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Chapter I 

BACKGROUND, REVIEW, AND OBJECTIVES 

Problem Statement 

Nonaqueous phase liquids (NAPLs) pose a serious problem with respect to 

environmental cleanup of soils and aquifers. NAPLs are liquid contaminants that are 

immiscible in water. Some of the more common NAPLs include hydrocarbon fuels, 

solvents, and pesticides. Some possible sources for release of these contaminants into 

the environment include leakage from pipelines and surface/subsurface storage tanks. 

NAPLs most often exist as residual saturation and can be found in both the saturated and 

unsaturated zones below the surface. Because of their low aqueous solubility and high 

interfacial tension with respect to water, NAPLs are not effectively removed from soils 

and aquifers by simple flush and treat methods. However, the petroleum industry has 

successfully tested surfactants for enhanced oil recovery. Consequently it has been 

reasoned that surfactants could also be applied for in situ environmental remediation. 

The effectiveness and efficiency of using surfactants for this purpose will depend on their 

contaminant emulsification/solubilization capability, subsurface mobility, and effects on 

porous media hydraulic properties. 
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The two overall objectives of this study are; 

• to quantify the impact of surfactants on the hydraulic properties of saturated hydraulic 

conductivity and unsaturated diffusivity, and 

• to determine surfactant transport characteristics m unsaturated soil along with 

delineation of the boundary conditions and soil attributes which have the greatest 

influence on mobility. 

As detailed in the Research Focus, the first objective is addressed in Chapters II and III, 

while the second objective is addressed in Chapters III and IV. It will be shown in the 

following chapters that these objectives have not been adequately studied in any previous 

research. 

Description of Surfactant Properties 

The word surfactant is a contraction for the term surface-active agent. These 

chemicals are described as being surface-active because of their tendency to concentrate 

at the aqueous interface with another phase, whether it be gas, solid, or liquid. As a 

consequence, various physical and chemical properties of the interface are affected. The 

surfactant tendency to concentrate at an aqueous interface is a result of an amphipathic 

· molecular structure. Surfactants on the molecular level are comprised of both 

hydrophobic and hydrophilic components. The affinity of the hydrophilic component for 

water along with the tendency of the hydrophobic component to be expelled from this 

solvent causes surfactant molecules to concentrate at aqueous interfacial boundaries. 

Chemical structures commonly found in the hydrophobic portion of the molecule include 
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branched or linear hydrocarbon chains along with aromatic rings. The hydrophilic 

component contains either a polar or an ionic structural element. The physical and 

chemical behavior of surfactants show greater dependence on the nature of the 

hydrophilic part of the molecule. 

Surfactants can be classified into one of the four groups listed below based on the 

charge of the hydrophilic component. 

1) Nonionic (no charge) 

2) Anionic (negative charge) 

3) Cationic (positive charge) 

4) Amphoteric (both positive and/or negative charges) 

Anionic surfactants have the greatest commercial availability and are therefore the most 

likely candidates for utilization in environmental remediation. However, nonionics have 

also been tested. 

Figure 1-1 shows the possible states of a surfactant in an aqueous solution. 

Within aqueous solutions at low concentration, surfactants exist only as individual 

monomers. As the concentration increases, the surface tension (solution/air interfacial 

tension) decreases. Interfacial tension can be defined as the amount of energy needed to 

increase the boundary area between two phases by a unit amount. When the surfactant 

concentration reaches a specific level, called the critical micelle concentration (CMC), 

molecular aggregates called micelles begin to form. 

Micelles commonly contain 50 to 100 molecules and can assume vanous 

geometric shapes such as spheres, cylinders, and disks. In aqueous solutions, the 
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molecular hydrophobic parts point towards the center of the micelle while the 

· hydrophilic parts are located on the outside. Structurally, a micelle can be 

conceptualized as having a water free hydrocarbon inner core, an outer core containing 

both water and hydrocarbons (palisade layer), and a hydrophilic shell (Hiemenz, 1986). 

For ionic surfactants, the outer shell is surrounded by counterions having an opposite 

charge. 

At concentrations beyond the CMC, the monomer concentration remams 

constant and all excess surfactant is utilized in forming more micelles. Also, surface 

tension remains relatively stable once the CMC is reached. At substantially higher 

concentrations, the micelles themselves form structural arrangements called lyotropic 

liquid crystals. The laminar phase shown in Figure 1-1 is one example of a lyotropic 

liquid crystal. Within any surfactant solution, regardless of micelle formation, an 

equilibrium is established between concentration of the monomers in the bulk solution 

and those adsorbed at interfaces. 

As previously stated, amphipathic molecular structure causes surfactants in an 

aqueous solution to concentrate at the phase boundaries present within a system. This is 

commonly referred to as hydrophobic adsorption. For surfactant solutions in contact 

with solid material, partitioning of the surfactant molecules at the liquid/solid interface is 

also facilitated by the mechanisms of precipitation and electrostatic attraction. Only 

ionic surfactants form precipitates. Precipitation and micelle formation are for the most 

part mutually exclusive. When the solubility limit is less than the CMC, surfactant 

precipitates can form but not micelles. The reverse is true if the CMC is less. The 
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temperature at which the solubility limit equals the CMC is called the Kraffi point. Only 

micelles can form above the Kraffi point, while precipitates can exist only at 

temperatures which are below. For anionic surfactants, the presence of positively 

charged multivalent counterions wiH increase the Kraffi point and thereby enhance the 

potential for precipitation. The mechanisms of electrostatic attraction between a 

surfactant molecule and a solid surface include ion exchange, coadsorption, and 

hydrogen bonding. A more detailed discussion of surfactant sorption mechanisms at 

solid surfaces will be provided in following chapters of this manuscript. 

Mechanisms of Surfactant Enhanced Environmental Remediation 

Emulsification and solubilization are the two mechanisms by which surfactants 

can enhance in situ removal of NAPLs from soils and aquifers. Figure 1-2 depicts a 

saturated system in which a NAPL droplet is attempting to move through a pore 

constriction. In order for the NAPL droplet to move through the constriction, it must be 

broken up into smaller droplets. This increase in interfacial area requires an energy 

input. The energy to be transferred results from pressure gradients in the adjacent water 

which is flowing around the droplet and through the pore. If these pressure gradients are 

not great enough, the droplet cannot be broken up ( emulsified) to the extent necessary 

for it to be transported through the pore constriction. The needed energy requirements 

can be reduced by minimizing interfacial tension between the aqueous and NAPL phases. 

The addition of surfactants to the aqueous phase are ideal for this task. This is a concept 

which has been successfully tested in the petroleum industry for enhanced oil recovery. 
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However, for emulsification to work, ultralow interfacial tensions (< 1 x 10·3 dynes/cm) 

need to be maintained within the subsurface porous media environment. For in situ 

environmental remediation, this can be very difficult to accomplish due to problems such 

as surfactant loss caused by adsorption/precipitation along with -chemical changes in the 

flushing solution which occur with flow through soil and aquifer materials. 

Solubilization is the second mechanism by which surfactants can enhance the 

removal ofNAPL contaminants from the subsurface environment. Organic liquids, such 

as some petroleum products, are soluble in the aqueous phase to a limited extent. If the 

aqueous solution contains surfactants at concentrations above the CMC, dissolved 

organic molecules will have a tendency to become incorporated into micelle cores. This 

entrapment within micelles effectively reduces the concentration of the dissolved 

organics to a level below their solubility limit. Consequently, more organics are then 

dissolved into the aqueous phase. The increased amount of organic material which can 

be solubilized through this mechanism is dramatic. Vigon and Rubin (1989) found three 

nonionic surfactants at concentrations above 0.1 % w/w to increase anthracene solubility 

by factors of20 to 40. 

Several factors such as surfactant CMC, octanol/water partition coefficient 

CK-ow), surfactant structure, and solution electrolytes affect the degree of solubilization. 

Since enhanced solubilization requires micelle formation, surfactants with low CMC 

values are more efficient. Contaminants with a high Kaw have a greater tendency for 

solubilization by surfactants (West and Harwell, 1992). An increase in the size of the 

hydrophobic component of a surfactant molecule increases the radius of the hydrophobic 
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inner core of the micelle. This increases the capacity of organic material which can be 

incorporated into the micelle. The addition of solution electrolytes is found to increase 

the solubilization capacity of ionic surfactants 

Enhanced solubilization by addition of surfactants to the water used in a pump 

and treat system can reduce remediation times significantly. This increased efficiency 

must be weighed against the increased operational costs involved in using surfactant 

chemicals. 

Research Focus 

Figure 1-3 illustrates a hypothetical example of how surfactants would be utilized 

to remove contaminants present both above and below the water table. As shown, 

surfactants are introduced into the saturated zone with an injection well. Contaminants 

found in the unsaturated zone would be flushed using surfactant solution applied with a 

surface sprinkler system or even shallow subsurface drains. The contaminated ground 

water and surfactant are then extracted with a recovery well. At the surface, recovered 

surfactant is separated out and then reused. The surfactant may have to cycle through 

the system as many as 50 to 100 times to remove the contaminants present in the 

subsurface. Consequently, the effectiveness and efficiency of this type of environmental 

remediation will require the surfactant mass flux through the subsurface to be managed 

at an acceptable level. 

Surfactant mass flux through the saturated and unsaturated zones will depend on 

the volumetric flow rate that the media is capable of maintaining along with the mobility 
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of surfactant molecules in the subsurface. The flow rate which can be maintained in a 

porous material depends on hydraulic properties such as saturated hydraulic conductivity 

or unsaturated diffusivity. If the presence of a surfactant. reduces the hydraulic 

conductivity or unsaturated diffusivity, then the flow rate will be reduced and so to the 

effectiveness and efficiency of the cleanup program. Remediation practicality will also 

be determined by factors which impact surfactant mobility. These concerns are 

addressed in the following three papers which have been submitted for publication. The 

first paper (Chapter II) quantifies the effect that various surfactants have on the saturated 

hydraulic conductivity of two soils. The second and third papers (Chapters III and IV) 

focus on anionic surfactant mobility in unsaturated soil. Here, the factors which 

influence mobility along with the impact that anionic surfactants have on unsaturated 

diffusivity are discussed. Overall, these three papers provide a body of knowledge which 

can be used in applying surfactants for in situ environmental remediation. 

References 

Couper, A. 1984. Thermodynamics of surfactant solutions, in Surfactants, ed. by Th.F. 
Tadros. Academic Press, London. pp. 19-52. 

Hiemenz, P.C. 1986. Principles of Colloid and Surface Chemistry, 2nd Edition. Marcel 
Dekker Inc., New York. pp. 427-488 

Vigon, B.W. and A.J. Rubin. 1989. Practical considerations in the surfactant-aided 
mobilization of contaminants in aquifers. Journal - Water Pollution Control 
Federation. v. 61, no. 7, pp. 1233-1240. 

West C.W. and J.H. Harwell. 1992. Surfactants and subsurface remediation. 
Environmental Science and Technology. V. 26, no. 12, pp. 2324-23. 
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Abstract 

Chapter II 

SURFACTANT INDUCED REDUCTIONS IN SOIL 

HYDRAULIC CONDUCTIVITY 

Surfactant solutions are being proposed for in situ flushing of organic 

contaminants from soils and aquifers. The feasibility of surfactant additives in 

remediation may depend in large part on how these chemicals affect the hydraulic 

conductivity of the porous media. While there is evidence in the literature of 

conductivity loss during surfactant flushing (Miller et al., 1975; Nash et al., 1987), there 

has been little research on quantifying the process for unconsolidated sediments. 

Surfactant affected hydraulic conductivity reductions were measured in two soils (Teller 

loam and Dougherty sand). Testing was done with eight different surfacants at a variety 

of concentrations (10-5 to 10-1 mole/kg), surfactant mixtures, and added solution 

electrolytes. The Teller was also tested with its organic matter removed. Maximum 

hydraulic conductivity decreases were 4 7% for the sand and over 2 orders of magnitude 

for the loam. Surfactant concentrations, surfactant mixtures, soil organic content, and 

added solution electrolytes all affected the degree of conductivity reduction. Results 
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indicate that surfactant affected hydraulic conductivity losses should be considered prior 

to in situ remediation and may preclude surfactant use in some fine grain soils. 

Introduction 

The concept of usmg surfactant solutions for environmental soil flushing 

originated from their successful testing in the petroleum industry for enhanced oil 

recovery. Surfactants were employed to minimize interfacial tension between the oil and 

water phases. This results in the formation of a mobile oil/water emulsified phase which 

can then be extracted from the subsurface. Since numerous pore volumes of the flushing 

solution may be required for surfactant enhanced in situ remediation, the feasibility of 

this method may depend on soil hydraulic conductivity. If soil-surfactant interactions 

result in significant hydraulic conductivity reduction, this type of remediation may be 

impractical. 

Surfactants are orgamc compounds comprised of both hydrophobic and 

hydrophilic components. This amphipathic structure causes surfactant molecules to 

concentrate in a specific orientation at interfaces within multiphase systems. The result is 

a reduction in interfacial tension. Above a certain concentration, called the critical 

micelle concentration (CMC), surfactant molecules in solution form aggregates called 

micelles. As a result of micelle formation, surface tension is usually minimum at or 

above the CMC. Surfactants are classified as being anionic, cationic, amphoteric 

(positive and/or negative molecular charge), or nonionic. Commercially, anionics are 

most common. 
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In environmental soil flushing, surfactants can be used for both emulsification and 

solubilization. Solubilization is the partitioning of organic contaminant molecules into 

the core of surfactant micelles. Micelles then act as mobile carriers within the aqueous 

phase for the organic contaminants. Laboratory studies by the American Petroleum 

Institute (1979 and 1985), Ducreux et al. (1990), Abdul et al. (1990), and Ang and 

Abdul ( 1991) indicate the feasibility of using surfactant solutions for porous media 

flushing. In a large scale model aquifer study conducted for the American Petroleum 

Institute (1985), a 4% solution containing equal amounts of both an anionic and nonionic 

surfactant was effective in removing up to 83% of the gasoline present in a sandy soil. 

The nonionic surfactant was added to increase the flow rate without decreasing the 

effectiveness of the anionic surfactant to extract gasoline. Ducreux et al., (1990) found 

that a 10 g/L NaCl preflush enhanced the effectiveness of an anionic surfactant in 

mobilizing non-soluble residual hydrocarbons. 

Results of field studies have been mixed with respect to surfactant effectiveness. 

Nash et al. (1987) found little evidence that surfactants removed residual petroleum or 

organic solvents from a sandy soil. In that study, it was noted that the surfactant 

solutions dramatically decreased percolation rates. Abdul et al. ( 1992) field tested a 

0. 75% nonionic surfactant solution and found it removed 10% of oil and 

polychlorinated biphenyls from a sandy soil after a six pore volume flush. Sale et al. 

(1989) describe a field test where surfactant flushing solutions reduced residual oil 

saturation by 67%. Both the anionic and nonionic surfactant solutions used in their field 

study contained alkalis to reduce adsorption and polymers to control viscosity. 
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In this research, both a loam and a sand were tested to determine their suitability 

for soil flushing. The saturated hydraulic conductivity of the sand (3 x 10-2 cm/s) would 

seem to make it an ideal candidate for soil flushing remediation while the lower 

conductivity (6 x 10-5 cm/s) of the loam would place it at the perceived lower limit of 

practicality. 

To make this research as extensive as possible, eight surfactants were examined. 

Likewise, two surfactants were tested over a concentration range of four orders of 

magnitude. Anionic surfactants may precipitate with ground water cations and cause 

reductions in soil hydraulic conductivity. West and Harwell (1992) note that any factor 

which lowers the CMC of a surfactant system will decrease the susceptibility of the 

surfactant to precipitation. Mixing an anionic surfactant with a nonionic surfactant 

commonly reduces the CMC. For this reason, anionic and nonionic surfactant mixtures 

were tested. The addition of an electrolyte such as NaCl to an anionic surfactant 

solution can both increase the micelle aggregation number and decrease the CMC 

(Hiemenz, 1986). Additional monovalent Na+ ions can also affect the soil cation 

exchange behavior of divalent ions such as Ca2+ and Mg2+ which coadsorb and/or form 

low solubility salts with some anionic surfactants. Consequently, anionic surfactant 

solutions containing high levels of NaCl were tested to determine if hydraulic 

conductivity reductions could be controlled. 

Finally, Muecke (1979) has suggested that permeability can be affected by mutual 

solvents or surfactants which mobilize colloid-size material held in place by wetting or 
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interfacial forces. Thus, a simple test was developed to measure mobilization of 

colloid-sized material for the Dougherty sand using different surfactant solutions. 

Materials 

Surfactants 

Table 2-1 lists the surfactants used in this study. Symbols provided in the table 

will be used to designate specific surfactants. All of the surfactants were supplied by the 

Organics Division of the Witco Corporation. Of the eight surfactants tested, five were 

anionic or nonionic. These would be the most likely utilized for surfactant flushing 

remediation. One amphoteric and two cationic surfactants were also tested. Table 2-2 

provides information on their aqueous solution properties. Surface tensions were 

measured with a Fisher Scientific Model 21 Tensiomat tensiometer, while viscosities 

were obtained with a Cannon Instrument Co. size 50 viscometer. From Table 2-2, it is 

evident that the nonionic surfactants have significantly lower CMC's than either of the 

anionic surfactants. The addition of NaCl at a concentration of 0.1 mole/kg causes a 

reduction in the CMC for the two anionic surfactants. It was also noted that the 

half-and-half anionic-nonionic surfactant mixtures showed lower CMC values than the 

individual anionic surfactants. Specific gravity for the surfactant solutions were all equal 

to 1.000 (±0.003), as calculated from data given by the manufacturer. 
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Soil Types 

Teller loam (Thermic Udic Argiustoll) and Dougherty sand (Thermic Arenic 

Haplustalf) were the soils used. They were obtained from field locations near Perkins, 

Oklahoma. Characteristics of both soils are provided in Table 2-3. Properties were 

determined using the procedures described in Methods of Soil Analysis, Part I & 2 

(ASA and SSSA, 1982 and 1986). Specific surface area was calculated from water 

vapor sorption isotherms by use of the B.E.T. equation (Quirk, 1955). An indication of 

the clay minerals present in the two soils is found through comparison of the specific 

surface area and the percent clay content (Jury et al., 1991). With a specific surface area 

of 38 m2/g, a 17% clay content, 1.22% organic matter, and no observable swelling 

tendencies, illite should be the most common clay mineral present in the Teller Loam. 

For the Dougherty sand, a relatively high specific surface area (22 m2/g) compared with a 

low clay content ( <2%) indicates that montmorillonite is the dominant clay mineral. 

Calcium is the dominant exchangeable cation present in both soils. 

Experimental Procedures 

Falling-head permeability tests were used to monitor changes in saturated 

hydraulic conductivity (McWhorter and Sunada, 1977). The basic testing apparatus is 

shown in Figure 2-1. Saturated hydraulic conductivity values, K (LIT), were calculated 

using the following equation: 

(2-1) 
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where a is the cross-sectional area of the buret (L2), A is the cross-sectional area of the 

soil column (L 2), 1 is the length of the soil column (L ), and t is the time (T) required for 

the hydraulic head, h (L ), to fall from ho to h1• The ratio of total head loss versus column 

length, or hydraulic gradient, ranged from three to six. This value is consistent with 

conservative lab practices but higher than common field conditions. All flows were well 

in the range of Darcy's law and matrix compression was trivial at the packing densities 

used. It is possible the relatively high gradients could help mobilized fines and speed up 

changes in the pore structure when compared to field conditions. 

Rigid columns 4.15 cm in diameter and 15 cm long were used. They were 

packed in uniform lifts at dry bulk densities of 1.65 g/cm3 for the Teller loam and I. 70 

g/cm3 for the Dougherty sand. Those densities .correspond to porosities of 38% and 

36%, respectively. Studies have shown many surfactants to be actively biodegraded by 

microorganisms commonly found in the environment (Huddleston and Allred, 1967): 

Microbial growth may cause pore clogging which is beyond the scope of this study. 

Thus, the soil was sieved and heated to 105° C for 24 h before packing in order to 

destroy most resident soil microorganisms. The columns were vacuum saturated with 

deaired, surfactant free, nominal soil water solution (0.001 mole/kg NaCl and 0.001 

mole/kg CaSOJ. Natural pore waters were not available for these surface soils, thus the 

test solution, which contained low concentrations of monovalent and divalent 10ns 

common to soils, was used in an attempt to maintain an equilibrium soil chemistry. 
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Teller Loam Tests 

Changes in the loamy soil hydraulic conductivity were measured with respect to a 

variety of surfactants, different concentrations of the same surfactant, mixtures of anionic 

and nonionic surfactants, presence or absence of soil organic matter, and inclusion of 

additional electrolyte in the surfactant solution. After saturation, the Teller loam 

columns were flushed with approximately one pore volume of soil water solution. (A 

pore volume is equal to the total volume occupied by the voids within the soil column.) 

Initial soil hydraulic conductivities were then obtained. Next, the surfactant solution was 

substituted into the supply reservoir and hydraulic conductivity was monitored with 

respect to the number of pore volumes of influent. 

Five series of tests were completed using the Teller loam. Tests were normally 

conducted for a period of four days. The first series compared eight different surfactants 

at 0.1 mole/kg concentrations. This corresponds to a 3-8% by weight surfactant 

solution, which brackets the upper limit of what would be required for soil flushing. 

The second series determined the surfactant concentration at which hydraulic 

conductivity reduction first becomes significant. Two different surfactants, Al and N3, 

were tested at 10-5, 104 , 10-3, 10-2 and 10-1 mole/kg concentrations. Based on results of 

this series, all later tests on the Teller were conducted at a 0.01 mole/kg concentration. 

This level corresponds to the lower limit (0.3-0.8%) at which surfactants would be 

applied for soil flushing. Abdul et al. (1990) tested a variety of surfactants and found 

that solution concentrations of 0.5% and above were effective in removing automatic 
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transmission fluid from a sandy material. A surfactant system concentration as high as 

4% was tested by the American Petroleum Institute (1985) with encouraging results. 

The third test series compared anionic-nonionic mixtures to single surfactant 

solutions. Two mixed surfactant solutions containing equal molar amounts of Al and 

N3 or A2 and Nl, with an overall concentration of 0.01 mole/kg, were compared with 

solutions of individual surfactants. At the completion of this series, the soil was 

extruded from the columns, sectioned into quarters, and the samples analyzed to 

determine the distribution of surfactants. Anionic surfactants in the soil samples were 

extracted with acetone and then analyzed using the Methylene Blue Method ( APHA et 

al., 1985). Nonionic surfactants were extracted with acetone and analyzed using the 

Ammonium Cobaltothiocyanate Method (Longman, 1975). The test using the Al and 

N3 solution mixture was run through two cycles, where the surfactant was followed by a 

soil water solution flush to determine if the lost hydraulic conductivity could be 

recovered. Since the conditions of this test differed from the others within the series, 

surfactant distribution in the soil column was not determined. 

The fourth series explored the influence of residual organic matter in the loam. 

Testing done on three columns with soil organic matter (1.22%) were compared with 

tests on three columns where the soil organic matter had been removed by hydrogen 

peroxide oxidation (ASA and SSSA, 1986). These three pairs of tests were conducted 

with the 0.01 mole/kg Al and N3 surfactant solutions along with the soil water solution 

as a control. 
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The fifth and final test series was conducted to investigate whether high levels 

(0.1 mole/kg) of NaCl in either the surfactant solution, or both the surfactant solution 

and a preflush, could moderate the hydraulic conductivity reduction caused by anionic 

surfactants. Two columns were run with solutions containing 0.1 mole/kg of NaCl and 

0.01 mole/kg of Al or A2. A third test utilized a 7.5 pore volume 0.1 mole/kg NaCl 

preflush, followed by an Al-NaCl solution. 

Dougherty Sand Tests 

Changes in the sand's conductivity were measured with eight different surfactants 

and four mixtures. Procedures for determining saturated hydraulic conductivity losses 

for the sand were somewhat different from those used for the loam. After saturation, the 

columns were flushed with approximately four pore volumes of soil water solution. 

Following the preflushing, initial saturated hydraulic conductivities were determined. 

Columns were then flushed with four pore volumes of 0.05 mole/kg surfactant solution 

and allowed to equilibrate for 12 h. A surfactant affected hydraulic conductivity was 

then determined. The equilibration period was necessary to maintain a realistic duration 

of soil-surfactant contact and was chosen based on the calculated water travel time along 

a 15 cm (column length) flow path under a hypothetical hydraulic gradient of 0.005. A 

single series of tests were conducted with the Dougherty sand using the eight different 

surfactants, two anionic-nonionic mixtures, and two mixtures containing NaCl and an 

anionic surfactant. All tests were run with 0.05 mole/kg solution concentrations, with 

the exception of the control. 
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During the Dougherty tests, some column effluent contained significant amounts 

of soil colloids which were not observed during the Teller tests. A simple testing 

procedure was devised to determine the relationship between effluent colloids and 

conductivity reduction. Figure 2-2 illustrates the apparatus. A 300 ml flask was filled 

with approximately 200 cm3 of sand between two washed gravel layers. A brass tube 

open to the bottom gravel layer allowed effluent collection. The sand was preflushed by 

pouring four pore volumes of soil water solution into the top of the flask while applying 

suction to the brass tube. Then it was leached with an additional 4 pore volumes of 0.05 

mole/kg surfactant solution and allowed to equilibrate for 12 h. At the end of the 

equilibration, one pore volume of effluent was collected. The effluent solution was 

analyzed for nonvolatile solids which is a measure of suspended inorganic solids (APHA 

et al., 1985). 

Experimental Results 

Teller Loam 

Figure 2-3 presents results of the first test series which compared different 

surfactants at 0.1 mole/kg concentrations. Figure 2-3a displays the test results for the 

nonionic surfactants while the ionic surfactants are represented by Figure 2-3b. It is 

apparent that the ionic surfactants caused a greater hydraulic conductivity decrease than 

the nonionic surfactants. Maximum hydraulic conductivity reduction for the ionic 

surfactants was over 2 orders of magnitude within 0.6 pore volumes. For the nonionic 

surfactants, maximum hydraulic conductivity reduction was 0.5 to 1.5 orders of 
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magnitude over a 1.5 to 4.0 pore volume range. Results from a test run with soil water 

solution are also provided in Figures 2-3a and 2-3b for comparison. Figure 2-3c shows 

that partial recovery of hydraulic conductivity losses caused by the N3 surfactant was 

achieved by purging the column with the soil water solution. On this plot, the two 

declining limbs on the curve reflect hydraulic conductivity loss due to surfactant 

injection, while the two rising limbs represent hydraulic conductivity recovery from soil 

water solution flushing. It should be noted however, that other tests in this study (N3 at 

0.01 mole/kg, Al at 0.01 and 0.1 mole/kg, and Al & N3 at 0.01 mole/kg) showed no 

significant recovery of hydraulic conductivity after a water solution flush. 

Figure 2-4 presents the results of the second series, which compared surfactant 

concentration effects. For both surfactants tested, Al (Figure 2-4a) and N3 (Figure 

2-4c ), significant hydraulic conductivity reduction did not occur until a concentration 

level of 0.01 mole/kg was reached. The maximum rate of decrease occurred with the 

highest solution concentration (0.1 mole/kg). From Figures 2-4b (surfactant Al) and 

2-4d (surfactant N3), it appears that for solution concentrations of 0.01 mole/kg and 

above, the total injected surfactant mass at which hydraulic conductivity reduction begins 

to occur is 104 to 10·3 moles injected across an inlet area of 9.6 cm. Hydraulic 

conductivities in Figures 2-4b and 2-4d have been corrected for the small linear decre~se 

which occurs due to flushing with soil water. This decrease is probably the result of 

chemical adjustments of the soil to the soil water used. A moderate reduction with the 

104 mole/kg N3 solution may be due to other factors such as bubble formation within the 

column caused by gases escaping from solution. On whole, Figure 2-4 suggests that 
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hydraulic conductivity reduction may be related more closely to concentration of the 

surfactant solution injected rather than the actual mass of surfactant injected. For both 

surfactants, the concentration where significant hydraulic conductivity reduction begins 

is above the CMC. At present, the basis for any possible relationship is uncertain. 

Figure 2-5 presents the results of the third series, which compared mixed, 

anionic-nonionic surfactant systems to single surfactant solutions. Figure 2-Sa shows 

that the mixed system containing Al and N3 behaved closer to its nonionic component, 

N3. The other mixed system, which contained surfactants A2 and Nl, initially mimicked 

the behavior of the nonionic component, Nl, for the first 1.4 pore volumes but 

subsequently showed dramatic hydraulic conductivity reductions more representative of 

the anionic component, A2. 

Upon completion of the third test senes, the soil columns were extruded, 

quartered, and analyzed for surfactant distribution. Figures 2-Sb and 2-Sc represent 

those results. The values within the parentheses represent the total pore volumes of 

injected surfactant solution. Figure 2-Sb shows soil column surfactant distributions from 

the tests where single component surfactant solutions were used. Most of the surfactant 

recovered was at the column inlet, which indicates a high degree of sorption. The soil 

column surfactant distribution from the test run with the A2 and Nl mixed solution is 

shown in Figure 2-Sc. Again, the greatest amount of total surfactant recovered was at 

the inlet. However, relative distributions of the two surfactants indicates preferential 

sorption of the nonionic surfactant over the anionic surfactant. This is apparent because 

the A2 anionic surfactant increases in concentration from the inlet to the center of the 

24 



column while the Nl nonionic surfactant shows a decrease with distance from the inlet. 

Similar preferential adsorption of a nonionic surfactant over an anionic surfactant on 

activated carbon was demonstrated by Schwuger and Smolka (1975). For the five 

columns analyzed for surfactant distribution, the anionic surfactant recovery was 

approximately 50% while the nonionic surfactant recovery averaged 80% of total mass 

injected. Differences in extraction efficiency may be the result of adsorption mechanisms 

being more complex for ionic surfactants than for nonionic surfactants. This is due to 

electrostatic interactions with charged solid surfaces, which play a significant role in the 

adsorption of ionic surfactants but not nonionic surfactants (Rosen, 1989). Therefore, 

anionic surfactant extraction efficiency is less because acetone has a limited effect in 

countering the electrostatic component of ionic surfactant adsorption. 

Figure 2-6 presents the results of the fourth series which examined the effects of 

soil organic content. The absence of soil organic matter tends to magnify the hydraulic 

conductivity reduction. All columns run with the nonorganic Teller showed greater 

hydraulic conductivity decreases compared to corresponding columns with soil organic 

matter. Organic matter tends to aggregate soil particles thereby adding stability to the 

soil structure. Consequently, the removal of the organic matter may accelerate alteration 

of soil structure with a resulting decrease in hydraulic conductivity. 

Figure 2-7 presents the results of the final Teller series which tested the effects of 

adding NaCl to anionic surfactant solutions. In Figure 2-7a results of columns run with 

solutions containing both 0.1 mole/kg NaCl and 0.01 mole/kg anionic surfactant (Al or 

A2) are compared against solutions containing only the surfactants. Although the 
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hydraulic conductivity loss was still significant, its was less for the combined NaCl 

electrolyte and surfactant solutions. Results of tests run with soil water solution and 0.1 

mole/kg NaCl alone are also provided in Figure 2-7a for comparison purposes. Figure 

2-7b shows that using a 7.5 pore volume preflush of 0.1 mole/kg NaCl prior to injection 

of the Al-NaCl solution added no further improvement over what was obtained with the 

Al-NaCl solution by itself In Figures 2-7a and 2-7b, normalized conductivity (K/Kinitiai) 

was used to make comparison of results between tests easier. 

Dougherty Sand 

Table 2-4 presents the results of the testing on the Dougherty sand with eight 

surfactants, two anionic-nonionic mixtures, and two solutions containing NaCl and 

anionic surfactants. All tests in this series utilized 0.05 mole/kg solutions. The largest 

decrease in conductivity was 47% for the Al surfactant and the smallest was 14% for 

NI. Anionic-nonionic mixtures showed conductivity decreases slightly more than that 

obtained for the straight nonionic solutions. Anionic surfactant solutions containing 

NaCl affected hydraulic conductivity reductions less than those of the anionic surfactant 

solutions alone. The mixture of Al & NaCl produced the smallest conductivity loss 

(9%) of all of the tests where surfactants were used. Table 2-4 also presents the results 

of the soil dispersion tests. Generally nonionic and cationic solutions caused minimal 

dispersion, while anionic solutions and mixtures containing anionic surfactants produced 

effluent solids up to 7680 mg/I. Clearly, anionic surfactant solutions have the greatest 

potential for dispersion and mobilization of solids in the Dougherty sand. 
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Discussion 

Teller Loam 

Figures 2-5b and 2-5c show that for falling-head tests, surfactants tended to be 

sorbed closest to the inlet of the column. Undoubtedly that is the column region where 

reduction in hydraulic conductivity occurred. Consequently, surfactant affected 

hydraulic conductivity measurements for the loam should be considered as effective 

values. A model with flow perpendicular to two soil layers provides the simplest 

relationship for the effective hydraulic conductivity which was. measured. This relation 

can be expressed as: 

K = ZJ(!.L + (I-ls)) 
Ks Ku ' 

(2-2) 

where K is the measured hydraulic conductivity, I is the total length of the soil column, 

ls is the surfactant affected length within the column, Ks is the actual surfactant affected 

hydraulic conductivity, and Ku is the unaffected soil hydraulic conductivity. From 

equation (2-2), it is apparent that K8 < K. Thus, the actual hydraulic conductivity in the 

portion of the column most affected by the surfactant is less than the effective values 

measured. 

Calculations based on specific surface area and porosity indicate an average pore 

radius of 1 x 10-6 cm for the Teller. Surfactant adsorption on soil surfaces can form 

nonionic monolayers and ionic bilayers which may be several nanometers (10·1 cm) in 

thickness (Ottewill, 1984). Consequently, it would initially appear that adsorption alone 

could be a mechanism for hydraulic conductivity reduction in the loam. However, most 
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flow occurs in larger pores. From Poiseuille's formula for flow in a porous media 

comprised of "bunched" capillary tubes, an effective pore radius for the loam can be 

estimated from: 

K = $r2pgc 
8µ ' 

(2-3) 

where <I> is porosity, r is effective pore radius (L), p is fluid density (MJL3), gc the is 

gravitational constant (L/T2), andµ is absolute viscosity (MILT). Using equation (2-3) 

and a hydraulic conductivity of 6 x 10·5 cm/s, the effective pore radius for the Teller was 

calculated as 1 x 104 cm. This suggests that surfactant adsorption onto soil surfaces may 

clog the smaller pores, but would not be expected to greatly constrict the larger pores 

which carry the bulk of the total porous media flow. Therefore, different mechanisms 

need to be investigated in order to explain the hydraulic conductivity losses observed in 

the Teller. 

Changes in soil pH could alter the chemical equilibrium of the soil and result in 

the formation of inorganic precipitates which would affect hydraulic conductivity. For 

our study, this was probably not the case because both the surfactant solutions and the 

two soils were compatible with respect to pH (Tables 2-2 and 2-3). 

The viscosities of the 0.1 mole/kg surfactant solutions listed in Table 2-2 are 

greater than that of water. Equation (2-3) indicates that increasing the fluid viscosity 

will result in reduced hydraulic conductivity. However, hydraulic conductivity 

reductions in the Teller were measured in orders of magnitude losses and not the tens of 

percent which can be accounted for by differences in viscosity. 

Anionic surfactants may cause hydraulic conductivity reductions through 

precipitation as calcium salts. The presence of calcium as the dominant cation in both 
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soils makes this mechanism a strong possibility. As shown in Table 2-2, the addition of 

NaCl electrolyte to the anionic surfactant solutions, causes the CMC to decrease 

significantly. Lowering the CMC can in tum reduce calcic surfactant salt precipitation 

and therefore moderate hydraulic conductivity losses. Test results presented in Figure 

2-7 and Table 2-4 seem to confirm calcic surfactant salt precipitation as a mechanism by 

which anionic surfactants can effect hydraulic conductivity reductions. Although the 

addition of NaCl did moderate the effect significantly, measurable hydraulic conductivity 

losses still occurred and therefore must be accounted for by other processes. 

Precipitation may also account for some of the conductivity reductions caused by the 

cationic and amphoteric surfactants. 

Precipitation would not be a dominant mechanism of conductivity reduction in 

the loam when leached with nonionic surfactants. Here, the possibilities may include soil 

structure alteration caused by dispersion or even the formation of pore clogging 

surfactant lyotropic liquid crystals, which may form in response to a soil solution 

environment containing high levels of both inorganic electrolytes and residual organic 

matter. Mustafa and Letey (1969) showed that two nonionic surfactants decreased 

aggregate stability in hydrophobic soils. Miller et al. (1975) suggested that the nonionic 

surfactant affected flow rate decreases in hydrophobic soils could be related to aggregate 

destabilization, micelle formation, or particle migration. 
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Dougherty Sand 

Differences in viscosity between the 0.05 mole/kg surfactant solutions and water 

can account for much of the hydraulic conductivity reductions observed in the sand. In 

Table 2-4, the calculated viscosity effects on conductivity are presented along with the 

observed reductions. Viscosity increases can explain most of the nonionic, and 

anionic-nonionic mixture losses. With straight anionic or cationic solutions, viscosity 

can account for 1/3 to 1/2 of the observations, but for the amphoteric solution it will 

only produce 1/4 of the conductivity reductions. Viscosity effects may be negated by 

surfactant sorption on to soil particles. With the removal of surfactant from the soil 

solution, the solution viscosity would return to that of water. Thus, the causes of the 

losses may be due in part to the other processes described previously. Mixing anionic 

surfactants with either nonionic surfactants or NaCl appears to be a viable means to 

maintain conductivity in this soil. 

When all surfactants are included, the correlation between soil colloid dispersion 

and hydraulic conductivity reduction is negligible (r = 0.02). However, if the viscosity 

effect · is subtracted from the conductivity change to obtain a residual conductivity 

change, clear trends develop. Figure 2-8 shows the residual change versus nonvolatile 

solids for each test. Highlighted areas show that the different types of surfactant 

solutions occupy different regions on the residual change versus nonvolatile solid graph. 

Thus, in the anionic and amphoteric solutions, the residual conductivity change is 

probably affected by colloid dispersion and pore blocking. For the cationic solutions, 

other processes must be at work. 
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Conclusions 

Hydraulic conductivity reductions observed in this study vary significantly with 

respect to the different surfactants and the two soils tested. Factors influencing 

reductions include surfactant type, surfactant solution concentration, combined 

surfactant systems, soil organic content, and added electrolytes. Teller loam would be a 

marginal candidate for soil flushing remediation. For this soil, hydraulic conductivity 

reductions over two orders of magnitude would make most surfactant flushing 

remediation impracticable. Consequently, for fine soils with moderate initial hydraulic 

conductivities, careful . consideration of the proper surfactant solution system will be 

required. 

Hydraulic conductivity losses in the sand were modest. Viscosity effects, if not 

negated by sorption processes, could account for much of the decrease. The Dougherty 

sand is representative of an ideal candidate for surfactant flushing remediation. The 

measured hydraulic conductivity reduction, should not in most cases significantly reduce 

the practicality of flushing remediation. 

It appears that a number of processes contributed to the conductivity losses 

observed here. While several processes are probably at work in each case, a significant 

process with anionic surfactants in the loam was probably surfactant precipitation, while 

viscosity increases appear to be an important factor for all surfactants in the sand. It is 

not apparent if there is a single dominant process in the loam when leached with the 

nonionic surfactants. Our results are specific to the soils and surfactants tested. 

However, other conditions can be quantified using the procedures outlined in this paper. 

31 



Such measurements should significantly contribute to the feasibility analysis and efficient 

design of field remediation procedures. 
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Table 2-1 

Surfactant List 

Surfactant Type Abbreviation Chemical Name TradeName1 

NI Alkyl Polyoxyethylene Glycol Ether Witconol SN-90 

Nonionic 
N2 Alkylphenol Ethoxylate Witconol NP-100 

w N3 Alkyl Polyoxyalkylene Glycol Ether · Witconol 1206 
VI 

Al Sodium Lauryl Sulfate Witcolate A Power 
Anionic 

A2 Sodium Alpha Olefin Sulfonate Witconate AOS 

Cl Tallowamine Ethoxylate Witcamine 6606 
Cationic Methyl Quaternary of Propoxylated 

C2 Diethylethanolamine Emcol CC-9 

Amphoteric AMI Amido Cocobetaine Emcol 5430 -1 Witco Corporation trade names. 



Table 2-2 

Surfactant Solution Properties 

Critical Micelle Surface Tension1 

Molecular Cone. atC>CMC Solution Viscosity1 pH 
Surfactant Weight C=10-2 mole/kg C=SX10-2mole/kg C=10-1 mole/kg C=10-1 mole/kg 

moles/kg dynes/cm gm/(cm-sec) gm/(cm-sec) gm/(cm-sec) 

NI 490 1.7E-4 33 0.0103 0.0119 0.0138 5.8 

N2 640 1E-5<>1E-4 36 0.0105 0.0152 0.0284 5.8 

N3 825 1E~5<>1E-4 36 0.0105 0.0131 0.0176 6.7 
w 
0\ Al 288 9.0E-3 39 0.0102 0.0104 0.0117 7.5 

A2 324 l.3E-3 39 0.0102 0.0114 0.0123 7.3 

Cl 590 1E-5<>1E-4 44 0.0104 0.0117 0.0136 8.8 

C2 550 6.0E-3 40 0.0104 0.0111 0.0121 5.5 

AMI 415 l.6E-4 34 0.0102 0.0102 0.0114 5.4 

Al &N3 - 1E-5<>1E-4 39 - 0.0127 0.0147 7.7 

A2&Nl - 6.0E-4 36 - 0.0115 0.0132 6.7 

Al & NaCl - 1.9E-4 35 0.0098 0.0105 

A2 &NaCl - 2.8E-4 35 0.0099 0.0105 

Temperature= 22 C. For water at T = 22 C, surface tension equals 72.4 dynes/cm and viscosity is 0.0096 g/(cm-s). Surface 
tension precision=± 0.5 dynes/cm. Viscosity precision=± 0.00005 g/( cm-s). 



Table 2-3 

Soil Characteristics 

Soil USDA Extractable Bases Cation pH Specific Surface Organic 
Classification Exchange Area Carbon. 

Capacity1 Content 

meq/JOOg meq/JOOg m\i weight% 

T~ller "Loam" Na+= 0.84 
52% Sand K+=0.99 -14 6.0 37.8 1.2 

w 31 % Silt ca+2 = 6.28 
~ 17% Clay Mg+2 = 2.39 

Dougherty "Sand" Na+= 1.40 
98% Sand K+=0.14 -5 5.9 21.8 0.1 

2% Silt and Clay ca+2 = 2.40 
M +2 -0.00 

1 Cation exchange capacity was calculated assuming a base saturation of 75 percent, which is average for the Payne County, 
Oklahoma, area from which these soils were obtained. 
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Table 2-4 

Dougherty Sand Test Results 

Percent Change in 
Injection S0lution1 Hydraulic Conductivity 

Water +4.7 

Nl -14.1 

N2 -44.0 

N3 -21.9 

Al -46.5 

A2 -34.7 

Cl -40.5 

C2 -42.8 

AMI -27.9 

Al &N3 -27.3 

A2&Nl -23.6 

Al & .1 mole/kg NaCl -9.4 

A2 & .1 mole/kg NaCl -20.3 

1 Surfactant solution concentrations are 0.05 mole/kg. 

2 Value corrected for NaCl content. 

Maximum Possible Change 
in Hydraulic Conductivity Due 

to Viscosity Effects 

0.0 

-19.6 

-37.0 

-26.9 

-16.0 

-16.0 

-18.2 

-13.0 

-6.2 

-24.6 

-16.7 

-8.8 

-8.8 

Effluent Nonvolatile 
Solids ( mg/kg) 

176 

194 

125 

139 

6752 

7677 

147 

289 

6002 

2360 

5850 

40192 

54392 
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Fig. 2-1. Falling-head permeability test apparatus. 
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Fig. 2-2. Dispersion test apparatus. 

Washed 
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Chapter ID 

ANIONIC SURFACTANT MOBILITY IN UNSATURATED SOIL 1: 

TRANSPORT CHARACTERISTICS 

Abstract 

Surfactants are being increasingly considered for in situ environmental 

remediation of soils. The efficiency and effectiveness of using surfactants for this 

purpose may depend on their mobility under unsaturated flow conditions. For this 

reason, transient horizontal unsaturated column tests were used to study anionic 

surfactant transport characteristics in Tell er loam. Two commercial anionic surfactants, 

an alkyl ether sulfate (AES) and a linear alkylbenzene sulfonate (LAS), were tested. For 

both surfactants, the concentration and moisture content profiles plotted versus the 

Boltzmann transform ( distance/time05) exhibited similarity between tests, which differed 

only in time duration. Similarity of the concentration profiles is an indication that 

surfactant chemical equilibrium conditions prevailed during testing. Penetration of the 

AES and LAS concentration fronts were respectively one-half and one-fifth the advance 

of the wetting front, indicating a high degree of sorption. Both surfactants significantly 

reduced soil moisture diffusivities at volumetric moisture contents above 0.23. 
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Introduction 

The successful testing of surfactants for enhanced oil recovery by the petroleum 

industry has led to their consideration for contaminant flushing from soils. The efficiency 

and effectiveness of using surfactants for in situ . environmental remediation of soils 

located above the water table will in part be determined by their mobility under 

unsaturated flow conditions. If the surfactants utilized become immobilized through 

precipitation and/or adsorption, then cleanup procedures may be impractical. 

A considerable amount of research has been conducted on surfactant mobility in 

saturated porous media. However, for unsaturated soils, the investigation of surfactant 

transport characteristics has been limited. Mustafa and Letey (1971) found two nonionic 

surfactants to increase unsaturated diffusivity values in a water-repellent soil, while 

having little or no effect on the diffusivities in a wettable soil. Miller and Letey (1975) 

determined through a series of unsaturated vertical column experiments that nonionic 

surfactant mobility during leaching was far greater in a wettable soil than one which was 

water-repellent. Remediation effectiveness under unsaturated flow conditions was 

demonstrated by a field pilot test in which a nonionic surfactant was successfully 

employed to remove oils and polychlorinated biphenyls from the vadose zone (Abdul et 

al., 1992; Abdul and Ang, 1994). Because of the modest amount of previous work, 

more study is required regarding anionic surfactant transport in unsaturated soils. 

Anionics are. the most common surfactant type commercially available and in all 

likelihood the most economical . for utilization in soil flushing remediation. For these 

reasons, this study focused strictly on anionic surfactants. 
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Flow Theory 

The investigation of surfactant transport characteristics was conducted using 

testing procedures described by Brown and Allred (1992). In these tests, an anionic 

surfactant solution was injected into the inlet of a horizontally mounted soil column. 

Transient horizontal flow in unsaturated porous media can be expressed as: 

where t is time (T), x is distance (L ), '¥ is the pressure head (L ), and the unsaturated 

hydraulic conductivity, K(8), is a function of the volumetric moisture content, e _. The 

unsaturated diffusivity, D(8) (L2/T), is defined as: 

D(8) = k(e:gc8;! . (3-2) 

Equation (3-2) implies that surfactant solutions introduced into unsaturated porous 

media can affect diffusivity values by altering the moisture content dependent intrinsic 

permeability, k(8) (L2), the pressure head versus moisture content relationship, 8; (L), 

or the fluid properties of density, p (M/L3), and viscosity, µ (MILT). The gravitational 

acceleration constant, & (L/T2), is of course constant. 

Bruce and Klute (1956) showed that equation (3-1) can be solved as an ordinary 

differential equation using a method devised by Boltzmann in 1894. A substitution of 

')..=xi Jt is used to transform equation (3-1) into the following form: 

-t! = 1 (v(e)!) (3-3) 

Using laboratory tests in which a solution is injected into the inlet of a horizontally 

mounted soil column, the diffusivity versus moisture content relationship can be 
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determined by rearranging equation (3-3) and integrating with respect to A over the 

boundary conditions: 

e = ei, for 1w ~ oo (x ~ oo or t = 0) 
e = e o for 1w = 0 (x = 0 and t > 0) (3-4) 

where 8i is the initial moisture content, and 80 is the inlet moisture content. The 

diffusivity relationship can then be defined as: 

D(0,) = -t(:}0• l Aflll (3-5) 

where 8* is an arbitrary moisture content between 8i and 80. The term,(!~) , 
a. 

represents the derivative at 8 = 8 * . Given the testing conditions previously stated, 

equation (3-5) can be easily evaluated after determining the moisture content profile 

along the soil column . 

Materials 

Surfactants 

Surfactants are organic compounds that on the molecular level are comprised of 

both hydrophobic and hydrophilic groups. This amphipathic structure causes surfactant 

molecules to concentrate at boundaries between phases, thereby altering interfacial 

properties such as surface tension. Above a certain solution concentration, called the 

critical micelle concentration (CMC), surfactant molecules form aggregates called 

micelles. Surface tension usually reaches a minimum value at or above the CMC. 

Surfactants are classified according to charge of the hydrophilic group as being anionic, 

cationic, amphoteric (positive and/or negative molecular charge), or nonionic. For this 

investigation anionics were used exclusively. 
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The two commercial surfactants utilized were a sodium alkyl ether sulfate (AES) 

and a sodium linear alkyl benzene sulfonate (LAS). These surfactants were chosen based 

on their properties and widespread commercial availability. Table 3-1 lists some of the 

characteristics of the two surfactants. Both surfactants are comprised of a series of 

homologs, and the active ingredient weight percent of the AES and LAS surfactant 

products was 39% and 91%, respectively. 

Surface tension and CMC values were measured with a Fisher Scientific Model 

21 Tensiomat tensiometer. Viscosities were obtained with a Cannon Instrument Co. size 

50 viscometer. The specific gravity was essentially equal to 1 for the 0.025 mole/kg 

surfactant solutions tested. 

Soil 

Teller loam (Thermic Udic Argiustoll) was the soil tested throughout the study. 

It was obtained from a field location near Perkins, Oklahoma and is typical of top soils 

from the southern plains region. - Its characteristics are presented in Table 3-2. 

Properties were determined using the procedures described in Methods of Soil Analysis, 

Part 1 & 2 (ASA and SSSA, 1982 and 1986). Specific surface area was calculated from 

water vapor sorption isotherms by use of the B.E.T. equation (Quirk, 1955). The Teller 

was chosen for testing because its anionic surfactant sorption potential made it a good 

candidate for studying transport characteristics. The sorption potential of the soil was 

expected to be significant due to a high level of exchangeable ca+2 (6.28 meq/IOOg) and 

a relatively large specific surface area (37.8 m2/g). 
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Experimental Procedures 

Column tests were carried out following procedures described by Brown and 

Allred (1992). Figure 3-1 shows the apparatus used to conduct the transient unsaturated 

tests. A computer controlled syringe .pump was used to inject a 0.025 mole/kg 

surfactant solution into the inlet of a dry soil column. The 0.025 mole/kg injection 

concentration is above the CMC for both surfactants. In terms of weight percent, the 

surfactant solution concentrations were approximately 0.9%, which is approximately the 

level required for environmental remediation. 

The volumetric moisture content and hence the soil moisture potential at the 

column inlet were maintained at constant values throughout the timed duration of the 

test. This was accomplished by using the computer controlled syringe pump to regulate 

the instantaneous injected flow at a rate inversely proportional to the square root of 

elapsed time. The proportionality constant used for determining the injection rate was 

based on total test duration time and the volume of solution to be injected . Along with 

the injection rate function, soil and solution properties will also affect the inlet moisture 

content. 

The column itself was comprised of individual acrylic rings and packed with 

Teller loam to an average dry bulk density of 1.60 g/cm3, which corresponds to a 

porosity of 0.40. Prior to packing, the loam was placed in an oven at 105 C for 24 h to 

obtain initial soil moisture contents of 0.01 or less and to reduce microorganisms which 

may interact with the surfactants during testing. The individual rings had a diameter of 

3.5 cm and a length of0.5, 1.0, or 2.0 cm. The shorter rings were placed adjacent to the 
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column inlet to provide better resolution of the surfactant concentration and moisture 

content profiles within this region. Overall column length ranged from 16 to 27 cm. 

Upon test completion, the soil column was broken apart and the soil from within each 

ring divided into two parts, one for analysis of volumetric moisture content and the other 

for determination of anionic surfactant concentration. 

Volumetric moisture content along the column was determined by oven drying 

the soil sample at 105 C for 24 h. The mean of the injected moisture percent accounted 

for by oven drying was 98%. Prior to chemical analysis, an extraction process was 

required to separate the anionic surfactant from the moist soil. The extraction process 

found to be the most successful required multiple steps. First, 10 ml of a 0.1 mole/kg 

NaCl solution was added to an Erlenmeyer flask containing a 5 g sample of moist soil. 

The flask was then hand-shaken and allowed to equilibrate 30 m. After this, 90 ml of 

reagent grade acetone was added, and the flask placed in a shaker bath for 1 hat 300 

rpm. Next, a 1 ml quantity of the extraction solution was taken from the flask and 

diluted to 100 ml with deionized water. The 100 ml sample was chemically analyzed for 

anionic surfactant concentration using the standard methylene blue method (APHA et al., 

1985). The analyzed concentration value was in tum used to determine the amount of 

surfactant present in the soil from within each ring of the column. The mean of the 

percent surfactant recovered from each test was 95%. 

The NaCl solution enhances surfactant extraction efficiency by reducing 

electrostatic attractions and/or precipitation. Multivalent cations can coadsorb anionic 

surfactants onto soil particles (Gaudin and Chang, 1952). Sodium ions will prevent this 
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by competing with divalent calcium (Ca+2) and magnesium (Mg+2) ions for soil. cation 

exchange sites. The presence of an electrolyte such as NaCl will also reduce the anionic 

surfactant CMC (Rosen, 1989). Surfactant precipitates should dissolve if the CMC is 

reduced to a level below the solubility limit for a Ca-surfactant or Mg-surfactant salt. 

The addition of acetone enhances extraction by reducing hydrophobic adsorption of 

anionic surfactants to soil particles. · Surfactant molecules can dissolve in some polar 

solvents without distorting the liquid structure to a significant extent. As a result, 

surfactants present in such solvents will have little tendency to concentrate at interfaces 

(Rosen, 1989). 

Tests were conducted with both AES and LAS to investigate anionic surfactant 

transport characteristics. The use of the previously discussed procedure for calculating 

unsaturated diffusivities is valid only if the moisture content profiles (0 versus A = xi Ii ) 
show similarity for tests of different time duration but equivalent boundary conditions. 

Consequently, a series of three tests were conducted for each surfactant in order to test 

similarity. Within each test series, the boundary conditions given in equation (3-4) were 

kept constant while the time duration of the tests varied from 12 to 24 to 72 h. The total 

injection volumes for the 12, 24, and 72 h tests were 14.1, 20.0, and 34.6 ml, 

respectively. The distributions of the resident divalent cations (Ca+2 and Mg+2) present in 

the soil columns from both the AES and LAS 72 h tests were also determined. This was 

accomplished by extracting the ca+2 and Mt2 from soil samples with 1 N ammonium 

acetate followed by analysis with an inductively coupled plasma instrument (ICP). 

Several other tests were also conducted. A representative soil water solution 

(0.001 mole/kg CaS04 and 0.001 mole/kg NaCl) was injected in three tests of different 
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time duration (24, 48, and 72 h). The average moisture content profile from these tests 

was then used for comparison with surfactant affected profiles. In another test, a O. 025 

mole/kg sodium iodide (Nal) solution was ,injected over a period of 72 h to compare 

AES and LAS concentration profiles with those of a common cation (Na+) and anion (I} 

Na+ was analyzed using an ICP after extraction from soil with 1 N ammonium acetate. 1-

was extracted from soil samples using deionized water and then chemically analyzed with 

an ion chromatograph. The percent injected mass accounted for by the extraction and 

chemical analysis techniques were 83% for Na+ and 88% for i-. 

Experimental Results 

Test results from the AES and LAS surfactants are shown in Figures 3-2 and 3-3, 

respectively. Figures 3-2a and 3-3a show the surfactant concentration profiles. 

Concentration values are given in mole/kg of total porous media which includes both the 

soil and the soil water solution. The values were reported in this manner because the 

analysis techniques do not distinguish between surfactant in the solution phase and that 

adsorbed onto soil particles. Moisture content profiles are provided in Figures 3-2b and 

3-3b, while diffusivity values are plotted in Figures 3-2c and 3-3c. To check for 

similarity, the surfactant concentration and moisture content profiles were plotted with 

respect to the Boltzmann transform , A = xi Ji , where x is the distance in cm from the 

column inlet and t is the time duration of the test in seconds. 

As shown in Figures 3-2a and 3-3a, the 12, 24, and 72 h concentration profiles all 

show similarity. The profiles exhibited by both surfactants are somewhat unique in that 
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peak values are found at a location between the column inlet and the wetting front edge 

as shown in Figures 3-2b and 3-3b. 

Figures 3-2b and 3-3b also show similarity in the volumetric moisture content 

profiles from the 12, 24, and 72 h tests. For comparison purposes, the averaged 

moisture content profile from the three water tests is also included. The moisture 

content profiles for both surfactants contain two steeply declining limbs. One is the 

wetting front edge, while the other begins at the column inlet and ends at a Boltzmann 

transform ( or distance) value which coincides with the surfactant concentration front 

shown in Figures 3-2a and 3-3a. Of special interest regarding the LAS surfactant, is a 

notch at the base of this steeply declining limb adjacent to the inlet. Here, moisture 

contents show a small but significant reversal in the usual trend of continuous decrease 

from inlet to wetting front edge. The averaged moisture content profile from the water 

tests shows no steeply declining limb adjacent to the inlet. The inlet moisture contents of 

the AES and LAS surfactant tests averaged 0.33 and 0.35, respectively. The inlet 

moisture content from the water tests was 0.29. Consequently, the inlet moisture 

contents are maintained at higher levels when surfactants are injected. 

Because of the similarity achieved in the moisture content profiles from the 

surfactant tests, equation (3-5) can be applied to calculate diffusivity values. 

Representative moisture content curves were used in determining these values. The 

representative curves were generated by averaging data from the 12, 24, and 72 h 

surfactant tests. For comparison, diffusivity values were also calculated from the 

moisture content profile produced from the water tests. AES and LAS affected 
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diffusivity values along with those from the water tests are plotted as a function of 

moisture content in Figures 3-2c and 3-3c. For AES, the surfactant affected diffusivities 

are greater than those from the water tests in a moisture content range of 0.18 to 0.23. 

The AES peak value is 0.002 cm2/s at a moisture content of0.21. Above 0.23, the AES 

surfactant affected diffusivities become significantly less than those from the water tests. 

LAS affected diffusivities are greater than those calculated from the water tests at a 

moisture content range of 0.20 to 0.23. The LAS peak value is 0.0016 cm2/s at a 

moisture content of 0.23. Above 0.23, LAS affected diffusivities are less than the 

calculated water test values. A unique aspect to the LAS affected diffusivities plotted in 

Figure 3-3c is the presence of negative values. The lowest value of -0.0019 cm2/s is 

found at a moisture content around 0.23. The significance of these negative diffusivities 

are discussed in the next section. 

For comparison, Figure 3-4 shows concentration profiles from the AES, LAS, 

and Nal 72 h tests. The wetting front edge for all three tests was found at a A = xi Ji 

value of 0.032 cm/s0·5. A common cation such as sodium (Na+) is adsorbed close to the 

inlet while exclusion causes an anion such as iodide (r) to be concentrated at the wetting 

front edge. The AES and LAS anionic surfactants exhibit behavior which is between 

these two extremes. The AES concentration front advanced one-half the distance of the 

wetting front while the distance penetrated by the LAS was one-fifth. This is evidence of 

significant surfactant sorption during testing. Figure 3-5 depicts the distribution of the 

resident divalent cations present in the soil columns after the 72 h AES and LAS tests 

were conducted. As shown, ca+2 and Mg+2 were displaced from the inlet and 
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concentrated at the wetting front edge. With LAS, there was a second peak in both the 

Ca+2 and Mg+2 profiles which coincides with the maximum surfactant concentration. 

Discussion 

Both the AES and LAS surfactant concentration profiles in Figures 3-2a and 3-3a 

show similarity between the 12, 24, and 72 h tests. This suggests that equilibrium 

conditions existed with respect to chemical interactions involving the AES and LAS 

surfactants. Or more precisely, all AES and LAS chemical interactions occurred in a 

relatively instantaneous manner during testing. If surfactant chemical interactions were 

not instantaneous, it would be impossible obtain similarity in concentration profiles 

plotted against the Boltzmann transform for tests having the same boundary conditions 

but different time duration. 

Due to varying degrees of surfactant sorption, concentration fronts did not 

penetrate as far into the column as did wetting fronts. Here, sorption refers to the solute 

mobility reducing mechanisms of adsorption and/or precipitation. Adsorption of anionic 

surfactants within unsaturated soils can be either electrostatic or hydrophobic in nature. 

Organic matter and clay minerals dominate adsorption processes at soil particle surfaces. 

With the exception of very low pH conditions, these soil colloids tend to have a net 

negative charge. Tables 3-1 and 3-2 show that the soil and anionic surfactant solutions 

used in this study were only slightly acidic. Consequently, simple anion exchange 

between negatively charged surfactant molecules and positively charged sites on soil 

surfaces was not expected to be significant. However, it is well known that anionic 

58 



surfactants can be coadsorbed at negatively charged sites (Gaudin and Chang, 1952; Rea 

and Parks, 1990). Essentially, coadsorption involves multivalent cations such as ca+2 

and Mg+2 which bridge surfactant anions and. negatively charged soil particles. A 

relatively high Ca+2 level of 6.28 meq/lOOg in the Teller loam makes coadsorption a 

likely factor in reducing anionic surfactant mobility. 

Hydrophobic adsorption also affects surfactant mobility. It results from the 

surfactant tendency to attempt escape from the aqueous environment by concentrating at 

phase boundaries. Under unsaturated flow conditions, these boundaries include 

solid/liquid and gas/liquid interfaces. A second form of hydrophobic adsorption occurs 

where there is strong interaction between the hydrophobic groups of oncoming 

surfactant molecules and those already adsorbed at soil particle surfaces. The interaction 

is enhanced by increasing the length of the hydrophobic portion of the surfactant 

molecule (Rosen, 1989). 

Precipitation as a calcium or magnesium salt is another sorption mechanism 

which can immobilize anionic surfactants. This is an important factor to consider due to 

the high levels of Ca+2 present in the Teller loam (Table 3-2). Schwuger (1984) noted 

that surfactants similar to AES, which contain oxyethylene structural groups, exhibit 

resistance to precipitation. Consequently, AES mobility is probably governed by other 

factors. Due to coadsorption and precipitation, soils containing a significant amount of 

exchangeable ca+2 and Mg+2 may cause problems with surfactant enhanced 

environmental remediation. In laboratory testing, Ducreux et al. (1990) overcame this 

by preflushing a soil with a NaCl solution to displace the exchangeable Ca+2. 
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The dominant sorption mechanism affecting the two surfactants tested in . this 

study is unclear. It is likely that more than one factor is involved in reducing the mobility 

of a particular anionic surfactant. Also, the importance of the various sorption 

mechanisms may change from one surfactant to the next. The factors affecting mobility 

become even more complicated when one considers that most commercial surfactants 

are comprised of a series of homologs. This can lead to chromatographic separation by 

the soil of the homolog components which make up the commercial surfactant. 

Mannhardt and N ovosad ( 1991) used a binary surfactant mixture in a saturated core 

flood test and found that an 18 carbon alkyl chain homolog appeared in the column 

effluent prior to a 12 carbon alkyl chain homolog. This result appears contrary to 

intuition but was explained as being caused by the preferential incorporation of the more 

hydrophobic (longer chain length) homolog into micelles, which in tum prevents 

sorption. Implications with respect to the AES and LAS tests are that the shorter alkyl 

chain length homologs are present at the column inlet while the longer chain length 

homologs are found at the surfactant concentration front. Because of this 

chromatographic effect, surfactant solution properties in the soil may vary with location, 

and in severe cases impact surfactant enhanced remediation. 

The inlet surfactant concentration was less than the peak profile concentration for 

the tests which were conducted in this study. There are two possible explanations. First, 

chromatographic separation as described in the preceding paragraph could be a factor. 

The shorter alkyl chain length homologs, which are most likely to be present at the inlet, 

are less efficient in terms of hydrophobic adsorption (Rosen, 1989). Second, the inlet 
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capacity for surfactant coadsorption may be reduced due to displacement of Ca +2 and 

Mg+2 by Na+. Evidence for such displacement is shown in Figure 3-5. In the commercial 

products tested, Na+ is provided as the counterion and therefore injected along with both 

anionic surfactants. 

As implied by equation (3-2), diffusivity values are a function of the intrinsic 

permeability, k(8), the fluid density, p, the fluid viscosity, µ, and the pressure head 

versus moisture content relationship, 8: . The p and µ of the surfactant solutions used in 

this study are not significantly different from those of water. Hence, these fluid 

properties are not responsible for diffusivity differences observed between the AES/LAS 

surfactant and water tests. With respect to water, Allred and Brown (1994) found high 

concentration surfactant solutions (0.01 to 0.1 mole/kg) to significantly reduce the 

permeability of the Teller loam during saturated tests. Also with comparison to water, 

surfactant solutions have lower surface tensions which can lead to a reduction in 8; . 

Insight into the shape of surfactant affected moisture content profiles along with 

their corresponding diffusivity values are provided in Figure 3-6 for AES and Figure 3-7 

for LAS. From equation (3-5), the diffusivities calculated with respect to moisture 

content are large where the profile is flat and small where the profile is steep. 

In Figures 3-6a and 3-7a, the profile is steep from I to II. This segment of the 

moisture content profile corresponds to the part of the column where high surfactant 

concentrations reside. This is confirmed by the surfactant concentration profiles which 

are also plotted in Figures 3-6a and 3-7a. Diffusivity values calculated between I and II 

are lower than diffusivities from the water tests at corresponding moisture contents 

because the high surfactant concentrations probably affect reductions in both k(8) and 
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8;; . Large surfactant affected diffusivity reductions may need to be considered prior to 

initiation of in situ soil flushing remediation. 

Steep profile segments are also found from III to IV in Figure 3-6a and from IIIB 

to IV in Figure 3-7a. These segments represent a region of the soil column located 

directly behind the wetting front. Due to sorption, the AES and LAS surfactant 

penetration did not extended to this distance. The ranges of moisture content 

represented by these profile segments are 0.01 to 0.18 for the AES tests and 0.01 to 0.20 

for the LAS tests. Because of the steep slopes, diffusivity values are relatively small. 

For the moisture contents specified, the calculated diffusivities are equivalent to those 

determined from the water tests (Figures 3-2c and 3-3c). This indicates that surfactant 

injection had no impact on the region of the column directly behind the wetting front. 

Here, soil conditions were the same as those for the water tests. 

The segments between II and III in Figure 3-6a and II and IIIB in Figure 3-7a 

correspond to a transition zone in the column where surfactant concentrations are low 

and various soil chemical components initially adjacent to the inlet may have been 

displaced. The slopes between II and III in Figure 3-6a and IHA and IIIB in Figure 3-7a 

are nearly flat. Diffusivity values calculated along these segments are significantly higher 

than water test diffusivities calculated at similar moisture contents. For the LAS 

moisture content profile, the segment between II and IIIA exhibits a slope reversal which 

leads to the calculation of negative diffusivity values. Abrupt changes in 8;; can account 

for the transition zone diffusivity values. Insight into how these abrupt changes occur is 

given in Figures 3-6b and 3-7b. In these figures, hypothetical soil wetting curves have 

been drawn for both water and surfactant solution. The transition zone 8;; shown in the 
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figures represents a jump from the surfactant solution curve to the water curve. The 

large diffusivities calculated for the moisture content slope segments between II and III 

for AES and IIIA and III8 for LAS represent a large decrease in 'I' relative to 8 as is 

indicated by equation (2) and shown in Figures 3-6b and 3-7b. This assumes that k(8) 

remains essentially unchanged. The reversal in the LAS moisture content slope between 

II and IIIA represents a decrease in 'I' relative to an increase in 8. When 8; is negative, 

so is diffusivity. It should be noted that transition zone moisture contents and 

corresponding diffusivity values are artifacts of the test boundary conditions. If inlet and 

initial moisture content values for the AES and LAS tests were changed then so would 

the moisture content range representing the transition zone. 

Summary and Conclusions 

Test results from this study are be summarized as follows. 

1) AES and LAS surfactant concentration profiles plotted versus the Boltzmann 

transform show similarity between tests which differed only in time duration. This 

indicates that chemical interactions involving the surfactants quickly reached equilibrium 

conditions. 

2) Sorption mechanisms substantially reduced the mobility of both amoruc 

surfactants under the unsaturated flow conditions which were tested. The LAS 

surfactant was affected to a greater extent than AES. 

3) Anionic surfactants can modify the moisture content distribution in soils. 

4) Unsaturated soil diffusivities are reduced where anionic surfactants such as AES 

and LAS are present in high concentrations. This is especially true when moisture 
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contents are high. At a moisture content of 0.30, both surfactants decreased unsaturated 

diffusivity values by 25%. 

The listed results suggest two important implications with respect to surfactant 

enhanced environmental remediation. First, the molecular structure of an anionic 

surfactant plays an important role in determining its subsurface mobility under 

unsaturated flow conditions. This is indicated by the widely different concentration front 

advances within soil columns by the AES and LAS surfactants. Therefore, the type of 

anionic surfactant must be chosen carefully. Second, anionic surfactant affected 

reductions in diffusivity will cause a decrease in the capability of a soil to transmit 

unsaturated flow. This will reduce remediation effectiveness and/or efficiency and 

consequently must be taken into account before cleanup procedures begin. 
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Chemical Trade Name1 Abbreviation 
Name 

Sodium 
Alkyl Ether Witcolate 7093 

Sulfate 

Sodium 
Linear Witconate 90F 

Alkyl benzene 
Sulfonate 

AES 

LAS 

Table 3-1 

Surfactant Characteristics 

Chemical Formula pH2 

c6-JOH13-21(0CH2CH2)30S03Na 
C6 = 18% 6.9 
C =35% 8 

CN=47% 

C10.nH21.21C6H4S03Na 
<C10 =<2% 
C10 =<25% 

ell = 25% to 50% 
c12 =>25% 
C11 = <15% 

6.6 

1 Both surfactants were obtained from the Witco Corp. 

Viscosity Critical Surface Tension2 

Micelle Cone. 

gm/(cm-s) mole/kg dyneslcm 

0.0104 0.005 34.4 

0.0104 0.001 .33.8 

2 Properties were obtained for 0.025 mole/kg surfactant solutions. Temperature = 22 C. For water at T = 22 C, surface 
tension is 72.4 dynes/cm and viscosity is 0.00956 gm/(cm-s). 
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Table 3-2 

Soil Characteristics 

Soil USDA Extractable Bases Cation pH Specific Organic 
Classification Exchange Surface Area Carbon 

Capacity1 Content 

meq/JOOg meq/JOOg m2/g weight% 

Teller "Loam" Na+= 0.84 
52% Sand K+= 0.99 -14 6.0 37.8 1.2 
31% Silt ca+2 = 6.28 
17% Clay Mg+2 = 2.39 

1 Cation exchange capacity was calculated assuming a base saturation of 75 percent, which is average for the 
Payne County, Oklahoma, area from which these soils were obtained. 
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Fig. 3-1. Testing apparatus. 
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Chapter IV 

ANIONIC SURFACTANT MOBILITY IN UNSATURATED SOIL 2: 

BOUNDARY CONDITION AND SOIL ATTRIBUTE EFFECTS 

Abstract 

· The effectiveness and efficiency of using surfactants for in situ environmental 

remediation may depend on their mobility in unsaturated soil. For this reason, transient 

unsaturated column tests were used to study the influence of boundary conditions and 

soil attributes on anionic surfactant transport. In these tests, aqueous surfactant 

solutions were injected into the inlet of horizontally mounted soil columns. Two 

commercial anionic surfactants were used, an alkyl ether sulfate (AES) and a linear 

alkylbenzene sulfonate (LAS). 

The overall study was divided into two parts. First, boundary condition effects 

including injected surfactant solution concentration, initial moisture content, and inlet 

moisture content were investigated. Increasing the injection solution concentration 

increased anionic surfactant mobility in the column while changing the initial and inlet 

moisture contents had no significant impact. Second, the influence of soil attributes such 

as texture, dominant exchangeable cation, and resident organic matter were observed. 

With respect to texture, mobility was greatest in a sandy soil as compared to two loamy 
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soils.. Both surfactants, especially LAS, were found to be more mobile in a Na+ 

dominated soil rather than one dominated by Ca +2• The absence of soil organic matter 

increased LAS mobility. 

Introduction 

Surfactant flushing may be a viable remediation technique for the removal of 

contaminants located in soils above the water table. The effectiveness and efficiency of 

using surfactants·for this purpose will largely depend on mobility under unsaturated flow 

conditions. To date, laboratory work (Mustafa and Letey, 1971; Miller and Letey, 1975) · 

and field pilot studies (Abdul et al., 1992; Abdul and Ang, 1994) have focused on 

nonionic surfactants with respect to use in unsaturated soil. More study is needed on 

anionic surfactants. Anionic surfactants are the most widespread type of surfactant in 

terms of commercial availability and would in all likelihood be the most economical for 

utilization in environmental remediation. For these reasons, two common anionic 

surfactants were chosen for testing. 

Anionic surfactant mobility under unsaturated flow conditions was tested using 

experimental procedures described by Allred and Brown (in review). These tests were 

maintained under strict boundary conditions and involved the injection of an aqueous 

surfactant solution into the inlet of a horizontally mounted soil column. This study 

addressed the influence of boundary conditions and soil attributes on anionic surfactant 

mobility. The boundary conditions tested include injected surfactant solution 

concentration, initial soil moisture content, and inlet moisture content. For soil 
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attributes, the effects of texture, dominant exchangeable cation, and the presence of 

organic matter were investigated. 

Materials 

Surfactants 

The two commercial surfactants utilized were a sodium alkyl ether sulfate (AES) 

and a sodium linear alkyl benzene sulfonate (LAS). These two surfactants were chosen 

based on their properties along with also having widespread commercial availability. 

Table 4-1 lists some of the characteristics of the two surfactants. Both surfactants are 

comprised of a series of homo logs, and the active ingredient weight percent of the AES 

and LAS surfactant products was 39% and 91%, respectively. Surface tension and CMC 

values were measured with a Fisher Scientific Model 21 Tensiomat tensiometer. 

Viscosities were obtained with a Cannon Instrument Co. size 50 viscometer. The 

specific gravity was essentially equal to 1 for the 0.025 mole/kg solutions listed in Table 

4-1. 

Soils 

Teller loam (Thermic Udic Argiustoll), Slaughterville loam (Thermic Udic 

Haplustoll), and Dougherty sand (Thermic Arenic Haplustalf) were obtained from field 

locations in Payne County, Oklahoma. The Teller and Dougherty are soils formed from 

the weathering of alluvial sediments while the Slaughterville is a weathered eolian 

deposit. Soil characteristics are presented in Table 4-2. These characteristics were 
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determined using the procedures described in Methods of Soil Analysis, Part 1 & 2 

(ASA and SSSA, 1982 and 1986). Specific surface area was calculated from water 

vapor sorption isotherms by use of the B.E.T. equation (Quirk, 1955). Teller loam was 

used for the majority of the tests. This particular soil was chosen because its sorption 

potential made it a good candidate for studying anionic surfactant transport. The 

sorption potential of the soil was expected to be significant due to a high level of 

exchangeable Ca+2 (6.28 meq/lOOg) and a relatively large specific surface area (37.8 

m2/g). 

Experimental Procedures 

A computer controlled syringe pump apparatus, as described by Brown and 

Allred (1992), was used to conduct transient unsaturated experiments on anionic 

surfactant transport. In these experiments, 20 ml of surfactant solution were injected 

into the inlet of a horizontally mounted soil column. The majority of the tests conducted 

used 0.025 mole/kg injected surfactant solution concentrations, which in weight percent 

is approximately 0.9% for both surfactants. Test duration was 24 h except for two 

boundary condition tests run at 96 h. 

The inlet moisture content, and hence inlet soil moisture potential, were held 

constant during testing. The computer controlled syringe pump accomplished this. by 

regulating the injected flow at a rate inversely proportional to the square root of elapsed 

time. Along with injection rate, the inlet moisture content value also depends on 

properties of the soil and the injection solution. 
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The column itself was comprised of individual acrylic rings and packed with soil 

to an average dry bulk density of 1.60 g/cm3, which corresponds to a porosity of 0.40. 

The individual rings had a diameter of 3.5 cm and a length of 0.5, 1.0, or 2.0 cm. The 

shorter rings were placed adjacent to the column inlet to provide better resolution of the 

surfactant concentration and moisture content profiles within this region. Overall 

column length ranged from 18 to 35 cm. Upon test completion, the soil column was 

broken apart and the soil from within each ring divided into two parts for analysis of 

volumetric moisture content and anionic surfactant concentration. 

Volumetric moisture content was determined by oven drying the soil sample at 

105 C for 24 h. The mean of the injected moisture percent accounted for by oven drying 

was 95%. The anionic surfactants were extracted from soil samples using a combination 

of acetone and a 0.1 mole/kg NaCl solution. The methylene blue method (APHA et al., 

1985) was then used for chemical analysis. The mean of the percent injected surfactant 

accounted for by extraction and analysis was 90%. A more detailed discussion of 

procedures is provided by Brown and Allred (1992) and Allred and Brown (in review). 

Boundary Condition Tests 

All tests conducted during this part of the study used Teller loam soil. The three 

boundary conditions investigated were injected surfactant solution concentration, initial 

moisture content, and inlet moisture content. For each boundary condition, two sets of 

tests were conducted. One set was with the AES surfactant and the other with LAS. 

Injected surfactant concentration effects were tested with 0.01, 0.025, and 0.1 mole/kg 
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solutions at an initial soil column moisture content of 0.01. Although the injection rate 

was held constant for the concentration effect experiments, variability in surfactant 

solution properties caused differences in inlet moisture content between tests within a 

given set. Initial moisture contents were varied from 0.01 to 0.08 to 0.16 while the 

injected surfactant solution concentration was 0.025 mole/kg and the inlet moisture 

contents averaged 0.32 for AES and 0.36 for LAS. To test the effects of only the inlet 

moisture content on mobility of both surfactants, two tests differing with respect to 

injection rate were conducted while keeping injection concentration (0.025 mole/kg) and 

initial soil moisture content (0.01) constant. Injection rate was varied between the two 

tests by using the same injection solution volume (20 ml) but different test duration times 

(24 h and 96 h). 

Soil Attribute Tests 

The attributes tested with respect to both AES and LAS were texture, dominant 

exchangeable cation, and resident organic matter. Soil texture effects on surfactant 

mobility were studied using the Teller loam, Slaughterville loam, and Dougherty sand. 

Surfactant mobility as affected by the dominant soil cation was investigated by replacing 

the resident soil cations in the Teller loam with either Na+ or ca+2. Replacement was 

accomplished through two equilibration and drainage cycles for 1 kg of Teller loam with 

2 kg of 0.2 mole/kg NaCl or CaCii solution. Results of the AES and LAS tests 

conducted with the Na-Teller and Ca-Teller were then compared with those from tests 

run on the unaltered soil. The effects of resident soil organic matter on AES and LAS 
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mobility were studied by testing these surfactants on nonorganic Teller loam and then 

comparing the results with those obtained using unaltered Teller loam which contained 

1.2% organic carbon. The nonorganic Teller was prepared using a hydrogen peroxide 

oxidation procedure (ASA and SSSA, 1986). All tests conducted during this part of the 

study had 0.025 mole/kg injection solution concentrations, 24 h time durations, and 

initial moisture contents of O.01. 

Experimental Results 

Test results are presented in plots of surfactant concentration versus distance. 

The concentration values are given in mole/kg of the total porous media. Here, total 

porous media is meant to include both soil solids and soil solution. Distance refers to the 

length in cm from the column inlet. The evaluation of surfactant mobility was based on 

the distance the concentration front advanced within the soil column. Moisture content 

profiles from the boundary condition tests are also provided. 

Boundary Condi.tion Tests 

Figure 4-1 depicts the results of the test series in which surfactant injection 

concentrations were varied. The AES data are shown in Figures 4-la (surfactant 

concentration) and 4-lc (moisture content). LAS surfactant concentration and moisture 

content profiles are presented in Figures 4-lb and 4-ld, respectively. For both 

surfactants, the column distance penetrated by the concentration front increased with an 

increase in the injection solution concentration. The AES surfactant had roughly twice 
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the mobility of LAS in tests having similar conditions. The ratio of peak concentration 

to inlet concentration for the O.01, 0. 025, and O .1 mole/kg tests was 1. 11, 1.3 3, and 1. 3 3 

for AES and 1.24, 2.21, and 3.58 for LAS. Allred and Brown (in review) provide two 

explanations for the inlet surfactant concentrations being significantly less than peak 

profile values. Inlet moisture contents and inlet surfactant concentrations were also 

observed to increase with increasing AES or LAS injection concentrations. For LAS, 

the moisture content profiles from the 0.01 and 0.025 mole/kg tests exhibit _notches 

which coincide with the surfactant concentration fronts. The notch from the 0.01 

mole/kg test is readily apparent while the one from the 0.025 mole/kg test is more subtle. 

These notches represent a reversal in the usual trend of a continuous decrease in 

moisture content from inlet to wetting front edge. The significance of a moisture content 

profile slope reversal has been discussed by Allred and Brown (in review). Although 

there is no notch present in the moisture content profile from the 0.1 mole/kg LAS test, a 

steep drop-off corresponding to the surfactant concentration front does occur. 

Results from the test series in which initial moisture contents were varied are 

provided in Figures 4-2a and 4-2c for AES and 4-2b and 4-2d for LAS . As shown, 

increasing the initial moisture content causes· an increase in the distance penetrated by the 

wetting front. However, this has no significant impact on surfactant mobility. 

Figure 4-3 illustrates the effects of inlet moisture content only on AES and LAS 

transport. A decrease in the injection rate, which is reflected by a reduction in the inlet 

moisture content and a slight increase in the wetting front penetration, affected at best a 
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very small increase in AES and LAS surfactant mobility. Again, note the large notch in 

the moisture content profile from the LAS test having the lower injection rate. 

Soil Attribute Tests 

AES and LAS surfactant mobility in three different soils are shown in Figures 

4-4a and 4-4b, respectively. When compared to the two loamy soils, surfactant mobility 

was greater in the Dougherty sand by a factor of two for AES and by a factor of four for 

LAS. Concentration profiles for the Teller and Slaughterville soils were similar for both 

surfactants tested. Dougherty concentration profiles had a rather flat distribution from 

inlet to front while the profile configurations of the Teller and Slaughterville resemble a 

left-truncated bell shape. 

Figure 4-5 shows the effect on surfactant mobility due the dominant 

exchangeable cation present in the soil. AES results are given in Figure 4-5a while those 

for LAS are provided in Figure 4-5b. As determined from concentration front positions, 

both surfactants exhibited the greatest mobility in the Na+ dominated Teller. The least 

mobility was found in the Ca +z dominated soil. The difference in surfactant mobility 

between the Na+ and ca+2 dominated Teller was greatest with LAS. 

As depicted in Figure 4-6, only the LAS mobility seems to be affected by resident 

soil organic matter. Figure 4-6b shows that LAS mobility increased when organic matter 

is removed from the Teller loam. 
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Discussion 

Surfactant mobility will depend on the amount of sorption which takes place. 

Here, sorption refers to the mechanisms of adsorption and/or precipitation. There are a 

number of different sorption mechanisms which. can reduce anionic surfactant mobility in 

unsaturated soils. These include anion exchange, coadsorption, hydrophobic adsorption, 

and precipitation. At low pH, surface sites on soil particles and resident organic matter 

become protonated and assume positive charge (Bohn et al., 1985). This in tum gives 

rise to an anion exchange capacity which allows negatively charged surfactant molecules 

to become electrostatically adsorbed. Testing by Clementz and Robbins (1976), 

indicated that small amounts of dodecylbenzene sulfonate were adsorbed at positively 

charged crystal edge sites on montmorillonite. Because injection solution and soil pH 

values were at most only slightly acidic (Tables 4-1 and 4-2), it is unlikely that anion 

exchange played a major role in govei:ning surfactant mobility during the tests conducted 

in this study. However, electrostatic attraction between soil and anionic surfactants may 

be possible due to coadsorption (Gaudin and Chang, 1952). Essentially, coadsorption 

involves multivalent cations such as Ca+2 and Mg+2 which bridge surfactant anions to the 

clay minerals or resident soil organic matter which usually have negative charge. 

Hydrophobic adsorption also affects surfactant mobility. It results from the surfactant 

tendency to attempt escape from the aqueous environment by concentrating at phase 

boundaries or by interacting with surfactant which has been previously adsorbed at an 

interface (Rosen, 1989). Additionally, precipitation can immobilize anionic surfactants 

(West and Harwell, 1992). The most likely precipitates in soils are Ca-surfactant and 
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Mg-surfactant salts. Therefore, as with coadsorption, soils having high levels of Ca +z 

and Mt2 ions pose a threat with respect to anionic surfactant precipitation. 

AES and LAS test results can be explained in part by the various sorption 

mechanisms previously described. Surfactant mobility was noticed to increase with an 

increase in injection concentration (Figure 4-1). At the highest injection level (0.1 

mole/kg), the AES surfactant concentration profile is relative flat with a front position 

coinciding with the leading edge of the moisture content curve. These are indications 

that AES overwhelms the sorption capacity of the Teller loam when injected at this 

concentration (4% by weight). For LAS on the other hand, the soil sorption capacity is 

not met with the 0.1 mole/kg injected solution. This is evident from the concentration 

profile which penetrates only half the distance of the wetting front edge. Consequently, 

even with a soil having high sorption capacity, application of a moderately high solution 

concentration may in some cases increase anionic surfactant mobility to a level practical 

for environmental remediation. 

The initial and inlet moisture content boundary conditions did not greatly impact 

anionic surfactant mobility (Figures 4-2 and 4-3). At least for the Teller loam, this 

suggests that mobility depends much less on flow conditions and more on the sorption 

capacity of the soil with respect to a particular surfactant. 

From the results presented in Figure 4-4, it is evident that soils such as the 

Dougherty sand are good candidates for surfactant enhanced remediation while those 

such as the Teller loam and Slaughterville loam are only marginal. Two explanations can 

account for the increased surfactant mobility in the Dougherty as compared to the Teller 
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and Slaughterville soils. First, the lower specific surface area of the sand reduces the 

amount of solid/liquid interface available for surfactant adsorption. Second, the 

Dougherty has lower amounts of ca+2 and Mg+2 than the loamy soils (Table 4-2). 

Because of this, anionic surfactant mobility in the sand was less likely to be reduced due 

to coadsorption and/or precipitation. 

Both surfactants had greater mobility in the Na+ saturated Teller and less where 

the soil was ca+2 dominated (Figure 4-5). Mobility in the unaltered Teller, which 

contained a mixture of monovalent and divalent cations, was between these two 

extremes. These results indicate the influence of coadsorption and/or precipitation 

processes which in tum depend on the amount of multivalent cations which are present. 

One implication from this set of tests and those conducted by Ducreux et al. (1990) is 

that NaCl preflushing prior to environmental remediation can enhance anionic surfactant 

mobility. Saturated core flood tests done by Lau and O'Brien (1988) show that anionic 

surfactant mobility can also be increased through addition oflarge amounts of NaCl (4% 

by weight) to the injection solution. 

LAS mobility was observed to increase when the resident soil organic matter was 

removed from the Teller loam (Figure 4-6). Removal of the organic matter reduces the 

cation exchange capacity along with making the soil less hydrophobic. This could have 

the effect of limiting both coadsorption and hydrophobic adsorption, thereby increasing 

LAS mobility. It is unclear why AES mobility is not affected by the resident organic 

matter. 
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AES was significantly more mobile than LAS under all conditions tested. 

Schwuger (1984) noted that surfactants similar to AES, which contain oxyethylene 

structural groups, exhibit resistance to precipitation. AES may be more resistant than 

LAS with respect to other sorption mechanisms as well. Therefore, surfactant molecular 

structure becomes an important criteria where mobility is concerned. 

Summary and Conclusions 

The following is a list of the results obtained from the tests conducted in this 

study on anionic surfactant mobility in unsaturated soil. 

Boundary Condition Effects 

1) Increasing the concentration of the applied surfactant solution can substantially 

increase anionic surfactant mobility. 

2) Mobility is not affected by the initial moisture content of the soil. 

3) The application rate of a surfactant solution, which is reflected by the moisture 

content at the point of introduction, has only a slight impact on mobility. 

Soil Attribute Effects 

4) Anionic surfactants show good mobility in course grained soils having low 

ca+2/Mg+2 concentrations and specific surface area. 

5) Anionic surfactants are significantly more mobile m a soil dominated by 

exchangeable Na+ rather than ca+2• 
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6) Depending on the anionic surfactant utilized, resident soil organic matter may or 

may not effect mobility . 

The most important implication from the test results is that sorption processes 

govern the mobility of anionic surfactants in unsaturated soil while hydraulic boundary 

conditions have little or no affect. Consequently, the effectiveness and/or efficiency of in 

situ surfactant enhanced environmental remediation above the water table will depend in 

large part on soil attributes and the applied concentration of the anionic surfactant. 
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Chemical Trade Name1 Abbreviation 
Name 

Sodium 
Alkyl Ether Witcolate 7093 

Sulfate 

Sodium 
Linear 

Alkyl benzene 
Sulfonate 

Witconate 90F 

AES 

LAS 

Table 4-1 

Surfactant Characteristics 

Chemical Formula pH2 

C6-10H13_21 ( OCH2CH2)3 OS03N a 
C6 = 18% 6.9 
C8 =35% 

__ C~10 =47% 

C10-13H21-21C6H4S03Na 
<C10 =<2% 
C10 =<25% 

ell= 25% to 50% 
c12 =>25% 
C13 =<15% 

6.6 

1 Both surfactants were obtained from the Witco Corp. 

Viscosity Critical Surface Tension2 

Mice/le Cone. 

gml(cm-s) mol~lkg dy_nes/cm 

0.0104 0.005 34.4 

0.0104 0.001 33.8 

2 Properties were obtained for 0.025 mole/kg surfactant solutions. Temperature = 22 C. For water at T = 22 C, surface 
tension is 72.4 dynes/cm and viscosity is 0.00956 gm/(cm-s). 



Table 4-2 

Soil Characteristics 

Soil USDA Extractable Bases Cation pH Specific Surface Organic 
Classification Exchange Area Carbon· 

Capacity1 Content 

meq/JOOg meq/JOOg m2/a weight% 

Teller "Loam" Na+=0.84 
52% Sand K+=0.99 -14 6.0 37.8 1.2 

l,C) 31% Silt ca+2 = 6.28 - 17% Clay Mg+2 = 2.39 

Dougherty "Sand" Na+= 1.40 
98% Sand K+= 0.14 -5 5.9 21.8 0.1 

2% Silt and Clay ca+2 = 2.40 
Mg+2 -0.00 

Slaughterville "Loam" Na+= 0.22 
47% Sand K+= 0.26 -14 8.0 ---- 0.5 
35% Silt ca+2 = 8.05 

:11 
18% Clay Mif2 = 1.62 

1 Cation exchange capacity was calculated assuming a base saturation of 75 percent, which is average for the Payne County, 
Oklahoma, area from which these soils were obtained. 
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Chapter V 

FUTURE RECOMMENDATIONS 

The overall objectives of this research included quantification of surfactant 

mobility in unsaturated soil along with the impact on saturated hydraulic conductivity 

and unsaturated diffusivity. These objectives have been accomplished and the results of 

this study should prove useful in designing in situ surfactant enhanced environmental 

remediation procedures. 

Future research could be focused in three areas. First, a more detailed 

investigation needs to be conducted on the effects of anionic surfactant molecular 

structure. Chemical structural characteristics such as benzene ring presence, 

hydrocarbon chain length/branching, number of oxyethylene units, and the type of head 

group may all play an important part in how anionic surfactants behave in the subsurface. 

A variety of structurally different anionic surfactants would need to be tested with 

respect to mobility in unsaturated soil along with their influence on unsaturated 

diffusivity and saturated hydraulic conductivity. The goal of this research would be to 

provide guidance in choosing the proper surfactant to be used in an environmental 

remediation program. 

The second research topic which needs to be addressed is the effect that 

surfactants have on geotechnical properties of soil. Different surfactants should to be 
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tested to determine how they affect a soil in terms of Atterberg limits, consolidation, 

shear strength, and moisture/density relationships. The surfactant impact on these 

properties may be an important consideration in terms of future construction activities at 

the remediation site. 

Finally, permeability reducing surfactants could be incorporated into the design of 

clay liners for landfills and surface impoundments. Surfactants could be used to decrease 

the flow rate and make materials which were initially unsuitable for use as liners more 

practical. Unsuitable material would be those soils having hydraulic conductivities which 

are too high. Long term laboratory and field permeability tests would need to be 

conducted with a variety of different surfactants and soils in order to determine the 

feasibility of such an application. 
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Appendix A 

. Data from Teller Loam Falling-Head Permeability Tests 

Used to Determine Saturated Hydraulic Conductivity 
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Table A-1 

Data from Teller Loam Falling-Head Permeability Test #1 

· Water Solution (0.001 mole/kg NaCl and 0.001 CaS04) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.01 7.81 

0.07 7.12 

0.18 7.37 

0.45 6.81 

0.57 6.84 

1.24 6.74 

2.01 6.48 

3.83 6.07 

4.64 5.61 

5.03 5.20 

5.25 5.12 

5.89 5.13 

7.45 4.65 

8.54 4.47 

9.49 4.33 
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TableA-2 

Data from Teller Loam Falling-Head Permeability Test #2 

NI Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.02 7.25 

0.06 7.29 

0.15 6.04 

0.23 5.79 

0.34 5.13 

0.43 4.51 

0.75 3.49 

0.86 2.79 

0.92 2.57 

1.40 2.08 

1.65 1.91 

1.82 1.79 

1.99 1.77 

2.51 1.63 

2.81 1.57 

2.96 1.53 

3.37 1.47 

3.43 1.39 

3.51 1.47 

3.58 1.45 
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Table A-3 

Data from Teller Loam Falling-Head Permeability Test #3 

N2 Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 cm/s 

0.03 5.10 

0.09 4.27 

0.15 4.18 

0.24 3.22 

0.30 2.43 

0.43 1.32 

0.48 0.94 

0.51 0.88 

0.70 0.67 

0.78 0.55 

0.85 0.46 

0.91 0.42 

1.07 0.37 

1.13 0.28 

1.17 0.25 

1.24 0.22 

1.26 0.18 

1.28 0.17 

1.29 0.14 
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Table A-4 

Data from Teller Loam Falling-Head Permeability Test #4 

N3 Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.00 5.61 

0.03 4.47 

0.09 3.67 

0.14 3.67 

0.23 3.20 

0.29 2.72 

0.50 2.17 

0.58 1.83 

0.63 1.59 

0.95 1.23 

1.10 1.09 

1.21 0.90 

1.32 0.81 

1.59 0.70 

1.73 0.67 

1.81 0.63 

2.01 0.61 

2.05 0.58 

2.10 0.60 

2.15 0.58 
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TableA-5 

Data from Teller Loam Falling-Head Permeability Test #5 

Al Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.02 3.73 

0.05 2.22 

0.10 1.33 

0.11 0.96 

0.16 0.52 

0.19 0.29 

0.23 0.19 

0.25 0.15 

0.26 0.13 

0.28 0.14 

0.31 0.11 

0.33 0.12 

0.36 0.09 

0.39 0.09 

0.42 0.08 

0.45 0.07 

0.47 0.07 

0.48 0.07 

0.50 0.06 

0.51 0.06 

0.51 0.05 

0.53 0.06 

0.54 0.06 
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TableA-6 

Data from Teller Loam Falling-Head Permeability Test #6 

A2 Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.04 5.35 

0.07 2.47 

0.09 0.59 

0.09 0.26 

0.11 0.18 

0.12 0.11 

0.14 0.08 

0.15 0.06 

0.16 0.05 

0.16 0.06 

0.18 0.04 

0.19 0.05 

0.20 0.04 

0.22 0.04 

0.23 0.04 

0.25 0.03 

0.25 0.03 

0.26 0.03 

0.27 0.04 

0.28 0.02 

0.28 0.03 

0.29 0.03 

0.29 0.03 

107 



TableA-7 

Data from Teller Loam Falling-Head Permeability Test #7 

C 1 Surfactant Solution ( 0 .1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.01 6.36 

0.04 4.38 

0.05 0.34 

0.05 0.34 

0.07 0.37 

0.07 0.18 

0.09 0.12 

0.10 0.20 

0.12 0.06 

0.13 0.04 

0.13 0.05 

0.14 0.03 

0.15 0.03 

0.16 0.03 

0.16 0.05 

0.18 0.04 

0.18 0.02 
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TableA-8 

Data from Teller Loam Falling-Head Permeability Test #8 

C2 Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.01 3.85 

0.06 3.19 

0.11 1.61 

0.12 0.80 

0.17 0.52 

0.20 0.32 

0.24 0.20 

0.26 0.15 

0.27 0.13 

0.29 0.13 

0.31 0.10 

0.34 0.12 

0.36 0.08 

0.40 0.08 

0.42 0.07 

0.45 0.06 

0.46 0.06 

0.47 0.06 

0.49 0.05 

0.50 . 0.05 

0.50 0.05 

0.52 0.05 

0.53 0.06 
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TableA-9 

Data from Teller Loam Falling-Head Permeability Test #9 

AMI Surfactant Solution (0.1 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.01 6.66 

0.05 6.24 

0.10 3.37 

0.12 1.32 

0.14 0.61 

0.15 0.46 

0.18 0.29 

0.19 0.17 

0.20 0.18 

0.24 0.12 

0.25 0.06 

0.27 0.09 

0.28 0.07 

0.31 0.07 

0.33 0.06 

0.34 0.06 

0.36 0.06 

0.36 0.05 

0.37 0.06 

0.38 0.05 
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Table A-10 

Data from Teller Loam Falling-Head Permeability Test #10 

N3 Surfactant Solution (0.1 mole/kg) and Water Flush - 2 Cycles 

Pore Volumes Conductivity Pore Volumes Conductivity 
K x 105 cm/s K x 105 cm/s 

0.00 5.61 2.87 1.21 

0.03 4.47 2.97 1.31 

0.09 3.67 3.10 1.21 

0.14 3.67 3.21 1.20 

0.23 3.20 3.43 1.19 

0.29 2.72 3.52 1.79 

0.50 2.17 3.65 1.45 

0.58 1.83 3.74 1.24 

0.63 1.59 3.87 1.13 

0.95 1.23 4.03 0.92 

1.10 1.09 4.22 0.83 

1.21 0.90 4.35 0.71 

1.32 0.81 4.51 0.63 

1.59 0.70 4.61 0.58 

1.73 0.67 4.87 0.62 

1.81 0.63 4.96 0.55 

2.01 0.61 5.02 0.51 

2.05 0.58 5.11 0.52 

2.10 0.60 5.31 0.79 

2.15 0.58 5.36 0.82 

2.28 0.78 5.62 0.89 

2.32 0.80 5.66 0.97 

2.47 0.91 5.72 0.99 

2.53 0.97 5.91 1.10 

2.76 1.07 6.21 1.09 

2.81 1.14 6.26 1.13 

2.84 1.21 
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Table A-11 

Data from Teller Loam Falling-Head Permeability Test #11 

Al Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.00 7.16 

0.04 5.39 

0.08 4.98 

0.12 4.89 

0.18 4.17 

0.23 3.71 

0.30 3.18 

0.33 2.63 

0.38 2.44 

0.43 1.60 

0.47 1.18 

0.56 0.95 

0.59 0.95 

0.61 0.75 

0.76 0.74 

0.81 0.69 

0.84 0.52 

0.90 0.47 

0.94 0.46 

1.09 0.39 

1.13 0.37 

1.16 0.36 

1.22 0.37 

1.34 0.31 
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Table A-12 

Data from Teller Loam Falling-Head Permeability Test #12 

Al Surfactant Solution (0.001 mole/kg) 

Pore Volumes 

0.17 

0.38 

0.95 

1.36 

2.14 

3.59 

4.41 

5.00 

5.79 

6.26 
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Saturated Hydraulic Conductivity 
K x 105 cm/s 

6.29 

5.58 

5.28 

5.29 

5.08 

4.38 

3.96 

3.81 

3.38 

3.32 



Table A-13 

Data from Teller Loam Falling-Head Permeability Test #13 

Al Surfactant Solution (0.0001 mole/kg) 

Pore Volumes 

0.16 

0.34 

0.90 

1.29 

2.04 

3.49 

4.34 

4.93 

5.72 

6.16 
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Saturated Hydraulic Conductivity 
K x 105 cm/s 

5.87 

5.04 

5.12 

5.07 

4.74 

4.33 

4.15 

3.78 

3.35 

2.94 



TableA-14 

Data from Teller Loam Falling-Head Permeability Test #14 

Al Surfactant Solution (0.00001 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 cm/s 

0.17 6.52 

0.40 5.94 

1.01 5.84 

1.49 6.17 

2.35 5.46 

4.03 4.83 

4.97 4.34 

5.63 3.69 

6.57 3.48 

7.06 2.97 
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Table A-15 

Data from Teller Loam Falling-Head Permeability Test #15 

N3 Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.00 7.47 

0.05 6.55 

0.10 6.46 

0.15 6.32 

0.23 6.10 

0.30 5.96 

0.42 5.72 

0.46 5.33 

0.54 5.39 

0.69 4.52 

0.80 4.02 

1.04 3.63 

1.11 3.54 

1.14 3.11 

1.59 2.73 

1.75 2.41 

1.87 2.18 

2.05 2.17 

2.16 2.12 

2.68 1.77 

2.76 1.68 

2.82 1.71 

3.05 1.55 

3.42 1.46 
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TableA-16 

Data from Teller Loam Falling-Head Permeability Test #16 

N3 Surfactant Solution (0.001 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.13 6.28 

0.40 6.21 

3.00 5.15 

3.38 4.67 

3.87 4.47 

4.11 4.16 

6.21 3.92 

6.19 3.18 

7.40 3.18 

8.51 2.98 

8.78 3.08 
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Table A-17 

Data from Teller Loam Falling-Head Permeability Test #17 

N3 Surfactant Solution (0.0001 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 cm/s 

0.11 5.42 

0.33 5.10 

2.54 4.27 

2.86 3.71 

3.26 3.54 

3.46 3.11 

5.01 2.83 

5.45 2.27 

5.83 1.86 

6.47 1.53 

6.62 1.40 
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Table A-18 

Data from Teller Loam Falling-Head Permeability Test #18 

N3 Surfactant Solution (0.00001 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.13 6.45 

0.37 5.65 

3.20 5.33 

3.53 4.69 

4.04 4.42 

4.32 4.18 

5.90 3.73 

6.42 3.50 

6.95 3.36 

7.97 3.19 

8.22 3.13 
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Table A-19 

Data from Teller Loam Falling-Head Permeability Test #19 

A2 Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.03 3.88 

0.07 3.91 

0.10 3.57 

0.13 3.32 

0.16 2.78 

0.18 2.73 

0.20 2.26 

0.21 1.63 

0.23 1.65 

0.24 1.40 

0.25 1.27 

0.26 1.14 

0.34 0.61 

0.39 0.30 

0.41 0.24 

0.47 0.19 

0.49 0.17 

0.50 0.15 

0.55 0.15 

0.58 0.14 

0.61 0.14 

0.76 0.15 
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TableA-20 

Data from Teller Loam Falling-Head Permeability Test #20 

Nl Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.00 7.19 

0.10 6.21 

0.29 5.78 

0.38 5.36 

0.78 4.81 

0.88 4.25 

1.32 3.60 

1.38 3.16 

1.68 2.97 

1.81 2.62 

2.02 2.51 

2.14 2.27 

2.22 2.13 

2.45 1.99 

2.54 1.71 

2.67 1.63 

2.75 1.25 

3.13 0.98 

3.33 0.76 
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Table A-21 

Data from Teller Loam Falling-Head Permeability Test #21 

Al & N3 Surfactant Solution (0.01 mole/kg) 

Pore Volumes 

0.00 

0.03 

0.19 

0.26 

0.32 

0.40 

0.44 

0.47 

0.90 

0.93 

0.97 

1.10 

1.13 

1.41 

1.44 

1.50 

1.53 

1.93 

2.32 

2.61 

2.91 

3.24 

3.29 

3.33 

3.65 

3.68 

3.93 
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Saturated Hydraulic Conductivity 
K x 105 emfs 

6.24 

5.49 

5.30 

4.79 

4.82 

4.38 

4.14 

4.36 

3.38 

2.83 

2.65 

2.41 

2.14 

1.85 

1.69 

1.67 

1.54 

1.40 

1.11 

0.95 

0.83 

0.73 

0.68 

0.69 

0.65 

0.59 

0.59 



Table A-22 

Data from Teller Loam Falling-Head Permeability Test #22 

A2 & Nl Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.07 7.01 

0.21 6.39 

0.36 5.57 

0.44 4.49 

0.91 3.98 

0.98 3.17 

1.36 2.27 

1.43 1.43 

1.52 0.71 

1.70 0.52 

1.72 0.45 

1.83 0.31 

1.96 0.33 

2.07 0.22 

2.10 0.20 

2.12 0.15 

2.15 0.18 
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TableA-23 

Data from Nonorganic Teller Loam Falling-Head Permeability Test #23 

Water Solution (0.001 mole/kg NaCl and 0.001 mole/kg CaS04) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.26 4.64 

0.38 3.78 

0.50 3.54 

0.56 3.77 

0.89 2.98 

0.96 2.10 

1.60 1.98 

1.67 1.66 

1.72 1.46 

1.96 1.26 

124 



TableA-24 

Data from Nonorganic Teller Loam Falling-Head Permeability Test #24 

Al Surfactant Solution (0.01 mole/kg) 

· Pore Volumes Saturated Hydraulic Conductivity 
K x 105 emfs 

0.01 8.72 

0.10 6.69 

0.14 4.67 

0.15 2.49 

0.16 1.64 

0.18 1.15 

0.18 0.79 

0.24 0.63 

0.25 0.54 

0.33 0.40 

0.34 0.35 

0.35 0.35 

0.38 0.29 

0.40 0.27 
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Table A-25 

Data from Nonorganic Teller Loam Falling-Head Permeability Test #25 

N3 Surfactant Solution (0.01 mole/kg) 

Pore Volumes Saturated Hydraulic Conductivity 
K x 105 cm/s 

0.00 7.32 

0.08 5.71 

0.12 5.46 

0.15 4.67 

0.18 4.71 

0.22 3.46 

0.24 2.08 

0.30 0.74 

0.31 0.50 

0.38 0.37 

0.39 0.38 

0.39 0.34 

0.43 0.33 
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Table A-26 

Data from Teller Loam Falling-Head Permeability Test #26 

Pore Volumes 

0.01 

0.09 

2.79 

3.30 

4.30 

7.42 

NaCl Solution (0.1 mole/kg) 
K = 8.3 x 10·5 cm/s 

Normalized Hydraulic Conductivity 
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(K/K ) 

1.00 

1.01 

0.99 

0.96 

0.81 

0.69 



Table A-27 

Data from Teller Loam Falling-Head Permeability Test #27 

Al Surfactant (0.01 mole/kg) and NaCl (0.1 mole/kg) Solution 

Pore Volumes 

0.00 

0.01 

0.03 

0.11 

0.25 

0.64 

1.21 

1.71 

2.09 

2.68 

K = 3.5 x 10·5 cm/s 

Normalized Hydraulic Conductivity 
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(K/K ) 

1.00 

0.85 

0.83 

0.82 

0.79 

0.73 

0.63 

0.52 

0.48 

0.32 



TableA-28 

Data from Teller Loam Falling-Head Permeability Test #28 

A2 Surfactant (0.01 mole/kg) and NaCl (0.1 mole/kg) Solution 
K = 4.2 x 10-5 cm/s 

Pore Volumes Normalized Hydraulic Conductivity 
(K/K ) 

0.00 1.00 

0.03 0.89 

0.05 0.91 

0.15 0.84 

0.30 0.80 

0.72 0.71 

1.26 0.50 

1.67 0.32 

1.93 0.26 

2.34 0.16 
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TableA-29 

Data from Teller Loam Falling-Head Permeability Test #29 

Al Surfactant (0.01 mole/kg) and NaCl (0.1 mole/kg) Solution plus NaCl Preflush 

Pore Volumes 

0.03 

0.12 

0.20 

0.27 

0.35 

0.91 

1.43 

2.22 

2.45 

2.81 

3.70 

3.87 

4.73 

K = 5.2 x 10-5 cm/s 

Normalized Hydraulic Conductivity 
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(KIK ) 

1.00 

0.98 

0.81 

0.92 

0.83 

0.72 

0.60 

0.53 

0.49 

0.44 

0.39 

0.38 

0.32 



Appendix B 

Data from Unsaturated Tests 
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Table A-30 

Unsaturated Test #1 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 14.1 ml 

Time Duration of Test= 12 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t''.5 x 103 (cm/s05) C x 103 (mole/kg) 

0.25 1.20 0.32 4.49 

0.75 3.61 0.31 4.99 

1.25 6.01 0.32 5.35 

1.75 8.42 0.31 5.44 

2.25 10.83 0.23 5.29 

2.75 13.23 0.23 5.05 

3.25 15.64 0.21 4.01 

3.75 18.04 0.21 1.68 

4.50 21.65 0.22 0.91 

5.50 26.46 0.20 0.34 

6.50 31.27 0.12 0.06 

7.50 36.08 0.02 0.00 

8.50 40.90 0.01 0.00 

9.50 45.71 0.01 0.00 

IO.SO 50.52 0.02 0.00 
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Table A-31 

Unsaturated Test #2 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume = 14 .1 ml 

Time Duration of Test= 12 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition'. Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x .103 (cm/s0·5) C x 103 (mole/kg) 

0.25 1.20 0.32 8.91 

0.75 3.61 0.31 14.41 

1.25 6.01 0.23 12.44 

1.75 8.42 0.23 1.38 

2.25 10.83 0.23 0.24 

2.75 13.23 0.23 0.08 

3.25 15.64 0.22 0.00 

3.75 18.04 0.22 0.00 

4.50 21.65 0.20 0.00 

5.50 26.46 0.18 0.00 

6.50 31.27 0.09 0.00 

7.50 36.08 0.01 0.00 

8.50 40.90 0.01 0.00 

9.50 45.71 0.01 0.00 

13.00 62.55 0.01 0.00 
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TableA-32 

Unsaturated Test #3 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t'\5 x 103 (cm/s05) C x 103 (mole/kg) 

0.25 0.85 0.30 4.21 

0.75 2.55 0.30 4.80 

1.25 4.25 0.27 4.78 

1.75 5.95 0.27 5.41 

2.25 7.65 0.25 5.58 

2.75 9.36 0.23 5.55 

3.25 11.06 0.29 5.50 

3.75 12.76 0.23 5.40 

4.50 15.31 0.21 3.12 

5.50 18.71 0.21 1.37 

6.50 22.11 0.20 0.89 

7.50 25.52 0.20 0.29 

8.50 28.92 0.18 0.25 

9.50 32.32 0.05 0.15 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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Table A-33 

Unsaturated Test #4 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/e'.5 x 103 ( cm/s0.s) C x 103 ( mole/kg) 

0.25 0.85 0.33 7.25 

0.75 2.55 0.32 13.35 

1.25 4.25 0.30 15.99 

1.75 5.95 0.44 12.23 

2.25 7.65 0.22 4.18 

2.75 9.36 0.24 0.25 

3.25 11.06 0.23 0.00 

3.75 12.76 0.23 0.00 

4.50 15.31 0.22 0.00 

5.50 18.71 0.21 0.00 

6.50 22.11 0.21 0.00 

7.50 25.52 0.19 0.00 

8.50 28.92 0.17 0.00 

9.50 32.32 0.05 0.00 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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TableA-34 

Unsaturated Test #5 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 34.6 ml 

Time Duration of Test= 72 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xft/\.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.50 0.98 0.33 4.10 

1.50 2.95 0.30 4.51 

2.50 4.91 0.27 4.99 

3.50 6.87 0.25 5.23 

4.50 8.84 0.24 6.02 

5.50 10.80 0.23 5.57 

6.50 12.77 0.23 5.54 

7.50 14.73 . 0.22 4.29 

8.50 16.70 0.22 2.44 

9.50 18.66 0.22 1.51 

10.50 20.62 0.21 1.06 

11.50 22.59 0.20 0.78 

12.50 24.55 0.20 0.45 

13.50 26.52 0.19 0.40 

14.50 28.48 0.18 0.14 

15.50 30.44 0.14 0.12 

16.50 32.41 0.04 0.15 

17.50 34.37 0.02 0.00 

18.50 36.34 0.01 0.00 

20.00 39.28 0.01 0.00 

24.00 47.14 0.01 0.00 
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Table A-35 

Unsaturated Test #6 

Injected Solution: 0.025 mole/kg AES for Displacement ofCa+2 and Mg+2 

Injection Volume= 34.6 ml 
Time Duration of Test= 72 h 

Soil Type: Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Ca +2 Concentration Mf 2 Concentration 
(cm) x/t".5 x 103 ( cm/s0 5) C x 103 (mole/kg) C x 103 (mole/kg) 

0.50 0.98 18.69 5.39 

1.50 2.95 24.18 7.45 

2.50 4.91 25.67 8.06 

3.50 6.87 27.02 9.09 

4.50 8.84 27.77 9.50 

5.50 10.80 28.04 9.83 

6.50 12.77 27.30 9.38 

7.50 14.73 28.79 9.79 

8.50 16.70 27.57 9.58 

9.50 18.66 27.97 9.75 

10.50 20.62 27.97 9.63 

11.50 22.59 29.62 10.20 

12.50 24.55 28.79 10.28 

13.50 26.52 28.89 10.37 

14.50 28.48 33.23 11.89 

15.50 30.44 33.46 12.92 

16.50 32.41 30.56 10.08 

17.50 34.37 27.89 9.54 

18.50 36.34 27.52 9.58 

20.00 39.28 

24.00 47.14 
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TableA-36 

Unsaturated Test #7 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 34.6 ml 

Time Duration of Test= 72 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xlt11._5 x 103 (cm/s0.s) C x 103 (mole/kg) 

0.50 0.98 0.37 7.42 

1.50 2.95 0.34 15.35 

2.50 4.91 0.26 17.14 

3.50 6.87 023 6.20 

4.50 8.84 0.24 0.06 

5.50 10.80 0.24 0.00 

6.50 12.77 0.23 0.00 

7.50 14.73 0.23 0.00 

8.50 16.70 0.23 0.00 

9.50 18.66 0.22 0.00 

10.50 20.62 0.21 0.00 

11.50 22.59 0.21 0.00 

12.50 24.55 0.20 0.00 

13.50 26.52 0.19 0.00 

14.50 28.48 0.17 0.00 

15.50 30.44 0.07 0.00 

16.50 32.41 0.02 0.00 

17.50 34.37 0.02 0.00 

18.50 36.34 0.01 0.00 

20.00 39.28 0.01 0.00 

24.00 47.14 0.01 0.00 
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TableA-37 

Unsaturated Test #8 

Injected Solution: 0.025 mole/kg LAS for Displacement ofCa+2 and Mt2 

Injection Volume= 34.6 ml 
Time Duration of Test= 72 h 

Soil Type: Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Ca +2 Concentration Mf 2 Concentration 
(cm) xft/\.5 x. 103 (cm/s0·5) C x 103 ( mole/kg) C x 103 (mole/kg) 

0.50 0.98 15;72 5.84 

1.50 2.95 23.15 8.93 

2.50 4.91 26.02 10.16 

3.50 6.87 24.53 9.50 

4.50 8.84 22.55 9.09 

5.50 10.80 23.00 9.21 

6.50 12.77 23.20 9.21 

7.50 14.73 23.23 9.17 

8.50 16.70 23.63 9.46 

9.50 18.66 24.00 9.79 

10.50 20.62 23.13 9.34 

11.50 22.59 24.13 9.95 

12.50 24.55 24.23 10.08 

13.50 26.52 27.40 11.64 

14.50 28.48 26.82 11.68 

15.50 30.44 25.80 10.74 

16.50 32.41 23.58 9.46 

17.50 34.37 24.43 9.75 

18.50 36.34 24.38 9.63 

20.00 39.28 23.60 9.42 

24.00 47.14 
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TableA-38 

Unsaturated Test #9 

Injected Solution: 0.025 mole/kg NaI 
Injection Volume= 34.6 ml 

Time Duration of Test= 72 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Na+ Concentration i- Concentration 
(cm) x/t".5 x 103 (cm/s0.5) C x 103 (mole/kg) C x 103 (mole/kg) 

0.5 0.98 16.18 2.63 

1.50 2.95 10.64 2.47 

2.50 4.91 8.03 2.49 

3.50 6.87 5.75 2.51 

4.50 8.84 4.42 2.44 

6.00 11.79 2.20 2.24 

8.00 15.71 0.97 2.41 

10.00 19.64 0.77 2.37 

12.00 23.57 0.90 2.54 

13.50 26.52 1.61 3.20 

14.50 28.48 1.22 4.15 

15.50 30.44 1.63 5.30 

16.50 32.41 1.05 0.13 

17.50 34.37 1.36 0.00 

18.50 36.34 1.29 0.00 

22.00 43.21 0.00 

140 



TableA-39 

Unsaturated Test #10 

Injected Solution: 0.1 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.85 0.34 10.84 

0.75 2.55 0.32 12.28 

1.25 4.25 0.29 12.89 

1.75 5.95 0.27 13.18 

2.25 7.65 0.26 12.75 

2.75 9.36 0.25 14.35 

3.25 11.06 0.24 13.03 

3.75 12.76 0.25 13.93 

4.50 15.31 0.24 14.44 

5.50 18.71 0.23 14.21 

6.50 22.11 0.21 13.59 

7.50 25.52 0.18 12.01 

8.50 28.92 0.06 3.35 

9.50 32.32 0.01 0.00 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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TableA-40 

Unsaturated Test #11 

Injected Solution: 0.1 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t'\5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.85 0.38 10.76 

0.75 2.55 0.37 16.23 

1.25 4.25 0.34 21.32 

1.75 5.95 0.33 34.69 

2.25 7.65 0.32 38.53 

2.75 9.36 0.32 35.80 

3.25 11.06 0.23 25.49 

3.75 12.76 0.22 9.82 

4.50 15.31 0.21 0.29 

5.50 18.71 0.20 0.11 

6.50 22.11 0.18 0.00 

7.50 25.52 0.14 0.00 

8.50 28.92 0.03 0.00 

9.50 32.32 0.02 0.00 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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Table A-41 

Unsaturated Test #12 

Injected Solution: 0.01 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t'\5 x 103 (cm/s0.s) C x 103 (mole/kg) 

0.25 0.85 0.26 2.66 

0.75 2.55 0.26 2.82 

1.25 4.25 0.24 2.95 

1.75 5.95 0.23 2.64 

2.25 7.65 0.22 2.16 

2.75 9.36 0.23 1.79 

3.25 11.06 0.23 1.30 

3.75 12.76 0.23 1.03 

4.50 15.31 0.23 0.77 

5.50 18.71 0.22 0.70 

6.50 22.11 0.21 0.57 

7.50 25.52 0.20 0.25 

8.50 28.92 0.19 0.00 

9.50 32.32 0.12 0.00 

10.50 35.72 0.02 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

19.00 64.64 0.01 0.00 
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Table A-42 

Unsaturated Test #13 

Injected Solution: 0.01 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/f'.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.27 5.72 

0.75 2.55 0.24 7.08 

1.25 4.25 0.21 5.53 

1.75 5.95 0.21 1.62 

2.25 7.65 0.22 0.43 

2.75 9.36 0.24 0.15 

3.25 11.06 0.24 0.00 

3.75 12.76 0.24 0.00 

4.50 15.31 0.23 0.00 

5.50 18.71 0.22 0.00 

6.50 22.11 0.21 0.00 

7.50 25.52 0.20 0.00 

8.50 28.92 0.19 0.00 

9.50 32.32 0.12 0.00 

10.50 35.72 0.02 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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Table A-43 

Unsaturated Test #14 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Content= 0.08 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0.s) C x 103 (mole/kg) 

0.25 0.85 0.34 4.01 

0.75 2.55 0.31 4.56 

1.25 4.25 0.28 4.69 

1.75 5.95 0.27 4.89 

2.25 7.65 0.26 6.26 

2.75 9.36 0.25 5.93 

3.25 11.06 0.25 5.88 

3.75 12.76 0.24 5.56 

4.50 15.31 0.24 4.67 

5.50 18.71 0.23 1.84 

6.50 22.11 0.23 1.24 

7.50 25.52 0.22 0.42 

8.50 28.92 0.22 0.00 

9.50 32.32 0.21 0.00 

10.50 35.72 0.20 0.00 

11.50 39.12 0.19 0.00 

12.50 42.53 0.17 0.00 

13.50 45.93 0.11 0.00 

14.50 49.33 0.07 0.00 

15.50 52.73 0.07 0.00 

16.50 56.13 0.08 0.00 

17.50 59.54 0.07 0.00 

18.50 62.94 0.07 0.00 

23.00 78.25 0.08 0.00 
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TableA-44 

Unsaturated Test #15 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Teller Loam 

Initial Soil Moisture Content = 0. 08 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.37 7.19 

0.75 2.55 0.34 14.70 

1.25 4.25 0.28 17.41 

1.75 5.95 0.25 12.93 

2.25 7.65 0.25 3.82 

2.75 9.36 0.26 0.15 

3.25 11.06 0.25 0.00 

3.75 12.76 0.25 0.00 

4.50 15.31 0.25 0.00 

5.50 18.71 0.24 0.00 

6.50 22.11 0.24 0.00 

7.50 25.52 0.23 0.00 

8.50 28.92 0.22 0.00 

9.50 32.32 0.21 0.00 

10.50 35.72 0.20 . 0.00 

11.50 39.12 0.19 0.00 

12.50 42.53 0.17 0.00 

13.50 45.93 0.13 0.00 

14.50 49.33 0.08 0.00 

15.50 52.73 0.09 0.00 

16.50 56.13 0.08 0.00 

17.50 59.54 0.09 0.00 

18.50 62.94 0.09 0.00 

23.00 78.25 0.08 0.00 
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TableA-45 

Unsaturated Test #16 
Injected Solution: 0. 025 mole/kg AES 

Injection Volume= 20.0 ml 
Time Duration of Test= 24 h 

Soil Type: Teller Loam 
Initial Soil Moisture Content= 0.16 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s05) C x 103 (mole/kg) 

0.25 0.85 0.33 3.59 

0.75 2.55 0.27 4.11 

1.25 4.25 0.29 4.43 

1.75 5.95 0.27 4.61 

2.25 7.65 0.30 5.27 

2.75 9.36 0.29 5.19 

3.25 11.06 0.29 5.21 

3.75 12.76 0.28 4.75 

4.50 15.31 0.28 2.62 

5.50 18.71 0.27 1.16 

6.50 22.11 0.27 0.44 

7.50 25.52 0.27 0.00 

8.50 28.92 0.26 0.00 

9.50 32.32 0.26 0.00 

10.50 35.72 0.26 0.00 

11.50 39.12 0.25 0.00 

12.50 42.53 0.25 0.00 

13.50 45.93 0.25 0.00 

14.50 49.33 0.23 0.00 

15.50 52.73 0.23 0.00 

16.50 56.13 0.22 0.00 

17.50 59.54 0.22 0.00 

18.50 62.94 0.20 0.00 

21.00 71.44 0.17 0.00 

24.00 81.65 0.16 0.00 

30.00 102.06 0.16 0.00 
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TableA-46 

Unsaturated Test #17 
Injected Solution: 0.025 mole/kg LAS 

Injection Volume= 20.0 ml 
Time Duration of Test= 24 h 

Soil Type: Teller Loam 
Initial Soil Moisture Content = 0 .16 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xft!'.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.38 7.96 

0.75 2.55 0.34 13.23 

1.25 4.25 0.30 14.29 

1.75 5.95 0.28 8.77 

2.25 7.65 0.27 0.90 

2.75 9.36 0.27 0.00 

3.25 11.06 0.27 0.00 

3.75 12.76 0.27 0.00 

4.50 15.31 0.26 0.00 

5.50 18.71 0.26 0.00 

6.50 22.11 0.26 0.00 

7.50 25.52 0.26 0.00 

8.50 28.92 0.25 0.00 

9.50 32.32 0.24 0.00 

10.50 35.72 0.24 0.00 

11.50 39.12 0.23 0.00 

. 12.50 42.53 0.23 0.00 

13.50 45.93 0.22 0.00 

14.50 49.33 0.22 0.00 

15.50 52.73 0.22 0.00 

16.50 56.13 0.22 0.00 

17.50 59.54 0.21 0.00 

18.50 62.94 0.19 0.00 

21.00 71.44 0.16 0.00 

24.00 81.65 0.15 0.00 

30.00 102.06 0.15 0.00 
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TableA-47 

Unsaturated Test #18 
Injected Solution: 0. 025 mole/kg AES 

Injection Volume= 20.0 ml 
Time Duration of Test= 96 h 

Soil Type: Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xft/\.5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.43 0.24 3.48 

0.75 1.28 0.24 4.16 

1.25 2.13 0.22 4.10 

1.75 2.98 0.22 4.64 

2.25 3.83 0.21 4.44 

2.75 4.68 0.21 5.19 

3.25 5.53 0.20 4.80 

3.75 6.38 0.20 4.95 

4.50 7.65 0.20 3.03 

5.50 9.36 0.20 2.33 

6.50 11.06 0.19 1.33 

7.50 12.76 0.18 1.14 

8.50 14.46 0.17 0.62 

9.50 16.16 0.12 0.28 

10.50 17.86 0.03 0.00 

11.50 19.56 0.02 0.00 

12.50 21.26 0.01 0.00 

13.50 22.96 0.01 0.00 

14.50 24.67 0.00 0.00 

15.50 26.37 0.00 0.00 

16.50 28.07 0.00 0.00 

17.50 29.77 0.00 0.00 

18.50 31.47 0.00 0.00 

21.00 35.72 0.00 0.00 

25.00 42.53 0.00 0.00 

31.00 52.73 0.00 0.00 
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TableA-48 

Unsaturated Test #19 
Injected Solution: 0.025 mole/kg LAS 

Injection Volume= 20.0 ml 
Time Duration of Test= 96 h 

Soil Type: Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xft/\.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.43 · 0.28 5.18 

0.75 1.28 0.27 9.47 

1.25 2.13 0.22 15.30 

1.75 2.98 0.20 13.36 

2.25 3.83 0.18 ·7.84 

2.75 4.68 0.18 0.99 

3.25 5.53 0.18 0.29 

3.75 6.38 0.20 0.23 

4.50 7.65 0.19 0.00 

5.50 9.36 0.19 0.00 

6.50 11.06 0.18 0.00 

7.50 12.76 0.17 0.00 

8.50 14.46 0.16 0.00 

9.50 16.16 0.13 0.00 

10.50 17.86 0.03 0.00 

11.50 19.56 0.02 0.00 

12.50 21.26 0.01 0.00 

13.50 22.96 0.01 0.00 

14.50 24.67 0.01 0.00 

15.50 26.37 0.00 0.00 

16.50 28.07 0.00 0.00 

17.50 29.77 0.00 0.00 

18.50 31.47 0.00 0.00 

20.00 34.02 0.00 0.00 

22.00 37.42 0.01 0.00 
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Table A-49 

Unsaturated Test #20 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Dougherty Sand 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/tt'.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

1 3.40 0.18 2.46 

3.00 10.21 0.15 2.03 

5.00 17.01 0.17 2.06 

7.00 23.81 0.16 2.45 

9.00 30.62 0.16 2.25 

11.00 37.42 0.10 1.23 

13.00 44.23 0.07 1.06 

15.00 51.03 0.01 0.10 

17.00 57.84 0.00 0.00 

19.00 64.64 0.00 0.00 

21.00 71.44 0.00 0.00 

23.00 78.25 0.00 0.00 

25.00 85.05 0.00 0.00 

27.00 91.86 0.00 0.00 

29.00 98.66 0.00 0.00 
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TableA-50 

Unsaturated Test #21 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Dougherty Sand 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0'5) C x 103 ( mole/kg) 

1.00 3.40 0.19 2.76 

3.00 10.21 0.22 2.71 

5.00 · 17.01 0.17 2.90 

7.00 23.81 0.15 2.73 

9.00 30.62 0.16 3.26 

11.00 37.42 0.08 0.41 

13.00 44.23 0.04 0.07 

15.00 51.03 0.00 0.01 

17.00 57.84 0.00 0.00 

19.00 64.64. 0.00 0.00 

21.00 71.44 0.00 0.00 

23.00 78.25 0.00 0.00 

25.00 85.05 0.00 0.00 

27.00 91.86 0.00 0.00 

29.00 98.66 0.00 0.00 
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Table A-51 

Unsaturated Test #22 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Slaughterville Loam 

Initial Soil Moisture Co.ndition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xftA.5 x 103 ( cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.24 3.14 

0.75 2.55 0.23 3.80 

1.25 4.25 0.22 4.31 

1.75 5.95 0.22 4.62 

2.25 7.65 0.21 4.43 

2.75 9.36 0.21 4.65 

3.25 11.06 0.21 4.81 

3.75 12.76 0.21 4.48 

4.50 15.31 0.21 2.98 

5.50 18.71 0.20 1.79 

6.50 22.11 0.19 1.15 

7.50 25.52 0.18 0.98 

8.50 28.92 0.17 0.69 

9.50 32.32 0.09 0.26 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.00 0.00 

13.50 45.93 0.00 0.00 

15.00 51.03 0.00 0.00 

17.00 57.84 0.00 0.00 

20.00 68.04 0.00 0.00 
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TableA-52 

Unsaturated Test #23 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Slaughterville Loam 

Initial Soil Moisture Condition: . Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.85 0.29 4.53 

0.75 2.55 0.23 11.82 

1.25 4.25 0.20 13.82 

1.75 5.95 0.19 9.96 

2.25 7.65 0.18 7.20 

2.75 9.36 0.19 1.76 

3.25 11.06 0.18 0.82 

3.75 12.76 0.18 0.58 

4.50 15.31 0.18 0.39 

5.50 18.71 0.18 0.25 

6.50 22.11 0.17 0.27 

7.50 25.52 0.17 0.21 

8.50 28.92 0.16 0.16 

9.50 32.32 0.16 0.16 

10.50 35.72 0.11 0.00 

11.50 39.12 0.02 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.00 0.00 

15.00 51.03 0.00 0.00 

17.00 57.84 0.00 0.00 

20.00 68.04 0.00 0.00 
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TableA-53 

Unsaturated Test #24 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Calcium Dominated Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t'".5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.85 0.30 4.19 

0.75 2.55 0.27 5.05 

1.25 4.25 0.29 5.61 

1.75 5.95 0.28 5.99 

2.25 7.65 0.26 6.26 

2.75 9.36 0.25 6.19 

3.25 11.06 0.25 6.23 

3.75 12.76 0.24 4.91 

4.50 15.31 0.24 2.31 

5.50 18.71 0.24 0.86 

6.50 22.11 0.23 0.19 

7.50 25.52 0.21 0.00 

8.50 28.92 0.07 0.00 

9.50 32.32 0.01 0.00 

10.50 35.72 0.01 0.00 

17.00 57.84 0.01 0.00 
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TableA-54 

Unsaturated Test #25 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Calcium Dominated Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0·5) C x 103 ( mole/kg) 

0.25 0.85 0.39 13.20 

0.75 2.55 0.31 21.87 

1.25 4.25 0.25 15.22 

1.75 5.95 0.27 1.44 

2.25 7.65 0.27 0.05 

2.75 9.36 0.26 0.00 

3.25 11.06 0.26 0.00 

3.75 12.76 0.25 0.00 

4.50 15.31 0.26 0.00 

5.50 18.71 0.26 0.00 

6.50 22.11 0.22 0.00 

7.50 25.52 0.16 0.00 

8.50 28.92 0.03 0.00 

9.50 32.32 0.01 0.00 

10.50 35.72 0.01 0.00 

17.00 57.84 0.01 0.00 
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TableA-55 

Unsaturated Test #26 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Sodium Dominated Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t11..s x 103 (cm/s0.5) C x 103 (mole/kg) 

0.25 0.85 0.31 4.57 

0.75 2.55 0.32 4.64 

1.25 4.25 0.31 4.62 

1.75 5.95 0.32 5.23 

2.25 7.65 0.29 5.06 

2.75 9.36 0.30 5.10 

3.25 11.06 0.27 5.01 

3.75 12.76 0.28 4.63 

4.50 15.31 0.25 4.27 

5.50 18.71 0.22 2.60 

6.50 22.11 0.21 0.44 

7.50 25.52 0.16 0.09 

8.50 28.92 0.02 0.00 

9.50 32.32 0.01 0.00 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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Table A-56 

Unsaturated Test #27 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Sodium Dominated Teller Loam 

Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) xft/\.5 x 103 (cm/s05) C x 103 (mole/kg) 

0.25 0.85 0.32 6.73 

0.75 2.55 0.33 7.28 

1.25 4.25 0.31 7.11 

1.75 5.95 0.32 7.42 

2.25 7.65 0.29 6.92 

2.75 9.36 0.28 6.80 

3.25 11.06 0.24 4.85 

3.75 12.76 0.23 3.35 

4.50 15.31 0.24 0.24 

5.50 18.71 0.23 0.07 

6.50 22.11 0.22 0.00 

7.50 25.52 0.18 0.00 

8.50 28.92 0.07 0.00 

9.50 32.32 0.01 0.00 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 

158 



Table A-57 

Unsaturated Test #28 

Injected Solution: 0.025 mole/kg AES 
Injection Volume= 20.0 ml 

Time Duration of Test = 24 h 
Soil Type: Nonorganic Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/tt'.5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.27 4.19 

0.75 2.55 0.28 4.67 

1.25 4.25 0.28 4.88 

1.75 5.95 0.29 5.51 

2.25 7.65 0.24 5.41 

2.75 9.36 0.23 5.81 

3.25 11.06 0.20 5.16 

3.75 12.76 0.20 4.20 

4.50 15.31 0.21 1.72 

5.50 18.71 0.19 1.52 

6.50 22.11 0.18 0.90 

7.50 25.52 0.16 0.58 

8.50 28.92 0.11 0.19 

9.50 32.32 0.02 0.09 

10.50 35.72 0.01 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51.03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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TableA-58 

Unsaturated Test #29 

Injected Solution: 0.025 mole/kg LAS 
Injection Volume= 20.0 ml 

Time Duration of Test= 24 h 
Soil Type: Nonorganic Teller Loam 
Initial Soil Moisture Condition: Dry 

Distance Boltzmann Trans. Moisture Content Surfactant Cone. 
(cm) x/t".5 x 103 (cm/s0·5) C x 103 (mole/kg) 

0.25 0.85 0.33 6.73 

0.75 2.55 0.32 7.83 

1.25 4.25 0.31 7.35 

1.75 5.95 0.31 7.82 

2.25 7.65 0.27 6.44 

2.75 9.36 0.26 5.87 

3.25 11.06 0.21 2.53 

3.75 12.76 0.22 2.17 

4.50 15.31 0.22 1.06 

5.50 18.71 0.21 0.18 

6.50 22.11 0.19 0.03 

7.50 25.52 0.17 0.00 

8.50 28.92 0.09 0.00 

9.50 32.32 0.02 0.00 

10.50 35.72 0.02 0.00 

11.50 39.12 0.01 0.00 

12.50 42.53 0.01 0.00 

13.50 45.93 0.01 0.00 

15.00 51;03 0.01 0.00 

17.00 57.84 0.01 0.00 

20.00 68.04 0.01 0.00 
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