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CHAPTER I

INTRODUCTION

Following the initial quantitative analysis by Einstein in
1936, an extensive body of literature on the gravitational lens phenomena
has appeared(1-17). Briefly, this phenomena can be described as follows.
If a massive object (often referred to as a lens or deflector) is
suitably positioned between an observer and a source of electromagnetic
radiation, two particularly interesting things may occur. First of all,

two images of the source may be observed, and secondly the luminosity of

the source may be larger than it would be in the absence of the deflector.

The situation is depicted in Fig. 1.

Image
/ Source
Observer I
Deflector mage

Figure 1. The gravitational lens situation in which two images
of the source are formed.



Situations have been investigated in which the deflector and

source are starél’B’g’lo’ll) (2,3,

5,7,8,10,11,12,15,17)

, the deflector and source are galaxies
, the deflector is a galaxy and the source a
supernova or a quasar(ll), and various other combinations(s’lz’IG).
However, in all cases (to my knowledge) both deflector and source have
been assumed to be spherically symmetric bodies. This is of course
very reasonable for the situation in which the deflecting body is a star,
but may not be so reasonable when the deflector is taken to be a galaxy
since the large majority of galaxies are flagrantly non-spherical.
However, the majority of galaxies, being either spiral or elliptical in
their general structure, do exhibit a high degree of cylindrical
symuctry., It would therefore be of interest to introduce a cylindrically
symmetric deflector into the mathematical analysis of the gravitational
lens phenomena and to see whether any interesting observable results
ensue,

It will be the. purpose of this paper to carry out this last
stated course of action., The model for the deflectors is to be chosen
8o as to provide a reasonable representation of a very flat elliptical
or a spiral galaxy, but is to be simple enough to allow a surveyable
analysis of the lens phenomena associated with such an object, From
this analysis, an expression for the increase in luminosity of the images
of the source is to be obtained, and in cases where the double
imaging phenomena occurs, an expression for the angular separation of

tlhe two images as seen by the observer is to be obtained. Finally, an



expression for the fraction of sources, located at a particular red-
shift from the observer, which would be expected to exhibit double
images is to be obtained. These three expressions should then be
sufficient iv discuss the observability of a double image event. In
particular, the situation in which the sources are quasi-stellar

objects is to be examined.



CHAPTER I1

GEOMETRY OF THE GRAVITATIONAL LENS PHENOMENA

A brief overall picture of the lens phenomena will now be
presented, and some useful relations between intrinsic geometrical

quantities will be written down for later use,

Geometrical Relations

Let 0", "d", "S" denote observer, deflecting mass, and
source respectively, and let'Dbd"Dbs’ Dds be the distances from
observer to deflector, from observer to source, and from deflector to
source respectively. These are.distances by apparent size - i,e., if
dA is the cross-sectional area of a disc which is normal to a line (null
geodesic) drawn from the disc.to an obser&er and d? is the solid angle
subtended by dA at the observer, dQ=dA/D2. Let "h" denote the minimum
1light ray to deflector distance (impact parameter), and let "y" be the
perpendicular distance from the source to the line drawn through
observer and deflector. Let "a'" denote the total angle thru which light
is deflected as it passes near d, and let "g" denote the angular
separation of the deflector and the image of the source as seen by the

observer. By consulting Fig., 2, and assuming that the angles, a, and 8,

are small several relations between these quantities are apparent,



Figure 2, Geometry of the gravitational lens phenomena.

In general, "y" can be expressed as

hll)os
y= D - a].DdS s (II—I)
od

and in the case depicted in Fig. 2 where two light paths exist between

source and observer, also as

= - .}29.5. + a.D (11-2)
y D 27ds °
od
Obvious expressions for B are
by

od



"and

=2

2. -
od

The light deflection amgles, o and Ggs depend only upon the intrinsic
properties of the deflector, mass, dimensions, shape etc., and upon the
orientation of the deflector with respect to the passing light ray. The
distances, Dod’ Dos’ Dds’ however depend upon the particular cosmological

model chosen to represent the universe.

The Friedmann Models

Only Friedmann Cosmological Models with zero pressure and
ecosmological constant will be considered here — a brief review of which
will now be presented. The:line.element for such models can be written

in the form,

drz_
l-Kr2

2

ds2 = ~-¢ dt2 + R?(t) + rz(sin296¢2 + dez) ’

vhere K= +1, -1, 0, and R(t) satisfies the Friedmann equation,

2
dB 2, _ 816G 31
(az) teK==3"pR"% -

The subscript, zero, means that the subscripted quantity is to be
evaluated at the present time and the quantity “p" is the mean mass

density in the universe. From the conservation law for energy-



momentum (Tab_b=0), it follows that the time-dependence of p is
]

given by

where PP (t=0) is the mean mass density of the umiverse at the present

epoch. From the definitions of the Hubble Constant, }Io, and the

deceleration parameter, 9,

i{o
Ho = r
o
and
Qﬁ
q = - 2
- ]
(4] R H 2
o0
it follows that
3 2
- 0
Po = ZmG W% »
and
2
Ke
— = (2q ~1) .
R 211 2 o
o o

The constants, Ho and q,, are customarily introduced because they are

generally more susceptible to direct observation than are quantities such



as Ro and Po® Then, by defining the quantity, Rm’ by

3
_ 8"'G‘:'oRo
Rm = 2 ’
3¢

the solutions to the Friedmann equation can be written down as follows.

For K=0 or equivalently q_= L,

R-Ge ,Em)zlatzls ,

for:K= +1.or equivalently q >k,

c: < <
sin-l(.l_{...) ..(.R_)(_B_)=.9_E
R R R R °?
m m m m

and. for K= ~1 which is equivalent to the case (o<qo<!5),

1 (R R %
- 2 D R t
sinh (R)+ (R )(1+.._.) - &

m m

In these models, the redshift, Z, of light from a distant source is

given by

R(to)

147 = _—R( )

nt

R
2
R

vhere t and t refer to "times" of emission and reception respectively.



For the Friedmann models Eqs. (II-1), (II-2), (II-3), and
(1I~-4), can be written in terms of the comoving co-ordinates, T, and L
of the source and deflector respectively (co-ordinate system centered o=

observer) as

h
_ 1
Y= Rr Rsrs - alksrsd : (11-5)
d'd °
By
Y= - x®x, RTs Y @RsTqy (11-6)
d'd
and
h
1,2
By o =52 (11-7}
1,2 Rdrd

where "rs d" is the function of r, and r d which when multiplied by R8

gives the distance by apparent size from source to deflector.

Geometrical Relations in a Friedmann Model with q =%

The relations between R and r are simplest for a model with
q°=35, and for this reason, most of the calculations in later chapters
will be done using this model. Therefore for convenience, the
expressions for y and B will now be written down explicitly for this

model. By making use of the relationms,

Yea = ré—rd ’
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and

R(x) =

R 2 2
o o 2¢__ .
- (2-+)
b4e oo

y and 8 could be written in terms of either the "r's" or the "R's";
however, it is more convenient to write them in terms of the redshifts
of the source, Zs, and of the deflector, 2 a° since these are directly

observable quantities., This can be done by substitution of the relations

L. 2¢ (/1+ -1)
T ’
RoHo /1+Z
and
R0
R"%z

into Eqs. (II-5), (II-¢), and (II-7). Doing so, we obtain

(1+2 )?’/2 (V142 '-1) 2¢(VI+Z -Y14Z))
= sh d s e 8 d_ 4 (11- 8
y 1,2 3/2 3/2 1,2 °
(142 ) (/#z, -1) H (142)) V1+Z
s d o s d
and
H (1232
B, .=h, 249 (11-9)
1,2 1,2 ’
& b8 e (VIHZ 31

where the upper set of signs goes with the subscript 1, and the lower

with the subscript 2, Substitution of Eqs. (II-9 into (II-8 allows
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y to be expressed in terms of 8 as

. 2c31’2(h+zs - _ (/] - iz )al’z

y== 3/2 372
H_(142)

1+2

(1+Zs) d

These relations will later be used to estimate the angular
separation of double images (when they occur). Before this can be done
however, the bending angles for a given type of deflecting mass must be

calculated. This task is to be pursued in the following chapters.



CHAPTER III

A CYLINDRICALLY SYMMETRIC MODEL FOR THE DEFLECTING MASS

Schmidt's Model of the Galaxy

The model. to be used for the deflecting mass is a simplified

(18,19)

version of one devised by Schmidt to represent our galaxy.

Schmidt's model consists of a central point mass of approximately

0.07 x 1011 solar masses located at the center of an oblate spheriod
(cbtained by rotating an ellipse of eccentricity, e, about its minor
axis). This oblate spheriod is differentiated into two concentric
regions, The first.region, extending along the major axis from zero to
ten. Kpc, contains approximately 0,82 x 1011 solar masses (excluding

the point mass),.and the second, extending from ten Kpc to infinity,
contains approximately 0.93 x 10ll solar masses, The amount of mass
beyond fifty Kpc is for most purposes a negligible fraction of the total.
Each of these two regions is characterized by a mass density function
which is cylindrically symmetrical about the rotational axis of the
oblate spheriod; i.e., the model is composed of an infinite number of
ellipsoidal shells and the mass density is constant over each ellipsoidal
shell, Let w be the co-ordinate function in the direction of the major
axis and z the co-ordinate function in the direction of the rotational
axis (see Fig. 3). The equation of an ellipsoidal shell of semi-major

axis, a, and eccentricity, e, is

12
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mz z2
b + - 1 [
a2 az(l-ez)
z
m2 22
—_— =1
2 2 2
a ao(l e”)
/\ . ’
w=a
o

Figure 3. Oblate Spheriod.

If this shell lies within the first region (0<a<l0Kpc), the mass density

of this shell is taken as

o = 3.930x10° -él-- 0.02489x10°a ,
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and if the shell lies within the second region (a>10Kpc), the mass

density is taken to be

p = 14.492x101} -% ,
a

where "a" has units of Kpc and "p" has units of solar masses per cubic

Kpc. The mass of an ellipsoidal shell of thickness, da, is given by

dM = lnn'l'—e? azp(a) da ,

and the mass interior to this shell (excluding the point mass) is

a
M(a) = lmJl—.-e_z' £ p(a)azda .

Thus, the mass interfor tc. a:shell located in the first regiomn (zero

to ten Kpe) is

M(a<10) = 4n/i-e2 (1.965a2 -0.0062225a")x10° + 0.07x101!

»

and for one located in the second region

M(a>10) = 4u/l-eZ (2.79195 - L"—'—:{?E)xm11 + 0.07x10!!

where "a" is in Kpc and "M"' is in solar masses, According to Schmidt,
the axial ratio, Jl—ez, for our galaxy is approximately 1/20. This mcdel
fits the experimental data for our galaxy quite well giving a total mass of

approximately I.BXIOH solar masses. The ellipsoidal shell containing
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our sun has semi-major axis of 10 Kpc, a mass density of approximately
0.145 x 109 solar masses per cubic Kpc, and approximately 0.91 x 1011

solar masses interior to this shell.

Deflector Model to be Used in the Calculations

In order to facilitate calculations, the model to be used for
representing deflecting masses (galaxies) is a good deal simpler than
Schmidt's., Essentially what will be done is represent the deflectors by
Schmidt's first region, zero to ten Kpc. The central point mass is
discarded and the mass density function of an ellipsoidal shell of
semi-major axis, a, in this region is simplified to

p(a) = 3.930-x 109% .

The expression for the mass interior to this shell then becomes

M(a) = lmv’l—e2 (1.965 x 109)a2 .

The model to be used will have a semi-major axis of ten Kpc, and a total

mass of 1.23 x 1011 solar masses. Schmidt's mass density and the one

used here are plotted as a function of radius in Fig. 4.
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CHAPTER IV

ASSUMPTIONS USED TO DERIVE THE LIGHT BENDING FORMULAE

In 1915 Einstein(zo)

demonstrated that light passing near a
single spherically symmetric mass, m, at a minimum distance, h, should

be deflected thru a total angle, a, given by

L - Ao
¢%h

This relatively simple exprescion allows a straight forward
analysis of the gravitational lens phenomena to be carried through in the
case of spherical deflectors; however, it is the purpose here to examine
the case of non-spherical deflectors. The major obstacle in this case
will be to find the appropriate light bending formula for deflectors
possessing cylindrical rather than spherical symmetry. The ideal method
for finding such a formulae is to assign a stress-energy - momentum
tensor, Tab’ to represent the deflectors, substitute into the Einstein

field equations,

__ 8
Rp = %8R = K Ty »

solve the field equations for the metrical components, g ab? substitute the

metrical components into the geodesic equations,

17
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¥ {vef @ @ -0

dzxa {a dxb dxc
S—— + ——
dx

and solve these equations for the null geodesics. This procedure turns

out to be a bit sticky; however, so an alternate method is sought.

The Linearized Theory of General Relativity

Since the general theory of relativity is not a linear theory,
the superposition of solutions to obtain a solution is not a strictly
valid procedure; however, in the limit of weak fields and for velocities
much smaller than that of light, physical phenomena can be adequately
described by the linear Newtonian gravitational theory. The class of
problems described by a linear theory can be further extended (beyond
that covered by the Newtonian theory) by linearizing the Einstein Field
equations. In particular, this procedure allows a description of the
behaviour of photons in a weak gravitational field, as opposed to the
Newtonian gravitational theory which excludes photon behaviour. Since
the theory is linear, an expression for the deflection of light by a non-
spherical object can be obtained by integrating the results for a
point mass. This will be the course of action followed in this paper.

A detailed description of the linearized tlieory is given in
many text books*, thus only a brief review will be given here. Assume
that in a weak gravitational field, the metrical components, 8> €30 be
written as those of flat Minkowski space, n ab? plus a small pertubation,

h i.e., as

ab?

*See Bergmann 2n .
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where*

-1 0 0 0
0 1 0 O
b = 0 0 1 o

Substituting the above in the field equations and neglecting second

order terms in h, gives

cd
% [h’ab +n (hab,cd - hac,bd - l"I:l.:,ad)

d ef

¢ B ewarm—
Tt (g D hce,df)] 5 Tab -

By choosing appropriate co-ordinate systems, and by assuming that the
dominant part of T ab is due to the mass density of the source, the

linearized field equations can be further simplified to

kvz - - 81TG

Y P
c?o c?.

*Latin indices run 0,1,2,3 and Greek indices run 1,2,3,
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where "y" is related to "h" by

= - h

and

Bap = Yap ~ P’

Then requiring the linearized theory to be compatible with the
Newtonian theory when the latter.is applicable, implies that the field

equations must reduce to

V2¢ =b4aGp ,
where "¢" is the: Newtonian potential. In order that this be so, it is

necessary that

The "h ab" must then be related to the Newtonian potential, ¢, by

h,o=-2 , (1V-1)
[

and

(Iv-2)
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By substituting the linearized "gab" into the geodesic equations, we

obtain the "linearized geodesic equations",

av® ac b d

SV _ 4+ - =
dx t73 [Zhbc,d hbd,c] uu 0

where u? is the tangent vector to the photon's path in Minkowski space,
and u?v® is the tangent vector to the photon's path in the weak
gravitational field. Identifying the “hab" with the Newtonian potential,

¢, as in Eqs. (IV-1) and (IV-2) implies that

av? n2c b d
T ?.Gbc(b,d - de¢,c uu =0 ., (Iv-3)
Cc

d(et) _

For photons, nabubua=0 and a 1. Therefore, Eq. (IV-3) above can

be written as

1 av®
2 dt
[ o]

nNPd

ac bd_
n [Zabc¢’d-6bd¢’c] uvu =0 ,
b

ba® o =2, and the spatial part of the linearized geodesic

|-

For photons, §
equations is expressable as

v P 8 a

v 2u ¢,Bu 24, .
This equation can be interpreted as saying that the photon suffers no

acceleration in the direction of its motion, but feels one perpendicular

to its motion given by

a_La= - 2¢,a L)
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The total angle, a, thru which light is bent as it passes near a point

mass is given approximately by

a=v/c,

where v, can be obtained by integration of 8, . This implies that the

bending angle is given by

2
T e , dt .
S I bog

From this expression it. follows that light passing a distance, h, from a

point mass,. m, will be beant:thru a total angle, a, given by

. hoM
a'.—_—_

c

From this- result it should:then be possible to find the bending angle for
an. extended body by superposition provided the linear theory is
applicable; i.e., provided the gravitational field associated with such

a body is weak.

Criteria for a Weak Field

A certain amount of ambiquity is inherent in determining
whether a field is weak or not, For a situation described by the

Schwarzschild line element,

2
2
ds % = - c2ac? ( 1- 2cn)+ £dr 2in2ede Srlde? |
s | 2 26M
cr 1~ ..._2_.
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- the field is said to be weak if the quantity, -2-%'—4 s is small compared to
cr
one, since the line element approaches that of Minkowski space as this

quantity goes to zero. For example, the field of the sun is generally

considered to be weak, since for it

2GM
S

c2R
[

= 2x107° ,

where HS and Rs are the mass and radius respectively of the sun, Assume
that the same type of criteria is valid for determining the weakness of
fields due to non-spherical masses; i.e., if a characteristic mass
divided by a characteristic length of the system (where mass and length
are expressed in the same units) is small compared to one, the field due
to such an object will be assumed to be weak. The bodies considered here
will be galaxies similar to our own; thus, the characteristic mass will
be =1, 8)(1011 solar masses and the characteristic length will be either

10 Kpc or 0.5 Kpc. For 10 Kpc,

2 1ax1070
[ o
and for 0.5 Kpe
ZH 3407t
cr

~-in either case, a small number compared to one. The implication is that
the gravitational field associated with a galaxy such as our own is weak

and thus the linearized Einstein theory is applicable, which in tum
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means that the light bending around such an object can be found by

superimposing the bending due to each little piece of the body.



CHAPTER V

THE LIGHT BENDING FORMULAE FOR A RING

Proceeding under the assumptions discussed in the preceeding
chapter, the deflection suffered by a light ray passing near a ring of
mass, M(a)da, and radius, a, can be calculated by superposition of the
bending angles due to each piece of the ring. Begin by choosing a
rectangular co-ordinate system (%,¥,z) such that "z" is along the axis
of cylindrical symmetry, and the y-z plane is parallel to the light ray
of interest (see Fig. 5). The following quantities are necessary for

the calculation:

<>
r

vector from center of ring to an arbitrary point
on the ring,

R = vector orthogonal to the light ray, and extending
from it to the center of the ring,

E = vector orthogonal to ;ge light ray, and extending
from it to the tip of r,

i = unit vector in %-direction,

3 = unit vector in the Yy-direction,

ﬁ = wit vector in the z-direction,

Y = angle between the z-direction and the light ray,

& = unit vector pointing along light ray,

= siny§ - cosvﬁ,
p = unit vector orthogonal to i and &,

= cosya + sinyﬁ,

25



Figure 5. Lfght passing near a ring of
radius, a, and mass M(a)da.
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x = distance from §—z plane to light ray,
h = projection of % onto ;—z plane,
¢ = angle between T and x-axis.

From these definitions it follows that

i
.

[ I
]

(=

.

By consulting Fig. 5, it is obvious that
WP+xi+re+d-2=0 ,
which implies that £ can be written as
% = -hB-xi-le .
From the definition of ¥ we can write
T= acos¢;. + asinq:ﬁ .
Substitution then allows E to be written as
'g’ = (acosq;-x)i + (a'simpcosY-h)ﬁ + (asinqssiny—x)a ’
which reduces to

E = (acos¢-x)i + (aSimbCOSY"h)l; ’

since E-e=0. The total angle, as thru which light passing near the

ring will be bent is given approximately by
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¢=27
>
;i - QGM(a%da 4§¢ dé , v-1)
2nc a oE
$=0

which following substitution for E becomes

2w
;; - 4GM(a%da s éacos¢—x)i + (asimbcosy;h)p2 . dé . (V-2)
2nc x +h™+a " -2a(xcos¢thsing cosy)—a sin " ¢sin’y
0

The integration for the general case as given by Eq. (V-2) appears rather
*
difficult; therefore, two special cases will be considered. First, if the

light ray is contained in the y-z plamne (x=0), Eq. (V-2) simplifies to

2n

3;(x;0) _ 46M(a)da (acosysing-h) dé s ,

ch2 (h-acosysin¢)z+a2cosz¢
0

and, the integration can now be done by the method of residues. Doing so

gives
AGM(;)da 1 (-p) if h/a>cosy, i.e.
¢ a J(ﬁ/a)2+sinzy i:néight passes outside
»
a_(x=0) = d (V-3)
0 if h/a<cosy, i.e.
if light passes inside ring.

The second special case to be considered is the situation for which h=0

and x#0; i.e., the case for which light intersects a radial line of

*The integration for the general case, Eq. (V-2), has
recently been accomplished.
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the ring orthogonally. In this case the general formula for the light

bending simplifies to

2w

Zr(h=0) _ 4GM(a)¢2]a s (acos¢-x% > — db i,
2nc X +a —2a(xcos$)—-a sin ¢sin’y

0

and as before the integration can be accomplished by the method of

residues. The resulting expression for Zr(h=0) is

"G“(;_)da L (-f) if xva, i.e., if light
c"a f(xla)z-sinzy passes outside the ring,
ar(h=0) = <
0 if xxa, i.e., if light
passes inside the ring.

Derivatives of Bending Angles for a Ring

In a later chapter it will be necessary to calculate and
evaluate at x=0 the derivatives with respect to "x" and "h" of certain

quantities related to :r. The labor involved in this calculation can

S
i
+=0 oh

The demonstration of the validity of this relation is to be now

be reduced by noting that

S
aur
ox

x=0

undertaken. Returning to Eq. (V-2), we find that
2y

-5
da, - 4CM(a)da -1 i+ Zacos¢{(acos¢-x)i +(asin¢cosy-h)1;}

dé
2% c2 ’

0



and evaluation at x=0 leads to

-> 2“
Myl . 4GM(a)da (32@052¢-(h-acosysinq:}2 :
= lx=0 2nc? { 1
0 : (v-5)
2 .
+ (2a” cosysindcosd—2ahcosd) p) ds ,
2
{ 1}
where

{ 1= (h—asin¢cosy)2+azcosz¢ .

Differentiating with respect to h, we find that

> 27
9a R - s
ahr - l«GM(a%da -1} 5+ (2h—2asin¢co§y){ (ac¢2>s¢-x)1+(asin¢cosy—h)p} ds ,
2nc [ { }
0
with evaluation at x=0 leaving
3a 2w 2
T _ 4GM(a)da ( 2a cosysindcos¢—2ahcosé 3
h |9 2rc? i }2 (v-6)
0

azcosz¢-(h—acosysin¢)2 ~) 4
- { ¥ S B

By making the substitution, ¢

¢ + -12'- » we find that

sing = - cosy ,

cos$ = siny ,

2

"{ } = (htacosycosp)® + alsinZy ,

and we note that { } is symmetric in y; i.e., {(+9} = {-y}.
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We also find that under these substitutions Eq. (V-5) becomes

J0. 2 .2 2
e 3 _ 4CM(a)da (a”sin”y-(htacosycos$)” ¢
L3 21"22 { }2
2
2asiny—~2acos inycosv »
+ asinir ( :; e P d"’ ’

and Eq. (V-6) becomes

-5
da, - 4GM(a)da 2asin&-232coszysimgcosxp i
L P { P

- azsinzw-(h+acosYcosw)2 5 4
3?2

¢ L

We now observe that the i component of 331_/ ox |x-~0 and the p component
of 3:r/3‘|x=o are symmetric in §, and that the 5 component of

2> A >

da_/ ax| _o and the i component of aarl oh),_o are anti-symmetric in Y.
Therefore, over an interval of 2w the anti-symmetric terms vanish in

the integration leaving

T4 2 .2 2
ol < . 4GM(a)da | a”sin” y-(htacosycosy) 4 v @
]

ax x=0 21«:2 { }2

and

o 2.2 2
9 4GM(a)da | a“sin”y-(h+acosy cosy)

x=0 y {

Therefore, as indicated, the relation between the derivatives is

> >
|3ar/3x|x=o| = |aar/3h|x___o| . (v-7)



CHAPTER VI

THE LIGHT BENDING FORMULAE FOR A FLAT CIRCULAR PLATE

Having found how a light ray is deflected when it passes near
a ring, it is theoretically possible (assuming linearity) to find the
deflection for light passing near an oblate spheriod by integration-
provided that the appropriate mass density function is known. In
practice however, this becomes an unwieldy task with no guarantee that
the answers will have enough simplicity to.make them surveyable. The
fact that many galaxies,. including our own, have an eccentricity very
near one provides an altemative - that of representing the deflecting
masses by flat plates rather than oblate spheriods. This alternative
allows a measure of simplicity to be introduced without destroying the

inherent cylindrical symmetry of the deflecting masses.

Mass Density of the Plate Model

In order to find the various bending formulae for this flat
plate model of a galaxy, it is necessary to construct a mass density
function for the plates., Attention will now be directed toward this
objective, First assume that the mass density function is cylindrically
sympetric. Then assume that the most reasonable mass density for a
plate can be obtained by projecting all the mass of the oblate spheriod
model, discussed in Chapter 1I, onto a flat circular plate in the

w-plane., For an oblate spheriod of eccentricity, e, semi~major axis,

32
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as and mass density p(w,z), this procedure yields the following

expression for the surface mass density, o(w), of a flat plate:

r z = + v/(aoz-mz) (l—ez)

2nwp (w,2) dodz
27wdn

g(w) =

lz = - /(aoz-mz) (1—e2) .

Using

AY l—e2

p(w,2) = — s
£Z(I_e2) +z2

where "A" is some constant (for example 3.93)&109), the expression for

¢ (w) becomes

a +/a 2-02

6@) = 2a/l-e’ m 22 |
If the above mass density is valid for the entire oblate spheriod, then
the total mass of the oblate spheriod, and thus the total mass of the

flat plate, is related to A, e, and a, by

_ 2 2
H(ao) = 2na0 Avl-e .

Thus, the surface mass density function can also be written as

H(ao) ao+ /aoz-mz
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Light Passing Through the Rotational Axis of the Plate

The Bending Angle for Light Passing Outside the Plate
Using Eq. (VI-1) for the surface mass demsity, consider the
case in which light passes thru the rotational axis of the plate, makes
an angle, Y, with the rotational axis, and passes outside the plate
(see Fig. 6). Using the previous result for a ring, the expression for

the deflection suffered by light in this case is

(x=0) = 81r o(a)ada -5

¢ siny / 2
siny

Substitution of the mass density prescribed by Eq, (VI-1) then gives

a=ao a‘:’h/aoz--a2
- 8GM(a'o) aln —_— .
a (x=0) = 55— da (~p)

2
c’a “siny / n |2 4.2
a=0 siny

and performing the integration leaves

p.o.

BGM(ao) -1 a_siny h a_siny 2 "
(x=0) = = sin - In | I+ P
p.o. cza sin 57 3 2aosiny h
oo Y h +a siny

wvhere M(ao) is equal to the mass contained within radius, a.
The two special cases for which Y=0 and Y=7/2 are of some
interest, and will now be examined, For Y=7/2, 1/1-e2 = 0,05, and

h = ;z;oJl--e2 (i.e., for light grazing the plate), :p o reduces to

46M(a )
_(=0,Y=7/2) = (2.85) ——5—— (-p)

ca
o

+
%.0
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and this is approximately 2.9 times as large as the deflection suffered

by light grazing a sphere of mass, H(ab), and radius, a . For v=0

/1-e~ = 0.05, and h=ao (i.e., for light grazing the plate), we find that
AGM(ao)

(x=0,y=0) = —5—

ca
o

%.0. P
and this is identical to the result obtained for light grazing a sphere
of mass, H(ao), and radius, a .
Derivatives of the Bending Angle for Light
Passing Outside the Plate
> >

The quantities, 3ul8x|XF0 and 3u/3h|x?0, will be required in

Chapter VII, For this reason they will be evaluated here. By direct

differentiation,. we find that.

a sin 2
_ 4GM R oS 1Y
= ee————— In 1+ P
2 2.2 h
=0 ¢ a, sin"y 7

and using the results of Chapter V Eq. (V-7), we further deduce that

33 a siny 2
P.0. - ___ 4oM in 1+ o (—i) .
x 2 2.2 h
*x=0 c ao sin"y

The Bending Angle for Light Passing Through the Plate
It is well known that galaxies exhibit some degree of
transparency; it is therefore desirable to assume transparency for the
flat plate model used here to represent a galaxy, and calculate the

bending formulae for light passing through the plate. From the bending
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formulae for a ring, no deflection results if the light passes inside the
ring; thus, for light passing thru a transparent plate, only the mass
inside the circle of radius, a s (where "am" is the distance from th-e
center of the plate to the point of intersection of light and plate)
contributes to the bending (shaded portion in Fig. 6). Assume that the

impact parameter, h, is related to "am" by

h

a

m ?

.6527 + (l-ez)sinzy

and that the mass density of the plate for a <a is given by

M(a)) a+ va 2—a2
o m m

g(a) = > In 3 .
LES

These assumptions are tantamount to the assumption that only the mass
within the oblate spheriod of eccentricity, e, and semi-major axis, a
contributes to the bending of the light (shaded portion in Fig. 7).

That this is probably not strictly valid can be seen by examining the case
for which Y=0 (see Fig. 7) ~ the assumption in this case being that only
the shaded portion of the oblate spheriod contributes to the bending

when in fact all the mass within the cylinder of radius, a s contributes,

For the situation just described, the expression for the light deflection

is
a=am a + v‘amz—a?'
8GM(a ) aln
a (x=0) = —i—"z‘—o—' 4 da(-p) ,
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Light passing through an oblate spheriod
at angle, Y.

N

T

Light passing through an oblate spheriod
for the case, v = 0.

Figure 7.



which integrates to

8GM(a )[ a _ a_siny
: (x=0) = - o B sin 1 L
p.i. 2 2 | siny )
¢ 3 /h -|~a111 sin’y

h aosiny .

Derivatives of the Bending Angle for Light
Passing Through the Plate

The expression for a&’l ahlxzo can be evaluated by differentiats=g

Eq. (VI-2) directly - doing so gives

-)
T S 8GM(a ) a sin a_siny
P.i. = o m Y Sin-l m (VI-3)
oh x=0 cza 2sin2 h 2, 2 .2
o ¥ /h +am sin vy

2
1 _amsiny .
-3 In | 1+ o -p) .

However, the expression for 83/3x|x=0 must be evaluated indirectly.

This is carried out in the appendix, where it is found that

2a, 4CM(a ) a_siny \2
Eoio - ao m e
F =272 W|® (”—r) D . (VI-2)
=0 ¢ a “sin’y

" Light Meeting a Radial Line of the Pjate Orthogonally

Having obtained the light bending formulae for light passing

thru the rotational axis of the plate, the case where light intersects

a radial line of the plate orthogonally (h=0, x#0) is to now be considerad
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“(see Fig. 8). From the results obtained for a ring Eq. (V-4), the light

deflection in this case is given by

3 (h=0) = 8uG o(a)ada i . (VI-5)
P o2 2
siny I X ) "'32
|sinYy

Figure 8. Light meeting a radial line
of the plate orthogonally.

The Bending Angle for Light Passing Outside the Plate
If the light passes outside the plate, substitution of the
mass density specified by Eq. (VI-1) into (VI-5) gives

a=a° a +v/a 2—32
0 (4]
a

86M(a ) a In
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and integration then yields

6M(a )
a th=0)= . — .2 X (1— ~—— siny}ln 1— -2 siny
P.0. 2
ca, 3 51n Y

a a
+(1+~x—° siny)ln[ 1+§2 siny] i.

The Bending Angle for Light Passing Through the Plate
For light passing inside the plate, the same assumption is made
as in the case for which x=0 and h#0 - namely that for light passing thru
the plate at a distance, x, from tkz center, only the mass contained
within an oblate spheriod of eccentricity, e, and semi-major axis, x,
contributes to the light bending. Under this assumption the mass density

can be written as

M(a [2 2
o) /X ~a
1n e ———— .
2 a
na

(4]

o(a) =

Substitution into Eq. (VI-5 then gives

a=x <+ /x2_ a2

- 8GM(a ) aln =
ap i. (h 0) = 2 2 da ]
c’a siny / % 2 2
= -a
siny

and performing the integration then yields

4GH(a°) x R
(h=0) = - 75 5 [(l—siny)ln(1—-siny)+(1+siny)1n(1+siny)] i.
ca sin’y

Two special cases of interest are y=%/2 and y=0. For

vy=1u/2 and light grazing the edge of the plate,



and for y=0

->
a

p(11=0) = (1.38)
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CHAPTER VII

THE BRIGHTENING OF IMAGES DUE TO FLAT PLATE DEFLECTORS

As mentioned in Chapter I, the Luminosity or "brightness" of a
source may be enhanced by the presence of a mass between source and
observer as compared to the case where no such mass is present,

Define the ratio of the luminosity observed with the deflector mass
present to the luminosity with the deflector absent as the amplification
factor, "I". The amplification factor is calculated by comparing the
cross-sectional areas, at the observer, of infintesimal bundles of light
rays which subtend identical solid angles at the source in the two cases
to be considered (see Fig. 9). The universe is to be represented by
homogeneous Friedmann dust models in the case where no deflectors are
present, and by inhomogeneous Friedmann models in the case where
deflectors are present - the inhomogeneities being deflectors. In

general, the observed luminosity, £, is given by the expression

£
=L_‘.S 1
4w 6A (142 )2
s

where

L = absolute luminosity of the source,

A = cross—-sectional area of infintesimal bundle of light

rays at the observer,
Zs = redshift of the source with respect to the observer,

43
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-and
Gﬂs = solid angle subtended at source by 6A.
Thus, according to the definition, the amplification factor will be

given by L Gﬂs d

2
_ by GAOd (1+Zs)

L ]
4w R 2r 2 (142 )2]
s s s

Figure 9, Bundle of light rays passing
near a deflector,
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Amplification Factor for Imaging Rays
Passing Through the Rotational Axis

Consider the case for which the infintesimal bundle of light
rays connecting source with observer passes thru the rotational axis
of the deflector (see Fig. 10). The amplification factor is given by

R Zr 2

n
2]

or upon substitution of 598 = 6669 by
R 2r 2
s s

&) (%)

The problem, then, is to calculate 6Y/80 and 6X/6¢. From Fig, 10, it is

apparent that
-3
Y=o6rr - |a|Rr, -
Differentiation then gives

8Y _ alal
T T A T

which can be rewritten as

& _ oo [, - Isaalal an
0 s's r, ©oh do|*

Making use of the relation, h = Rdrde, leads to

av o [, Refd%a alal
§0 s 8 r oh | °
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r=0 =ry =r,
Side view.
6¢ 5X
\ \°
~ AN |13
1 ff
=0 =r, r=r,

Figure 10, Bundle of light rays passing through
the rotational axis of a deflector.
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Similarly in the orthogonal direction

86X = Rsrs S¢- uRsrsd ’

where

~_ alal
T Tax 6x

- 3le]

3% Rata¢ -

Substitution and rearrangement then gives

) R.r,.r >
2 - dd'sdala] |
5¢ s's r ax
s
Then by substituting for 6§Y/80 and §X/8¢, the expression for the

amplification factor can be written as

-1 -1
_ Ra¥q%sd a|a] RiTa%sd 3lal
I - 1 - 1 - - e
T dh r ox
8 _ .8
Defining the quantity, F, by
= d'd%sd
=205
r
s

allows the expression for the amplification factor to be written more

compactly as

-1 -1
L - [I_Fzﬁi] [I_Fﬂﬂ] ,
oh ox .

(VII-1)
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If desired, F, can be written in terms of the redshifts of the

source, Zs, and deflector, Zd' For example, if q, = %, we have

o Rdrd(rs-rd)

r ?

S

which can be written in terms of redshifts as

2 (/77 1) (v - /5T
H, (1+zd)3/2 (/1"4'-2;-1)

F(2) =

Amplification Factors in the Case of Plate Deflectors
The: quantities, 83'/ oh, and a&’/ax were evaluated in the previous
Chapter for light passing outside the deflector, and in the case of
transparency, thru the deflector (note that al‘&l /oh = ~ ia§/3h|
and that 8|3|/3x = |a:/8x| for both the inside and outside cases). By
substituting the. appropriate derivatives into Eq. (VII-1), the

amplification factor for light passing outside the plate becomes

2 -1
4GM(a ) 2 aozsinzy
L =}1-F [ m |1+ . (VII-2)
o 2 2 .2 2
ca, sin'y h

In a similar fashion, the amplification factor for light passing through

the plate may be expressed as
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8GM(a ) /2
L= l+Fg——y |In (’3%1 - g st (r__.> (VII-3)

ca sin’y

x l-F ——pru—

8cM(a ) h(f“‘)

ca 51n Y

where

Jeos? y+(1—e )sin Y .

1= s1ny

Note that for light passing outside the plate, the amount of
"brightening" depends upon the positions (redshifts) of source and
deflector, and on the impact parameter, h, However, for light passing
inside the plate and for this particular assumed mass density of the
plate, the amount of "brightening" depends only upon the positions of
source and deflector; i.e,, for a given source and deflector, the
amplification factor is independent of what point on the plate the
light passes through.

" Imaging Rays Passing Through the Semi-Major
Axis of the Deflector

The amplification factors for the case of imaging rays passing
through a radial line of the deflector orthogonally could be found in a
manner similar to that used above - all that is necessary is the derivatives
of the appropriate bending angles. However, calculations have indicated

that for the deflectors we are using here and for sources at redshifts
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less than three, light rays touching opposite points of the deflector
and passing through the semi-major axis of the deflector will not cross.
Thus, although in the general case, it would be possible to see four
images of the source (for suitable alignment of source, deflector, and
observer), only two will be possible under the conditions considered
here. Since we are principally interested in the observability of the
double imaging phenomena, and since for our case rays passing through
the semi-~major axis of the deflector cannot contribute to this

phenomena, the amplification factors for this case will not be explicitly

written. down here.



CHAPTER VIII
PROBABILITY OF SEEING DOUBLE IMAGES

In Chapters T and II, it was indicated that suitable
positioning of deflector and source allows an observer to see two images
of the source. Assuming for the moment that the observer has the ability
to see and resolve both images, the following question may be put forth,
For sources of a given morphology, and at a given distance (redshift)
from the observer, what fraction may be expected to participate in the
double imaging phenomena? It will be the purpose of this chapter to
answer this question.

Construct a sphere, about the observer, such that all sources
lying at redshift, Zs, will lie on the sphere's surface, and assume
that the sources are wniformly distributed over the surface., Then,
for a given deflecting mass lying inside this sphere, there exists
an area, Abverlap’ on the sphere's surface such that if a source is
located inside this area it will exhibit the double imaging phenomena
(see Fig, 11). Thus, the fraction, P, of sources at redshift, Zs,
exhibiting double images should be given by the ratio of the total
overlapped area (defined as the sum of all overlapped area) to the area

of the sphere's surface, AF} i.e.,

P

m

1
K; ¢ onerlap ’
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A
Observer Deflector Z= overlap

Side view

Top view

Figure 11, Overlapped area.
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where ":" means sum over the deflectors contributing to overlap. By
consulting Fig. 11, and assuming that the overlapped areas on the sphere
are elliptically shaped, the expression for the overlapped area can

be written as

(onerlap) S yx .

The expression for P then becomes

P=y nyx
4wR 2r 2 °?
™s 's
where § is given by
y= GyRsrs - c'yrsts ’
and where
=h
% “®¢ -

The impact parameter, h, may be expressed as a function of "y" and "e" as

h = aoxzoszr +(1—e2)sin2'y .

Substituting this into the expression for 0

then gives
y 4

aoéoszv +( l—e?') sinzy

Oy‘—‘ Re .

The bending angle, a_, above may be conveniently written as

y
ay = aEfy(y) ’
where
4GM(ao)
O =73 ’
ca
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and
i a sin
_ 2] . -1 Aoty h oo Y
fy(Y) = Siay) 510 - ~ Jasiny in 1+( = .

/ h2+amzsin Y
Following a similar procedure allows "%" to be written as

X = eRRsrs - a_r R ’

X sds
where
2
% " ®r °
Og = “Ef:‘c(Y) ’
and
£.(y) = 1 [(L—siny) In (l-siny) + (l4siny) 1n (1+siny)] .
X sinzy

The fraction of sources being seen as double can now be written as

1 Fsd Tsd
B —-I:X [Oy‘“ay'r-:'] [02 - ax.g],

or by substituting for 6 and a as

a u/coszy-l-(l-—ez)sinzy r a r
p=1g L2 - f()_s.‘! ._°...af()...s_‘l
4 Rr AL r_ Rr ~ %'x'Y T .

The number of deflectors in a spherical shell of radius, r,

and thickness, dr, is given by

p 2
N(r)dr = comoving 4nr dr

M>
) v 1--1(1:2

’ (VIII-1)
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where p is the co-moving mass density of deflectors (galaxies).

comoving

/IR 3 into Eq. (VIII-1) gives

Substituting g, = P comoving ‘"o

3
P odRo 4y rzdr

> Y 1—-Kr2

N(xr)dr =

Then by using siny as the random distribution function for y and

allowing the sums above to become integrals over variables which allow

overlap, P can be written as

r=x__ (y) =y

3 max max )
P = Pod . poFRo [v/ coszy+(1-e2)sin2Y _ gg_ £ (y,e) Tsd
9
PoF <M /a°2> Rr a, v r,

=r_. (y) ’y=v

min min

d b 4 2 :
1 E sd r . :
[_-Rr -3 fi(y) ] siny dy dr .

Defining "B" and "n" by.

2c
H
o

B

a
£
a ’
o

and

E‘.’. Rrrs d
c

r ’
=

n

"p" can be further rewritten as
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0 6q max max
P= —od ....Bﬂ [sinvv[coszy+(1—e2)sin2Y - —g— fy(Y,e) nsinY]
PoF r=r
min Yzymin
B R02 HoRor
x }1- 7 fx(y)n —— dyd P . (VIII-2)
R2 1—1(1:2

And, this is the sought after expression which gives the probability for
double images. If desired, P can be expressed in terms of redshifts by
utilizing the following relations:

R

== Wz,
-— c - —
rRo = —y— [ qoz + (qo 1) [/1+2qoZ 1]] R
H q "(1+2)
o'o
— c - — At
Tgq= 5 [qozs+(1 qo)] 4 H2q 2, - |9,24+(1 qo)] ¢1+2qozs )
RH q “(14+z2 )(1+Z,)
o o’ s d
2
7 @a,-1) [,z + (a1 (/B2q Z; -1)]
1-Kr ™ = 1~ = A 3
q, (1+Z)
and

H rR

o o \_ 1 JTt%a 7. -

d( = >_ - ; [(Zqo-l)( 142q 2, + (1-q ) (q 2 j+1 qo)] .
q, (142)) /1'+2q°z d
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Approximate Expression for Fraction of Sources Seen as Double

Examination of Eq. (VIII-2), leaves little hope for analytic
evaluation in the general case. However, for the special case of

q =%, an approximate expression for "P" can be obtained by assuming

o

y=n/2, and e = 1. For this special case the expression for "P"

simplifies to
e Y=1/2 -
p p a (xr_-r)
p=-2d oF R 3 cosy __E. . (/2,0) —
P 2 o Rr a 'y ’ T
oF <Mla° > : s
JY 4 r
min min
x | == --;- fx(n/Z)- - r siny dy dr ,

, trBHoRr(rs—r)
cosYnﬁn =

21:1:s

Carrying out the Y integration and writing in terms of redshifts gives

Z=Zs
0 (142 - /14-"2)2
p=--2d 5,2 s 1-B£ _(n/2) -(-—-————”*‘Z;};
PoF (!‘“1+zs -1)° (1+2) (142)
7=0
(Y142 -1) d(ﬁ'i'—Z) ,

(1+z)
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‘and carrying out the "Z" integration then gives the following approximate

expression for P:

3
bod o2 FED [ £ /BUFED (w2 2Tz 1

P=- 10 32 72 » (VIII-3)

PoF (142) 3780(1+Zs)3

where fﬁ(nIZ) = 2 1n2, and B=1l to 1.5. Assuming that podlpoF is unity,

P as a function of the redshift of sources is plotted in Fig. 12,

Adding the assumption that pod/poF"lz (i.e., % of the galaxies are of a
type which contributes significantly to overlap), approximately 27 of the
sources seen at Zs=2 would be expected to be double in the case just
considered. Numerical integration of the general expr:ssion Eq. (VIII-2),
indicates that Eq. (VIII-3) overestimates the expected number of double

images in a q°=!5 model by a factor of approximately two.
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CHAPTER IX
NUMERICAL DATA

From the relations written down in the previous chapters, it
should now be possible to make some specific sta..ments concerning
the observability of the double imaging phenomena,

Numerical integration of Eq., (VIII-2), allows the relation
between fraction of sources observed as double and the redshifts of these
sources to be displayed graphically as in Fig. 13, 14, 15. In these
graphs it was assumed that all the mass of the universe is tied up in the
deflectors used for the calculation. The values of P may be corrected
by multiplying by the fraction, f, of mass in the universe contained in
galaxies which are reasonably well represented by the deflectors used.

Figure 13 illustrates how the relation between P and Zs is
affected by assuming various cosmological models. If q, = 0.005 (as is
the case if the mean mass-energy density in the universe is 2 x 10-31
gm/cm3), the probabilities of observation are rather remote, However,
if q, = 0.5, as is indicated by some observed luminosity redshift
relations, the probabilities of observation become significant; for
example, taking f = !5 and B = 1.4 indicates that about 3% of the sources
at Zs =2 could be expected to be seen as doubles.

Figure 14 illustrates the effect of varying B (essentially H/az)

on the relation between P and Zs. For large spiral galaxies similar to
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our own, B is approximately 1 to 1.5. So, for q = % and £ = %, about
1.6 - 3.3Z of the sources at Zs = 2 could be expected to be seen as double.

Figure 15 illustrates to some extent how variations in the
axial ratios of the deflectors may influence the probability of .
observation for a qov=~0.5 model. Actually, in this calculation, the
decrease in P with increasing axial ratios is probably too severe, since
increasing axial ratios here merely increases the minimum distance
between light and plate. Figure 15 indicates that doubling the axial
ratio reduces the probability of observation by a factor of about two
for saurce redshifts one. to three,

In. all cases for which reasonable values of B and q, were
assumed, the probability of observing double images becomes significant
only at cosmological distances; i.e., at redshifts greater than 0.5.

For all practical purposes this restricts the sources that might exhibit
the effects discussed to. quasi-stellar objects since they are the only
objects at cosmological distances whose intrinsic brightness is large
enough to allow observation.

Two other questions which arise regarding observability are
whether or not the brightness of the two images is sufficient to allow
observation of both images; and if so, whether or not the angular
separation of the two images is large enough to allow resolution of both
images. The brightness of the images relative to the brightness that
would be observed in a homogeneous Friedmann Universe can be calculated
from the amplification factors derived in Chapter VII (Eqs. VII-II,

VII-I1I)., 1In all cases investigated, amplification factors were greater
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‘than one; i.e., both images are brighter than the source would appear
in a homogeneous Friedmann Universe, From the relations written down
in Chapter II and the expressions for the bending angles derived in
Chapter VI, it is possible to calculate the angular separation of the
two images when the imaging rays pass through the rotational axis of
the deflector. When the calculations are done in a q, = 0.5 model, the
angular separation of the two images ranges from 0.1 to approximately

2 seconds of arc., The limit on optical resolution is about one second,
but if the sources happen to be radio emitters, the images could easily
be resolved by long base line radio interferometry techniques(zz).
Some selected results of numerical calculation giving amplification

factors and angular separations of images for various positioning of

observer, deflector and source are presented in Table ],
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Table I. Amplification Factors and Angular Separations of Double
Images in a Universe with qo=% Universe

y(Kpe)  y(Rad) hl(Kpc) BI(Sec) B __Il. | hz(Kpc)‘ Bz(sec)
deo.l and ZS=0.5
1.72 1.5707 1.59 1.29 1,03 0,60 0.49
0.66 1.5 1.28 1.04 1.04 0.90 0.73
=0.1 and 2 =1.0
d (5
2.59 1.5707 1.83 1.49 1.03 0.60 0.49
1.28 1.5 1.51 1.23 1,04 0.90 0.73
d=0.l and Z =1,5
s
2,78 1,5707 1.91 1.55 1.03 0.60 0.49
1.46 1.5 1,59 1.29 1.04 0.90 0.73
d=0.l and ZS=2.0
2,75 1.5707 1,95 1.59 1.04 0.60 0.49
1.48 1,5 1.63 1.33 1.04 0.90 0.73
d=0.1 and Zs=2.5
2,64 1.5707 1.97 1.60 1,04 0.60 0,49
1.44 1.5 1.65 1,34 1.04 0.90 0.73

Z2.=0,1 and Zs=3'0

2,52 1.5707 1.99 1.62 1.04 0.60 0.49
1.39 1.5 1.67 1,36 1.04 0.90 0.73

Zd=0.5 and Z =1,0
s

1.35 1.5707 2,40 0.67 1,06 0.60 0.17
0.88 1.5 2.07 0.58 1.07 0.90 0.25
0.12 1.45 1.56 0.44 1,10 1.40 0.39

Z =0,5 and Zs=1'5

2,07 1.5707 3.24 0.91 1.07 0.60 0.17
1.55 1.50 2.88 0.81 1,08 0.90 0.25
0.73 1.45 2,34 0.66 1. 11 1.40 0.39
0.11 1.40 1.94 0,55 1.15 1.80 0.51
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Table I. (Cont'd.)
y(Kpc)  y(Rad) hl(KPC) Bl(sec) I, ‘hZ(Kps)_ Bz(sec) I,
Zd=0.5 and Z =2.0
S
2.32 1.5707 3.64 1,02 1.07 0.60 0.17 1.83
1.81 1.50 3.28 0.92 1.08 0.90 0.25 1.51
1.00 1.45 2.72 0.76 1,12 1.40 0.39 1.30
0.39 1.40 2,31 0.65 1.15 1.80 0.65 1.22
2;0.5 and Z_=2.5
s
2.40 1.5707 3.89 1.09 1.07 0.60 0.17 2.08
1.90 1.50 3.52 0.99 1.09 0.90 0.25 1.63
1.12 1.45 2.95 0.83 1.12 1.40 0.39 1. 35
0.53 1. 40 2.53 0.71 1.16 1.80 0.51 1.26
Z;0.5 and Z_=3.0
s
2,38 1.5707 4,06 1.14 1.07 0.60 0.17 2,31
1.91 1.50 3.68 1.03 .09 0.90 0.25 1.72
1.16 1.45 3.10 0.87 1.12 1.40 0.39 1.40
0.60 1.40 2.60 0.75 1.16 1.80 0.51 1.29
Z;1.0 and Z_=1.5
0.53 1.5707 1.48 0.35 1.05 0.60 0.14 1.13
0.16 1.50 1.18 0.28 1.07 0.90 0.21 1.09
Z.=1.0 and Z =2.0
d 8
1.06 1.5707 2.36 0.56 1.07 0.60 0.14 1. 34
0.68 1.50 2.03 0.48 1.09 0.90 0.21 1.23
7.2 1.45 1.52 0.36 1.13 1.40 0.33 1. 15
Z;1.0 and Z =2,5
s
1.32 1.5707 2,87 0.67 1.08 0.60 0.14 1.59
0.95 1.50 2.53 0.59 1. 10 0.90 0.21 1.38
0.34 1,45 1.99 0.47 1.15 1.40 0.33 1.23
Z.=1.0 and Z =3.0
d -1
1.44 1.5707 3.20 0.75 1.09 0.60 0.14 1.87
1.08 1.50 2,85 0,67 1.11 0.90 0.21 1,52
0.50 1.45 2,31 0.54 1.15 1.40 0.33 1.31
6.00 1.40 1.91 0.45 1.21 1.80 0.42 1,22
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Table I. (Cont'd.)

y(Kpc)  y(Rad) h,(Kpc) Bj(sec) I,  h,(Rpc) B,(sec) I,

Zd’—'l.s and ZS=2.0

0.12 1.5707 0.82 0.19 1.05 0.60 0.14 1.06

Zd-—‘-los and Zs=2.5

0.51 1.5707 1.55 0.36 1.07 0.60 0.14 1,18

0.19 1.5 1,25 0.29 1.09 0.90 0,21 1.13
Z.~1,5 and Z =3,0

d s

0.74 1.5707 2.02 0,47 1.09 0.60 0.14 1.31

0.42 1,50 1.70 0.40 1.11 0.90 0,21 1.22

deZ.O and Zs=3.0

0.20 1.5707 0.99 0.24 1.06 0.60 0.15 1. 10



CHAPTER X
SUMMARY

As stated in Chapter I, the purpose of this paper has been to
inve=tigate the possibility of observing phenomena arising from spiral
or flat elliptical galaxies acting as gravitational lenses,

This investigation has been undertaken by approximating
galaxies by flat plates of a particular mass density, and by assuming
that the gravitational field of such an object is weak enough to allow
the application of the linearized theory of general relativity, Under
these assumptions, the bending formulae for light passing near the plates
in two special cases were obtained - for light passing through the
rotational axis of the plate model, and for light meeting a radial line
of’ the. plate orthogonally (see Figs. 6 and 8).

With these bending formulae it was then possible to discuss
certain specifics of the double imaging phenomena associated with one
of these plate deflectors. In particular, we have attempted to obtain
an expression for the probability that a double imaging event occurs for
sources located at a given redshift, The expressinn we obtained indicates
that the double imaging depends upon the ratio of mass to semi-major axis
squared for the deflectors, upon the flatness of the deflectors, upon the
fraction of galaxies in the universe with the required flatness, upon
the redshifts of the sources, and upon the overall structure of the

universe. Choosing deflectors with masses and semi-major axes similar
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to our own galaxy effectively eliminates galaxies with axial ratios
greater than about 1/6. This in turn means that—the candidate galaxies
for deflectors must be mostly spirals, About 77% of the bright galaxies
in the universe are spirais, but when the dimmer galaxies are also c;unted
the fraction drops down to as low as 377 ~ we used 50Z in most of our
estimates, Using such numbers we calculated the fraction of double images
expected as a function of redshifts of sources and as a function of the
cosmological model. For all cosmological models, only sources at red-
shifts greater than about 0.5 could be expected to have a reasonable
probability of exhibiting double images - this effectively reduces the
candidate sources to QSS's, We also found that the probability of
expected double sources depends strongly upon the cosmelogical model.

For a model whose mean mass density corresponds to the observed mass
density of galaxies(q°=0.005), a maximum of about 0.097 of the sources

at redshift two could be expected to be double, but in a model with
q°=0.5, the number is increased to a maximum of about 5%. Thus, if a
large number of double QSS's are observed, the implication would be that
the mean mass density of the universe is actually greater than the

current estimate of 2><10m31

gm/cm3.

It is not enough that the double images exist - they must also
be observable. That is, the images must be bright enough to be seen and
the angular separation must be sufficient to allow resolutions. All of
our estimates in this regard were for the special case of the imaging rays

passing through the rotational axis of the deflector and are therefore

somewhat limited, but in all specific situations investigated, the
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amplification factors for the two images were found to be greater than
one, This implies that if the source itself is of sufficient intrinsic
brightness to be observed, then both images would be bright enough to
be observed. The angular separations of the two images are for the
most part below that allowing optical resolutidn (i.e., less than one
second of arc), but should be accessible by long base-line radio
interferometry techniques. Perhaps this could explain some of the
apparent double source configuration of certain QSS's when they are

observed using these techniques(zz).
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APPENDIX

> . . .
The Evaluation of aalax' =0 for Light Passing Through

the Flat Plate Model

Since ?:p i. (x=0) is not a function of x, the derivative
a&’/ax|x=0 cannot be evaluated directly. We wish to demonstrate here that
Eq. (VI-4) is indeed an appropriate expression.

Begin with the general expression for the bending of light
passing near a ring, Eq. (V-2),

=2

T - 4GM(a)da (acosd—x) i + (asindcosy—~h) P

r 2% ¢:2 x2+h2+a2-2a(xcos:,’n+hcosysin¢)—azsinzys in2¢

¢=0

d¢ .

Letting 'f(h,x,a,¢,y) represent the integrand of the above expression, we
can write the general bending formula for light passing near a plate of

surface mass density o(a,am) as

a=a a= 2%
G
&’p.i_(x,h) = -35 ac(a,a )da f(h,xo,a,%v)dtb . (A~-1)
a=0 ¢$=0

From the results of Chapter V, Eq. (V-7), we know that if

27
'a—l; ¥(h,x,a,¢:7) dé = g(a)Y) i; ’ (A-2)
0

x=0
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where g is some function, then

27

-E(hsx:a’¢aY)d¢ = - g(a,Y) f’ .
0

1

x=0

(A-3)

Taking the derivative of Eq. (A-1) with respect to h and evaluating at

x=0 gives
=3 =3
B4, s 4G . 4G " ado(a,a)
ah =P 5 ao(a,am)g(a,v)da + -3 & da
.x=0 c c )
=0 - =0
=27 ¢=27
da_(x,h)
. G
?(h»oaa:‘P’Y)d‘b + “""'P‘l'a'l'l— % aﬁ(am,am) ¥(h9°:as‘t’:7)d¢' .
c”
$=0 $=0
To simplify further calculations, let
a=a
n
G
J, = _4_?? as(a,a )g(a,y)da ,
c
a=0
a=a ¢=2n
do(a,a_ )
4G adala,
3, =% — da f(h,0,3,4,7)d¢
c

a=0 $=0

X
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and
¢=2n
da (xsh) >
Y= B % aw(a,a) £(h,0,2,%,Y) d¢ ,
c
¢=0
so, that we can write
Ja s+3 +3
x=0

33 can be simplified, by performing the ¢ integration as in Chapter V
(see Eq. (V-3)). Doing so gives
816G aam_ O'(am,am)

3 2 3h

c f 2
h . 2
(a) + sin v

3 -B) .

Now, for light passing through the plate, o(a) is given by

M(ao) a + v'atmz--a2
oi(a) = 5 1n Py H (A-4)
LEN

therefore, o(am,am) = 0, and 33 vanishes, In a similar manner, .52 can

be simplified to

a=a
m

3c (a,a )
% 4G acoia,a, 2n 1 o
Jy =3 h da (-P)

c a 2
/ b 2
a=0 5 + siny
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which upon rearrangement becomes

a=a

B (a,a)
2" 72 ah

da
c / 2
a=0 ( -2-) + sinzy

In order to further reduce _52, the quantity, %o (a,am) /3h,

-P) .

is needed. Now, o is given by (A-4), so direct differentiation gives

_aa(a,am) _ M(ao) 1 aam
]
oh xa 2 53 oh
(V) a_ -
m

and since a is related to h by

_ h
a =- ’

m
/ sinzy(l-ez) + coszy

we: have that 3¢/3h is given by

20 (a,am) _ H(ao) 1

oh 2 *
na, lgmz—az v/;inzy(l-ez) + coszy

Substitution then allows 32 to be written as
a=am
8wGM(a )
3 - [o] ada (“P) .

czaozv(';inzy( 1—-e2) + coszy [ amz—a2 v'ﬁz-i-azsinz'r
. =0




78

Carrying out the integration then gives

_ BGH(ao) amsitry sin'l amsnw
2 2 2.2 h *
c"a “sin"y f h2 + amzsinZY

3

Substitution then allows the expression for a&’p/ahlpo to be written as:

a=a_
> .
Ja 26M(a ) a siny
- -‘1 -~
—Rah = ig— o(a,am)g(a,'y)da - -f—i—g— sin 2 P.
=0 ¢ =0 a sin'y h2+am25in2‘r

Now comparing this expression for nglahlxao to the one obtained by

direct differentiation, Eq. (VI-3),

3 BGM(ao) amsiny -1 amsiny
ah -2 2 .2 h sin

x=0 ¢ a “sin’y '/;‘2 + amzsinzy

: 2
1 amsiny "
-3 In 1+ ™ , (-P),

implies that

a=a
m

4G 4GM(ao) amsinY
-3 ao(a,am)g(a,y)da i s In 1+ n . (A-5)
c c"a “sin”y

a=0
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Taking the derivative of (A-1) with respect to "x", evaluating at x=0

and making use of (A-2) and (A-3), we find that

N a=a_

oa i ~ 4G

Pt = i 2 ac(a,a_)g(a,y)da ,
ox cz m

x=0
a=0

but this integrand has just been evaluated (Eq. (A-5)); therefore,

-+ -
aup.i.laxlpo is given by

o i 4CM(a ) a _siny 2 "
= | T 7L |t ( R - .
=0 c a sin’y



