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CHAPTER I 

INTRODUCTION 

In today's competitive horse industry, proper nutrition is imperative 

to gaining the full genetic potential of the horse, regardless of the events 

taken part in, or the production state of the animal. Numerous studies 

dealing with the the impact of various nutrients on equine physiology and 

performance have demonstrated that proper nutrition can and does 

improve such factors as growth, skeletal soundness, reproductive 

efficiency and exercise performance. One specific area of study that is 

relatively new to equine researchers is dietary cation-anion balance 

(DCAB). This equation refers to t,he ratio of the strong inorganic cations 

sodium (Na+) and potassium (K+) to the strong inorganic anion (Cr) in the 

diet, and is defined as: meq (Na + K) - Cl I kg diet dry matter. Sodium, 

potassium and chloride are critical for the maintenance of osmotic 

balance as well as the acid-base status of the animal. Recently, dairy 

researchers have included the anion sulfur (S-) in the DCAB equation 

(meq (Na+ K) - (Cl + S) I kg diet dry matter), as it has been observed to 

have similar anionic effects on the acid-base status of the animal. This 

ratio of cations to anions in the diet has also been referred to as Dietary 

Electrolyte Balance, Dietary Cation-Anion Difference and the Strong Ion 

Difference by researchers in other species. Altering this ratio by 
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increasing ( excess sodium or potassium in relation to chloride or sulfur) or 

decreasing (excess chloride or sulfur in relation to sodium or potassium) 

has been shown to have substantive effects on the acid-base status of the 

animal, as well as such production parameters as growth (swine), 

structural soundness and eggshell quality (poultry), and prevention of milk 

fever in dairy cows. 

At the present time, the National Research Council's Nutrient 

Requirements for Horses (NRC, 1989) has no specific recommendations 

regarding the DCAB for any class of horses, or state of production. 

Recent research at Oklahoma State University has shown that as the 

DCAB increases, (addition of Na\ I<), the acid-base status is increased, 

and apparent daily calcium balance is increased as well. Furthermore, 

increasing the DCAB has been shown to have a beneficial effect on 

equine exercise performance. On the other hand, decreasing the DCAB, 

(addition of Cl-) has been shown to have a deleterious effect on the acid­

base status of the animal as well as on daily calcium balance in both 

sedentary and exercising horses. However, there has been some debate 

as to the exact cause of the increase in performance noted when the 

DCAB is increased, i.e. whether the beneficial effects were due to the 

form of cation fed (e.g. NaHC03) or to the cation itself. Furthermore, it is 

not currently known whether the addition of sulfur has the same anionic 

effect in the equine as does the addition of chloride. 

This study was undertaken to quantify and compare the effects of 

two different forms of sodium and potassium (forms of NaHC03, KHC03, 

Na-citrate and K-citrate). and that of sulfur versus chloride, on the acid­

base status and mineral balance in mature, sedentary horses. 
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CHAPTER II 

LITERATURE REVIEW 

HISTORY OF DIETARY CATION-ANION BALANCE 

In the past, much attention has been paid to the requirements for 

maintenance and production of the major nutrients, i.e. protein, carbohydrate 

and recently, fat, as well as vitamins and minerals to a lesser extent. While the 

other nutrients have been subdivided into subclasses (e.g., carbohydrates as 

structural and nonstructural; vitamins as fat or water soluble), minerals present 

quite a different picture. This nutrient class contains many individual 

components required individually by the animal. However, minerals have only 

been divided into two subclasses, macro and micro, and these classifications are 

based not on any biological significance or function, but on the concentration of 

the mineral found in the body. However, minerals rival any of the other nutrients 

as far as necessity to the animal as they are integral components of many 

biological functions including expression and regulation of genes, enzyme 

systems that regulate cellular function, osmotic balance, detoxification, acid­

base balance and in structural roles (e.g. bone). 

The dietary fixed cations, sodium (Na+), and potassium (K+), the fixed 

anion chloride (Cl-), and the acidogenic anion sulfur (S-) have recently received 

a great deal of attention concerning their role in the dietary cation-anion balance 
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(DCAB, also referred to as dietary electrolyte balance or strong ion difference). 

Sodium and chloride have traditionally been supplied in the diet in the form of 

common salt (NaCl) added to the concentrate portion of rations. Furthermore, 

most livestock rations today contain an adequate amount of potassium as most 

moderate to high quality hays contain more than adequate amounts to meet the 

needs of the animal. More important, however, is the amount of these minerals 

in relation to others in ration ingredients and supplements. It has become 

apparent to dairy cattle, poultry and swine, and recently equine nutritionists as 

well, that the ratio between these cations and anions in the diet has a major 

impact on animal nutrition. 

4 

The concept of balancing rations for cations and anions is not new in 

animal nutrition and was first applied to chickens. One of the earliest 

researchers to propose an equation which would define a balance of the 

nonmetabolizable strong ions sodium, potassium and chloride in the diet was 

Mongin (1980). This equation took into account only these monovalent elements 

as they seemed to have the most metabolic impact on acid-base physiology, and 

they appear to be the ones most readily available via absorption from the gut 

(Austic, 1988). The equation is defined as follows: meq (Na+ + K+) - C(/1 OOg 

diet dry matter, and uses the units milliequivalents (meq), as opposed to 

millimoles, as these elements produce their physiological effects on the body 

according to their valence rather than their gram molecular weight. Since then, 

dairy cattle, swine, poultry, beef cattle and equine researchers have conducted 

numerous experiments dealing with the effect of DCAB on acid-base status, 

calcium balance, growth, dry matter digestibility and structural soundness. 

There are some misconceptions regarding the DCAB equation, however. 

Block (1994) stated that no reaction occurs when Na+ or K+ form alkalis, but 

these ions (as well as Cl- and S04-) indirectly affect the H+ concentration in the 
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body via buffer systems, kidney function and cellular respiration. Therefore, the 

DCAB of a diet does not affect the acidogenic or alkalogenic properties of the 

feeds, but affects metabolic processes of the body after absorption. 

According to Stewart (1981 ), the H+ and HC03- concentrations are 

dependent, not independent variables, and are dependent upon strong ions, 

Na+, K+, er, S04-, the partial pressure of CO2 (pC02), and weak acids such as 

albumin. This author refers to the strong ion difference (SID) calculated as (Sum 

of all strong base cation concentrations) - (Sum of all strong acid anion 

concentrations), and that this value in body fluids is almost always positive and 

is approximately +40 meq/1. 

DCAB Effect on Other Species 

Rabbit 

The cation-anion balance of the diet was first reported to have an effect 

on physiological factors by Morgen and Berger (1915). These researchers 

demonstrated that sodium carbonate was more effective than sodium chloride in 

attempting to increase the mineral content in rabbit bones. These authors 

suggested that the carbonate salt acted to increase the alkaline reserve. 

Thacker (1959) inferred from this hypothesis that calcium, potassium, sodium 

and magnesium deficiencies could be caused by the manipulation of the 

individual level, and by the cation-anion balance of the ration. Thacker (1959) 

demonstrated that rabbits fed a ration based on timothy hay grown in heavily 

fertilized soil which previously had not supported proper growth, hemoglobin or 

bone ash levels (Keener and Thacker, 1958), was rendered adequate by the 

addition of a salt of sodium, potassium, magnesium or calcium carrying an anion 



capable of being oxidized to CO2 and H20 in the animal. It was also suggested 

that the mineral imbalance of the diet induced a calcium and potassium 

deficiency in the unsupplemented animals even though the diet contained 

adequate levels of these elements. 
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Studies concerning the influence of DCAB in the rat have concentrated on 

the effects on bone physiology. Barzel and Jowsey (1969) demonstrated that 

rats consuming ammonium chloride for a long period of time had increased bone 

resorption. However, this loss of bone tissue was prevented by the ingestion of 

sodium and potassium carbonate, apparently by the stimulation of bone 

formation. This physiological response of the bone was attributed to changes in 

systemic acid-base balance, and it was suggested that the intracellular 

mechanism controlling calcium deposition and resorption in the bone was 

sensitive to systemic pH. 

Newell and Beauchene (1975) investigated the effects of acid stress and 

age on renal, serum and bone responses in 13 and 25 month old rats fed 

ammonium chloride at 2% of the diet for nine months. The acid stressed 

animals showed significant decreases in urinary pH, and also significant 

increases in urinary calcium, phosphorus and total H+ excretion. However, they 

observed no effect on calcium content of the bone due to the diet. Petito and 

Evans (1984) evaluated the effects of ingestion of ammonium chloride, 

phosphates and protein on calcium status in growing rats. Ammonium chloride 

was fed to the treatment group of animals at 1.0% of the diet. Treatment rats 

had decreased blood pH and increased urinary cAMP and calcium 

concentrations. Furthermore, treatment rats had a two-fold increase in fecal 

calcium, and had lower specific gravity of the femur. Beck and Webster (1976) 
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suggested that metabolic acidosis inhibits the tubular reabsorption of calcium in 

the nephron, and that this inhibition, coupled with the ingestion of ammonium 

chloride may explain how cAMP and calcium could both be excreted in the urine 

at higher levels. Goulding and Campbell (1984) demonstrated that rats fed salt 

supplements excreted more calcium in the urine and had less calcium in the 

bone as compared to control. 

Poultry 

Poultry nutritionists were the first livestock nutritionists to recognize and 

study the effects of dietary cation-anion balance on production traits. Early 

research in this area concentrated on the effects the elements sodium, 

potassium and chloride had on growth and food consumption through their roles 

in the maintenance of osmotic pressure and acid-base status of the animal. 

Neishiem and coworkers (1964) demonstrated that chicks suffered 

decreases in growth rate when fed excesses of dietary chloride or sulfate 

supplied as glutamic acid hydrochloride, calcium chloride or calcium sulfate. 

However, this decreased growth rate was alleviated by supplying equimolar 

amounts of potassium or sodium supplied as salts of glutamate or carbonate. 

These researchers also demonstrated that chicks suffered decreased growth 

rate when fed excess sodium supplied as sodium glutamate. This depression in 

growth was alleviated when equivalent amounts of chloride were fed. Melliere 

and Forbes (1966) performed a similar study and demonstrated that food 

consumption and growth were maximized when chicks were fed a cation-anion 

ratio of 1.2 to 1.8. A ratio of 0.6 cation to anion almost completely inhibited 

growth. These authors also reported that sodium chloride or potassium chloride 

did not reduce food consumption or weight gain when added to the diet at levels 

equal to the highest amount of hydrochloride. Feeding excess calcium did not 



alleviate the depression in growth demonstrated by feeding excess chloride. 

However, excess magnesium intake partially alleviated this depression in 

growth. 

During the 1960's, a group of researchers began to study the effect of 

acid-base balance on egg shell calcification in the hen (Frank and Beger, 1965; 

Howes, 1967; Anderson, 1967; Mongin, 1968). All of these studies 

demonstrated that the calcification process of the egg shell could be altered by 

manipulating the acid-base status of the laying hen. Feeding diets with a low 

DCAB resulted in decreased calcification of the egg shell. 
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Cohen, Hurwitz and Bar (1972) studied the effects of dietary sodium and 

chloride on blood pH, pC02, HC03-, er, Na+ and egg shell formation in laying 

hens. These authors hypothesized that dietary sodium and chloride were the 

alkalogenic and acidogenic agents, respectively, and that the acid-base 

response would depend on the ratio between these two components. It was 

demonstrated that excess dietary sodium fed with a constant level of dietary 

chloride produced an alkalosis, and excess dietary chloride fed with a constant 

level of sodium produced an acidosis. When sodium and chloride were added to 

the total diet in equal amounts, no differences in the acid-base balance of the 

animal were detected. Therefore, these researchers determined that the acid­

base status of the body, as measured by blood pH, pC02 and HC03-, was a 

function of the ratio of sodium to chloride, and not the absolute amount of either. 

These researchers also stated that the actual pH of the diet was irrelevant in 

producing a metabolic alkalosis or acidosis. Feeding pH neutral calcium 

chloride caused an acidosis, whereas feeding the acid salt sodium 

monophosphate caused an alkalosis. 

Cohen and Hurwitz ( 197 4) studied the response of blood parameters to 

dietary sodium, potassium and chloride in laying hens. These authors 
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demonstrated that supplemental sodium or potassium in the diet resulted in an 

increase in blood pH and HC03-, while the supplementation of chloride resulted 

in a decrease in these same parameters. These findings suggested that the 

responses of sodium and potassium are additive in offsetting the metabolic 

acidosis caused by excess dietary chloride. These findings agreed with those of 

Neshiem et al. (1964) who demonstrated that growth retardation caused by 

excess dietary chloride could be alleviated with the addition of sodium and 

potassium salts, devoid of chloride, to the diet. 

As stated previously, Mongin (1980) was the first to propose a cation­

anion balance equation using the elements sodium, potassium and chloride. 

This equation ((Na++ K+) - Cl-))/1 OOg diet OM could be used to quantify the acid 

or base generating power of the diet. The author's defense of this equation was 

based on the results of two experiments. The first, performed by Mongin and 

Saveur (1973) demonstrated that animals fed diets with a range of -20 to +40 

meq/100 g diet OM had plasma bicarbonate levels linearly related to that sum. 

The second experiment was performed by Hurwitz et al. (1973) who 

demonstrated that animals fed diets containing equivalent amounts of sodium 

and potassium had a blood pH markedly dependent on dietary chloride. 

Hamilton and Thompson (1980) demonstrated a decrease in blood pH, 

bicarbonate level and eggshell strength in hens when the chloride level in the 

diet was increased from .11 to 2.13%. These findings agreed with those of Hall 

and Helbacka (1959), Hunt and Aitken (1962) and Saveur and Mongin (1971) 

who reported that eggshell calcification was depressed in hens fed excessive 

levels of acid chlorides. Furthermore, it has been demonstrated that egg shell 

strength was increased when hens were fed a diet with increased cations (Frank 

and Burger, 1965; Howes, 1967; Mongin, 1968). Austic (1984) also observed a 



decrease in strength and thickness of the eggshell from hens consuming diets 

with excess dietary chloride. 
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The dietary cation-anion balance has also been associated with 

developmental bone abnormalities in fowl, particularly tibial dyschondroplasia 

(TD). Leach and Neshium (1965) described this disorder in young chicks and 

later discovered that this condition could be affected by the cation-anion balance 

of the diet (Leach and Neshium, 1972). Saveur and Mong in ( 1978) reported an 

increase in the incidence of TD resulting from metabolic acidosis caused by 

excessive dietary chloride. Halley et al. (1987) studied the effect of dietary 

mineral balance on growth, leg abnormalities and blood base excess in chicks. 

It was observed that base excess was negatively correlated with 3-week body 

weights and the incidence of TD. These findings agreed with later work that 

demonstrated the relationship between the anionic content of the diet and a 

subsequent alteration in acid base status and higher incidence of TD (Edwards, 

1984; Hamilton and Thompson, 1980; Hurwitz et al., 1973; Mongin, 1981 ). 

Riley and Austic (1983) studied the effects of dietary electrolytes on 

digestive tract pH and acid-base status of chicks. The cation-anion balance of 

the diet was altered by the addition of potassium bicarbonate or calcium 

chloride. It was observed that chicks consuming a diet with excess chloride had 

decreased plasma HC03-, base excess of the blood and pC02. The pH of the 

crop was also depressed by dietary chloride, however, the pH of the 

proventriculus, duodenum, or middle and distal portions of the small intestine 

were not affected. 

Swine 

In the early 1980's, swine researchers took note of the effect of cation­

anion balance in the diet. Yen et al. (1981) studied the effect of calcium chloride 
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as a regulator of feed intake and weight gain in pigs. It was demonstrated that 

crossbred barrows fed a basal diet with 4% CaCl2 had lower daily feed intake, 

weight gain and gain/feed ratios as compared to those fed the basal diet alone. 

Those pigs fed CaCl2 also had lower blood pH, HC03-, tC02 (total CO2 in the 

blood) and base excess. These parameters were restored to normal levels in 

pigs fed a diet containing calcium chloride and sodium bicarbonate. 

Patience et al. (1987) fed 8 - 12 week old pigs five rations with electrolyte 

balances (defined in this study as meq (Na+ K) - Cl/kg diet OM) ranging from 

-85 to +341. It was observed that growth and feed intakes were maximized in 

those pigs fed diets with an electrolyte balance between O and +341, while 

values for these variables decreased in those pigs consuming the lowest 

electrolyte balance (-85 meq/kg diet OM). Furthermore, as the electrolyte 

balance in the diet dropped below a base level of +175 meq/kg diet OM, blood 

pH and HC03- levels dropped, which is evidence of a metabolic acidosis. Golz 

and Crenshaw (1984) studied the effects of sodium, potassium and chloride on 

growth in young swine. These authors suggested that dietary potassium and 

chloride levels have an interactive effect on gain when the sodium level is held 

constant. Optimum growth occurred when the K to Cl ratio was approximately 

2: 1 (.57% Kand .27% Cl) and the sodium level in the diet was held between .03 

and .60%. 

Haydon and West (1990) examined the effects of dietary cation-anion 

balance on nutrient digestibility in growing pigs. Apparent nutrient digestibilities 

were determined by fitting the animals with ileal T-cannulas. Experimental diets 

consisted of a corn-soybean meal base, and electrolyte balance was altered by 

substituting CaCl2 for CaC03, or NaHC03-for corn and soybean meal, resulting 

in four experimental diets with cation-anion balances of -50, +100, +250 and 

+400 meq/kg diet dry matter. Apparent preileal digestibility increased linearly for 
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N, energy, dry matter and all amino acids, except alanine and methionine, as the 

electrolyte balance of the diet increased. Furthermore, blood pH, tC02, HC03 -

and base excess concentrations increased with increasing dietary cation-anion 

balance. 

Dairy Cattle 

Coppock (1986) reviewed the current literature on the effect of DCAB on 

production parameters in livestock. At that time, there was very little interest in 

this area by dairy cattle researchers. Coppock evaluated and calculated the 

DCAB in various beef and dairy experiments that had been conducted. It was 

suggested that the ruminant could more easily withstand a higher DCAB than 

could poultry. Escobosa et al. (1984) demonstrated that cows consuming a diet 

with a negative cation-anion balance exhibited decreased feed intake. Since 

then, much progress has been made studying the effects of DCAB on production 

traits in dairy cattle. 

Block (1984) studied the effects of DCAB on the incidence of parturient 

paresis (milk fever) in dairy cows. Previous research had indicated a 

relationship between dietary anions and an increased calcium availability for 

lactation (Ender et al., 1971; Dishington, 1975; Lomba et al., 1978). Block 

(1984) demonstrated that cows fed a highly anionic diet (-128 meq/kg diet OM) 

during the dry period had significantly decreased incidences of parturient 

pariesis during lactation. Tucker et al. (1988) studied the effects of DCAB on 

milk, blood, urine and rumen fluid in lactating dairy cattle. It was observed that 

increasing the DCAB from -100 to +200 meq/kg diet OM resulted in a linear 

increase in blood pH and HC03-, while actual milk yield was increased 8.6%. 

These researchers also noted that the responses observed, except for blood 



bicarbonate, could be attributed to the DCAB itself, and not the effects of a 

single ion. 
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Because maintaining the blood pH at a constant level is critical for normal 

body function, several mechanisms in the body exist to maintain the 

concentration of HC03- to pC02 in the blood at a constant ratio. This control is 

accomplished by a respiratory response by adjusting the respiration rate to 

control the blood levels of pC02, and a renal response by adjusting the excretion 

of bicarbonate to control blood bicarbonate concentrations (Tucker et al., 1988). 

Beighle et al. (1990) reported that dairy calves fed diets with a low cation 

to anion ratio had higher concentrations of phosphorus in the blood and feces 

versus those calves fed diets with a higher cation-anion ratio. Those calves fed 

the low DCAB also showed lower concentrations of phosphorus in the bone. 

These researchers noted that when a low phosphorus diet was fed along with 

the low DCAB, these effects were amplified, indicating an interaction between 

DCAB and dietary phosphorus on the changes seen in blood, bone and fecal 

phosphorus concentrations. 

Tucker et al. (1992) studied the influence of dietary sodium bicarbonate 

on potassium metabolism in young calves. Feed intake was not affected by 

supplemental potassium chloride or sodium bicarbonate, however, average daily 

gain increased with increased potassium and decreased with increased sodium 

bicarbonate. Urinary calcium excretion also declined with increased sodium 

bicarbonate while urine pH increased. Tucker et al. (1991 a) also studied the 

influence of calcium chloride on systemic acid-base balance and calcium 

metabolism in dairy heifers. It was observed that urinary calcium excretion and 

blood free proton concentration (H+) increased with increasing dietary CaCl2, 

while blood HC03- and urine pH decreased. These authors suggested that the 

increased Ca excretion in the urine was due to either an increased bone 
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mobilization or increased intestinal absorption of calcium. It was also noted that 

increasing the dietary level of chloride caused a subsequent increase in both 

plasma chloride and excretion of chloride in the urine. 

Goff et al. (1991) studied the effects of the addition of chloride to a 

prepartal diet fed to dairy cows which was also high in cations. It was observed 

in this study that cows fed highly anionic diets, parathyroid hormone (PTH) had a 

greater effect on renal production of 1,25 dihydroxyvitamin D, resulting in 

increased intestinal absorption of calcium. Furthermore, osteoclastic bone 

resorption was more responsive to PTH as plasma hydroxyproline concentration 

was higher in cows fed the highly anionic diet. These researchers stated that 

the addition of anions to the diet was thought to induce a metabolic acidosis in 

the cow, which facilitated bone calcium resorption (Block, 1984). This is in 

agreement with Beck and Webster (1970) who indicated that bone, and perhaps 

renal tissue in rats is refractory to the effects of PTH in the alkaline state and the 

stimulatory effects of PTH are enhanced during metabolic acidosis. It has been 

observed in dairy cattle and poultry (Tucker, 1988; Austic, 1984) that this 

increased PTH activity is a possible cause for increased levels of ionized or free 

calcium in the blood and subsequent increased urinary calcium excretion. 

Oetzal et al. (1991) studied the effects of six different anionic salts, 

MgCl2, MgS04, CaC'2, CaS04, NH4CI and (NH4)2S04, on palatability, acid-base 

status and urinary mineral excretion in nonlactating, nonpregnant cows. None of 

the anionic salts (DCAB of -170 meq/kg diet DM) decreased dry matter intake or 

blood pH, but did decrease blood HC03 and base excess. Urinary pH was also 

decreased, and fractional urinary excretion of Ca was increased by all 

treatments. These diets were only fed for one week periods, however, which 

might explain the unaltered blood pH. 
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Gaynor et al. (1989) fed preparturient dairy cows three diets with a DCAB 

of +220, +600 and +1260 meq/kg diet OM. The cows consuming the lowest 

DCAB excreted significantly more Ca and Mg in the urine compared to the other 

two diets and had higher concentrations of 1,25 dihydroxyVitamin D at three 

days prepartuition as well. These cows also had lower dry matter intakes as 

compared to those consuming the two diets with higher DCAB. Wang and 

Beede (1992) fed diets with added NH4CI and S to dry Jersey cows. Those 

cows fed the treatment diets had lower blood pH, higher concentrations of 

ionized Ga in the blood, higher urinary excretion of Ca and lowered urine pH. 

Tucker et al. (1991 b) studied the significance of Sor Cl in the DCAB 

equation in lactating dairy cows. It was observed that Cl or S had similar 

acidogenic effects, as cows consuming diets with either anion had decreased 

blood HC03- and urine pH, and increased urinary and plasma Ca. In addition, 

the plasma cation-anion balance was decreased by the addition of either anion. 

This author stated that it may be necessary to include a modifying coefficient for 

S in the DCAB equation, as the dietary source of S may have an effect on its 

absorption, and the variety of organic and inorganic forms in which S may be 

absorbed and used by the body adds to the variability of its effect on the acid­

base status of the animal. 

Jackson and Hemken ( 1984) studied the effects of dietary cation-anion 

balance on body weight gain and humeral response in dairy calves. These 

authors observed no difference in feed intake due to altered DCAB. Calves fed 

the highest DCAB ( +130 meq/kg) did gain more, however. Blood pH, pC02 and 

HC03 were all lower, and urine pH and urinary Ca and Cl excretion were higher 

in calves fed the lowest DCAB (-180meq/kg). Furthermore, it was observed that 

the breaking strengths for the 7th and 9th ribs were higher for calves consuming 

the highest DCAB. 
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Sheep 

Takagi and Block (1991a) studied the effect of DCAB on macromineral 

balance in sheep. Wethers were fed two levels of Ca (high and low) with three 

DCAB's (High Ca +284, +61, -27, Low Ca +343, +218 and +63 meq/kg). 

Wethers consuming the low DCAB had a reduced Ca retention due to a 

significant increase in urinary Ca excretion, however apparent absorption of Ca 

was similar between treatments. Takagi and Block (1991 b) studied Ca kinetics 

in wethers, simulating the Ca loss during lactation by the infusion of ethalene 

glycol tetraacetate. The animals responded to this induced Ca loss by 

increasing both the true intestinal absorption of Ca and the amount of bone 

resorption. Treatments also produced an increase in ionized plasma Ca. These 

authors concluded that the size of the total exchangeable Ca pool did not differ 

between treatments. However, the reduced DCAB's increased the amount of Ca 

flux through the pool, particularly when Ca demand by the body was increased. 

Beef Cattle 

Ross et al. ( 1994) studied the effects of DCAB on performance in finishing 

beef steers. Steers were fed high concentrate, low roughage diets with a DCAB 

of 0, +150, +300 or +450 meq/kg diet OM. Average daily intake increased 

linearly with increasing DCAB the first 28 days, then quadratically the remainder 

of the study. During the entire feeding period, daily gain and carcass marbling 

scores tended to increase quadratically with increased DCAB. furthermore, gain 

and feed intake were maximized at a DCAB of +150 meq/kg. 
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Equine 

Mineral Requirements 

Sodium. The National Research Council (NRC), (1989) stated that in 

many cases, the sodium concentration of natural feedstuffs for horses is lower 

than 0.1 %. Sodium is therefore commonly added to the diet in the form of 

sodium chloride (common salt or trace mineralized salt) at a rate of 0.5 to 1.0%. 

Sodium is often described as the major extracellular cation and has a major role 

in acid-base status and the osmotic re9ulation of body fluids. The optimal 

sodium concentration of the diet has been reported to be between 1.6 and 

1.8g/kg diet dry matter for growth, maintenance and late gestation and 3.6 g/kg 

diet dry matter for moderate to heavy work (Jarrige and Martin-Rasset, 1981 ). 

Since there is limited data on specific requirements for sodium and the effect of 

physical activity and environment on the animals requirements, the NRC (1989) 

does not make specific recommendations for sodium intake. However, it is 

stated that the sodium concentration in the maintenance diet should be no lower 

than 0.1%. 

Potassium. Potassium is the major intracellular ion involved with acid­

base balance and the osmotic regulation of body fluid. The NRC (1989) lists the 

potassium concentration of forages and oilseed meals at 1 to 2% of dry matter, 

and of common cereal grains (corn, wheat and oats) at 0.3 to 0.4%. Hintz and 

Schryver (1976) estimated that mature horses required potassium at a level of 

.06 g/kg of body weight/day, or approximately 0.4% of the diet. Therefore, if 

forage constitutes a significant portion of the diet, than potassium requirements 

should easliy be met. Drepper and others (1982) estimated the potassium 
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requirements for a 600 kg horse to be 22 g/day for maintenance. Based on this 

research, the NRG (1989) estimated the potassium requirement for maintenance 

to be 0.05 g/kg of body weight or 1.52 g/Mcal of DE. 

Chloride. Chloride is an important extracellular anion involved in acid­

base balance, osmotic regulation, as a minor component of bile, and in the 

formation of hydrochloric acid which is an important component of gastric 

secretions necessary for proper digestion. However, chloride requirements of 

horses have not been established, and requirements are thought to be met when 

sodium requirements are met with salt (NaCl). 

Magnesium. Magnesium is important as an activator of many enzymes, 

and has been observed to have interrelationships with other electrolytes, second 

messengers, hormone receptors, PTH secretion and action, Vitamin D 

metabolism and bone functions. The ever important Na - K 'pump' protein which 

maintains the electrical potential of cell membranes is also dependent on this 

mineral. The magnesium concentration of common feedstuffs has been listed at 

0.1 to 0.3% (NRG, 1989). Researchers have estimated that the true absorption 

of magnesium from feeds is between 40 and 60% (Hintz and Schryver, 1972;, 

Meyer, 1979) and between 42 and 45% (McKenzie, 1981 ). Drepper et al. (1982) 

proposed a daily magnesium requirement of 12 g for maintenance in a 600 kg 

horse. Using the conservative value of 40% absorption efficiency, the NRG 

(1989) suggests a magnesium requirement of approximately 15 mg/kg body 

weighUday, or .46 g/Mcal DE. 

Sulfur. The requirements for sulfur in the horse have received very little 

attention by researchers. Feeding adequate, high quality dietary protein will 
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usually provide a minimum of 0.15% organic sulfur. According to Jarrige and 

Martin-Rasset (1981) and the NRC (1989), that amount is adequate to meet the 

horses needs. 

Calcium. The 1989 NRC estimates the true absorptive efficiency of 

calcium at approximately 70% in young horses and 50% in mature horses. For 

the purpose of estimating calcium requirements for all classes of horses, 

however, the NRC (1989) suggests a value of 50% absorptive efficiency be 

used, due to the possibility of calcium being bound to phytates in feed, rendering 

it unavailable to the animal. Using this Value, the calcium requirement for 

maintenance is stated to be .04 g/kg of body weight/day or 1.22 g/Mcal of 

DE/day. 

Phosphorus. The efficiency of phosphorus absorption in the horse is 

variable due to the age of the horse and the source and concentration of 

phosphorus in the diet. The NRC (1989) estimates that the efficiency of 

phosphorus absorption ranges between 30 and 55%. However, the NRC (1989) 

uses the more conservative figure of 35% for horses at maintenance, gestating 

mares and horses performing work as they all consume mainly plant sources of 

phosphorus. Using the above values, the NRC (1989) lists the phosphorus 

requirements for maintenance at 28.6 mg/kg of body weight/day or 0.87 g/Mcal 

of DE/day. 

Equine Studies 

In 1970, Schryver and others studied the effect of calcium intake on 

skeletal metabolism and the calcium homeostatic mechanisms of young, growing 
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ponies. Three levels of calcium were fed: low Ca (.15% of total diet), 

intermediate Ca (.80% of total diet) and high Ca (1.50% of total diet). Ca was 

supplied in the form of calcium carbonate at the expense of hay and corn in the 

diet. These researchers also used a kinetic analysis with a radioactive isotope 

of calcium so that more accurate determinations of the rate of exchange of 

calcium between body fluids and bone, and the rate of deposition and removal of 

calcium from the bone, could be measured. These researchers observed a large 

variation between groups for intake, excretion and retention of calcium in order 

to maintain calcium homeostasis, but there was no difference in the 

concentration of calcium in the plasma or on the size of the exchangeable pool. 

Ponies fed the low calcium diet had increased fractional absorption of calcium 

and had a decreased renal excretion rate. Furthermore, bone resorption was 

increased above the deposition rate resulting in a net transfer of calcium from 

the bone into the exchangeable pool. Despite these homeostatic mechanisms, 

these ponies experienced a net negative calcium balance. These researchers 

also observed opposite responses in ponies fed the high calcium diet. Unlike 

the rate of removal, however, the deposition rate of calcium was insensitive to 

the dietary level of calcium. 

In a later study, Schryver and coworkers (1971 a) studied the effect of high 

dietary phosphorus levels on calcium utilization and skeletal metabolism in 

growing Shetland ponies fed .4% calcium and either .2% or 1.2% phosphorus in 

the diet. Ponies fed the high phosphorus diet were observed to have increased 

phosphorus retention and plasma levels, while calcium absorption, renal 

excretion and retention all decreased, while total and endogenous fecal calcium 

excretion increased. Furthermore, Schryver et al. (1971 b) showed that renal 

phosphorus excretion, total phosphorus absorption from the gut and phosphorus 



retention were all dependent on phosphorus intake. The efficiency of 

phosphorus absorption averaged 45% across all diets. 
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In 1987, Schryver and others studied the effects of voluntary salt intake in 

mature, sedentary horses and its effect on mineral metabolism. Diets containing 

1, 3 and 5% NaCl were fed, with a mean daily salt consumption ranging from 19 

to 143 g with a mean of 53 g. These researchers observed that fecal excretion 

of calcium was higher in those horses consuming the 1 % NaCl diet, and 

determined that calcium absorption and retention were greater at the higher 

levels of NaCl consumption. Furthermore they observed that phosphorus 

absorption and retention were greater at both the 3 and 5% levels of NaCl 

intake. These researchers stated that urinary sodium excretion was directly 

related to intake and that urinary excretion was the primary excretory path for 

sodium, as fecal excretion, intestinal absorption and retention of sodium were 

not affected by intake. 

Young et al. (1989) evaluated the extent of mineral losses in feces, urine 

and sweat in miniature horses at rest and during exercise. During the exercise 

period, daily sodium intake increased and there was a trend for daily fecal 

excretion of sodium to increase. Also, urinary excretion of sodium decreased, 

possibly due to large amounts of sodium being lost in the sweat. Furthermore, 

both daily chloride intake and fecal concentration of chloride increased, 

contradictory to the work of Schryver et al. (1987). During the exercise period, 

daily intake of potassium and fecal excretion of potassium increased, while daily 

calcium intake and fecal excretion increased, resulting in an increase in daily 

calcium retention. Furthermore, both the daily intake and the daily fecal 

excretion of phosphorus increased, resulting in an increase in daily P retention. 

Milne (197 4) studied the effects of exercise on blood parameters, acid­

base balance and electrolyte levels. This author proposed a linear relationship 



between the changes in arterial and venous blood pH, pC02 and HC03- in 

response to exercise, and suggested that arterial blood parameters could be 

predicted from venous blood values, with the exception of p02. 
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Numerous researchers have studied the effects of sodium bicarbonate 

infusion (dosing) on exercising horses. The impetus for these studies has come 

from empirical evidence from various race trainers that the intubation of sodium 

bicarbonate to horses before a race has a beneficial effect on the horses 

performance. Trainers use sodium bicarbonate because it has the potential to 

counteract the metabolic acidosis produced during a race (Lawrence et al., 

1990). 

Recently, many researchers have studied the effect of varying doses of 

sodium bicarbonate on acid-base status and serum mineral profiles in exercising 

and sedentary horses (Kelso et al., 1987; Lawrence et al., 1987, 1990; Roberts 

et al., 1991; Corn, et al., 1993; Kline et al., 1993; Hanson et al., 1993; Ferrante 

et al., 1993). In all of these studies, sodium bicarbonate was administered via 

nasogastric tube in doses ranging from 200 to 1000 mg/kg of body weight in an 

effort to determine the effects of dosage on blood HC03- concentrations at the 

time of the exercise. In all instances, the infusion of sodium bicarbonate 

resulted in an increase in blood pH and HC03-. However, the highest blood 

levels of these variables varied from 2 - 6 hr post intubation. 

The increase in plasma HC03- and decreased H+ concentrations after 

infusion of sodium bicarbonate have been assumed to be directly attributable to 

the ingestion of HC03- (Ferrante et al., 1993). However, as stated by Stewart 

(1981 ), and according to basic chemical principles, HC03- concentration is a 

dependent variable. The most efficient buffer pair in the body is that of 

H2C03/NaHC03-, due to the high concentrations of HC03- in the plasma relative 

to that of the other three major buffer pairs in the body. However, for HC03- to 



23 

serve in that pair, it must be attached to a Na+ ion (Breazile, 1990). Therefore, 

higher concentrations of Na (and possibly K) supplied in the diet would result in 

an increase in the amount of NaHC03- (and possibly KHC03-) available in the 

plasma to facilitate the removal of H+ out of the muscle during intense exercise. 

Recently, racetracks around the country have taken a hard stance against the 

use of NaHC03 - dosing in horses (Snow, 1992). One reason is that when the 

infusion of NaHC03- is coupled with the use of furosemide, a diuretic, renal K 

excretion is exacerbated and the electrical potential of cardiac cells is altered. 

This alteration may lead to an arrhythmic heartbeat and possibe heart attack in 

intensely exercised horses. 

DCAB Studies 

Topliff et al. (1989) studied the effect of a low ( +6.5 meq/kg) vs. a high 

( +150 meq/kg) DCAB on calcium and chloride metabolism in exercising mares. 

No change in serum calcium or chloride concentrations were observed. Horses 

consuming the low DCAB excreted more calcium in the urine (84.7 mg/di) 

compared to those consuming the high DCAB (9.2 mg/di). Those horses 

consuming the low DCAB also excreted more total calcium per day, as total 

urine output was not different. Furthermore, those horses consuming the low 

DCAB excreted greater amounts of chloride in the urine (176.1 meq/1) as 

opposed to those consuming the high DCAB (124.8 meq/1). This increased 

urinary excretion of calcium and chloride was attributed to the acid producing 

power of the diet. 

Stutz et al. (1992) studied the effects of DCAB on blood variables in 

exercising horses. Four diets were fed with DCAB's of +5 (L), +107 (ML), +201 

(MH) and +327 (H) meq/kg dry matter. Treatments were formed by the addition 
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of calcium chloride and ammonium chloride to diet L, calcium chloride to diet ML 

and sodium bicarbonate and potassium citrate to diet H. While at rest, those 

horses consuming diet L had lower venous blood pH, pC02 and HC03-values 

as compared to those consuming the MH and H diets. However, no differences 

were observed in blood pH or acid-base parameters between treatments from 0 

to 30 min post exercise. 

Wall et al. (1991) evaluated the effects of DCAB on acid-base status and 

urinary mineral excretion in exercising horses. The diets fed were the same as 

in the trial performed by Stutz et al. (1992). Urine pH decreased significantly as 

the OCAB decreased. Furthermore, horses consuming the low OCAB excreted 

more calcium and chloride in the urine, compared to those consuming the 

medium high and high OCAB. Also, horses excreted more sodium in the urine 

when consuming the high OCAB compared to those consuming the other diets. 

The author stated that, depending on the calcium intake, exercising horses 

consuming a low OCAB could experience a negative daily calcium balance. 

Baker et al. (1991) fed sedentary geldings diets with a OCAB of +21, 

+125, +231 and +350 meq/kg diet OM, and observed that urine pH decreased as 

the OCAB decreased. Also, arterial and venous blood pH, pC02 and HC03-was 

decreased in horses consuming the lowest OCAB as compared to all other diets. 

In 1993, Ralston and coworkers studied the effects of OCAB and high 

starch (OCAB 292 meq/kg diet OM) versus low starch (OCAB 200 meq/kg diet 

OM) diets on acid-base status and urinary Ca and P excretion. Blood pH was 

lower in horses consuming the high starch diet at 2 hr post feeding, and urine pH 

was lower at 8 hr post feeding as compared to those consuming the low starch 

diet. The diets were determined to have DCAB of +292 meq/kg OM (high starch) 

and +200 meq/kg OM (Low starch). However, no differences were detected in 

base excess of the blood, blood HC03- or tC02. 
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Popplewell et al. (1993) studied the effects of DCAB on the acid-base 

status and blood parameters in the exercising horse. Experimental diets had 

cation-anion balances of +10, +95, +165 and +295 meq/kg diet OM. Urine pH 

was lower in horses consuming the low DCAB as compared to all other diets. 

Arterial and venous blood pH, HC03-, pC02 and base excess increased as the 

DCAB increased pre-exercise, and all blood parameters were lower in horses 

consuming the low DCAB than all other diets at 60 min. post exercise. Blood 

lactate concentrations were higher, and heart rates were lower post exercise at 

all times in those consuming the high DCAB compared to all other diets. Times 

for the standard exercise test were also lower in those horses consuming the 

high DCAB compared to those consuming the low DCAB. 

Baker et al. (1993) reported on the effects of DCAB on dry matter 

digestibility and mineral balance in both exercised and sedentary horses. In 

exercising horses, dry matter digestibility was lower for those consuming the 

lowest DCAB as compared to those consuming the high DCAB. No differences 

were detected in apparent Cl or Mg balance in sedentary horses, although 

apparent daily Cl balance was higher and apparent daily Mg balance was lower 

in exercising horses consuming the low DCAB as compared to exercising horses 

consuming all other diets. In sedentary horses, apparent Ca balance decreased 

significantly as the DCAB decreased, while in exercising horses, apparent Ca 

balance was higher in horses consuming the high DCAB as compared to those 

consuming the low DCAB. 

In a review of dietary fixed ions and performance in dairy cows, Freeden 

(1993) hypothesizes on the effects of various salts of Na+. K\ Ca +2, Mg+. er, s­

(as S04-) and P (as phosphoric acid). The author stated that both Na and K, if 

fed in the form of NaHC03- or KHC03-, should be alkologenic, except in the case 

of KHC03- fed above the requirement in which case it could be acidogenic due 
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to a hypertonicity effect resulting in dilution of HC03-. The author also stated 

that Cl, in the form of CaCl2 and NH4CI would be acidogenic, whiles- in the form 

of S04, CaS04 and MgS04 would also be acidogenic, but less so when the 

accompanying cation is absorbed. 

It is evident from experiments in swine, poultry, dairy cattle and other 

species that the cation-anion balance of the diet can have a significant effect on 

the acid-base status in the animal, as well as on various production parameters. 

It is also evident from mineral studies in other species and from those in the 

horse that DCAB can have a major effect not only on the acid-base status of the 

animal but also on mineral metabolism and apparent daily balance, particularly 

calcium. It was the purpose of the present study to compare the effects of two 

different sources of sodium and potassium, (Na Citrate, K Citrate, NaHC03-, 

KHC03-) and to compare the anionic acidogenic power of sulfur versus chloride 

on the DCAB equation, and the subsequent effects on the acid-base status and 

apparent mineral balance in sedentary horses. 



CHAPTER Ill 

MATERIALS AND METHODS 

Experimental Design 

Six mature stock type geldings, four Quarter Horse type and two Paint 

horses, were used in a 6x6 Latin Square design experiment to compare the 

effects of two sources of sodium and potassium and that of chloride versus sulfur 

in the dietary cation-anion balance equation (DCAB) and the subsequent effects 

on the acid-base status and apparent mineral balance in sedentary horses. The 

13 week trial consisted of six 12 day dietary adjustment periods followed by a 72 

hour sample collection period. 

Horses were individually stalled and were turned into an outdoor arena for 

free exercise for a minimum of 3 hours daily. Horses were fed at 8 AM and 8 PM 

daily. All horses were immunized and dewormed prior to, and received routine 

health care throughout, the trial. 

Experimental Treatments 

Experimental diets were produced at the Oklahoma State University 

Feedmill, and consisted of a pelleted base concentrate of corn, soybean meal 

and cottonseed hulls. The concentrate was fed in a 60:40 ratio with native 
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prairiegrass hay grown on the Oklahoma State University Animal Science Farm. 

The complete diet was fed in amounts to maintain a constant body weight 

throughout the trial. The six diets were formulated with the addition of anionic or 

cationic salts to achieve the desired cation-anion balance. Sulfur, as sulfate, 

was added at .65% to diet Low-Sulfur (L:S). Diet Low-Chloride (L:CI) was 

supplemented with .65% ammonium chloride. The High Potassium Citrate diet 

(H: KC) was supplemented with 2.25% potassium citrate, while the High 

Potassium Bicarbonate diet (H:KB) was supplemented with 2.10% potassium 

bicarbonate. The High Sodium Citrate diet (H:NaC) was supplemented with 

2.10% sodium citrate, while the High Sodium Bicarbonate diet (H:NaB) was 

supplemented with 1.75% sodium bicarbonate (Table I). Diets were formulated 

to contain 2.5 Meal/kg OM and 9.5% crude protein across all treatments (Table 

II). Diets were analyzed and determined to contain approximately equivalent 

amounts of calcium, phosphorus and magnesium. Actual dry matter 

concentrations of the minerals in the total experimental diets are given in Table 

II. The varying concentration of these minerals resulted in dietary cation-anion 

balances of +O (L:S}, +53 (L:CI), +405 (H: KC), +364 (H:KB), +360 (H:NaC) and 

+409 (H:NaB), on a dry matter basis. 

Blood Collection 

Venous blood samples were drawn on the first day of each collection 

period via 18 gauge catheter placed in the jugular vein approximately one hour 

prior to the first collection. Blood samples were then drawn just prior to the 

morning feeding, and hourly thereafter for 11 hours post feeding. Approximately 

3 ml of blood was injected into a heparanized vacutainer blood collection tube 

and placed on ice until analyzed for blood 
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Table I. COMPOSITION OF DIETS, AS FED BASIS 

In redient % L:S L:CI H:KC H:KB H:NaC H:NaB 

Ground Com 35.00 33.00 33.00 33.00 33.00 33.00 

Soybean Meal 5.70 6.00 6.00 6.00 6.00 6.00 

Cottonseed Hulls 15.15 16.90 15.25 15.40 15.40 15.75 

Limestone .30 .30 .30 .30 .30 .30 

Dical Phosphate .50 .50 .50 .50 .50 .50 

TMS .50 .50 .50 .50 .50 .50 

Chromic Oxide .20 .20 .20 .20 .20 .20 

Ammonium Chloride 0.65 

Sulfur 0.65 

Potassium Citrate 2.25 

Potassium Bicarbonate 2.10 

Sodium Citrate 2.10 

Sodium Bicarbonate 1.75 

Prairiegrass Hay 40.00 40.00 40.00 40.00 40.00 40.00 

DCAB (meq/kg DM) +O +53 +405 +364 +360 +409 
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TABLE II. DIET ANALYSIS (DRY MATIER BASIS) 

Constituent L:S L:CI H:KC H:KB H:NaC H:NaB 

DE, Meal/kg 2.53 2.50 2.46 2.47 2.47 2.48 

CP% 9.55 9.49 9.40 9.42 9.41 9.43 

Calcium% .56 .54 .57 .55 .55 .60 

Phosphorus % .37 .38 .37 .36 .36 .40 

Magnesium% .14 .16 .14 .12 .14 .14 

Potassium% .72 .79 2.07 1.95 .77 .79 

Sodium% .37 .36 .36 .35 1.11 1.30 

Sulfur% 1.11 .12 .11 .12 .10 .13 

Chloride% .66 1.00 .66 .65 .64 .66 

DCAB +O +53 +405 +364 +360 +409 
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gasses within one hour of collection. All blood samples were analyzed for pH, 

pC02, tC02, HC03-, base excess, blood (BEb) and base excess, extracellular 

fluid (BEecf), using a blood gas analyzer (Instrumentation Laboratory Model 

1304, Lexington, Ma.). An additional 10 ml of blood was allowed to clot for a 

minimum of 1.5 hr, centrifuged at 3600 rpm and resultant serum drawn and 

frozen for later mineral analysis. Venous serum samples were analyzed using a 

RocheR Cobas Mira Automated Wet Chemistry Analyzer (Nutley, New Jersey). 

Urine Collection 

Total urine production was collected, beginning on the first day of each 

collection period, via urine harnesses, every 4 hr for 72 hr. The volume of urine 

produced was recorded for every four hour period. A 50 ml sample was 

analyzed for pH using a Fischer Accumet Model 950 pH meter with a standard 

glass body combination electrode which accounts for sample temperature. This 

pH meter was standardized prior to each four hour collection. After analysis of 

pH, these samples were then acidified with concentrated HCI at 3% of total 

volume and frozen for later mineral analysis. A separate 25 ml sample was 

taken at each interval and frozen for later analysis of chloride. 

Fecal Collection 

Fecal samples were obtained 6 times randomly over 72 hours of each 

collection period so that every 2 hours post feeding was represented. Chromic 

oxide was added at 2% of the total diet as an indigestible marker for the 

determination of fecal volume. Each sample was identified by horse, treatment 



number and time and all samples were immediately frozen in freezer bags for 

later mineral analysis. 

Laboratory Analyses 

Urinary Mineral 

Calcium, Sodium, Potassium and Magnesium 
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For analysis of calcium content of the urine, the composite samples were 

diluted with a .5% La+ .1 % K solution for a dilution rate of 1 :2241.1 and 

analyzed on a Perkins-Elmer Model 4000 Atomic Absorption Spectrophotometer. 

For analysis of sodium, composite samples were diluted with distilled, deionized 

water for a final dilution rate of 1: 10,000. Samples were analyzed using an 

Atomic Absorption Spectrophotometer using a 1 ppm standard. For the analysis 

of potassium, composite samples were diluted with a .1 % La solution for a final 

dilution rate of 1:5102.04 or 1: 15625.01. Samples were analyzed using an 

Atomic Absorption Spectrophotometer using a 2 ppm standard. For the analysis 

of magnesium, composite samples were diluted with a .1 % La + .1 % K solution 

for a final dilution rate of 1:5102.04. Magnesium concentration was determined 

using an Atomic Absorption Spectrophotometer, using a .400 ppm standard. 

Phosphorus 

For the analysis of phosphorus, 10 microliters of composited horse­

trreatment-time urine sample was dispensed along with 1 ml of .4 mM 

ammonium molybdate in HS04 acid reagent (Sigma chemical #360-UV) into 

glass culture tubes. A 5 mg/di P standard was used and samples were read on 

a Gilford Spectrophotometer at 340 nm. 



Chloride 

Urine chloride concentration was determined via potentiometric titration 

using a 100 meq Cl/I standard solution and were read on an HBI Digital 

Chloridometer (Haake Buchler Instruments, Inc.). 

Sulfur 
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For the analysis of urinary sulfur, 2 ml of urine from each horse, period 

and trweatment combination was placed in a 50 ml erlenmyer flask. Five ml of a 

digestion mixture was then added to each flask. The digestion mixture 

contained 1. 7 g ammonium metavanadate in 1050 ml concentrated nitric acid, 

1200 ml of perchloric acid, and 7.5 g of potassium dichromate in 250 ml distilled, 

deionized water. A funnel was then placed in the neck of each flask, and flasks 

were heated on a hot plate at 80 degrees C for approximately 15 min until initial 

reaction was over. The digestion was then continued until the perchloric acid 

was fuming strongly and an orange-red precipitate appeared. Flasks were 

removed from heat and allowed to cool. Twenty five ml of an acid mixture, 

containing 50 ml glacial acetic acid, 20 ml HCI and 20 ml ortho-phosphoric acid 

in one L distilled, deionized water, was then added to the flasks. Flasks were 

then filled to volume with distilled, deionized water. A stock sulfur standard was 

made by dissolving 5.4341 g of dried potassium sulfate into 1 I distilled deionized 

H20. Working standards were then made by pipetting 1, 2, 3, 4, 6, 8 and 1 O ml 

of stock standard into 100 ml flasks. Two ml of a solution containing 15 mg 

potassium dichromate/ml, 5 ml of perchloric acid and 50 ml of acid mixture was 

then added to each flask, and flasks were filled to volume with distilled, 

deionized H20. Two ml of the digested samples and working standards were 

pipetted with 1 ml of a solution containing 100 g barium chloride and 50 ml 



Tween 80 diluted to 1 L into glass culture tubes. Samples were read on a 

Gilford Spectrophotometer at 623 nm. 

Fecal and Feed Analysis 

Sodium, Potassium, Magnesium and Calcium 
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For the analysis of fecal Na, K, Mg and Ca, approximately 2 g of dried 

fecal sample was ashed for 5 hr at 500 degrees C. 10 ml of 20% HCI was then 

added to each beaker and covered with a watch glass. Samples were then 

digested on medium heat for approximately 10 min. Samples were then filtered 

into 100 ml flasks. Samples were then diluted with the appropriate diluent for 

each mineral, and read on a Perkins-Elmer Atomic Absorption 

Spectrophotometer. For the analysis of feed Na, K, Mg and Ca, 1 gram of 

composited dried sample was dried at 55 degrees C for 24 hours, weighed, and 

dried again for two hours until a final dry weight was confirmed. Samples were 

then ashed at 500 degrees C for four hours. Two ml of 1: 1 HCI was then added 

and samples were then boiled on a hot plate at a temperature between 150 and 

200 degrees F until evaporated to dryness. Twenty five ml of a blank solution 

containing 1.5 n HN03 and 0.5 n HCI was added and samples were then 

analyzed using Inductively Coupled Plasma Spectroscopy (Model ICAP61 

Therno Jarrell-Ash). 

Phosphorus 

For the analysis of fecal concentration of phosphorus, 2 g of dried sample 

were ashed at 600 degrees C for 6 hr. Forty ml of 25% HCI and 2 ml of nitric 

acid was then added, and samples were digested by being brought to a boil on a 

hot plate. Samples were then transferred to 100 ml flasks and brought to volume 
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with distilled, deionized water. A 1 O ml aliquot was then transferred into a 100 

ml flask and 20 ml of Ammonium - Molybdovanadate reagent was added. 

Samples were then diluted to volume with distilled, deionized water, and read at 

400 nm. For the analysis of feed P concentration, 1 gram of composited dried 

sample was dried at 55 degrees C for 24 hours, weighed, and dried again for 

two hours until a final dry weight was confirmed. Samples were then ashed at 

500 degrees C for four hours. Two ml of 1: 1 HCI was then added and samples 

were then boiled on a hot plate at a temperature between 150 and 200 degrees 

F until evaporated to dryness. Twenty five ml of a blank solution containing 1.5 

n HN03 and 0.5 n HCI was added and samples were then analyzed using 

Inductively Coupled Plasma Spectroscopy (Model ICAP61 Therno Jarrell-Ash). 

Chloride Analysis 

For the analysis of fecal and feed chloride, 1 g of dried composited fecal 

sample and 1 g of each individual experimental diet was ashed for 4 hours at 

500 degrees C. Before ashing, 20 ml of sodium carbonate was added to the 

dried sample to prevent the loss of chloride during ashing. After cooling, 20 ml 

of 20% nitric acid was added to the sample. Samples were then boiled on a hot 

plate on a setting of Low for 30 minutes. Samples were then transferred to 50 ml 

volumetric flasks, and the flasks were filled to volume with distilled, deionized 

water. Chloride concentrations were then determined via potentiometric titration 

using an HBI Digital Chloridometer (Haake Buchler Instruments, Inc.). 

Sulfur 

For the analysis of feed and fecal sulfur, approximately 3 g of sample was 

ashed at 500 degrees C for 5 hr. Five ml of a digestion mixture was then added 

to each flask. The digestion mixture contained 1. 7 g ammonium metavanadate 



36 

in 1050 ml concentrated nitric acid, 1200 ml of perchloric acid, and 7.5 g of 

potassium dichromate in 250 ml distilled, deionized water. A funnel was then 

placed in the neck of each flask, and flasks were heated on a hot plate at 80 

degrees C for qpproximately 15 min until initial reaction was over. The digestion 

was then continued until the perchloric acid was fuming strongly and an orange­

red precipitate appeared. Flasks were removed from heat and allowed to cool. 

Twenty five ml of an acid mixture, containing 50 ml acetic acid, glacial, 20 ml HCI 

and 20 ml ortho-phosphoric acid in one L distilled, deionized water, was then 

added to the flasks, and they were then filled to volume with distilled, deionized 

water. A stock sulfur standard was made by dissolving 5.4341 g of dried 

potassium sulfate into 1 I distilled deionized H20. Working standards were then 

made by pipetting 1, 2, 3, 4, 6, 8 and 10 ml of stock standard into 100 ml flasks. 

Two ml of a solution containing 15 mg potassium dichromate/ml, 5 ml of 

perchloric acid and 50 ml of acid mixture was then added to each flask, and 

flasks were filled to volume with distilled, deionized H20. Two ml of the digested 

samples were pipetted with 1 ml of a solution containing 100 g barium chloride 

and 50 ml Tween 80 diluted to 1 Land samples were read on a Gilford 

Spectrophotometer at 623 nm. 

Chromium 

Approximately .4 g of fecal and .5 g of feed sample was placed in oven­

dried 100 ml beakers, and the air dried sample weight was recorded. Samples 

were then placed in drying ovens for 24 hours at 60 degrees C. After cooling in 

dessicators, the beaker and sample were reweighed to determine oven dried 

sam'ple weight. Samples were then ashed at 500 degrees C for 4 hours. Six ml 

of an acid mixture (1000 ml DOH, 500 ml H2S04 and 500 ml H3P04) was then 

added to the ashed sample. Samples were then placed on a hot plate and 
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brought to a boil at a setting of 6. Three ml of KBr03 was added, and the 

sample was boiled for .5 to 1 minute after S03 fumes appeared. The beakers 

were then allowed to cool to room temperature for 10 minutes. Twenty ml of 

dilute Bromate was then added and the mixture was brought to a boil at a setting 

of 4. When the sample changed from clear to milky, the beaker was removed 

from the hot plate and allowed to cool. The sample was then transferred to 100 

ml volumetric flasks and filled to volume with DOH. The flasks were then capped 

and inverted 3 times. Five ml was transferred to centrifuge tubes and 7.5 ml of 

5% NaOH was added. After 15 minutes, the tubes were vortexed and allowed to 

settle for 15 minutes. The sample tubes were then centrifuged at 2000 rpm for 

15 minutes. Samples and standards were then analyzed for chromium 

concentration on a spectrophotometer (Gilford Response Series UV-VIS 

Spectrophotometer, Ciba Corning Diagnostics Corporation.), and read at 400 

nm. 

Statistical Analysis 

Data for blood gasses and urine pH were analyzed using a repeated 

measures model, with horse, period and treatment as the main effects and time 

as the repeated variable. Least squares means over time were then calculated 

and tested for significance using the pdiff procedure. Significance was declared 

at p < .05 (SAS, 1985). Data for daily excretion of urinary H\ mineral 

concentrations, as well as daily fecal mineral concentrations, apparent mineral 

balances and dry matter digestibility were analyzed using the general linear 

models procedure with horse, period and treatment as the main effects. Least 

squared means were then calculated and significance was declared at p < .05 

using the pdiff procedure (SAS, 1985). Standard errors for urine and fecal 

excretions and mineral balances were averaged over all treatments because of a 
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missing cell in the Latin Square design due to one horse being removed from the 

study after complete refusal of the L-S diet. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Urine pH 

The effect of treatment over time on urine pH is shown in Table Ill and 

graphically in Figure 1. The effect of DCAB on daily urinary H+ excretion is 

shown in Table IV. Least square mean urine pH values were not significantly 

different for those horses consuming diets L:S and L:CI, and as expected, were 

both significantly lower than values for horses consuming the diets with high 

DCAB. Furthermore, there was no significant difference in least squares mean 

urine pH values among those horses consuming the high diets at any time post 

feeding. Least squares means ranged from 5.97 to 6.19 on diet L:S, 5.65 to 5.82 

on diet L:CI, 8.57 to 8.73 for diet H:KC, 8.44 to 8.67 on diet H:KB, 7.96 - 8.79 on 

diet H: NaC and 8.15 to 8.57 on diet H: NaB. As pH is a log scale of H+ 

concentration, a more clearly defined picture of actual H+ excretion may be 

gained by charting daily H+ excretion (Table IV). Least squares means for daily 

H+ excretion agreed with the data for urine pH, as those horses consuming diets 

L:S (22,856.01 neq/d) and diet L:CI (43,838.26) were not significantly different 

from one other (p ~ .056). Furthermore, daily H+ excretion for those horses 

consuming diets H:KC, H:KB, H:NaC and H:NaB (least squares means of 25.40, 

38.50, 44.40 and 55.20, respectively) 
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were also not significantly different from one another, and again were all 

significantly lower as compared to diets L:S and L:CI 
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These data for urine pH values for horses consuming anionic diets agrees 

with that of Oetzal, et al. (1991) and Tucker ~t al. (1991) who observed similar 

effects when feeding highly anionic diets by the addition of Cl or S. Additionally, 

the lowered urine pH for those horses consuming diet L:CI agrees with that of 

previous experiments in both sedentary and exercising horses (Baker et al., 

1992, Wall et al., 1992; Popplewell et al., 1993). This decrease in urinary pH 

may be attributed to the increase in urinary chloride (L:CI) and sulfur (L:S) 

excretion by the kidneys in response to a lowered SID in the blood plasma 

caused by the increased intake of these anions. Increasing the excretion of Cl 

and Sis the response by which the animal attempts to restore the SID in the 

plasma to a normal level, and therefore decrease the concentration of circulating 

H+ ions. When excess Cl or S is excreted in the urine, the plasma SID is raised, 

causing H+ ions to reassociate with OH- to form H20, thereby reducing the 

concentration of circulating H+ in the plasma. This same reaction occurs in the 

filtrate of the kidneys, as excess Cl and S enters, more H20 dissociates to H+ 

and OH-, with the positive charge of H+ balancing the negative charge of the er 
ands- ions. 
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Table Ill. EFFECT OF DCAB ON URINE pH POST FEEDING* 

Treatment 

Time L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 
a 

6.06b 5.76b 8.66c 8.58c 8.55c 8.38c 8AM 0.245 

12 PM 5.97b 5.66b 8.69c 8.67c 8.63c 8.44c 0.193 

4PM 6.19b 5.65b 8.73c 8.51c 8.31c 8.15c 0.219 
a 

6.08b 5.80b 8.69c 8.53c 8.46c 8.31c 8 PM 0.238 

12AM 6.02b 5.67b 8.68c 8.67c 8.79c 8.57c 0.266 

4AM 6.00b 5.82b 8.57c 8.44c 7.96c 8.32c 0.373 
a 

Indicates Feeding Time 
be 
· LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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Table IV. EFFECT OF DCAB ON DAILY URINE H+ EXCRETION, (neq)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 

22856.01 b 43838.26b 25.41 a 38.528 44.428 55.268 6949.66 

ab 
· LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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Blood Acid-Base Status 

Blood pH 

The effect of DCAB on venous blood pH is shown in Table V and 

graphically in Figure 2. There was no significant difference detected in blood pH 

values in those horses consuming diets L:S and L:CI at 8 of the 12 intervals 

measured post feeding. Those horses consuming diet L:CI had lower (p < .05) 

blood pH values as compared to those horses consuming all high diets at 10 of 

12 intervals measured, and lower than all but diet H:NaC at the other 2 intervals 

measured. Those horses consuming diet L:S had lower (p< .05) blood pH 

values as compared to those consuming all high diets at 6 of the 12 intervals 

measured, and lower than two of the four high diets 5 of the other 6 intervals 

measured. 

There was no difference detected in blood pH values among those horses 

consuming the four high diets at all intervals measured, except for O and 3 hr 

post feeding. These data agree with that of Oetzal et al. (1991) and Tucker et 

al. (1991) in dairy cows fed anionic diets supplemented with Cl and S. The data 

for blood pH in those horses consuming diets L:CI and the high diets also agrees 

with previous work in horses (Baker et al. 1992; Stutz et al., 1992; Popplewell et 

al; 1993). 

According to Stewart (1981 ), H+ and HC0-3 concentrations in the blood 

are dependent upon the strong ion difference, or SID. According to the theory of 

electrical neutrality of body fluids, as excess strong cations (Na+ and K+) are 

absorbed from the gastrointestinal tract into the blood, they must be balanced by 

a loss of a positively charged ion. It is possible that when excess Na+ and K+ 

enter the plasma, this causes H+ ions to reassociate with a OH- ion to form H20, 
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thereby causing a reduction in the concentration of H+ in the plasma, and hence, 

an increase in blood pH. It has also been postulated that as excess Na+ is 

absorbed across the luminal epithelium of the intestine, it is in exchange for a H+ 

ion (Best and Taylor, 1991 ). However, this theory is unlikely because of the 

significant gap in total concentrations of Na+ and H+ in the plasma, as the 

concentration of H+ is extremely low relative to that of Na+_ Accordingly, as 

excess er or s-, is absorbed into the blood, they must be balanced by the loss of 

a negatively charged ion, or the gain of a positively charged ion with osmolarity 

a limiting factor to the latter. It is posssible that as excess er or s- is enters the 

plasma, H20 is caused to dissociate to H+ and OH-, thereby increasing the 

concentration of H+ in the plasma. It is also widely held that excess er is 

absorbed across the luminal epithelium of the gastrointestinal tract, it is in 

exchange for a HC0-3 ion (Best and Taylor, 1991 ), resulting in a decrease in 

circulating HC0-3 in the plasma and a subsequent metabolic acodosis. It is 

likely that both theories may be at least partially correct as the cause of the 

increase in concentration of H+ and decrease in blood pH in those horses 

consuming the L:S and L:CI diets. 

The osmolarity of blood plasma is approximatley 300 milliosmols/1, or 300 

milliequivalents of particles per liter of blood. Of that total, approximately 140 

meq are Na, 110 meq are Cl, 28 - 32 meq are HC03-, 3 - 5 meq are K, 2.5 meq 

are Ca and 5-6 meq are glucose, with the remaining a combination of proteins, 

free amino acids, urea, sulfates, phosphates and lactate (Best and Taylor, 

1991 ). The body tightly regulates this osmolarity, and keeps the total close to 

300 milliosmols/1. In the plasma, there is a balance of ions known as the anion 

gap, which is defined as: ([Na+]+ (K+]) - ([Cr]+ [HC0-3]), and the body will 

maintain this ratio of ions within a very specific range (Breazile, 1990). As the 

amount of chloride in the plasma increases, the body will reduce the amount of 
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TABLE V. EFFECT OF DCAB ON VENOUS BLOOD pH POST FEEDING* 

TREATMENT 

Time L:5 L:CI H:KC H:KB H:NaC H:NaB 5.E. 

0 7.384abe 7.358a 7.415 
b 7.413be 7.384ae 7.414b .0103 

1 7.352ae 7.325a 7.367be 7.391 b 7.389b 7.382be .0097 

2 7.350a 7.339a 7.386b 7.401 b ·7.395b 7.401b .0104 

3 7.369a 7.361a 7.402be 7.381ae 7.397be 7.413 b .0086 

4 7.374 a 7.356 a 7.415 b 7.411 b 7.403 b 7.407 b .0082 

5 7.363 a 7.354 a 7.410 b 7.413b 7.397 b 7.408 b .0086 

6 7.370b 7.345 a 7.403e 7.402 e 7.401 e 7.398 e .0066 

7 7.372 a 7.352 a 7.416 b 7.408 b 7.405 b 7.422 b .0095 

8 7.386b 7.357 a 7.414 e 7.409 e 7.408 be 7.409 be .0076 

9 7.388b 7.358 a 7.416 e 7.413 e 7.408 be 7.410 be .0073 

10 7.389 ab 7.369 a 7.418 be 7.439 e 7.429 e 7.432 e .0098 

11 7.389 b 7.360 a 7.413 e 7.416 e 7.417 e 7.418e .0058 

abed 
· · · LSMeans in rows with different superscripts differ (p < .05) 

* , Values given are least squares means 
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bicarbonate to maintain the anion gap. By definition, a metabolic acidosis, as 

opposed to a respiratory acidosis, is one caused by a decrease in blood HC03-. 

Although the exact mechanism by which plasma H+ increases with excess 

er or s-, and decreases with excess Na+ or K+ is unknown, these data suggest 

that increased absorption of S has a similar, if not quite as pronounced, effect on 

decreasing the pH of the blood, while the citrate and bicarbonate forms of both 

Na and K appear to have the same effect on increasing the pH of the blood. 

Blood pC02 

The effect of DCAB on venous blood pC02 is shown in Table VI and 

graphically in Figure 3. There were no differences detected in blood pC02 

values in those horses consuming diets L:CI and L:S at 11 of the 12 intervals 

measured. Those horses consuming the L:CI diet had lower (p< .05) pC02 

values as compared to those horses consuming all high diets at 7 of the 12 

intervals measured, while those consuming diet L:S had lower (p< .05) pC02 

values as compared to those consuming all high diets at 3 of the 12 intervals 

measured. There was no difference detected in blood pC02 values among 

those horses consuming any of the high diets at 9 of the the 12 intervals 

measured. These data are in agreement with previous work in horses (Baker et 

al., 1992; Stutz et al., 1992; Popplewell et al., 1993). 

The decrease in blood pC02 values in those horses consuming diet L:CI 

is primarily due to the increase in H+ and concurrent decrease in HC0-3 

concentration in the plasma. Under these conditions, the body responds by 

increasing alveolar ventilation which results in a decrease in pC02, as the two 

factors are inversely related (Tucker et al., 1988). This is an example of the 

respiratory response of the animal to a state of metabolic acidosis. 



Time 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE VI. EFFECT OF DCAB ON VENOUS BLOOD pC02 (mmHg) 

POST FEEDING* 

TREATMENT 

L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 

47.91ab 45.61a 48.50b 50.16be 51.91 e 49.56 be 1.02 

50.60 ab 50.30 a 55.13 e 52.48abe 52.00 ab 53.50 be 1.19 

48.83 ab 47.71 a 51.90 b 48.98 ab 49.63 ab 49.76 ab 1.28 

48.63 ab 47.15a 49.73 ab 49.95 ab 50.08 b 47.73 ab 1.19 

48.04be 45.51 a 47.76 b 48.83 be 49.31 be 49.80 e 0.82 

47.55 ab 45.21 a 48.26 b 48.61 b 49.40 b 49.00 b 1.15 

46.19 a 45.60 a 49.20 b 49.48 b 49.35 b 50.38 b 0.81 

47.68 ab 44.26 a 48.53 b 49.13 b 49.46 b 48.23 b 1.40 

46.16 a 45.01 a 48.63 b 49.08 b 48.95 b 50.10 b 0.76 

46.32 a 46.75 a 49.28 ab 50.15 b 50.61 b 50.71 b 1.17 

46.31 a 46.21 a 48.96 b 48.15 ab 47.51 ab 48.46 ab 0.95 

45.99 a 46.01 a 49.63 b 50.20 b 48.75 b 49.78 b 0.95 

abc 
· · LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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The effect of treatment on venous blood HC03- is shown in Table VII and 

graphically in Figure 4. Horses consuming diet L:CI had lower (p< .05) blood 

HC03-values as compared to those consuming diet L:S at 6 of the 12 intervals 

measured. Horses consuming diet L:S had lower (p< .05) blood HC03- values 

as co~pared to those consuming all high diets at 11 of the 12 intervals 

measured, while those consuming diet L:CI had lower values (p < .05) as 

compared to those consuming all high diets at all intervals measured. There 

was no difference detected in blood HC03- values among those horses 

consuming the high diets at any interval measured. 

When excess chloride or sulfur is absorbed from the gastrointestinal tract, 

the body must balance the increase of negatively charged strong ions by 

increasing the dissociation of H20 to H+ and OH-, while decreasing the amount 

of HC0-3 to maintain the anion gap. This HC0-3 could come from the 

dissociation of carbonic acid: H2C03 ~ H+ and HCO-3, which is subsequently 

exchanged at the intestinal lumen level for er. Again, it is possible that both 

reactions are responsible for the reduction in HC03- observed when strong 

anions (Cr or S] are fed in excess. 

It would appear that the increase in blood HC03- concentrations after the 

feeding of NaHC03- or KHC03- could be directly attributed to the HC03- ion. 

However, in the stomach, the HC03- is titrated by HCI, resulting in the 

production of NaCl or KCI and carbonic acid: NaHC03- (or KHC03-) + HCI ~ 

NaCl (or KCI) + H2C03. The carbonic acid then dissociates to H20 and CO2. 

The NaCl or KCI is then absorbed and dissociates into Na+ (or K+) and Cl-. The 

Na or K then is able to combine with HC03- (exchanged at the parietal cell for er 

) resulting in an increase in NaHC03-, or KHC03-. However, it appears from 



TABLE VII. EFFECT OF DCAB ON VENOUS BLOOD HC03- (mmol/1)* 

POST FEEDING** 

TREATMENT 

Time L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 

0 28.92b 26.088 31.38c 32.31c 32.31c 31.28c .728 

1 28.28b 26.488 31.88c 32.15c 31.68c 32.03c .499 

2 27.198 26.01 8 31.28b 30.75b 30.68b 31.16b .673 

3 28.278 b 27.138 31.23cd 29.96bd 31.11cd 30.68bd .830 

4 28.34b 25.81 a 30.96c 31.31 C 31.06 C 31.66 C .598 

5 27.308 25.58 a 30.95 b 31.33 b 30.65 b 31.18b .668 

6 26.99 b 25.21 a 31.01 C 31.11 C 30.91 C 31.41 C .497 

7 28.01 b 24.86 a 31.53 C 31.26 C 31.33 C 31.73 C .711 

8 27.92 b 25.60 a 31.48 C 31.40 C 31.21 C 31.98 C .554 

9 28.15 a 26.63 a 31.98 b 32.26 b 32.23 b 32.53 b .574 

10 28.13 a 27.06 a 31.98 b 32.63 b 31.78 b 32.70 b .715 

11 28.01 a 26.40 a 31.95 b 32.65 b 31.70 b 32.46 b .651 

abed 
· ' · LSMeans in rows with different superscripts differ (p < .05) 

* Calculated as: pH + log10 pC02 - 7.604 

** Values given are least squares means 
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these data that the citrate forms of Na+ and K+ also result in an equivalent 

increase in HC03- concentrations in the blood, adding evidence to the theory 

that the increase in HC03- concentrations can be attributed to the increase in 

the strong cations Na+ and K+. 

Blood tC02 
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The effect of DCAB on venous blood tC02 is shown in Table VIII. Total 

carbon dioxide, tC02, is the total concentration (both free and bound) of CO2 in 

the blood, and is expressed in mmol/1. As with HC03- concentrations, those 

horses consuming diet L:CI had lower (p< .05) blood tC02 concentrations as 

compared to those consuming diet L:S at 6 of the 12 intervals measured. Horses 

consuming both the L:CI and L:S diets had lower (p < .05) tC02 values as 

compared to those consuming all the high diets at all intervals measured (except 

for L:S vs H:KB and H:NaB at 3 hr post feeding). There was no difference 

detected in blood tC02 values among horses consuming any of the high diets at 

any intervals measured. In blood plasma, tC02 is an estimator of HC03-

concentrations (Stewart, 1981 ), as most CO2 in the blood is in the form of HC03-

' hence tC02 is another parameter that is dependent upon the SID. 

Base Excess, Blood (BEb) and Base Excess, 

Extracellular Fluid (BEecf) 

The effect of DCAB on base excess in venous blood, (BEb), is shown in 

Table IX and graphically in Figure 5. Base excess is an indicator of the overall 

buffering capacity of the blood (HC03- concentration), and takes into account the 

buffering capacity of Hb and its carrying of CO2. Horses consuming diet L:CI 



TABLE VIII. EFFECT OF DCAB ON VENOUS BLOOD tC02 (mmol/1)* 

POST FEEDING** 

TREATMENT 

Time L:5 L:CI H:KC H:KB H:NaC H:NaB S.E. 

0 30.38b 27.48 a 32.88 e 33.81 e 32.90 e 33.48 e .746 

1 29.85 b 28.05 a 33.58 e 33.76 e 33.26 e 33.66 e .514 

2 28.70 a 27.48 a 32.86 b 32.25 b 32.20 b 32.71 b .694 

3 29.798 b 28.58 a 32.78 e 31.46 be 32.65 e 32.15 be .853 

4 29.84 b 27.21 a 32.41 e 32.83 e 32.60e 33.21 e .617 

5 28.77 a 26.95 a 32.43 b 32.83 b 32.16 b 32.68 b .699 

6 28.38 b 26.63 a 32.51 e 32.60 e 32.43 e 32.95 e .500 

7 29.49 b ·26.21 a 33.00 e 32.76 e 32.88 e 33.20 e .737 

8 29.30 b 26.98 a 32.96 e 32;90 e 32.73 e 33.51 e .567 

9 29.61 a 28.06 a 33.50 b 33.83 b 33.81 b 34.08 b .606 

10 29.57 a 28.31 a 33.46 b 34.10 b 33.25 b 34.18 b .744 

11 29.43 a 27.83 a 33.48 b 34.20 b 33.18 b 33.98 b .677 

abe 
· · LSMeans in rows with different superscripts differ (p < .05) 

* Calculated as: [HC03-] + .0307(pC02) 

** Values given are least squares means 
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had lower (p< .05) BEb values as compared to those consuming diet L:S at 8 of 

12 intervals measured, and to those consuming all high diets at all intervals 

measured. Those horses consuming diet L:S had lower (p< .05) BEb values as 

compared to those consuming all high diets at all intervals measured (except for 

diet H:KB at 3 hr post feeding). Furthermore, there were no differences detected 

in BEb values among those horses consuming all the high diets at any interval 

measured. This decrease in BEb in those horses consuming diets L:CI and L:S, 

and increase in BEb in those consuming the high DCAB is another indication of 

the decrease and increase, respectively, of the buffering capacity of the blood 

when horses are consuming the low and high DCAB, respectively, regardless of 

the source of anion (Cl or S), or source (citrate or bicarbonate) of Na and K. 

Base excess, extracellular fluid (BEecf) is also an indicator of the 

buffering capacity of the blood, however, it does not take into account Hb. The 

effect of DCAB on venous blood BEecf is shown in Table X and graphically in 

Figure 6. As in BEb, those horses consuming diet L:CI had lower (p< .05) BEecf 

values as compared to those consuming diet L:S at 7 of the 12 intervals 

measured, and those consuming all the high diets at all intervals measured. 

Those consuming diet L:S had lower (p< .05) BEecf values as compared to 

those consuming all the high diets at all intervals measured (except for diet H:KB 

at 3 hr post feeding). There was no differences detected on BEecf values 

among those horses consuming any of the high diets at any interval measured. 

Once again, this decrease in BEecf in those horses consuming diets L:CI and 

L:S, and increase in BEecf in those horses consuming the diets with high DCAB 

is an indication of the changes in the buffering capacity of the blood brought 

about by the intake of either strong anions (Cl or S) or cations (Na or K) 

regardless of the citrate or HC03- forms of those cations. 



TABLE IX. EFFECT OF DCAB ON VENOUS BLOOD BASE EXCESS 

(mmol/1)* POST FEEDING** 

TREATMENT 

Time L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 

0 3.540 
b 

0.7508 6.233c 6.916 C 5.450 C 6.700 C .745 

1 2.360 b 0.300 a 5.550 C 6.300 C 5.850 C 6.000 C .517 

2 1.426 a 0.210 a 5.483 b 5.383 b 5.233 b 5.766 b .680 

3 2.7488 b 1.650 a 5.810 C 4.316bc 5.616 C 5.616 C .795 

4 2.908 b 0.433 a 5.900 C 6.066 C 5.733 C 6.283 C .613 

5 1.778 a 0.216 a 5.800 b 6.166 b 5.250 b 5.933 b .630 

6 1.700 b -0.266 a 5.633 C 5.716 C 5.533 C 5.883 C .484 

7 2.571 b -0.383 a 6.400 C 5.983 C 6.000 C 6.683 C .639 

8 2.805 b 0.300 a 6.316 C 6.100 C 5.950 C 6.583 C .566 

9 3.060 b 1.183 a 6.716 C 6.900 C 6.750 C 7.050 C .504 

10 3.081 a 1.733 a 6.750 b 7.633 b 6.866 b 7.650 b .721 

11 2.970b 1.033 a 6.633 C 7.283 C 6.516 C 7.133 C .593 

abc 
· · LSMeans in rows with different superscripts differ (p < .05) 

* Calculated as: (1-0.014[Hb])([HC03-]-24) + (1.43[Hb]+7. 7)(pH-7.4) 

** Values given are least squares means 
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TABLE X. EFFECT OF DCAB ON VENOUS BLOOD BASE EXCESS, 

extracellular fluid (mmol/1)* POST FEEDING** 

TREATMENT 

Time L:S L:CI H:KC H:KB H:NaC H:NaB S.E. 

0 3.635b 0.4168 6.650c 7.533 C 6.016 C 7.233 C .839 

1 2.545 b 0.283 a 6.350 C 7.033 C 6.500 C 6.730 C .577 

2 1.406 a 0.033 a 6.083 b 5.766 b 5.600 b 6.200 b .765 

3 2.8268 c 1.516 a 6.300 b 4.633bc 6.083 b 5.900 b .923 

4 2.921 b 0.116 8 6.200 C 6.500 C 6.133 C 6.783 C .691 

5 1.715 a -0.166 a 6.116 b 6.533 b 5.616 b 6.350 b .734 

6 1.521 b -0.650 a 6.083 C 6.150 C 5.933 C 6.416 C .554 

7 2.575 b -0.900 a 6.833 C 6.416 C 6.450 C 7.100 C .749 

8 2.708 b -0.083 a 6.750 C 6.550 C 6.350 C 7.150 C .637 

9 2.953 b 0.950 a 7.250 C 7.500 C 7.366 C 7.700 C .594 

10 2.993 a 1.550 a 7.250 b 8.183 b 7.266 b 8.216 b .820 

11 2.855 a 0.783 a 7.183 b 7.950 b 6.983 b 7.750 b .699 

abc 
· · LSMeans in rows with different superscripts differ (p < .05) 

* Calculated as: [HC03] - 25 + 16.2(pH - 7.400) 

** Values given are least squares means 

54 



55 

Serum Mineral Status 

Serum Sodium 

The effect of treatment over time on least squares mean serum Na 

concentration is shown in Table XI. At time 0, 3 and 8 hours post feeding, there 

was no significant difference detected in serum Na concentrations between 

treatments. At 2 and 4 hours post feeding, those horses consuming diet L:CI 

had lower (p< .05) serum Na concentration as compared to those consuming 

diet H:KB, while at times 6 and 10 hr post feeding, those horses consuming diet 

L:CI had higher (p< .05) serum Na concentrations as compared to those 

consuming diet H:KC. While some significant differences were observed 

between treatments, serum Na concentrations varied widely, and ranged from 

114 to 137 mmol/1 in all treatments. These data generally agree with work in 

dairy cows (Tucker et al., 1991; Jackson et al., 1992) that showed no effect of 

DCAB on serum Na concentration. The concentration of Na in the plasma is 

tightly regulated so that the osmolarity of the blood remains largely unchanged, 

even with large changes in dietary intake of Na. Additionally, Na concentration 

is regulated by antidiuretic hormone. As levels become high in the plasma, 

osmoreceptors in the circulatory system will cause an increase in sodium 

excretion via the kidneys to help regulate the plasma concentration. 

Serum Potassium 

The effect of treatment over time on serum K concentration is shown in 

Table XII. There were no differences detected in serum K concentrations 

between those horses consuming diets L:CI and L:S, or between those 



Time 

0 

2 

3 

4 

6 

8 

10 

TABLE XI. EFFECT OF DCAB ON SERUM SODIUM (mmol/1) 

POST FEEDING* 

TREATMENT 

L:S L:CI H:KC H:KB H:NaC H:NaB 

118.83 120.00 127.50 126.50 124.66 121.00 

130.26ab 117.83a 130.16ab 133.66b 119.66ab 123.50ab 

130.41 119.83 115.00 127.66 123.00 113.83 

129.35bc 116.50ab 127.66c 137.33c 118.00ab 114.50a 

119.36abc 129.66bc 116.16a 133.16c 122.00abc 118.83ab 

120.71 123.66 121.50 145.33 114.16 119.16 

133.73c 126.66bc 115.66a 135.33c 126.83bc 122.16ab 

abc 
' ' LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

5.76 

6.32 

6.63 

5.40 

5.57 

5.26 

4.07 
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consuming diets H:NaC and H:NaB, at any interval measured. Those horses 

consuming diet H:KB had higher (p< .05) serum K concentrations as compared 

to those horses consuming diet: H: NaB at 2, 3, 4, 6, 8 and 10 hr post feeding; 

L:CI at 2, 3, 4, 8 and 10 hr post feeding; L:S at 4, 6 and 8 hr post feeding. Those 

horses consuming diet H:KC had higher serum K concentration as compared to 

those consuming diet: L:CI at 0, 2 and 4 hr post feeding; H:NaB at 2 and 4 hr 

post feeding. Potassium concentration in the extracellular fluid is very tightly 

regulated by the body, because of the deleterious effects of high extracellular 

potassium on the resting membrane potential of both skeletal muscle cells and, 

even more critically, cardiac muscle cells. In this instance, two mechanisms play 

a part to increase the amount of potassium excreted in the distal nephron of the 

renal tubular cells: one, the metabolic alkalotic effect on the plasma, and two, 

the increase in K itself. Both situations will cause an increase in K excretion via 

the kidney when K intake is increased above the daily requirement. The primary 

hormone responsible for this increased K excretion is aldosterone, which is 

stimulated by increased extracellular levels of K, and causes an increase in the 

amount of K secreted by the distal nephron while at the same time causing 

increased reabsorption of Na ions. 

Serum Chloride 

The effect of treatment over time on serum chloride concentrations is 

shown in Table XIII. There were no treatment effects observed ( p< .05) at O 

and 2 hr post feeding. Those horses consuming diet H:NaB had lower (p< .05) 

serum Cl concentrations as compared to those horses consuming diet L:S at 3 

and 4 hr post feeding, and as compared to those consuming the L:CI 



Time 

0 

2 

3 

4 

6 

8 

10 

TABLE XII. EFFECT OF DCAB ON SERUM POTASSIUM 

(mmol/1) POST FEEDING* 

TREATMENT 

L:S L:CI H:KC H:KB H:NaC H:NaB 

3.195a 3.233 a 3.616bc 3.483ac 3.533ac 3.333ac 

3.153ab 3.000 a 3.583b 3.650b 3.183 ab 2.950 a 

3.555 ab 3.116 a 3.383 ab 3.750b 3.466 ab 3.233 a 

3.446 a 3.216 a 3.800b 4.083b 3.400 a 3.233 a 

3.340 a 3.566 ab 3.400 a 3.933b 3.516 ab 3.283 a 

3.411 a 3.350 a 3.483 a 4.116b 3.216 a 3.266 a 

3.530 ab 3.300 a 3.250 a 3.666b 3.516ab 3.366 a 

abc 
' ' LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

.151 

.238 

.187 

.130 

.179 

.174 

.120 
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diet at 6 and 10 hr post feeding. Also, those horses consuming diet H:NaC had 

lower (p< .05) Cl concentrations as compared to those horses consuming diet 

L:CI at 8 hr post feeding. This trend for lower Cl concentrations in the serum in 

those horses consuming the Na supplemented diets agrees with work in dairy 

cows (Jackson et al., 1992) and with sodium bicarbona·te dosing work in horses 

(Kline et al., 1993; Hanson et al., 1993). However, other researchers in dairy 

cows observed no effect on serum Cl concentrations with increasing DCAB 

(Romo, et al., 1991 ). 

Serum Calcium 

The effect of treatment over time on serum Ca concentrations is shown in 

Table XIV. There were no treatment effects observed on serum Ca 

concentrations at 0, 2 and 3 hr post feeding. Those horses consuming diet H:KB 

had greater (p< .05) serum Ca concentrations as compared to those horses 

consuming diet H: KC at 6, 8 and 10 hr post feeding. These data tend to agree 

with work in dairy cows (Gaynor et al., 1989; Romo et al., 1991; Jackson and 

Hemken, 1994) who observed no effect of DCAB on plasma Ca concentrations, 

but contrasts with that of Block (1984), Oetzal et al., (1988) and Tucker et al. 

(1991 ). In a Ca kinetic study in sheep, Takagi and Block (1991 b) fed DCAB of 

+339, +35 and -127 meq/kg, and found no difference in the concentration of total 

Ca in the plasma. However, they observed that feeding the reduced DCAB diets 

increased the Ca flux through the exchangeable pool with no changes in the size 

of the Ca pool. The calcium homeostatic mechanism operates very stringently to 

maintain extracellular Ca within physiological ranges (approximately 8 - 11 

mg/di). In the present study, only total Ca in the serum was measured, and all 

values were within the physiological range, indicating that the body maintains 



Time L:S 

0 89.88 

2 98.26 

3 98.16b 

4 96.85bc 

6 91.00ab 

8 92.21ab 

10 102.05d 

TABLE XIII. EFFECT OF DCAB ON SERUM 

CHLORIDE (mmol/1) POST FEEDING* 

TREATMENT 

L:CI H:KC H:KB H:NaC H:NaB 

92.16 94.00 91.16 90.50 86.83 

89.83 95.16 94.33 88.16 88.33 

90.16ab 83.83a 93.66 ab 90.00 ab 83.16 a 

89.00ab 93.50bc 100.33c 86.33 ab 83.33 a 

100.33b 85.16 a 97.66b 90.00 ab 86.33 a 

95.66b 90.00 ab 106.16c 83.66 a 87.33ab 

97.33cd 85.16 a 97.33cd 93.33bc 89.33 ab 

abc 
' ' LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

4.63 

4.99 

4.44 

4.19 

4.35 

3.84 

3.21 



the size of the Ca pool under conditions of nutritionally induced acidosis or 

alkalosis. 

Serum Magnesium 

61 

The effect of treatment over time on serum magnesium concentrations is 

shown in Table XV. No differences in serum Mg due to treatment were observed 

at 0, 2, 3 or 1 O hr post feeding. Those horses consuming diet H:NaB had lower 

(p< .05) serum Mg concentrations as compared to those consuming diet H:KB at 

4, 6 and 8 hr post feeding. Serum Mg concentrations ranged from 1.20 - 1.58 

mmol/1 for those horses consuming diet L:S, 1.23 - 1.48 for those consuming diet 

L:CI, 1.04 - 1.47 for those consuming diet H:KC, 1.24 - 1.55 for those consuming 

diet H:KB, 1.11 - 1.37 for those consuming diet H:NaC and 1.14 - 1.38 for those 

consuming diet H:NaB. These data agree with previous work in dairy cows 

(Romo et al., 1991; Tucker et al., 1991) that showed no significant treatment 

effect on serum Mg concentrations. However, others (Oetzal et al., 1988; 

Gaynor et al., 1989; Jackson et al., 1992) observed a decrease in serum Mg 

concentrations with increasing DCAB in dairy cows. While in the present study 

values for serum Mg tended to be numerically lower in those horses consuming 

diets H:NaC and H:NaB as compared to those consuming diets L:S and L:CI, 

there was no significant trend detected. Factors involved in Mg homeostasis 

have not been clearly defined, although extracellular Mg concentration is 

regulated by renal excretion (Guyton, 1986). 



Time L:S 

0 9.14 

2 9.71 

3 10.35 

4 10.09bcd 

6 8.93a 

8 9.79a 

10 10.21 cd 

TABLE XIV. EFFECT OF DCAB ON SERUM 

CALCIUM (mmol/1) POST FEEDING* 

TREATMENT 

L:CI H:KC H:KB H:NaC H:NaB 

9.15 9.91 9.52 9.96 9.50 

8.76 9.88 10.00 8.92 8.92 

8.90 8.99 9.87 9.85 8.96 

9.33ac 10.19cd 10.8i 9.05 ab 8.59 a 

10.05ab 8.91a 10.66b 9.88 ab 9.45 ab 

9.82a 9.61 a 11.33 b 8.55 a 9.01 a 

9.36bc 8.83 ab 10.41 d 9.93 cd 9_57abcd 

abc 
· · LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

.532 

.608 

.630 

.423 

.589 

.570 

.354 



Time L:S 

0 1.28 

2 1.58 

3 1.48 

4 1.44ab 

6 1.20 ab 

8 1.23 a 

10 1.29 

TABLE XV. EFFECT OF DCAB ON SERUM 

MAGNESIUM (mmol/1) POST FEEDING* 

TREATMENT 

L:CI H:KC H:KB H:NaC H:NaB 

1.23 1.30 1.24 1.30 1.18 

1.29 1.47 1.55 1.37 1.38 

1.33 1.24 1.44 1.35 1.26 

1.23 ab 1.34 ab 1.51b 1.27 ab 1.21 a 

1.48c 1.18 a 1.43bc 1.24 ab 1.15 a 

1.29 ab 1.17 a 1.55b 1.11 a 1.22 a 

1.36 1.04 1.25 1.18 1.14 
abc 
' ' LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

.083 

.128 

.109 

.097 

.079 

.090 

.089 
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Serum Phosphorus 

The effect of treatment over time on serum phosphorus concentrations is 

shown in Table XVI. There were no treatment effects on serum P concentrations 

at 0, 2, 3 or 6 hr post feeding. Those horses consuming diet H:KB had higher 

(p< .05) serum P concentrations as compared to those consuming diet H:NaB at 

4, 8 and 10 hr post feeding. While some significant differences were detected 

between diets, overall these data tend to agree with previous work in dairy cows 

(Romo et al., 1991; Tucker et al., 1991; Jackson et al., 1992; Jackson and 

Hemken, 1994;) that showed no significant treatment effect on serum P 

concentrations. If lowering the DCAB resulted in an increase in PTH release (as 

shown by some dairy researchers), P would be mobilized from bone, but the 

threshold for reabsorption of phosphate in the renal tubules also would be 

reduced (Guyton, 1986) so that more P would be lost in the urine. Therefore, 

plasma P may not be affected. 

Serum Cation-Anion Balance 

The effect of treatment over time on serum cation-anion balance 

(expressed as meq (Na+ K) - Cl/I) is shown in Table XVII and graphically in 

Figure 7. Those horses consuming diet L:CI had lower (p< .05) serum cation­

anion balance (SCAB) as compared to those consuming diet: H:KB at 0, 2, 4, 6, 

8 and 10 hr post feeding; H:KC at 0, 2 and 4 hr post feeding; H:NaB at O and 2 

hr post feeding; H:NaC at O and 10 hr post feeding. Furthermore, horses 

.consuming diet H:KB had higher (p< .05) SCAB as compared to those 

consuming L:S at 0, 2, 4, 6, 8 and 10 hr post feeding. Although there appeared 



Time L:S 

0 2.95 

2 3.16 

3 3.14 

4 3.11abc 

6 2.81 

8 2.89a 

10 3.04ab 

TABLE XVI. EFFECT OF DCAB ON SERUM 

PHOSPHORUS (mmol/1) POST FEEDING* 

TREATMENT 

L:CI H:KC H:KB H:NaC H:NaB 

2.93 3.41 3.23 3.26 2.99 

2.86 3.30 3.27 2.80 2.78 

2.91 2.88 3.00 2.82 2.55 

2.93abc 3.1 Sbc 3.33c 2.74ab 2.52a 

3.13 2.79 3.18 2.77 2.66 

2.93a 3.03ab 3.50b 2.62a 2.69a 

3.03ab 2.89ab 3.32b 2.97ab 2.74a 

abc 
· · LS Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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.246 

.248 

.224 

.194 

.229 

.182 

.192 



Time 

0 

2 

3 

4 

6 

8 

10 

TABLE XVII. EFFECT OF DCAB ON SERUM 

CATION-ANION BALANCE (meq/1) POST FEEDING* 

TREATMENT 

L:S L:CI H:KC H:KB H:NaC H:NaB 

32.14ab 31.06 a 37.11bc 38.81c 37.70c 37.50bc 

35.15 ab 31.00 a 38.58bc 42.98c 34.68 ab 38.11bc 

35.80 32.78 34.55 37.75 36.46 33.90 

35.94 b 30.71 a 37.96bc 41.08c 35.06 ab 34.40 ab 

31.70 a 32.90 a 34.40 a 39.43 b 35.51 ab 35.78 ab 

31.91 a 31.35 a 34.98 a 43.28 b 33.71 a 35.10 a 

35.21 ab 32.63 a 33.75 ab 41.66c 37.01 b 36.20 ab 

abc 
' · LSMeans in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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S.E. 

1.75 

2.20 

2.46 

1.53 

1.64 

1.86 

1.41 
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to be no significant trend in the absolute values of the individual ions, this data 

indicates that those horses consuming the L:CI and L:S diets had lower SCAB 

values as compared to at least two of the high diets at 4 of the intervals 

measured. This data agrees with that of Tucker et al. ( 1988, 1991 b) who 

observed higher plasma CAB in dairy cows as compared to those cows 

consuming anionic diets supplemented with either Cl or S. 

Mineral Excretion 

Dry Matter Digestibility 

The effects of DCAB on daily fecal output and dry matter digestibility are 

shown in Table XVIII. Total daily fecal output, g/d, was calculated as: (g Cr fed/d 

* 100)/% fecal Cr). Dry matter digestibility was calculated as: (g OM intake/d-g 

OM fecal excretion/d) I g OM intake/d. There were no differences detected in dry 

matter digestibility between treatments. Least squares mean dry matter 

digestibilities ranged from 47.69 - 52.73%. This data contrasts with that of 

Nelson and coworkers (1981) who reported a decrease in dry matter digestibility 

in chicks fed a higher cation-anion ratio. This data also contrasts with that of 

Baker et al. (1993) who observed exercising horses consuming the lowest DCAB 

had lower OM digestibility as compared to those horses consuming the highest 

DCAB. These data also contrast with that of Yen et al. (1981) who showed a 

decreased feed intake, feed efficiency and weight gain in barrows fed a diet with 

4% cacium chloride added, and also with Haydon and West (1990) who reported 

a linear relationship between DCAB and apparent ilea! digestibility of energy, dry 

matter, N, and amino acids (with the exception of alanine and 



TABLE XVIII. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

OM INTAKE, FECAL OUTPUT AND DRY MATTER DIGESTIBILITY (g/d) IN 

SEDENTARY HORSES* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

DM Int, g/d 7860.8 7860.8 7860.8 7860.8 7860.8 7860.8 

68 

S.E. 

Fecal Output, g/d 3884.9 4102.0 4093.2 3721.2 4094.0 3914.3 161.6 

DM Digestibility 50.69 47.69 48.08 52.73 47.91 50.08 1.98 

ab 
· LSMean fecal outputs in rows with different superscripts differ (p < .05) 

* Values given are least squares means 



methionine) in diets with DCAB's of -50 to 400 meq/kg of diet dry matter. 

However, these researchers noted that nutrient and amino acid digestibilities 

were similar when measured over the entire tract. 

Sodium Balance 

69 

After supplementation with sodium citrate and sodium bicarbonate, least 

squares mean daily intake of Na was 116. 70 and 136.30 mg/kg BW for those 

horses consuming diets H:NaC and H:NaB, respectively. The daily requirement 

for horses of this size is approximately 7 g/d (NRC, 1989). The effect of DCAB 

on sodium balance is shown in Table XIX and graphically in Figure 8. Those 

horses consuming diet H:NaC excreted more Na in the urine (p< .05) as 

compared to those consuming all other diets. Additionally, those horses 

consuming diet H:NaB excreted more (p< .05) Na in the urine as compared to 

those consuming all other diets (with exception of H:NaC). Those horses 

consuming diets H:NaC and H:NaB excreted more Na in the feces (p< .05) as 

compared to all other diets. Those horses consuming diet H:NaB had a greater 

(p< .05) apparent daily Na balance as compared to those horses consuming 

diets H:NaC and H:KC. These findings are in partial agreement with that of 

Schryver et al. (1987) who demonstrated that urinary excretion was the primary 

pathway for sodium loss in sedentary horses consuming 1, 3 and 5% sodium 

chloride. The author stated that sodium intake was directly related to urinary 

sodium excretion but had no effect on fecal excretion, intestinal absorption or 

retention of sodium. However, In contrast to the study by Schryver et al. (1987), 

it appears that the horse responds to an increased Na intake by also increasing 

fecal excretion of Na to maintain sodium homeostasis in the body. 



TABLE XIX. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

. SODIUM BALANCE IN SEDENTARY HORSES (mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 40.10 a 39.10 a 38.30 a 37.90 a 116.70b 136.30 C 

Urine, g/d 30.608 31.10 a 41.50 a 31.70 a 113.SOC 84.90b 

Fecal, g/d 23.30 a 16.70 a 22.90 a 27.00 a 43.70 b 46.70b 

Balance, g/d -13.80abc -8.70bc -26.008 b -20.70abc -40.508 4.60c 

abc 
' ' Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 

70 

S.E. 

.700 

.600 

2.90 

1.60 



These data are also in agreement with Baker et al. (1993) who reported an 

increase in urinary Na excretion in both sedentary and exercising horses 

consuming a high DCAB with supplemental sodium. 

Potassium Balance 

71 

After supplementation with potassium citrate and potassium bicarbonate, 

those horses consuming diets H:KC and H:KB had daily K intakes of 256.50 and 

244.20 mg/kg BW, as compared to an average intake of 121 mg/kg BW for 

horses consuming all other diets. The effect of DCAB on potassium balance is 

shown in Table XX and graphically in Figure 9. Those horses consuming diets 

H:KC and H:KB excreted more (p< .05) Kin the urine as compared to those 

consuming all other diets. Those horses consuming diets H:NaC and H:NaB 

excreted less (p< .05) Kin the feces as compared to those horses consuming all 

other diets. Furthermore, those horses consuming diets H:KC and H:KB had 

lower (p< .05) least squares mean apparent daily K balance as compared to 

those consuming all other diets. Although apparent daily K balance was 

negative for those horses consuming diets H:KC and H:KB, it is physiologically 

impossible for the animal to be in a true negative daily balance. Instead, these 

data indicate the powerful response of the body to an increased extracellular 

concentration of K, and the subsequent increase in urinary excretion of K in 

order to maintain normal physiologic levels of K in the extracellular fluid. The 

negative values seen may be due to an underestimation of K in the diet, or an 

overestimation of K excreted. These results agree with that of Baker et al. 

(1993) who reported an increased daily urinary potassium excretion in both 

sedentary and exercising horses consuming rations with a high DCAB containing 

1.25 - 1.39% K. The NRC 



TABLE XX. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

POTASSIUM BALANCE IN SEDENTARY HORSES (mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 116.50 124.00 256.50 244.20 121.00 122.90 

Urine, g/d 77.10a 79.70a 261.70b 275.20b 96.20a 95.40a 

Fecal, g/d 41.60b 43.30b 41.70b 39.80b 24.80a 22.70a 

Balance, g/d -2.10b 0.900b -46.BOa -70.BOa 0.05b 4.70b 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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(1989) lists the potassium requirement for horses at maintenance at 1.52 g/Mcal 

of DE, therefore a 500 kg (1100 lb) horse would require 25 g/d of dietary 

potassium. The horses in this trial received dietary potassium well above the 

minimum requirements, which is common in most rations fed today, due to the 

high K content in medium to high quality hays. 

Chloride Balance 

After formulation of the L:CI diet with NH4CI, least squares mean daily 

intake of Cl for those horses consuming diet L:CI was 115.20 m~/kg BW, as 

compared to approximately 78 mg/kg BW for those horses consuming all other 

diets. The effect of DCAB on chloride balance is shown in Table XXI and 

graphically in Figure 10. Those horses consuming diet L:CI excreted more (p< 

.05) Cl in the urine as compared to horses consuming all other diets. Those 

horses consuming diet L:CI also excreted less (p< .05) Cl in the feces as 

compared to those horses consuming diets H:KC, H:KB, H:NaC andH:NaB. 

These data agree with previous work in both sedentary and exercising horses 

(Topliff et al., 1989; Wall et al., 1992; Baker et al., 1993; Popplewell et al., 

1993;) that showed an increased urinary Cl excretion in horses consuming 

highly anionic diets supplemented with Cl. Apparently, the increase in urinary 

chloride excretion in those horses consuming diet L:CI was enough to offset the 

increased intake of Cl, as least squares mean apparent daily Cl balance was not 

different across treatments. The NRC (1989) states that chloride requirements 

are presumed to be met when the sodium requirements are met with sodium 

chloride. Younget al. (1989) fed approximately 1.5 times more chloride than 

sodium to exercised miniature horses and still experienced a chloride deficiency. 

In the present study, those 



TABLE XXI. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

CHLORIDE BALANCE IN SEDENTARY HORSES (mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 79.10 b 115.20 C 78.60 
b 77.70 ab 76.70 a 78.70 b 

Urine, g/d 73.00a 114.20b 74.30a 75.80a 73.80a 66.30a 

Fecal, g/d 2.90ab 2.60a 3.50bc 3.40bc 3.40bc 3.80c 

Balance, g/d 3.10 -1.60 0.80 -1.50 -0.50 8.40 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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horses consuming diets L:CI, H:KB and H:NaC were in an apparent negative 

daily Cl balance, however, this author believes this to be of minor practical 

significance, as the standard error for the balance LSMeans allows for a range 

for these balances to be positive. 

Magnesium Balance 

75 

Magnesium has been previously implicated as having a possible role in 

the DCAB equation in dairy cattle (Tucker, 1988). Therefore, in the present 

study dietary it was attempted to hold Mg intakes constant across treatments. 

The effect of DCAB on magnesium balance is shown in Table XX.II. Those 

horses consuming diet L:CI had higher (p< .05) daily urinary Mg excretions as 

compared to those consuming diets L:S, H:KC and H:NaC. Those horses 

consuming diet H:KC had greater (p< .05) daily fecal excretions of Mg as 

compared to those consuming diet H:NaB. Further, those horses consuming 

diet H:KB had a lower (p< .05) apparent daily Mg balance as compared to those 

horses consuming diets L:S, L:CI, H:NaC and H:NaB. The differences in urinary 

and fecal excretions of Mg between treatments is not believed to be of any 

practical significance. However, these data are in agreement with Baker and 

others (1993) who reported similar results in daily magnesium balance in 

sedentary horses consuming diets varying in DCAB. Thus, it is possible that the 

NRC requirements for sedentary horses may be inadequate. The NRC (1989) 

suggests a magnesium intake of .46 g/Mcal DE to meet the horse's requirement. 

Therefore, the horses in this trial would require approximately 10 g/d. All diets 

used in the present trial should have been sufficient in meeting the magnesium 

requirement, however, these data suggest that this value may be inadequate 



TABLE XX.II. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

MAGNESIUM BALANCE IN SEDENTARY HORSES (mg/kg BW)* 

Treatment 

L:5 L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 25.10 27.00 25.00 23.00 25.10 25.00 

Urine, g/d 8.508 b 10.10c 8.008 10.1 oc 8.308 9.70bc 

Fecal, g/d 17.408 b 18.008 b 18.90b 16.208 b 17.908 b 16.208 

Balance, g/d -0.70 b -1.10b -1.80 ab -3.40 a -1.20 b -0.90 b 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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independent of DCAB, because of the apparent negative daily balances for 

horses on all treatments.treatments in the present study. Further research is 

needed to accurately quantify the magnesium requirements of sedentary horses 

Phosphorus Balance 

It was attempted by the author to hold the intake of phosphorus constant 

across all treatments. The effect of DCAB on phosphorus balance is shown in 

Table XXIII. There were no differences detected between daily urinary P 

excretions. Urinary excretions were extremely low, ranging from 0.30 to 0.40 

mg/kg BW. These urinary P values agree with those of Baker et al. (1993) who 

reported similar values in both sedentary and exercising horses consuming diets 

with varying DCAB. There were no differences in daily fecal excretion of P 

across treatments. Those horses consuming diet H:NaC had a lower (p< .05) 

apparent daily P balance as compared to those horses consuming diet H:NaB. 

The NRC (1989) suggests a phosphorus requirement of .87 g/Mcal DE. 

Therefore, the horses in this study required approximately 37.0 mg/kg BW. 

Each of the diets used in this study appear to have supplied adequate 

phosphorus, and all daily balances were positive with the exception of those 

horses consuming diet H:NaC (least squares mean apparent daily balance of -

0.16 mg/kg BW). 

Calcium Balance 

The effect of DCAB on calcium balance is shown in Table XXIV and 

graphically in Figure 11. Diets were formulated to have equivalent amounts of 



TABLE XXIII. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

PHOSPHORUS BALANCE IN SEDENTARY_ HORSES (mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 43.00 44.20 42.80 41.80 41.80 46.00 

Urine, g/d 0.300 0.400 0.400 0.400 0.400 0.300 

Fecal, g/d 37.9 40.60 39.90 37.50 41.60 39.50 

Balance, g/d 4.80 ab 3.20 ab 2.40 ab 3.70 b -0.16a 6.00 b 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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calcium in each treatment. Actual Ca intakes ranged from 80.90 to 86.30 mg/kg 

BW across all treatments. Those horses consuming diet L:CI had greater (p< 

.05) daily urinary Ca excretion as compared to those consuming all other diets. 

There were no significant differences detected in daily fecal Ca excretion across 

treatments. Those horses consuming diet L:CI also had a lower (p< .05) 

apparent daily Ca balance (-29.40 mg/kg BW) as compared to all other 

treatments, while those horses consuming diet L:S had a lower (p< .05) apparent 

daily Ca balance as compared to those horses consuming diet H:NaB. 

These data on urinary excretion of calcium agree with other data in 

horses (Topliff et al., 1989; Baker et al., 1993), rats (Newell and Beauchene, 

1975; Petito and Evans, 1984; Goulding and Campbell, 1984; Barzel and 

Jowsey, 1989), rabbits (Thacker, 1959), dairy cattle (Freeden et al., 1988; 

Tucker et al., 1988, 1991 a, 1991 b; Gaynor et al., 1989; Oetzal et al., 1991, 

Wang and Beede, 1992; Jackson and Hemken, 1994), and sheep (Takagi and 

Block, 1991a,b) that show animals consuming diets with a lower DCAB have 

increased urinary Ca excretion. In 1991, Goff and others demonstrated that 

parathyroid hormone has a greater effect on renal production of 1,25 

dihydroxyvitamin 0 3 in dairy cows fed highly anionic diets, resulting in increased 

intestinal calcium absorption. Furthermore, osteoclastic bone resorption was 

more responsive to parathyroid hormone as plasma hydroxyproline 

concentration was higher in those cows fed the low DCAB diet. It has also been 

suggested that renal tubular reabsorption of calcium may be inhibited by the 

acidotic state and low pH induced by the lower DCAB diets (Beck and Webster, 

1976). Furthermore, an increase in bone mobilization of Ca a few days 

prepartum has been observed by dairy researchers (Block, 1984; Leclerc and 

Block, 1989; Goff, 1991) when DCAB was reduced. 



TABLE XXIV. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

CALCIUM BALANCE IN SEDENTARY HORSES(mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 82.70 b 80.90 a 83.10 b 81.10a 81.20 a 86.30 C 

Urine, g/d 52.80a 75.40b 44.70a. 40.008 43.608 40.10a 

Fecal, g/d 35.70 34.90 37.40 37.70 37.10 38.30 

Balance, g/d -5.80b -29.408 1.00bc 3.30bc 0.40bc 7.90c 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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The NRC (1989) suggests that the calcium requirement is 1.22 g/Mcal 

DE/d. The horses in the present trial would therefore have required 

approximately 26 g/d of dietary calcium. The calcium intake in this trial was 

purposely exceeded so that these horses consuming the L:S and L:CI diets 

would not be predisposed to a daily negative calcium balance. However, these 

data demonstrate that as the DCAB is lowered, daily calcium balance decreases, 

and that a low DCAB formulated with S has a similar, if not as powerful anionic 

effect on calcium balance in sedentary horses. If this condition were prolonged, 

these animals could be predisposed to an osteoporotic weakening of the skeletal 

system that has been demonstrated in poultry (Leach and Neshium, 1965, 1972; 

Hurwitz et al., 1973; Sauveur and Mongin, 1978; Hamilton and Thompson, 1980; 

Mongin, 1981; Halley et al., 1987), and rabbits (Thacker, 1959). 

Sulfur Balance 

Due to supplementation of diet L:S with S (as S04), daily intake of S for 

those horses consuming diet L:S was 121.30 mg/kg BW. The effect of treatment 

over time on daily S balance is shown in Table XXV. Those horses consuming 

diet H:NaB had a lower daily urinary excretion of S compared to those 

consuming all other diets. Those horses consuming diet L:S had greater (p< 

.05) daily fecal excretion of Sas compared to all other diets. This increased 

daily fecal excretion of S by those horses consuming diet L:S was apparently not 

enough to offset the increased inake of S, however, as least squares mean 

apparent daily balance was higher (56.90 mg/kg BW, p< .05) for horses 

consuming diet L:S as compared to horses consuming all other diets. It is 

thought by this author that this apparent large positive daily S balance is due to 

a "carryover effect". Although mineral excretions were not measured after 
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horses were removed from these experimental diets, it is thought that those 

horses that were consuming diet L-S would continue to be in an apparent 

positive daily balance after removal from these diets, but that this apparent 

positive daily balance would decrease to a point equal to that observed in those 

horses consuming diets with normal S intakes. 

Although S requirements for the horse have not been established, 

adequate, high quality dietary protein usually provides at least 0.15% organic S 

(NRC, 1989). The horses in the present study received a lower quality native 

prairiegrass hay that may have been lower in S than some other high quality 

hays. However, all horses in the present study were in a positive apparent daily 

S balance. This data contrasts with that of Baker et al. (1993) who reported that 

exercising horses consuming approximatley 9 g/d of S were in an apparent 

negative daily S balance. However, this discrepancy may be due to a difference 

in S metabolism between sedentary and exercising horses. 



Table XXV. THE EFFECT OF DIETARY CATION-ANION BALANCE ON 

SULFUR BALANCE IN SEDENTARY HORSES (mg/kg BW)* 

Treatment 

L:S L:CI H:KC H:KB H:NaC H:NaB 

Intake, g/d 121.30 e 17.SOC 16.30 b 17.40 C 15.30 a 18.40 d 

Urine, g/d 8.60 b 4.80 b 4.90 b 7.40 b 5.90 b 3.90 a 

Fecal, g/d 55.60b 8.90a 10.60a 7.70a 8.90a 7.90a 

Balance, g/d 56.90b 3.70a 0.70a 2.30a o.soa 6.50a 

abc 
· · Means in rows with different superscripts differ (p < .05) 

* Values given are least squares means 
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CHAPTERV 

SUMMARY AND CONCLUSIONS 

In summary, these results indicate that the feeding of excess strong 

cations in relation to anions, regardless of whether the form is with bicarbonate 

or citrate, results in an increase in the acid-base status of the animal, as can be 

seen by the similar increases in urine pH, daily urine H+ excretion, blood pH, 

bicarbonate, base excess, blood and base excess, extracellular fluid in those 

horses consuming the H:KC, H:KB, H:NaC and H:NaB diets. Furthermore, those 

horses consuming the L:S diet had similar, but not as pronounced deleterious 

effects on the acid-base status of the horse as that of diet L:CI, as evidenced by 

the lowering of urine pH, increase in daily H+ excretion and blood pH. 

Treatments had no significant effect.on absolute values of serum 

minerals, however, those horses consuming diet L:CI had lower serum cation­

anion balances as compared to those horses consuming diet H:KB at 6 of the 7 

intervals measured, and also as compared to those consuming diets H:KC (3 of 

7 intervals measured), H:NaC and H:NaB (2 of 7 intervals measured, 

respectively). There were no differences detected in daily fecal output or dry 

matter digestibility due to treatment. Those horses consuming diets H:NaC and 

H:NaB excreted more Na in the urine as compared to all other diets, indicating 

that urinary Na excretion is dependent on intake. Those horses consuming diet 

L:CI excreted more Cl in the urine as compared to those consuming all other 

84 
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diets, and this increased excretion was apparently enough to offset the 

increased intake as apparent daily Cl balance was not different between 

treatments. Those horses consuming diets H:KC and H:KB also excreted more 

K in the urine as compared to those consuming all other diets, indicating that 

urinary K excretion is also dependent upon intake. Those horses consuming 

diet H:KB had lower apparent daily Mg balance as compared to those 

consuming diets H:NaC and H:NaB. However, all apparent daily Mg balances 

were negative, and these balance values agree with earlier work in sedentary 

horses, indicating that the daily Mg requirements as recommended by the NRC 

may need further review. Those horses consuming diet H:NaC had a lower 

apparent daily P balance as compared to those consuming diet H:NaB and 

H:KB, however, this difference is probably not of any practical significance. 

Those horses consuming diet L:S had lower daily Ca balance as compared to 

those consuming diet H:NaB, while those horses consuming diet L:CI had 

greater daily urinary Ca excretion, and lower daily Ca balance as compared to 

horses consuming all other diets. This data, along with previous work in horses, 

indicates that when formulating rations for Ca requirements, the DCAB needs to 

be taken into careful consideration, as it has been consistently shown that 

feeding diets with a low cation-anion balance results in an apparent decreased 

retention of Ca, even when fed above requirements. 

Those horses consuming diet H: NaB excreted more S in the urine 

compared to those consuming all other diets. Those horses consuming diet L:S 

had greater daily fecal excretions of S as compared to horses consuming all 

other diets, however, this increased fecal excretion apparently was not enough 

to offset the increased intake, as apparent daily S balance was greater in those 

horses consuming diet L:S as compared to those consuming all other diets. 
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As indicated by this data, the feeding of the strong cations Na or K in the 

form of citrate or bicarbonate are equally effective in raising the acid-base status 

and buffering capacity of the sedentary horse. These data also support the 

theory that H+ and HC03- concentrations are dependent upon the strong ion 

difference of the diet. The feeding of diets with added sodium citrate or sodium 

bicarbonate at a DCAB above 350 meq/kg DM could prove a valuable alternative 

to the use of sodium bicarbonate dosing with concurrent furosemide use. 

However, this data indicates that the feeding of high potassium diets leads to 

increased potassium excretion, which could compound the potassium excretory 

effect of furosemide. Therefore, it is this authors opinion that the feeding of high 

potassium diets to improve the buffering capacity of the blood with concurrent 

use of furosemide is not recommended. Sulfur appears to have similar, but not 

as pronounced, effects as that of chloride on the urine pH, daily H+ excretion 

and blood pH in sedentary horses. However, there may need to be a modifying 

factor used with Sin the DCAB equation, as its digestibility and absorption may 

depend upon the form of sulfur being fed. 

This data indicates that the concentrations of H+ and HC03- are 

dependent upon the strong ion difference (SID). Further research is needed to 

study the effects of sodium citrate, potassium citrate and potassium bicarbonate 

in exercising horses to test if these forms have the same beneficial effect on 

acid-base status. 
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