity in urban and suburban ecosystems. Wildlands 

will continue to be fragmented and altered by urban sprawl, which creates the most 

noticeable change in a landscape (Gates 1991 ). Therefore, human impact on ecological 

systems as a result of changing land use is a critical problem facing biologists today. 

For example, changes in wildlife diversity and density by urbanization result from 

human-induced changes in vegetation composition and structure. With increasing 

urbanization and suburban sprawl into rural landscapes, information on vegetation cover 

types and changes in landscape structure will better enable biologists to manage 

landscapes to conserve biological diversity (Grove and Hohmann 1992). Line, strip, and 

stream corridors also must be an integral part of the urban planning process to help 

offset the effects of fragmentation. By the year 2000, 90% of the United States 

population is projected to live in urban and suburban environments (George 1982) which 

further necessitates the need to understand the complex relationships between urban 

sprawl and changes in land use, vegetation cover types, and landscape structure on 

ecological systems in urban environments. 
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Table 1. Classification system used to map land use and vegetation cover types 

(adapted from Stems et al. 1983). 

Land use and cover type 

Developed area 

Roads 

Water 

Cropland 

Description 

Land occupied by residential, industrial, or other 

human structures and non-agricultural activities. 

Also includes transportation and utility facilities. 

Black top, gravel, dirt roads and driveways 

Ponds, lakes, streams, and rivers 

Land cultivated for row crops and cereal grains but 

excluding grazing lands 

Pasture land and hay meadows Includes pasture land (seeded, grasslands used for 

grazing by cattle, sheep, goats, and horses) and 

Native grassland 

Deciduous forest 

Brush-treated land 

Bare ground 

hay meadows 

Native grasslands with less than 10% cover by 

shrubs or trees 

Vegetation dominated (>10%) by cover of broadleaf 

hardwoods. Mostly post oak (Quercus stellata) and 

blackjack oak (Q. marilandica) 

Native vegetation subjected to herbicides, fire, or 

chaining to control woody brush encroachment 

Land with less than 5% vegetative cover 
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Table 2. Measures of landscape pattern (x ± SE) and percent change from 1966 of the mean of four 25 mile transects in a 

hardwood forest-tall grass prairie ecosystem in northern Oklahoma for 19001, 1966, 1973, 1980, and 1990. 

Index Year % Change 

1900 1966 1973 1980 1990 1966 

Mean patch size (ha) 18.01 ± 1.34 4.18 ± 0.33 3.97 ± 0.33 3.73 ± 0.31 3.50 ± 0.33 - 16.3 

Fractal dimension 1.11 ± 0.07 1.25 ± 0.01 1.24 ± 0.01 1.26 ± 0.01 1.28 ± 0.01 + 2.4 

Shannon diversity 0.87 ± 0.08 1.34 ± 0.05 1.39 ± 0.03 1.28 ± 0.03 1.28 ± 0.05 -4.5 

Dominance 0.92 ± 0.08 0.78 ± 0.06 0.76 ± 0.01 0.86 ± 0.04 0.86 ± 0.05 + 10.3 
N 
v.) 

Contagion 2.55 ± 0.08 2.82 ± 0.07 2.82 ± 0.02 2.89 ± 0.04 2.88 ± 0.07 + 2.1 

Angular second moment 0.47 ± 0.01 0.29 ± 0.02 0.28 ± 0.01 0.31 ± 0.01 0.30 ± 0.02 + 3.4 

Contrast 0.16 ± 0.03 0.38 ± 0.03 0.43 ± 0.04 0.43 ± 0.05 0.46 ± 0.03 + 21.1 

1Data is from Criner (1995). 



Table 3. Measures of landscape pattern and percent change from 1966 of urban-influenced and 

rural routes in a hardwood forest-tallgrass prairie ecosystem in northern Oklahoma for 1966, 

1973, 1980, and 1990. 

Index Year %Change 

1966 1973 1980 1990 

Urban-influenced (Collinsville) 

Mean patch size (ha) 4.16 3.93 3.22 2.96 -28.8 

Fractal dimension 1.23 1.25 1.27 1.28 + 4.1 

Shannon diversity 1.43 1.39 1.33 1.28 - 10.5 

Dominance 0.65 0.75 0.81 0.86 + 32.3 

Contagion 2.69 2.83 2.85 2.91 + 8.2 

Angular second moment 0.27 0.30 0.30 0.32 + 18.5 

Contrast 0.33 0.46 0.50 0.50 + 51.5 

Rural (Bartlesville) 

Mean patch size (ha) 3.96 4.29 3.63 3.42 - 7.5 

Fractal dimension 1.27 1.24 1.27 1.30 + 2.4 

Shannon diversity 1.21 1.29 1.29 1.31 + 8.3 

Dominance 0.93 0.78 0.78 0.83 - 10.8 

Contagion 2.99 2.82 2.81 2.88 - 3.7 

Angular second moment 0.35 0.30 0.29 0.29 - 17.1 

Contrast 0.41 0.35 0.35 0.42 + 2.4 
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Table 4. Measures of landscape pattern and percent change from 1966 of native 

grassland and forest of urban-influenced and rural routes in a hardwood forest-

tallgrass prairie ecosystem in northern Oklahoma for 1966, 1973, 1980, and 1990. 

Index Year %Change 

1966 1973 1980 1990 

Urban-influenced (Collinsville) 

Native grassland 

Mean patch size (ha) 15.24 15.37 12.52 15.25 + 0.1 

Fractal dimension 1.25 1.27 1.26 1.25 0.0 

Forest 

Mean patch size (ha) 2.72 1.75 1.69 2.01 -26.0 

Fractal dimension 1.36 1.39 1.36 1.35 - 0.7 

Rural (Bartlesville) 

Native grassland 

Mean patch size (ha) 11.83 9.81 12.81 18.55 + 56.9 

Fractal dimension 1.35 1.29 1.35 1.41 + 4.4 

Forest 

Mean patch size (ha) 3.99 6.21 4.43 5.47 + 37.0 

Fractal dimension 1.25 1.24 1.24 1.31 +4.8 
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Table 5. Percentage of native grassland and forest on a relative basis adjacent to 

human impact areas for the urban-influenced and rural routes for 4 separate years. 

Cover type Year 

1966 1973 1980 1990 

Urban-influenced (Collinsville) 

Native grassland 25 28 50 48 

Deciduous forest 13 7 35 38 

Rural (Bartlesville) 

Native grassland 36 34 44 47 

Deciduous forest 40 46 32 47 

26 



Fig. 1. The 4 U.S. Fish and Wildlife Service Breeding Bird Survey routes located in 

northern Oklahoma used for the study area. 
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Fig. 2. Temporal changes in bare ground (BG), developed area (DEV), water, roads, 

cropland (CROP), pasture land and hay meadows (PLHM), brush-treated land 

(BTL), deciduous forest (FOREST), and native grassland (GRASS) of the mean of 

four 25 mile transects in a hardwood forest-tallgrass prairie ecosystem in Northern 

Oklahoma for 1966, 1973, 1980, and 1990. 
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Fig. 3. Temporal changes in bare ground (BG), developed area (DEV), brush-treated 

land (BTL), water, roads, crop!and (CROP), deciduous forest (FOREST), pasture 

land and hay meadows (PLHM), and native grassland (GRASS) in the urban­

jnfluenced route (Collinsville) for 1966, 1973, 1980, and 1990. 
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Fig. 4. Temporal changes in bare ground (BG), developed area (DEV), cropland 

(CROP), water, pasture land and hay meadows (PLHM), roads, brush-treated land 

(BTL), deciduous forest (FOREST), and native grassland (GRASS) in the rural route 

(Bartlesville) for 1966, 1973, 1980, and 1990. 
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CHAPTER Ill 

EFFECTS OF LAND USE CHANGE ON BREEDING BIRD COMMUNITY STRUCTURE 

IN A FOREST-GRASSLAND ECOTONE 

Abstract: We identified land uses, vegetation types, and landscape patterns associated 

with avian community diversity in a rural and urban-influenced landscape. We obtained 

long-term (24 years) changes in biological diversity of game bird and songbird 

community structure through records from the North American Breeding Bird Survey. 

We obtained historical and present land use, vegetation cover types, and landscape 

pattern of both landscapes from high-resolution aerial photography. We found that 

certain aspects of avian community structure are a function of the complex interaction of 

land use, vegetation cover type, and landscape pattern. Avian community structure is 

explained by different sets of environmental variables for the 2 landscapes. Changes in 

vegetation cover type altered avian community structure by decreasing some forest 

associated species in both landscapes relative to prairie and generalist species in the 

rural and urban-influenced landscapes, respectively. 
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Land use changes often reduce ecosystem diversity on a regional scale due to 

the replacement of natural vegetation with managed systems of altered structure (Davis 

and Glick 1978, Krummel et al. 1987, McNeely et al. 1990). These anthropogenic 

changes have caused concern about preserving and managing biological diversity 

(Grove and Hohmann 1992, Urban et al. 1992, West 1993). Management of avian 

diversity in urban environments has become increasingly important because of 

increasing urbanization, growth in non-'consumptive uses, and economic returns of 

urban wildlife (Gill and Bonnett 1973, DeGraaf and Payne 1975, Smith 1975, George 

1982). Although the effects of urbanization on many wildlife species are well known, the 

dynamics of heterogeneous environments, such as the wildland to suburban transition, 

have been largely ignored by ecology. Urban sprawl into rural landscapes of the Great 

Plains results in altered land ownership patterns and management practices that 

compound changes in land use, resulting in contrasting vegetation cover types and 

landscape structure between rural and urban-influenced landscapes (Boren 1995). As 

the human population continues to expand, more emphasis will be placed on 

maintaining avian biodiversity in order to protect desirable species (Rodiek 1991 ). 

However, few studies have compared the avifauna and vegetation of urban areas with 

the outlying natural areas (Beissinger and Osborne 1982). 

Noss (1983) suggested that birds are useful as ecological indicators of 

biodiversity. Avian species are excellent candidates for scientific investigation at the 

landscape scale since they are habitat-specific. Robinson and Holmes (1984) and 

Rotenberry (1985) demonstrated that a strong association between individual bird 

species and vegetation cover type exists in grassland communities at the local 

population level. However, habitat selection by birds may be more a function of 

vegetation structure than floristic composition at the landscape level (Engstrom and 
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James 1981, Cody 1985, DeGraaf 1991). The relationship between vegetation cover 

types, habitat structure, and bird species composition is useful for examining the effects 

of land use on breeding birds at both stand and landscape scales and must be 

addressed when assessing habitat quality (DeGraaf 1991, Scott et al. 1993). However, 

most population-surveys, including both species richness and evenness, on non-game 

and many game species have been at spatial scales of approximately 40 ha in areas 

representing a single plant community (Urban and Shugart 1984). Therefore, habitat 

management to maintain high historical diversity of avian species is dependent on the 

knowledge of changes that can or will occur in a given landscape because the 

landscape is a mosaic of stands and local ecosystems (DeGraaf 1991 ). 

Implications of urbanization on avian diversity and density in the hardwood 

forest-tallgrass prairie ecotone must largely be extrapolated from previous studies 

conducted in contiguous forests (Johnson and Temple 1986). However, native birds in 

North America's prairies have undergone more widespread declines over the past 25 

years than any other U.S. bird group which warrants the increasing concern for the 

conservation of these birds (Knopf 1994). Therefore, we investigated the complex 

relationships between urban sprawl and changes in land use, vegetation cover types, 

and landscape structure on avian community structure. Our premise was that avian 

community structure differed between a rural and urban-influenced landscape in a 

hardwood forest-tallgrass prairie ecotone. Based on this premise, we hypothesized that 

1) avian community in the urban-influenced and rural landscapes differed in 1966 and 

diverged over time as the urban-influenced landscape became more urbanized; and, 2) 

different landscape cover types, in part reflecting human activities, between the 

landscapes influenced avian community structure. 
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STUDY AREA 

Our study was centered around suburban Tulsa, Oklahoma, and included 

surrounding wildlands in northeastern Osage and southern Washington counties. The 

selection of the study area was based on areas with a suburban-wildland transition and 

areas in which biological diversity of bird species were available. The study area 

included 2 U.S. Fish and Wildlife Service Breeding Bird Survey (BBS) routes: 024 

(Collinsville) and 026 (Bartlesville). Legal description of these survey routes are 

provided by Baumgartner and Baumgartner (1992). 

The BBS routes lie on an ecotonal area between the Cherokee Prairie grassland 

formation and oak-hickory savanna of the Cross Timbers (Bruner 1931, Soil 

Conservation Service 1981). The Cherokee Prairie of Oklahoma extends as a long, 

narrow strip, 240 km southward from the Kansas state line with a width ranging from 48 

to 96 km throughout most of its length. The area supports grasses, forbs, and legumes 

better than forests because of climate and underlying geology (Harlan 1957). The 

Cross Timbers of Oklahoma lie west of the Cherokee Prairie and the Lower Arkansas 

Valley, extending 288 km southward from Kansas and approximately 80 km wide. The 

region is a transitional oak forest with interspersed prairie (Bruner 1931, Gray and 

Galloway 1959). 

Survey routes also varied in their proximity from Tulsa, a major metropolitan area 

in northern Oklahoma with a estimated population of 361,628 (U.S. Department of 

Commerce 1990). The Collinsville route is 24 km from Tulsa, in Washington County and 

the Bartlesville route is 74 km from Tulsa, in Osage County. A 50% increase in human 

use areas was observed in the Collinsville route while a 4% decrease was observed in 

the Bartlesville route between 1966 and 1990 (Boren 1995). Human population density 

of Washington and Osage County in 1990 was 3340 km-2 and 520 km-2, respectively. 
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We considered the Collinsville route to be subjected to more urban influence than the 

Bartlesville route. Thus, we viewed the Collinsville route as an intensively managed 

landscape and Bartlesville route as an extensively managed landscape, and from this 

point forward, the 2 landscapes will be discussed as urban-influenced or rural. 

METHODS 

Bird Surveys and Database Construction 

We utilized BBS routes from the U.S. Fish and Wildlife Service to obtain our 

avian diversity data. The BBS data set is the only data set that indexes the population 

status of many species of birds over a large geographical area and time (Bystrak 1981, 

Geissler and Noon 1981). Although a roadside count misses some species and is 

limited by road placement, the results are considered to be fairly reliable indexes for a 

prairie-woodland ecosystem (Baumgartner and Baumgartner 1992). 

We classified avian species as neotropical migrants, temperate migrants, and 

residents, and grouped species into 5 designations of habitat occurrence: forest, forest 

edge and shrubland, prairie, wetland, and developed areas. We further grouped 

species into foraging zones: aerial (open zones), ground and shrub (foliage O - 3 m), 

midstory (foliage 3 - 10 m), canopy (foliage > 10 m), bole (trunks and limbs), and water. 

Nesting zones included ground, shrub (0 - 3 m), midstory (3 - 10 m), canopy (> 10 m), 

cavity, and other (variable heights and substrates). 

Bird abundances, available from 1967 to 1991, were segregated around 4 years 

(1966, 1973, 1980, and 1990) for which landscape cover type and structure data were 

documented previously for both landscapes (Boren 1995). Thus, breeding bird data 

from 1967 to 1970 corresponded to the 1966 landscape data, BBS data from 1971 to 

1976 corresponded to the 1973 landscape data, BBS data from 1977 to 1984 

corresponded to the 1980 landscape data, and BBS data from 1985 to 1991 
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corresponded to the 1990 landscape data. Relative abundance was then calculated for 

each of the 4 time periods by averaging relative abundance for the 4 years. Landscape 

data included land use and vegetation cover types (Table 1) and landscape structure 

measures included mean patch size, fractal dimension, landscape richness, Shannon 

diversity, dominance, contagion, and angular second moment (Boren 1995). 

Data Analysis 

Avian Community Change.--We performed detrended correspondence analysis 

(DCA) with the program CANOCO (ter Braak 1988) to determine if avian community 

structure differed between landscapes and to document shifts in avian community 

structure over time by using year as the passive environmental variable. Detrended 

correspondence analysis is an indirect gradient analysis in which samples (species 

abundances) are arranged according to species composition alone. The important 

environmental gradients are indirectly inferred from the trends in species composition. 

The first 2 axes of the DCA ordination were selected as the main ordination framework 

because higher eigenvalues iridicate more importance in explaining avian community 

variability (Table 2). Detrended correspondence analysis has the advantage of 

producing axes that correspond to actual ecological distances, as defined by the 

abundance of species, and are not forced to be equal in length (Malanson and Trabaud 

1987). We plotted the centroids for avian community structure for individual years in 

DCA space as points. We used these points to indicate trajectories through time in the 

avian space defined by the ordination axes (Whisenant and Wagstaff 1991 ). 

We used species scores generated by DCA to determine the avian species 

responsible for temporal shifts in avian community structure. Visual observation of axis 

1 and 2 of the ordination diagram indicated bird species (with overall abundances 

greater than 3) most responsible for temporal change in avian community composition. 
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Therefore, DCA provided a multivariate approach to the identification of declining or 

increasing species within each landscape. 

Influence of Landscape Cover~ fil!.d. Structure.--We performed canonical 

correspondence analysis (CCA) with the program CANOCO (ter Braak 1988) to 

determine the influence of landscape cover type and structure on the breeding bird 

community for each landscape. Canonical correspondence analysis is an eigenvector 

ordination technique for multivariate direct gradient analysis (ter Braak 1986). This 

technique explains community variation by detecting patterns of variation in species 

abundance that can best be explained by a set of environmental variables (ter Braak 

1986). By applying CCA it is possible to identify important environmental variables that 

explained community structure with no .a priori knowledge about possible predictor 

variables (Saetersdal and Birks 1993). 

We related abundances of all bird species in urban-influenced and rural 

landscapes (100 and 86 bird species, respectively) to both landscape cover type and 

structure variables in separate CCA ordinations. We used forward selection and Monte 

Carlo permutation tests (.E < 0.05) to determine environmental variables that best 

explained variation in breeding bird abundances. We examined canonical coefficients 

and intraset correlations to evaluate relative contributions of environmental variables to 

the axes. We also used unrestricted Monte Carlo permutation tests to test statistical 

significance (.E < 0.05) of the first 2 ordination axes. Tests of significance in CCA do not 

depend on parametric distributional assumptions; therefore, we did not transform 

species and environmental variables (Palmer 1993). 

Canonical correspondence analysis biplots provided weighted least squares 

approximations of the weighted averages of species identified as causing shifts in 

community structure (from DCA) with respect to environmental variables (ter Braak 
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1986). We examined bird species relationships with a given environmental variable by 

continuing the environmental variable line through the origin in the biplot. A 

perpendicular line was then dropped from each bird species position to the variable of 

interest. Endpoints of the perpendicular line indicate relative positions of bird species 

distribution centers along the environmental variable. These endpoints indicate relative 

relationship of each species to a given variable (ter Braak 1986, 1987). 

We used CCA with year as the only environmental axis to plot species scores of 

the urban-influenced landscape against the rural landscape to document divergence of 

avian communities. If the avian communities of the 2 landscapes are diverging in 

opposite directions, a negative relationship should exist. In addition, we used CCA with 

landscape cover types and structure as covariables and year as environmental variables 

to measure residual variation. If changes occur over time, some other environmental 

variables not examined in our study are affecting avian community structure. 

RESULTS AND DISCUSSION 

Avian Community Change 

The trajectories of points over time (centroids of avian community structure) 

indicate that the avian community in the urban-influenced and rural landscapes diverged 

along axis 1 and declined along axis 2 (Fig. 1). In addition, the 2 landscapes differ from 

each other in species composition, even ignoring temporal change, which is not 

surprising considering differences in land use and vegetation cover types between 

landscapes. The urban-influenced landscape has more human-intensively managed 

land, such as cropland, pasture land, and hay meadows, compared to the rural 

landscape (Boren 1995). The trajectory of both communities progressively diverged 

over time, but divergence is greater within the rural avian community. Centroid values 

for the rural avian community between 1966 and 1990 changed by 0.42 and 0.20 SD 
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units for axis 1 and 2, respectively. This suggests avian community structure was 

strongly affected by aa temporal decrease in deciduous woodlands by prescribed burning 

and herbicide application to maintain tallgrass prairie in the rural landscape (Boren 

1995). Centroid values for the urban-influenced_ avian community between 1966 and 

1990 are only 0.20 and 0.20 SD units apart for axis 1 and 2, respectively. Species 

scores from CCA, with year as the only variable, of the urban-influenced landscape had 

a negative relationship with the species scores of the rural landscape. This confirms the 

DCA results that the avian communities are diverging in opposite directions over time 

(Fig. 2). 

Detrended correspondence analysis provides a scaling of axes in units of 

compositional turnover (SD units; Hill and Gauch 1980). This scaling provides a robust 

estimate of beta diversity (Okland et al. 1990) that reflects rate of change in community 

composition along a gradient (Wilson and Mohler 1983, Noss 1993, Samson and Knopf 

1993). Based on the small SD axis units, both avian communities exhibit low beta 

diversity with relatively small temporal movement along axis 1 (Fig. 1 ). Therefore, 

change or turnover in avian community species composition in rural and urban­

influenced landscapes appears to be relatively slow between 1966 and 1990. 

Although the avian community in urban-influenced and rural landscapes diverged 

over time, the great-tailed grackle (Quiscalus mexicanus) and rock dove (Columba livia) 

increased in both landscapes (Table 3). This suggests a temporal increase in generalist 

species by immigration from nearby source habitats. An aggressive trap and transplant 

program most likely accounted for the observed increase of wild turkey (Meleagris 

gallopavo) in both landscapes. We observed none of the 10 species endemic to 

grasslands (Knopf 1994) in our study area. However, grasshopper sparrow 

(Ammodramus savannarum) and dickcissel (Spiza americana), secondary species that 
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have exhibited significant declines in grasslands (Knopf 1994), increased in the rural 

landscape but remained relatively unchanged in the urban-influenced landscape. 

Grasshopper sparrow and dickcissel declines are localized to areas with inadequate 

breeding habitats (Knopf 1994). The grasshopper sparrow breeds in fields of several 

types but prefers vegetation approximately 30 cm tall (Hamel 1992). However, the 

grasshopper sparrow is sensitive to small changes in its habitat. When herbaceous 

material becomes too thick or trees encroach on prairies and abandoned fields, these 

habitats become unsuitable as breeding sites (Bull and Farrand 1988). The dickcissel 

also requires herbaceous cover (approximately 60 cm tall) for breeding (Hamel 1992). 

Therefore, prescribed burning and herbivory related to cattle grazing in the rural 

landscape seem to favor these species by maintaining breeding habitat. The eastern 

meadowlark (Sturnella magna) and lark sparrow (Calamospiza melanocorys), species of 

high concern, exhibited relatively little change in both landscapes. 

The yellow-breasted chat (lcteria virens), an edge species of high concern that 

requires dense thickets and brush for nesting habitat (Bull and Farrand 1988), declined 

in both landscapes. The conversion of deciduous forests to brush-treated lands in the 

rural landscape and to pasture land and hay meadows in the urban-influenced 

landscape from 1966 to 1990 (Boren 1995) may account for the decline of this species 

in both landscapes. The greater prairie chicken (Tympanuchus capido) declined only in 

the urban-influenced landscape where brush-treated land accounted for only 1 % of the 

total area (Boren 1995). This species nests in habitats of standing residual vegetation 

from a preceding growing season and is dependent upon stand rejuvenation by fire 

(Kirsch 1974), 

We observed a greater loss of neotropical migrants from the urban-influenced 

landscape compared to the rural landscape (33% and 3% respectively), which can be 

44 



attributed to differences in land use and associated management practices. The ratio of 

neotropical migrants to residenUtemperate migrants shifted from 1.2: 1 to 0. 75: 1 in the 

rural landscape while diverging from 1.2: 1 to 0.29: 1 in the urban-influenced landscape. 

Changes in neotropical migrant diversity and density by urban sprawl results from 

human-induced changes in vegetation composition (Joyce et al. 1990). However, 

recent scientific studies suggest the primary factors limiting neotropical migrants are 

related to fragmentation and edge effect as opposed to habitat loss (Hagan and 

Johnston 1992, Faaborg et al. 1993, Maurer and Heywood 1993, Thompson et al. 

1993). 

Landscape quality, especially with regard to landscape fragmentation and 

diversity, continued to erode between 1966 and 1990 in the urban-influenced landscape 

(Boren 1995), which may account for the observed loss of neotropical migrants from the 

urban-influenced landscape. Problems associated with habitat fragmentation include 

increased edge habitat, parasitism rates, predation rates, and isolation effects which 

generally have adverse effects on neotropical migrant species (Johnson and Temple 

1986, Faaborg et al. 1993). Our data also suggests the biological diversity and 

ecological integrity of the urban-influenced landscape is lower compared to the rural 

landscape. Neotropical migratory birds provide ideal indice~ of ecological integrity 

because they are highly sensitive to changes in landscapes that compromise the spatial 

continuity and integrity of natural ecosystems (Maurer 1993). However, indices of 

biological diversity must take into account the dynamic nature of ecosystems and 

include ecological processes occurring outside the area of interest (Landres 1992). 

Differences in avian nesting and foraging zones between landscapes can be 

attributed to differences in land use and associated management practices. Prescribed 

burning, herbicide application, and grazing management resulted in a 26% reduction of 
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deciduous woodland in the rural landscape (Boren 1995). Avian community in the rural 

landscapes shifted from tree nesting species (55% reduction) to ground and shrub 

nesters which supports our observed reduction of tree foraging to ground foraging 

species in the rural landscape. However, shifts in nesting and foraging zones are not as 

apparent in the urban-influenced landscape. In addition, changes in vegetation cover 

type altered avian community structure by decreasing some forest and edge species in 

both landscapes relative to prairie and generalist species in the rural and urban­

influenced landscapes, respectively (Table 3). Management practices associated with 

the rural landscape in this study appear to be more conducive to maintaining biodiversity 

of grassland species. However, community shift towards generalist species in the 

urban-influenced landscape suggest a continued increase in exotics and species 

beyond their historical range which pose a significant threat to the loss of native avian 

assemblages (Knopf 1986, Drake et al. 1989). 

Influence of Landscape Cover Type and Structure 

Landscape Cover ~--We expected a strong relationship between land cover 

types and the distribution of breeding birds (Avery 1989). Indeed, the CCA ordination 

explained approximately 43% of the variation associated with the relationship between 

the landscape cover types and both rural and urban-influenced avian data sets (Table 

4). The eigenvalues for axes 1 and 2 explained 71 and 78% of the cumulative variance 

of the bird species-landscape cover type relationship of the rural and urban-influenced 

data sets, respectively. All land use and vegetation cover types (Table 1) were included 

in forward selection analysis. Forward selection identified 5 land use and vegetation 

cover type variables (.E < 0.05) that explained 39% of variation in breeding bird 

abundances in the rural landscape including forest (17%), cropland (9%), water (5%), 

developed area (4%), brush-treated land (2%), and roads (2%). Forward selection also 
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identified 5 land use and vegetation cover type variables (.e < 0.05) that explained 38% 

of variation in breeding bird abundances in the urban-influenced landscape including 

forest (25%), cropland (4%), roads (4%), water (3%), and native grasslands (2%). Both 

axes were significant (.e < 0.01) for both landscapes according to Monte Carlo 

permutation tests. 

The relative importance of each environmental variable for predicting the 

community composition can be found through analysis of canonical coefficients and 

intraset correlations (ter Braak 1986). Canonical coefficients define the ordination axes 

as linear combinations of the environmental variables. lntraset correlations are the 

correlation coefficients between the variables and the axes (ter Braak 1986). Canonical 

coefficients describe the partial or residual variation and are essentially equivalent to 

regression coefficients. However, with intraset correlations other variables are assumed 

to covary with that one environmental variable in the particular way they do in the data 

set and thus should be used in a multivariate environment. The ordination diagram 

shows the relationships between the. avian community in terms of main axes of variation 

(Kalkhoven and Opdam 1984). 

The variables most correlated with axis 1, based on intraset correlations (Table 

5), of the rural landscape were forest and brush-treated land. Thus, axis 1 separates 

species that decreased and were dependent on deciduous woodland cover (i.e., black 

and white warbler (Mniotilta varia), pileated woodpecker (Dryocopus pileatus), summer 

tanager (Piranga rubra), and eastern tufted titmouse (Parus bicolor)) from species that 

increased and required more open canopy and fewer trees (e.g., barn swallow (Hirundo 

rustica), dickcissel, and grasshopper sparrow) (Fig. 3). 

The variables most correlated with axis 1 of the urban-influenced landscape 

were forest and native grassland (Table 5). Axis 1 separates species with affinities for 
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forest and shrubland (e.g., chipping sparrow (Spizella passerina}, Kentucky warbler 

(Oporornis formosus}, and northern parula warbler (Parula americana)) from species 

preferring open grasslands (e.g., greater prairie chicken) (Fig. 4). The variables most 

correlated with axis 2 of the urban-influenced landscape were roads and grassland. 

Axis 2 separates generalist species that increased and are commonly associated with 

human development (e.g., American robin (Turdus migratorius}, house sparrow (Passer 

domesticus}, purple martin (Progne subis), rock dove, and European starling (Sturnus 

vulgaris)) from prairie species which declined and are associated with less human 

disturbance (i.e., greater prairie chicken and cattle egret (Bubulcus ibis)) (Fig. 4). 

Different landscape cover types between the landscapes influenced avian 

community structure in this study. Avian community structure was primarily related to 

deciduous forest and brush-treated land in the rural landscape compared to deciduous 

forest, native grassland, and roads in the urban-influenced landscape. This pattern 

suggests that continued urban sprawl into rural landscapes may result in increased 

generalist species as the result of increased roads and decreased native grassland. 

However, inferences on the influence of urban sprawl on rural avifauna must be made 

with caution. High mobility of birds makes them less dependent on local conditions than 

sedentary species and avian community structure may be influenced by surrounding 

bird communities (Jarvinen and Vaisanen 1980). 

Landscape Structure.--The CCA ordination explained approximately 18 and 21% 

of the variation associated with the relationship between the landscape structure and the 

rural and urban-influenced avian data sets respectively (Table 4). Because landscape 

cover types explained more than twice the variation of the avian data set compared to 

the landscape structure variables, landscape cover type ordinations better explain 

temporal changes in avian community structure in this study. At the landscape scale, 
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avian community composition is a function of vegetation structure (physiognomy) while 

at the within-stand level particular plant taxonomic composition (floristics) is more 

important than structure in determining avian community composition (Rotenberry 

1985}. However, most biodiversity studies have focused on forests or woodland areas, 

but little research has been conducted in the tallgrass prairie ecosystem. Our results 

support Roth (1976) and Wiens (1974) comments that generalizations relating 

vegetation structure and complexity to avian community structure were unrealistic for 

grasslands. While brush and forests vary broadly in vegetation structure and 

composition, which correlate with avian diversity, the degree of variability of 

heterogeneity among grasslands at the landscape scale is so subtle that its affect on 

avian diversity can be obscured (Knick and Rotenberry 1995) as observed by the 

inability of our landscape structure variables to explain temporal changes in avian 

community structure. 

MANAGEMENT IMPLICATIONS 

Changes in land use and vegetation cover types altered avian community 

structure in this study. Avian community in the urban-influenced (intensively managed) 

and rural (extensively managed) landscapes diverged over time because of different 

land use and management practices associated with each landscape. Temporal shifts 

in avian community structure are reflected in altered avian biodiversity with increasing 

prairie and generalist associated species in the rural and urban-influenced landscapes, 

respectively. Management practices to preserve prairie birds and maintain biological 

diversity of prairies should encourage increases in the abundance of native plant 

communities. Maintenance of the tallgrass prairie by prescribed burning, judicious 

herbicide use for control of exotic plants, and grazing management appear generally 

conducive to this objective. However, land uses and management practices associated 
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with areas surrounding urban centers pose a threat to preserving the integrity of native 

plant communities. Although different variables explained avian community structure in 

the 2 landscapes, our results suggest management practices that alter landscape 

.structure have Jess impact on community structure than changes in vegetation cover 

types. 

Our data suggest biologists and conservationists should focus more attention on 

biological diversity of urban and suburban-influenced ecosystems by maintaining native 

plant communities. In 1989, 74% of the United States population resided in urban areas 

and that number is expected to increase to >80% by the year 2025 (Haub and Kent 

1989). The growth of metropolitan areas in the United States indicates knowledge of 

ecosystems under the influence of urbanization can only become increasingly important 

(McDonnell and Pickett 1990). Our results suggest in the absence of societal pressure 

to halt urban sprawl into rural landscapes, ecosystem integrity will most likely continue to 

degrade. This further necessitates the need to understand ecological systems along 

urban-rural gradients to enable biologists to make ecologically sound management of 

human-dominated ecosystems. 
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Table 1. Classification system usedto map land use and vegetation cover types 

(adapted from Starns et al. 1983). 

Land use and cover type 

Developed area 

Roads 

Water 

Cropland 

Description 

Land occupied by residential, industrial, or other 

human structures and non-agricultural activities. 

Also includes transportation and utility facilities. 

Black top, gravel, dirt roads and driveways 

Ponds, lakes, streams, and rivers 

Land cultivated for row crops and cereal grains but 

excluding grazing lands 

Pasture land and hay meadows Includes pasture land (seeded, grasslands used for 

Native grassland 

Scrub forest 

Brush-treated land 

Bare ground 

grazing by cattle, sheep, goats, and horses) and 

hay meadows 

Native grasslands with less than 10% cover by 

shrubs or trees 

Vegetation dominated (>10%) by cover of broadleaf 

hardwoods. Mostly post oak (Quercus stellata) and 

blackjack oak (Q. marilandica) 

Native vegetation subjected to herbicides, fire, or 

chaining to control woody brush encroachment 

Land with less than 5% vegetative cover 
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Table 2. Eigenvalues and cumulative variance(%) of species data for the first 4 axes of detrended 

correspondence analysis on species data, with year as a passive environmental variable, in a 

rural (extensively managed) and urban-influenced (intensively managed) landscape. 

Rural 

Eigenvalue 

Cumulative variance of species data(%) 

Urban-influenced 

Eigenvalue 

Cumulative variance of species data(%) 

Axis 1 

0.30 

11.1 

0.38 

12.9 
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Axis 2 Axis 3 Axis 4 

0.22 

18.9 

0.18 

18.9 

0.12 

23.5 

0.12 

23.2 

0.09 

26.9 

0.09 

26.4 

Total 

inertia 

2.73 

2.91 



Table 3. Avian species responsible for shifts in avian community structure in a rural (extensively managed) and urban-influenced (extensively 

managed) landscape over a 24-year period, 1966 to 1990. Minor species (those that occurred three or less times) were omitted. 

Species Code Scientific name Type a Habitat6 Concernc Foraginga Nestinge 

Rural landscape 

Loss 

Yellow-breasted chat YBCH lcteria virens Neotrop Edge High Ground Shrub 

Blue-gray gnatchatcher BGGN Polioptila caerulea Neotrop Edge Moderate Canopy Mid story 

Greater roadrunner GRRO Geococcyx californianu Resident Prairie High Ground Shrub 

Bewick's wren BEWR Thryomanes bewickii Temp Edge High Ground Cavity 

Black and white warbler BAWW Mniotilta varia Neotrop Forest Moderate Mid story Ground 

Field sparrow FISP Spizella pusilla Temp Edge High Ground Ground 

Vt 
Painted bunting PABU Passerina ciris Neotrop Edge High Ground Shrub 

'° Pileated woodpecker PIWO Dryocopus pileatus Resident Forest Moderate Bole Cavity 

Summer tanager SUTA Piranga rubra Neotrop Forest High Mid story Mid story 

Eastern tufted titmouse ETTI Parus bicolor Resident Forest High Mid story Cavity 

White-breasted nuthatch WBNU Sitta carolinensis Resident Edge Moderate Bole Cavity 

Gain 

Dickcissel DICK Spiza americana Neotrop Prairie High Ground Ground 

Wild turkey WITU Meleagris gallopavo Resident Edge High Ground Ground 

Barn swallow BARS Hirundo rustica Neotrop Develop Moderate Aerial Other 

Grasshopper sparrow GRSP Ammodramus savannarum Neotrop Prairie High Ground Ground 

Great-tailed grackle GTGR Quiscalus mexicanus Resident Edge Moderate Ground Shrub 

Little blue heron LBHE Egretta caerulea Temp Water Moderate Water Shrub 

Rock dove RODO Columba livia Resident Develop Low Ground Other 



Table 3. Continued. 

Species Code Scientific name Type a Habitat6 Concernc Foraginga Nesting8 

Urban-influenced landscape 

Loss 

Black-billed cucko BBCU Coccyzus erythropthaim Neotrop Edge High Mid story Shrub 

Cattle egret CAEG Bubulcus ibis Resident Prairie Low Ground Shrub 

Yellow-breasted chat YBCH lcteria virens Neotrop Edge High Ground Shrub 

Chipping sparrow CHSP Spizella passerina Neotrop Forest Moderate Ground Shrub 

Common yellowthroat COYE Geothlypis trichas Neotrop Edge Moderate Ground Shrub 

Great-horned Owl GHOW Bubo virginianus Resident Edge Moderate Ground Cavity 

Greater prairie chicken GPCH Tympanuchus capido Resident Prairie High Ground Ground 

Kentucky warbler KEWA Oporornis formosus Neotrop Forest High Ground Ground 
O'I 
0 

Northern-parula warbler NOPA Parula americana Neotrop Forest High Mid story Canopy 

Red-shouldered hawk RSHA ~lineatus Temp Edge Moderate Ground Canopy 

Yellow-bellied sapsucker YBSA Sphyrapicus SJ2,. Temp Edge High Bole Cavity 

Gain 

American robin AMRO Turdus migratorius Temp Develop Low Ground Shrub 

Gray catbird GRCA Dumetella carolinensis Neotrop Edge High Ground Shrub 

Common grackle COGR Quiscalus guiscula Resident Edge Low Ground Midstory 

Great-tailed grackle GTGR Quiscalus mexicanus Resident Edge Moderate Ground Shrub 

House sparrow HOSP Passer domesticus Resident Develop Low Ground Cavity 

Purple martin PUMA Progne subis Neotrop Develop Moderate Aerial Cavity 

Rock dove RODO Columba livia Resident Develop Low Ground Other 

European starling EUST Sturnus vulgaris Resident Develop Low Ground Cavity 



°' 

Table 3. Continued. 

Species Code Scientific name Type2 Habitat~Concernc Foraging0 Nestinge 

Wild turkey WITU Meleaaris gallopavo Resident Edge High Ground Ground 

2 Species classified as neotropical migrants (Neotrop), temperate migrants (Temp), and residents (Resident). 

bSpecies grouped into designations of habitat occurrence: forest (Forest), forest edge and shrubland (Edge), prairie (Prairie}, and developed 

areas (Developed). 

cSpecies grouped into population trends: low concern (Low}, moderate concern (Moderate}, and high concern (High). 

dSpecies grouped into foraging zones: open zones (Aerial), foliage O - 3 m (Ground}, foliage 3 - 10 m (Midstory}, and trunks and limbs (Bole). 

eSpecies grouped into nesting zones: ground (Ground), 0 - 3 m (Shrub), 3 - 10 m (Midstory}, > 10 m (Canopy}, cavity (Cavity), and variable 

heights and substrates (Other). 



Table 4. Eigenvalues, correlation coefficients, and cumulative variances(%) between 

species and environmental axes for stepwise canonical correspondence analyses 

carried out on landscape cover type and landscape structure variables in a rural 

(extensively managed) and urban-influenced (intensively managed) landscape. 

Rural 

Eigenvalue8 

Species-environment correlationb 

Cumulative variance explained (%t 

Sum of all canonical eigenvaluesd 

Total inertia 

Urban-influenced 

Eigenvalue8 

Species-environment correlationb 

Cumulative variance explained (%)c 

Sum of all canonical eigenvaluesd 

Total inertia 

Landscape cover type 

Axis 1 Axis 2 

0.18 

0.80 

43.1 

0.43 

2.74 

0.28 

0.88 

65.1 

0.44 

2.91 

0.12 

0.74 

70.6 

0.05 

0.60 

77.6 

Landscape structure 

Axis 1 

0.08 

0.55 

43.4 

0.18 

2.74 

0.09 

0.59 

41.5 

0.21 

2.91 

Axis 2 

0.05 

0.55 

68.8 

0.06 

0.52 

68.2 

8 Eigenvalues (A) measure the importance of the ordination axis. 

bSpecies-environment correlation (r) is a measure of how well the extracted variation 

in community composition can be explained by the environmental variables. 

ccumulative percentage variance of species-environment relation. 

dSum of all canonical eigenvalues represents the total amount of extracted variation 

accounted for by the CCA ordination. 
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Table 5. Canonical coefficients and intraset correlations for variables of the stepwise canonical 

correspondence analysis carried out on landscape cover type and structure in a rural ( extensively 

managed) and urban-influenced (intensively managed) landscape. 

Canonical coefficients lntraset correlations 

Axis 1 Axis2 Axis 1 Axis2 

Rural 

Landscape cover types 

Developed area 0.1886 0.3512 0.3773 0.2696 

Cropland 0.2381 0.5417 0.4600 0.5967 

Pasture land/hay meadows 0.0137 0.0671 0.2043 0.3519 

Native grassland -0.3543 0.1984 -0.4498 0.3153 

Scrub forest 0.4993 -0.4171 0.8592 -0.4816 

Brush-treated land -0.3345 0.0373 -0.4836 -0.1067 

Roads -0.0772 0.1264 -0.2431 0.2208 

Water 0.1993 0.4134 0.2424 0.6642 

Bare ground -0.0204 0.0211 0.0368 -0.1659 

Landscape structure 

Mean patch size 0.2962 -0.1888 0.6066 -0.3657 

Fractal dimension 0.3953 0.3719 0.1616 0.5995 

Richness -0.6962 3.8510 -0.6140 0.5035 

Shannon diversity -0.9746 -4.4340 -0.5840 0.2190 

Dominance -1.2727 -4.0655 0.2108 0.0841 

Contagion 1.3820 -0.4068 0.2636 0.4771 

Angular second moment -0.4582 1.0816 0.7338 0.2551 
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Table 5. Continued. 

Canonical coefficients I ntraset correlations 

Axis 1 Axis2 Axis 1 Axis2 

Urban-influenced 

Landscape cover types 

Developed area -0.0909 0.2804 -0.1122 0.4117 

Cropland -0.1380 0.2842 0.2237 0.2307 

Pasture land/hay meadows -0.4134 0.4857 -0.2183 0.4710 

Native grassland -0.6146 -0.0212 -0.4644 -0.5497 

Scrub forest 0.5798 0.2718 0.9362 0.0521 

Brush-treated land 0.0144 -0.0606 0.1327 -0.1508 

Roads -0.0822 0.6983 -0.2805 0.7025 

Water 0.2035 0.0395 0.3795 -0.2206 

Bare ground -0.0030 -0.3156 0.0046 -0.2329 

Landscape structure 

Mean patch size 0.5554 0.4059 0.8089 0.3836 

Fractal dimension -0.0703 -0.3182 -0.3795 -0.2690 

Richness -0.4051 2.1382 -0.4256 -0.4442 

Shannon diversity -0.1789 -0.6500 -0.7334 -0.1809 

Dominance 0.0057 0.1669 0.6437 -0.1278 

Contagion 0.8441 -2.8708 0.6586 -0.4575 

Angular second moment -0.4587 2.3910 0.7392 0.1250 
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Fig. 1. Detrended correspondence analysis (DCA) ordination of centroids for avian 

community structure on the rural (extensively managed) and urban-influenced 

(intensively managed) landscapes. Lines indicate trajectories of avian community 

change between 1966 and 1990 defined by the ordination axes. 
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Fig. 2. Species scores from canonical correspondence analysis (CCA), with year as the 

only variable, of the urban-influenced landscape against the plotted species scores of 

the rural landscape (r = 0.13, .e < 0.05). 
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Fig. 3. Distribution of 18 species of birds in the rural (extensively managed) landscape. 

Canonical correspondence analysis (CCA) ordination diagram with birds (.&.) and 

environmental variables (vegetation cover types; arrows). The bird species are: YBCH 

= yellow-breasted chat, BGGN = blue-gray gnatchatcher, GRRO = greater roadrunner, 

BEWR = bewick's wren, BAWW = black and white warbler, FISP = field sparrow, PABU 

= painted bunting, PIWO = pileated woodpecker, SUTA = summer tanager, ETTI= 

eastern tufted titmouse, WBNU = white-breasted nuthatch, DICK= dickcissel, WITU = 

wild turkey, BARS = barn swallow, GRSP = grasshopper sparrow, GTGR = great-tailed 

grackle, LBHE = little blue heron, and RODO = rock dove. Environmental variables are: 

DEV = developed area, ROAD = road, WATER = water, CROP = cropland, PLHM = 

pasture land and hay meadows, GRASS = native grassland, FOREST = scrub forest, 

and BTL = brush-treat land. 
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Fig. 4. Distribution of 20 species of birds in the urban-influenced (intensively managed) 

landscape. Canonical correspondence analysis (CCA) ordination diagram with birds (.6.) 

and environmental variables (vegetation cover types; arrows). The bird species are: 

BBCU = black-billed cucko, CAEG = cattle egret, YBCH = yellow-breasted chat, CHSP = 

chipping sparrow, COYE = common yellowthroat, GHOW = great-horned owl, GPCH = 

greater prairie chicken, KEWA = Kentucky warbler, NOPA = northern-parula warbler, 

RSHA = red-shouldered hawk, YBSA = yellow-bellied sapsucker, AMRO = American 

robin, GRCA = gray catbird, COGR = common grackle, GTGR = great-tailed grackle, 

HOSP = house sparrow, PUMA = purple martin, RODO = rock dove, EUST = European 

starling, and WITU = wild turkey. Environmental variables are: DEV = developed area, 

ROAD = road, WATER = water, CROP = cropland, PLHM = pasture land and hay 

meadows, GRASS = native grassland, FOREST = scrub forest, and BTL = brush­

treated land. 
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CHAPTER IV 

VEGETATION COVER TYPE AND AVIAN SPECIES CHANGES ON LANDSCAPES 

WITHIN A WILDLAND-URBAN INTERFACE 

Summary 

1. Probability of occurrence of selected avian species were modeled as a function of 

modeled changes in landscape cover types in two landscapes to test whether 1) exotic 

and generalist avian species will continue to increase in a urban-influenced landscape; 

and, 2) native grassland avian species will continue to increase in a rural landscape. 

2. Landscape cover types were modeled with logistic regression based on temporal 

changes between 1966 and 1990. Demographic-economic regression models also 

were used to predict landscape cover types in year 2014 based on selected 

independent variables. 

3. Logistic regressions were used to model the probability of occurrence of selected 

avian species based on predicted area of landscape cover types in year 2014. 

4. Model output of vegetation cover types suggests the continued use of intensive 

management practices in the urban-influenced landscape while extensive management 

practices will maintain the native vegetation component in the rural landscape. 

5. Our models suggest continued intensive agriculture practices associated with urban­

influenced landscapes will adversely affect native grassland bird species to a greater 

magnitude than extensive ranching practices in the rural landscapes. 
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Introduction 

Throughout most of the world human activities have become the primary influence on 

ecosystems. In 1989, 74% of the United States population resided in urban areas and 

that number is expected to increase to >80% by the year 2025 (Haub & Kent 1989). 

This growth of metropolitan areas in the United States comes at the expense of 

continued urban sprawl into rural landscapes (McDonnell & Pickett 1990). Land use 

changes associated with urban sprawl often reduce ecosystem diversity on a regional 

scale because of the replacement of natural vegetation with intensively managed 

systems of altered structure and composition (Davis & Glick 1978; Krummel et al. 1987; 

McNeely et al. 1990). Increased agriculture intensification into rural landscapes of the 

eastern Great Plains results in altered land ownership patterns and management 

practices resulting in contrasting vegetation cover types between rural and urban­

influenced landscapes (Boren 1995). Intensive management practices associated with 

the urban influenced landscapes results in cropland, introduced pasture land, and hay 

meadows as the dominant cover types. However, extensive management practices 

associated with rural landscapes results in native vegetation as the dominant cover 

type. 

In North America's native grasslands, which are used mostly in extensive 

agriculture by grazing livestock, native endemic species have declined in numbers while 

exotic species have increased simultaneously (Askins 1993; Knopf 1994). In fact, native 

birds in North America's grasslands have undergone more widespread declines over the 

past 25 years than any other U.S. bird group, which warrants the increasing concern for 

the conservation of these birds (Knopf 1994). Our results from a study conducted in a 

tallgrass prairie-deciduous forest ecotone indicate intensive agriculture practices 

74 



preceding urban sprawl are associated with increasing exotic and generalist species at 

the expense of endemic species {Boren 1995). 

Conservation of native grassland species may be improved by predictions of 

future land cover type changes and associated avian composition. Predictions of future 

landscape cover types are an important component to understanding the ecological 

dynamics necessary to integrate the often conflicting demands of wildlife habitat, 

agriculture, and urban development. Multivariate analysis techniques in combination 

with logistic regression can provide important insight to landscape-bird community 

relationships {Braithwaite ~ al. 1989; Eyre et al. 1992; Osborne & Tigar 1992). 

Predictive statistical models for avian composition under different landscape 

management scenarios also will better enable biologists to assess the effects of 

continued land use change on avian diversity. 

Our objective was to model the probability of occurrence of selected avian 

species as a function of modeled changes in landscape cover types in two landscapes 

with contrasting anthropogenic influences. Our premise was that intensified 

management practices in an urban-influenced landscape will continue to result in 

increased intensively managed landscapes at the expense of extensively managed 

natural landscapes. In contrast, continued extensive management practices associated 

with a rural landscape will result in increased landscape coverage by native vegetation. 

Based on this premise, we hypothesized that 1) exotic and generalist avian species will 

continue to increase in the urban-influenced landscape; and, 2) native grassland avian 

species will continue to increase in the rural landscape. 
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Study area 

Our study was centered around suburban Tulsa, Oklahoma, and included surrounding 

wildlands in northeastern Osage and southern Washington counties. The selection of 

the study area was based on areas with a suburban-wildland transition and areas in 

which biological diversity of bird species, including species richness and evenness, were 

available. The study area included two U.S. Fish and Wildlife Service Breeding Bird 

Survey (BBS) routes: 024 (Collinsville) and 026 (Bartlesville). Legal description of these 

-survey routes are provided byBaumgartner & Baumgartner (1992). 

The BBS routes lie on an ecotonal area between the Cherokee Prairie grassland 

formation and oak-hickory savanna of the Cross Timbers (Bruner 1931 ; Soil 

Conservation Service 1981). The Cherokee Prairie of Oklahoma extends as a long, 

narrow strip, 240 km southward from the Kansas state line with a width ranging from 48 

to 96 km throughout most of its length. The area is better adapted to support grasses, 

forbs, and legumes than forests because of climate and underlying geology (Harlan 

1957). The Cross Timbers of Oklahoma lie west of the Cherokee Prairie and the Lower 

Arkansas Valley, extending 288 km southward from Kansas and approximately 80 km 

wide. The region is a transitional oak forest with interspersed prairie (Bruner 1931; Gray 

& Galloway 1959). 

Survey routes also varied in their proximity from Tulsa, a major metropolitan area 

in northern Oklahoma with a estimated population of 361,628 (U.S. Department of 

Commerce 1990). The Collinsville route is 24 km from Tulsa, in Washington County and 

the Bartlesville route is 74 km from Tulsa, in Osage County. A 50% increase in human 

use areas was observed in the Collinsville route while a 4% decrease was observed in 

the Bartlesville route between 1966 and 1990 (Boren 1995). Human population density 

of Washington and Osage County in 1990 was 3340 km-2 and 520 km-2, respectively. In 
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addition, land ownership size was typically smaller in the Collinsville route compared to 

the Bartlesville route. We considered the Collinsville route to be subjected to more 

urban influence than the Bartlesville route. Thus, we viewed the Collinsville route as an 

intensively managed landscape and Bartlesville route as an extensively managed 

landscape, and from this point forward, the two landscapes will be discussed as urban­

influenced or rural. 

Model construction 

BIRD SURVEYS AND DATABASE 

Our models were derived from bird abundance data from BBS routes conducted by the 

U.S. Fish and Wildlife Service. Each 40·2 km route is conducted on secondary roads 

and consists of 50 BBS stops 800 m apart (Bystrak 1981). The BBS data set is the only 

data set that indexes the population status of many species of birds over a large 

geographical area and time (Bystrak 1981; Geissler and Noon 1981). Although a 

roadside count misses some species and is limited by placement of roads, the results 

are believed to be a fairly reliable index for a prairie-woodland ecosystem (Baumgartner 

& Baumgartner 1992). 

Land use and vegetation cover types for 1966, 1973, 1980, and 1990 on both 

landscapes were examined using a Geographic Information System (GIS) (Boren 1995). 

Landscape cover types identified on each landscape included developed areas, roads, 

water, cropland, pasture land and hay meadows, native grassland, deciduous forest, 

brush-treated land, and bare ground (Table 1). 

Bird abundances, available from 1967 to 1991, were lumped around 4 years for 

which landscape cover type data were documented previously for both landscapes for 

detrended and canonical correspondence analysis (Boren 1995). Thus, breeding bird 
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data from 1967 to 1970 corresponded to the 1966 landscape data, BBS data from 1971 

to 1976 corresponded to the 1973 landscape data, BBS data from 1977 to 1984 

corresponded to the 1980 landscape data, and BBS data from 1985 to 1991 

corresponded to the 1990 landscape data. Relative abundance was then calculated for 

each of the four time periods by averaging relative abundance for the 4 years. 

AVIAN COMMUNITY STRUCTURE ANALYSIS 

Detrended correspondence analysis (DCA) was performed on the BBS data with 

CANOCO (ter Braak 1988) to determine if avian community structure differed between 

landscapes and to document shifts in avian community structure over time by using year 

as the passive environmental variable. We used species scores generated by DCA to 

determine the avian species responsible for temporal shifts in avian community 

structure. Therefore, DCA provided a multivariate approach identifying the species 

declining or increasing within each landscape which were modeled as a function of 

changes in landscape cover types. 

Canonical correspondence analysis (CCA) was performed with CANOCO (ter 

Braak 1988) to determine the influence of landscape cover type and landscape structure 

on the breeding bird community for each landscape. By applying CCA it is possible to 

identify the important environmental variables that explained community structure with 

no .a priori knowledge about the possible predictor variables (Saetersdal & Birks 1993). 

Further discussion on the DCA and CCA analysis is provided in Boren (1995). 

LANDSCAPE COVER TYPE MODELS 

Landscape cover types were modeled based on temporal changes between 1966 and 

1990. Logistic regression (PROC LOGISTIC; SAS 1988) was used for predicting 
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probability of landscape cover type occurrence on each BBS stop in the rural and urban­

influenced landscapes with year as the independent variable. Projected area of 

landscape cover types in year 2014 for each BBS stop was determined by multiplying 

the area of a BBS stop (50·2 ha) by the probability of occurrence. The models assume 

temporal changes in landscape cover types between 1966 and 1990 continue at the 

same rate into the future. 

Demographic-economic regression models also were used to predict the area 

(ha) of landscape cover types in year 2014 for both landscapes. These multiple 

regression models (PROC REG; SAS 1988) were based on selected independent 

variables predicted for year 2014. Independent variables included rural population 

density (number people/km\ 7-year cumulative oil price (U.S. $/barrel}, herbicide price 

($/ha), 5-year cumulative cattle price margin (difference between 202,5 kg buy and 

303,75 kg sell price of stocker cattle), average farm size (ha}, and number of farms per 

county. Only the models that were significant (.E < 0,05) were included in the analysis to 

predict the area (ha) of landscape cover types in year 2014. Area for each projected 

landscape cover type was adjusted to a per BBS stop basis. 

Each independent variable was predicted for year 2014 based on the literature 

and univariate regression. Predicted rural population density in year 2014 was 5-64 and 

15,49 people/km2 in Osage County (rural landscape) and Washington County (urban­

influenced landscape), respectively (Selland & Shahidullah 1988; Oklahoma Population 

Reports 1981). Rural was defined as having less than 2,500 people (U.S. Department 

of Commerce 1994). Seven-year cumulative oil price in year 2014 was based on two 

scenarios (Hawdon 1989). Scenario 1 assumes oil prices begin to rise when most of 

the excess productive capacity outside the Gulf producing region is eliminated. Until 

then, prices are assumed to be under constant downward pressure because of the 
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existence of significant excess oil production capacity. Scenario 2 assumes Gulf 

producers are unable to raise above prices in the 1990's or that market conditions are 

not conducive to real price increases. Technological innovations supporting scenario 2, 

such as new conventional and non-conventional (synthetic) supplies of oil, are available 

that would mitigate against a price increase. Seven-year cumulative oil price was 

predicted at 236-25 and 127-05 U.S. $/barrel for scenario 1 and 2, respectively. 

Predicted herbicide price in year 2014 was 284-38 U.S. $/ha based on regression (R2 = 

0·96, e = 0·024) from past prices (J.F. Stritzke, personal communication; Hammond et 

al. 1975; Stritzke 1981). Five-year cumulative cattle price margin was predicted at 

751-57 U.S. $/head based on regression (R2 = 0-68, e = 0-005) from past price margins 

(C.E. Ward, personal communication). Predicted average farm size in Washington 

County was 120 ha based on regression (ff = 0-58, e = 0-049) from past farm sizes 

(U.S. Department of Commerce 1966, 1977, 1984, 1994). Number of farms in 

Washington County was predicted at 640 farms based on regression (R2 = 0-83, e = 

0·042) from past farm numbers (U.S. Department of Commerce 1966, 1977, 1984, 

1994). A farm was defined as places that sold at least 1,000 U.S. dollars of agricultural 

products per year (U.S. Department of Commerce 1994). By definition, farms included 

agriculture land used for crops, introduced pasture, and livestock grazing. 

AVIAN SPECIES OCCURRENCE MODELS 

Bird species determined by DCA to be responsible for shifts in avian community 

structure between 1966 and 1990 were related to the area (ha) of landscape cover 

types by logistic regression (PROC LOGISTIC; SAS 1988). Logistic regression has the 

advantage of assuming that a species' occurrence relates to an environmental gradient 

in a logistic rather than a linear manner (Osborne & Tigar 1992). Logistic regression 
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models of the form loge[(p/1-p)]=b0+b1x1+b2x2 where Xn is a independent (predictor) 

variable and b0 and bn are parameters or regression coefficients (ter Braak & Looman 

1987), provide a means to predict probability of occurrence of species in relation to 

\ 

environmental variables (Heliovaara et al. 1991 ; Osborne & Tigar 1992). Presence and 

absence of the bird species were used as the dependent (response) variables. The 

independent variables, area of each landscape cover type, were tested (E < 0·05) as 

linear, quadratic, cubic, and quartic. 

We used logistic regressions to model the probability of occurrence of each bird 

species for each landscape separately based upon the area of each landscape cover 

type (Eyre et al. 1992; Osborne & Tiger 1992). Predicted area of landscape cover types 

in year 2014 was used as the independent variable to determine the probability of 

occurrence for each species on each BBS stop. The probability of occurrence of each 

bird species was determined by averaging the probability of occurrence of the 50 BBS 

stop locations for each landscape. Landscape cover types that could not be modeled 

were assumed to be the same area (ha) in 2014 as in 1990. Frequency of occurrence 

for each species in the 1990 BBS data for each landscape was determined for 

comparative purposes. 

Model output 

LANDSCAPE COVER TYPES 

Native grassland, deciduous woodland, brush-treated land, and cropland were modeled 

in the rural landscape; while native grassland, cropland, and pasture land and hay 

meadows were modeled in the urban-influenced landscape based on temporal changes 

in vegetation cover types between 1966 and 1990 (Table 2). Models for other 

landscape cover types were not statistically significant. Model output of vegetation 
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cover types suggests a continued use of intensive management practices in the urban­

influenced landscape while extensive management practices will maintain the native 

vegetation component in the rural landscape. Based on our model, cropland will 

decrease about 20% in both the rural and urban-influenced landscape between 1990 

and 2014. Reduction in cropland may result from continued decrease in cultivation of 

marginal lands (Sampson & Knopf 1994). However, pasture land and hay meadows will 

increase 17% in the urban-influenced landscape over the same time period (Table 3), 

suggesting continued increase in intensive management practices. 

Native grasslands were the dominant cover type for both landscapes in 1990 and 

2014 (Table 3). Based on our model, native grasslands will decrease 7% and 10% in 

the urban-influenced and rural landscapes between 1990 and 2014, respectively. 

However, bush treated land will increase 24% while relatively little change in deciduous 

woodlands will occur over the same time period in the rural landscape. This model 

suggests brush treatment efforts are for the maintenance of existing native grasslands 

rather than converting existing deciduous woodlands to grasslands. Maintenance of 

tallgrass prairie dominance in this region requires fire or herbicides to prevent 

encroachment of woody species (Bragg & Hulbert 1976; Knight, Briggs & Nellis 1994). 

Therefore, increasing use of extensive management practices to maintain the tallgrass 

prairie may account for the observed decline in native grasslands along the rural 

landscape. 

A variety of demographic-economic variables modeled influenced the vegetation 

composition of the landscapes (Table 3). Rural population density was predicted to 

increase 13% and 37% between 1990 and 2014 in the rural and urban-influenced 

landscapes, respectively (Oklahoma Population Reports 1981; Selland & Shahidullah 

1988). We investigate the effects of rural population density on landscape composition 
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based on the premise that increased population density would result in increased 

deciduous woodland and decreased native grassland cover. These changes in cover 

types would result in part because of decreased brush treatment efforts associated with 

smaller management unit sizes in the rural landscape and the desire for woodland lots 

for residential development in the urban-influenced landscape. Increasing preference 

for housing developments with many mature trees over developments with few trees 

has been observed at the rural-urban fringe (Sullivan 1994). Our model supported the 

above premise that in a urban-influenced landscape, increased population density will 

result in increased woodland cover because of the desire for wooded residential lots 

(Table 4). The predicted rural population density in the urban-influenced landscape was 

associated with a 22% decrease in native grassland and a 140% increase in deciduous 

woodlands between 1990 and 2014 (Table 3). However, a negative relationship 

between population density and both native grassland and deciduous woodland cover 

was observed with this model in the rural landscape (Table 4). This relationship is most 

likely because of increased brush treatment practices (52% from 1990 to 2014) which 

would decrease both native grassland and woodland cover. This suggests other 

economical or societal pressures for brush treatments may result as the rural population 

density in the rural landscape increases. For example, increased woodland cover 

associated with urban sprawl may result in increased pressure for ranching operations 

to maintain native grasslands for livestock production. 

We investigated the effects of number of farms and average farm size on 

landscape composition in the urban-influenced landscape (Table 4). Number of farms 

and average farm size was predicted to decrease 2% and 10% between 1992 and 2014, 

respectively. Our premise was that as farm numbers and average farm size declined in 

an intensively managed landscape, woodland and native grassland cover would 
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increase because less proportion of the landscape would be managed intensively for 

cropland, pasture land, and hay meadows. Intensive agriculture practices associated 

with farms located near urban areas typically reduce native vegetation cover in the 

Great Plains (Knopf 1994). We also suspected that as average farm size decreased, 

less brush treatment would be used resulting in a increase in woodland cover. Brush 

treatment practices, including prescribed burning, become difficult to implement when 

treatment areas are small or roads and residential areas are nearby (Bidwell & Masters 

1994). Results from our model support these premises. The predicted number of farms 

in the urban-influenced landscape resulted in a 11 % and 4% increase in native 

grassland and deciduous woodland cover between 1990 and 2014, respectively (Table 

3). In addition, the predicted average farm size resulted in a 8% and 22% increase in 

both cover types over the same time period. 

We also investigated the effects of economics, including herbicide price, oil price, 

and cattle price margin, on landscape composition in the rural landscape (Table 4). A 

7 5% increase in herbicide price was predicted between 1990 and 2014. Because of the 

increased economic burden for a landowner to control woody plant encroachment by 

chemical means, we suspected that as herbicide price increases native grassland cover 

would decrease and woodland cover would increase. Although our model predicts 

native grassland cover to decrease as herbicide price increases, the demographic­

economic regression model demonstrated a positive relationship between herbicide 

price and brush-treated land (Table 4). The predicted herbicide price resulted in a 79% 

increase in brush-treated land and a 24% decrease in both native grassland and 

woodland cover. A increase in spatial and temporal application of fire for brush 

treatment will be necessary as herbicides increase in price. 
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We modeled 7-year cumulative cattle price margin (Table 4) in the rural 

landscape under the premise that increased price margin would provide an economic 

· incentive for the land owner to apply brush treatments to increase native grassland 

cover for livestock production. Cattle price margin was predicted to increase 46% 

between 1994 and 2014. The model predicts a 39% increase in brush-treated lands 

and a 5% decrease in woodland cover between 1990 and 2014 (Table 3). Native 

grasslands will decline by 24% over the same time period. However, the decline in 

native grasslands may be misleading because grasslands subjected to either prescribed 

burning or herbicide application are modeled as brush-treated land but they are 

grasslands by physiognomy. 

Agriculture and oil are critically important to the economy of Oklahoma (Woods, 

Nelson & Bliss 1989). In fact, agriculture and oil combined were responsible for over 

56% of the state's employment in 1989. Therefore, increased oil prices may stimulate 

the rural economy resulting in increased. capital for the local rancher to apply brush 

treatment practices and to purchase more livestock. Therefore, we modeled 5-year 

cumulative oil price (Table 4) in the rural landscape under the premise that as oil prices 

increase native grassland cover would increase and deciduous woodland cover would 

decrease. Based on Hawdon (1989), we predicted the 5-year cumulative oil price to 

increase 57% with scenario 1 (assumes oil prices rise when excess productive capacity 

outside the Gulf producing region is eliminated) and decrease 17% with scenario 2 

(assumes Gulf producers are unable to raise oil prices) between 1990 and 2014. 

Scenario 1 resulted in a 27% increase in brush-treated lands between 1990 and 2014 

(Table 3). Although the demographic-economic regression model demonstrated little 

change in woodland cover, native grassland cover declined 12% over the same time 

period, which may again be misleading because grasslands subjected to brush control 
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are modeled as brush-treated lands. Predicted oil price based on scenario 2 resulted in 

a 13% reduction in brush-treated land between 1990 and 2014. Although a 9% increase 

in native grassland coverwas observed, woodland cover increased 19% over the same 

time period. 

Our best model, based on R2, for predicting native grasslands, deciduous 

woodland, and brush-treated lands in the rural landscape is based on the variables 

cattle price margin and oil price (Table 4). The predicted increase in both cattle price 

margin and oil price (scenario 1) resulted in a 50% increase in brush-treated land and 

9% decrease in woodland cover between 1990 and 2014 (Table 3). The predicted 

increase in cattle price margin and decrease in oil price (scenario 2) also resulted in a 

increase in brush-treated land and a decrease in woodland cover. However, brush­

treated land increased only 9% while woodland cover decreased only 7% between 1990 

and 2014. Although oilprice appears to mitigate the effects of cattle price margin, our 

results suggests cattle price margin has a greater influence on extensive management 

practices that affect brush-treated land and woodland cover in the rural landscape. 

In comparison, our best model, based on R2, for predicting the same cover types 

in the urban-influenced landscape is based on the variables average farm size and oil 

price (Table 4). When modeled with the predicted decrease in average farm size and 

increase in oil price (scenario 1 }, we observed relatively little change in woodland cover 

between 1990 and 2014. However, native grassland cover increased 13% over the 

same time period (Table 3). This suggests increased oil prices may mitigate the effects 

of decreased farm size, which typically increase woodland cover at the expense of 

native grasslands, in the urban-influenced landscape. However, when modeled with the 

predicted decrease in both average farm size and oil price (scenario 2), woodland cover 
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increased 41 % while native grassland cover increased only 3% between 1990 and 

2014. 

THE AVIAN COMMUNITY 

Avian community in the urban-influenced and rural landscapes diverged from one 

another between 1966 and 1990 because of divergence in land use and management 

practices associated with each landscape (Boren 1995). Temporal shifts in avian 

community structure is reflected in altered avian diversity with increasing prairie and 

generalist associated species in the rural and urban-influenced landscapes, receptively 

(Table 5; Boren 1995). Avian community structure is primarily related to deciduous 

forest and brush-treated land in the rural landscape compared to deciduous forest, 

native grassland, and roads in the urban-influenced landscape (Boren 1995). We 

modeled bird species responsible for shifts in avian community structure between 1966 

and 1990 to predict the probability of occurrence in year 2014 to assess future 

landscape cover types on the aviafauna (Table 6). 

In general, we observed little difference between the probability of species 

occurrence modeled by logistic regression and demographic-economic regression in the 

rural landscape (Table 7) because there was little difference in the area of native 

grassland, deciduous woodland, or brush-treated land between these models (Table 3). 

We also observed little change in the probability of occurrence, regardless of the model 

used, of the barn swallow (Hirundo rustica), bewick's wren (Thryomanes bewickii), 

painted bunting (Passerina ciris), white-breasted nuthatch (Sitta carolinensis), summer 

tanager (Piranga rubra), eastern tufted titmouse (Parus bicolor), or yellow-breasted chat 

(lcteria virens) between 1990 and 2014 (Table 7). However, the probability of 

occurrence of the grasshopper sparrow (Ammodramus savannarum) and dickcissel 
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(Spiza americana) decreased 9% and 6%, respectively, between 1990 and 2014 when 

modeled with oil price scenario 2. The slight decrease in these prairie associated 

species (Knopf 1994) is most likely because of the 19% increase in deciduous woodland 

cover associated with a decrease in oil price in 2014. The probably of occurrence of the 

blue-gray gnatchatcher (Polioptila caerulea), an edge associated species, also 

decreased about 7% between 1990 and 2014 according to all demographic-economic 

regression models because of the parameter coefficient deciduous woodland in the 

species occurrence model (Table 6). However, the probability of occurrence of the 

dickcissel and field sparrow (Spizella pusilla) slightly increased between 1990 and 2014 

for most demographic-economic regression models. Probably of occurrence of the 

dickcissel was greatest when modeled with the predicted herbicide price, which resulted 

in the lowest woodland cover compared to models using other predicted independent 

variables (Table 3). Based on the species occurrence models with the greatest R2, the 

general shift in avian community structure towards prairie species, at the expense of 

woodland species, between 1966 and 1990 (Boren 1995) may continue in the rural 

landscape. 

We observed a slightly greater difference between the probability of species 

occurrence modeled by logistic regression and demographic-economic regression in the 

urban-influenced landscape compared to the rural landscape (Table 8) because we 

assumed deciduous woodland and brush-treated land cover to be the same in 2014 as 

in 1990 (Table 3). This resulted in relatively large differences between deciduous 

woodland and brush-treated land cover between logistic regression models and 

demographic-economic regression models. In addition, there was a greater difference 

in the area of native grassland between logistic regression models and demographic-
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economic regression models in the urban-influenced landscape compared to the rural 

landscape (Table 3). 

From 1990 to 2014 in the urban-influenced landscape there is little change in the 

probability of occurrence, regardless of the model used, of the chipping sparrow 

(Spizella passerina), common yellowthroat (Geothlypis trichas), great-horned owl (Bubo 

virginianus), Kentucky warbler (Oporornis formosus), northern-parula warbler (Parula 

americana), red-shouldered hawk (Buteo lineatus), and yellow-breasted chat (Table 8). 

All these species are associated with edge or forest habitat and exhibit very low 

probabilities of occurrence in 1990. The probability of occurrence of the American robin 

(Turdus migratorius) was similar between 1990 and the logistic regression model for 

2014. However, the probability of occurrence was 11% lower in 2014 compared to 1990 

in all demographic-economic regression models (Table 8). All demographic-economic 

regression models resulted in the same probability of occurrence because the area of 

pasture land and hay meadows, roads, and cropland, used to model the American robin, 

could not be projected to year 2014. We assumed each of these cover types to have 

the same area in 2014 as in 1990. The probability of occurrence of the common grackle 

(Quiscalus mexicanus), European starling (Sturnus vulgaris), and house sparrow 

(Passer domesticus) decrease with increasing woodland cover based on our species 

occurrence models (Table 6). Because the predicted rural population density resulted in 

a large increase in deciduous woodland cover (Table 3), the probability of occurrence of 

these species was lowest when modeled with the predicted variable rural population 

density. Based on the low probability of occurrence of forest associated birds and the 

slight increase for the house sparrow in 2014, previously documented shifts in avian 

community structure towards generalist species at the expense of woodland species, 

between 1966 and 1990 (Boren 1995), may continue in the urban-influenced landscape. 
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In addition, results from our species occurrence models are conservative for both 

woodland and developed species because cover of developed areas and roads could 

not be modeled and were held constant between 1990 and 2014. However, 

undoubtedly urban development will continue in urban-influenced landscape (McDonell 

& Pickett 1990), which will most likely result in increases of generalist and exotic species 

at the expense of woodland species (Galli, Leck & Forman 1976; Whitecomb et al. 

1981; Terborgh 1989; Zalewski 1994). 

Conservation of avian diversity is influenced greatly by the extent to which 

agronomic practices are applied in the landscape. Our models suggest continued 

intensive agriculture practices associated with urban-influenced landscapes will 

adversely affect native grassland bird species to a greater magnitude than extensive 

ranching practices in rural landscapes. Extensive management practices associated 

ranching enterprises appear to maintain native plant communities, which are essential 

for the maintenance of endemic species. Considering the tremendous increase in 

development and intensive agriculture practices applied at the rural-urban fringe, native 

vegetationwill continue to be replaced with farms and introduced woodland species 

(Sullivan 1994). Therefore, biologists and conservationists should focus their 

educational programs on maintaining diversity of endemic avian species to the rural­

urban fringe . 
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Table 1. Classification system used to map land use and vegetation cover types 

(adapted from Starns et al. 1983). 

Land use and cover type 

Developed area 

Description 

Land occupied by residential, industrial, or other 

human structures and non-agricultural activities. 

Also includes transportation and utility facilities. 

Roads Black top, gravel, dirt roads and driveways 

Water Ponds, lakes, streams, and rivers 

Cropland Land cultivated for row crops and cereal grains but 

excluding grazing lands 

Pasture land and hay meadows Includes pasture land (seeded, grasslands used 

for grazing by cattle, sheep, goats, and horses) 

and hay meadows 

Native grassland 

Deciduous forest 

Brush-treated land 

Bare ground 

Native grasslands with less than 10% cover by 

shrubs or trees 

Vegetation dominated (>10%) by cover of 

broadleaf hardwoods. Mostly post oak (Quercus 

stellata) and blackjack oak (Q. marilandica) 

Native vegetation subjected to herbicides, fire, or 

chaining to control woody brush encroachment 

Land with less than 5% vegetative cover 
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Table 2. Summary of logistic regression models* for predicting probability of landscape 

cover type occurrence** in the rural and urban-influenced landscapes with year as the 

independent variable. 

Cover type 

Rural landscape 

Brush-treated land 

Cropland 

Native grassland 

Deciduous woodland 

Urban-influenced landscape 

Cropland 

Pasture land and hay meadows 

Native grassland 

Intercept 

4,552 

2,379 

-0,702 

-0,277 

-2,943 

3,143 

-0,004 

Parameter coefficient 

-0,041 (year) 

0,032(year) 

0,014(year) 

0,0148(year) 

0,068(year) 

-0,026(year) 

0,002(year) 

* Logistic regression models are for entire breeding bird survey route and separate 

models for each of the 50 breeding bird survey stops were used to predict probability of 

avian species occurrence. 

** C (rank correlation between observed responses and predicted responses) was 

0.50 for all logistic regression models. 
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Table 3. Total area (ha) of native grassland, deciduous woodland, brush-treated land, pasture land and hay meadows, and cropland 

in the rural and urban-influenced landscapes in year 1990 (observed), year 2014 based on logistic regression models, and year 2014 

based on demographic-economic regression models. 

Variable 

Rural landscape 

1990 

Observed 

2014 

~ Year* 

Rural population density 

Oil price scenario 1 

Oil price scenario 2 

Herbicide price 

Cattle price margin 

Cattle price margin and oil price scenario 1 

Cattle price margin and oil price scenario 2 

Native 
grassland 

898-23 

806-24 

770-07 

791-07 

977.59 

685-75 

817-94 

775-78 

908-40 

Deciduous 
woodland 

663-47 

679-84 

594-03 

673-19 

792-77 

511-74 

628-28 

605-98 

618-28 

Brush-treated 
land 

625-98 

776-90 

953.71 

853-56 

547.44 

1120-32 

871-84 

936-04 

790-72 

Pasture land 
hay meadows 

74-02 

** -

Cropland 

12-90 

9-60 



Table 3. Continued. 

Scenario Native Deciduous Brush-treated Pasture land Cropland 
grassland woodland land hay meadows 

Urban-influenced landscape 

1990 

Observed 1155,40 300,19 3.97 769,17 101,48 

2014 

Year* 1069,91 ** 897,93 80,96 - -

Rural population density 902,38 708,26 0,00 

"' "' Number farms 1286,75 311,05 12,84 

Average size farm 1245,52 365,11 0,00 

Average size farm and oil price scenario 1 1304,25 302,69 3.39 

Average size farm and oil price scenario 2 1188,69 421,95 0,00 

* Logistic regression model with year as the independent variable. 

** Total area (ha) was not calculated because of the inability of the independent variable to predict cover type change. 



Table 4. Summary of demographic-economic regression models* for predicting area (ha) of 

landscape cover types in the rural and urban-influenced landscape with selected independent 

variables. 

Cover type Intercept Parameter Parameter B 
coefficient 1 ** coefficient 2 

Rural landscape 

Native grassland 1919·254 -172·313(rpopd) 0•77 

1504·630. -2·150(oil) 0·82 

1396·831 -4·943(herb) 0•73 

1479,545 -0·623( cattle) 0·82 

1546-656 ... o.378( cattle) -1.294(oil) 0·99 

Deciduous woodland 1648•795 -162·761(rpopd) 0·68 

1173•726 -1·378(oil) 0·83 

1155.937 -4•687(herb) 0·66 

1250·309 -0·630( cattle) 0·84 

1886·124 -0·640( cattle) -0·581 ( oil) 0·93 

Brush-treated land -482·030 293,507(rpopd) 0•71 

240•746 3·533(oil) 0•71 

408•723 8·393(herb) 0°68 

250·932 1·100(cattle) 0·83 

156-599 0·756(cattle) 1·819(oil) 0·93 

Urban-influenced landscape 

Native grassland 2202•160 -74•159(rpopd) 0•71 

1965·051 -0,679( nfarms) 0·63 

1221·910 0,861 (asfarm) 0•73 

529·043 1·588(oil) 2•269(asfarm) 0·98 

Deciduous woodland · -270•406 70·834(rpopd) 0•78 

-110•671 0,751 (nfarms) 0·94 
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Table 4. Continued. 

Cover type Intercept Parameter Parameter B. 
coefficient 1 ** coefficient 2 

763·162 -1·102(asfarm) Q,66 

1209·907 -1·024(oil) -2·009(asfarm) 0·99 

Brush-treated land 224•738 -23·132(rpopd) 0·95 

156•070 -0·220( nfarms) 0·92 

-120·242 0·381 (asfarm) 0·90 

-190•772 0·162(oil) 0·525( asfarm) Q,99 

* Demographic-economic regression models are for entire breeding bird survey route and 

were used on a per stop basis to predict probability of avian species occurrence. 

- asfarm is the average farm size (ac). 

cattle is the price margin for stocker cattle (U.S. $). 

herb is the average price of herbicide application (U.S. $/ac). 

nfarms is the number of farms. 

oil is the price of crude oil (U.S. $/barrel). 

rpopd is the rural population density (number people/km\ 
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Table 5. Avian species responsible for shifts in avian community structure in a rural (extensively managed) and urban-influenced (extensively 

managed) landscape over a 24-year period, 1966 to 1990 (Boren 1995). Minor species (those that occurred three or less times) were omitted. 

Species Code Scientific name Type* Habitat** Concern*** Foraging' Nesting" 

Rural landscape 

Loss 

Yellow-breasted chat YBCH lcteria virens Neotrop Edge High Ground Shrub 

Blue-gray gnatchatcher BGGN Polioptila caerulea Neotrop Edge Moderate Canopy Midstory 

Greater roadrunner GRRO Geococcyx californianu Resident Prairie High Ground Shrub 

Bewick's wren BEWR Thryomanes bewickii Temp Edge High Ground Cavity 

Black and white warbler BAWN Mniotilta varia Neotrop Forest Moderate Mid story Ground 

Field sparrow FISP Spizella pusilla Temp Edge High Ground Ground 

..... Painted bunting PABU Passerina ciris Neotrop Edge High Ground Shrub 
0 
N Pileated woodpecker PIWO Dryocopus pileatus Resident Forest Moderate Bole Cavity 

Summer tanager SUTA Piranga rubra Neotrop Forest High Mid story Midstory 

Eastern tufted titmouse ETII Parus bicolor Resident Forest High Midstory Cavity 

White-breasted nuthatch WBNU Sitta carolinensis Resident Edge Moderate Bole Cavity 

Gain 

Dickcissel DICK Spiza americana Neotrop Prairie High Ground Ground 

Wild turkey WITU Meleagris gallopavo Resident Edge High Ground Ground 

Barn swallow BARS Hirundo rustica Neotrop Develop Moderate Aerial Other 

Grasshopper sparrow GRSP Ammodramus savannarum Neotrop Prairie High Ground Ground 

Great-tailed grackle GTGR Quiscalus mexicanus Resident Edge Moderate Ground Shrub 

Little blue heron LBHE Egretta caerulea Temp Water Moderate Water Shrub 

Rock dove RODO Columba livia Resident Develop Low Ground Other 



Table 5. Continued 

Species Code Scientific name Type* Habitat** Concern*** Foraging' Nesting" 

Urban-influenced landscape 

Loss 

Black-billed cucko BBCU Coccyzus erythropthaim Neotrop Edge High Mid story Shrub 

Cattle egret CAEG Bubulcus~ Resident Prairie Low Ground Shrub 

Yellow-breasted chat YBCH lcteria virens Neotrop Edge High Ground Shrub 

Chipping sparrow CHSP Spizella passerina Neotrop Forest Moderate Ground Shrub 

Common yellowthroat COYE Geothlypis trici:las Neotrop Edge Moderate Ground Shrub 

Great-horned Owl GHOW Bubo virginianus Resident Edge Moderate Ground Cavity 

Greater prairie chicken GPCH Tympanuchus capido Resident Prairie High Ground Ground 

- Kentucky warbler KEWA Oporornis formosus Neotrop Forest High Ground Ground 
0 
w Northern-parula warbler NOPA Parula americana Neotrop Forest High Mid story Canopy 

Red-shouldered hawk RSHA Buteo lineatus Temp Edge Moderate Ground Canopy 

Yellow-bellied sapsucker YBSA Sphyrapicus SR,. Temp Edge High Bole Cavity 

Gain 

American robin AMRO Turdus migratorius Temp Develop Low Ground Shrub 

Gray catbird GRCA Dumetella carolinensis Neotrop Edge High Ground Shrub 

Common grackle COGR Quiscalus guiscula Resident Edge Low Ground Mid story 

Great-tailed grackle GTGR Quiscalus mexicanus Resident Edge Moderate Ground Shrub 

House sparrow HOSP Passer domesticus Resident Develop Low Ground Cavity 

Purple martin PUMA Progne subis Neotrop Develop Moderate Aerial Cavity 

Rock dove RODO Columba fulia Resident Develop Low Ground Other 

European starling EUST Sturnus vulgaris Resident Develop Low Ground Cavity 
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Table 5. Continued 

Species Code Scientific name Type* Habitat** Concern*** Foraging' Nesting" 

Wild turkey WITU Meleagris gallopavo Resident Edge High Ground Ground 

* Species classified as neotropical migrants (Neotrop), temperate migrants (Temp), and residents (Resident). 

** Species grouped into designations of habitat occurrence: forest (Forest), forest edge and shrubland (Edge), prairie (Prairie), and developed 

areas (Developed). 

***Species grouped into population trends: low concern (Low), moderate concern (Moderate), and high concern (High). 

' Species grouped into foraging zones: open zones (Aerial), foliage O - 3 m (Ground), foliage 3 - 10 m (Midstory), and trunks,and limbs (Bole). 

" Species grouped into nesting zones: ground (Ground), 0 - 3 m (Shrub), 3 - 10 m (Midstory), > 10 m (Canopy), cavity (Cavity), and variable 

heights and substrates (Other). 



Table 6. Summary of logistic regression models for the rural and urban-influenced landscapes where models, with cover types as the independent variables, 

predict probability of occurrence of bird species on stops of the breeding bird survey route. 

Species Intercept Parameter Parameter Parameter Parameter Parameter Q_** 
Coefficient 1 * Coefficient 2 Coefficient 3 Coefficient 4 Coefficient 5 

Rural landscape 

Barn swallow*** -0·596 0•060(wood) 4 0·695 
-0•054(dev) 

Bewick's wren 1·554 -0·071 (wood) -0•032(btl) 2 0•750 
0•509(water) 

Blue-gray gnatchatcher 3·623 -0·005(wood)2 1 ·629E-6(wood)4 0•840 

Dickcissel -1 ·954 0·1146(wood) 0·845 

Eastern tufted titmouse 1-132 -0· 113(wood) 0·834 

Field sparrow -2·402 1 ·043(dev) 0•287(crop) -0·077(wood) 2•147(water) 0·840 
.... 
0 
Vl Grasshopper sparrow 0•832 1•873(dev) 0·083(wood) 0•795 

Painted bunting 1-123 -0·047(wood) 0•680 

Summer tanager 2·576 -0·0016(wood)2 0•758 

White-breasted nuthatch 3•961 2·087(dev) -0·062(wood) 0•264(dev)3 0·804 

Yellow-breasted chat 3·909 -0·066(wood) 0•746 

Urban-influenced landscape 

American robin 1•706 -0·055(plhm) -0·397(road)2 7•50E-5(crop)3 0•755 

Chipping sparrow 6·129 -0· 134(wood) -7•142(bg)2 0·941 

Common grackle -0•178 0·067(wood) -0·301 (road)2 0·695 

Common yellowthroat 2·483 -0·069(wood) -0·002(crop)2 -0•027(road)4 0•701 
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Table 6. Continued. 

Species Intercept 

European starling 1•988 

Great-horned owl 4•153 

Greater prairie chicken 6•679 

House sparrow -0·210 

Kentucky warbler 4•789 

Northern parula warbler 4•678 

Purple martin 3·566 

Red-shouldered hawk 5·862 

Yellow-breasted chat 3•006 

* bg is area of bare ground. 

btl is area of brush-treated land. 

crop is area of cropland. 

Parameter 
Coefficient 1 * 

-0•084( crop) 

-0•077(wood) 

-1 ·528(water) 

-2·288(dev) 

-0•003(wood)2 

-0· 109(wood) 

-0·944(road) 

-0•113(wood) 

-1·58E-6(crop)4 

dev is the area residential and industrial development. 

grass is area of native grassland. 

plhm is area of pasture land and hay meadows. 

roads is area of roads. 

water is area of water. 

wood is area of deciduous forest. 

Parameter 
Coefficient 2 

,. -1 ·568( road) 

0•070(wood) 

-6•00E-5(crop)3 

** C is a rank correlation between observed responses and predicted responses. 

***Refer to Table 5 for scientific name. 

Parameter Parameter Parameter ~** 
Coefficient 3 Coefficient 4 Coefficient 5 

3•315(bg) 0•002(wood)2 4·45E-6( crop >4 0•788 

0•686 

0•932 

3•43E-7(grass)4 0•732 

0•773 

0•868 

0•653 

0•896 

0·587 



Table 7. Probability of occurrence of bird species modeled in year 2014 in the rural landscape modeled by logistic regression and demographic-economic 

regression models. 

Variable Increased 1966 to 1990 Decreased 1966 to 1990 

BARS* DICK GRSP BEWR FISP BGGN PABU WBNU SUTA ETTI YBCH 

1990 

Observed** 0•48 0·59 0•35 0•39 0•75 0•14 0•39 0•12 0•14 0•54 0·06 

2014 

Year*** 0•47 0•59 0•34 0•42 0•76 0•14 0•39 0•12 0•14 0·55 0•06 

- Rural population density 0•47 0•64 0•32 0•45 0•87 0•05 0•36 0•07 0•09 0•55 0•04 
0 
-..J 

Oil price scenario 1 0•45 0•60 0•30 0•46 0•89 0•06 0•38 0•08 0•09 0·60 0·05 

Oil price scenario 2 0•41 0·53 0•26 0•45 0•90 0•08 0•41 0•09 0•10 0·66 0•05 

Herbicide price 0•50 0•69 0·35 0•45 0•86 0•04 0•35 0•06 0•08 0•51 0·04 

Cattle price margin 0•46 0•63 0•31 0•45 0•88 0•05 0•37 0•07 0•09 0•57 0•04 

Cattle price margin and oil price scenario 1 0•47 0·64 0•32 0•45 0•87 0•05 0•37 0•07 0•09 0·56 0•04 

Cattle price margin and oil price scenario 2 0•46 0•63 0•31 0•43 0•88 0•05 0•37 0•07 0•09 0•57 0•04 

* Refer to Table 5 for code and scientific name. 

** Frequency of occurrence. 

***Logistic regression model with year as the independent variable. 



Table 8. Probability of occurrence of bird species modeled in year 2014 in the urban-influenced landscape modeled by logistic regression and demographic-

economic regression models. 

Variable Increased 1966 to 1990 Decreased 1966 to 1990 

AMRO* COGR EUST HOSP CHSP COYE GHOW KEWA NOPA RSHA YBCH 

1990 

Observed** 0•54 0·64 0·57 0·51 0•01 0•17 0•03 0·01 0•03 0•01 0•05 

2014 

Year*** 0·56 0•64 0·58 0•50 0•01 0·16 0•03 0•01 0·03 0·01 0·05 

- Rural population density 0•43 0·43 0·41 0•48 0•01 0·19 0•04 0·01 0•04 0•01 0•05 
0 
00 

Number farms 0•43 0·56 0·50 0•59 0·00 0·12 0·02 0•01 0·02 0·01 0•05 

Average size farm 0·43 0•54 0·49 0·58 0•01 0·13 0•03 0•01 0·02 0·01 0·05 

Average size farm and oil price scenario 1 0·43 0•56 0·50 0•59 0•00 0·12 0•02 0•01 0•02 0•01 0·05 

Average size farm and oil price scenario 2 0·43 0•53 0•48 0·56 0•01 0·14 0·03 0•01 0•02 0·01 0·05 

* Refer to Table 5 for code and scientific name. 

** Frequency of occurrence. 

***Logistic regression model with year as the independent variable. 
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