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CHAPTER I 

PHOTOSYNTHETIC ELECTRON TRANSPORT, 

CHLOROPHYLLFLUORESCENCE,AND 

ELECTROLYTE LEAKAGE OF WHEAT 

(Triticum aestivum L.) AND 

TEF (Eragrostis tel Z.). 

CHILLING LOW TEMPERATURE 

STRESS 

SENAYET ASSEFA AND BJORN MARTIN 
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Abbreviations: BSA, bovine serum albumin; DAD, diaminodurene (2,3,5,6-tetramethyl

p-phenylenediamine); chi, chlorophyll; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p

benzoquinone (dibromothymoquinone); DCMU, 3-(3,4-dichlorophenyl)-1, 1-

dimethylurea; DHQ, durohydroquinone (tetramethyl-p-hydroquinone); e-, electron; Fo, 

initial fluorescence; Fm, maximal fluorescence; Fv, variable fluorescence (Fv = Fm -

Fo); MV, methyl viologen; PAR, photosynthetically active radiation; PSI and PSII, 

photosystem I and PSII; SOD, superoxide dismutase; t112, time required for 

fluorescence to rise from Fo to half its maximum value. 
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ABSTRACT 

Three tests were used to determine photosynthetic competence and cellular 

membrane stability of the C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) and the C3 

cereal wheat (Triticum aestivum L. cv. TAM W-101). Plants were grown in growth 

chambers and exposed for periods of up to 168 h to chilling low temperature (2°C, 

1°c, and 12°C) stress. The photochemical properties were evaluated at 25°C 

following chill exposure by measuring electron transport rates of isolated thylakoids 

and chlorophyll fluorescence of dark adapted leaves. Membrane integrity was 

quantified by measuring electrolyte leakage of leaf samples. Exposure of tef to 

chilling low temperatures reduced photosystem II (PSII) and whole chain (PSII + PSI) 

electron transport rates but not PSI electron transport rate. All components of 

photosynthetic electron transport were less affected by chilling in wheat. The greater 

susceptibility of electron transport of tef than wheat to chilling was consistent with 

susceptibility rankings based on reduced variable to maximum fluorescence (Fv /Fm). 

The decline in Fv /Fm was accompanied by increasing time required for Fv to rise 

from the minimal fluorescence (Fo) to half its maximum value (t11J. Fv/Fm correlated 

well with PSII and whole chain electron transport rates in both species. However, the 

slope of the dependence of Fv /Fm on electron transport was much greater in tef than 

in wheat. The high correlation suggests that Fv /Fm accurately estimated in vivo 

photosynthetic electron transport rates. Electrolyte leakage values confirmed the 
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greater susceptibility of tef than wheat to chilling low temperatures that had previously 

been found by measurements of electron transport and Fv/Fm. However, chlorophyll 

fluorescence and electron transport detected effects of chilling at mild stress levels 

whereas electrolyte leakage increased first at lower temperatures or longer exposure 

times. 
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INTRODUCTION 

Chilling stress impairs numerous physiological functions of plants. Depending 

on the severity and duration of chilling, chill susceptible plants suffer from impaired 

respiration and membrane leakage (King and Ludford, 1983), reduced protoplasmic 

streaming and chloroplast activity (Dai et al., 1987), diminished PSII electron flow 

(Labate et al., 1990), and lowered photochemical quenching (Krall and Edwards, 1991; 

Labate et al., 1990). The primary cause of these changes has not been clearly 

established. Damage to the oxidizing side of PSII (Dai et al., 1987) and to whole 

chain electron transport (Bruggemann, 1992) in chilled cucumber and Vigna species, 

respectively, has been reported. The photochemical quenching coefficient (qp) as well 

as CO2 assimilation decreased in parallel with decreasing temperature (Krall and 

Edwards, 1991). Labate et al. (1990) suggested that thylakoid phase transitions 

interfere with electron flow. According to Bruggemann (1992) and Labate et al. (1990) 

neither the PSII reaction center nor the water splitting system limit electron flow. 

Quantifying the effects of temperature stress is difficult. Chlorophyll 

fluorescence has been measured (van Kooten and Snel, 1990) in many detailed 

studies on photosynthesis (for reviews see Krause and Weis, 1991; Krall and Edwards, 

1992). The fluorescence parameter most often employed in stress studies is Fv/Fm, 

a measure of the quantum efficiency of PSII photochemistry (Oquist and Wass, 1988; 

Krause and Weis, 1991). Considerable advances have been made in interpreting 
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fluorescence data as they relate to temperature effects on PSII electron transfer 

(Hetherington et al., 1983; Krause and Weis, 1984; Hetherington and Oquist, 1988; 

Neuner and Larcher, 1990). Critchley (1981) suggested that the effects of chilling on 

Fv/Fm followed from inhibition of PSII electron transport. Chilling stress also leads to 

increased plasma membrane permeability (Parkin and Kuo, 1989; Bergevin et al., 

1993). However, information is lacking on whether the temperature that causes such 

changes is identical to the temperature causing loss of photosynthetic activity. Lyons 

and Raison (1970) proposed involvement of membrane lipids in chilling injury. 

Consequently, the relationship between chilling sensitivity and lipid composition 

(Bergevin et al., 1993) and eventually electrolyte leakage, has received attention. 

Electrolyte leakage has been used to quantify cell membrane injury in various plant 

parts such as leaves, pericarp and fruits (King and Ludford, 1983; MacRae et al., 

1986; Bergevin et al., 1993). 

In many studies leaf samples have been exposed to cold for short periods, 

usually a few minutes or hours. Fewer attempts have been made to examine effects 

of extended chilling exposure on photosynthetic activities and growth. The 

relationship, if any, between changes in (plasma) membrane stability and 

photochemical components is poorly understood. 

The objective of this study was to compare photosynthetic properties and 

cellular membrane stability of two cereal crops subjected to different magnitudes and 

durations of chilling low temperature stress, and to asses the correlation between the 
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various measurements of stress injury. For this purpose three properties were 

measured: 1) in vivo chlorophyll fluorescence, 2) photosynthetic electron transport, 

and 3) electrolyte leakage of leaf tissue. We investigated the effects following various 

durations and levels of chilling low temperature. 
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MATERIALS AND METHODS 

Plant Materials, Growth Conditions, and Stress Exposure 

Seeds of the temperate C3 cereal wheat (Triticum aestivum L. cv. TAM W-101) 

and the subtropical C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) were grown in 

controlled environment growth chambers (Conviron CMP 3244, Winnipeg, Manitoba, 

Canada) in pots containing a mixture of peat moss and top soil (1:1, v/v). Wheat and 

tef were maintained at 25°C/18°C and 30°C/23°C, respectively, day/night 

temperature and 14 h photoperiod. Thirty days after planting, plants were exposed to 

chilling low temperatures (2°C, 7°C, and 12°C) for up to 168 h. Control plants 

remained at the original temperature. Measurements were made at 24 h intervals. 

Chlorophyll Fluorescence 

Measurements were made with a portable fluorometer (Polar Tech, Umea, 

Sweden) (Oquist and Wass, 1988). Four fully expanded leaves were sampled from 

each pot (4 leaves/pot x 4 pots = 16 leaves) and placed in black plastic sleaves with 

holes to guide the measuring probe. The leaves were dark adapted for 1 O min prior to 

a 5 s exposure to 100 µmol m-2 s-1 PAR. Fo, Fm, Fv, Fv /Fm and t112 were measured. 

Chloroplast Isolation 

Chloroplasts were isolated from leaves of 30-day-old wheat and tef plants using 

the procedure of Kee et al. (1986). Twenty g leaves from a five-plant-pot were 

homogenized for 3-4 s in a Waring blender (Model 7011-31b192, Waring, Hartford, 
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CT) in 200 ml ice cold isolation medium containing 30 mM Tricine (pH 7.8), 300 mM 

NaCl, 3 mM MgCl2 and 0.5 mM EDTA. The homogenate was filtered through 16 

layers of cheesecloth (Veratec, Inc., Walpole, MA) and centrifuged at 1500 g for 2 min 

in a high speed refrigerated centrifuge (ICE Model B-201, Damon/ICE Division, 

Needham Heights, MA). Pellets were resuspended with a cotton tip in 60 ml 

resuspension medium containing 200 mM sorbitol, 2 mM MgCl2, 5 mM HEPES-KOH 

(pH 7.5) and 0.05% (w/v) BSA. Course debris was removed by a short centrifugation. 

The supernatant was filtered through one layer of Kimwipe and recentrifuged at 1500 g 

for 2 min. The pellets were resuspended in a small volume of resuspension medium 

and stored on ice. 

Chlorophyll Content 

Chlorophyll content of chloroplast suspensions was determjned 

spectrophotometrically (Spectronic 1201, Milton Roy, Rochester, NY) according to 

Amon (1949) and converted from mass to molar values using a molecular weight of 

900 for chlorophyll. 

Photosynthetic Electron Transport 

Electron transport rates of isolated thylakoids were measured by monitoring 

light saturated 0 2 evolution or consumption with a temperature controlled Clark-type 

oxygen electrode assembly (Model LD-2, Hansatech Limited, King's Lynn, UK) at 

25°C. Thylakoids were assayed for whole chain (H20 -+ MV), PSII (H20-+ DAD0 x) and 

PSI (DHQ -+ MV) electron transport rates. The procedures described by Kee et al. 

(1986) for tomato, Allen and Holmes (1986) and Sabat et al. (1991) for spinach, beet, 

and pea were employed with slight modifications. Briefly, whole chain electron 

transport rate was assayed in 1.5 ml reaction medium containing 50 mM HEPES-KOH 
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(pH 7.5), 100 mM sorbitol, 5 mM KCI, 2.5 mM MgCl2, 5 mM Na2HP04, 0.5 mM ADP, 

100 µM MV, 100 mM NH4CI, 0.03 µM valinomycin, 3000 units (SOD), 5 mM sodium 

azide and chloroplasts containing 22.5 nmol chi. For assaying PSII the 1.5 ml 

reaction medium contained 50 mM HEPES-KOH (pH 7.5), 100 mM sorbitol, 5 mM 

KCI, 2.5 mM MgCl2, 5 mM Na2HP04, 0.5 mM ADP, 1.5 mM ~Fe(CN)6, 1 µM DBMIB, 

0.5 mM DAD and 11.25 nmol chi. The PSI electron transport activity was assayed 

using an identical reaction medium to that for whole chain electron transport except 

that 0.5 µM nigericin was substituted for valinomycin and NH4CI and 0.5 mM DHQ 

replaced water as the electron donor. One-half µm DCMU was added to block 

electron flow from PSII. Unless otherwise specified electron transport rates were 

expressed in µmol e· mg·1 chi h-1• The electron transport rates were calibrated with a 

known amount of ~Fe(CN)6 just before the beginning of every measurement. 

Electrolyte Leakage 

For each temperature treatment and species, sixteen test tubes (4 samples/pot 

x 4 pots) containing 0.7 g leaf material and 20 ml deionized double distilled water 

(ddH20) were vacuum infiltrated for 15 min at 120 to 140 mm Hg. Prior to vacuum 

infiltration, the leaves were gently washed for approximately 90 min with 3 changes of 

ddH20 and cut into 1 cm pieces (Premachandra and Shimada, 1987). Samples were 

agitated at room temperature for 1 h in a shaker (DUBNOFF metabolic shaking 

incubator, Precision Sci. Group, Model D/S 120-070, Chicago, IL). The initial electrical 

conductance (C1) of the bathing solution was measured (Cole-Parmer conductivity 

meter Model 1481-60, Chicago, IL). Leaf samples were then autoclaved (NAPCO 

Model-9000-D, Portland, OR) for 20 min at 121°c, agitated for 1 h, and the electrical 
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conductance measured again (CJ. The ratio of C1 to C2 was used as a measure of 

stress injury. 

All measurements were repeated three times with four replicate measurements 

per treatment. A completely randomized design was used. 

Chemicals 

Dihydrochloride salt of DAD was purified from a slurry of charcoal and cellite in 

ethanol:water (1: 1, v /v) containing 0.4% (w /v) ascorbate following the procedures 

described by Kee (1984) for tomato and Sabat et al. (1991) for beet. The slurry was 

filtered through Whatman No. 42 filter paper. The stirring step with charcoal and 

cellite was repeated until a colorless filtrate was obtained. Very cold concentrated HCI 

was added dropwise to the clear filtrate until crystals appeared. The solution was 

chilled to -20°C and crystals allowed to grow. Excess concentrated HCI was added. 

Finally, crystals were collected on Whatman No. 542 filter paper. The collected 

crystals were rinsed with very cold 100% ethanol, dried, and stored at -20°C in a 

desiccator. Fresh solutions of recrystallized DAD.2HCI were prepared in 10 mM HCI 

before the beginning of each experiment. DBMIB was a gift from Dr. D.R. Ort, 

University of Illinois. All other chemicals were of analytical grade. 
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RESULTS 

Photosynthetic Electron Transport and Chlorophyll Fluorescence 

Exposure of tef plants to chilling low temperatures (2° C, 7° C, and 12° C) 

reduced the capacity of PSII (Fig. 1 a) and whole chain (Fig. 1 b) electron transport in 

isolated thylakoids. The reduction was greater in PSII than in whole chain electron 

transport (Fig. 1, a and b). Complete inhibition of PSII was observed after 96 hand 

144 h of chilling when tef plants were exposed to 2°c and 7°C, respectively (Fig. 1a). 

These temperatures and exposure times led to losses of 63% and 53% of the whole 

chain activity (Fig. 1 b). PSII and whole chain electron transport rates (Fig. 2, a and b) 

were less reduced by chill-exposure in wheat. PSI electron transport was largely 

unaffected by chill-exposure in both wheat and tef (data not shown). 

Chilling temperatures that affected PSII and whole chain electron transport also 

altered chlorophyll fluorescence in tef. Even short duration chilling treatment 

substantially reduced Fv/Fm (Fig. 3a). PSII electron transport in thylakoids isolated 

from tef leaves and Fv /Fm of intact leaves were reduced by similar extents. For 

example, after 24 hat 2°c the reductions were 34% and 38%, respectively. 

Chlorophyll fluorescence (Fig. 3b) was much less reduced by chill exposure in wheat. 

In tef the decline in Fv /Fm was correlated with decreasing Fm (data not shown, r = 

0.95, P ~ 0.05) and Fv (data not shown, r = 0.95, P ~ 0.05), a substantial increase in 

t112 (Fig. 4, r = -0.89, P ~ 0.05) and a slight but significant change in Fo (data not 
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shown, r= -0.65, P~ 0.05). Changes in Fv/Fm were closely correlated with PSII and 

whole chain electron transport in both species, and the slope of the relationship was 

greater in tef than in wheat (Fig. 5). 

Electrolyte Leakage 

The relationship between electrolyte leakage and chilling temperature in tef was 

best described by power response functions (y = ax~ (Fig. 6a). The leakiness 

increased with decreasing temperature and increasing chilling time. Thus, enhanced 

membrane permeability accompanied the altered chlorophyll fluorescence properties 

and reduced electron transport rates described above. However, the latter two 

parameters detected temperature stress at shorter duration of exposure and less 

extreme temperatures than did electrolyte leakage. Like electron transport and 

chlorophyll fluorescence of chilled wheat, electrolyte leakage from chilled wheat leaves 

was not significantly different from the control (Fig. 6b). 

Regression analysis was carried out to evaluate the association between Fv /Fm 

and electrolyte leakage. It showed that the correlation between Fv /Fm and electrolyte 

leakage of chilled tef was significant (r = -0.93 P~ 0.05) and exponential as depicted 

in Fig. 7a. Also, the correlations between electrolyte leakage and PSII and whole 

chain electron transport activities were significant (Fig. 7, band c; r= -0.89, P~ 0.05). 
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DISCUSSION 

Tef (Eragrostis tef Z.), a cereal member of the NAD-malic enzyme subgroup of 

C4 plants (Gutierrez et al., 1974; Edwards and Walker, 1983), has considerable PSII 

activity also in the bundle sheath cells (Edwards and Walker, 1983). There has been 

limited efforts to quantify PSII electron transport in isolated chloroplasts and 

fluorescence of intact leaves among C4 plants. The presence of PSII in two 

biochemically and photochemically distinct types of photosynthetic cells (mesophyll 

and bundle sheath) in tef makes the determination of electron transport activities of 

isolated chloroplasts and chlorophyll fluorescence of intact leaves particularly 

interesting. We made no effort to isolate pure mesophyll chloroplasts or pure bundle 

sheath chloroplasts, so the electron transport data we present represent a mixed 

chloroplast population, albeit not necessarily at a ratio typical of the leaf. A mixed 

chloroplast population is desirable because chlorophyll fluorescence emitted by intact 

leaves does likely originates among both types of chloroplasts. The strong correlation 

between fluorescence and electron transport (Fig. 5) confirms a link between the two 

characteristics. 

To study effects of chilling on wheat and tef, measurements of chlorophyll 

fluorescence, photosynthetic electron transport and electrolyte leakage were 

performed. These measurements showed susceptibility of tef to chilling low 

temperature stress. The activity of photosynthesis revealed by PSII (Fig. 1 a) and 
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whole chain (Fig. 1 b) electron transport, and Fv /Fm (Fig. 3a) were lowered by 

decreasing temperature (12°C-2°C) and increasing the time of chill exposure (24 h to 

168 h). Thus, the classification of this species as a thermophilic plant (Edwards and 

Walker, 1983) was consistent with its temperature dependence of photosynthesis and 

not unexpected of a subtropical C4 grass (Miedema, 1982). The greater chill inhibition 

of whole chain than PSI electron transport was previously demonstrated by 

Bruggemann (1992) with Vigna. However, PSII is the most chill-sensitive component 

of electron transport (Fig. 1 a). A common observation of chilled plants is inefficient 

use of reducing equivalents (Bruggemann, 1992). It is thought that thylakoid phase 

transitions occur at low temperature in chilling sensitive species (Lyons and Raison, 

1970; Labate et al., 1990). If so, transitions could have diminished the reduction of QA 

by inactivating electron transport. Fluorescence should then be depressed by 

photochemical quenching associated with oxidized QA. The greater reduction of 

Fv /Fm and PSII electron transport of tef than wheat likely resulted from chill-induced 

inhibition of PSII (Csapo et el., 1991) that led to inefficient reduction of QA 

(Bruggemann, 1992). As previously reported by Hetherington et al. (1983) for maize 

reduced Fv/Fm was accompanied by increased t112 (Fig. 4), and decreased Fm and 

Fv (Csapo et al., 1991). The increase in t112 reveals that reducing equivalents 

accumulate slower at QA. Either electrons arrive at QA at a reduced rate in chilled tef 

plants or, less likely, they leave QA more rapidly. In any event, fewer electrons reside 

in the primary acceptor of PSII, QA, and as a result the level of Fm declines. The lack 

of effect on Fo indicates that the reaction centers of PSII remained open even after 

severe chilling stress. Bruggemann (1992) suggested that the decline in electron 

transport by low temperature is a cooperative effect of multiple limiting processes. A 
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similar conclusion was drawn from photoinhibition studies on maize grown in bright 

light at sub-optimal temperature (Greer and Hardacre, 1989). This is consistent with 

the notion that plants are especially susceptible to photoinhibition when they are 

simultaneously exposed to other stresses. There are published reports of 

photoinhibition developing in the presence of bright light and chilling low temperature 

(Long et al., 1994). In our study plant performance might have been limited by 

concurrent low temperature and photoinhibitory damage. 

Our findings on electron transport and fluorescence imply that PSI remained 

largely unaffected by exposure to chilling low temperature, but that PSll-dependent 

electron transport was impaired. In wheat both photosystems were less affected by 

chill exposure than in tef. It remains to be determined whether reduced PSII electron 

transport rate constitutes a greater limitation to net photosynthesis (CO2 fixation) in 

chilled than in unchilled tef. That was not found to be the case in chilled tomato, 

although both CO2 fixation and electron transport were reduced by low temperature 

treatment (Martin et al., 1981; Ort and Martin, 1983). 

Electrolyte leakage of leaf tissue of tef increased with the extent of chilling 

exposure (Fig. 6a) whereas wheat, which better withstands low temperatures in the 

field, was unaffected (Fig. 6b). The increase in electrolyte leakage in tef indicates a 

deleterious change in membrane integrity caused by low temperature. Enhanced 

leakiness at low temperatures was previously reported in several chilling sensitive 

species by MacRae et al. (1986) and Bergevin et al. (1993). The likely cause of the 

increase in leakiness in chilling sensitive species is temperature induced phase 

transitions (Raison and Orr 1986; Raison and Orr, 1990) of possibly minor membrane 

domains. A change in plasma membrane lipid composition during chill exposure 
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coincided with the loss of cell membrane integrity (Parkin and Kuo, 1989; Nguyen and 

Mazliak, 1990) in susceptible plants. Murata et al. (1992) used tobacco transformed 

with the gene for glycerol-3-phosphate acyltransferase from Arabidopsis thaliana. 

They correlated chilling sensitivity of plants with degree of unsaturation of fatty acids in 

the phosphatidylglycerol of chloroplast membranes. Perhaps a small proportion of 

unsaturated fatty acids were present in the lipids of tef chloroplast membranes than in 

wheat. In chilling resistant plants lipid changes also take place, such as increased 

unsaturation of fatty acids and altered relative amounts of various lipid classes and 

species (Murata et al., 1992). These lipid changes may be related to acclimation to 

low temperature (Kasamo et al., 1992). 

There was a close relationship between electrolyte leakage and photosynthesis 

as revealed by electron transport (Fig. 7, band c) and Fv/Fm (Fig. 7a). Excessive 

membrane leakage during chilling exposure correlated with substantially decreased 

rates of electron transport and lowered Fv /Fm. The parallel effects on tissue 

leakiness, electron transport and fluorescence suggest that cellular membranes, in 

particular the plasma membrane and the thylakoid membrane, are key sites of injury 

during chill-exposure of thermophilic plants. Alternatively, damage to the plasma 

membrane may alter the composition of the cytosol and indirectly interfere with 

chloroplast function. Yet another alternative is that dysfunction of the chloroplast, 

which is the main site of fatty acid biosynthesis, interferes with membrane lipid 

biosynthesis and therefore, also indirectly with the function of nonchloroplastic 

membranes (Whitaker, 1992). Clearly, disturbance of the membrane structure in 

leaves could lead to many secondary injuries because numerous crucial physiological 

and biochemical processes depend on membrane integrity (Bewley, 1979). 
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In summary, we show agreement between the assessments of chilling injury by 

measurements of chlorophyll fluorescence, electron transport and electrolyte leakage. 

The sensitivity of tef to chilling low temperature is characterized by limited 

photosynthetic capacity as revealed by lowered electron transport rate and Fv /Fm, 

and elevated membrane leakage. Because of the theoretical link between Fv /Fm and 

electron transport it is not unexpected that Fv /Fm predicts PSII activity well. Fv /Fm 

has the advantage of detecting chilling injury more rapidly and sensitively than 

electrolyte leakage. We propose that Fv /Fm is a good indicator of chilling stress also 

in C4 plants, and it has the advantage of being nondestructive, sensitive, and rapid. 

Also electron transport measurements are a sensitive but indicator of chilling injury, 

but they are more time consuming to make. 
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CHAPTER II 

PHOTOSYNTHETIC ELECTRON TRANSPORT, 

CHLOROPHYLLFLUORESCENCE,AND 

ELECTROLYTE LEAKAGE OF WHEAT 

(Triticum aestivum L.) AND 

TEF (Etagrostis tef Z.). 

HEAT STRESS 

SENAYET ASSEFA AND BJORN MARTIN 
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Abbreviations: BSA, bovine serum albumin; DAD, diaminodurene (2,3,5,6-tetramethyl

p-phenylenediamine); chi, chlorophyll; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p

benzoquinone (dibromothymoquinone); DCMU, 3-(3,4-dichlorophenyl)-1, 1-

dimethylurea; DHQ, durohydroquinone (tetramethyl-p-hydroqunione); e·, electron; Fo, 

initial fluorescence; Fm, maximal fluorescence; Fv, variable fluorescence (Fv = Fm -

Fo); MV, methyl viologen; PAR, photosynthetically active radiation; PSI and PSII, 

photosystem I and II; SOD, superoxide dismutase; t112, time required for fluorescence 

to rise from Fo to half its maximum value. 
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ABSTRACT 

Effects of heat stress on photosynthetic properties and cellular membrane 

stability of the temperate C3 cereal wheat (Triticum aestivum L. cv. TAM W-101) and 

the subtropical C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) were studied. Both 0 2 

evolution of isolated thylakoids and chlorophyll fluorescence of leaves were measured 

to evaluate photochemical properties, whereas membrane integrity was determined by 

electrolyte leakage of leaf samples. Heat stress reduced photosystem II (PSII) 

dependent electron transport of wheat and tef more than it reduced whole chain (PSII 

+ PSI) electron transport. PSI electron transport was largely unaffected. Electron 

transfer rates of wheat were reduced at lower temperature and after shorter exposure 

time than was observed for tef. The decrease in variable to maximum fluorescence 

ratio (Fv/Fm) indicated damage to the function of PSII photochemistry. In heat 

stressed wheat leaves the decline in Fv /Fm was accompanied by increasing minimal 

fluorescence (Fo) and time required for Fv to rise to half its maximum value (t11:J. In 

tef Fo was unaltered. Fv /Fm was closely correlated with PSII and whole chain 

electron transport rates in both species. Electrolyte leakage of wheat leaf tissue 

exposed for various durations to high temperature fit an exponential sigmoidal 

response curve, whereas electrolyte leakage increased more monotonously with 

temperature in tef. These measurements corroborated the greater sensitivity of wheat 

than tef to high temperatures that had been previously observed by measurement of 
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photochemical properties. The decrease in electron transport activity and Fv /Fm was 

correlated with increased electrolyte leakage of the plasma membrane. 
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INTRODUCTION 

Photosynthesis, both at the leaf and organelle levels, is sensitive to high 

temperature (Berry and Bjorkman, 1980). High temperature alters the efficiency of 

L photosynthesis and the relative proportion of light energy reemitted as chlorophyll 

fluorescence (Weis, 1982). Earlier studies have found heat sensitivity of thylakoid 

membrane activities (Santarius, 1975). The exceptional susceptibility of PSII (Berry 

and Bjorkman, 1980; Inoue et al., 1987; Sabat et al., 1991; Havaux, 1992), particularly 

the oxygen-evolving complex (Critchley and Chopra, 1988; Nash et al., .1985, 

Thompson et al., 1989), is today accepted. PSI activity (Thomas et al., 1986; Havaux, 

1992; Sabat et al., 1991) is less affected by high temperature. Two of the four Mn2 + of 

the water-splitting complex (Nash et al., 1985; Thompson et al., 1989) and er are 

thought to be released at high temperature (Critchley and Chopra, 1988), and 

denaturation of membrane proteins of the oxygen-evolving complex has been 

suggested (Thompson et al., 1989). Thus, one site of heat injury is located in the 

thylakoid membrane (Santarius, 1975). Early analysis of chlorophyll.§ fluorescence 

kinetics suggested that high temperature stress leads to blockage of the PSII reaction 

center and dissociation of the antennae pigment-protein complex from the central 

core of PSII (Armond et al., 1978). This view was further strengthened by freeze 

fracture studies (Gounaris et al., 1983, 1984) demonstrating the loss of grana stacking 

and redistribution of intramembrane particles. 
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Several techniques have been used to analyze stress effects on plants. 

Chlorophyll fluorescence techniques have been recently used (van Kooten and Snel, 

1990) and revealed details of various aspects of photosynthesis (for a review see 

Krause and Weis, 1991; Schreiber and Bilger, 1993). Among the many parameters 

derived from the fluorescence induction curve, the parameter most often used is 

Fv /Fm, a quantitative measure of the quantum efficiency of PSII photochemistry and 

photon yield of oxygen evolution (Oquist and Wass, 1988; Adams et al., 1990; Krause 

and Weis, 1991). It is now possible to interpret chlorophyll fluorescence changes 

caused by high temperature in terms of altered PSII electron transfer (Krause and 

Weis 1984, Adams et al., 1990; Cao and Govindjee, 1990; Havaux, 1992). 

A simple and rapid measurement that has received some attention is the 

cellular membrane thermostability as revealed by electrolyte leakage (Shanahan et al., 

1990). Electrolyte leakage measurements have been used to quantify cell membrane 

injury (Ingram, 1985; Shanahan et al., 1990) in leaf, fruit and root tissue. The 

technique has also been used to find the critical temperature causing direct heat injury 

(Levitt 1980; Ingram, 1985). However, there is no clear evidence in the literature 

whether the temperature that causes such a change is appreciably different from that 

associated with loss of the photosynthetic activity. 

Often leaf disks have been exposed to heat shock treatment for a few minutes 

or hours. Fewer attempts have been made to quantify the effects of extended heat 

stress. Also, the relationship between changes in photochemical properties of 

isolated chloroplasts and leaves, and membrane stability as revealed by electrolyte 

leakage, is poorly understood. 

35 



The objective of this study was to evaluate photosynthetic properties and 

cellular membrane stability of two plant species of contrasting thermal tolerance, and 

to identify the most sensitive and rapid technique(s) to assess heat stress injury. For 

this purpose we measured three properties: 1) in vivo chlorophyll fluorescence, 2) 

photosynthetic electron transport, and 3) electrolyte leakage of leaf tissue. 
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MATERIALS AND METHODS 

Plant Materials, Growth Conditions, and Stress Exposure 

Seeds of the temperate C3 cereal wheat (Triticum aestivum L. cv. TAM W-101) 

and the subtropical C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) belonging to the 

NAD-malic enzyme subgroup were grown in controlled environment growth chambers 

(Conviron, CMP 3244, Winnipeg, Ltd., Manitoba, Canada) in pots containing a mixture 

of peatmoss and top soil (1 :1, v/v). Wheat and tef were maintained at 25°C/18°C 

and 30°C/23°C day/night temperatures, respectively and 14 h photoperiod. Thirty 

days after planting, exposure to high temperatures (35° C, 40° C, and 45° C) lasting up 

to 168 h commenced. Control plants remained at the original temperature. 

Measurements were made at 24 h intervals. 

Chlorophyll Fluorescence 

Measurements were made with a portable fluorometer (Polar Tech Umea, 

Sweden) (Oquist and Wass, 1988). Four fully expanded leaves were sampled from 

each pot (4 leaves/pot x 4 pots) and placed to dark adapt for 10 min between black 

plastic sheets. The top sheet contained holes to guide the measuring probe. Dark

adapted leaves were exposed for 5 sec to an excitation light intensity of 100 µmol m-2 

s-1 PAR. Fo, Fm, Fv, Fv /Fm and t112 were measured. 

Chloroplast Isolation 

Chloroplasts were isolated from leaves of 30-day-old wheat and tef plants using 
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the procedures described by Kee et al. (1986). Twenty g freshly cut fully expanded 

leaves of five plants were homogenized in a Waring blender (Model 7011-31 b192, 

Waring, Hartford, CT) for 3 to 4 sat high speed in 200 ml ice cold isolation medium 

that contained 30 mM Tricine (pH 7.5), 300 mM NaCl, 3 mM MgCl2 and 0.5 mM 

EDTA. The resulting homogenate was filtered through 16 layers of cheesecloth 

(Veratec, Inc., Walpole, MA) and centrifuged (ICE Model B-20A centrifuge, Damon/ICE 

Division, Needham Heights, MA) at 1500 g for 2 min at 2°c. Pellets were 

resuspended in 60 ml resuspension medium containing 5 mM HEPES-KOH (pH 7.5), 

200 mM sorbitol, 2 mM MgCl2, and 0.05% (w/v) BSA. Course debris was removed by 

a short centrifugation step. The supernatant was filtered through a layer of Kimwipe 

tissue and recentrifuged at 1500 g for 2 min. The pellets were gently resuspended 

with a cotton tip in a small volume of resuspension medium and stored on ice. 

Chlorophyll Content 

Total chlorophyll content of chloroplast suspensions was determined 

spectrophotometrically (Spectronic 1201, Milton Roy, Rochester, NY) according to 

Amon (1949). Units of mass were converted to molar units using a molecular weight 

of 900 for chlorophyll. 

Photosynthetic Electron Transport 

Electron transport rates were measured by monitoring oxygen evolution or 

consumption with a temperature controlled Clark-type oxygen electrode assembly 

(Model LD-2, Hansatech, Ltd., King's Lynn, Norfolk, England) at 25°C and saturating 

light from a 100 W projector lamp (Quartizine 12 V, West Germany). Thylakoids were 

assayed for whole chain (H20 ... MV), PSII (H20 ... DAD0,J, and PSI (DHQ ... MV) 

electron transport rates. The procedures described by Kee et al. (1986) for tomato, 

38 



and Allen and Holmes (1986) and Sabat et al. (1991) for spinach, beet and pea were 

employed with slight modifications. For details of the reaction media see Chapter I. 

The rates of all three activities were expressed in µmole· mg·1 chi h-1• The electron 

transport rates were calibrated with a known amount of KaFe(CN)6 just before the 

beginning of every measurement (Allen and Holmes; 1986). 

Electrolyte Leakage 

For each temperature treatment sixteen test tubes containing 0.7 g leaf sample 

and 20 ml deionized double distilled water (ddH20) were vacuum infiltrated at 120 -

140 mm Hg for 15 min. Prior to vacuum infiltration, sampled leaves were gently 

washed for 90 min with 3 changes of ddH20 and cut into 1 cm pieces (Premachandra 

and Shimada, 1987). Samples were agitated at room temperature for 1 h in a shaker 

(DUBNOFF shaking incubator, Precision Sci. Model D/S 120-070, Chicago, IL). The 

initial electrical conductance (C1) of the bathing solution was measured with a 

conductivity meter (Cole-Parmer Instrument Co. Model 1481-60, Chicago, IL). Leaf 

samples were then autoclaved (NAPCO Model-9000-D, Portland, OR) for 20 min at 

121°c, agitated for 1 h, and a second electrical conductance (C:J measured. The 

ratio of C1 to C2 , was used as a measure of stress injury. 

All measurements were repeated three times with four replicate measurements 

for each treatment. A completely randomized design was used. 

Chemicals 

Dihydrochloride salt of DAD was recrystallized from ethanol-water (1 : 1, v /v) 

containing 0.4% (w /v) ascorbate. See Chapter I for details. Fresh solutions of 

DAD.2HCI were prepared in 1 O mM HCI immediately before the beginning of each 
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experiment. DBMIB was a gift by Dr. D.R. Ort, University of Illinois. All other 

chemicals were of analytical grade. 
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RESULTS 

Effects of Heat Stress on Photosynthetic Electron Transport 

The activity of thylakoid membranes isolated from wheat and tef leaves exposed 

to high temperature was evaluated by measuring PSII (H2Q .... DAD0J, PSI (DHQ .... MV) 

and whole chain (H20 .... MV) electron transport rates. Heat stress significantly 

reduced PSII and whole chain electron transport of wheat and tef (Fig. 1, a and b; 2, a 

and b). The extent of the reduction was greater in PSII than in whole chain, and 

greater in wheat than in tef (Fig. 1, a and b; 2, a and b). In agreement with earlier 

studies (Thomas et al. 1986; Sabat et al., 1991) the 35°C and 40°C treatments were 

very damaging to PSII and whole chain electron transport of wheat. For example, in 

wheat 48 hat 40°C caused complete loss of PSII activity, whereas 96 h was needed 

to eliminate whole chain activity (Fig. 1, a and b). Tef required 144 hat 40 °C for 

complete loss of PSII activity and 168 h for elimination of whole chain activity (Fig. 2, 

A and B). At 45° C, which was very harmful to both species, wheat lost its PSII and 

whole chain activities within 24 hand 48 h, respectively. In tef elimination of these 

activities occurred within 48 hand 96 h. PSI-dependent electron transport remained 

largely unaffected, or it was even stimulated in tef (Fig. 3, a and b) at temperature at 

which PSII and whole chain electron transport was partially or completely inhibited. 

Thus, the decline in whole chain electron transport of heat stressed leaves was 

probably caused by injury to PSII. 
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Effects of Heat Stress on in vivo Chlorophyll Fluorescence 

Fv /Fm was significantly reduced by high temperature (Fig. 4, a and b) indicating 

damage to the function of PSII photochemistry. In heat stressed wheat leaves the 

decline in Fv /Fm was accompanied by an increase in Fo, a decrease in Fv and an 

increase in t112 (Table I). The same was generally true for tef, but the temperature 

effect on the fluorescence components was smaller than in wheat (Table 11). Also Fo 

was largely unaltered in tef (Table 11). Thus, both reduced Fv and elevated Fo 

contributed to the reduction in Fv /Fm of wheat. 

Effects of Heat Stress on Electrolyte Leakage 

Electrolyte leakage of wheat leaf tissue exposed for various durations to high 

temperatures showed an exponential sigmoid time-response cuNe (Fig. Sa) 

represented by the equation y = [(Ymax + Ymin) + (Ymax - Ymin)(1 - e<-kl<x-xso>D<x-xso>]o.5, 

where y is electrolyte leakage, Ymax and Ymin are the maximum and minimum levels of 

electrolyte leakage, K is the slope at the inflection point, and x and x50 are the 

treatment temperature and temperature corresponding to the mid point (i.e. the 

inflection point). In tef electrolyte leakage increased much more monotonously with 

increasing temperature (Fig. Sb). A least square approach was used to find best fit 

functions in Figures Sa and Sb. Both species showed greatly enhanced electrolyte 

leakage with increasing temperature and heating time. However, the extent of 

membrane leakiness in wheat leaf tissue was much greater than in tef at high 

temperatures. The maximum leakage value under our experimental conditions was 

0.81 in wheat and 0.56 in tef (Fig. 5, a and b). The temperature causing 50% leakage 

in wheat ranged between 35°C and 40°C dependent on duration (Fig. Sa). These 

differences may reflect that tef is adapted to higher growth temperature than wheat. 
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At these temperatures electron transport and Fv /Fm of wheat are partially or 

completely inhibited dependent on duration (Fig. 1, a and b; Fig. 4a). 

In both wheat and tef the decline in Fv /Fm was closely positively correlated with 

PSII (r = 0.99, 0.96, P s: 0.05) and whole chain (r = 0.97, 0.85, P s: 0.05) electron 

transport (Fig. 6, a-d). Increased membrane leakage of wheat and tef was also 

correlated with PSII (r= -0.72, -0.96, Ps: 0.05) and whole chain (r = -0.93, -0.85, 

Ps:0.05) electron transport (Fig. 6, a-d) and Fv/Fm (Fig. 7, a and b). 
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Figure 1. PSII (a) and whole chain (b) electron transport rate of wheat as affected by 
temperature at different exposure times. Bars indicate ± SE. The experiment was 
performed 3 times with 4 replications for each treatment. 
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Figure 3. PSI electron transport rate of wheat (a) and tef (b) as affected by 
temperature at different exposure times. Bars indicate ± SE. The experiment was 
performed three times with four replication for each treatment. 

46 



0.8 

0.6 

0.4 

0.2 

0.0 a 

25 

0.8 

0.6 

0.4 

0.2 

0.0 b 

30 

30 35 

Exposure time 
• 24 h A 120h 
o 48 h + 144 h 
& 72 h • l68h 
V 96h 

40 45 
Exposure time 
• 24 h A 120h 
o48h +144h 
& 72 h • 168 h 

_V96h 
:-:-..-----a. 

35 40 
Temperature (°C) 

45 

Figure 4. Ratio of variable to maximum fluorescence (Fv /Fm) as affected temperature 
treatment in wheat (a) and tef (b). Intact leaves were dark adapted for 10 min prior to 
exposure to excitation light with an intensity of 100 µmol m-2 s-1 PAR. Bars indicate ± 
SE. The experiment was performed three times with four replications for each 
treatment. 

47 



t 

"' 

Q.j 0.8 Exposure time 
bl) • 24 h 
d 

0 48 h ~ 
d 0.6 • 72 h 
Q.j 

V 96 h -Q.j !l.120h ..... 
0.4 + 144h ..... - • t68h 0 

;.. ..... 
t.) 0.2 Q.j -~ 

a 
0.0 

25 30 35 40 45 

Q.j 0.8 Exposure time 
bl) • 24 h 
d 

0 48 h .!:ii: 
d 0.6 • 72 h 
Q.j 

V 96 h -Q.j A120h ..... 
0.4 +144h ..... - .168 h 0 

;.. ..... 
t.) 0.2 
Q.j -~ b 

0.0 
30 35 40 45 

Temperature (°C) 

Figure 5. Electrolyte leakage of wheat (a) and tef (b) as functions of temperature at 
different exposure times. The experiment was performed three times with four 
replications for each treatment. Vertical bars indicate ±SE. A least square approach 
was used to find the best fitting regression functions. Below are best fitting equations 
for exposure times from 24 to 144 h for wheat, 
(24 h) Y = [(0.877+0.749(1-e'·o.4eo1,,-40.11 1)D)'"-40.1 11)]0.5, r=0.99; 
(48 h) y = [(0.809+0.669(1-e'·0·1141'"·35·31 7Jll)'"·35·311l]0.5, r= 1.00; 
(72 h) y = [(0.808+0.668(1-e'·0·514 l(•·31·035lll)'"·31·035lJ0.5, r= 1.00; 
(96 h) y = [(0.808+0.668(1-e'·0·1151'"·35·542lll)'"·35·542l]0.5, r= 1.00; 
(120 h) y = [(0.808+0.668(1-e'·0·103 l(•·35·555lll)'"·35·555l]0.5, r= 1.00; 
(144 h) y = [(0.807+0.673(1-e'·0.4121 '"·35·049lll)'"·35·049lJ0.5, r=1.00; and for tef 
(24 h) y = 0.00399e0·0938", r=0.99; (48 h) y = 0.00320e0·1021", r=0.99; 
(72 h) y = 0.00125e0·1340", r=0.99; (96 h) y = 0.00110e0·1355", r=0.99; 
(120 h) y = 0.00126e0·1359", r=0.99; (144 h) y = -2.242 + 0.1168x - 0.0011x2, r=0.99; 
(168 h) y = -1.828 + 0.0862x - 0.0007x2, r=0.99. 

48 



0.8 [ 8 =.I 0.8 - 0.8 0.8 -<I e Q - -Q,I Q,I 

- 0.6 0.6 1:1) _ o.6 0.6 
1:1) 

= = • Iny-In0.183+ 0.278Inx .llll ... .!:ill - = - = 
'0.4 

r=0.99 Q,I Q,I 

0.4 - '0.4 0.4 -Q,I Q,I - -- ~ =,... l> =,... 
~ - ~ -Q y=0,427e·•·•17• Q 

0.2 0.2 s.. 0.2 r--0.96 0.2 s.. - -u u 
11 Q,I Q,I - -0.0 0.0 r,i;1 o.o 0.0 ~ 

0 50 100 150 0 50 100 150 200 250 300 

0.8 0.8 - 0.8 0.8 -<I d Q - -Q,I Q,I 

- 0.6 0.6 1:1) 
..-. 0.6 0.6 

1:1) 

= = • .llll ... .llll - = - = 
'0.4 

Q,I 

'0.4 
Q,I 

0.4 - 0.4 -Q,I Q,I 

~ - - -=,... l> y-0.506e·'·'"" 
=,... 

~ - ~ 0.2 -Q r--0.88 Q 
0.2 0.2 s.. 0.2 s.. - -u u 

0.0 y 11 .. ----.... 
I o.o 

Q,I Q,I - -~ 0.0 0.0 r,i;1 

0 50 100 150 0 50 100 150 200 250 300 350 

Electron transport rate Electron transport rate 
(pmol e· mg·1 chi b·l) (pmol e· mg·1 chi h· 1) 
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Table I. Fo, Fm, Fv and t112 of wheat exposed to high temperature. Blanks indicate 
that F P (peak fluorescence) was not detected during the 5 s duration of the 
measurement. Intact leaves were dark adapted for 10 min prior to exposure to 
excitation light with an intensity of 100 µmol m-2 s-1 PAR. The experiment was 
performed three times with four replications for each treatment. 

Temp Time Fo Fm Fv t1;2 
(OC) (h) (relative units) (ms) 

25 0 0.106 ± 0.000 0.404 ± 0.011 0.306 ± 0.013 210 ± 6 

35 24 0.117 ± 0.013 0.282 ± 0.007 0.175 ± 0.012 211 ± 12 

48 0.126 ± 0.007 0.265 ± 0.010 0.143 ± 0.009 247 ± 79 

72 0.223 ± 0.015 0.319 ± 0.010 0.096 ± 0.009 295 ± 58 

96 0.346 ± 0.007 0.384 ± 0.011 0.057 ± 0.019 706 ± 211 

120 0.412 ± 0.000 0.484 ± 0.010 0.069 ± 0.010 555 ± 16 

144 

40 24 0.135 ± 0.002 0.316 ± 0.017 0.184 ± 0.013 234 ± 13 

48 0.202 ± 0.001 0.327 ± 0.010 0.124 ± 0.019 470 ± 64 

72 0.350 ± 0.000 0.373 ± 0.010 0.025 ± 0.009 495 ± 48 

96 

45 24 0.137 ± 0.002 0.164 ± 0.011 0.029 ± 0.010 1001 ± 304 

48 
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Table II. Fo, Fm, Fv and t112 of tef exposed to high temperature. Blanks indicate the 
equipment did not detect F P (peak fluorescence) during the 5 s duration of the 
measurement. For experimental detail, see Table I. 

Temp Time Fo Fm Fv t1/2 
(OC) (h) (relative units) (ms) 

30 0 0.084 ± 0.001 0.313 ± 0.005 0.228 ± 0.005 222 ± 5 

35 24 0.087 ± 0.001 0.210 ± 0.011 0.123 ± 0.009 265 ± 29 

48 0.113 ± 0.001 0.234 ± 0.012 0.117 ± 0.013 282 ± 12 

72 0.096 ± 0.008 0.201 ± 0.008 0.105 ± 0.008 268 ± 14 

96 0.110 ± 0.000 0.220 ± 0.015 0.110 ± 0.009 256 ± 14 

120 0.088 ± 0.001 0.199 ± 0.008 0.110 ± 0.010 269 ± 14 

144 0.087 ± 0.000 0.170 ± 0.005 0.083 ± 0.007 262 ± 11 

168 0.093 ± 0.001 0.170 ± 0.006 0.082 ± 0.004 301 ± 10 

40 24 0.095 ± 0.001 0.222 ± 0.016 0.128 ± 0.016 243 ± 11 

48 0.099 ± 0.001 0.198 ± 0.004 0.098 ± 0.004 289 ± 13 

72 0.090 ± 0.000 0.174 ± 0.010 0.083 ± 0.011 257 ± 10 

96 0.103 ± 0.001 0.175 ± 0.009 0.074 ± 0.011 368 ± 44 

120 0.107 ± 0.001 0.187 ± 0.011 0.080 ± 0.010 327 ± 33 

144 

45 24 0.104 ± 0.001 0.164 ± 0.005 0.060 ± 0.005 402 ± 47 

48 0.107 ± 0.001 0.151 ± 0.004 0.046 ± 0.005 682 ± 129 

72 0.123 ± 0.000 0.150 ± 0.011 0.030 ± 0.011 637 ± 89 

96 
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DISCUSSION 

Berry and Bjorkman (1980} and others found that the water splitting apparatus 

of PSII is susceptible to heat damage. Our chlorophyll fluorescence results on wheat 

are consistent with heat stress damage to the oxidizing side of PSII. The reduction in 

Fv /Fm (Fig. 4a} brought about by the combination of a decrease in Fv and an 

increase in Fo (Table I) agrees with this interpretation. The increase in Fo is indicative 

of damage to the reaction center of PSII while decreased Fv suggests an increase in 

non-radiative energy dissipation (Bolhar-Nordenkampf et al., 1989). These findings 

suggest that high temperature stress diverts excitation energy from photosynthesis to 

dissipation of heat. In contrast, in tef where there was a more gradual reduction in 

Fv /Fm, the reduction was predominantly due to a decrease in Fm without a significant 

effect on Fo. Thus, in tef the inactivation of PSII may not have resulted from loss of 

active reaction centers and emergence of a population of closed centers in dark

adapted leaves. Perhaps heat stress in tef causes inefficient energy transfer within the 

pigment bed. The heat stress effects on the photosynthetic apparatus of tef may be 

less specifically localized on the oxidizing side of PSII than in wheat. The effect of 

heat stress on Fm of wheat varied with temperature (Table I). From 25°C to 35°C Fm 

decreased sharply followed by an increase and, finally, again a sharp decrease at 

higher temperatures (45° C). The water oxidizing side of PSII is susceptible to high 

temperature so presumably electron supply was slowed from water to the 
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plastoquinone pool and this resulted in low Fm. However, the reason behind the 

transitory increase in Fm is not known. In tef Fm declined greatly (Table II). There 

has been speculations that lowered Fm could be caused by structural alterations 

taking place in the PSII complex, which lead to an overall decrease in PSII 

photochemistry (Mishra and Singhal, 1992). 

Thylakoid membranes isolated from heat stressed wheat and tef leaves showed 

drastic inhibition of the activities of PSII and whole chain electron transport (Figs. 1, a 

and b; Fig. 2a; Fig.3b). In contrast PSI remained largely unaffected. These 

observations are consistent with the conclusion by Critchley and Chopra (1988) and 

Mishra and Singhal (1992) that the oxygen-evolving complex of higher plants is one of 

the target sites for high temperature damage. Nash et al. (1985), Sundby et al. (1986) 

and Thompson et al. (1989) reported that heat inactivation of oxygen evolution 

occurred within the 30° C-40° C range. Several of the studies used short heating 

times, usually 5 to 30 min. However, also in our experiments with a minimum duration 

of heat exposure of 24 h, both PSII and whole chain electron transport of wheat was 

greatly inhibited at temperatures between 30°C and 40°C. Heat inactivation of 

oxygen evolution has been attributed to loss of er from the oxygen evolving complex 

(Critchley and Chopra, 1988; Coleman et al., 1988; Nash et al., 1985), release of 

manganese, and loss of 33, 24, and 18 KD extrinsic polypeptides (Nash et al., 1985; 

Thompson et al., 1989). Also thermal denaturation of proteins essential for water 

oxidation and electron transport has been proposed (Thompson et al. 1989). The 

heat-induced inhibition of PSII electron transport can be partially restored by use of 

artificial electron donors in place of water (Mishra and Singhal, 1992). However, even 

in the presence of an artificial donor, PSII activity was lost by heating above 44°C 
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(Gounaris et al., 1983). Complete destacking of the grana at temperatures between 

35°C and 45°C (Gounaris et al., 1983) and thermal dissociation of light-haNesting 

complexes from the central core of PSII revealed by transition from PSII,. to PSll 11 

(Sundby et al., 1986) may also account for inhibition of PSII electron transport. 

Increasing the temperature above 35°C for a short period (5 min) has been 

documented to stimulate PSI dependent electron transport rate (Thomas et al., 1986; 

and Sabat et al., 1991). This stimulation was explained in terms of rearrangement of 

the thylakoid membrane resulting in the exposure of new donor sites within the cytb6/f 

complex (Thomas et al., 1986) or enhancement of spill over (Velitchkova et al., 1988). 

In our experiments only a small increase in PSI electron transport rate was obseNed 

at exposure temperatures between 35°C and 40°C (Fig. 3, a and b). The lack of 

greater and more consistent heat stimulation of PSI could be due to use of a different 

electron donor, or alternatively the effect was offset by the extended periods of heat 

stress used in our study. Velitchkova et al. (1988) also failed to find heat stimulation 

of PSI in stromal thylakoids, where the major proportion of PSI complexes are 

located. 

Electrolyte leakage of wheat and tef leaf tissue increased with increasing 

temperature and heating time (Fig. 5, a and b). Membrane leakiness in wheat leaf 

tissue, was much greater than in tef, however, suggesting greater loss of membrane 

integrity in wheat compare to tef. As the heating time and temperature increased, the 

difference in electrolyte leakage between the two species narrowed. Loss of 

membrane integrity at high temperature correlated with reduced photosynthetic 

activity. There were close negative correlations between photosynthetic activity, as 

revealed by electron transport (Fig. 6, a-d) and Fv/Fm (Fig. 7, a-b), and membrane 
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leakage. The exact implication of plasma membrane dysfunction for the activities of 

chloroplast membranes are not understood and there may not be a direct functional 

relationship at all. There could be a separate but analogous effect of high 

temperature directly on the chloroplast membranes that is responsible for changes in 

electron transport and fluorescence. Alternatively, plasma membrane leakiness might 

cause changes in solute composition inside the cell, which indirectly could cause 

negative effects on thylakoid function. Electron transport and Fv /Fm of wheat was 

almost fully inhibited at temperatures causing 50% leakage suggesting that either 

thylakoid function is very sensitive to plasma membrane leakiness, or thylakoid injury 

precedes plasma membrane injury. The physiological relationship between plasma 

membrane permeability and thylakoid membrane function needs further study. 

In summary, this study shows that wheat is more susceptible to heat injury than 

tef and that there is a general agreement between determinations of heat stress injury 

assessed by chlorophyll fluorescence, electron transport, and electrolyte leakage. 

Measurements of fluorescence and electrolyte leakage have the advantage of being 

especially simple to make and rapid. Electrolyte leakage does not detect heat injury 

as early as fluorescence and electron transport. 
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CHAPTER Ill 

PHOTOSYNTHETIC ELECTRON TRANSPORT, 

CHLOROPHYLL FLUORESCENCE, CHLOROPHYLL 

CONTENT, AND ELECTROLYTE LEAKAGE OF 

OF WHEAT (Triticum aestivum L.) 

AND TEF (Eragrostis tel Z.): 

WATER DEFICIT STRESS 
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Abbreviations: BSA, bovine serum albumin; chi, chlorophyll; DAD, diaminodurene 

(2,3,5,6-tetramethyl-p-phenylenediamine); DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p

benzoquinone (dibromothymoquinone); DCMU 3-(3,4-dichlorophenyl)-1, 1-

dimethylurea; DHQ, durohydroquinone (tetramethyl-p-hydroquinone); e-1, electron; Fo, 

initial fluorescence; Fm, maximum fluorescence; Fv, variable fluorescence (Fv = Fm -

Fo); 'P, leaf water potential; MV, methyl viologen; PAR, photosynthetically active 

radiation, PSI and PSII, photosystem I and II; t112, time required for fluorescence to 

rise from Fo to half its maximum value. 
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ABSTRACT 

Experiments were conducted to study photochemical properties, pigment 

content, and cellular membrane stability of the C3 cereal wheat (Triticum aestivum L. 

cv. TAM W-101) and the C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) subjected to 

water deficit stress. Evaluation of photochemical properties were made by 

measurement of the rate of photosynthetic electron transport of isolated thylakoids, in 

vivo chlorophyll fluorescence of dark adapted leaves, and chlorophyll content of leaf 

tissue. Water stress reduced photosystem II (PSII) and whole chain (PSII + PSI) 

electron transport rates of wheat and tef, whereas the rate of PSI electron transport 

was unaffected. Water stress reduced electron transport of wheat at lower stress level 

(higher leaf water potential, 1.11) compared to tef. The relative sensitivities of electron 

transport to water stress in the two species were corroborated by fluorescence 

measurements. The changes in Fv /Fm, Fv, and Fm of wheat indicated that water 

stress eventually caused inactivation of the primary photochemistry of PSII. Fv /Fm 

was closely correlated with both PSII and whole chain electron transport rates. 

Chlorophyll content remained unchanged by water stress. Electrolyte leakage from 

water stressed wheat and tef leaves was generally low above 1.11 = -1.0 MPa. However, 

a slow and gradual increase was observed as 1.11 fell from -1.0 MPa to -2.4 MPa. These 

measurements confirmed the greater sensitivity to water stress of wheat than of tef. 

Electron transport measurements detected water deficit stress with as great sensitivity 
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as did Fv /Fm. Electrolyte leakage and chlorophyll contents only responded to water 

stress outside the physiologically meaningful levels. 
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INTRODUCTION 

Water deficit stress is one of the main environmental stresses that limit 

photosynthesis. Many effects of water deficit stress are well documented (for reviews 

see Hsiao, 1973; Kaiser, 1987). Until recently inhibition of photosynthesis was largely 

ascribed to stomata! closure and its effect on the supply of CO2 to the leaf interior. 

However, there is now strong evidence that components of photosynthesis unrelated 

to stomata are also affected by reduced '11. Water stress may inhibit photosynthetic 

electron transport (Boyer and Bowen, 1970; Keck and Boyer, 1974; Mayoral et al., 

1981; Boyer and Younis, 1984; Bjorkman and Powles, 1984), photophosphorylation 

(Mayoral et al., 1981), and assimilatory enzymes of the Calvin cycle (Sharkey and 

Seemann, 1989; Kicheva et al., 1994). 

According to Boyer and Younis (1984), neither chloroplast degradation, nor 

structural disintegration are factors that limit chloroplast activity under water stress. 

Boyer and Younis (1984) and Fellow and Boyer (1976) suggested the involvement of a 

conformational change in thylakoid membranes. 

The intensity and kinetics of fluorescence emitted by chlorophyll g provides an 

indication of the primary photochemistry of photosynthesis. Advances have been 

made in interpreting fluorescence data as they relate to effects of water stress on PSII 

electron transfer (Govindjee et al., 1981; Bjorkman and Powles, 1984; Bukhov et al., 

1989; Ogren, 1990). Some studies have questioned the effects of water stress on the 
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function of PSII (Genty et al., 1987; Havaux, 1992; Jefferies, 1994; Kicheva et al., 

1994). Ogren and Oquist (1985), Bukhov et al. (1989), and Ogren (1990) proposed 

that the slow kinetics of fluorescence induction was relatively more informative thc;\n 

the fast kinetics. Govindjee et al. (1981) have demonstrated that the amplitude of Fv 

was most affected by water stress. It was suggested that the photochemistry of PSII 

was inhibited early, but that ultimately also CO2 fixation was impaired (Bukhov et al., 

1989). 

Light harvesting and photochemistry depend on chlorophyll assemblage into 

pigment protein complexes. Mayoral et al. (1981) and Baisak et al. (1994) reported 

rapid decline of chlorophyll content of water stressed wheat leaves. Others (Bjorkman 

and Powles, 1984; Stuhlfauth et al., 1990) have suggested that chlorophyll content is 

unaffected by water stress in the physiological range. 

In addition to the effects on photosynthesis, water stress may cause electrolyte 

leakage from leaf tissue (Sullivan and Ross, 1979; Leopold et al., 1981; Martin et al. 

1987; LeBlanc and Dhindsa, 1993). Electrolyte leakage from leaf disks increased as 111 

of excised leaves declined (Martin et al., 1987). Several studies have suggested that 

cell membranes are the initial site of injury. The review by Bewley (1979) and other 

reviews pointed out the central role of cell membrane stability in drought tolerance 

and drought adaptation (Sullivan and Ross, 1979; Blum and Ebercon, 1981; 

Premachandra and Shimada, 1987). Sullivan and Ross (1979), Blum and Ebercon 

(1981), and Premachandraand Shimada (1987) applied electrolyte leakage as a 

measure of drought tolerance in sorghum, wheat and orchard grasses. The method 

was based on dehydration of leaf disks by incubation in a solution of polyethylene 

glycol and subsequent measurement of electrolyte leakage into an aqueous medium. 
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Studies differ regarding the tolerance level of wheat compared to corn, sorghum, and 

millet (Sullivan and Ross, 1979; Blum and Ebercon, 1981). 

Many studies on chlorophyll fluorescence (Kicheva et al., 1994), electrolyte 

leakage (Premachandra and Shimada, 1987) and chlorophyll content (Baisak et al., 

1994) have used leaf disks that were water stressed by bathing in polyethylene glycol 

solutions. Fewer studies have compared effects of gradual water loss on 

photochemical activities of isolated thylakoids and in vivo chlorophyll fluorescence of 

intact leaves at the same 1I:'. Also the relationship between changes in photochemical 

function and electrolyte leakage is poorly understood. The study by Gupta (1977) on 

bryophytes is to our knowledge, the only one that compares solute leakage and 

inhibition of photosynthesis. 

The objectives of this study were to determine effects of stress on 

photosynthetic properties, cellular membrane stability and pigment content of two 

plant species that vary in their levels of drought resistance. The study was designed 

to test the association between the parameters in order to identify the most sensitive 

and rapid technique(s) to asses water stress injury. The following properties were 

tested in the laboratory: 1) in vivo chlorophyll fluorescence, 2) photosynthetic electron 

transport, 3) electrolyte leakage, and 4) chlorophyll content. 
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MATERIALS AND METHODS 

Plant Materials, Growth Conditions, and Stress Exposure 

Seeds of the C3 cereal wheat (Triticum aestivum L. cv. TAM W-101) and the C4 

cereal tef (Eragrostis tef Z. cv. DZ-01-354) were grown in controlled environment 

growth chambers (Conviron CMP, Winnipeg Ltd., Manitoba, Canada) in pots 

containing a mixture of peat moss and top soil (1: 1, v /v). Wheat and tef were 

maintained at 25°C/18°C and 30°C/23°C, respectively, day/night temperature and 

14 h photoperiod. The irradiance at plant height was 460 to 500 µmol m·2 s·1 PAR. 

The chambers were humidified to maintain at least 50% RH. A week after emergence 

the plants were thinned to 5 plants per pot. The plants were watered daily and 

received Peters 20-20-20 fertilizer (W.R. Grace and Company, Allentown, PA) once a 

week. Thirty days after planting, plants were grouped into control (which was 

continually watered) and stressed groups. Water deficit stress was induced gradually 

by withholding watering following the initial measurement. Measurements were made 

every day. 

Water Potential 

Leaf water potential (11') was measured on fully expanded leaves (4 leaves/pot) 

using leaf cutter thermocouple psychrometers (J.R.D. Morrill Specialty Equipment, 

Logan, UT) connected to a Wescor HP-115 (Wescor Inc., Logan, UT) automatic water 

potential measurement system. The '11 values (MPa) reported here are averages of 
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fifteen 0.31 cm2 leaf disks measured after two hours of equilibration of the 

thermocouple psychrometers in a water bath at 30°C. 

Chlorophyll Fluorescence 

Immediately after collecting tissue samples for determination of 'I', measurement 

of chlorophyll fluorescence was made with a portable fluorometer (Polar Tech, Umea, 

Sweden) (Oquist and Wass, 1988). Four fully expanded leaves were sampled from 

each pot (4 leaves/pot x 4 pots = 16 leaves) and immediately placed in sleaves of 

black plastic with holes to guide the measuring probe. The leaves were dark adapted 

for 10 min prior to exposure for 5 s to excitation light (100 µmol m-2 s-1 PAR). Fo, Fm, 

Fv, Fv /Fm, and t112 were measured. 

Chloroplast Isolation 

Chloroplasts were isolated from leaves of 30-day-old wheat and tef plants using 

the procedure of Kee et al. (1986). Twenty g freshly cut fully expanded leaves were 

homogenized in a Waring blender (Model 7011-31b192, Waring, Hartford, CT) for 3 to 

4 s at high speed in 200 ml ice cold isolation medium contained 30 mM Tricine (pH 

7.5), 300 mM NaCl, 3 mM MgCl2 and 0.5 mM EDTA. The resulting homogenate was 

filtered through 16 layers of cheesecloth (Veratec, Inc, Walpole, MA) and centrifuged 

(ICE Model B-201, Damon/ICE Division Needham Heights, MA) at 1500 g for 2 min. 

Pellets were resuspended with a cotton tip in 60 ml resuspension medium containing 

5 mM HEPES-KOH (pH 7.5), 200 mM sorbitol, 2 mM MgCl2, and 0.05% (w/v) BSA. 

The coarse debris was removed by a short centrifugation. The supernatant was 

filtered through one layer of Kimwipe tissue and recentriuged at 1500 g for 2 min .. The 

pellets were resuspended in a small volume of resuspension medium and stored on 

ice. All the isolation steps were carried out on ice. 
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Chlorophyll Content 

Chlorophyll content of the chloroplast suspensions was determined 

spectrophotometrically (Spectronic 1201, Millton Roy, Rochester, NY) according to 

Amon (1949). To determine the chlorophyll content of leaves, sixteen 0.39 cm2 leaf 

disks from sixteen different leaves (4 leaves/pot x 4 pots = 16 leaves) were punched 

out from the middle portion of the leaves and ground in a Pyrex tissue grinder 

(Corning 7727-7; UK) containing 2 ml 80% acetone (v/v). The extracts were 

centrifuged at full.speed in a table-top centrifuge (Clay Adams, No. 0005, Parsippany, 

NJ) for 2 to 3 min. Absorbances of the extract at 663 nm (A6s:J, 645 nm (A6~ and 

750 nm (A750) were measured with a Spectronic 1201 spectrophotometer (Millton Roy, 

Rochester, NY). The contents of chi a, chi b, and chi (a+b) (mg L-1) were calculated 

using the extinction coefficients and equations below from Amon (1949) modified by 

using A750 as a zero absorbance baseline: 

chi a = ( (As63 - A750) X 12. 7) - (As45 - A750) X 2.69)) 

chi b = ((A645 - A75o) x 22.9) - (A663 - A75o) x 4.68)) 

Chi (a+b) = ((Ass3 - A7sJ x 8.02) + (A645 - A75o) x 20.2)) 

Chlorophyll contents in units of mass were converted to molar units using molecular 

weights of 893.5, 907.5 and 900 for chi a, chi band chi (a+b), respectively (Nobel, 

1991). 

Photosynthetic Electron Transport 

Electron transport activities of the isolated thylakoids were measured by 

monitoring 0 2 evolution or consumption with a temperature controlled Clark-type 

oxygen electrode assembly (Model LD-2, Hansatech, Ltd., King's Lynn, Norfolk, UK) at 

25° C and saturating light from a 100 W projector lamp (Quartizine 12 V, West 
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Germany). Thylakoids were assayed for whole chain (H20 .... MV), PSII (H2Q .... DAD0 ,J 

and PSI (DHQ .... MV) electron transport rates. The procedures described by Kee et al. 

(1986) for tomato, and Allen and Holmes (1986) and Sabat et al. (1991) for spinach, 

beet, and pea were used with slight modifications. Details of the reaction media were 

presented in Chapter I. Electron transport rates are expressed in µmol e- mg-1 chi h-1• 

The electron transport rates were calibrated with a known amount of ~Fe(CN)6 just 

before the beginning of every measurement (Allen and Holmes, 1986). 

Electrolyte Leakage 

On each day of the water stress treatment, sixteen test tubes containing 0.7 g 

leaf material and 20 ml deionized double distilled water (ddH20) were vacuum 

infiltrated at 120 to 140 mm Hg for 15 min. Prior to vacuum infiltration, sample leaves 

were first gently washed for approximately 90 min with 3 changes of ddH20 and 

thereafter cut into 1 cm pieces (Permachandra and Shimada, 1987). The tubes were 

agitated at room temperature for 1 h in a shaker (DUBNOFF metabolic shaking 

incubator, Precision Sci. Group, Model D/S 120-070, Chicago, IL). The initial electrical 

conductance (C1) of the bathing solution was measured (Cole-Parmer conductivity 

meter, Model 1481-60, Chicago, IL). The test tubes containing leaf samples were then 

autoclaved (NAPCO model-9000-D, Portland, OR) for 20 min at 121°c, agitated for 1 

h, and a second electrical conductance measured (CJ. Electrolyte leakage was 

expressed as the C1/C2 ratio. 

All measurements were repeated 3 times, and for each treatment 4 replicate 

measurements were made. A completely randomized design was used. 
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Chemicals 

Dihydrochloride salt of DAD was purified from a slurry of charcoal and cellite in 

an ethanol-water (1: 1, v /v) mixture containing 0.4% (w /v) ascorbate. For details see 

Chapter I. Fresh solutions of recrystallized DAD.2HCI were prepared in 10 mM HCI at 

the beginning of each experiment DBMIB was a gift from Dr. D.R. Ort, University of 

Illinois. All other chemicals were of analytical grade. 
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RESULTS 

Effects on Photosynthetic Electron Transport Rates of Isolated Thylakoids 

The effect of water stress on leaves of wheat and tef was determined by 

measuring PSII (H20 .... DAD0 x), PSI (DHQ .... MV) and whole chain (H20-+MV) electron 

transport rates of isolated thylakoids. Water deficit stress induced by withholding 

water resulted in significant reductions of PSII and whole chain electron transport of 

wheat and tef (Fig. 1, a and b). A decrease in '¥ from -0.3 MPa to -1.5 MPa resulted in 

68% and 65% lower rates of PSII and whole chain electron transport of wheat (Fig. 1, 

a and b). Severe water stress, close to a'¥ of -2.5 MPa, resulted in complete loss of 

PSII activity and loss of 87% of whole chain electron transport activity (Fig. 1, a and 

b). PSII and whole chain electron transport rates of tef were also reduced by 

declining '¥ although not to the same extent as in wheat (Fig. 1, a and b). As '¥ 

decreased from -0.3 MPa to -2.5 MPa in this species PSII and whole chain activities 

declined by about 50% (Fig. 1, a and b). The difference in the relative sensitivity of 

electron transport of these two species is consistent with tef being adapted to 

cultiv.ation in drier climates than wheat. 

PSI electron transport was much less sensitive to water stress than whole chain 

or PSII electron transport in tef and it was unaffected by water stress in wheat 

(Table I). 
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Effects on in vivo Chlorophyll Fluorescence 

Fm, Fv and Fm/Fo were relatively more responsive to water stress in wheat 

than in tef (Table 11). PSII and whole chain electron transport was closely linked to 

changes in the chlorophyll fluorescence parameters. Fv /Fm (and also Fm/Fo) of 

wheat and tef was significantly affected by decreasing l.P (Fig. 2 and Table II). 

Reducing l.P to -2.5 MPa resulted in lowering Fv/Fm by 32% and 24% in wheat and tef, 

respectively. No consistent pattern was seen in Fo as l.P gradually decreased (Table 

II). Also t112 was largely unaffected by water stress (Table II). In both wheat and tef 

the decline in Fv /Fm was exponentially correlated with PSII and whole chain electron 

transport rates (Fig. 3, a and b). 

Effect on Chlorophyll Content 

The effect of water deficit stress on chlorophyll content of wheat and tef leaves 

is shown in Table Ill. On a leaf area basis chi a, chi b, and chi (a+b) contents and 

the chi a/b ratio of wheat remained largely unaffected by water stress until l.P fell below 

-3.0 MPa. In tef a small chlorophyll peak was seen between -1.4 MPa to -2.1 MPa. 

Effects on Electrolyte Leakage 

Membrane damage was assessed by measuring electrolyte leakage of leaf 

samples. Electrolyte leakage of wheat and tef subjected to water deficit stress is 

shown in Figure 4. Membrane leakiness increased gradually as l.P decreased to about 

-2.4 MPa in wheat. At even lower leaf l.P electrolyte leakage increased greatly to a 

highest value of 0.47 (Fig. 4). In tef leakage increased rapidly as l.P dropped to -2.4 

MPa after which it remained constant (Fig. 4). The observed highest leakage in tef 

was 0.35 (Fig. 4). 
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The correlation between electrolyte leakage and photochemical properties was 

determined by regression analysis. The correlation between Fv /Fm and electrolyte 

leakage of wheat and tef was high (r=-0.97, -0.89 Ps: 0.05) as shown in Figure 5a). 

Both PSII and whole chain electron transport activities were significantly correlated 

with electrolyte leakage (Fig. 5, band c). However, electron transport responded to 

water deficit stress already at greater V than membrane leakage. Thus, it appears that 

substantially enhanced membrane leakage occurs first at sever water stress (below -

1.0 to -2.0 MPa) whereas photochemical inhibition develops earlier. 
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Figure 1. Response to 111 of PSII (a) and whole chain (b) electron transport rates in 
wheat and tef. Bars indicate ± SE. The experiment was performed three times with 
four replications for each treatment. 
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Figure 2. Response to 111 of the ratio of variable to maximum fluorescence (Fv /Fm) of 
wheat and tef. Intact leaves were dark adapted for 10 minutes prior to exposure to 
excitation light with an intensity of 100 µmol m·2 s·1 PAR. Vertical bars indicate ± SE. 
The experiment was performed three times with four replications for each treatment. 
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experiments. 
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Table I. Effects of water deficit stress on photosystem I (PSI) electron transport rate of 
thylakoids isolated from wheat and tef. The experiments were performed three times 
with four replications for each treatment. Data are means ± SE. . 

tp PSI 
Species electron transport rate 

(MPa) (µmol e· mg·1 chi h"1)t 

Wheat -0.29±0.02 212±14 

-0.33±0.03 202±19 

-0.40±0.03 223±26 

-0.87±0.11 242±18 

-1.72±0.17 204±18 

-2.14±0.15 203± 5 

-3.73±0.20 231±23 

Tef -0.39±0.03 229± 7 

-0.51 ±0.03 202± 3 

-0.60±0.06 235± 7 

-0.85±0.05 183± 1 

-1.19±0.10 236± 5 

-1.58±0.06 182± 4 

-2.74±0.17 168± 2 

t Electron transport rate from DHQ .. MV was measured with Clark-type oxygen 

electrode. 
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Table II. Effects of water deficit stress on chlorophyll fluorescence (Fo, Fm, Fv, 
Fm/Fo and t11:J of dark adapted wheat and tef leaves. The experiment was 
performed three times with four replications for each treatment. Data are means ± SE. 
Intact leaves were dark adapted for 1 o min prior to exposure to an excitation light 
intensity of 100 µmol m-2 s-1 PAR. 

Species 1JI Fo Fm Fv Fm/Fo t1/2 
(ms) (MPa) (relative units) 

Wheat-0.26±0.02 0.093±0.000 0.390±0.013 0.297±0.013 4.13±0.14 183± 5 

-0.28±0.02 0.122±0.000 0.430±0.009 0.311 ±0.009 3.51 ±0.08 188± 6 

-0.32±0.01 0.114±0.001 0.403±0.014 0.292±0.012 3.55±0.13 192± 3 

-0.58±0.02 0.122±0.002 0.368±0.013 0.246±0.012 3.02±0.11 189± 7 

-1.23±0.03 0.124±0.002 0.358±0.011 0.234±0.006 2.90±0.09 206± 7 

-1.59±0.07 0.106±0.001 0.309±0.011 0.198±0.012 2.92±0.11 163± 4 

-2.61 ±0.06 0.098±0.001 0.233±0.008 0.141 ±0.015 2.37 ±0.09 232±25 

-3.91±0.08 0.106±0.001 0.183±0.006 0.085±0.007 1.73±0.06 263±19 

Tef -0.39±0.03 0.085±0.001 0.296±0.006 0.215±0.005 3.49±0.08 220± 3 

-0.51 ±0.03 0.097 ±0.000 0.232±0.002 0.136±0.003 2.40±0.03 244± 4 

-0.60±0.06 0.093±0.000 0.229±0.003 0.139±0.004 2.45±0.04 250± 4 

-0.85±0.05 0.090±0.001 0.240±0.004 0.155±0.005 2.66±0.05 248± 5 

-1.19±0.10 0.077 ±0.000 0.207 ±0.003 0.130±0.004 2.69±0.05 234± 7 

-1.58±0.06 0.088±0.000 0.209±0.005 0.120±0.060 2.39±0.06 211± 9 

-2.74±0.17 0.093±0.000 0.189±0.004 0.099±0.003 2.02±0.05 261± 7 
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Table Ill. Effects of water deficit stress on the contents of chi a, chi b, and chi (a+ b) 
and on the chi a/b ratio of wheat and tef. The experiment was performed 3 times with 
4 replications for each treatment. Data are means ± SE. 

Species V Chia chi b chi (a+b) chi a/b 
(MPa) (µmol m·~ 

Wheat -0.56±0.04 406±15 · 120±4 526±19 3.36±0.03 

-0.69±0.03 366± 9 108±2 474±12 3.37±0.02 

-0.88±0.03 367±11 106±3 473±14 3.44±0.02 

-1.01 ±0.05 369±10 110±3 479±13 3.35±0.07 

-1.53±0.10 313±12 100±5 413±15 3.17±0.07 

-2.40±0.09 365±13 110±5 475±17 3.33±0.05 

-3.17±0.07 378±15 111 ±5 489±19 3.41 ±0.02 

-4.36±0.32 286±17 82±5 368±21 3.46±0.10 

-4.46±0.22 281±13 82±6 363±17 3.59±0.25 

tef -0.77±0.05 247± 6 75±6 322± 6 3.47±0.14 

-0.87±0.06 281±12 85±4 366±16 3.33±0.07 

-0.99±0.05 282± 5 77±2 359± 7 3.66±0.06 

-1.13±0.05 270± 5 84±5 354± 8 3.31 ±0.13 

-1.22±0.10 272± 8 75±2 357± 7 3.62±0.03 

-1.36±0.06 367± 9 102±2 469±16 3.59±0.03 

-2.11 ±0.07 337±10 99±3 436±12 3.39±0.08 

-3.12±0.28 248± 5 75±2 323± 7 3.29±0.04 
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DISCUSSION 

Tef (Eragrostis tef Z.) is a cereal member of the NAD-malic enzyme subgroup of 

C4 plants (Edwards and Walker, 1983). It belongs to the subfamily Eragrostideae 

(Gutierrez et al., 1974) and is adapted to warmer climates. Wheat (Triticum aestivum 

L.), being a temperate C3 cereal, is more drought susceptible (Mayoral et al., 1981) 

and is grown in less dry conditions. To study the effects of water deficit stress on the 

two plant species, measurements of chlorophyll fluorescence and content, 

photosynthetic electron transport, and electrolyte leakage were made. 

With the exception of chlorophyll content, all measurements indicated greater 

drought sensitivity of wheat than tef (Fig. 1, a and b; Fig. 2; Fig. 4). Water deficit 

stress caused a significant decline in PSII and whole chain electron transport (Figs. 

1 a, 1 b) of isolated thylakoids indicating inhibition of the photosynthetic machinery at 

the level of thylakoid-mediated reactions. Boyer and Younis (1984) estimated that 

45% water was lost from stressed sunflower leaves in the range of -0.2 MPa to -1.5 

MPa. In our study 45% water was lost from -0.3 MPa to -1.6 MPa (data not shown) 

and this was sufficient to reduce PSII and whole chain electron transport of wheat by 

71% and 68% and of tef by 30% and 43%, respectively (Fig. 1, a and b). These 

results are consistent with the notion that decreased photosynthesis under low 11' is 

linked not only to stomata! closure but also to inhibition of chloroplast activity. Similar 

effects were reported under a variety of stress treatments and in a wide variety of plant 
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species (Boyer and Bowen, 1970; Keck and Boyer, 1974; Mayoral et al., 1981; Boyer 

and Younis, 1984; Bjorkman and Powles, 1984). However, the results of the present 

study contradict conclusions by Kaiser (1987) and Havaux (1992) that PSII is 

insensitive to water stress. The response of the photochemical activity both in vivo 

and in isolated thylakoids is species specific. Also, the relative magnitude of stress, 

light conditions, age of the plant and methodology might produce different results. 

PSI-driven electron transport was less sensitive to water stress (Table I}, which is in 

agreement with earlier studies (Boyer and Younis, 1984; Bjorkman and Powles, 1984; 

Havaux, 1992) implying that the decline in whole chain activity of water stressed 

leaves was caused by inhibition of PSII. 

The inhibition of chloroplast activity was previously demonstrated (Fellows and 

Boyer, 1976; Boyer and Younis, 1984). Changes in thylakoid membrane conformation 

and cellular constituents have been suggested to be the two major reasons. Under 

condition of low 11' thylakoid lamellae become thinner (Fellows and Boyer, 1976}. The 

Mg2 + concentration, which is typically in the 1-3 mM range in well watered plants, 

increases with decreasing 11' to values as high as 9 mM at 11' = -2.5 MPa (Boyer and 

Younis 1984). Such membrane changes could have diminished the rate of electron 

transport of isolated thylakoids and Fv/Fm of dark adapted leaves also in our study. 

Boyer and Bowen (1970) reported that inhibition of oxygen evolution by water stress 

was detectable within 5-60 min and occurred in the -0.8 MPa to -1.2 MPa range in 

sunflower and pea leaves. In our experiments with gradual loss of water both PSII 

and whole chain electron transport declined immediately as 11' fell below that of the 

unstressed controls. 
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As previously reported by Bjorkman and Powles (1984) reduced PSII and whole 

chain electron transport of wheat was accompanied by changes in Fv/Fm (Fig. 2). 

Govindjee et al. (1981) and Bjorkman and Powles (1984) found that fluorescence 

emitted by chlorophyll ~ was lower in water stressed leaves of Nerium oleander, 

Atriplex triangularis and Tolmiea menziesii than in control leaves. Our results (Table 11) 

support their conclusion that the lowering of Fm/Fo, Fv /Fm and Fm are an indication 

of inhibition of the primary photochemistry of PSII. Thus, the influence of water deficit 

stress on Fv /Fm of wheat is linked to the sensitivity of PSII electron transport to low 'I'. 

Govindjee et al. (1981) pointed out that when the inhibition is on the donor side of 

PSII, Fm/Fo is reduced. This suggests that electron transport in our study, especially 

in wheat, was blocked by water stress on the donor side of PSII (Govindjee et al., 

1981 ; Kicheva et al., 1994). For photosynthesis as a whole, however, the range of 

sites sensitive to water stress may span from photochemistry to the dark reaction 

(Kaiser, 1984). There may be more than one simultaneous blockage (Kaiser, 1984). 

The decline in Fv/Fm was accompanied by reduced Fm and Fv (Table II). In 

agreement with previous work by Govindjee et al. (1981), Bjorkman and Powles (1984) 

and Bjorkman (1989), no consistent pattern was seen in Fo as 'I' decreased (Table II). 

The absence of an effect on Fo, indicates that the reaction center of PSII remained 

open even at severe water stress. Reduced Fv and Fm reflect increased non-radiative 

energy dissipation and may result from degradation of the photosynthetic apparatus 

(Fock et al., 1992). Bjorkman and Powles (1984) made interesting observations on 

leaves subjected to water stress and bright light. They concluded that PSII is 

vulnerable to photoinibition during stress exposure and, thus, a combination of water 

deficit stress and bright light might inhibit the photosynthetic machinery at the 
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thylakoid level. Several investigators have now verified the occurance of 

photoinhibition in the presence of water stress (Powles, 1984; Long et al., 1994). It is 

possible the plants in our study suffered from secondary photoinhibitory damage. 

Chlorophyll contents of wheat and tef remained unaffected by water deficit 

stress (Table Ill). The unchanged chlorophyll contents of wheat and tef are consistent 

with reports by Bjorkman and Powles (1984) and Stuhlfauth et al. (1990) but contradict 

work of Mayoral et al. (1981) and Baisak et al. (1994) on Triticum aestivum. Baisak et 

al. (1994) reported a rapid decline in chlorophyll content of water stressed wheat 

leaves. The stress was incurred by incubating excised leaf segments in polyethylene 

glycol (PEG 6000) solutions. Their findings wer~ likely affected by the use of PEG to 

induce stress. Water stress might have accelerated senescence of the excised leaf 

samples and caused chlorophyll degradation. Attached leaves are likely less 

susceptible to chlorophyll breakdown. In our study chlorophyll bleaching was noted 

first below -3.0 MPa whereas CO2 fixation was completely inhibited at substantially 

greater 1:P. Thus, we conclude that inhibition of photosynthesis by water stress is 

unrelated to chlorophyll destruction. 

It has been reported previously in various species (Blum and Ebercon 1981, 

Martin et al., 1987; LeBlanc et al., 1993; Tan and Blake, 1993), that water deficit stress 

is related to increased electrolyte leakage of leaf tissue as we found to be the case in 

wheat and tef (Fig. 4). The extent of leakage was low at 1:P above -1.0 to -2.0 MPa 

although significant inhibition of photosynthetic activities occurred. According to 

Boyer and Younis (1984) reduction of 1:P to -2.0 MPa corresponded to a leaf tissue 

water loss of about 50%. The present study, therefore, agrees that leakage from 

dehydrated leaf tissues is low until relative cell volumes below 50% are reached 
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(Kaiser, 1987). Beyond -2.4 M Pa the extent of membrane leakiness of wheat markedly 

increased with the decline in V (Fig. 4). In tef that better tolerates warm and dry 

climates (Edwards and Walker, 1983), more extensive leakage below -2.4 MPa did not 

occur. Several reports indicate genotypic differences with regard to stress tolerance 

and electrolyte leakage (Blum and Ebercon, 1981; Martin et al., 1987; LeBlanc and 

Dhindsa, 1993; Tan and Blake, 1993). Tan et al. (1992) noted a negative correlation 

between membrane leakage and ability to accumulate sugars during water stress in 

the tolerant species black spruce. In tolerant species compatible solutes such as 

sugars are believed to play a role in osmoregulation and reduce membrane damage 

(Tan et al., 1992). 

Increase in electrolyte leakage reflects disruption of membrane integrity by water 

stress (Gupta, 1977) presumably due to increased membrane contraction, potassium 

efflux (Shcherbakova and Kacperska 1983) or free radical formation (Dhindsa and 

Matowe 1981). A change in composition of plasmalemma and tonoplast was related 

to the loss of membrane integrity in sensitive plants (Bewley, 1979). Many studies 

have suggested membrane lipids as an initial site of injury (Chetal et al., 1983). 

Changes in sterol, phospholipid and glycolipid composition were correlated with 

electrolyte leakage in water stressed leaves of black spruce (Zwiazke and Blake, 

1990). 

The parallel effects of water stress on membrane leakiness and thylakoid 

activities (Fig. 5, a-c) suggest that cellular membranes are the target of water stress 

injury. Chetal et al. (1983) reported changes in phospholipid contents of chloroplasts 

in stressed leaves of wheat and barley at tillering. Among the changes of the different 

phospholipid components, there was a drastic decrease in phosphatidylglycerol (PG) 
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and a marked increase in phosphatidylcholine (PC, major constituents of non

photosynthetic membranes). The link between photosynthetic capacity and 

membrane leakage might be phosphatidylglycerol of the plasmalemma. 

Dysfunctioning of the chloroplast, which is the main site of fatty acid biosynthesis, 

may indirectly interfere with the function of nonchloroplastic membranes (Whitaker, 

1992). Monogalactosylidiacylglycerol is the major component of the thylakoid 

membrane (Harwood, 1980). It is likely that this component is also affected by a 

general interference with fatty acid synthesis. 

In conclusion, we here compare and contrast the responsiveness to water deficit 

stress of various photosynthetic and cellular properties of wheat and tef. There was 

good agreement between electron transport and chlorophyll fluorescence. Membrane 

leakage and chlorophyll content were affected only by severe stress. Thus, 

chlorophyll content and electrolyte leakage are not early sensors of water stress. 

They rather appear to reflect severe stress, perhaps even cell death. Of the four 

stress indicators we used, electron transport and chlorophyll fluorescence detected 

water stress injury at less sever stages of stress than did membrane leakage and 

chlorophyll content. 
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CHAPTER IV 

PHOTOSYNTHETIC GAS EXCHANGE OF LEAVES OF 

WHEAT (Triticum aestivum L.) AND 

TEF (Eragrostis tef Z.) 

EXPOSED TO WATER 

DEFICIT STRESS 
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Abbreviations: A, rate of net CO2 fixation in ambient air; Amax• light and CO2 saturated 

rate of A; c.e., initial slope of A/C1 curve (carboxylation efficiency); Ca, CO2 

concentration in the air; C1, CO2 concentration in the intercellular air spaces; DAD, 

diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine); DHQ, durohydroquinone 

(tetramethyl-p-hydroquinone); Fo, initial fluorescence; Fm, maximum fluorescence; Fv, 

variable fluorescence (Fv = Fm - Fo); gs, stomata! conductance for water vapor; Ice• 

percent reduction of A due to limiting c.e. (carboxylation efficiency limitation); 19s, 

percent reduction of A due to limiting gs (stomata! limitation); V, leaf water potential; 

MV, methyl viologen; PSI and PSII, photosystem I and II. 
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ABSTRACT 

Leaf gas exchange of the C3 cereal wheat (Triticum aestivum L. cv. TAM W-101), 

and the C4 cereal Tef (Eragrostis tef Z. cv. DZ-01-354) subjected to water deficit stress 

was studied in the laboratory using an open gas exchange system. Net 

photosynthesis rate (A) and the photosynthetic components Amax (light and CO2 

saturated rate of photosynthesis), gs (stomata! conductance) and c.e. (carboxylation 

efficiency) were determined. Reducing the leaf water potential (1.P) from -0.5 MPa to 

-2.3 MPa lowered A, g8 , c.e., and Amax of wheat by 94%, 95%, 86%, and 78%, and tef 

by 85%, 60%, 84%, and 62%, respectively. Thus, in wheat there were proportional 

decreases in A and gs, whereas in tef A declined significantly more than g8 • Stomata! 

limitation of photosynthesis (19J increased more in water stressed wheat than in tef, 

indicating that A became relatively more limited by stomata at low 'I' in the former 

species. The dependence of the intercellular CO2 concentration (CJ on 1.P suggested 

that the non-stomata! limitation became relatively greater in tef over the entire range of 

declining 'I'. In contrast, in wheat the stomata! limitation increased in the range of 

moderate stress (down to about -1.8 MPa), whereas at severe stress the non-stomata! 

limitation grew relatively larger again. The greater inhibition of A, Amax and c.e. of 

wheat at low 'I' was consistent with observed reduced rates of PSII electron transport. 

A, Amax and electron transport were linearly correlated with Fv /Fm. Electron transport 

and Fv /Fm were as sensitive as gas exchange to water deficit stress. Membrane 
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leakage was greatly enhanced first at 'I' below -2.0 MPa, whereas inhibition of A 

appeared at much higher 'I'. These results suggest that water stress reduced A of tef 

primarily through biochemical inhibition, whereas both biochemical and stomata! 

inhibitions were prominent in wheat. 
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INTRODUCTION 

Water stress inhibits A by inducing stomata! closure and by impairing 

chloroplast activity (Boyer and Bown, 1970; Matthews and Boyer, 1984; Kaiser, 1987; 

Johnson et al., 1987; Sharkey, 1990). Considerable decreases in A, c.e and gs, and 

an increase in the CO2 compensation point have been reported in water stressed 

wheat plants (Johnson et al., 1987; Steuer et al., 1988; Kicheva et al., 1994). 

Stomata! closure starves the carboxylating machinery by elevating the diffusive 

resistance to CO2 entering the leaf. Stomata may be the only major limitation at mild 

stress (down to -0.9 MPa, Cornie et al., 1992) caused by either withholding water or 

increasing the water vapor deficit (VPD) of the air (Steuer et al., 1988; Dai et al., 1992). 

Non-stomata! inhibition of A was suggested to occur at water deficits greater than 30% 

(Kaiser, 1987; Cornie et al., 1989). However, reduced A due to inhibition of 

chloroplast activity has also been reported at mild stress in sunflower (-0.5 MPa, 

Matthews and Boyer, 1984; Sharp and Boyer, 1986) and wheat (-0.8 MPa, Mayoral et 

al., 1981). As water stress develops, gs declines causing reduced CO2 diffusion rates 

into the leaf and reduced Ci (Johnson et al. 1987). Photosynthesis can be restored by 

elevating the partial pressure of CO2 in the air surrounding the leaf (Sharkey, 1990; 

Graan and Boyer, 1990; Pospisilova et al., 1992). Impaired mesophyll capacity at low 

11' reduces the capacity to fix available CO2• Therefore, inhibition of chloroplast activity 

can not be fully restored by increasing the partial pressure of CO2 • 
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Methods of distinguishing between stomata! and non-stomata! inhibition of A 

use the relationship between A and C1 (Johnson et al., 1987). There are reports that 

C1 decreases slightly when stomata close (Steuer et al., 1988; Cornie and Briantais, 

1991; Cornie et al., 1992; Dai et al., 1992), whereas other report have found that C1 

remains stable (Renou et al., 1990) or even increases (Ephrath et al., 1993). Non

stomatal factors are visualized by altered chloroplast ultrastructure, and inhibition of 

photosynthetic electron transport have been reported to contribute to the reduction in 

A (Matthews and Boyer, 1984). However, Downton et al. (1988), and Cornie et al. 

(1989) suggested that calculated C1 values are misleading if there are inhomogeneities 

in stomata! apertures across the leaf surface. Gunasekera and Berkowitz (1991) in 

wheat, Wise et al. (1992) in cotton, and Ni and Pallardy (1992) in woody angiosperms, 

used 14C02 pulses to evaluate the extent of non-homogenous stomata! closure in 

water stressed plants. Patchy deposition of radioactive photosynthate first occurred at 

'11 as high as -1.3 MPa or as low as -2.6 MPa depending on species and 

preconditioning. Wise et al. (1992) reported that when patchiness occurred it was of 

stomata! nature because patchy deposition of radioactivity could be avoided by 

increasing the CO2 concentration in the air. 

Limitation of A at the level of the chloroplast has been proposed (Matthews and 

Boyer, 1984; Kaiser, 1987; Masojidek and Hall, 1992). In sunflower and sorghum 

Matthews and Boyer (1984) and Masojidek and Hall (1992), respectively, suggested 

that inhibition of PSII electron transport accounted for most of the inhibition of A at 

low 1I'. Inactivation of photophosphorylation (Sharkey and Badger, 1982) has also 

been reported. Boyer and Younis (1984) suggested that changes both in the 

concentration of cellular constituents (Mg+~ and conformation of thylakoid 
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membranes were responsible for the decreased rate of electron transport of water 

stressed chloroplasts. Other studies using different species have not supported the 

contention of reduced electron transport at low V (Stuhlfauth et al., 1988; Cornie et al., 

1989; Castonguay and Markhart, 1991). The contrasting findings suggest variation 

among species, and the use of many different electron donors (DHQ, tetramethyl-p

phenylene diamine (TMPD)) and acceptors (ferricyanide (Fe(CN)6, DAD, p-phenylene 

diamine (PD), MV) may also be partly responsible. Masojidek and Hall (1992) used 

three electron acceptors (Fe(CN)6, PD, MV) in studying drought stressed sorghum 

plants. They noted the greatest damage in the H20 -+ MV reaction. Some studies 

using chlorophyll fluorescence have suggested inactivation of the primary 

photochemistry by water stress (Bjorkman and Powles, 1984; Martiniello and Blum, 

1989). 

A decrease in the initial slope (c.e.) of the photosynthetic CO2 response curve 

has also been reported to result from drought stress and suggests an effect on the 

Calvin cycle (Martin and Ruiz-Torres, 1992; Kicheva et al., 1994). It is not known 

whether this is a direct effect or downregulation in response to reduced g5 • 

Increased membrane leakage have been proposed to result from water stress. 

A decrease in chloroplast phospholipid content (Chetal et al., 1983) could result in 

chloroplast membrane dysfunction. However, the understanding of the relationship 

between leakage and photosynthesis remains incomplete. 

The objectives of the present study were: a) to investigate the response of 

photosynthesis and its components of a C3 and a C4 plant to water deficit stress and, 

b) to examine the relationship of photosynthesis to stomata!, biochemical and 

photochemical components, and electrolyte leakage. The gas exchange 
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measurements presented here were made on intact leaves. Chlorophyll fluorescence 

measurements were made on the same plants. Measurements of the electron 

transport rates and electrolyte leakage are from a parallel experiment that has been 

previously presented. Data points linking electron transport and electrolyte leakage to 

gas exchange were calculated at equal 1.P. 
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MATERIALS AND METHODS 

Plant Materials, Growth Conditions, and Stress Exposure 

Seeds of the temperate C3 c.ereal wheat (Triticum aestivum L. cv. TAM W-101), 

and the subtropical C4 cereal tef (Eragrostis Tef Z. cv. DZ-01-354) belonging to the 

NAD-malic enzyme subgroup were grown in a controlled environment growth chamber 

(Conviron CMP 3244, Winnipeg Ltd., Manitoba, Canada) in pots containing a modified 

peat moss and top soil mix (1:1 v/v) (Metro Mix growing medium, Grace Sierra 

Horticultural Products Company, Milpitas, CA). Wheat and tef were maintained at 

25°C/18°C and 30°C/23°C, respectively, day/night temperature and 14 h 

photoperiod. The irradiance at plant height was between 460 and 500 µmol m-2 s-1 

PAR. The chambers were humidified to maintain at least 50% RH. To meet the 

continuous need of plants for experimentation, seeds· of wheat and tef were planted 

every week. Therefore, when the growth chamber was full the RH was occasionally 

higher than 50%. A week after emergence the plants were thinned to 3 plants per pot. 

One plant was used for gas exchange measurement, and the remaining two plants for 

concurrent measurement of chlorophyll fluorescence. The plants were watered daily 

and fertilized with Peters 20-20-20 (W.R. Grace and Company, Allentown, PA) once a 

week.Water Deficit Stress Exposure 

Thirty days after seeding plants were split into a control group, which was 
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watered regularly, and a stressed group from which water was withheld to slowly 

induce water deficit stress. Every morning plants were brought from the growth 

chamber to the laboratory for gas exchange measurements. They were returned to 

the same chamber once measurements were completed. Measurements on the same 

plant continued until the end of the stress period. 

Gas Exchange Measurements 

Measurements were carried out on recently fully expanded attached leaves (2"d 

or 3rd from the top) held horizontally in the assmilation chamber of an open gas 

exchange system previously described by Johnson et al. (1987). The CO2 

concentration was measured using an infra-red gas analyzer (Horiba PIR 2000 R, 

Horiba Instrument Inc., Irvine, CA), and chamber humidity with a dew point 

hygrometer (System 11000P, General Eastern Instruments Corporation, Watertown, 

MA). Dry, CO2 free air from a compressed air cylinder mixed in various ratios with dry 

air from another cylinder containing 1700 µL L-1 CO2 was used. The measurements 

were made in air ranging from Oto 1700 µL L-1 CO2• Air temperature was maintained 

at 25°C and 30°C for wheat and tef, respectively (identical to daytime growth 

temperatures). The irradiance incident on the leaf was 1800 µmol m-2 s-1 PAR, 

measured with a quantum sensor (Ll-190SB, Li-Cor Instruments, Lincoln, NE), 

provided by a 1000 W multivapor lamp (R1000, General Electric, Cleveland, OH). 

Stress was reduced on the main part of the plant that remained outside the 

assimilation chamber by covering it with white cloth. The RH in the assimilation 

chamber was maintained at 50% by adjusting the leaf area and air flow rate. 

However, with the most stressed plants, having very small transpiration rates, RH 

occasionally fell below 50%. Ambient photosynthesis rate (A) was measured at 350±2 
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µL L-1 CO2, and 350± 1 µL L-1 CO2 in the air (CJ for wheat and tef, respectively. Amax 

was measured at 1600 to 1700 µL L-1 CO2 in the air. Calculations of g5 and Ci 

followed the methods of von Caemmerer and Farquhar (1981). As soon as a gas 

exchange measurement was completed, the leaf was removed from the chamber and 

its area determined using a leaf area meter (Ll-3000A Portable Area Meter combined 

with Ll-3050A Transparent Belt Conveyer, Li-Cor Instruments, Lincoln, NE). The 

calculated Ci values were plotted against net rate of photosynthesis to produce A/Ci 

curves. The A/Ci curves were generated by measurements at about 15 ambient CO2 

concentrations ranging O to 1700 µ L L-1• The carboxylation efficiency (c.e.) was 

calculated from the initial slope of the A/Ci curve. Three to five data points within the 

linear part of the curve at Ci values below 200 µL L-1 were used. The stomata! 

limitation of photosynthesis (195) was calculated according to Farquhar and Sharkey 

(1982), whereas the limitation caused by carboxylation efficiency Oce) was calculated 

using the method of Martin and Ruiz-Torres (1992}. 

Water Potential Measurements 

Leaf disks for measurement of 'I' were collected from the same leaves previously 

used for gas exchange measurements. . 'I' was measured with leaf cutter thermocouple 

psychrometers (J.R.D. Morrill Specialty Equipment, Logan, UT} connected to a 

Wescor HP-115 (Wescor Inc., Logan, UT) automatic water potential measurement 

system. The 'I' values reported here are averages of 12 (3 disks per leaf x 4 replicate 

leaves) 0.31 cm2 leaf disks measured after two hours of equilibration of the 

thermocouple psychrometers in a water bath at 30° C. 

Chlorophyll Fluorescence 
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Measurements of chlorophyll fluorescence were made at room temperature with 

a portable fluorometer (Polar Tech, Umea, Sweden) (Oquist and Wass, 1988). Fully 

expanded leaves were dark adapted for 1 o min prior to a 5 s exposure to excitation 

light with an intensity of 100 µmol m-2 s-1 PAR. Fo, Fm, Fv, Fv /Fm, and t112 were 

measured. 

Chloroplast Isolation 

Chloroplasts were isolated from leaves of 30-day-old wheat and tef plants using 

the procedure of Kee et al. (1986). Details are in Chapters I, II and IIL 

Photosynthetic Electron Transport 

Electron transport activities of the isolated thylakoids were measured by 

monitoring 0 2 evolution or consumption with a temperature controlled Clark-type 

oxygen electrode assembly (Model LD-2, Hansatech, Ltd., King's Lynn, Norfolk, 

England) at 25°C and saturating light from a 100 W projector lamp. Thylakoids were 

assayed for whole chain (H20 .... MV), PSII (H20 .... DAD0J and PSI (DHQ .... MV) 

electron transport rates. The procedures described by Kee et al. (1986) for tomato, 

and Allen and Holmes (1986) for spinach and pea were used with slight modifications. 

See details in Chapter I. 

Electrolyte Leakage 

Test tubes containing 0.7 g leaf material and 20 ml deionized double distilled 

water (ddH20) were vacuum infiltrated at 120 to 140 mm Hg for 15 min. Prior to 

vacuum infiltration, sample leaves were gently washed for approximately 90 min with 3 

changes of ddH20 and cut into 1 cm pieces. The initial electrical conductance (C1) of 

the bathing solution was measured (Cole-Parmer conductivity meter, Model 1481-60, 

Chicago, IL). Leaf samples were then autoclaved for 20 min at 121°c, and the 
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electrical conductance (C:J measured again. Electrolyte leakage was expressed as 

the C1/C2 ratio. 

All measurements were repeated at least twice, and for each treatment four 

replicate measurements were made. A completely randomized design was used. 
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RESULTS 

Figure 1 shows the response to decreasing V of ambient CO2 fixation rate (A) 

and several related parameters. Exponential decreases in A with decreasing V were 

observed in leaves of both wheat and tef (Fig. 1a). Although also Amax decreased 

substantially in both crops with declining V (Fig. 1 b) the reduction in Amax was 

proportionally smaller than the reduction in A (Fig. 1, a and b). The decrease in A 

ranged from about 21.0 µmol m·2 s·1 to 1.2 µmol m·2 s·1 (94% reduction) and from 26.7 

µmol m·2 s·1 to 4.0 µmol m·2 s·1 (85% reduction) as V decreased from -0.5 MPa to -2.3 

MPa in wheat and tef, respectively (Fig. 1a). Amax decreased from 30.1 µmol m·2 s·1 to 

6.9 µmol m·2 s·1 (78%) and 30.0 to 11.4 µmol m·2 s·1 (62%) in wheat and tef, 

respectively in the same range of V (Fig. 1b). Regression analysis showed that the 

correlations between A and Amax in water stressed wheat (A=-4.856+0.798Amax• r= 

0.99, P ~ 0.05, data not shown), and tef (A=-5.480+0.901Amax• r=0.96, P ~ 0.05, data 

not shown) were linear. The negative y-intercepts of the regressions suggest that 

under stress a relatively smaller proportion of the photosynthetic potential was 

achieved in ambient air. 

Like the response of A to water stress, gs in wheat decreased significantly (Fig. 

1c). When V had declined to -2.3 MPa gs was reduced by 95% compared to 

unstressed control leaves (Fig. 1c). The effect of reduced Von gs was much smaller 

in tef. At -2.3 MPa 9s was reduced by 60% compared to the control. Due to the 
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different sensitivities of gs to 11" in the two species, g5 of tef was higher than in wheat at 

low 11", whereas the opposite was true in control plants at high 11". The c.e. of both 

species declined significantly with decreasing 'T' (Fig. 1d), and tef had higher c.e. than 

wheat within the entire range of 11". Water stress that reduced 11" from -0.5 MPa to -2.3 

MPa in wheat and tef reduced c.e. from 0.105 mol m·2 s·1 to 0.015 mol m·2 s·1 (86%), 

and from 0.167 mol m·2 s·1 to -0.027 mol m·2 s·1 (84%), respectively (Fig. 1d). 

C1 was higher in wheat than in tef control plants and at mild stress but quite 

similar in the two species at more sever stress (Fig. 1 e). Ci of wheat declined with 

decreasing 11" down to -1.8 M Pa (Fig. 1 e). When 11" fell below this value, C1 increased 

again and in the most severely stressed plants approached the C1 of unstressed 

control plants. Tef leaves maintained more or less constant C1 values down to 

-1.4 MPa (Fig. 1e). Below -1.4 MPa, however, Ci exhibited a significant increase 

suggesting increasing mesophyll inhibition by decreasing 11". A of tef decreased as C1 

increased whereas the opposite trend was noted in wheat (Fig. 2a). 

The percent reduction of photosynthesis due to limiting g5 (195) and c.e (Ice) of 

wheat and tef are given in Table I. Both 195 and Ice were relatively low above -0.8 MPa 

and -1.4 MPa in wheat and tef, respectively (Table I). The maximum Ice of wheat and 

tef was identical (76%) (Table I). Figure 2b and 2c shows the relationship between A 

and Ice and between c.e. and Ice. Both A and c.e. decreased as Ice increased. The 

average 195 in wheat and tef plants subjected to severe water stress ( < -2.0 MPa) was 

34% and 25% (Table I), respectively, and the increase with stress was relatively less 
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pronounced in tef than in wheat. The ratio of 195 to Ice increased with increasing stress 

in wheat whereas it decreased in tef (Table I). Figure 2d and 2e shows relationships 

between A and 195, and between gs and 195, respectively. Any given 195 was obtained at 

a smaller gs in tef than in wheat (Fig. 2e). 

A was linearly related to gs as well as c.e. in both species (Fig. 3, a and b) and 

c.e. was linearly associated with gs (Fig. 3c). The negative y-intercepts of the 

regression of A and c.e. on gs (Fig. 3, a and c) show that stomata were not fully 

closed when A and the Calvin cycle activity were fully inhibited in severely stressed tef 

plants. 

The decrease in photosynthesis in water stressed wheat and tef plants 

coincided with decreases in PSII (H20 -+ DAD0J (Fig. 4) and whole chain (H20 -+ MV) 

(A=-2.081 +0.086x, r=0.98 in wheat and A=.-14.826+0.138x, r=0.87 in tef, data not 

shown) electron transport rates of isolated thylakoids and Fv /Fm of intact leaves (Fig. 

5). Considerable decreases in PSII and whole chain electron transport, but not in PSI 

(DHQ -+ MV) electron transport (data not shown) of wheat and tef were found in 

thylakoids isolated from water stressed leaves as compared to nonstressed leaves. In 

this paper only PSII electron transport is shown, but whole chain electron transport 

responded to water stress in an almost identical manner. PSII electron transport of 

wheat (PS11=324.77e0·95'I', r=0.99) and tef (PS11=287.683e0·257'I', r=0.90) decreased by 

about 85% and 49% of the control as 1P dropped from -0.5 to -2.3 MPa, respectively. 

Inhibition of electron transport in isolated thylakoids depended in a similar manner on 

1P as did inhibition of A and Amax (Fig. 1, a and b). In wheat, PSII electron transport 

rates were completely abolished when 1P dropped below about -2.5 MPa (see Chapter 

111) and A showed only a trace of residual activity (Fig. 1a). In tef, however, severe 
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water stress did not affect electron transport as much as it affected A and Amax· Thus 

higher residual activities of PSII still remained at this 11' in tef. Regression analysis 

shows that the relationships between A, or Amax and PSII (Fig. 4, a and b) and whole 

chain (data not shown) electron transport rates were linear. Also c.e. decreased 

simultaneously with electron transport rates (Fig. 4c). When c.e. extrapolated to zero 

substantial electron transport remained in tef but not in wheat. 

The correlations between Fv /Fm and A, Amax and c.e. were linear and high (Fig. 

5, a-c). As is shown in Figure 5d, Fv/Fm of wheat decreased exponentially with 

decreasing g8 , whereas the relationship in tef was linear with a steep slope. 

Photosynthesis of wheat and tef was negatively correlated with electrolyte 

leakage (Fig. 6). In tef the increase in leakage was rather monotonous with 

decreasing A. In wheat the increase was modest down to A around 5 µmol m-2 s-1, 

but when A fell further leakage increased abruptly. 
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tef. Each measurement was performed on a single leaf of wheat and on 2-3 leaves of 
tef. Leaves were measured at an irradiance of 1800 µmol m·2 s·1 PAR, 50% RH and air 
temperatures of 25° C for wheat and 30° C for tef. Bars indicate ± SE. The 
experiments were repeated 2 to 3 times with four replications for each 11'. 

110 



25 a 25 b 

11 11 

• • 20 20 .... t:i' ~ .. "' ,:, 15 ? 15 El El - • -0 0 
El El 

10 ::L 10 ::L -- --< < (•) Wheat 

·5 • 5 y=33.816-0.437x, r=-0.96 • 

(•) Wheat• (a) Tef • 
y =624.097-4. 783x+o.,o,x• y=36. 710e·0·027•, r=-0.91 

0 
r=O 75 

0 
200 225 250 275 300 325 0 20 40 60 80 

C; (µL L·1) 1 •• (%) 

0.16 11 C 
25 d 

11 11 11 

• 20 
0.12 

t ::::-;,, 
15 ? ? 

El El 
0 0.08 -0 
El El 10 -- ::L 
ti --~ < 0.04 

(•) Wheat 5 
y=0.161-0.002x, r=-0.96 • r=-0.98 11 • (a) Tef (a) Ter 
lny=ln6.94-1.231nx, r=-0.88 y=70.2S6e .. ·1••, r=-0.83 

0.00 0 
0 20 40 60 80 0 10 20 30 40 

1 •• ( % ) lg, ( % ) 

0.8 
(•) Wheat 
y=l.OS-0.03x, r=-0.96 

• (.1) Tef 

0.6 =0.35-0.0lx, r=-0. 70 

,f" 
[IJ 

'"/ 
s 

0.4 -0 
s ,_, 

11 11 

eii 

~ 0.2 

• • 0.0 
0 10 20 30 40 

lg, (%) 

Figure 2. Dependence of A on C; (a), A on Ice (b), c.e. on Ice (c), A on 19• (d), and Q. 
on 19• (e) in wheat and tef. Calculations of 19• and Ice were based on the methods of 
Farquhar and Sharkey (1982) and Martin and Ruiz-Torres (1992), respectively. 

111 



25 -.---------, 

20 

15 

10 

5 
(•) Wheat 

4 y-1.811 +25.0llx, r=0.99 
(A) Tei' 

• y=-8.08+109.62x, r=0.99 
0 '-----'-~-----

0~ 03 OA 0~ 0~ 1~ 

25 .--b---------, 

20 

15 

10 

5 

4 

•) Wheat 
y=-2.33+222.86x, r=0.99 

(A) Tef 
y-0.52+146.56x, r=0.98 0 '---'-'--_ _._ _ ___, _ __, 

0.00 0.04 0.08 0.12 0.16 

0.16 -C--4--------, 

0.14 

0.12 

t 
~ 0.10 
a 
'o 0.08 

! 0.06 
ai 
J 0.04 

0.02 • 

• 

(•) Wheat 
y•0.019+0.lllx, r=0.98 
(A) Tef 
y=-0.057+0.740x, r=0.99 0.00 ._____, _ __._ _ _._ __ _ 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3. Relationship between A and 9s (a), A and c.e. (b), and c.e. and 9s (c) in 
water stressed wheat and tef. For experimental details see Fig. 1. 

112 



25 

20 

:;--
"' 'l' 15 s -Q 

[ 10 ...... 

-C> 
El 
=--i 
< 

-... fll 
<jl 

El -Q 

El 
=--
~ 
u 

s 

0 

35 

30 

25 

20 

15 

10 

s 

0 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

0 

0 

(•) Wheat 
y=-2.047+0.089x, r=0.98 
(A) Tef 

y=-14.862+0.013x 
r=0.93 

a 

so 100 150 200 250 300 

(•) Wheat • A 
y=3.328+0.104x, r=0.98 . 
(A) Tef 
y=-9.413+0.14 lx 
r=0.93 

b 

so 100 150 200 250 300 

(•) Wheat 
y=-0.0015+0.0003x 
r=0.97 
(A) Tef 
y=-1.0060+0.0008! 
r=0.92 

• 

0 so 100 150 200 250 300 

Electron transport rate 
(µmol e· mg·1 chl h·1) 

Figure 4. Relationship between PSII electron transport rate and A (a), Amax (b), and 
c.e. (c) in water stressed wheat and tef. 

113 



a 

0.7 

s 
~ 
~ 0.6 
~ 

s 

0.5 (•) Wheat 
y=0.580+0.007x, r=0.96 

(A) Tef 
y=0.476+0.099x, r=0.93 

0.4 L--....L---L------1---L--~ 

0 5 10 15 20 25 

0.8 C 

0.7 

• a 

a 

~ 
~ 0.6 • ~ 

0.5 
(•) Wheat 
y=0.566+1.678x, r=0.97 

(A) Tef 
y=0.488+1.495x, r=0.95 

0.4 L------'-----'---........L..--~ 

0.00 0.04 0.08 0.12 0.16 

c.e. (mol m-2 s-1) 

0.8 ~b-----------, 

0.7 

0.6 

0.5 

0.4 
0 10 

0.8 
d 

0.7 

0.6 

0.5 

t.(•) Wheat 
y=0.555+0.00Sx, r=0.97 

(A) Tef 
y=0.416+0.009x, r=0.93 

20 30 40 

• 

(•) Wheat 
lny=lnO. 744+0.071 lnx 

r=0.98 
(A) Tef 
y=0.393+1.102x, r=0.94 

0.4 t._ __ ,..__ __ ,..__ __ .,__ _ ___. 

0.0 0.2 0.4 0.6 0.8 

Figure 5. Relationship between Fv/Fm and A (a), Amax (b), c.e. (c), and Q. (d) in water 
stressed wheat and tef leaves. Fv /Fm was determined on leaves that were dark 
adapted for 10 min prior to a 5 s exposure to an excitation light intensity of 100 µmol 
m-2 s-1 PAR. 
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Figure 6. Relationship between A and electrolyte leakage in water stressed wheat 
and tef leaves. Symbols represent mean values of electrolyte leakage and A on 
consecutive days without watering. 
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Table I. Effects of water deficit stress in 195 and Ice of wheat and tef. Experiments 
were repeated 2 to 3 times with four replications each time. Means ± SE are 
presented. 

Species 1P lgsi lcei lgs/lce 
(MPa) % 

Wheat -0.50±0.04 12.2±0.7 37.7±1.6 0.325±0.015 

-0.66±0.03 10.8±0.5 30.9±1.2 0.351 ±0.013 

-0.72±0.02 10.0±1.1 36.1±2.3 0.275±0.016 

-0.80±0.04 18.6±1.1 41.9±2.5 0.446±0.034 

-1.02±0.01 28.0±1.6 68.6±4.6 0.418±0.049 

-1.85±0.04 28.5±0.0 65.1±0.9 0.439±0.006 

-2.29±0.01 33.6±1.0 75.8±1.3 0.445±0.021 

Tef -0.57±0.05 17.1±0.9 33.6±1.5 0.507 ±0.006 

-0.78±0.08 12.3±1.0 24.6±1.1 0.500±0.032 

-0.89±0.04 12.9±0.9 25.5±2.7 0.520±0.060 

-1.10±0.09 13.0±1.3 28.7±1.4 0.479±0.027 

-1.15±0.09 14.3±0.4 36.4±0.6 0.392±0.004 

-1.38±0.05 16.1 ±0.9 37.4±4.5 0.437 ±0.025 

-1.65±0.10 21.4±1.5 64.9±3.9 0.330±0.017 

-2.37±0.07 24.9±0.7 76.0±3.9 0.328±0.007 

t Calculations were made as described by Farquhar and Sharkey (1982) and Martin 
and Ruiz-Torres (1992) 
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DISCUSSION 

In an effort to study the effect of water stress on photosynthetic gas exchange 

of wheat and tef A, Amax• gs, c.e., and C1 were measured. All parameters were less 

susceptible to water stress in tef than in wheat except for c.e. for which the relative 

susceptibility to water stress was rather similar. Under non-stressed conditions wheat 

and tef showed similar A vs. C1 response curves (data not shown), except that A of tef 

became saturated at lower C1 and that C1 at ambient CO2 in the air was lower in tef 

(Fig. 1e). Nie et al. (1992) also reported higher C1 in C3 than in C4 plants. According 

to Edwards and Walker (1983), the CO2 concentrating mechanism of C4 plants keeps 

their C1 below that of C3 plants. Photosynthesis in C4 plants operates at lower C1 than 

in C3 plants because the initial carboxylase of C4 plants, PEP-carboxylase, has much 

.greater affinity for CO2 than rubisco (Collatz et al. 1992). Rubisco fixes CO2 in the 

photosynthetic carbon reduction pathway in both C3 and C4 plants. In C3 

photosynthesis, CO2 fixed by rubisco is obtained directly from the intercellular spaces 

of the leaf by diffusion. In C4 plants CO2 is first fixed in the mesophyll cells by PEP

carboxylase and delivered to rubisco, which is localized in the bundle sheath 

chloroplasts, by a metabolic pump that concentrates CO2 (Krall and Edwards, 1990). 

In addition to having low C1, control leaves of tef showed lower g5 (about 2.8 

fold) than wheat (Fig. 1 c). The lower g5 value of tef than wheat agrees with reports of 

Collatz et al. (1992), and Dai et al. (1993) on maize and other C4 plants. Plants with 
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C4 photosynthesis in general exhibit lower gs than C3 plants, and this difference is 

thought to help C4 plants restrict water loss to a minimum and thereby increase their 

water use efficiency relative to C3 plants (Leegood, 1993; Dai et al., 1993). In healthy 

C3 and C4 plants with identical gs C4 plants have lower C1 due to the great affinity for 

CO2 of PEP-carboxylase. Whereas transpiration rate (E) will be the same in both 

types of plant, C4 plants will have greater A because of the steeper CO2 gradient 

between air and leaf interior. As a result, C4 plants will operate at greater leaf water

use efficiency (A/E) than C3 plants. 

Our results show that allowing 11' of wheat and tef plants to decrease from -0.5 

MPa to -2.3 MPa led to significant decreases in A, Amax• gs, and c.e (Fig. 1, a-d). The 

data reported here are consistent with many earlier studies on water stress (Johnson 

et al., 1987; Martin and Ruiz-Torres, 1992; Ni and Pallardy, 1992; Kicheva et al., 1994). 

In wheat, water stress reduced A and gs (photosynthetic supply function, Farquhar 

and Sharkey, 1982) equally. However, in tef decreasing 'P caused a smaller decline in. 

gs than in A and c.e. (Fig. 1 a; Fig. 1, c and d). The effects of water stress on A, Amax• 

gs, and c.e. were different in tef and wheat. Under water stress A appeared to be 

controlled by the stomata in wheat and by the Calvin Cycle in tef. Farquhar and 

Sharkey (1982), Farquhar et al. (1987) and Kicheva et al. (1994) suggested that the 

decrease in C3 photosynthesis caused by moderate water stress resulted from 

reduced g8 , but that this phase is followed by inhibition of RuBP regeneration (Amax) 

and inhibition of the Calvin cycle (c.e.) at more severe stress. Our gas exchange 

measurements showed concerted declines in gs, c.e., and Amax with declining A, but 

the magnitude of the decline in gs in the C4 species tef was much smaller than in the 

C3 species wheat. 
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According to the model of von Caemmerer and Farquhar (1981) developed for 

C3 plants, Amax is controlled by ribulose-1,5-bisphosphate (RuBP) regeneration. Thus, 

the reduction in Amax with declining V (Fig. 1 b) should be an indication of suppressed 

capacity of RuBP regeneration (Farquhar et al., 1987). Declining RuBP level is 

thought to stem from insufficient photosynthetic electron transport from H20 to NADP+ 

and/or ATP supply (photophosphorylation). Sharkey and Badger (1982) and Gimenez 

et al. (1992) reported a decrease in RuBP content by approximately 71 % and 44-65% 

as V decreased from -0.3 MPa to -2.8 MPa and -0.6 MPa to -1.6 MPa, respectively. In 

the present study PSII electron transport of isolated thylakoids was strongly inhibited 

by water deficit stress in the same range of 'P. Chloroplast activities may have been 

inhibited by increased internal solute concentration (particularly Mg2 +) (Boyer and 

Younis 1984). PSII electron transport in isolated thylakoids was as sensitive to low V 

as Amax of intact leaves. It is yet not known whether decreased electron transport and 

Amax under water stress are the cause of lowered A. In fact, our gas exchange 

measurements suggest that Amax is in greater excess of A at low 'P than at high 'P but 

Masojidek and Hall (1992) suggested that electron transport limited A in sorghum. 

Inhibited photophosphorylation as a reason for declining RuBP regeneration has also 

been proposed (Mayoral et al., 1981; Sharkey and Badger, 1982) in water stressed 

leaves. If true, RuBP synthesis depends on the rate of supply of ATP to the 

photosynthetic carbon reduction cycle as described by Boyer and Younis (1984). 

Younis et al. (1979) suggested that loss of photophosphorylation was caused by a 

change in conformation of the coupling factor (CF1) in chloroplasts of stressed leaves, 

possibly because of increased ion concentration in the chloroplast stroma. 
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Von Caemmerer and Farquhar (1981) reported a linear correlation between 

whole chain electron transport and Amax· In our study the decline in PSII electron 

transport activity was not only linearly correlated with Amax (Figs. 4b) but also with A 

(Figs. 4a). Thus, the present study suggests that RuBP regeneration (electron 

transport/ photophosphorylation) is correlated with A and a site of direct or indirect 

inhibition by low V (Gimenez et al., 1992). There appears to be multiple sites of 

declining activity within the photosynthetic apparatus (but not necessarily multiple sites 

of rate limitation of A since reductions may be by downregulation) caused by water 

stress ranging from photochemistry (primary reactions) to the dark reaction (Kaiser 

1984). 

It has been previously indicated that c.e. of C4 plants, whether at 21 % or 2% 0 2, 

is higher (about 1.4 fold) than in Ca plants (Krall and Edwards, 1990, Krall et al., 

1991). In control plants we noticed 1.5 fold higher c.e. in tef than in wheat (Fig. 1d). 

The higher c.e. of tef than wheat is attributed to the high affinity of PEP-carboxylase 

for CO2 and lack of 0 2 sensitivity (Edwards and Walker, 1983). Water stress 

decreased c.e. of both wheat and tef to the same degree. The inhibition of c.e. 

supported the findings of Krieg and Hutmacher (1986) on sorghum and Martin and 

Ruiz-Torres (1992) and Kicheva et al. (1994) on wheat. The initial slope of the A/Ci 

curve of Ca plants is a function of the Calvin cycle activity, of which rubisco (a 

chloroplast enzyme catalyzing the initial CO2 fixation step in Ca plants and the second 

carboxylation step in C4 plants) is the major component (von Caemmerer and 

Farquhar 1981; Farquhar et al. 1987). Martin and Ruiz-Torres (1994) and others 

(Mayoral et al., 1981; Kicheva et al., 1994) have shown that Rubisco is not as sensitive 

to water stress as A or Amax· Krall et al. (1991) relate the 0 2 inhibition of c.e. to 
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decreased Ci through competitive inhibition of RuBP carboxylase with respect to CO2 

particularly in mesophyll cells. Perhaps 0 2 increases the state of activation of Rubisco 

in wheat (Kobza and Edwards 1987), and this may have an effect on 0 2 inhibition of 

A. In tef, however, since Ci increased at low 'I', the greater decline in c.e. at 

atmospheric 0 2 may reflect depletion of Ru BP (Kobza and Edwards, 1987), HCO/ 

(substrate for PEP-carboxylase, O'Leary, 1982; Leegood, 1993) or involvement of 

other factors such as stromal acidification (Berkowitz and Gibbs, 1983; Chaves, 1991). 

Comparing the results of c.e. in our study with rubisco activity /content reported 

elsewhere, it appears rubisco is not as sensitive to water stress as c.e., A or Amax· 

The biochemical limitation must reside in some other part of the Calvin cycle as 

suggested by Sharkey and Seemann (1989) and Cornie et al. (1992). 

Regression analysis showed that relationships between c.e. and A (Fig. 3b), c.e 

and Amax (data not shown) and c.e. and g5 (Fig. 3c) were linear, indicating that both 

stomata! and biochemical components were influenced by water stress. Although the 

mechanism is not clear, it is apparent there is a remarkable dependence between c.e. 

and g5 in wheat and tef plants subjected to water stress (Fig. 3c). This relationship 

may be due to the dependency of guard cells on the mesophyll for its reduced carbon 

as suggested by Farquhar and Sharkey (1982). An alternative explanation is 

downregulation of mesophyll biochemistry to maintain balance between the stomata! 

supply and the mesophyll demand capacities. 

Changes in C1 are attributable either to effects on stomata! conductance or 

chloroplast activity, or both. In wheat exposed to moderately low 'I' the calculated Ci 

decreased, but it increased again at very low 'I' (Fig. 1e). Assuming homogenous 

stomata! closure (Gunasekera and Berkowitz, 1991; Martin and Ruiz-Torres, 1992) we 
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conclude that increased stomata! limitation first controlled A but that at severe stress 

(below 1I' -1.8 MPa) a substantial mesophyll limitation became the dominant factor. 

Cornie and Briantais (1991) reported that water stress causing no more than 35% leaf 

water deficit induced stomata! closure leading to decreased Ci. Boyer and Younis 

(1984) estimated that 32% water was lost from stressed sunflower leaves in the range 

of -0.25 MPa to -1.00 MPa. In our case 32% water loss was adequate to decrease C1 

in wheat by 19% (data not shown). The associated decline in A was much greater 

(77%). In contrast Legg et al. (1979) reported that stomata! closure in spring barley 

accounted for only 6% of the reduction in A during water stress. Thus, discrepancies 

exist regarding the explanation of reduced A at 1I' above -1 MPa. In severely stressed 

plants there is undoubtedly a considerable nonstomatal limitation that likely resides in 

the Calvin cycle. An earlier study in two wheat cultivars by Johnson et al. (1987) 

found similar Ci values as we observed. 

In tef on the other hand, Ci increased with decreasing 1I' over the entire range of 

1I' values (Fig. 1e). This suggests a dominant mesophyll inhibition causing reduced A. 

This is consistent with reports from other laboratories (Matthews and Boyer, 1984; Ni 

and Pallardy, 1992). Electron transport and chlorophyll fluorescence measurements 

also clearly showed inhibition of chloroplast activities. Kobza and Edwards (1987) 

relate the increase in Ci with decreased RuBP level and suggested that the capacity to 

regenerate assimilatory power and/or the enzymatic capacity to regenerate RuBP may 

limit A. Due to the high affinity of PEP-carboxylase for CO2 , C4 plants are expected to 

be less affected by stomata! properties than C3 plants. 

The main effect of water deficit stress on chlorophyll fluorescence was a 

reduction in Fv /Fm. In both wheat and tef the decline in A, Amax• c.e. and g5 was 
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accompanied by decreases in Fv /Fm (Fig. 5) confirming the relative sensitivity of PSII 

photochemistry to water stress. As previously noted by Jones et al. (1990), gas 

exchange was affected proportionally more than Fv /Fm by water stress. 

Nevertheless, since there were good correlations between Fv /Fm and gas exchange 

properties, both types of measurements were diagnostic of water stress. Martiniello 

and Blum (1990) found a linear correlation between Fm and A in different wheat 

genotypes exposed to water stress suggesting loss of PSII photochemistry. However, 

Castonguay and Markhart (1991) and Kicheva et al. (1994) noted no significant 

relationship between photosynthetic 0 2 evolution or A and Fv /Fm. Such 

discrepancies might be attributed to different age of plants, species, methodology and 

level of water stress. 

In wheat electrolyte leakage increased only little until it reached 0.22 when A 

had dropped to 1.14 µmol m-2 s-1 at about -2.4 MPa. At even lower 'I' there was a 

large increase in leakage. Chetal et al. (1983) showed that water stress decreased 

phosphatidylglycerol (PG) and increased phosphatidylcholine (PC) contents. PG is a 

major constituent of photosynthetic membranes of higher plants and its glycerol 

component provides a carbon reservoir for hexose synthesis. Thus, under condition 

of stress low PG may reduce hexose synthesis and starve the cells. Our results agree 

with the report of Kaiser (1987) that plasma membrane damage develops first at 'I' 

sufficiently low ( < -2.0 MPa) to cause severe inhibition of A. 

In conclusion, A was severely reduced by water deficit stress in both wheat and 

tef. In wheat, first stomata and later also the Calvin cycle contributed to the loss of 

CO2 fixation. Inhibition of A in tef appeared dominated by the Calvin Cycle alone. 
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Our findings support the contention that changes in membrane permeability are not 

early signs of water stress, but perhaps indicate irreversible membrane breakdown. 
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CHAPTERV 

PHOTOSYNTHETIC GAS EXCHANGE OF LEAVES 

OF CHILLED AND HEAT STRESSED WHEAT 

(Triticum aestivum L.) AND 

TEF (Eragrostis tel Z.) 
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Abbreviations: A, rate of net CO2 fixation in ambient air; Amax• light and CO2 saturated 

rate of A; c.e., initial slope of A/C1 curve (carboxylation efficiency); C1, CO2 

concentration in the intercellular air spaces; C8 , CO2 concentration in the air; chi, 

chlorophyll; DAD, diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine); DHQ, 

durohydroquinone (tetramethyl-p-hydroquinone); e-, electrons; Fo, initial fluorescence; 

Fm, maximum fluorescence; Fv, variable fluorescence (Fv = Fm - Fo); Q8 , stomata! 

conductance for water vapor; MV, methyl viologen; PAR, photosynthetically active 

radiation; PSI and PSII, photosystem I and II. 
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ABSTRACT 

Agricultural crops are damaged by both high and low temperatures. Here we 

use an open gas exchange system to compare the net photosynthetic assmilation rate 

(A) of the temperate C3 cereal wheat (Triticum aestivum L.) and the subtropical C4 

cereal tef (Eragrostis tef Z.) subjected to high (35°C, 40°C, and 45°C) and chilling low 

(2°c, 1°c, and 12°C) low temperatures. Exposure to heat and chilling stresses for as 

little as 24 h led to inhibition of A, carboxylation efficiency (c.e.) and light and CO2 

saturated photosynthesis rate (AmaJ except in wheat that was less susceptible to 

chilling stress. Prolonged exposure, however, caused a gradual reduction so that A 

after 168 hat 2°c was only 50% and c.e. and stomata! conductance (gJ 60% of the 

values measured at 25° C in wheat. Heat and chilling stresses caused gradual 

increases in the intercellular CO2 concentration (Cj), and small declines in gs except in 

chilled wheat. This suggests that the nonstomatal limitation to A became increasingly 

dominant by exposure to high and low temperature stress. PSII and whole chain 

electron transport, and Fv /Fm were inhibited in proportion to A, Amax• and c.e. Heat 

stressed wheat leaves revealed loss of PSII activity at the same temperature and 

duration at which A and Amax ceased. In chilled and heat stressed tef inhibition of A 

and Amax preceded inhibition of PSII activity. A, Amax• c.e. and PSII electron transport 

was closely correlated with Fv /Fm. PSI and chlorophyll content were not significantly 

influenced by any of the stresses although there was a tendency to small reductions 
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at very long exposure times. Enhanced membrane leakage coincided with more 

severe temperature stress than what initiated heat or chill inhibition of A. Decreased 

enzymatic activity but not electron transport, appeared to cause the major chill and 

heat-induced inhibition of A of tef, whereas in heat stressed wheat both electron 

transport and Calvin cycle activity showed proportional decline and may have co

limited A. 
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INTRODUCTION 

Depending on the intensity and duration, heat and chilling stresses impair 

numerous physiological, biochemical and photochemical functions. Direct 

comparisons of photosynthesis and photosynthetic components of susceptible plants 

subjected to heat and chilling low temperature stresses have received limited 

attention. 

Photosynthesis is heat and chilling labile. In chill susceptible plants, injury 

develops at temperatures below 15°C (Long et al., 1983). Advances have been made 

in defining and identifying biochemical, photochemical and ultrastructural changes 

related to chilling (Martin and Ort, 1981; Huner and Hopkins, 1984; Wise and Ort, 

1989; Terashima et al., 1989; Nie and Baker, 1991) and heat (Weis, 1981; Kobza and 

Edwards, 1987; Sabat et al. 1991) stress damage. Martin et al. (1981) estimated the 

relative roles in photosynthesis inhibition of chill-induced stomata! closure and 

chloroplast impairment in tomato. The inhibition of chloroplast activity dominated over 

the chill-induced reduction in g5 • Chilling under moderate light disrupted chloroplast 

protein composition (Nie and Baker, 1991; Bredenkamp et al., 1992). In particular, 

thylakoid proteins that are encoded by the chloroplast genome appear to be 

repressed. Membrane analysis by Western blotting and SDS-PAGE showed that the 

D1 (the 32 KD protein of PSII), c~ (34 KD), cyt b6/f (17 KD), the a (58 KD) and p (58 

KD) subunits of CF1 (coupling factor), and the CC1 apoprotein (core complex of PSI, 
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65-70 KD) were deficient in chilled plants. The water splitting machinery (oxygen 

evolving enhancer, OEE 33 KD) and light harvesting chlorophyll-proteins I and II (LHC 

I and LHC II) were unaffected (Nie and Baker, 1991). In maize, inhibition of PSII 

activity (Nie and Baker, 1991) and the photochemical quantum yield of PSII accounted 

for the inhibition of CO2 saturated photosynthesis at low temperature. However, in 

tomato, Kee et al. (1986) have shown that although electron transport activity was 

substantially reduced by chilling in the light, the activity that remained in chilled plants 

was more than sufficient to support the measured rates of light and CO2 saturated net 

photosynthesis. 

Low temperature-induced inhibition of C4 photosynthesis has been reported by 

Long et al. (1983) and Bredenkamp et al. (1992). Long et al. (1983) reported 70% to 

80% reduction of A in Zea mays L. from lowering the leaf temperature from 

15°C to 5°C. Various potential causes have been suggested for the sharp decline. 

Cold !ability of pyruvate phosphate dikinase (an enzyme of the C4 photosynthetic 

pathway) has been proposed. Alternatively, phosphate depletion is responsible for 

the decline in A due to accumulation of phosphorylated soluble carbohydrates 

(fructose, glucose and sucrose) (Labate et al., 1990; Bruggemann et al., 1992; Paul et 

al., 1990; Bruggemann et al., 1992), or decreases in Rubisco (Bruggemann et al., 

1992), fructose-1,6-bisphosphatase or NADP-glyceraldehyde-3-P-dehydrogenase 

activities (Maruyama et al., 1990) might be responsible for the chill-induced lowering of 

A. 

Previous reports ascribed heat-inactivation of A to inhibition of thylakoid 

reactions rather than to inhibition of stromal enzymes (Berry and Bjorkman, 1980). 

The oxygen evolving complex on the oxidizing side of PSII (Smith and Low, 1989; 
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Thompson et al., 1989), PSII electron transport activity (Sabat et al., 1991 ; Yordanov, 

1992), and photophosphorylation appeared susceptible, whereas PSI (Sabat et al., 

1991) and the water soluble Calvin cycle enzymes were thought to be comparatively 

stable. Studies have linked inhibition by moderately high temperature stress to PSII 

and inactivation of photophosphorylation. However, loss of A due to heat-inactivation 

of the Calvin cycle (Rubisco activity) has been reported in spinach (20° C to 40° C, 

Weis 1981) and in wheat (15°C to 45°C, Kobza and Edwards, 1987). Studies using 

isolated mesophyll protoplasts from lettuce did not confirm that the initial depression 

of A caused by mild heat exposure was due to lowering of the Rubisco activity and 

photophosphorylation (Santarius et al., 1991). These discrepancies may stem from 

use of different species and experimental techniques. 

Several recent studies indicate the usefulness of in vivo chlorophyll fluorescence 

measurements in combination with leaf gas exchange for detection of temperature 

effects on PSII electron transfer and CO2 assimilation (Walker, 1992; Oberhuber and 

Edwards, 1994). Temperatures that affect the function of PSII also reduce the Fv/Fm 

ratio. 

Increased membrane permeability has been reported in heat stressed leaves, 

isolated vacuoles, and protoplasts (Sar1tarius et al., 1991). Chilling induced 

membrane phase transitions (Raison and Orr, 1986) were suggested as a possible 

cause of enhanced membrane permeability in sensitive species. Altered lipid 

composition and membrane order could lead to membrane dysfunction. However, 

the relationship between membrane leakage and inhibition of A in intact leaves is not 

yet clear. 
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Several studies have used a single leaf wrapped in wet tissue, or floated on 

chilled or heated water, usually for a few minutes or hours. Effects of extended heat 

and chilling stress on whole plant photosynthesis have less frequently studied. The 

objectives of the present work was to a) compare the responses of photosynthesis 

. and its components of a C3 and a C4 plant subjected to different durations of heat and 

chilling low temperature stress, b) examine the relationship between leaf 

photosynthesis and its stomata!, biochemical and photochemical components, and c) 

examine leaf photosynthesis as it relates to chlorophyll fluorescence and membrane 

stability. 
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MATERIALS AND METHODS 

Plant Materials and Growth Conditions 

Seeds of the temperate C3 cereal wheat (Triticum aestivum L. cv. TAM W-101), 

and the subtropical C4 cereal tef (Eragrostis tef Z. cv. DZ-01-354) belonging to the 

NAD-malic enzyme subgroup were grown in controlled environment growth chambers 

(Conviron CMP 3244, Winnipeg Ltd., Manitoba, Canada) in pots containing a peat 

moss:soil mix (1: 1, v /v) (Metro Mix growing medium, Grace Sierra Horticultural 

Products Company, Milpitas, CA). Chambers for wheat and tef were maintained at 

25°C/18°C and 30°C/23°C, respectively, day/night temperature and 14 h 

photoperiod. The irradiance at plant height was between 460 and 500 µmol m-2 s-1 

PAR. The chambers were humidified to maintain at least 50% RH. For more detailed 

growth conditions see chapter IV. 

Heat and Chilling Low Temperature Stress Exposure 

Thirty days after seedling emergence plants were exposed for up to 168 h to 

high (35° C, 40° C, and 45° C) or low (2° C, 7° C, and 12° C) temperatures. Control 

plants remained at the original temperature. Every 24 h plants were removed from the 

growth chamber for measurements of gas exchange, chlorophyll fluorescence, and 

chlorophyll content. They were returned to the growth chamber with the appropriate 

temperature following each measurement. Thus, whole plants were subjected to the 

stress treatments, and measurements were made on the same plants throughout the 
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experiment. Consistent with electron transport measurements on isolated thylakoids, 

no rewarming or recooling periods were given prior to measurements. 

Gas Exchange Measurements 

Measurements were carried out on young, fully expanded, attached leaves held 

horizontally in an open gas exchange system previously described by Johnson et al. 

(1987). The CO2 concentrations were measured using an infrared gas analyzer 

(Horiba PIR 2000 R, Horiba Instrument Inc., Irvine, CA) and chamber humidity with a 

dew point hygrometer (System 1100DP, General Eastern Instruments Corporation, 

Watertown, MA). Dry, CO2-free air from a compressed air cylinder mixed in various 

ratios with dry air from another cylinder containing 1700 µL L-1 CO2 was used to 

generate air ranging from Oto 1700 µL L-1 CO2• Air temperature was maintained at 

25°C and 30°C for wheat and tef, respectively (same as daytime growth 

temperatures). The irradiance incident on the leaf was 1800 µmol m·2 s·1 PAR, 

measured with quantum sensor (Ll-190SB, Li-Cor Instruments, Lincoln, NE), provided 

by a 1000 W multivapor lamp (R1000, General Electric, Cleveland, OH). The RH in 

the assimilation chamber was maintained at 50% by adjusting the leaf area and air 

flow rate. Ambient photosynthesis rate (A) was measured at a CO2 concentration in 

the air (CJ of 350 µL L-1. Amax was measured at 1600 to 1700 µL L-1 CO2 in the air. 

Calculations of A, gs and Ci followed the methods of von Caemmerer and Farquhar 

(1981). Leaf area was determined using a leaf area meter (Ll-3000A Portable Area 

Meter combined with Ll-3050A Transparent Belt Conveyer, Li-Cor Instruments, Lincoln, 

NE). See Chapter IV for details. 

Chlorophyll Fluorescence 

Measurements of chlorophyll fluorescence were made with a portable 
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fluorometer (Polar Tech, Umea, Sweden) (Oquist and Wass, 1988). Fully expanded 

leaves were dark adapted for 1 O min prior to a 5 s exposure to excitation light with an 

intensity of 100 µmol m-2 s-1 PAR. Fo, Fm, Fv, Fv/Fm, and t 112 were measured. 

Chloroplast Isolation 

Immediately after plants had been chilled or heat stressed, chloroplasts were 

isolated from leaves of 30-day-old wheat and tef plants using the procedure of Kee et 

al. (1986). Chlorophyll contents of the chloroplast suspensions were determined 

spectrophotometrically (Spectronic 1201, Milton Roy, Rochester, NY) according to 

Amon (1949). 

To determine the leaf chlorophyll content sixteen 0.39 cm2 disks were punched 

out from the middle portion of 16 different leaves and ground in a tissue homogenizer 

(Pyrex, Corning 7727-7, UK) containing 2 ml 80% acetone (v/v). The extract was 

centrifuged at full speed in a table-top centrifuge (Clay Adams Model 0005, 

Parsippany, NJ) for 2 to 3 min. The absorbance of the extract was read at 663 nm 

(A66J, 645 nm (A64s) and 750 nm (A750). The contents of chi a, chi b, and chi (a+b) 

(mg L-1) was calculated using the equations below from Amon (1949) modified by 

using A750 as zero absorbance base line: 

chi a = (~663 - A750) x 12.7) - (A645 - A750) x 2.69)) 

chi b = ((A645 - A750) x 22.9) - (A663 - A750) x 4.68)) 

chi (a+b) = ((A663 - A750) x 8.02) + (A645 - A750) x 20.2)) 

Chlorophyll contents in units of mass were converted to molar units using molecular 

weights of 893.5, 907.5, and 900 for chi a, chi band chi (a+b), respectively (Nobel, 

1991). 
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Photosynthetic Electron Transport 

Electron transport activities of isolated thylakoids were measured by monitoring 

0 2 evolution or consumptions with a temperature controlled Clark-type oxygen 

electrode assembly (Model LD-2, Hansatech, Ltd., King's Lynn, Norfolk, UK) at 25°C 

and saturating light from a 100 W projector lamp. Thylakoids were assayed for whole 

chain (H20 .... MV), PSII (H20 .... DAD0J and PSI (DHQ .... MV) electron transport rates 

as described by Kee et al. (1986) for tomato, and Allen and Holmes (1986) for spinach 

and pea were used with slight modifications. See Chapters I and II for details. 

Electrolyte Leakage 

Test tubes containing 0.7 g leaf material and 20 ml deionized double distilled 

water (ddH20) were vacuum infiltrated at 120 to 140 mm Hg for 15 min. Prior to 

vacuum infiltration, sample leaves were gently washed for approximately 90 min with 3 

changes of ddH20 and cut into 1 cm pieces. The initial electrical conductance (C1) of 

the bathing solution was measured (Cole-Parmer conductivity meter, Model 1481-60, 

Chicago, IL). Leaf samples were then autoclaved for 20 min at 121°c, agitated for 1 

h, and the electrical conductance (CJ measured again. Electrolyte leakage was 

expressed as the C1/C2 ratio. 

All measurements were repeated at least twice, and for each treatment four 

replicate measurements were made. A completely randomized design was used. 
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I. Chilling Stress 

Leaf Gas Exchange 

RESULTS 

Figure 1 shows the chilling low temperature dependencies of A, Amax• gs, c.e., 

and Ci of tef at different exposure times. The severity of inhibition increased with the 

duration of chilling. Exposing tef plants to 2°c, 1°c, and 12°c for 24 h resulted in 

reduction of A by 66%, 57%, and 38% of the control values (Fig. 1a). Complete 

inhibition of A occurred after 72 h at 2° C, whereas plants at 7° C and 12° C maintained 

substantial rates of A for up to 96 h of chilling (Fig. 1 a). 

Amax was proportionally less inhibited than A. Amax decreased by 45%, 38%, 

and. 25%, when tef plants were exposed to 2° C, 7° C, and 12° C for 24 h (Fig. 1 b). The 

7°C and 12°C exposure for 96 h resulted in 67% and 51% reduction of Amax (Fig. 1b). 

Stomata! conductance declined with decreasing temperature (Fig. 1 c). After 24 

hat 2°c gs was almost halved. The 7°C and 12°c exposures for 24 h reduced gs by 

40% and 15%, respectively. The gs was slightly lowered by extending the exposure 

time up to 96 h, but at 120 h gs was zero at all temperature treatments. 

Carboxylation efficiency decreased greatly with decreasing temperature (Fig. 

1d). The decline in c.e. after 24 h of exposure to 2°c, 7°C, and 12°c amounted to 

71%, 56%, and 36%, respectively, (Fig. 1d). The magnitude of reduction in c.e. was 

similar to the reduction in A and larger than the reduction in Amax· 

142 



Figure 1 e shows the response of Ci in tef to chilling low temperature. At all 

three temperature treatments C1 gradually increased up to 135% (2°C), 133% (7°C), 

and 129% (12°C) of the values measured at 30°C by extending the chilling duration 

up to 120 h. At the 96 h exposure time C1 increased from 234 µL L-1 to 320 µL L-1 as 

temperature dropped from 30° C to 2° C (Fig. 1 e). 

Gas exchange was less responsive to chilling in wheat (Fig. 2) than in tef. A and 

the various photosynthetic components of chilled wheat were little affected during the 

first 72 h. With time, however, 2°c, 7°C and 12°c reduced A (Fig. 2a), g5 (Fig. 2c) 

and c.e. (Fig. 2d) were reduced. After 168 hat 12°c, 7°C, and 2°c A had declined 

by 45% to 50% (Fig. 2a), g5 by 30% to 42% (Fig. 2c), and c.e. by 40% to 45% (Fig. 

2d), whereas Amax (Fig'. 2b), and C1 (Fig. 2e) showed little or no effects. 

Regression analysis shows that there were linear correlations between A and g5 

(Fig. 3a), c.e. (Fig. 3b), and Amax (r=0.95, data not shown) in chilled tef leaves, 

showing that both biochemical and stomata! components were simultaneously 

influenced by chilling low temperature stress. In tef Ci increased with declining A (Fig. 

3c) and declining g5 (Fig. 3d), whereas C1 of wheat remained unaffected as A and g5 

fell. 

PSII (H20 ... DAD0J and whole chain (H20 ... MV) electron transport rates and 

Fv /Fm of tef (and wheat to some extent) leaves were affected by chilling stress, 

whereas PSI was largely unaffected (see Chapter I). As was the case with A and Amax• 

the activities declined progressively with the duration of chilling, but the magnitude of 

inhibition of A was greater than the inhibition of electron transport rates or Fv /Fm. In 

tef A and Amax declined to zero at briefer exposure times than PSII, was needed to 

eliminate and whole chain electron transport. Regression analysis revealed that the 

143 



relationship between A or Amax and PSII electron transport in tef (Fig. 4, a and b) were 

linear, suggesting a possible link between the inhibition of PSII and CO2 assimilation. 

Carboxylation efficiency also declined together with electron transport (Fig. 4c). In 

wheat there was much more variability, and electron transport was not significantly 

correlated with gas exchange. The relationships between Fv /Fm and A, Amax• and c.e. 

were also linear (Fig. 5, a-c). This indicates an association between the fluorescence

estimated quantum efficiency of PSII and carbon assimilation. Membrane leakage was 

negatively correlated with A in tef (Fig. 6). A similar trend that was not statistically 

significant was observed in wheat. 

Chlorophyll Content 

In contrast to gas exchange the chlorophyll content of chilled tef and wheat 

leaves was largely unaffected (Table I) suggesting that the light harvesting potential 

remained relatively intact. No statistical difference was observed in the contents of chi 

a, chi b and chi (a+ b) between chilled and unchilled tef leaves until the end of 120 h 

of chilling. After that a 10% to 20 % reduction was observed in the chlorophyll content 

but there was no change in the chi a/b ratio (Table I). 

II. Heat stress 

Leaf Gas Exchange 

Increasing the temperature of wheat from 25°C to 45°C and tef from 30°C to 

45°C, respectively, had large effects on photosynthetic gas exchange. A (Fig. 7, and 

b) and Amax (Fig. 7, c and d) greatly declined at high temperature. A and Amax of 

wheat and A of tef decreased by 35% to 37% when exposed to 35°C for 24 h (Fig. 7, 

a-c). With increasing temperature and duration A decreased proportionally more than 

Amax• however, and both A and Amax decreased more prominently in wheat than in tef. 
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Exposing wheat and tef plants to 40°C for 24 h decreased A by 88% and 73% (Fig. 7, 

a and b), and Amax by 64% and 52% (Fig. 7, c and d). Maintaining wheat plants at this 

temperature for longer than 24 h lead to complete inhibition of A (Fig. 7a) and Amax 

(Fig. 7c), whereas substantial rates were retained by tef up to 48 h (Fig. 7, band d). 

The 45°C treatment was very damaging and reduced A and Amax in wheat to zero after 

24 h. In tef A and Amax was reduced by 91% and 67% by this treatment. 

Stomata! conductance also declined in response to increasing temperature 

although not as much as A (data not shown). The decline was greater in wheat than 

in tef for the first 24 h at 3.5°C. 

Carboxylation efficiency decreased significantly during high temperature 

exposure in both wheat (Fig. 7e) and tef (Fig. 7f). The reduction in c.e. was similar in 

magnitude to the decline in A. 

C1 gradually increased at elevated temperature in both wheat and tef (Figs. 7, g 

and h). The increase was more pronounced in tef (from 220 to 325 µ L L"1) than in 

wheat (from 300 µL L-1 to 334 µL L·1). At high temperature and long exposure time 

the difference in C1 between the two species became small (Fig. 7, g and h). 

Figure 8 shows dependence of A on gs (Fig. Ba), c.e. (Fig. Bb) and C1 (Fig. Be). 

A was positively correlated with g5 and c.e. but negatively correlated with C1• C1 

increased as g5 declined (Fig. Bd). 

Concomitant with the decrease in A and Amax• heat stress caused severe 

reductions in PSII (H20 ... DAD0J and whole chain (H20 ... MV) electron transport rates 

and Fv/Fm. PSI (DHQ ... MV) remained unaltered (see Chapter 11). Complete 

elimination of electron transport of wheat occurred at the same temperature and 

duration that caused loss of A and Amax• whereas in tef A and Amax were inhibited more 
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than PSII and whole chain electron transport. The relationships between PSII electron 

transport rates and A or Amax (Fig. 9, a and b) and c.e. (Fig. 9c) were linear. The 

negative y-intercept of A, Amax• and c.e. as functions of electron transport of tef 

demonstrates presence of some electron transport capacity when no Carbon 

reduction capacity remains. 

Fv /Fm of wheat and tef decreased in a curvilinear fashion with decreasing A, 

Amax• and c.e. (Fig. 10). Heat stress led to increased membrane permeability in both 

species. However, leakage occurred at higher temperatures and/or prolonged 

exposures compared to heat-inactivation·of A (Fig. 7, a and b). A of wheat and tef 

were inversely correlated with electrolyte leakage (Fig. 11). 

Chlorophyll content 

Small losses of chi a, chi b, and chi (a+ b) were observed after 96 h of exposure 

at 35°C in both wheat and tef (Table II). In wheat, but not in tef, the chlorophyll loss 

was associated with reduced chi a/b ratio (Table II). Heat stressed wheat leaves that 

had been exposed to 35°C lost 45% to 70% of chi a from 96 to 168 h, whilst the 

content of chi b was reduced by 35% to 40%. 
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Table I. Effects of chilling low temperature stress on the contents of chi a, chi b and 
chi (a+b), and on the chi a/b ratio of tef and wheat. Chlorophyll contents were 
measured spectrophotometrically following extraction of leaf tissue in 80% acetone. 
The values were calculated using Arnon's (1949) extinction coefficients with 
modification and converted to molar values using molecular weights of 893.5, 907 .5 
and 900, for chi a, chi b, and chi (a+b), respectively. The experiment was repeated 
three times and for each treatment four replicate measurements were made. Means ± 
SE are reported. 

Species Temp Time Chia chi b chi (a+b) chi a/b 
(OC) (h) (µmol chi m·~ 

Tef 30 control 0 268 ± 7 76 ± 4 344 ± 9 3.95 ± 0.06 

12 24 284 ± 10 79 ± 3 362 ± 13 3.60 ± 0.03 

48 268 ± 9 72 ± 2 340 ± 12 3.70 ± 0.04 

72 229 ± 4 56 ± 1 285 ± 6 4.07 ± 0.05 

96 236 ± 12 66 ± 4 312 ± 16 3.64 ± 0.16 

120 182 ± 7 47 ± 2 229 ± 8 3.91 ± 0.25 

144 267 ± 10 71 ± 3 338 ± 13 3.73 ± 0.05 

168 300 ± 11 80 ± 3 380 ± 14 3.77 ± 0.05 

7 24 281 ± 8 73 ± 2 353 ± 11 3.83 ± 0.03 

48 255 ± 11 63 ± 7 318 ± 11 4.05 ± 0.25 

72 259 ± 9 65 ± 3 323 ± 12 3.97 ± 0.05 

96 260 ± 9 70 ± 3 329 ± 12 3.76 ± 0.12 

120 246 ± 14 63 ± 3 309 ± 17 3.94 ± 0.09 

144 242 ± 7 65 ± 3 307 ± 9 3.74 ± 0.16 

168 200 ± 8 58 ± 2 257 ± 10 3.42 ± 0.04 
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Table I. cont. 

2 24 271 ± 12 74 ± 3 345 ± 15 3.65 ± 0.08 

48 251 ± 8 70 ± 2 320 ± 11 3.61 ± 0.34 

72 281 ± 13 74 ± 5 354 ± 18 3.97 ± 0.37 

96 283 ± 8 83 ± 2 366 ± 10 3.40 ± 0.03 

120 265 ± 8 72 ± 2 337 ± 10 3.67 ± 0.03 

144 215 ± 6 57 ± 3 272 ± 10 3.78 ± 0.13 

168 239 ± 9 62 ± 6 300 ± 11 3.85 ± 0.33 

Wheat 25 control 0 351 ± 20 103 ± 5 452 ± 22 3.51 ± 0.04 

12 24 284 ± 11 80 ± 4 364 ± 14 3.56 ± 0.15 
' 

48 285 ± 11 83 ± 4 369 ± 15 3.43 ± 0.07 

72 269 ± 9 86 ± 8 356 ± 14 3.13 ± 0.15 

96 299 ± 11 89 ± 4 390 ± 19 3.34 ± 0.03 

120 281 ± 12 85 ± 4 366 ± 16 3.29 ± 0.07 

144 249 ± 8 75 ± 2 324 ± 10 3.32 ± 0.05 

168 253 ± 8 81 ± 5 334 ± 12 3.17 ± 0.12 

7 24 346 ± 9 97 ± 7 444 ± 12 3.91 ± 0.76 

48 295 ± 13 88 ± 4 384 ± 17 3.34 ± 0.04 

72 312 ± 13 97 ± 3 410 ± 14 3.23 ± 0.14 

96 341 ± 11 98 ± 3 439 ± 14 3.51 ± 0.06 

120 301 ± 8 86 ± 3 387 ± 10 3.52 ± 0.02 

144 339 ± 14 100 ± 4 440 ± 17 3.36 ± 0.06 

168 322 ± 13 92 ± 3 416 ± 16 3.47 ± 0.06 

2 24 391 ± 14 113 ± 4 504 ± 17 3.47 ± 0.08 
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Table I. cont. 48 

72 

96 

120 

144 

168 

373 ± 32 112 ± 7 

332±14 96±4 

362 ± 14 102 ± 4 

335±13 96±4 

335 ± 14 92 ± 4 

335 ± 14 93 ± 4 

160 

485 ± 31 3.41 ± 0.26 

429 ± 18 3.43 ± 0.02 

464 ± 19 3.55 ± 0.04 

432 ± 17 3.48 ± 0.05 

427 ± 16 3.62 ± 0.07 

427 ± 16 3.62 ± 0.07 



Table II. Effects of heat stress on the contents of chi a, chi band chi (a+b), and the 
chi a/b ratio of wheat and tef. For experimental details see Table I. 

Species Temp Time Chia chi b chi (a+b) chla/b 
(OC) (h) (µmol chi m·2) 

Wheat 25 control 0 352 ± 13 110 ± 8 462 ± 17 3.29 ± 0.04 

35 24 314 ± 11 90 ± 8 404 ± 17 3.60 ± 0.25 

48 255 ± 10 77 ± 3 332 ± 15 3.31 ± 0.09 

72 253 ± 16 73 ± 8 325 ± 22 3.48 ± 0.22 

96 159 ± 9 60 ± 2 214 ± 12 2.84 ± 0.09 

120 130 ± 9 71 ± 9 202 ± 16 1.90 ± 0.13 

144 102 ± 13 45 ± 7 147 ± 19 2.36 ± 0.24 

40 24 275 ± 11 96 ± 3 371 ± 14 2.86 ± 0.04 

48 269 ± 11 103 ± 5 372 ± 15 2.62 ± 0.05 

72 267 ± 16 123 ± 7 390 ± 23 2.17 ± 0.07 

45 24 272 ± 21 111 ± 7 383 ± 28 2.42 ± 0.05 

48 243 ± 9 · 102 ± 4 345 ± 13 2.37 ± 0.03 

Tef 30 control 0 274 ± 7 78 ± 4 352 ± 10 3.56 ± 0.09 

35 24 237 ± 7 68 ± 3 305 ± 10 3.50 ± 0.04 

48 184 ± 6 50 ± 4 234 ± 7 3.51 ± 0.43 

72 182 ± 11 49 ± 4 231 ± 14 3.80 ± 0.19 

96 196 ± 8 47 ± 6 243 ± 11 4.13 ± 1.89 

120 161 ± 12 43 ± 3 204 ± 14 3.74 ± 0.10 

144 137 ± 9 43 ± 4 180 ± 12 3.28 ± 0.13 
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Table II. Cont. 168 140 ± 10 41 ± 5 180 ± 10 3.99 ± 0.24 

40 24 306 ± 9 78 ± 4 385 ± 12 3.94 ± 0.15 

48 253 ± 12 64 ± 4 317 ± 16 3.97 ± 0.05 

72 246 ± 8 69 ± 2 315 ± 11 3.56 ± 0.02 

96 198 ± 6 64 ± 9 262 ± 12 3.27 ± 0.18 

120 223 ± 21 63 ± 9 286 ± 28 3.55 ± 0.97 

144 168 ± 10 54 ± 3 222 ± 13 3.16 ± 0.05 

168 218 ± 9 65 ± 3 283 ± 12 3.35 ± 0.04 

45 24 264 ± 19 76 ± 6 339 ± 24 3.49 ± 0.12 

48 266 ± 9 68 ± 3 334 ± 12 3.93 ± 0.06 

72 226 ± 8 72 ± 2 298 ± 10 3.16 ± 0.04 
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DISCUSSION 

One objective of this study was to evaluate effects of heat and chilling low 

temperature stresses at moderate light on A, Amax• g5 , c.e., and Ci. The temperature

optimum for Eragrostis tef in its natural habitat is around 30° C. In the present study 

photosynthesis of tef was severely at chilling low as well as high temperatures. Under 

optimum growth temperature, the assembly of thylakoid proteins in vivo are subject to 

the complex organization of the chloroplast photosynthetic membranes. The 

assembly is potentially vulnerable to chill and heat inactivation, possibly in part due to 

alteration of the thylakoid membrane as detected by electron transport and 

fluorescence induction measurements. 

Wheat (Triticum aestivum L.), which better withstands chilling low temperatures, 

also showed some chill-induced reductions of A, g5 and c.e. over time. Stomata as 

well as the mesophyll tissue might have caused the low temperature change in A. 

Janacek and Prasil (1992) reported chill-induced decreases in A in non-acclimated 

winter wheat plants growing at temperatures below 15°C. Berry and Bjorkman (1980) 

and Kobza and Edwards (1987) suggested reduced photosynthetic enzyme activity 

and Pi depletion, respectively, as possible causes for the declining A. The same 

factors might have co-limited A in our wheat experiments. However, whether chill

inhibition of A in wheat at long exposure times is the result of stomata! or mesophyll 

inhibition, or both, is not yet clear. 
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Photosynthetic gas exchange of tef leaves was rapidly inhibited by chilling. 

Classifying this species among the thermophilic plants is not unexpected since most 

subtropical C4 grasses fall into this category (Miedema, 1982; Long et al., 1983). 

Chilling stress did not reduce g8 in tef fully as much as it reduced A (Figs. 1, a and c). 

The negative y-intercept of A regressed on gs (Fig. 3a) shows that A decreased to 

zero before the stomata were fully closed. The g5 first declined greatly but as the 

exposure time increased the further reduction in g5 became smaller until at 120 h g5 

reached zero in all three low temperature treatments. C1 in tef increased with 

decreasing temperature and increasing chilling time (Fig. 1e), which has also been 

observed in maize (Long et al., 1983) arid Betula species (Hallgren et al. 1982) 

exposed to chilling temperatures. Long et al. (1983) and Hallgren et al. (1982) 

concluded that in neither species the stomata! limitation determined the decrease in A. 

Thus, the reduction in gs might not be the major reason for chilling inhibition of A in 

tef. Rather, the concurrent decrease with decreasing temperature of A (Fig. 1a) and 

c.e. (Figs. 1 d, 3d) and the elevation of C1 (Fig. 1 e) imply that impairment of 

photosynthetic enzyme activities becomes the dominant limitation to A. Bruggemann 

et al. (1992) reported a large and irreversible decrease of in vitro Rubisco activity as 

tomato plants experienced long-term chilling. They concluded it played a role in the 

inhibition of A. The decline of c.e. in tef may reflect a reduction in the amount or 

activity of carboxylase and/or declining supply of substrate for carboxylation. The 

biochemical limitation may also reside in some other part of the enzymatic processes 

as suggested by Maruyama et al. (1990) in rice. 

Chill-exposure resulted in large decreases in Amax (RuBP regeneration, von 

Caemmerer and Farquhar, 1981). Berry and Bjorkman (1980) and Farquhar et al. 
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(1987) suggested the decline in Amax may indicate suppressed capacity of RuBP 

regeneration resulting from inadequate electron transport, ATP supply, or 

photochemistry. In the present study we measured electron transport rates of isolated 

thylakoids and chlorophyll fluorescence of dark adapted leaves. These measurements 

showed significant inhibition of PSII and whole chain electron transport rates and 

reduction of Fv/Fm. The underlying cause of the decline in electron transport activity 

may be retarded chloroplast development, possibly deficient chloroplast encoded 

gene products (in particular the D1 protein) as described by Nie and Baker (1991) and 

Bredenkamp and Baker (1994). The large decrease in electron transport rate in this 

study demonstrates that PSII electron transport is sensitive to chilling temperatures 

and decreases in parallel with Amax· However, electron transport, although greatly 

inhibited by chilling, showed substantial rates when A was reduced to zero (Fig. 4a). 

This is consistent with pervious findings in tomato (Kee et al. 1986). Thus, other 

biochemical factors in the chloroplast, such as the Calvin cycle, may be responsible 

for the chill-inhibition of A. 

Although there are differences between the two species, heat stress exerts 

significant inhibition of A in both wheat and tef. In tef, noticeable rates of A were 

observed at temperatures where A of wheat was completely abolished. The wheat 

data are in agreement with other reports on reduction by high temperature stress of A, 

c.e., g5 , and Amax (Kobza and Edwards, 1987; Santarius et al., 1991). In both wheat 

and tef heat stress impaired A and the two biochemical components Amax and c.e. to 

similar extents (Fig. 7, a - c; Fig. 7, e and f) except in tef where Amax (Fig. 7d) was 

slightly less reduced. The coincident decrease of Amax and c.e. shows a concerted 

decline in two distinctly different components of chloroplast function. Whether any 
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one, or both, are direct targets of heat stress, or whether downregulation is involved, 

yet remains uncertain. 

There were large inhibitions of PSII and whole chain electron transport rates 

and reduced Fv/Fm at temperatures above 35°C. The effect was greater in wheat 

than in tef. Chloroplast activities may have been inactivated at these temperatures at 

the site of oxygen evolution (Thompson et al., 1989) due to loss of er (Critchley and 

Chopra, 1988; Coleman et al., 1988) or Mn2+ (Nash et al., 1985). It is likely, therefore, 

that the decline in electron transport by heat stress caused reduced RuBP 

regeneration and lowered A. This conclusion is consistent with the report by Berry 

and Bjorkman (1980) that heat stress reduces Amax and RuBP regeneration in the 

chloroplasts. In tef, however, the reduction of whole chain electron transport activity 

(data not shown) after each duration at high temperature was nearly two fold smaller 

than the reduction of A or Amax· Seventy-two h at 40° C induced 55% inactivation of 

PSII and 48% reduction of the whole chain electron transport activity (data not shown), 

whereas A (Fig. 9a) and Amax (Fig. 9b) were completely abolished. Therefore, it is 

uncertain whether electron transport limited A. Berry and Bjorkman (1980) reported a 

strong correlation between whole chain electron transport and photosynthetic CO2 

assimilation, which was also the case in our study (Fig. 9, a and b). 

Carboxylation efficiency of both wheat and tef was much reduced by heat stress 

(Fig. 7, e and f). Farquhar et al. (1987) suggested that the decrease in c.e. of C3 

plants was caused by depressed activity of Rubisco. Weis (1981) and Kobza and 

Edwards (1987) showed that the in vitro activity of Rubisco is as sensitive to 

temperatures between 20°c and 45°C as is A and concluded that inactivation of 

Rubisco causes the inhibition of A. Heat perturbation of thylakoid membranes may 
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cause adverse changes in the stroma. Reduced pH or ionic composition (Mg2+ 

concentration) may play a role in the inhibition of enzymes. 

In both species a close positive relationship between c.e. and electron transport 

(Fig. 9c) and Fv /Fm (Fig. 1 Oc) was found, suggesting that Fv /Fm acts as an intrinsic 

probe of the thylakoid membrane and responds to temperature in the same way as 

photosynthetic enzymes. 

In both wheat and tef changes in Ci are at least in part attributable to the 

chloroplast. Reduced electron transport rate, Fv /Fm, and c.e. clearly showed that 

inhibition of A was linked to chloroplast activities rather than to stomata. Our results 

on Ci agree with previous findings of Kobza and Edwards (1987) and Wolf et al. (1990) 

who reported higher Ci values in wheat and potato exposed to elevated temperatures. 

Electrolyte leakage was small until more than 50% of A was lost by high (Fig. 

11) or chilling low (Fig. 6) temperature stress. At even greater heat or chilling stress 

there was a large increase in membrane leakage suggesting disintegration of cellular 

membrane(s). It is important to note that massive membrane leakiness resulted only 

from extreme temperatures or long exposures, suggesting that increased membrane 

leakage was possibly a result rather than a cause of chilling and heat injury. Santarius 

et al. (1991) came to the same conclusion in studies on lettuce protoplasts. However, 

they detected no significant increase in electrolyte leakage below 55° C at which 

temperature CO2-dependent 0 2 evolution was completely inhibited. The discrepancy 

could be due to use of different procedures, for example the extended periods of heat 

stress used in our experiments. 

In neither species did exposure to moderate heat and chilling temperatures 

decrease chlorophyll content (Table I, II). Nie and Baker (1991) and Bredenkamp et 
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al. (1992) in maize and Yordanov (1992) in barley reported no effect of low and high 

temperature stresses on the contents of light harvesting chlorophyll protein complexes 

(LHC I and LHC II). Their findings support our chlorophyll data and the conclusion 

that the light harvesting potential remained intact at moderate stress, a condition 

under which the photosynthetic CO2 fixation had already been considerably inhibited 

(Table I, II). Thus, in neither species did chlorophyll content control the decrease of A 

in heat or chilling stressed plants. At more severe heat stress, however, and in wheat 

but not in tef, the chi a/b ratio was lowered to about 1.9 from the normally high ratio 

of 3.3 to 3.6 measured at 25°C (Table II). An earlier study in spinach by Sundby et al. 

(1986) on isolated thylakoids came to the same (1.9) chi a/b ratio at 40° C. Sundby et 

al. (1986) suggested a relative increase in LHC II content and a decrease in the 

chlorophyll ~ protein complex of PSII as a cause for thermally induced changes in the 

chi a/b ratio. 

In conclusion, we show comparative responses of leaf photosynthesis of two 

cereal species to temperature stress. The relatively lower sensitivity of wheat to 

chilling and tef to heat stress is likely linked to adaptation to their respective native 

thermal environments. Photosynthesis of .chilled and heat stressed tef was primarily 

limited by enzymatic processes whereas in heat stressed wheat both electron 

transport and the Calvin cycle may have co-limited A. Membrane leakage and 

chlorophyll contents were affected only by extended exposure times or severe 

temperatures and more by heat than by chilling stress. Thus, plasmalemma 

permeability and chlorophyll content are not early detectors of temperature stress. 
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Abbreviations: Fo, initial fluorescence; Fm, maximum fluorescence; Fv, variable 

fluorescence (Fv = Fm - Fo); t112, time required for fluorescence to rise from Fo to half 

of its maximum value. 

175 



ABSTRACT 

In vivo chlorophyll fluorescence measurements were employed to evaluate short 

term chilling and heating sensitivity of chloroplast membranes. Wheat (Triticum 

aestivum L.) and tef (Eragrostis tef Z.) were exposed to high (35°C, 40°C, and 45°C) 

or chilling low (2° C, 7° C, and 12° C) temperatures in moderate light. Brief exposure 

to high temperature greatly affected Fv /Fm, Fv, Fm and t112 of wheat more than it 

affected tef. Increased Fo was seen in wheat within 30 min of exposure to 45° C, 

whereas about 120 min of exposure was needed to prolong the time required for 

fluorescence to rise from Fo to half its maximum value (t11J. In tef t112 increased 

within 60 min of exposure to 45°C. Heat stress had no consistent effect on Fo in this 

species. In general Fv /Fm (and Fv and Fm) is greatly reduced by heating. Exposure 

to chilling low temperature for shorter duration than 60 min showed little or no 

damage in tef. Considerable reductions in Fv /Fm, Fv, and Fm were seen at exposure 

times between 330 min and 390 min at 2° C, 7° C and 12° C, whereas Fo was largely 

unaffected. The t112 was greatly increased at 2°C suggesting limitation in PSII electron 

transfer. This study revealed that both high and low temperature stress eventually 

inactivated Photosystem II function in wheat and tef. 
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INTRODUCTION 

Chlorophyll fluorescence measurements are frequently used to asses high and 

low temperature injury to plants, both at the leaf and isolated chloroplast levels 

(Neuner and Larcher, 1990; Krause and Weis, 1991). At room temperature chlorophyll 

sl fluorescence is emitted exclusively from photosystem II. The nature and extent of 

changes of chlorophyll fluorescence can indicate effects on in vivo photosynthesis of 

plants influenced by chilling or high temperature stresses. When dark-adapted leaves 

are exposed to light, the intensity of chlorophyll sl fluorescence undergoes changes 

due to the onset of different photosynthetic processes (Krause and Weis, 1984). The 

important features of the chlorophyll fluorescence induction curve of dark-adapted 

leaves at room temperature, known as the Kautsky effect (for review see Lichtenthaler 

1992), are described by Papageorgiou (1975). The terminology and nomenclature 

used by Krause and Weis (1984) and van Kooten and Snel (1990) are adopted here. 

Earlier studies (see Chapters I and II) showed that the quantum efficiency of 

PSII photochemistry (Fv /Fm) and in vitro electron transport inhibition were impaired 

during extended (24-168 h) temperature stress treatments. Here we investigate 

whether photochemical events are affected by short term (minutes to hours) chilling 

and heat exposure of two cereal crops. 
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MATERIALS AND METHODS 

Plant Materials, Growth Conditions, and Stress Exposure 

Seeds ofthe C3 cereal wheat (Triticum aestivum L. cv. TAM W-101), and the C4 

cereal tef (Eragrostis tef Z. cv. DZ-01-354) were planted in controlled environment 

growth chambers in 2 L pots containing a modified peat moss:soil mix (1: 1 v /v) soil 

(Metro Mix growing medium, Grace Sierra Horticultural Products Company, Milpitas, 

CA). Wheat and tef were maintained at 25°C/18°C and 30°C/23°C, respectively, 

day /night temperature and 14 h photoperiod. For details see Chapters I and II. 

Heat and Chilling Low Temperature Stress Exposure 

Thirty days after emergence, plants were transferred to another temperature 

controlled growth chamber (Burrows Scientific Equipment Co., Model 1848, Evanston, 

IL) for high or low temperature treatment. This chamber was humidified at 50% RH 

and plants were exposed for periods of up to 480 min to 35°C, 40°C, and 45°C or 

2° C, 1° C, and 12° C. The pot temperature was constantly checked with a 

thermometer. Measurements were initiated when the pots had reached the required 

temperature. Every 30 min over the next 480 min 16 fully expanded leaves (4 

leaves/pot x 4 pots) were removed for measurements of chlorophyll fluorescence 

parameters. Four control pots remained at the original temperatures (25° C and 30° C 

for wheat and tef, respectively) and were measured in the same way as leaves 

exposed to heat or chilling temperature. 
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Chlorophyll fluorescence 

Measurements of chlorophyll fluorescence were made with a portable 

fluorometer (Polar Tech, Umea, Sweden) (Oquist and Wass, 1988). Four fully 

expanded leaves were sampled from each pot and placed in black plastic sleaves with 

holes to guide the measuring probe. The leaves were dark adapted for 1 O min prior 

to a 5 s exposure to excitation light with an intensity of 100 µmol m-2 s-1 PAR. Fo, Fm, 

Fv, Fv /Fm, and t112 were measured. Both chilling and heat stress experiments were 

repeated three times with four replicate measurements per treatment. A completely 

randomized design was used. 
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RESULTS 

Heat Stress 

Figure 1 shows time dependencies of Fv /Fm, Fm, Fo, and t112 of dark adapted 

wheat and tef leaves after exposure to elevated temperatures. In wheat not only the 

temperature but also the time of exposure determined the extent of changes of 

chlorophyll fluorescence, whereas the later factor was more prominent in tef. In wheat 

even the moderate exposure to 35° C caused considerable changes. A 30 min 

exposure to 35°C and 40°C caused inhibition of Fv/Fm by 21% and 33% in wheat 

(Fig. 1a). In tef 30 min exposure to 35°C and 40°C reduced Fv/Fm by 8% and 22%, 

respectively (Fig. 1b). The 45°C treatment for 30 min decreased Fv/Fm of both 

species by 33-36% (Figs. 1, a and b). By the end of 8 hat 45°C Fv/Fm had a 

decrease from 0.733 to 0.273 in wheat (Fig. 1a), which was substantially more than in 

tef (0.733 to 0.487, Fig. 1b). 

In both species there were concomitant decreases in Fm (Figs. 1, c and d) and 

Fv (data not shown) with increasing temperature up to 40° C. Like in previous studies 

wheat leaves exposed to high temperature for short periods showed an increase of Fo 

(Fig. 1e) and t112 (Fig. 1g). At 45°C an increase in Fo was detected within 30 min of 

exposure in wheat. In tef no consistent pattern was seen in Fo as time and 

temperature exposure increased. 
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Wheat leaves maintained more or less constant t112 values until 120 min of 

exposure to high temperature (Fig. 1 g). Beyond this time significant increases were 

observed at 35° C and 40° C followed by declines again at the longest times. In tef t112 

was increased by the 45°C treatment only, and the effect was much more rapid than 

seen in wheat (Figs. 1, g and h). In tef time of exposure in general appeared less 

critical than in wheat. 

Dependencies of Fv/Fm on Fo, Fv and Fm are shown in Figure 2. The Fv/Fm 

of wheat decreased as Fo increased, whereas no significant trend was noted in tef 

(Fig. 2a). Fv/Fm was positively correlated with Fv (Fig. 2b) and Fm (Fig. 2c) in both 

species. 

Chilling Stress 

Figure 3 illustrates the time-dependence of Fv /Fm, Fm, Fv and t112 of tef 

exposed to chilling low temperature treatments. All chlorophyll fluorescence 

parameters were significantly modified by temperature and there was a time

temperature dependence. However, time by itself had little or no effect. Following 60 

min of exposure to 2°c, 7°C, and 12°c Fv/Fm of tef leaves was considerably 

reduced compared to unstressed leaves at 30°C (Fig. 3a). Shortly after five and a half 

hours of chilling at 2°c to 7°C, Fv/Fm had decreased by 30%. At the time Fm and 

Fv fell proportionally (Figs. 3, band c), and t112 increased to a maximum (Fig. 1d). 

Thus, decreased Fv/Fm (Fig. 1a), Fm (Fig. 3b) and Fv (Fig. 3c), and increased t112 

(Fig. 3d) were the salient features of chilling exposure in the present study, whereas 

Fo remained unchanged (data not shown). 
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Figure 4 shows the linear dependence of Fv /Fm on Fm, Fv, and t112 in chilled 

tef leaves. The correlation between Fv/Fm and Fv (r=0.92, Ps:0.05), and Fv/Fm and 

~ 12 (r=0.80, Ps:0.05) appeared to be high at all temperatures and exposure times. 

In Chapter I Fv /Fm of wheat remained largely unaffected upon exposure to 

chilling low temperature. For this reason no study was made on short term chilling 

effects. 
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Figure 1. Dependence on time of Fv /Fm in wheat (a), Fv /Fm in tef (b), Fm in wheat 
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DISCUSSION 

The objectives of these experiments were to examine the time-temperature 

dependencies of photochemical properties of chloroplasts of two cereal crops 

exposed to short term heat and chilling exposure. Berry and Bjorkman (1980) 

proposed that the onset of heat inactivation of isolated thylakoid reactions occurs at 

nearly the same temperature that causes a sudden rise in the Fo level of chlorophyll si 

fluorescence. The coincident reduction in Fv /Fm and increase in Fo (Fig. 1 e) in 

wheat agrees with this interpretation. The decrease in Fv /Fm has been proposed to 

indicate a reduction in the photochemical efficiency of photosystem II, presumably 

due to inefficient energy transfer to the reaction center (Bolhar-Nordenkampf et al., 

1989) or due to slow rate of reoxidation of QA- (Chylla and Whitmarsh 1989, Nedbal 

and Whitmarsh, 1992). The increase in Fo is indicative of damage to the reaction 

center of PSII (Bolhar-Nordenkampf et al., 1989). The data presented here support 

our previous conclusion that the most heat sensitive site of photosynthesis in wheat is 

on the oxidizing side of PSII. In tef, on the other hand, high temperature affected Fo 

less than Fv /Fm. This suggests that early damage to the photochemical activity in 

heat stressed tef plants lies beyond the donor side of PSII but perhaps before the 

plastoquinone pool. Conformational changes leading to destablization of thylakoid 

membranes (Smith and Low, 1989) might have limited electron transport from QA to 
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QB and subsequently to the plastoquinone pool. This would cause low values of Fm 

due to photochemical quenching. 

Berry and Bjorkman (1980) suggested that exposure to chilling temperatures for 

only a few minutes is often not damaging, at least in part because chilling injury is a 

cumulative phenomenon. In our case chilling-induced inhibition was less damaging at 

exposure times shorter than 60 min. After five and a half h of chilling Fv /Fm markedly 

declined by about 30% (Fig. 3a). This was accompanied by decreased Fm and 

longer t112 with no or little effect on Fo. A decrease in Fv/Fm and an increase in t112 

have been reported to result from chilling injury (Bolhar-Nordenkampf et al., 1989). 

The increase in t112 suggests that reducing equivalents accumulate slower at QA. 

Thus, the chilling-induced changes in fluorescence suggest that chilling injury takes 

place in photosystem II. Csapo et al. (1991) measured chlorophyll fluorescence 

induction and photosynthetic activity of maize leaves. They observed altered 

fluorescence properties typical of inhibition of PSII electron transport (at the QB site) 

and inhibition of QA reduction. Also in our case the decrease in Fv /Fm may have 

been caused by limited electron transfer, possibly by degradation of the D1 protein 

(Nie and Baker, 1991) or inefficient reduction of QA. 

In conclusion, the in vivo chlorophyll fluorescence measurements showed that 

short term exposure to extreme temperatures caused impairment of chloroplast 

activity. The primary damage to wheat thylakoids isolated from short-term heat 

stressed leaves seemed to involve the PSII reaction center as revealed by Fo, 

whereas other components of PSII appeared more susceptible to heat and chilling

induced injury in tef. The effects of short-term sensitivity was in good agreement with 

effects of prolonged temperature stress treatments observed in our previous studies. 
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The in vivo chlorophyll fluorescence study reported here involved only the fast 

induction kinetics of dark adapted leaves. Although, these measurements need not 

be indicative of steady state photosynthesis, they detect and quantify rapidly 

developing effects of temperature stress on primary events of photosynthesis. 
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