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Abstract

Measurements of microwave electric fields in rubidium vapor cells, and of static

electric fields near quartz with cold rubidium are presented. The measurements

are performed using electromagnetically induced transparency (EIT) with Ry-

dberg atoms. The theoretical basics of Rydberg atoms and EIT are discussed.

An electric field perturbs the energy levels of Rydberg states, and Rydberg

atom EIT is used to measure the perturbation. Experimental and theoretical

results are presented, demonstrating the ability to measure the amplitude and

polarization of microwave electric fields. These measurements are done using

room temperature vapor cells, providing a pathway for portable atom based

sensing of microwave electric fields. A second set of experiments is done with

cold rubidium atoms in a magnetic trap near the (0001) surface of single crystal

quartz. The experimental apparatus and lasers used in the experiments are

described in detail. Electric fields due to Rb adsorbates on the surface are

measured. The thermal desorption of Rb from the surface is characterized and

theoretically analyzed using a Langmuir isobar. Blackbody ionization of Rydberg

atoms produces electrons with low kinetic energy. The blackbody electrons bind

to the surface and reduce the overall electric field. Electric fields as small as

30 mV/cm have been measured 20µm from the surface. These results open up

possibilities for using Rydberg atoms in hybrid quantum systems. Some of these

possibilities are discussed.

xvi



Chapter 1

Introduction

This thesis describes measurements of static and microwave electric fields using

Rydberg atoms. The chapter begins with an introduction to Rydberg atoms

and electromagnetically induced transparency, the main tools used throughout

the thesis. Then a general overview of atom based sensing and quantum hybrid

systems are discussed in general as well as in the context of Rydberg atoms.

1.1 Rydberg Atoms

A common theme throughout this thesis and our lab is Rydberg atoms. Rydberg

atoms have an electron in a highly excited electronic state. For example, in

the following experiments, Rydberg atoms with principal quantum number n

between 40 and 100 are used.

Due to the valence electron being loosely bound to the atom, Rydberg

states have exaggerated properties compared to those of ground or low-lying

states. In many Rydberg atom experiments, at least one of these exaggerated

properties is exploited. A few of these properties include effective size, lifetimes

and Rydberg-Rydberg interaction. In the following experiments, the properties

of large transition dipole moments between states and high dc polarizability are

used.

For ground state Rb atoms, optical frequencies are needed to drive electric
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dipole transitions. However, as n increases, the spacing between adjacent energy

levels decreases and transitions between Rydberg states can be driven with

microwave fields, as illustrated in Fig. 1.1a. The wavefunctions for Rydberg

states are long ranged, and there is tremendous overlap between wavefunctions

of adjacent states, which leads to large transition dipole moments. With the

Rydberg electron far away from the nucleus, the effect from the Coulomb

potential is relatively small, allowing for the atom to become easily polarized in

an external electric field. Compared to ground states, Rydberg states are much

more sensitive to dc electric fields, as illustrated in Fig. 1.1b.

1.2 EIT

A main component of the following experiments is electromagnetically induced

transparency (EIT) in an atomic medium. EIT is a quantum interference effect,

where the absorption of one frequency of light can be canceled by the presence

of a second frequency of light. Although EIT is a quantum effect [1], it can be

explained using a classical analog with masses and springs [2, 3].

A two level atom can be described classically as a Lorentz oscillator [4]. The

system is a harmonic oscillator, with the electron bound to the nucleus by a

spring. The nucleus is assumed to have an infinite mass and the system has a

resonance frequency, ω0. An incident classical light field, E0 cos (ωt) drives the

electron. When ω = ω0 the system is driven into oscillation, which is the analog
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Figure 1.1: Illustration of the two properties of Rydberg atoms

that are utilized in this work. (a) Electric dipole transitions between

Rydberg states are in the microwave regime, while transitions between

the ground state and low-lying states are in the optical regime. (b)

The energy shifts as function of electric field (Stark shifts) are plotted

for the 5S1/2 ground state and the 60S1/2 state. Unlike ground states,

Rydberg states are extremely sensitive to external electric fields. The

polarizability of the 5S1/2 ground state of Rb is ∼ 109 times smaller

than the polarizability of the 60S1/2 state.

of atomic absorption. The analogy can be extended to model a 3 level atom,

with a system of three springs and two masses.

The addition of the second mass alters the frequency response of the system.

At the resonance frequency of the two level system, the oscillations of the second

mass can prevent the first mass from moving. The quantum analog is the addition

of a second frequency of resonant light, which can prevent the absorption of the

first frequency of light. EIT has been observed in many types of systems [1, 5].
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1.3 Atom Based Sensing

Atom based sensors have had a tremendous impact across many areas of science

and everyday life. Most notably atomics clocks, with applications of timing,

GPS, and navigation. The main advantage of atom based sensors is repeatability.

There is no known difference of properties between different atoms of the same

species [6]. An illustration of this point, is that the definition of the second is

based on one these properties, the spacing between energy levels of the ground

state of cesium [6]. Combining the repeatability of atomic systems with narrow

linewidth lasers and measurement techniques, leads to accurate and precise

measurements.

Recently, many amazing results are being produced in the areas of atomic

clocks and magnetometery. At the time of writing, atomic clocks have an

uncertainty as low as 2× 10−18 [7]. Magnetometers can reach sensitivities of 0.5

fT/Hz1/2 [8]. There are many other exciting areas in atomic sensing including

atom interferometers [9], gyroscopes [10], and accelerometers. These devices do

not always remain bulky laboratory equipment. Recently, atomic clocks and

magnetometers have been miniaturized to the point that they can fit in the

palm of your hand [11, 12]. Over the coming years more quantum devices are

poised to make their way out of the laboratory, and into the field with many

commercial applications [13, 14].

Most of these atoms based sensing methods use ground state atoms, however
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atoms with an electron in a highly excited state, Rydberg atoms, can also be

used. Although receiving much less attention, Rydberg atoms have been used as

atomic sensors. Some of the first works in this area were done in the 1980’s to

measure dc electric fields in plasmas with spatial [15, 16] and vector resolution

[17]. Recently attention has turned to measuring microwave electric fields with

Rydberg atoms. Unlike ground state atoms, Rydberg atoms have electric dipole

transitions in the microwave regime. Several experiments developing microwave

measurement techniques in rubidium vapor cells will be described. A fourth

level is added to Rydberg EIT, with the upper two levels being Rydberg states

resonantly coupled together by microwaves.

1.4 Quantum Hybrid Systems

Another area of interest is using Rydberg atoms as dc electric field sensors in

quantum hybrid systems. While the term quantum hybrid systems is not well

defined, the basic idea in these systems is to combine traditionally disparate

systems, and use the advantages of each system to achieve something not possible

with each component. Many quantum hybrid systems have been proposed

to achieve outstanding goals in quantum physics. Quantum hybrid systems

designed for realizing advances in quantum information, communication, sensing,

and computing have been proposed [18]. Due to the enormous number of

possibilities and experimental complexities of combining multiple quantum
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systems, experimental progress in this area has been slow. Some areas that have

yielded encouraging results are atoms and ions [19], atom-membrane systems

[20], and atom-photonic crystal waveguide systems [21].

Rydberg atoms are an attractive component to use in quantum hybrid

systems due to having strong transitions in the microwave and millimeter regime,

long lifetimes and coherence times [22]. For example, there is a proposal to use

Rydberg atoms as a quantum memory in a hybrid system [23]. There have been

a host of other theoretical proposals recently for utilizing Rydberg atoms near

surfaces [24, 25, 26, 27, 28]. The experimental realization of these ideas has been

hampered by uncertainties in characterizing interactions of atoms with surfaces,

although some recent results are noteworthy [29, 30, 31].

To realize many of these Rydberg atom hybrid systems, a more complete

understanding of surfaces is needed. One problem is the ionization of Rydberg

atoms incident upon metal surfaces [32, 33]. Another major hurdle is the

background electric fields caused by adsorbates [34, 35, 36, 37, 38, 39]. Rydberg

states are sensitive to adsorbate electric fields because they are highly polarizable

[40]. Adsorbate electric fields have caused problems in non-Rydberg atom

experiments as well, including Casimir-Polder measurements [41], and surface

ion traps [42].

The experiments in the second half of the thesis describe research aimed at

establishing a better picture of atom-surface interactions, as well as constructing

an apparatus capable of achieving some of these long-term goals for quantum
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hybrid systems. In this thesis, the dc electric field near a Rb-quartz surface is

investigated. Quartz was chosen as the surface because of its extensive use in the

semiconductor and optics industries. The (0001) surface has been the subject of

recent theoretical interest, partially due to its stability and low surface energy

[43, 44, 45, 46, 47]. Despite numerous theoretical and experimental studies of

bulk SiO2 [48, 49, 50], the surface properties are not well understood.

1.5 Thesis Outline

This thesis describes experiments done in two different environments, vapor cells

and an ultra high vacuum chamber. In Chapter 2, the theoretical principles used

throughout are discussed. In Chapter 3, microwave measurements in rubidium

vapor cells are detailed. Expanding of the theory in Chapter 2, Rydberg EIT

in the context of resonant microwaves is discussed. Experimental data and

theoretical calculations on the measurement of the amplitude and polarization

of microwave fields are presented.

In the second part, experiments measuring electric fields near the surface of

single crystal quartz using cold atoms is detailed. The experimental apparatus

required in these experiments is more extensive than for the vapor cell experi-

ments. Chapter 4 details the different pieces of the apparatus. The basics of the

experimental techniques used in these experiments are outlined in Chapter 5.

The method for trapping cold atoms and transporting them near the surface is
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discussed. Absorption imaging, the main method of data acquisition is described.

The results of these experiments are shown in Chapter 6. These results include

the measurement of the activation energy of rubidium on a quartz surface, and

the reduction of measured electric field in the presence of Rydberg atoms.

The details of several theoretical and experimental parts of the experiment

are in the Appendices. Appendix A contains the details of the calculation of

transition dipole moments, Stark shifts and Zeeman shifts of Rydberg atoms

used throughout the thesis. The details of alignment of the home built bowtie

cavity used for generating 480 nm are given in Appendix B.

8



Chapter 2

Theoretical Background

2.1 Rydberg Atoms

Atoms with an electron in a highly excited state are named Rydberg atoms. In

this thesis, Rydberg atoms with principal quantum numbers n, in rubidium 87

(87Rb) are studied. A pictorial representation of a Rydberg atom is shown in

Fig. 2.1. The valence electron is in a highly excited state and loosely bound to

the atom. At the center is a positively charged core containing the nucleus and

electrons from the full inner shells.

2.1.1 Energies

Electronic states and energies of alkali Rydberg atoms such as Rb resemble those

of hydrogen, but differ because of the interaction between the outer electron and

the core electrons. The outer electron can penetrate into the inner cloud of the

electrons, and can also polarize the core electrons. Far away from the nucleus,

the outer electron experiences a Coulomb potential. When the electron is inside

the ionic core the nuclear charge is no longer fully screened, and the potential is

no longer a pure Coulomb one. The screening of the nuclear charge by the other

electrons is different depending on the principal quantum number n, the orbital

angular momentum, L, and total angular momentum J of the state.
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Figure 2.1: A simplified illustration of a Rb Ryberg atom. The highly

excited Rydberg electron is bound to the atom, but orbits far away

from the ionic core. The core contains the nucleus of the atom as

well as the 36 electrons from the inner electron shells.

The energy levels of alkali Rydberg atoms are perturbed from those of

hydrogen and are expressed as,

E = − 1

n∗2
, (2.1)

where n∗ is the effective principal quantum number. n∗ is written as,

n∗ = n− δnLJ . (2.2)

The quantity δnLJ is known as the quantum defect, and accounts for the difference

in energies due to the presence of the ionic core. The quantum defects are derived

from experimental measurements. Energy levels are measured experimentally,

and fit to Eq. 2.1 with the expansion,

δnLJ = δ0 +
δ2

(n− δ0)2
. (2.3)
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Table 2.1: List of quantum defects for Rb used in this thesis.

State Parameter Value Source

nS1/2 δ0 3.1311807 [51]

δ2 0.1787 [51]

nP1/2 δ0 2.6548849 [52]

δ2 0.2900 [52]

nP3/2 δ0 2.6416737 [52]

δ2 0.2950 [52]

nD3/2 δ0 1.3480948 [51]

δ2 -0.6054 [51]

nD5/2 δ0 1.3464622 [51]

δ2 -0.5940 [51]

nF5/2 δ0 0.0165192 [53]

δ2 -0.085 [53]

nF7/2 δ0 0.0165437 [53]

δ2 -0.086 [53]

The values for δ0 and δ2 used in this thesis are given in Table 2.1. To provide an

example, the 53D5/2 state is used through this thesis, and its effective principal

quantum number is, n∗ = 51.65. In Rb, nF states are the highest L-states to

exhibit core penetration [40]. The valence electron can still polarize the ionic

core. However its effect on the energy levels is small, so for L > 3, the energies

effectively become degenerate with those of hydrogen.

2.1.2 Wavefunctions

In order to carry out calculations of Rydberg atom properties and behavior, such

as Stark shifts and transition dipole moments, the wavefunctions for Rydberg

states are needed. Due to the similarities between Rydberg atoms and hydrogen,
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the wavefunctions are calculated in a similar manner by solving the Schrödinger

equation, (
−1

2
∇2 − V (r)

)
ψ(r) = Eψ(r). (2.4)

V (r) is a central potential. In the case of hydrogen, it is the Coulomb potential.

The Schrödinger equation can be separated into radial and angular parts and

solved independently, with solutions of radial and angular wavefunctions, ψ(r) =

Rn,L(r)YL,m(θ, φ). By looking at different δnLJ , it is clear that electron core

interaction mainly depends on L. This leads to using a modified L-dependent

Coulomb potential, Veff(r, L) to model the interaction [54],

Veff(r, L) = −2

(
Zeff(r, L)

r
+ Vpol(r, L)

)
, (2.5)

with,

Zeff(r, L) = 1 + (Z − 1)e−ra1(L) − re−ra2(L) (a3(L) + ra4(L)) , (2.6)

and,

Vpol(r, L) =
αc
2

1− e−(r/rc(L))6

r4
. (2.7)

The constants called α1, α2, α3, α4 in Eq. 2.6 and αc and rc in Eq. 2.7 for Rb are

fit to reproduce experimentally measured energies [54], and their values are listed

in Table 2.2. For L = 1, 2 (P and D states), spin-orbit interaction is taken into

account following the approach of [55]. With the total potential Vtot(r, L, J),

Vtot(r, L, J) =


Veff(r, L) if 0 ≤ r ≤ rso(L),

Veff(r, L) + Vso(r, L, J) if r > rso(L),

(2.8)
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where Vso(r, L, J) is,

Vso(r, L, J) = α2 1

r

∂Veff(r, L)

∂r

J(J + 1)− L(L+ 1)− 3
4

2
, (2.9)

where α is the fine-structure constant. Since Vso does not accurately describe

the motion of the outer electron near the inner core, a cut-off radius rso(L) is

introduced. The values for rso(L) are chosen to reproduce the experimentally

measured fine structure splittings, and are listed in Table 2.2.

Using this potential, the radial Schrödinger equation is solved using a Fortran

program called RADIAL [56]. The program uses a power series expansion to

numerically approximate a solution to the radial Schrödinger equation. The

calculated radial wavefunctions, Rn,L(r) are used for calculating transition dipole

moments and Stark shifts of Rydberg states. Just as the quantum defects vanish

for L > 3, Veff(r, L) also approaches a Coulomb potential because the electron

orbits at large r and does not penetrate the inner core. For L > 3, Rn,L(r) for

hydrogenic states are used.

The inner electron shells are completely filled and do not contribute to the

angular momentum of the atom, so alkali atoms and hydrogen both have spin

S = 1/2. Since all of the interaction of the outer electron with the inner core was

accounted for in the central potential, the solutions of YL,m remain unchanged.

In calculations, the solutions of YL,m for the hydrogen atom are used.
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Table 2.2: List of constants used for calculating the Rydberg atom wavefunctions.

L 0 1 2 3

a1 3.69628474 4.44088978 3.78717363 2.39848933

a2 1.64915255 1.92828831 1.57027864 1.76810544

a3 -9.86069196 -16.79597770 -11.65588970 -12.07106780

a4 0.19579987 -0.81633314 0.52942835 0.77256589

rc 1.66242117 1.50195124 4.86851938 4.79831327

rso - 0.0442825 0.2495720 -

αc = 9.0760

2.1.3 Lifetimes and Blackbody Radiation

The lifetimes of Rydberg states are relatively long compared to those of low-lying

excited states. For example, the lifetime of the 5P3/2 state is 26 ns [57], while the

lifetimes for Rb Rydberg atoms with n ∼ 40− 80 range from 40− 250µs [58].

While the lifetime of low-lying states is primarily due to spontaneous emission,

the lifetimes of Rydberg atoms are strongly affected by blackbody radiation.

There is a large frequency overlap of the blackbody spectrum at room tempera-

ture, and transitions between Rydberg states. The largest effect is coupling to,

and driving transitions to nearby energy levels, reducing the lifetimes of Rydberg

states from the values of their radiative lifetimes.

Besides driving transitions to nearby energy levels, Rydberg atoms can also

be ionized due to blackbody radiation [59]. There are two types of ionization

that can occur, direct and indirect ionization. The direct process occurs when a

Rydberg atom absorbs a single blackbody photon, and the electron is excited

to the continuum. An indirect process is the result of the absorption of several
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blackbody photons. Ionization occurs in a stepwise fashion. At 300 K, the direct

process accounts for ∼ 99% of the ionization, thus the indirect processes are

ignored in this thesis.

The combination of these effects contribute to the effective lifetime of Rydberg

states. The total decay rate (1/lifetime), ΓTOT is broken up into three parts,

ΓTOT = Γ0 + ΓBBT + ΓBBI, (2.10)

with Γ0, the radiative decay rate, ΓBBT, the decay rate from blackbody transitions,

and ΓBBI, the decay rate due to direct blackbody ionization. Although the

underlying calculations are involved, the three different decay rates can be

described with semi-empirical equations [58, 59],

Γ0 =
1

τsn∗δ
(2.11a)

ΓBBT =
A

n∗D
2.14× 1010

exp(315780B/n∗CT )− 1
(2.11b)

ΓBBI = CLT

(
14423

n∗7/3
+

10770L2

n∗11/3

)
× log

(
1

1− exp
(
−157890

Tn∗2

)) . (2.11c)

The constants CL, A,B,C,D, τs and δ are listed in Table 2.3, n∗ is the effec-

tive quantum number as defined in Eq. 2.2 and T is the temperature of the

surrounding environment.

2.1.4 Scaling Laws

Many properties of Rydberg atoms have straightforward scaling as n is increased,

and scaling laws can be derived. Some of the properties are listed in Table 2.4.
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Table 2.3: List of constants for calculating the decay rates of Rb

Rydberg states. The constants are taken from [58, 59]

CL

A

B

C

D

τs

δ

S

0.2

0.134

0.251

2.567

4.426

S1/2

1.368

3.0008

P

0.15

0.053

0.128

2.183

3.989

P1/2 P3/2

2.4360 2.5341

2.9989 3.0019

D

0.3

0.033

0.084

1.912

3.716

D3/2 D5/2

1.0761 1.0687

2.9898 2.9897

These scaling laws are important for several reasons. First, the differences

from ground state atoms can easily be seen. For example, the effective radius

scales ∼ n2, demonstrating the large spatial extent of Rydberg atoms. Another

benefit of the scalings is that they aid in choosing a suitable Rydberg state for a

given experiment, without the need run exact calculations for every state. For

example, if the polarizability or the Stark shift of the 60S1/2 state is known

(Fig. 1.1b), the shift for other S states can be obtained by multiplying the y-axis

in Fig. 1.1b, or α, by (n′/60)7. The scaling laws also help to identify tradeoffs

that are made when changing n. For example, in an experiment involving

interactions between Rydberg atoms, choosing an extremely high n state might

seem advantageous. However, high n states are more sensitive to background dc

electric fields (α ∼ n7) and the coupling strength for exciting atoms into these

states decreases (
〈
5P3/2|er|nL′

〉
∼ n−3/2).
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Table 2.4: List of scaling laws for alkali Rydberg atoms.

Quantity Symbol Scaling Ref.

Radius 〈r〉 n2 [40]

Transition Dipole 〈nL|er|nL′〉 n2 [40]

Rydberg Excitation Dipole
〈
5P3/2|er|nL′

〉
n−3/2 [60]

Binding Energy Eb n−2 [40]

Polarizability α n7 [40]

Dipole - Dipole Interaction C3 n4 [61]

van der Waals Interaction C6 n11 [61]

Radiative Lifetimes (low-L) τ n3 [40]

2.2 Rydberg EIT

Since the first observation in 2007 [62], Rydberg atom electromagnetically induced

transparency (EIT) has been used to investigate Rydberg-Rydberg interactions

[63], optical nonlinearities [64] and measure quantum defects [51]. In this thesis,

Rydberg EIT is used to measure the amplitudes of static (dc) electric fields

and resonant microwave (MW) fields. As introduced in Section 1.2, EIT is a

quantum phenomena, where a medium, in this case an atomic medium, can be

made transparent for a certain frequency of light, by using a second frequency

of light. Rydberg EIT is done in a ladder system as shown in Fig. 2.2, with

the top of the ladder being a Rydberg state. Three atomic states are coupled

together by two lasers. In the figure, the ground state, |1〉, 5S1/2 is coupled to

the intermediate 5P3/2 state, |2〉, with a laser at 780 nm, referred to as the probe

laser. The third state, |3〉, in the system is a Rydberg state. The intermediate

state and the Rydberg state are coupled together by a laser ∼ 480 nm, named
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the coupling laser. When the coupling laser is on resonance with states |2〉

and |3〉, the atom no longer absorbs light on the probe transition. This is

illustrated in Fig. 2.3a and b. First, considering only the probe laser in a two

level system, the absorption profile as the frequency of the probe laser is swept

across resonance is shown in Fig. 2.3a. The result is an absorption dip with a

Lorentzian profile, and a full width at half maximum (FWHM) that is equal to

the rate of spontaneous emission of the 5P3/2. Adding the resonant coupling

laser into the system modifies the absorption spectrum as shown in Fig. 2.3b.

The appearance of the narrow transmission window near probe resonance is the

hallmark of EIT.

2.2.1 Hamiltonian

In order to theoretically describe the system, the Hamiltonian of the system

shown in Fig. 2.2 is constructed. The Hamiltonian of the atom-light system is

H = Ha +HE, (2.12)

where Ha is the atomic Hamiltonian in the absence of any external fields,

Ha = 0|1〉〈1|+ }ω2|2〉〈2|+ }ω3|3〉〈3|, (2.13)

and HE is the electric dipole Hamiltonian, accounting for the atom-light interac-

tion. HE = −e~r · ~E, where e is the magnitude of the electron charge, and ~E is

the external electric field. This is a semiclassical treatment, where atoms are

treated quantum mechanically, but the electric field of the incident radiation is
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Figure 2.2: Diagram of the energy levels used in the 3 level EIT

ladder system. Relative to state |1〉, the energies of states |2〉 and

|3〉 are }ω2 and }ω3 respectively. The ∆’s are the detunings of the

lasers from the atomic transitions. Radiative decay from each excited

states is represented by Γ.

considered classically. Classically an electric field oscillating at angular frequency

ω is written as,

~E(ω, t) = ~E0 cos (ωt) =
E0

2

(
ε̂e−iωt + ε̂∗eiωt

)
, (2.14)

where E0 is the amplitude of the field, and ε̂ are spherical unit vectors. The

external light field is composed of light at the probe and coupling frequencies,

~Etot(t) = ~E(ωp, t) + ~E(ωc, t)

=
Ep
2

(
ε̂pe
−iωpt + ε̂∗pe

iωpt
)

+
Ec
2

(
ε̂ce
−iωct + ε̂∗ce

iωct
)
.

(2.15)
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The total Hamiltonian can be constructed in matrix form using Eq. 2.12, 2.13,

and 2.15,

H =
}
2

 0
(
Ω∗pe

iωpt + Ωpe
−iωpt

)
0(

Ω∗pe
iωpt + Ωpe

−iωpt
)

2ω2 (Ω∗ce
iωct + Ωce

−iωct)

0 (Ω∗ce
iωct + Ωce

−iωct) 2ω3

 .

(2.16)

In this notation the Rabi frequencies, Ωi, are defined as,

Ωp =
Ep
}
〈2|ε̂p · er|1〉 =

Ep
}
〈1|ε̂∗p · er|2〉∗

Ω∗p =
Ep
}
〈2|ε̂p · er|1〉∗ =

Ep
}
〈1|ε̂∗p · er|2〉

Ωc =
Ec
}
〈3|ε̂c · er|2〉 =

Ec
}
〈2|ε̂∗c · er|3〉∗

Ω∗c =
Ec
}
〈3|ε̂c · er|2〉∗ =

Ec
}
〈2|ε̂∗c · er|3〉

(2.17)

The quantities µjk = 〈j|ε̂ · r|k〉 are transition dipole moments between states

|k〉 and |j〉, and are a measure of transition strength. The details necessary to

calculate the transition dipole moments are found in Appendix A.

To make the calculations more tractable the time dependence of the Hamil-

tonian can be removed. The basis states can be rotated by a time dependent

unitary transformation,

|ψnew(t)〉 = U(t)|ψ(t)〉. (2.18)

such that the new Hamiltonian will be time independent. The basis states will be

rotated through a unitary transformation to a reference frame that is co-rotating

with the applied electric fields,

U(t) =

1 0 0

0 e−iωpt 0

0 0 e−i(ωp+ωc)t

 . (2.19)
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For any time dependent unitary transformation the new Hamiltonian is [65],

Hnew = i}
dU †

dt
U + U †HU (2.20)

Combining Eq. 2.16, 2.19, and 2.20 the Hamiltonian in the new reference frame

becomes,

Hnew =
}
2

 0
(
Ω∗p + Ωpe

−2iωpt
)

0(
Ωp + Ω∗pe

2iωpt
)

−2∆p (Ω∗c + Ωce
−2iωct)

0 (Ωc + Ω∗ce
2iωct) −2(∆p + ∆c)

 . (2.21)

The quantities ∆p,c are the detunings of the probe and coupling laser from

resonance,

∆p = ωp − ω2

∆c = ωc − (ω3 − ω2)

(2.22)

By applying the rotating wave approximation the Hamiltonian can be made

time independent. In the rotating wave approximation the terms that oscillate

at twice the frequency of the electric field are neglected. This approximation is

valid when Ω� ω [65]. The final Hamiltonian is,

H ′ =
}
2

 0 Ω∗p 0

Ωp −2∆p Ω∗c
0 Ωc −2(∆p + ∆c)

 . (2.23)

2.2.2 Theoretical Results

Using the time independent Hamiltonian, the time independent Schrödinger

equation can be solved to obtain the new states and energies. To see the origin

of EIT, it is instructive to look at the new eigenstates when the detunings of
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both lasers are 0 (∆p = ∆c = 0),

|1′〉 = −Ω∗c |1〉+ Ωp|3〉

|2′〉 = Ω∗p|1〉 −
√
|Ωp|2 + |Ωc|2|2〉+ Ωc|3〉

|3′〉 = Ω∗p|1〉+
√
|Ωp|2 + |Ωc|2|2〉+ Ωc|3〉.

(2.24)

States |2′〉 and |3′〉 have components of all three bare atomic states. However,

|1′〉 does not have a component of state |2〉. Since the lasers couple states |1〉 and

|3〉 to state |2〉, atoms in state |1′〉 do not interact with the optical fields. |1′〉 is

called a dark state. Atoms in a dark state are transparent to the optical fields.

This dark state is present in the three level system with two optical fields present,

however if the coupling field is not present there is no dark state. The presence

of the coupling field renders the medium transparent to the probe field, this is

the reasoning behind the moniker electromagnetically induced transparency.

Another instructive case to consider is the weak probe regime, |Ωp| � |Ωc|.

In this situation the effect of the probe laser on the system can be neglected,

Ωp = 0. Diagonalizing the Hamiltonian yields the eigenenergies,

E ′1 = 0

E ′2 = −}∆p −
}|Ωc|

2

E ′3 = −}∆p +
}|Ωc|

2
.

(2.25)

The energy of |1′〉 remains unchanged from the energy of |1〉 in the uncoupled

basis. However, the energies of states |2′〉 and |3′〉 are shifted ±}
2
|Ωc| from the

uncoupled energy of |2〉. This is illustrated in Fig. 2.4. In the diagonalized basis,
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Figure 2.3: Theoretical calculations for the transmission of the probe

laser for three different cases, (a) two level atom, (b) EIT regime,

and (c) Autler-Townes regime.

also known as the dressed atom basis, it appears that |2〉 is split into two different

states that are separated by the energy }|Ωc|, this is known as Autler-Townes

splitting [66]. The energy separation can be controlled by changing the intensity
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of the coupling laser.

Solving the Schrödinger equation is adequate when a single wave function can

describe all of the atoms in the system. However, in the following experiments

this is not the case, and the density matrix formalism is used. The density

matrix is suitable for dealing with mixed states, where atoms are in different

states at the same time. In this formalism the analogue of the Schrödinger

equation is the Liouville-von Neumann equation,

dρ(t)

dt
=

1

i}
[H(t), ρ(t)] + L. (2.26)

ρ is the density operator, and L is the decay and decoherence operator, introduced

to account for spontaneous emission and other relaxation phenomena [67],

Lij =
Γij
2

(2σjiρσij − σiiρ− ρσii) , (2.27)

where σ is the projection operator σij = |i〉〈j|, and Γij is the decay rate from

state |i〉 to state |j〉. Evaluating Eq. 2.26 for the described systems results in

a set of coupled differential equations. The coupled differential equations in

Eq. 2.26 can be solved either time dependently, or in the steady state by setting

ρ̇(t) = 0. For most cases in this thesis, this equation is solved in the steady state,

the exceptions will be noted. Evaluation results in nine coupled differential
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equations,

ρ̇11(t) = Γ21ρ22(t)−
iρ21(t)Ω∗p

2
+
iρ12(t)Ωp

2

ρ̇21(t) =
1

2
(2∆pρ21(t)− ρ31(t)Ω∗c + Ωp(ρ22(t)− ρ11(t)) + iρ21(t)Γ21)

ρ̇31(t) =
i

2
(2ρ31(t)(∆p + ∆c)− ρ21(t)Ωc + ρ32(t)Ωp + iρ31(t)Γ32)

ρ̇22(t) =
i

2

(
ρ23(t)Ωc − ρ32(t)Ω∗c − ρ12(t)Ωp + ρ21(t)Ω∗p

)
+ ρ33(t)Γ32 − ρ22(t)Γ21

ρ̇12(t) = − i
2

(
2∆pρ12(t)− ρ13(t)Ωc + Ω∗p(ρ22(t)− ρ11(t))− iρ12(t)

)
ρ̇13(t) = − i

2

(
2ρ13(t)(∆p + ∆c −

i

2
Γ32)− ρ12(t)Ω∗c + ρ23(t)Ω∗p

)
ρ̇23(t) = − i

2
(2∆cρ23(t) + Ω∗c(ρ33(t)− ρ22(t)) + ρ13(t)Ωp − iρ23(t)Γ32)

ρ̇33(t) = − i
2

(ρ23(t)Ωc − ρ32(t)Ω∗c − 2iρ33(t)Γ32)

ρ̇32(t) =
i

2

(
2∆cρ32(t) + Ωc(ρ33(t)− ρ22(t)) + ρ31(t)Ω∗p + iρ32Γ32

)
.

(2.28)

The coupled differential equations can be solved for ρij. The diagonal matrix

elements ρii are the populations in state |i〉. The off-diagonal elements ρij are

coherences between states |i〉 and |j〉. The theoretical quantity of interest is the

imaginary part of ρ12, as it is proportional to the absorption of the probe laser

[68].

α(ωp) =
2Nωpµ

2
21

cε0}Ωp

Im(ρ12), (2.29)

where N is the density of atoms, ωp is the frequency of the probe field and µ21

is the transition dipole moment between state |2〉 and |1〉. α is the absorption

coefficient in Beer’s law [69],

I(ωp, `) = I0e
−α(ωp)`, (2.30)
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where I(ωp, `) is the intensity of the probe light after passing through the atoms,

I0 is the incident intensity, and ` is the length of the atomic sample.

The equations are solved for numerical parameters specific to this system.

Γ21 = 2π × 6.07 MHz is the decay rate of the 5P3/2 state. Γ32 = 2π × 1.1 kHz is

the inverse of the radiative lifetime of the 53D5/2 state calculated from Eq. 2.11a.

Blackbody decay and ionization are small compared to the radiative lifetime and

are ignored to keep the three level system closed. For experimental realizable

Rabi frequences of probe and coupling lasers the system is solved for Im(ρ12).

The probe transmission in arbitrary units for several different cases is shown in

Fig. 2.3. Case (a) is a two level system with Ωp = 2π × 1.0 MHz and Ωc = 0. In

case (b) both probe and coupling light is present with Ωp = Ωc = 2π × 1.0 MHz

and the coupling light is on resonance, ∆c = 0. A small window of transparency

appears in this case around ∆p = 0. The width of transparency is much less that

the linewidth of the two level transition. This is known as the EIT regime because

Ωc < Γ21. Case (c) illustrates the Autler-Townes regime with Ωp = 2π × 1 kHz

and Ωc = 2π × 10 MHz. In the Autler-Townes regime Ωp � Γ21 � Ωc. The

narrow window of transparency is replaced with two separate resonances for

the probe laser, and the frequency spacing is directly proportional to the Rabi

frequency of the coupling laser. This is illustrated in Fig. 2.3c, Ωc = 10 MHz,

and the two absorption peaks have a minimum at ±5 MHz.
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Figure 2.4: Energy level diagram for the three level system in the

weak probe regime. (a) Energy levels in the uncoupled basis. (b)

Energy levels in the atom-field dressed atom basis. This picture

illustrates Autler-Townes splitting. State |2〉 is effectively split into

two states, with the amount of splitting dependent on |Ωc|.

2.2.3 Doppler Averaging

Some of the experiments in this thesis are carried out in a vapor cells near room

temperature. The atoms in the cell have a Maxwell-Boltzmann distribution of

velocities,

f(v) =
1

u
√
π
e
−v2

u2 , (2.31)

where u =
√

2kBT/M is the most probable speed of atoms with mass M in a

gas at a temperature T . Atoms with different velocities parallel to the direction

of propagation of the laser beams will see a different laser frequency of light.

27



The detunings ∆ become velocity dependent,

∆p = ωp − (ω2 − ω1)− ωp
c
v

∆c = ωc − (ω3 − ω2) +
ωc
c
v.

(2.32)

The Doppler shifts for the probe and coupling frequencies are not the same. To

minimize Doppler broadening of the signal, the experiment is set up with the

probe and coupling beams counter-propagating. The sign difference in the above

equations is because the two laser beams are counter-propagating. Solving the

density matrix equations for atoms in a thermal vapor requires summing up

the contributions from all velocity classes. The value of ρ12 is evaluated at a

particular velocity, and is weighted with the Maxwell-Boltzmann distribution,

ρ12tot =
∑
v

ρ12(v)
1

u
√
π
e
−v2

u2 . (2.33)

2.2.4 Transit-Time Broadening

Another effect from atoms in a thermal vapor is transit-time broadening. Atoms

in a thermal vapor do not interact with the laser fields continuously. Due to

their velocities, atoms are constantly entering and leaving the interaction region.

The interaction region is the area of overlap of the two lasers. The atoms that

are entering the interaction region will be in the ground state, while atoms that

are exiting can be in the ground state or an excited state. Any exiting excited

state atoms will be replaced by ground state atoms, so this effect is modeled as

an increase in decay rate (decrease in lifetime). The decay rates of the excited
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Table 2.5: List of decay rates of relevant atomic states due to radiative

decay and transit time broadening.

5P3/2 state Transit-time Broadening Rydberg states

Γ21 = 6.07 MHz Γttb = 150− 300 kHz Γ32 = 0.5− 5 kHz

states become [70],

Γtotal = Γrad +

√
2u

D
, (2.34)

where D is the 1/e diameter of the intensity of the Gaussian laser beam, and u

is the most probable speed of atoms in the gas. This has the largest effect on

the Rydberg state because the radiative decay rate is small compared to the

experimental transit-time broadening rates, as can be seen in Table 2.5.
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Chapter 3

Measuring Microwave Amplitudes with

Rydberg EIT

As outlined in Section 1.3 the development of atomic measurements and standards

has historically been very successful, however very little progress has been made

in the area of microwave electric fields. Recently there has been some work

done with measuring microwave magnetic fields in atomic vapor [71, 72, 73, 74].

These approaches use microwaves to drive magnetic dipole transitions between

ground states in Rb. This approach can only be used with a handful a hyperfine

splittings of alkali atoms, and its sensitivity is limited by the strength of the

magnetic dipole transition.

In the following experiments, microwaves drive electric dipole transitions

between Rydberg atoms. Driving Rydberg-Rydberg transitions with microwaves

has been done for decades, [40, 75, 76, 77, 78]. The novel idea of these experiments

is to combine resonant microwaves with the recent developments of Rydberg

atom EIT [62]. One of the big advantages of this approach is the optical

readout of the signal. The detection can be done far away from the atoms

being studied. Traditionally, Rydberg atom experiments are carried out in large

apparatuses involving an ultra high vacuum environment and metal vacuum

chambers. Additionally, data is usually taken by detecting ions after pulsed field

ionization. These methods introduce large masses of metal in the atomic region
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causing large perturbations of an incident microwave field. Here, experiments

are done in a glass vapor cell, and the signal is detected on a photodiode far

away from the cell alleviating these problems. Unlike dipole antennas which have

traditionally been used for microwave electric field measurement, the size of vapor

cell can be � λMW . Miniaturizing the vapor cell minimizes the perturbation of

field due to the vapor cell.

3.1 Amplitude Measurement

The microwave measurement is performed using a modified version of the Rydberg

atom EIT presented in Section 2.2. A second Rydberg state is added to the

system, and the two Rydberg states are coupled together by microwaves as

illustrated in Fig. 3.1a. Calculations are performed using the same theoretical

tools as the 3-level system, however a fourth level is added. The Hamiltonian is,

H ′ =
}
2


0 Ω∗p 0 0

Ωp −2∆p Ω∗c 0

0 Ωc −2(∆p + ∆c) Ω∗MW

0 0 ΩMW −2(∆p + ∆c −∆MW )

 . (3.1)

The quantities ΩMW and ∆MW are defined following the definitions for the probe

and coupling fields in Eq. 2.17 and Eq. 2.22 respectively,

ΩMW =
EMW

}
〈4|ε̂MW · er|3〉

∆MW = ωMW − (ω4 − ω3) .

(3.2)

Transit time broadening of the second Rydberg state is included in the calculation.

Doppler shifts of the microwave frequencies are ignored because they are 4-5
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Figure 3.1: Energy level diagrams of the 4-level system used to

measure MW electric fields. (a) Bare atom energy level diagram. (b)

Energy level diagram in the dressed state picture for large ΩMW ,

which shows the Autler-Townes splitting of the 53D5/2 state.

orders of magnitude smaller than the shifts at optical frequencies, and are too

small to be observed.

The Rydberg EIT system converts the amplitude of the microwave electric

field into an optical frequency measurement, as can be seen in Fig. 3.1b. In

this situation there is Autler-Townes splitting of the 53D5/2 state due to the

microwaves. Similar to the Autler-Townes splitting on the 5P3/2 state detailed

in Section 2.2.2, H ′ can be diagonalized with the conditions, ΩMW � Ωp,Ωc and
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∆MW = 0. The resulting eigenenergies are,

E ′1 = 0

E ′2 = −}∆p

E ′3 = −}∆p − }∆c −
}|ΩMW |

2

E ′4 = −}∆p − }∆c +
}|ΩMW |

2
.

(3.3)

The dark state from the 3-level system is now split into two states E ′3 and E ′4

with an energy spacing of }|ΩMW |, and the medium absorbs the probe laser on

resonance. The difference in probe transmission between a non-Doppler 3 and

4-level system is shown in Fig. 3.2. The Rabi frequencies used in the calculation

are Ωp = Ωc = ΩMW = 2π × 1 MHz, except for the 3-level case when ΩMW = 0.

The window of transparency is split into two and the peak separation is equal

to ΩMW/2π.

3.1.1 Doppler Mismatch

When the probe laser is scanned in a Doppler medium, the energy of the Autler-

Townes splitting of the Rydberg state is not equal to the frequency separation

of the two transparency peaks. Rather, the observed splitting is multiplied by a

factor of λc/λp. This is illustrated in Fig. 3.3, where the coupling laser is fixed

and the probe laser is scanned. The experimentally measured splitting is ∆split.

The two sets of arrows in the level diagram of Fig. 3.3a show the resonance

condition for each transmission peak. The two transparency peaks appear when

both lasers are on resonance with the same velocity class of atoms. Since the
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Figure 3.2: Theoretical calculations of the probe transmission for 3

(a) and 4-level (b) systems. No Doppler averaging or transit-time

broadening is included. The transmission window is split into two

different windows in the 4-level case. The splitting of the peaks

is 1 MHz, which is equal to the Rabi frequency of the microwaves,

ΩMW .

coupling laser is fixed, each peak is a result of satisfying the ∆p + ∆c = 0

condition, with atoms having different velocities, v1 and v2. The relative Doppler

shift of the coupling frequency between the two velocities of atoms is,

∆Ryd =
2π

λc
(v2 − v1) . (3.4)

The corresponding shift of the probe frequency for atoms with velocities v1 and

v2 is,

∆split =
2π

λp
(v2 − v1) . (3.5)

34



Combining Eq. 3.4 and 3.5, ∆split becomes,

∆split =
λc
λp

∆Ryd. (3.6)

The measured ∆split is less than the splitting between Rydberg states ∆Ryd. The

result is general for a ladder system and also applies to splitting between fine

structure Rydberg states [62]. If the probe laser is fixed and the coupling laser

is scanned, then ∆Ryd = ∆split. In this case, the probe laser will always be on

resonance with the same velocity atoms, so the position of the intermediate state

will remain the same. The coupling laser detuning is then equal to the energy

splitting.

3.1.2 Experimental Setup and Results

The measurements take place in a glass vapor cell at or slightly above room

temperature, where two lasers and the microwaves interact with 87Rb atoms.

A schematic of the experimental setup is shown in Fig. 3.4. The probe laser

(∼ 780 nm) is resonant with the 5S1/2(F = 2)↔ 5P3/2(F = 3) transition and is

overlapped inside the cell with a counter propagating coupling laser (∼ 480 nm)

resonant with the 5P3/2(F = 3)↔ 53D5/2 transition inside of a vapor cell. The

coupling light is derived from a homebuilt frequency doubling system described

in Section 4.6.5. A microwave field resonant with the 53D5/2 ↔ 54P3/2 is also

incident upon the cell. From the microwave source (HP 8341B), microwaves

are coupled into a waveguide and horn antenna, which directs them toward the
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Figure 3.3: Effects of Doppler averaging the 4-level system. (a)

The splitting of the Rydberg state is mapped onto the splitting

measured by scanning the probe laser. The arrows on the left and right

correspond to resonance conditions for atoms of different velocities.

(b) Results of the Doppler averaged calculation for ΩMW = 2π ×

40 MHz. The peaks in the figure are split by ∆split = 40480
780 MHz =

24.6 MHz.

vapor cell. The propagation direction of the microwaves is orthogonal that of

both laser beams. All three fields are polarized along the x-direction.

The measurement is done optically by detecting the transmission of the probe

light on a photodiode. This allows for detection electronics and other metal

objects to be positioned far away from the detector. The observed signal is
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Figure 3.4: A schematic of the experimental setup.

small, so, to increase the signal-to-noise ratio, the coupling light is amplitude

modulated by using an acousto-optic modulator and the signal is processed using

a lock-in amplifier.

Experimental results for no microwaves and increasing microwave powers,

while scanning the probe laser frequency are shown in Fig. 3.5a. For no mi-

crowaves a single peak is observed. As the microwave power is increased the

peak starts to split into two separate peaks. According to Eq. 3.7, ∆split scales

linearly with the applied EMW . Testing this experimentally, EIT spectra are

taken for many different microwave powers PMW by changing the power of the

front panel of the microwave generator. To determine the position of the peaks,

the spectra are fit to a function of two Gaussians. The results are plotted in black

in Fig. 3.5b. The red line is a linear fit to the data, confirming the experimental

results are consistent theoretical expectations.
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Figure 3.5: Experimental lineshapes for 3-level EIT (black) and 4-

level EIT for increasing MW powers. (b) Plot of the experimental

measured splittings as a function of the square root of microwave

power. The vertical error bars, ±200 kHz, are due to the experimental

uncertainty in the frequency of the splitting, and are smaller than

the points. The red line is a linear fit to the data.

3.1.3 Calculating Electric Field Amplitude

The electric field can be calculated using the formula,

EMW =
h∆splitλp
µMWλc

. (3.7)

For the blue curve in Fig. 3.5a, ∆split = 38.8 ± 0.2 MHz. λp = 780.246 nm

and λc = 480.005 nm are measured with a commercial wavemeter with an

uncertainty of ±0.001 nm. λc agrees with quantum defect calculations, and
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Table 3.1: Relative uncertainties in the calculation of the electric field.

The uncertainty in the Planck constant is from the 2014 CODATA

[80]. Experimental uncertainties of the wavelengths and ∆split are

calculated using numbers in the text. The estimated uncertainty of

the wavefunctions is the source of the uncertainty in µ43.

Quantity Relative Uncertainty

h 1.2× 10−8

λp 1× 10−6

λc 2× 10−6

µ43 0.01

∆split 0.01-0.04

λp is consistent with more precise experimental values [57]. In principle, the

wavelengths can be measured with more precision using frequency combs yielding

relative uncertainties of 2×10−14 [79]. The transition dipole moment is calculated

to be µMW = 1619ea0, the details of the calculation are in Appendix A. Using

all of these values the calculated electric field is EMW = 30.4± 0.2 mV/cm. The

uncertainties in the calculation are detailed in Table 3.1. This list does not

consider systematic errors present in the experiment. The largest systematic

error is due to a background magnetic field, which will shift the states and

change µMW by ∼ 1%.
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3.1.4 Small Fields

At electric fields of ∼ 10 mV/cm the measured splittings are used to calibrate

the system, and smaller electric fields are measured when the system is not

in the Autler-Townes regime. With the three fields on resonance the probe

transmission is monitored as the strength of the MW field is varied, shown in

Fig. 3.6a. The black curve is experimental data and the red curve is the result

of the 4-level density matrix calculation. For these experimental parameters

the probe transmission is increased until ∼ 1400µV/cm with a maximum at

∼ 700µV/cm. The increase in transmission is counter-intuitive, but can be

explained by looking at the probe transmission as a function of velocity, Fig. 3.6b.

The total signal is the sum over all velocities. The MW electric field broadens

the transmission in velocity space. The area under the red curve is larger that

the black curve. For small MW fields the contribution from nonzero velocity

atoms increases the signal. This effect is only present in a Doppler broadened

sample of atoms.

To determine the smallest MW field we can detect, the probe and coupling

lasers are kept on resonance while the MW frequency is scanned across resonance,

as shown in Fig. 3.7a. The black curves are experimental data and the red

curves are Gaussian fits to the data. Each experimental trace is an average of

9000 scans. The peak heights from the Gaussian fits are plotted (black squares)

along with the theoretical expectations (black line) in Fig. 3.7b. The dashed red
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Figure 3.6: (a) Plot showing the increase of probe transmission for

small EMW . The black line is experimental data. The red line is the

results of theoretical calculation. (b) Velocity contributions to the

transmission signal.

(blue) lines show the theoretical variation for a change of ±10% of the coupling

(probe) power.

The lowest detected MW electric field is 8.33 ± 0.37µV/cm. The error

bars are mainly due to the technical noise and the uncertainty in the applied

microwave field.

3.2 Polarization Measurement

In the previous section, the amplitude of the MW electric field was of interest.

In addition, using the same system, the polarization of the MW electric field can

also be measured. The polarization measurement uses the hyperfine structure of
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Figure 3.7: Increase in probe transmission for small MW fields. (a)

Plot of the increased transmission as the MW are scanned across

resonance, for various EMW The black lines are experimental data,

and the red lines are Gaussian fits to the data. (b) The maximum of

the Gaussians in (a) are plotted in as black points. The vertical error

bars are due to the uncertainty in the fit. The horizontal error bars

are due to the uncertainty in the applied electric field. The black line

is the theoretical calculation.

the 4 levels and the associated selection rules for the three fields. To understand

the measurement, the simple 4 state model needs to be abandoned, and we

have to consider the degenerate magnetic sublevels for each state as shown in
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Figure 3.8: Complete energy level diagram of the system including

hyperfine structure. Each set of states is degenerate, and is labeled

by |i〉. A dummy state |D〉 is included in the calculation to simplify

the decay due to transit time broadening of the excited states.

Fig. 3.8. The 4 states from the previous treatment, now become 52 states. For

each level |1〉 − |4〉 the states are degenerate in energy. The hyperfine splittings

for the 5S1/2 and 5P3/2 states, 6.8 GHz and 266 MHz respectively, are easily

resolved such that only a single F is considered. For the nP and nD Rydberg

states, the hyperfine splitting is negligible [52] and the states are considered to

be degenerate.

The sensitivity of the system to the MW polarization can be seen by looking
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Figure 3.9: Theoretical probe transmission spectra of (a) 3 and

(b) 4-level Rydberg atom EIT spectra. Lineshapes are polarization

dependent combinations of each case.

at the allowed MW transitions. If the MWs are π polarized, they will drive

∆mF = 0 transitions. Any atoms that are coupled to the stretched F = 4

mF = ±4 states in the 53D5/2 manifold will not be coupled to the 54P3/2

manifold, shown in purple. These atoms will not be affected by the microwaves

and will effectively be in a 3-level system. Atoms that are coupled to the other

states in the 53D5/2 manifold will be in a 4-level system. In an ensemble of

atoms some will exhibit 3-level behavior others will have 4-level behavior, so

experimental lineshapes can be characterized as combinations of three and four

level EIT as shown in Fig. 3.9.
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3.2.1 Theory

Calculations for the system shown in Fig. 3.8 were carried out. The basics of

the calculation are the same as for the 4-level theory. However, there are some

significant differences, which will be highlighted. Rabi frequencies and radiative

decay between states depend on the quantum numbers of each state. States are

numbered by i, j ranging from 1− 52 with |i〉 = |ni, Li, Si, Ji, Fi,mFi〉.

A set of coupled differential equations for ρ̇ij are constructed similar to

Eq. 2.28, but in this case there are 53×53 equations. 52 of the states correspond

to the magnetic sublevels shown on the left side of Fig. 3.8. The last state is a

dummy state |D〉 shown on the right side of Fig. 3.8, and is used for including

transit-time broadening effects. The decay back to the ground state due to

transit time broadening will equally populate the five ground states. Instead

of having five separate decay rates for each excited state, they each have one

decay rate into |D〉, then |D〉 decays equally into each of the 5 ground states.

The total decay rate of both states is equal to Γttb.

Rabi Frequencies

Resonant fields couple different magnetic sublevels, so a separate Rabi frequency

is needed between each state,

Ωij =
Eµij
}

. (3.8)
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Table 3.2: List of the coefficients needed to calculate Rabi frequencies

for different polarization cases. The associated ∆mF selection rules

are also listed.

Polarization direction
∑1

q=−1Aqεq Transitions

x̂ (linear) 1√
2
(ε−1 − ε1) ∆mF = ±1

ŷ (linear) −i√
2
(ε−1 + ε1) ∆mF = ±1

ẑ (linear) ε0 ∆mF = 0
1√
2
(x̂− iŷ) (circular) ε1 ∆mF = +1

−1√
2
(x̂+ iŷ) (circular) ε−1 ∆mF = −1

The transition dipole moment µij = 〈i|ε̂ · er|j〉. ε̂ is the polarization unit vector

of the electric field, Ep, Ec, or EMW . The polarization of the three fields are

either linearly or circularly polarized. In order to describe these polarizations, ε̂

is written in the spherical basis ε̂q,

ε̂+1 = − 1√
2

(x̂+ iŷ)

ε̂0 = ẑ

ε̂−1 =
1√
2

(x̂− iŷ) .

(3.9)

The value of ε̂ · r̂ depends on the polarization of the electric field with,

ε̂ · r̂ =
1∑

q=−1

Aqεq. (3.10)

The values for several common polarizations are shown in Table 3.2. The dipole

moment can be separated into radial and angular parts, µij = µrij × µaij . The

radial part is only dependent on n, n′, L, and L′, µrij = 〈nL|r|n′L′〉. µrij ’s value

is the same for every transition between the same two levels. µaij will differ
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Figure 3.10: Angular parts of Ωp coupling states on the 5S1/2, (F =

2) ↔ 5P3/2, (F
′ = 3) transition for probe light polarized along the

x-direction. The selection rules for this case are ∆mF = ±1

for transitions between different magnetic sublevels, giving each transition a

different dipole moment. As an example, the values of µaij for the probe laser

polarized along the x-direction are shown in Fig. 3.10. Complete expressions for

µrij and µaij are in Appendix A.

Radiative Decay

When considering magnetic sublevels, states no longer decay into only one state.

A single upper state can decay into multiple lower energy states. It is necessary

to specify a decay rate for state |i〉 to |j〉,

Γij = Γ0Γbij, (3.11)

where Γ0 is the total decay rate as defined in Table 2.5, and Γbij is the branching

ratio from initial state |i〉 to final state |j〉. Radiative decay follows dipole
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Figure 3.11: Branching ratios for radiative decay from 5P3/2, (F
′ =

3) → 5S1/2, (F = 2). There is another hyperfine ground state,

5S1/2, (F = 1), but because of selection rules (∆F = ±1, 0) there is

no decay from 5P3/2, (F
′ = 3). The branching ratios for each excited

state sum to 1. For example the branching ratios for 5P3/2, (F
′ =

3,mF = 0) are 1/5 + 3/5 + 1/5 = 1.

selection rules, which includes the condition that ∆mF = 0,±1. The branching

ratio for the transition between an upper level |L, S, J, F,mF 〉 and a lower state

with |L′, S ′, J ′, F ′,m′F 〉 is [81],

Γbij =(2L+ 1)(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)×{
L′ J ′ S

J L 1

}2{
J ′ F ′ I

F J 1

}2(
F ′ 1 F

−m′F m′F −mF mF

)2

.

(3.12)

Radiative decay is only considered between levels |2〉 → |1〉, |3〉 → |2〉, and

|4〉 → |2〉. An example of the branching ratios for the |2〉 → |1〉 transition is
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shown in Fig. 3.11. For each excited state the total decay rate is equal to Γ0,

∑
j

Γbij = 1. (3.13)

Selection rules for radiative decay create coherences between ground states.

Terms accounting for the coherence between multiple ground states need to be

added to the decay and decoherence operator Lij, Eq. 2.27. The decay and

decoherence operator is redefined as,

Lij =
Γij
2

(2σjiρσij − σiiρ− ρσii) + Lgij. (3.14)

The coherences between ground states with the same F are [82],

Lgij =Γ21

F ′∑
m′F1=−F ′

F ′∑
m′F2=−F ′

1∑
q=−1

(−1)m
′
F1+m′F2

√
(2F ′ + 1)(2F ′ + 1)

×

(
F 1 Fp

i− F + 1 q −m′F1

)(
F 1 Fp

j − F + 1 q −m′F2

)

× ρm′F1+2F+F ′+2,m′F2+2F+F ′+2

(3.15)

where Γ21 = 2π × 6.07 MHz as defined in Table 2.5. In this case the excited

states have only one F ′ and the sums are over different excited m′F states. For

i = 1 and j = 2, Lg12 depends on the coherences between excited states,

Lg12 = Γ21

(√
2

3
ρ67 +

2

3

√
2

5
ρ78 +

1

5
√

3
ρ89

)
. (3.16)

Similar coherence terms were added for excited and Rydberg states, however

the effect was negligible due to non zero radiative decay time of those states.

After calculating all of the needed terms, the resulting set of equations has

2500+ equations and variables. Due to the enormity of the system, Mathematica
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is unable to algebraically solve the system in the steady state. The system is

solved time dependently and evaluated at time t = 6.4µs, when the system is

in the steady state. The solutions of interest are all of the ρij between ground

and first excited states, ρge. The absorption of the probe laser is calculated by

summing over all of the probe transitions,

α(ωp) =
2Nωp
cε0}

∑
g,e

µ2
egIm(ρge)

Ωeg

. (3.17)

3.2.2 Analysis of Several Cases

To demonstrate the sensitivity of the system to polarizations, it is instructive to

look at three different cases in detail. First, consider the case where all three

fields are polarized along the x-direction, Fig. 3.12. This is the case that was

used in the amplitude measurements. By looking at Fig. 3.12 all of the fields

are coupling σ (∆mF = ±1) transitions. Thus the line shape is from a purely 4

state system.

In the second case, both laser polarizations are rotated by 90◦ so that they are

aligned along the y-axis, while the microwaves remain polarized along the x-axis.

To simplify this explanation the quantization axis is considered to lie along the

x̂-direction. The lasers are σ polarized and couple ∆mF = ±1 transitions, while

the microwaves are π polarized and couple ∆mF = ±1 transitions. Most of the

ground state population will be optically pumped toward the mF = ±2 states.

Atoms in these stretched states will be strongly coupled to the stretched states

in the 53D5/2 manifold, which are not coupled to the 54P3/2 manifold. Not all
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Figure 3.12: Case 1, Êp = Êc = ÊMW = x̂. (a) Arrows show allowed

transitions in the system, each field couples states together with

∆mF = ±1. All of the states in the 53D5/2 manifold are coupled

to states in the 54P3/2 manifold. (b) Schematic of the experimental

setup indicating polarization and propagation direction of the three

fields. (c) Experimental (black) and theoretical (red) results.
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Figure 3.13: Case 2, Êp = Êc = ŷ, ÊMW = x̂. (a) Arrows show

allowed transitions in the system. For the simplicity of the explana-

tion, the quantization axis for this case is considered to be in the

x̂-direction. Probe and coupling fields couple states with ∆mF = ±1,

and MW couple states with ∆mF = 0. The stretched states in

the 53D5/2 manifold are not coupled to the 54P3/2 manifold. (b)

Schematic of the experimental setup indicating polarization and prop-

agation direction of the three fields. (c) Experimental (black) and

theoretical (red) results.

of the atoms are in these states, so the system exhibits both three and four level

character. The comparison between experiment and theory is shown in Fig. 3.13.
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Figure 3.14: Case 3, Êp = Êc = 1√
2

(x̂− iŷ) , ÊMW = ẑ. (a) Arrows

show allowed transitions in the system. The probe and coupling

fields couple states with ∆mF = +1. The MW field couple states

with ∆mF = 0. The 53D5/2, (F = 4,mF = 4) state is not coupled

to the 53P3/2 manifold. (b) Schematic of the experimental setup

indicating polarization and propagation direction of the three fields.

(c) Experimental (black) and theoretical (red) results.

In the third case, the system is almost entirely in a three level system.

The lasers are both circularly polarized and couple σ+ (∆m = +1) transitions,

while the microwaves are polarized along the z-direction coupling π transitions.

By looking at Fig. 3.14, the lasers will optically pump most of the atoms

53



into the F = 2,mF = +2 stretched ground state. The lasers will couple the

F = 2,mF = +2 ground state to the 53D5/2, F = 3,mF = 3 state, which is not

affected by the microwaves. The system has a large 3-level character but retains

a small amount of 4-level character due to relative laser Rabi frequencies and

transit-time broadening.

By analyzing these three cases, it is clear that the system is sensitive to the

relative polarizations between the lasers and microwaves. The only difference

between the results in Fig. 3.12 and Fig. 3.13 is that the polarization of both

lasers is rotated 90◦. Analyzing the signal for each case at ∆p = 0, the signal

changes from 0 to a maximum value. The method for measuring the polarization

of the microwaves is to analyze the probe transmission at ∆p = 0, as both lasers

are rotated together with the same linear polarization.

3.2.3 Experiment and Results

The geometry needed to describe a measurement of the MW electric field

polarization is shown in Fig. 3.15. The laser propagation direction is along the

z-axis indicated by the red arrow. The microwave polarization is the purple

arrow. The shadows are the projections of the microwave polarization onto the

x-y plane on the left and the x-z plane in the back. Both lasers are linearly

polarized along the direction of the blue arrow. During the measurement the

polarizations of the laser are rotated together. The amount of rotation of the

lasers from the x-axis is specified by angle ξz.
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Figure 3.15: (a) Schematic of the experimental setup. The lasers

propagate along the z-axis. From the horn antenna, the microwaves

polarization is illustrated with the purple arrow. The laser polar-

ization is indicated by the blue arrow. (b) Visualization of more

polarization directions and angles needed to determine microwave

polarization.

Any MW electric field can be split into two components. The first compo-

nent lies along the laser propagation (z) axis, Ez. The second component is

perpendicular to Ez, E⊥z = Ex +Ey, and lies in the x-y plane, shown in orange.

The angle between E⊥z and the x-axis is defined as ϕz. The angle between the

microwave polarization and the z-axis is defined as ζz, and is a rotation around

the axis shown in cyan, which is perpendicular to E⊥z in the x-y plane.

The experimental setup, as shown in Fig. 3.15, consists of the probe and
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coupling lasers overlapped and counter-propagating inside a cuboidal atomic

Rb cell with dimensions, 10 mm× 10 mm× 30 mm. Three pairs of orthogonal

Helmholtz coils surround the cell to cancel the background geomagnetic field to

a level of < 0.1 G. The experiment is conducted at a Rb vapor cell temperature

of 45◦C. The temperature corresponds to a Rb vapor pressure of 2.6× 10−6 Torr

which remains fixed throughout the experiments. The cell was heated to prevent

significant condensation of Rb on the walls of the vapor cell. Condensation of Rb

on the walls of the vapor cell causes reflections of the MWs leading to spurious

signals.

The polarizations of the laser beams are adjusted and filtered using waveplates

and Glan laser polarizers. The probe (coupling) laser spot size is 200 (65)µm and

the power is 15µW (11 mW). The corresponding probe (coupling) Rabi frequency

is 2π × 8.1(2π × 3.4) MHz. Similar to the amplitude experiments, the intensity

of the coupling laser is modulated at 40 kHz with an acousto-optic modulator

and the probe transmission is detected on a photodiode. The photodiode signal

is processed using a lock-in amplifier.

The MW electric field propagates along the y-axis (ϕz = 0◦) and is linearly

polarized. The polarization of the MW’s is changed experimentally by rotating

the antenna. Measurements are carried out for various laser and microwave

polarizations. The results are shown in Fig. 3.16. The inset shows an example

of the two of the measurements points with the microwaves polarized along

ζz = 0◦. The points are experimental data, and are a result of 20 averages.
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Figure 3.16: Probe transmission at zero detuning (∆p = ∆c =

∆MW = 0), for varying laser and microwave polarizations. Each

color represents data taken for the same microwave polarization. The

inset shows the experimental traces for two of the measurements with

ζz = 0. The maximum transmission is normalized to 1, and all of the

other values are scaled accordingly.
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The vertical error bars for the experimental points are due to statistical errors

in the measured peak height. The horizontal error bars are due to systematic

uncertainty in ξz, i.e. the polarizations of the lasers. The solid lines are the result

of the 53-state calculation, and the dotted lines are the result of the calculation

with ζ ± 1◦.

For each antenna polarization, the probe transmission oscillates between a

minimum and maximum as the lasers are rotated. The minimum of a curve

occurs when the system has the greatest 4-level character. This is the case when

the laser polarization overlaps with E⊥ (orange arrow). Therefore the position of

the minimum of each curve determines ϕz. As the lasers are rotated the ratio of

E⊥z/Ez changes, and the amplitude of the oscillation measures ζz. Measuring ϕ

and ζ along all three cartesian coordinate axes yields the following information,

ϕz = tan−1

(
Ey
Ex

)
, ζz= tan−1

(
|E⊥z|
|Ez|

)
,

ϕx = tan−1

(
Ez
Ey

)
, ζx= tan−1

(
|E⊥x|
|Ex|

)
,

ϕy = tan−1

(
Ez
Ex

)
, ζy= tan−1

(
|E⊥y|
|Ey|

)
.

(3.18)

It is important to note that it is impossible to distinguish the angle ζi from

180◦ − ζi, e.g. the purple and green arrows in Fig. 3.15 for i = z, because these

two cases differ only in the relative phase between Ei and E⊥i. Measuring ϕ along

another axis, e.g. ϕy, is theoretically sufficient to determine the MW electric

field polarization, except for the case where the MW electric field polarization

lies directly in the plane orthogonal to the 2 measurement axes. In this case,
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the phase of Ez relative to Ey cannot be determined by referencing both to Ex,

and measuring ζi provides no additional information. A measurement out of

the plane determined by the 2 measurement axes is required. Additionally, the

measurement becomes sensitive to noise if Ex is small and only ϕz and ϕy are

used to determine the MW electric field polarization. As a consequence, it is

best to measure ϕx, ϕy, and ϕz, provided no a priori knowledge of the MW

electric field polarization is known. Note that in general, ϕy 6= 90− ζz because

the angles are rotations along different axes. The relationship between ϕy and

ζz is,

ϕy = tan−1 (cot(ζz) sec(ϕz)) . (3.19)

A simplified model of the resonant probe transmission dependence on ξ

and ζ can be obtained by considering the projection of the MW electric field

vector ~E onto the probe and coupling laser polarization. From Fig. 3.15, the

projection of the MW electric field on the laser polarization direction is E‖ =

| ~E| cos(ξz − ϕz) sin(ζz). Due to branching between the 3 and 4-level behavior,

the resonant probe transmission can be approximated as,

T = 1− (E‖/| ~E|)2 = 1− cos2(ξi − ϕi) sin2(ζi). (3.20)

T = 1− cos2(ξz − ϕz) sin2(ζz). (3.21)

Curves using Eq. 3.21, with ϕz = 0 are shown as dashed lines in Fig. 3.16. The

probe transmission is normalized such that the maximum theoretical transmission

is one. The approximation neglects optical pumping and transit-time broadening
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effects that occur in the full 53-state system and therefore does not completely

reproduce the transmission amplitudes. However, the angular positions of the

minima and maxima as ξz is varied are predicted accurately. The simplified

model predicts the correct MW electric field polarization from a measurement

of ϕi. To get the correct probe transmission amplitude, the full 53-state theory

including optical pumping and Doppler averaging and transit time broadening

needs to be used.

In order to unambiguously determine the MW polarization direction, mea-

surements along multiple directions are needed. If the measurements are done

along three orthogonal directions, the knowledge of ϕx, ϕy, and ϕz are enough

to determine the direction of the polarization vector. The consequence of this

is that the complex 53-state theory is not needed to analyze the results, only

Eq. 3.21 is needed.

The maximum sensitivity of the measurement is when the 4-level peaks are

completely split from the 3-level peak. For our experimental parameters this

occurs at a MW electric field amplitude of ∼ 10 mV/cm. Increasing the MW

electric field strength has little effect on the central peak until ∼ 100 mV/cm.

At this point, the peak starts to shift and decrease in height, most likely due to

multi-photon transitions. In the measurement, the maximum sensitivity of ζz is

when ζz ∼ 45◦. At this angle the angular resolution detected in the experiment

is ∼ 0.5◦ in both ζ and ϕ. The angular resolution of ∼ 0.5◦ is derived from a

least squares fit of each trace to the theory.

60



3.3 Conclusions

To summarize, the amplitude and polarization of microwave fields at 14.3 GHz

were measured. Taking advantage of electric dipole transitions at MW frequencies

in 87Rb Rydberg atoms, improvements over traditional antenna measurements

have been made. In traditional measurements with dipole antennas, the lowest

measurable field is ∼ 1 mV/cm [83]. The experiments take place in vapor cells

at room temperature in a setup that is conducive for miniaturization. Electric

field amplitudes were measured in the range of 0.008− 30 mV/cm. The main

source of error in these experiments is noise due to laser frequency and amplitude

fluctuations, which in principle can be improved. With modest improvements

in the experimental apparatus, the limiting factor in the measurements will be

the determination of the dipole moments. Hopefully advances in microwave

measurements will spur other researchers to extend the accuracy of the dipole

moments.

In addition to the amplitude measurements, the polarization of the microwave

field was also measured. The measurement takes advantage of the energy level

structure when |3〉 → |4〉 is a ∆L = −1 transition. The MW field is mapped

onto the laser polarizations, and by taking data with different laser polarizations

the direction of the microwave field can be determined.

The general methods used in this chapter can be extended to other atoms and

other frequency ranges. Since these results, experiments have been carried out
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with 85Rb and 133Cs over a range of frequencies from 2−100 GHz [83, 84, 85, 86].

Furthermore, using Rydberg atom EIT with MWs driving a two-photon transition

electric fields up to 2300 mV/cm have been measured [87].
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Chapter 4

Experimental Setup

In this chapter, the experimental apparatus for measuring the electric fields near

a quartz surface is detailed.

4.1 Vacuum System

Surface experiments are performed in an ultra high vacuum (UHV) system shown

in Fig. 4.1. The system consists of a main chamber where all of the experiments

take place, and two pumps to achieve UHV pressures. The pressure in the

chamber during experiments is 3× 10−10 Torr. The two vacuum pumps are a 100

L ion pump (Gamma Vacuum), and a non-evaporable getter pump (CapaciTorr

D 400-2). The ion pump is sufficiently far away from the chamber so that the

magnetic fields from its magnets do not disturb experiments. Also, there no

direct line of sight from the ion pump to the experimental chamber preventing

ions from interacting with Rydberg atoms. The gate valve is used to connect a

pumping station for initially pumping the system down from atmosphere.

4.2 Experimental Timing

The timing and control of the experiment is done using two PCI data acquisition

boards, NI PCI-6254 and NI PCI-6723. The cards generate voltages at specific
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Figure 4.1: The vacuum system and experimental chamber used for

surface experiments. An ion pump and non-evaporable getter (NEG)

pump are continuously pumping on the system. The source of Rb

for the experiments is an ampoule inside of a flexible coupling with a

valve to control the Rb pressure inside the chamber. The gate valve

on the left allows for the connection of a pumping station, which is

used when first pumping down the system from an atmosphere of

pressure.

times to control many aspects of the experiment including, changing magnetic

fields, changing laser frequencies, shutters, etc. The experiment runs on a 10
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second cycle.

The NI PCI-6254 outputs digital signals and the NI PCI-6723 card outputs

analog signals. The output of the digital card is either 0 or 5 V, and the output

of the analog board has a maximum of 10 V and a minimum of −10 V. The

two cards are connected together with a ribbon cable and share the same clock.

The clock runs at 100 kHz and the timing resolution of the output signals is

10µs. The signals are routed from the back of the computer to custom made

primary break out boards. From the primary breakout boards the signals are

routed to the experiment using Cat 5 cables. With 4 twisted pairs each cable

can carry up to 4 different signals. The ethernet cables are plugged into custom

made secondary break out boards around the lab. On the secondary boards each

signal can be routed to either a BNC bulkhead, a set of terminals capable of

connecting a twisted pair, or both.

A program written in C++ is used to control both DAQ cards. The program

is capable of loading and saving pulse sequences.

4.3 Magnetic Field Coils

The magnetic field coils surrounding the main chamber are shown in Fig. 4.2.

There are three pairs of coil frames and 4 pairs of coils. Three sets of the coils are

wound in a Helmholtz configuration and are labeled x, y, and z. The magnetic

fields generated from these coils are orthogonal to each other, so any arbitrary
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Figure 4.2: The 4 pairs of magnetic field coils used in the experiment.

direction of magnetic field can be applied to the atomic region. There is a second

pair of windings on the z-coils, and these are configured as anti-Helmholtz coils

to generate the quadrupole field needed for the MOT.

4.3.1 Bias Coils

All power supplies for the magnetic field coils are operated in constant current

mode. Current through the bias coils is controlled by Kepco BOP 20-20M power

supplies. The x and z-coils are controlled by one power supply each. The y-bias
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Figure 4.3: A schematic of the circuits used to control the bias coils.

coils have a high inductance and are connected in parallel instead of series. The

total inductance decreases by a factor of 4, allowing for faster switching times.

Two power supplies are connected in parallel to drive the coils to provide the

necessary current. A schematic of the two circuits is shown in Fig. 4.3.

4.3.2 MOT Coils

A Sorenson DCS-80-37 power supply provides 24 amps of current to the MOT

coils as shown in Fig. 4.4. Current is running through the coils while the MOT

is loaded, but is switched off when the magnetic trap is loaded and the imaging

is performed. The current is switched off fast using a circuit that is depicted in

Fig. 4.4. An insulated-gate bipolar transistor (IGBT) is used to turn on and off

the current. A series of transient voltage suppressors and resistors are used to

dissipate the large voltage spike present from the large inductive load.
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Figure 4.4: A schematic of the circuit used to switch current on and

off in the MOT coils. The resistors in parallel with the MOT coils

help to dampen the initial voltage spike after the turn off of the

current.

4.3.3 Coil Switching

Current through the coils needs to be turned on and off fast. Using signals from

the PCI boards, the current through the coils can be controlled. Fig. 4.5 shows

the switching on and off of the current in the coils during the loading phase of

the magnetic trap. The current in the MOT coils is shut off in < 500µs. Current
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Table 4.1: Coil Parameters. The values were measured with the coils

connected in series.

Coil Pair R (Ω) L (mH) B-Field

MOT 0.58 1.2 n.a.

X-Bias 0.84 0.56 4.6 G/A

Y-Bias 1.26 0.78 1.05 G/A

Z-Bias 0.6 0.21 0.95 G/A

through the bias coils is switched on in < 1 ms with the y-bias taking the longest

to turn on because of its high inductance.

4.4 Rb Source

The rubidium used in the experiment is provided by an ampoule of rubidium

that is broken inside a flexible coupling, as shown in Fig. 4.1. The flexible

coupling is kept at room temperature and the valve is opened a variable amount

to adjust the Rb pressure inside the chamber.

4.5 Substrate Mount

The quartz-mount consists of 4 pieces: an aluminum nitride mount, copper

Z-wire, gold mirror, and the quartz substrate. An exploded view of the system

is shown in Fig. 4.6. We use a 20× 20× 0.5 mm piece of single crystal quartz.

The quartz is z-cut with the (0001) direction perpendicular to the surface. The

surface of the quartz was polished and has a surface roughness of < 5 Å.
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Figure 4.5: Measurements of the current in the coils and Z-wire

during the experimental sequence.

The quartz is mounted to a gold mirror, Edmund Optics NT32-433. From

the manufacturer the mirror has dimensions of 22×22×5 mm. The mirror is cut

so that it will fit into the 13× 22 mm key of the aluminum nitride mount. The

thickness is reduced ∼ 700µm by cutting and polished the back of the mirror.

A thermally conductive, electrically isolating, and low outgassing epoxy

Epo-tek H77 was used to bond the Z-wire to the AlN mount, attach the mirror

to the mount and the quartz to the mirror. Several pictures of the mount during

the assembly process are shown in Fig. 4.7.

The quartz is in thermal contact with resistive heaters positioned outside
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Figure 4.6: An exploded view of the quartz mount.

the vacuum chamber. The temperature of the quartz is monitored with a

thermocouple attached to the quartz surface, but far away (∼ 14 mm) from the

Z-trap. A picture of the assembled mount ready to be placed in the chamber is

shown in Fig. 4.7 (d).
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Figure 4.7: A picture of the quartz mount at several points during

the assembly process. (a) The Z-wire epoxied into the aluminium

nitride mount. (b) The gold mirror is epoxied into the key of the

aluminum nitride mount above the Z-wire. (c) The quartz is epoxied

to the aluminum nitride mount on top of the gold mirror. (d) Fully

assembled mount with thermal couples attached to the mount.

4.5.1 Z-wire

Current traveling through the Z-wire generates part of the magnetic field for the

magnetic trap. The circuit for controlling the current in the Z-wire is illustrated

72



Figure 4.8: Schematic of the circuit used to control the current in the Z-wire.

in Fig. 4.8. The circuit is similar to Fig. 4.4 with some important differences. A

stack of TVSs is not needed for fast shutoff times. The inductive load through

the circuit is negligible because there are no coils in the system. The Z-wire is

positioned after the IGBT in the circuit, so that when the gate is open and no

current is flowing through wire, the voltage on the Z-wire is zero. A voltage on

the Z-wire creates an electric field in the region containing cold atoms and Stark

shifts the energy levels of Rydberg states, creating problems during experiments.

In order to achieve fast switching times needed for experiments, the power

supply is operated in constant voltage mode. If too much current travels through

the Z-wire, thermal expansion of surrounding components causes damage. To

prevent this a fast acting fuse is used.
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Figure 4.9: Energy level diagram of the states used in these experi-

ments and the lasers used to couple them.

4.6 Lasers

To cool, trap, and probe atoms near the quartz surface, 4 laser systems are

used. Three of the laser are operated at ∼ 780 nm. The fourth laser is operated

at ∼ 960 nm and is frequency doubled to ∼ 480 nm and is used for Rydberg

excitation. A diagram showing the different laser frequencies is shown in Fig. 4.9.
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4.6.1 Trapper

Light at the trapping frequency is generated by a commercial external cavity

diode laser (Toptica DL 100). A schematic of the optical system is shown

in Fig. 4.10. The frequency is stabilized using FM spectroscopy [88] of a

saturated absorption [89] signal generated in a vapor cell. The modulation

and demodulation are carried out by the Digilock module. The current of the

laser is modulated at 10 kHz. The saturated absorption and FM spectroscopy

signals are shown in Fig. 4.11. The laser is locked to the F ′ = 1, 3 crossover

transition. An acousto-optic modulator (AOM) is used to control the intensity

and frequency of the light during the experiment. The light is passed twice

through the AOM and the total frequency shift is +197 MHz. The trapping

frequency is detuned −15 MHz from the F = 2 ↔ F ′ = 3 transition, and was

experimentally optimized to maximize the density of the MOT.

4.6.2 Repumper

During the MOT loading process, the trapping laser excites a small fraction

atoms into the F ′ = 2 state. From this state atoms radiatively can decay into

either F = 1 or F = 2 ground state. A repumper is used to transfer atoms back

into the F = 2 ground state so they can be further cooled by the trapping laser.

The repumping laser is a homebuilt external cavity diode laser. The optical

system for the repumper is illustrated in Fig. 4.12. The laser is locked to the
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Figure 4.10: Schematic of the optical system used to generate trapping beam.

saturated absorption signal using a field programmable gate array (FPGA) [90].

A FPGA is a set of digital gates that are programmed to generate the feedback

signals to stabilize the laser. FPGAs have advantages of fast response with clock

speeds of ∼ 100 MHz, rapid reconfigurability as experimental needs change, and

easily scalable to produce duplicate systems.

The FPGA generates the feedback signals based on the input of the saturated

absorption signal that is digitized using an analog to digital converter (ADC).

The ADC accepts a signal from 0 to 3.3 V, so the saturated absorption signal is

adjusted to fit within the window. The FPGA generates feedback signals using a

proportional-integral-derivative (PID) algorithm. The feedback is split into two

parts, one that controls the piezo and adjusts the position of the grating, and

one that controls the current. A digital to analog converter (DAC) converts the
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Figure 4.11: Saturated absorption (black) and FM spectroscopy

signal (red) used for locking the trapper.

digitally generated feedback into an analog signal. The DAC outputs a voltage

from 0 to 3.3 V. The low frequency < 500 Hz feedback is sent to the piezo, while

the high frequency > 500 Hz feedback is sent to the current.

Additional analog circuits are needed to process the feedback signals. The

low frequency feedback is added to a dc offset in a homebuilt circuit Fig. 4.13a.

The switches on the circuit give the option of amplifying the signal from the

FPGA by a factor of 1 or 6.7. The frequency of the laser can be scanned by a

ramp that is generated by the FPGA, and the extra amplification is used when

scanning over large frequency range is desired. Feedback for the current of the
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Figure 4.12: Schematic of the optical system used to generate repumping beam.

laser diode is added onto an external dc voltage that controls the current of

the diode. The laser diode is controlled by a commercial laser diode controller

(Wavelength LDTC0520). A schematic for combining both signals is shown in

Fig. 4.13b. The dc voltage is controlled with a potentiometer, and the ac part

of the feedback is added onto the signal through a transformer.

The frequency is stabilized to the side of the F ′ = 0, 2 saturated absorption

peak and is shifted by a single passed AOM by +111 MHz, so that the laser is

on resonance with the F = 1↔ F ′ = 2 transition.

4.6.3 Tapered Amplifier

To increase the power of the trapping and repumping beams, they are combined in

a tapered amplifier (TA) as illustrated in Fig. 4.14. The two beams are combined

using a 90:10 non polarizing beam splitter. 90% of the trapping beam and 10%
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Figure 4.13: Circuits used in processing the feedback signals for the

(a) piezo and (b) laser diode current. For the circuit in (a), there is a

double-pole, double-throw (DPDT) switch. If the switch is in position

1, then Vout = V1 + V2. If the switch is in position 2, Vout = 6.66V2.

of the repumping beam are combined into a polarization maintaining fiber. The

other end of the fiber and the optical setup of the TA is on a separate breadboard.

After exiting the fiber, the light seeds the TA. The system is homebuilt using a

TA from m2k Laser (m2k-TA-0780-1000-CM). Light is coupled into and out of
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Figure 4.14: Schematic of the optical setup of the tapered amplifier

used to amplify the trapping and repumping beams.

the tapered amplifier, using aspheric lenses (C330TMD-B). Alignment of the

TA is done by overlapping the seed beam with the light that propagates out of

the input facet of the TA. The light from the TA is collimated by the aspheric

lens, and the size and position of the seed beam is adjusted to maximize the

output power of the TA. The output of the TA is highly asymmetric, so the

collimation of the beam is done in two stages. The asphere collimates the beam

in the vertical direction and a cylindrical lens is used to collimate the beam in

the horizontal direction.

4.6.4 Probe Laser

The first part of the Rydberg excitation is done with a 780 nm laser that is

similar to the trapping laser. The laser is a Toptica DL 100 ECDL. The difference

between this laser and the trapping laser is that laser diode has an anti-reflection
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Figure 4.15: Schematic of the optical system used to generate the

imaging and optical pumping beams. AOM 1 is double passed and

shifts the light 200− 220 MHz, depending on the frequency needed.

AOM 2 is single passed and shifts the light −67 MHz.

coating on the output facet (Eagleyard EYP-RWE-0780-02000-1300-SOT12-

0000). The main advantage of the anti-reflection coating is to reduce mode

competition between the cavity created with the output facet and the external

cavity. This resulted in much less noise in the locking signal (see Section 4.6.6).

A schematic of the optical setup for the imaging laser is shown in Fig. 4.15.

The laser is locked to a Fabry-Pérot cavity as described in Section 4.6.6. A
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saturated absorption setup is used to reference the Fabry-Pérot fringes to the

atomic transition frequencies.

Two beams with different frequencies are derived from this laser using

AOMs. The first frequency is used for imaging the atomic cloud. It is tuned

to the 5S1/2 (F = 2)↔ 5P3/2 (F ′ = 3) frequency for imaging the MOT in zero

magnetic field. The frequency can be shifted using the AOM to also image the

magnetic trap with a background magnetic field. The imaging is done on the

5S1/2 (F = 2, mF = 2)↔ 5P3/2 (F ′ = 3, m′F = 3) transition.

The second frequency of light derived from this laser beam is the optical

pumping beam. This frequency drives the 5S1/2 (F = 2) ↔ 5P3/2 (F ′ = 2)

transition. Driving this transition is used to optically pump atoms into the

5S1/2 (F = 2, mF = 2) state as described in Section 5.2.1.

The two frequencies are linearly polarized in the same direction before being

combined using a non-polarizing beam splitter. They are coupled together into

a polarization maintaining fiber. After the fiber they are circularly polarized

using a λ/4 waveplate and directed into the chamber. The system is setup to

ensure that both beams are overlapped inside the chamber and have the same

polarization.

Part of the imaging light is transmitted through the non-polarizing beam

splitter and is directed to a separate Rb vapor cell on the table. Rydberg atom

EIT is done in the cell with the 480 nm light to check the frequency of the

coupling laser.
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Figure 4.16: Schematic of the laser system used to generate the

coupling beam. The flip mirror is used to switch between using the

coupling beam for diagnostic Rydberg atom EIT in a vapor cell, and

sending the light to the chamber for surface experiments.

4.6.5 Coupling Laser

Coupling the 5P3/2 state to a Rydberg state is done with ∼ 480 nm light. Due to

the lack of high power laser diodes in the visible, and the inconveniences of dye

lasers, second harmonic generation (SHG) was chosen to generate the 480 nm

light. Laser light from a 960 nm ECDL is amplified by a TA, and is sent into a

bow-tie cavity as shown in the schematic in Fig. 4.16. The setup of the TA is

the same as in Section 4.6.3.

Second harmonic generation (SHG) is the process of converting coherent

light at frequency ω to frequency 2ω by passing it through a medium with a

χ(2) nonlinearity such as a crystal. Classically, the process can be thought of as
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the incident light oscillating at frequency ω causing dipoles inside the crystal to

oscillate and radiate at 2ω.

If the light at 2ω is generated randomly throughout the crystal, it will be

subject to destructive interference. Phase-matching the crystal to the incident

light will cause constructive interference and larger powers of the second harmonic

will be generated. Theoretically the efficiency of SHG, ηSHG, the ratio of second

harmonic power to the incident power, can be calculated using the plane wave

approximation [91]

ηSHG =
P2ω

Pω
=

8π2d2L2
cPω

n2
ωn2ωcε0λ2

ωA
sinc2

(
∆kLc

2

)
, (4.1)

where ω is the frequency of the fundamental, d is the nonlinear coefficient, Lc

is the crystal length, n is the index of refraction, and Pω/A is the intensity of

the fundamental. The sinc2 term is the phase-matching term. This analysis

is correct for plane waves with no pump-depletion, and is sufficient for these

purposes. For a more exact treatment with focused gaussian beams and pump

depletion, Boyd-Kleinmann analysis is used [92].

SHG can be done using several different phase-matching schemes along with

different polarizations of light, see for example, [93, 94, 95]. The wavevector

mismatch ∆k is [94]

∆k = k2ω − 2kω (4.2)

The two most common types of phase-matching are perfect or exact phase-

matching, and quasi-phase-matching. In the case of perfect phase-matching

84



0 2 4
0

2

4

6

8

10

 

 

P
2
!

 (a
rb

.u
.)

Lcoh

0 2 4 6 8 10
0

20

40

60

80

100

 

 

 Perfect Phase-matching
 Quasi-phase-matching
 Phase Mismatch

P
2
!
 (

ar
b
.u

.)

Lcoh

Figure 4.17: Second harmonic powers generated for several different

phase-matching schemes. The x-axis is the number of coherence

lengths, Lcoh. The inset is plotting the boxed region.

∆k = 0, P2ω increases quadratically across the crystal as shown in black line of

Fig 4.17. To achieve perfect phase-matching for parallel k’s the index of refraction

n at ω and 2ω need to be equal. Most often birefringent phase-matching is used.

For non-parallel wavevectors angle tuning can be used [95].

If the perfect phase-matching condition is not satisfied, there will be a

wavevector mismatch of ∆k. In this case, the second harmonic power will oscillate

from a maximum at ∆k = π/Lcoh to a minimum of zero at ∆k = 2π/Lcoh, and

will repeat periodically though the crystal as shown in the blue curve of Fig 4.17.

85



Figure 4.18: An illustration of the SHG process with a periodically

poled material. All of the waves are polarized along the z-axis. The

direction of the nonlinear coefficient d, is flipped every Λ/2.

The power inside the crystal increases until the coherence length Lcoh = π/∆k.

This effect is exploited in quasi-phase-matching.

Achieving perfect phase-matching and high conversion efficiency at a desired

wavelength, in our case ∼ 480 nm, is challenging without extreme experimental

conditions. To get around this problem quasi-phase-matching (QPM) is used.

Typically the coherence length is small (on the order of microns), so using a

crystal the size of the coherence length is not practical or efficient. In QPM, the

sign (or direction) of the nonlinearity is flipped every coherence length. Before

P2ω is about to decrease, the sign of the nonlinearity is flipped, which is equivalent

to a π phase shift in the wavevector mismatch. The phase shift effectively resets

the wavevector mismatch, so P2ω monotonically increases throughout the crystal.

This can be seen by looking at the red line in Fig. 4.17. QPM is equivalent to
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perfect phase-matching with a reduced nonlinear coefficient deff = 2d/π [96]. For

a given non-linear coefficient, quasi-phase-matching will never outperform perfect

phase-matching. However, quasi-phase-matching allows the use of materials with

a higher d at wavelengths where perfect phase-matching cannot be obtained.

A schematic of the crystal is shown in Fig. 4.18. The crystal is grown

using a process called periodic poling. A large electric field pointing in opposite

directions is applied to different regions of the crystal as it is grown. The crystal

we are using is PPKTP (periodically poled potassium titanyl phosphate), with

a polling period of Λ = 2Lcoh = 6.375 µm. The period was chosen so that with

temperature tuning (explained later), quasi-phase-matching can be achieved for

wavelengths ∼ 478-481 nm under standard laboratory conditions. This allows us

to excite Rydberg states with n > 30. The crystal (manufactured by Raicol) is

20 mm long, and the ends of the crystal are anti-reflection coated at 960 and 480

nm. The efficiency of SHG increases with the crystal length as can be seen in

Eq. 4.1, so theoretically a longer crystal is desired. However, the homogeneity of

the periodic polling decreases with the length, so 20 mm is typically the longest

crystal that Raicol will periodically pole at the time of production. In this setup

we use Type I SHG with quasi-phase-matching, where the polarization of each

wave is along the z-axis [97].

Evaluating Eq. 4.1 for the experimental parameters of deff = 8.5 pm/V,

Pω = 1 W, yields a theoretical efficiency of ∼ 1.5%. Experimentally the single
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Figure 4.19: Diagrams of bow-tie cavity. (a) The 960 nm laser beam

inside the cavity has two waists, ωbig, and ωsmall and traces out a path

that resembles a bow-tie. (b) Illustrates the three important lengths

of the cavity design. L is the path length for the beam between the

curved mirrors, bouncing off the flat mirrors. Lm is the path length

between the curved mirrors, passing through the crystal. Lc is the

length of the crystal.

pass efficiency ηSHG is ∼ 1%, 10 mW of 480 nm light is generated with 1 W of

input power at 960 nm. 10 mW at 480 nm is not enough power to generate the

Rabi frequencies needed to carry out experiments. To increase the efficiency of

SHG and blue power, a bow-tie cavity is used. Experimentally, cavities of this

type using PPKTP have achieved conversion efficiencies as high as 75% [98].

Inside the cavity the fundamental power is amplified, which will increase

ηSHG as it scales linearly with Pω. A schematic of the bow-tie cavity is shown
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in Fig. 4.19. The basics of the cavity are as follows. The fundamental light

enters the cavity through a partially reflective mirror M1. The curved mirror

M3 focuses the beam in the center of the crystal. M4 refocusses the fundamental

light while allowing the second harmonic to pass through and exit the cavity.

The fundamental light that remains in the cavity is reflected back onto M1.

In a stable configuration for a TEM00 laser beam, a bow-tie cavity has two

waists, ωsmall inside the crystal and ωbig between M1 and M2. The fundamental

light circulates though the cavity many times until it is either absorbed (by the

mirrors or crystal), transmitted (though through the mirrors), or generates the

second harmonic.

There are several design considerations when arranging the mirror to form

the cavity. First the cavity needs to be stable, meaning that a beam inside

the cavity is not diverging and can be spatially contained inside the cavity. A

bow-tie cavity is considered stable if the following condition is met,

− 1 <
2L(Lc − Lcnω + nω(LM − r)) + r(2Lc(nω − 1) + nω(r − 2Lm))

nωr2
< 1.

(4.3)

The distances L,Lc, and Lm are illustrated and defined in Fig. 4.19b, r is the

radius of curvature of the two mirrors, and nω is the index of refraction of the

crystal at 960 nm. Another consideration is the size of the two waists, ωsmall and

ωbig inside the cavity. Decreasing ωsmall results in a larger ηSHG. However, if

ωsmall is made too small instabilities can arise due to heating of the crystal [98].
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ωsmall ∼ 50µm is sufficient for SHG and to avoid any negative thermal effects.

Knowledge of ωbig is used to aid in mode-matching the incoming light to the

mode of the cavity. The waists can be calculated,

ωsmall =

(
L(Lc − nωLc + nω(Lm − r)) + r(Lc(nω − 1)− nωLm)

4π2n2
ω(L− r)

)1/4

λ1/2
ω

×
(
Lc(nω − 1) + nω(r − Lm)

4π2n2
ω(L− r)

)1/4

ωbig =ωsmall

(
n2
ω(L− r)2

Lc(nω − 1) + nω(r − Lm)

)1/4

.

(4.4)

The parameters for the constructed cavity are, L = 160 mm, Lm = 65 mm,

Lc = 20 mm, nω = 1.83, r = 50 mm. These parameters yield a stable cavity with

waists, ωbig = 170µm and ωsmall = 40µm.

The fundamental power circulating inside the cavity Pc is [99],

Pc =
PωT1(

1−
√

(1− T1)(1− Lrt)(1− ηSHGPc)
)2 , (4.5)

where Pω is the fundamental power incident on the cavity, T1 is the transmission

of the input coupler M1, and Lrt is the fractional round-trip loss from the other

3 mirrors and crystal facets. For fixed values of Lrt, Pω, and ηSHG, Eq. 4.5 can

be optimized for T1. T1 was chosen to maximize the blue output power outside

the cavity. For estimated experimental parameters of Pω = 800 mW, Lrt = 3%,

and η = 1%, Pc can be as high as 7.5 W.

With an input power of Pω = 800 mW, the blue power out of the cavity

is P2ω = 200 mW, for an efficiency of η = 25%. The efficiency is a bit lower

than the expected ηSHG = 50 − 75% that has been achieved in similar setups
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Table 4.2: Specifications of the bow-tie cavity mirrors. The diameter

of each mirror is 12.7 mm

Mirror M1 M2 M3 M4

Manufacturer

Part Number

Type

Reflectivity

Transmission

Thickness

Standa

14DM-05-PR7.90-0

plane

0.90 @ 946 nm

-

2 mm

Thorlabs

BB05-E03

plane

0.996 @ 960 nm

-

6 mm

Eksma

-

plano-concave

(roc = 50 mm)

0.995 @ 972 nm

-

6 mm

Eksma

-

plano-concave

(roc = 50 mm)

0.995 @ 972 nm

0.90 @ 486 nm

6 mm

[98, 99]. This is most likely due to improper mode or impedance matching, but

the output power is sufficient for current experimental needs.

The intensity of the blue light exiting the cavity is locked to the side of a

Fabry-Pérot peak. A small percentage of light is transmitted through M3 and is

directed onto a photodiode. The signal is sent to a FPGA to generate a locking

signal in a similar setup to the repumper in Section 4.6.2. The feedback is sent

a piezo that is attached M2.

By changing the temperature of the crystal, the length of the crystal changes,

which make the QPM conditions zero different wave lengths. This is necessary

because in many experiments involving Rydberg atoms a certain n or range of

n’s are desired. The change in the length of the grating period is,

∆Λ = Λ0(α(T − T0) + β(T − T0)2), (4.6)

where α = (7.0± 0.2× 10−6 ◦C and β = (4.4± 0.8)× 10−9 [100] are coefficients

of thermal expansion and Λ0 is the period length at temperature T0. A period
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Figure 4.20: Photograph of the bow-tie cavity.

of length Λ will satisfy QPM conditions for wavelengths of the fundamental and

harmonic that satisfy [101],

Λ(T ) =
λω

2(n2ω(T )− nω(T ))
. (4.7)

Experimental data for the temperature dependent QPM conditions is shown

in Fig. 4.21, and a linear behavior is observed. The experimental slope is

18.0 ± 0.1 ◦C/nm. Using the equations for n(λ, T ) [102, 103] the theoretical

slope is 18.2± 0.1 ◦C/nm. This result also similar to the experimental value of

18.2 ◦C/nm in [104].

The temperature of the crystal is controlled with either a thermoelectric

cooler (TEC), or a resistive heater. The TEC (TEC1.4-6) is used when the

phase-matching temperature is near room temperature, and the resistive heater

(HT15W) is used when higher temperatures are needed. These elements control

a block that the crystal sits in as shown in Fig. 4.20. A thermistor (TH10K) is

mounted inside the block close to crystal to sense the temperature. To minimize
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Figure 4.21: Phase-matching temperature for various values of λω

used in experiments over several years. The black line is a linear fit

to the data with a slope of 18.0± 0.1 ◦C/nm

thermal fluctuations and air turbulence, the cavity is mounted on a aluminum

block that is sealed from the environment. Holes are drilled into the aluminum

block and BNC bulkheads are used. An aluminum cover is placed over the cavity.

Holes allowing optical access for laser beams are cut and sealed with windows.

The beam from the TA is focused into the cavity in order to overlap its

mode with the TEM00 mode of the cavity. Successful operation of the cavity

depends on the precise alignment of all 4 cavity mirrors as well as the input

beam. Instructions for aligning the cavity are detailed in Appendix B.
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Figure 4.22: A schematic of the optical setup used for locking the two

Rydberg excitation lasers. Both lasers are coupled into the cavity

at the same time using a dichroic mirror. Transmitted and reflected

signals are detected with photodiodes.

4.6.6 Rydberg Laser Stabilization

Both Rydberg excitation lasers are locked to the same Fabry-Pérot cavity. The

system, consisting of the cavity (AT Films), and its vacuum housing (Stable

Laser Systems), were bought commercially. The system is designed to provide

a narrow locking signal, while minimizing the frequency drift of the cavity.

The cavity mirrors are made from ultra low expansion (ULE) glass with the

inner surfaces coated for high reflectivity at 780 and 960 nm, and the outer

surfaces anti-reflection coated. From the provided data the finesse of the cavity

is calculated to be ∼ 10,000 at 780 and 960 nm respectively. One mirror has

a radius of curvature of 50 cm, while the other mirror is flat. In between the
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mirrors is a cylindrical spacer made from ULE glass, that sets the cavity length

at 10 cm. For this cavity the free spectral range (FSR), c/2L is 1.5 GHz. The

corresponding full width at half maximum (FWHM) of a transmission peak is

150 kHz.

To minimize thermal drift of the cavity, the temperature of the system is

stabilized at, 32◦C, the manufacturer measured temperature, where the coefficient

of thermal expansion is zero. A 3 L/S ion pump (Gamma Vacuum 3S-CV-1H-

5K-N-N) is used to pump the system at a pressure of 2× 10−7 Torr to minimize

pressure shifts of the cavity.

The optical setup for the locking is shown in Fig. 4.22. The input light is

mode matched to the TEM00 mode of the cavity to maximize the signal. This is

done by adjusting the lens of the fiber collimator (CFC-5X-B), and adjusting

the optical path length of the beam, to maximize the power in the TEM00 mode.

Both lasers are locked to the cavity using a cascaded Pound Drever Hall

(CPDH) scheme [105, 106]. CPDH is a variant of the popular Pound Drever

Hall (PDH) scheme [107]. In a standard PDH scheme the frequency of the laser

in modulated at a frequency ωfix/2π > FWHM, putting sidebands on the main

carrier frequency of the laser. The electric field of the laser exiting the EOM is,

E(t) = E0e
iω0t+α sin(ωfix), (4.8)

where ω0 is the frequency of the incoming laser, and α is the amplitude of the
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Figure 4.23: A schematic of the electronics used for locking the two

Rydberg excitation lasers. An identical setup is used by both lasers.

electric field applied to the EOM. To first order, E(t) can be written as,

E(t) = E0

(
eitω0 − α

2

(
eit(ω0−ωfix) − eit(ω0+ωfix)

))
, (4.9)

where three frequency components, the carrier frequency ω0 and two sidebands

at ω0±ωfix can be seen. Using a quarter waveplate and a polarizing beamsplitter,

the beam that is reflected from the cavity is separated from the incoming beam

and is sent to a photodiode. The reflected beam is a combination of two beams,

one that does not enter the cavity and reflects off the first mirror, and one from

inside the cavity. Near cavity resonance an interference pattern is created when,

the reflected beam at ω0 interferes with the sidebands. The locking signal is

generated by demodulating the the reflected signal at the modulation frequency

similar to FM spectroscopy. The advantages of this are that the signal has a high

slope and is centered around zero. The main limitation of this method is lack

of tunability. The laser is only able to be locked to cavity resonances. CPDH

makes the system tunable by using two different modulating frequences, ωfix,

and ωtune. Both frequencies are applied to the EOM through the same electronic
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signal, Eele(t) = α sin(ωtunet+ β sin(ωfixt)), where the sine wave at a frequency

ωtune is phase modulated at frequency ωfix. The electric field of the laser is now,

E(t) = E0e
iω0t+α sin(ωtunet+βsin(ωfixt)) (4.10)

Instead of three frequency components, the beam has seven frequency compo-

nents, which can be seen from the first order expansion,

E(t) =E0

(
eitω0 − α

2

(
eit(ω0−ωtune) − eit(ω0+ωtune)

))
− E0αβ

4

(
eit(ω0−ωtune−ωfix) + eit(ω0+ωtune−ωfix)

− eit(ω0−ωtune+ωfix) − eit(ω0+ωtune+ωfix)
)
.

(4.11)

Demodulating the reflected signal around ωfix, produces two PDH signals centered

around ωtune. ωtune/2π can be tuned from ωfix/2π to FSR/2− ωfix/2π and both

sidebands can used for locking, resulting in a tunable locking system.

A schematic for the electronics used for locking each laser is shown in Fig. 4.23.

The Digilock 110 generates a signal at ωfix/2π = 6.25 MHz, that phase modulates

sin(ωtunet) in the function generator via an external input. The combined signal

is then sent to the EOM, which generates the side bands on the laser. An example

of the transmitted and reflected signals of the 960 nm laser is shown in the black

and red traces respectively in Fig. 4.24. All seven frequency components in the

transmitted signal are shown, with ωtune/2π = 100 MHz. The reflected signal is

demodulated by the Digilock Module. The estimated linewidth of the lasers is

15 kHz. The drift of the cavity is ∼ 1 MHz/month.
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Figure 4.24: Plots of the transmission through the cavity (black) and

the demodulated PDH (red) signals for the 960 nm laser. The labels

and arrows point the 7 different frequency components on the laser.
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Chapter 5

Experimental Techniques

In this chapter, the experimental techniques used for creating and probing the

cold atomic clouds Rb near the quartz surface are detailed. The atoms are

cooled from a background vapor in a magneto optical trap (MOT). Atoms are

transferred from the MOT to a magnetic trap and transported to the quartz

surface. Near the surface, the electric field is measured using Rydberg atom EIT.

Rydberg atom EIT near the surface is observed using absorption imaging.

5.1 MOT

The atoms are initially cooled and trapped in a mirror magneto-optical trap

(mirror-MOT) inside of the vacuum system pictured in Fig. 4.1. The MOT

is loaded from a background vapor of Rb. A traditional MOT uses 6 laser

beams and a linearly varying magnetic field to cool and trap the atoms[108].

The linearly varying field is produced by the MOT coils, which generate a

quadrupole magnetic field. The cooling beams are a combination of the trapper

and repumper. In a mirror-MOT, 2 of the laser beams are generated by reflection

off of a mirror near the trap. A mirror-MOT is used so that the atoms can be

trapped close to the quartz surface.

A cross section of the experimental chamber and the orientations of the laser

beams is shown in Fig. 5.1. The output of the TA that contains the trapper
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and repumper is coupled into a fiber and transported near the chamber. The

beam out of the fiber is expanded to a waist of ∼ 10 mm so that a large number

of atoms can be cooled and trapped. Using polarizing beamsplitters and half

wave plates, the beam is split equally into three separate beams. One of the

MOT beams passes directly through the chamber along x-direction, and is

retro-reflected along the −x-direction with a mirror outside of vacuum. The

other two MOT beams are incident upon the gold mirror at 45◦, the reflection of

these beams off of the mirror generates the remaining two beams needed for the

MOT. The MOT coils are mounted at a 45◦ angle to the mirror, so the magnetic

fields align correctly with the polarizations of the laser beams.

5.2 Magnetic Trap

After the atoms are loaded into the MOT, they are transferred to the magnetic

trap. The magnetic trap uses the energy shift of the atoms combined with a

spatially varying magnetic field to create an attractive potential. In the presence

of a magnetic field the energy shift of the ground states is [57],

∆E = µBgFmFBz, (5.1)

where µB is the Bohr Magneton, and gF ,

gF ' gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)

gJ ' 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

(5.2)
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Figure 5.1: Illustration of the mirror-MOT inside a cross section of

the vacuum chamber. The black arrows indicate the direction of

travel of the 4 MOT beams. The colored arrows indicate the direction

of travel of the imaging/OP and coupling beams. The imaging and

optical pumping (OP) beams follow the same beam path. The MOT

is formed ∼ 1− 2 mm from the quartz surface.

The approximations gL '= 1, gS ' 2, and gI = 0 are made. The sign of the

energy shift, Eq. 5.1, depends on the state of the atom, which determines the

signs of mF and gF . Atoms will feel a force that depends on the gradient of the

magnetic field, F = −∇(∆E). A potential well is created around a magnetic
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Figure 5.2: Image of the current density through the Z-wire. The

current flows from the right side of the wire to the left. The cur-

rent density J is uniform in the straight parts of the wire, but is

concentrated at the corners when the wire bends.

field minimum for states with gFmF > 0, while states with gFmF < 0 will see a

potential hill. The converse can be said for a magnetic field maximum. Atoms

with mFgF < 0 are referred to as high-field seekers and those with mFgF > 0

are low-field seekers.

Due to Earnshaw’s Theorem [109], a magnetic field maximum cannot be

created in free space, so a magnetic field minimum is created to trap low-field

seeking states. For the ground states of 87Rb the low-field seeking states are

F = 2 (mF = 1, 2) and F = 1 (mF = −1) with gF = +1/2 and −1/2 respectively.

The F = 2 (mF = 2) state has the largest trapping potential and is used for the

experiments.

The quadrupole field from the MOT coils could be used to generate the

trapping field, however the current needed to produce a deep enough trap would

be ∼ 200 A. Also, a major issue with quadrupole traps is the zero crossing of the
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magnetic field. As an atom crosses a magnetic field zero and the field changes

faster than the spin precession, transition to another mF state can occur [110].

The effect is called a spin-flip or Majorana transition, and limits the lifetime of

the trap.

The magnetic trap used in the experiment is in a Ioffe-Pritchard configuration

[111] with no zero crossing of the magnetic field. The field is generated using

the Z-wire (Section 4.5.1) and bias coils (Section 4.3.1). The bias coils apply

a uniform field in the atomic region in the x, y, and z directions. The three

orthogonal coils can generate a field in an arbitrary direction.

The magnetic field from the Z-wire is calculated using a finite element

method. This is necessary because current does not flow uniformly through the

wire, especially at the corners as shown in Fig. 5.2. The magnetic trap is formed

at distances from the Z-wire that are comparable to its feature sizes. The wire

is broken up into smaller elements. The volume current through each element is

found by solving Maxwell’s equations after applying appropriate Dirichlet and

Neumann boundary conditions to the surfaces of the wire. Using the current

elements, the magnetic field is calculated using the Biot-Savart law, summing

the contribution from each element.

It is convenient to reference the magnetic field to the x, y′, z′ coordinate

system as defined in Fig. 5.3. The initial magnetic trap is generated with

IZ = 38.6 A, Bx = 16 G, By′ = −14.3 G, and Bz′ = 0 G. Plots of the magnetic

field magnitude, |B| in the x-y′ plane and y′-z′ plane centered at the field
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Figure 5.3: Schematic of the optical setup for observing Rydberg

atom EIT with absorption imaging. The probe and optical pumping

light is collimated with a waist of 4 mm and is σ+ polarized. The

coupling beam is linearly polarized in the z′-direction, and using a

dichroic mirror is counter-propagating with the probe and optical

pumping beams.

minimum are shown in Fig. 5.4(a) and (b) respectively. The magnetic trap is

centered around the minimum of the magnetic field, Bmin, at z′ ≈ 1.5 mm.

To move the atoms near the surface, Bx is ramped linearly from 16 to 28 G

linearly over a period of 35 ms. Bmin moves closer to the surface (z ≈ 300µm).

The magnetic fields in this configuration are plotted in Fig. 5.4(c) and (d).
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Figure 5.4: 2D plots of the magnetic field magnitude |B|. The

center of the Z-wire is centered at x = y′ = 0. The distance in the

z′-direction is measured from the quartz surface, with free space,

z′ > 0.

5.2.1 Optical Pumping

After the MOT is turned off the atoms are in the F = 2 ground state, but populate

all of the mF states. The atoms are optically pumped into the F = 2,mF = 2

state so they can be magnetically trapped. To accomplish this, the y and
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z-bias coils are turned on creating a uniform field along the y′-direction. The

direction of the field defines the quantization axis for optical pumping, and

is also the major component of the field in the Z-trap. An optical pumping

beam propagates along the y′-direction and is tuned to the F = 2 ↔ F ′ = 2

transition, is σ+ polarized, and is pulsed on for 400µs. A diagram of the optical

setup is shown in Fig. 5.3. The power of the optical pumping beam is kept low

to avoid stimulated emission, and the dominant relaxation process is radiative

decay. The allowed transitions and strengths of absorption and radiative decay

on the optical pumping transition are shown in Fig. 5.5. Through the process

of absorption of σ+ light, an atom undergoes a change of ∆mF = +1. While

in an excited state an atom can radiatively decay into several possible states,

over many decays the average change is ∆mF ≈ 0. The net effect after many

transitions is the hyperfine population moves to higher and higher mF until

atoms decay into the mF = 2 state. Once in this state the atoms no longer

absorb optical pumping photons and are in a dark state. Note that the sum of

ΓB 6= 1 for each excited state as shown in Fig. 5.5b, because the F ′ = 2 state

can also decay into the F = 1 ground state which is not pictured. The repumper

is on during the optical pumping process to prevent the atoms ending up in the

F = 1 ground state. After the atoms are all pumped into the mF = 2 state they

are ready to be loaded into the magnetic trap.
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Figure 5.5: Diagrams of the transitions involved in optical pumping.

(a) Shows the transitions and strengths (µa) for the absorption of the

σ+ polarized optical pumping beam. (b) Shows the rates of radiative

decay, Γb, for each transition.

5.3 Absorption Imaging

A widely used technique for probing cold atoms is absorption imaging [112]. In

these experiments, absorption imaging is used to spatially detect Rydberg atom

EIT. An experimental schematic of absorption imaging is shown in Fig. 5.6.

A collimated laser beam that is resonant with the 5S1/2 ↔ 5P3/2 transition is

incident on a cloud of cold atoms. The atoms will absorb the resonant light

and the shadow of the atom cloud is imaged onto a CCD camera. Two lenses

are used for imaging the shadow of the atoms onto the CCD camera with a

magnification of 2 from the original size. With the incident laser intensity below
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Figure 5.6: Experimental setup of absorption imaging. A resonant

laser beam passes through the atoms. The shadow of the atoms is

imaged onto a CCD camera. The pink is the profile of the laser beam

and the dashed line is an outline of the image of the absorbed atoms.

The lenses are used to magnify the image of the atoms by a factor of

2.

saturation, the absorption is given by Beer’s law [69],

I(ν, z) = I0e
−σ(ν)n, (5.3)

where I(ν, z) is the intensity after passing through the atoms, I0 is the incident

intensity, σ(ν) is the absorption cross section, and n is the column density of

the atoms. σ(ν)n is a dimensionless attenuation factor, and ν is the frequency

of the incident light. This can be expressed as,

σ(ν)n = ln

(
I0

I(ν, z)

)
. (5.4)

σ(ν)n is related to a commonly used quantity named optical density (OD). OD

is defined as log10(OD) = I/I0. In terms of σn the OD is,

OD =
σ(ν)n

2.303
. (5.5)

Using absorption imaging the OD and n can be calculated for each pixel. This

is done by taking a series of three images. The first image, Iabs is taken with
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the cold atoms present and the imaging laser on. Next, a reference image Iref, is

taken with the imaging laser on, but no cold atoms. Lastly, a background image,

Ibg, is taken with the imaging laser off to capture any stray light. Subtracting

Ibg from Iref and Iabs yields the values of I0 and I(ν, z) respectively. The optical

density can be computed through the following formula,

OD = ln

(
Iref − Ibg

Iabs − Ibg

)
/2.303. (5.6)

An example of a processed absorption image of the MOT with the imaging laser

on resonance is shown in Fig. 5.7. The column density n as well as the total

atom number can be computed from the absorption image as well. The atom

number can be calculated by multiplying the column density of each pixel by

the trap area of each pixel, and summing over all pixels. The resonant cross

section for the transition used is σ(ν) = 2.907(3)× 10−9 cm2 [57].

The OD of the medium is dependent on the frequency, ν, of the laser. As the

probe laser is scanned across the transition, the optical density of the medium

changes as seen in Fig. 5.8. The data is taken from absorption images of the

Z-trap as the probe laser is scanned across resonance. The black line is a

Lorentzian fit to the data with a FWHM of 6.1 MHz.

5.4 Experimental Sequence

The experiment is run on a 10 s cycle using the DAQ cards, see Section 4.2. A

majority of the cycle is spent loading the MOT. After the MOT is saturated
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Figure 5.7: An absorption image of the MOT. The pixel color corre-

sponds to the optical density (OD) shown on the right. This image

was taken 3 ms after the MOT coils and lasers are turned off.

with atoms, the current in the MOT coils and the trapping laser is turned off.

Before they turn off, the frequency of the trapping laser is detuned from the

trapping transition by 43 MHz for 30 ms. Using polarization gradient cooling,

temperature of the atoms is reduced from 170µK to 15µK.

After the MOT coils and trapper are off, optical pumping is done before

loading the magnetic trap. To capture as many atoms as possible the initial

magnetic trap is spatially overlapped with the MOT. The position of the magnetic

trap can be moved in the z′-direction, but its position is the x-y′ plane is mostly
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Figure 5.8: Absorption profile of the Z-trap. The probe laser is

scanned across resonance, while many absorption images are taken.

Three images are taken for each frequency, and the average of them

at one pixel value are the experimental points. The error bars are

the standard deviation of the three values. The black line is a fit

of a Lorentzian fit to the data, with a full width at half maximum

(FWHM) of 6.1 MHz.

fixed. The position of the MOT is adjusted by changing the relative power in

the laser beams, changing beam pointing, and adding a small offset field with

the bias coils to move the minimum of the quadrupole field.

After the optical pumping beam is switched off the bias field in the x-direction

111



is applied and current is sent through the Z-wire. Switching on the current

in the Z-wire is delayed by 5.5 ms due to eddy currents in the stainless steel

chamber produced by the switching of the bias coils. If the Z-wire is turned on

too early the transient potential pushes the atoms out of the trap area. When

the trap is off the atoms thermally expand and fall due to gravity, so if the

Z-wire is switched on too late there will not be any atoms in the trapping area.

A plot of the current switching is shown in Fig. 4.5. About 2/3 of the atoms are

transferred from the MOT to the Z-trap.

After the atoms are initially loaded into the Z-trap, the magnetic field Bx

is ramped linearly from 16 to 28 G linearly over a period of 35 ms. The atoms

are released from the magnetic trap and imaged. The atoms can be imaged

while in the Z-trap, however the spatially varying magnetic fields broaden the

imaging transition and only a fraction of the atoms in the trap can be imaged

at one time. The current in the Z-wire and x-bias coil are turned off, and the

atomic cloud is imaged 1.5 ms later. The magnetic field is still applied along the

−y′-direction, because turning off the current in the y and z-bias coils produces

eddy currents and a magnetic field is still present in the atomic region for 7-8 ms.

In the 7-8 ms time period the atoms fall away from the surface due to gravity

and are no longer in the area of interest, so the trap is imaged with a magnetic

field of By′ = −14.3 G
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Figure 5.9: Absorption images of the atoms after release from the

Z-trap. (a) Image taken without the coupling beam. (b) Image with

the coupling beam on. The arrow highlights the effect of the coupling

beam on the transparency of the atoms to the probe beam.

5.5 Rydberg EIT with Absorption Imaging

In the cold atomic sample, Rydberg EIT is detected by using absorption imaging.

Similar setups have been used in [36, 37, 113, 114]. The coupling laser is counter-

propagating with the probe beam, similar to the vapor cell experiments, and

is focused through the atomic sample as illustrated in Fig. 5.3. The laser is

focused to a waist of 50µm at the position of the MOT or Z-trap. The waist is

small to achieve the Rabi frequencies needed to perform the experiment. The

presence of the coupling laser on resonance with the atoms causes them to be

transparent to the probe laser. An example of two of the images are shown in

Fig. 5.9. In the first image no coupling laser is present and an absorption image
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of the Z-trap is taken. In the second image, with the coupling laser present

and on resonance, the optical density of a patch of atoms in the trap is reduced.

This area is highlighted by the purple arrow.

The frequency dependence of the Rydberg atom EIT signal is obtained by

scanning either the probe or the coupling laser over the resonance and taking

absorption images at each step. A single absorption image measures the response

of the system for one set of frequencies. By changing the laser frequency, and

taking absorption images at each step, an EIT spectrum can be obtained. An

example while scanning the probe laser shown in Fig. 5.10.

5.6 Measuring DC Electric fields

Analogous to the microwave measurements, Rydberg EIT converts the mea-

surement of the amplitude of a dc electric field, E into an optical frequency

measurement. The amplitude is obtained by measuring the Stark shift of the

Rydberg state and comparing to the calculation. The calculation is carried out

as described in Appendix A. Due to the small polarizability of the 5S and 5P

states, the shift of these states is neglected. The application of a dc electric

field shifts resonance condition for Rydberg atom EIT. Electric fields have been

measured using Rydberg atom EIT [34, 115, 116], and agree with theoretical

Stark shift calculations of a known field.

The frequency response of the Rydberg states in an electric field varies with
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Figure 5.10: Rydberg EIT in the MOT. The black points are experi-

mental data with no coupling beam. The black line is a Lorentzian

fit to the data. The red points are data taken with the coupling laser

present. The optical density is reduced near probe resonance. The

red line is a fit to Eq. 5.7.

n, since the polarizability scales ∼ n7. A suitable n can be chosen to measure a

given E. The shifts of the 41D and 81D states are shown in Fig. 5.11. Since the

experiment is done in a background magnetic field after the magnetic trap is

turned off, the atoms are still in the mF = 2 state. The σ+ imaging light couples

the ground state atoms to the intermediate state with mJ = 3/2. The linear

polarized coupling beam can couple together states with ∆mJ = ±1, resulting
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Figure 5.11: Stark shifts of the J = 5/2, mJ = 5/2, 1/2 states in

the (a) 41D and (b) 81D manifolds in a background magnetic field

of 14.3 G. In the calculations, the direction of the magnetic field is

orthogonal to the direction of the electric field.

in EIT from Rydberg states with mJ = 5/2, 1/2.

The advantage of detecting Rydberg EIT through absorption imaging a

spatial distribution of atoms, is that the spatial dependence of the electric

field can be obtained by analyzing different portions of the absorption image.

Since the electric fields can spectrally shift the Rydberg state greater that the

natural linewidth of the probe transition, the frequency of the coupling laser

was scanned while taking absorption images. The probe laser and transition is

fixed in frequency and the EIT condition shifts with the Rydberg state energy

level. Scanning the coupling laser maps the shift of the Rydberg state onto a

shift of the coupling laser frequency. A plot of an EIT signal while scanning
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the coupling laser is shown in Fig. 5.12. To account for fluctuations in atom

number over the 15− 20 minute duration of an experiment, an image is taken

without the coupling laser after each image taken with the coupling laser present.

With cold atoms, the Doppler shifts are negligible, and an analytic expression

for Im[ρ12] can be approximated using Eq. 2.28, assuming the population in the

excited states is negligible,

Im[ρ12] = Re

[
Ωp

Γp − 2i∆p + Ω2
c

Γc−i(∆p+∆c)

]
. (5.7)

The red line in Fig. 5.12 is a fit to Eq. 5.7.

The image recording is automated by computer. The frequency of the coupling

laser is varied by changing the frequency of the lock νtune, see Section 4.6.6. The

frequency range, frequency step, and number of averages are all set in a program

that controls νtune via a RS232 cable. Using the frequency range, step size, and

number of averages a list of frequencies is generated, as shown in Fig. 5.13.

The list of frequencies is then randomized so technical noise does not skew the

data. The camera program for capturing absorption images is setup to save the

same number of images as the length of the list of random frequencies. The two

programs are started at the same time and images are saved as the frequency is

changed. Afterwards, the images are sorted and processed in Mathematica by

importing the saved list of frequencies.
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Figure 5.12: EIT spectra taken while scanning the coupling laser at

different distances from the quartz in the Z-trap. The Rydberg state

used in this experiment is the 81D5/2, mJ = 5/2 state. The black

points are averages of pixel values for three different images. The

error bars are the standard deviation of the experimental values. The

red lines are Lorentzian fits to the data, with a FWHM ≈ 5 MHz.
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Figure 5.13: Screenshot of the program that controls νtune. The

frequency range, number of steps, and number of averages are all set

by the user. The list of frequencies is then randomized and saved. It

is important to note that νtune controls the frequency of the 960 nm

laser, while the frequency doubled 480 nm is used in the experiment.

A change of 1 MHz of νtune, corresponds to a 2 MHz change of the

480 nm frequency.
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Chapter 6

Near Surface Measurements

6.1 Electric Fields Near Surfaces

Recently a large effort in the atomic physics community is being put forth

to create hybrid quantum systems. These efforts include interfacing quantum

mechanical systems such as atoms, ions, or electrons, with macroscopic surfaces,

electrodes, and resonators. Rydberg atoms are a strong candidate for use in

these systems due to their long lifetimes and strong dipole transitions in the

microwave regime.

A common problem encountered when constructing these devices is electric

field noise on surfaces. The electric field noise is caused by adsorbates on

the surface. An adsorbate is an atom or molecule that is bound to a surface

[117]. The surface binding asymmetrically perturbs the electronic cloud of

the atom or molecule, inducing a dipole moment. Adsorbates produce both

dc [35, 38, 39, 41, 118, 119, 120] and ac [42, 121, 122, 123] electric fields that

perturb experiments.

Working towards a quantum hybrid system using atoms, the system described

in Chapters 4 and 5 was constructed to study the electric fields near the surface

of quartz. Rydberg atom EIT is used to measure the dc electric field near the

surface. The main result of this chapter is the reduction of the electric field,
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and its small magnitude. The electric field measured near the surface is orders

of magnitude smaller than other experiments. The reduction of the adsorbate

electric field is due to the binding of low energy electrons on the (0001) surface

of quartz. The low energy electrons are created from blackbody ionization of

Rydberg atoms.

6.2 Theoretical Calculations

Many calculations are needed to describe and characterize experimental results.

First a microscopic look at the Rb-surface binding is done through DFT calcula-

tions. The calculations were done by collaborators Eunja Kim and Phil Weck.

Second, electrostatic calculations are done to estimate the dipole moment of

a Rb adsorbate on the surface of quartz. Third, the model used to describe

the electric field resulting from a patch of adsorbates is presented. The model

relates the measured electric field to the density of Rb adsorbates on the surface

of quartz. Next, Langmuir adsorption is introduced, which describes the amount

of Rb adsorbed to the quartz surface as a function of temperature. Lastly, the

average kinetic energy of blackbody ionized electrons is calculated. Blackbody

ionization of Rydberg atoms is a source of ultra-low kinetic energy electrons,

capable of binding to the surface and reducing the overall electric field.
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Figure 6.1: The interaction potential for Rb adsorbed on an O-

terminated (0001) surface of quartz. The black lines indicate the

energies of the lowest 5 vibrational states.

6.2.1 DFT Calculations

To investigate the Rb-quartz on a microscopic level, we performed total-energy

calculations for the (0001) surface of quartz using spin-polarized density func-

tional theory (DFT) [124]. The surface of the quartz is oxygen terminated [125].

The details of the DFT calculations are contained in [126] and references therein,

and lie outside the scope of this thesis.

The Rb-quartz interaction potential is shown in Fig. 6.1 for a coverage of

1 monolayer. A monolayer (ML) is a surface that is completely filled with

adsorbates. The amount of Rb atoms on the surface is described in terms of

coverage, θ. The coverage relates the density of adsorbed atoms, ρa, to the

122



Figure 6.2: Results of the DFT calculations. (a) Charge density

map for Rb-SiO2(0001) in the plane of Rb and surface terminated O

atoms. The Rb atom is positioned between the two surface O atoms

and the charge density is centered around both O atoms, illustrating

the Rb adsorbates are bound to two oxygen atoms. (b) Side view of

the Rb adsorption on SiO2(0001) surface. Each Rb atom (pink) is

bound to two O atoms (red). The bottom of the slab is passivated

by attaching hydrogen atoms (white). The green axes outline the

periodic supercell used in the DFT calculations for 1 ML of coverage.

density of adsorption sites, ρmax [127],

θ =
ρa
ρmax

. (6.1)

θ = 1 corresponds to 1 monolayer. The energy of the lowest 5 bound states are
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indicated with the black lines. Assuming a Boltzmann distribution of thermally

occupied states, the lowest five states will contain ∼ 95% of the population. The

lowest bound state has an energy of Eb = 0.35 eV. The Rb is bound to two

oxygen (O) atoms on the quartz surface. This can be seen by looking at the

charge density map shown in Fig. 6.2a. Charge is transferred from the Rb atom

and is localized around 2 O atoms, showing the dipole nature of an adsorbate.

The positive end of the dipole is the Rb atoms, while the negative end of the

dipole is on the surface. These calculations were done with a full monolayer,

θ = 1 of Rb.

With a coverage, θ = 0.11, the charge transferred from one Rb adatom the

the surface is 0.947e, where e is the electron charge. The calculated equilibrium

bond distance is 2.79 Å, resulting in a dipole moment of each adatom of, d0 =

0.947e× 2.79 Å = 12.7 D.

6.2.2 Electrostatic Calculations

Alternatively to numerical DFT calculations, straightforward electrostatic calcu-

lations of the dipole moment can also be done. This is useful for gaining some

physical intuition about the system, which is more difficult with the black box

of DFT calculations. The dipole moment of an adsorbate can be estimated by

calculating the dipole moment between a molecule consisting of the adsorbing

atom, Rb, and the substrate atom, O. Using the fractional charge transfer, ∆q,
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and the bond distance, dcov, the dipole moment d0 is [128],

d0 = ∆qedcov, (6.2)

where e is the electron charge. The fractional charge transfer is,

∆q = 0.16|XA −XB|+ 0.035|XA −XB|2, (6.3)

where the quantities Xi are the electronegativities of the atoms forming the bond.

The results of the DFT calculation show that the Rb is bound to two oxygen

atoms, which in turn are bound to a Si atom. The effective electronegativity

of the substrate atom is the geometric mean of the three atoms, XB = (1.90×

3.44× 3.44)1/3 = 2.82. The bond distance is the sum of the covalent radii, rcov,

of both atoms,

dcov = rRb
cov + rO

cov = 2.79 Å. (6.4)

The values for Xi and ricov are taken from the CRC Handbook [129]. Evaluating

Eq. 6.2 yields a dipole moment from each Rb-O bond of d0 = 6.2 D. The z

component of d0 is calculated using the O-O separation of 2.363 Å from the DFT

calculations, yielding a total dipole moment in the z-direction of 12 D. These

calculations are consistent with the 12.7 D calculated with DFT.

The dipole moment of the adsorbates are coverage dependent [130]. With an

increasing amount of adsorbates, the electric field from neighboring adsorbates

points in the opposite direction of the dipole, reducing the effective dipole

moment of each adsorbate. The coverage dependent dipole moment of each
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adsorbate is [128],

d(ρa) =
d0

1 + 9αadρ
3/2
a

, (6.5)

where αad = 47.3 Å3[131] is the polarizability of Rb, and ρa is the density of

adsorbed atoms.

6.2.3 Surface Adsorbate Model

The electric field from a single adsorbed atom is small and localized, but many

adsorbates produce macroscopic electric fields. At a distance z � 2 Å, the

charge separation of the dipole, the electric field can be modeled as resulting

from a layer of dipoles on the surface [37, 113]. The dipole field is modeled by

two uniformly but oppositely charged square sheets with length L separated by

a small distance. The resulting electric field near the center of the sheets and

perpendicular to the surface is:

Ez(z) =
2
√

2PL2

πε0
√
L2 + 2z2(L2 + 4z2)

, (6.6)

where ε0 is the permittivity of free space, z is the distance from surface and P is

the dipole density.

6.2.4 Langmuir Adsorption

The density of Rb atoms adsorbed on quartz can be calculated using the Langmuir

theory of adsorption. The Langmuir theory of adsorption successfully describes

the adsorption of a submonolayer of adatoms, but relies on several assumptions.
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Figure 6.3: Schematic of the dipole sheet used to model the electric field.

The first assumption is that there is a fixed number of equivalent adsorption sites

on the surface, and only one atom can occupy each site. Also, the interaction

between adsorbates in neglected. By equating the chemical potential of a 3D

ideal gas with that of a 2D gas with energy Ea the Langmuir isobar is [132],

θ

1− θ
= Ce

Ea
kBTq , (6.7)

where Tq is the temperature of the quartz. In Eq. 6.7, θ varies from 0 to 1. As

Tq increases the coverage decreases. Physically this is due to thermal desorption,

the surface is adding more energy to the adsorbates allowing them to break the

bond to the surface.

The coefficient, C depends on the translational, vibrational, and rotational

partition functions of the 2D and 3D gas. To describe this experiment the

vibrational and rotational partition function are unity for the 3D gas of Rb, and

the translational partition function is that of an ideal gas. The adsorbates on

the surface are assumed to stay adsorbed to one site. The atom can be bound
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in different vibrational states of the potential formed at the surface. Under

the assumption that the adsorbate is deeply bound and remains in the same

vibrational state, the translational, vibrational, and rotational partition are all

unity [133]. Using these assumptions, C is,

C =
ph3

kBTgas(2πmkBTgas)3/2
, (6.8)

where Tgas is the temperature of the background atoms, and p is the pressure.

6.2.5 Blackbody Ionized Electrons

As discussed in Section 2.1.3, blackbody radiation can ionize Rydberg atoms. As

a result of the ionization, a free electron with a small amount of kinetic energy

is produced. These slow electrons have been a central focus in the investigation

of avalanche ionization in Rydberg gases [134, 135, 136], and the positive ions

have been used in Stark spectroscopy [137]. In these experiments, the ionized

electrons are attracted to the positive adsorbate potential. If the electrons have

too much kinetic energy, then the force from the potential will be negligible.

The kinetic energy of an electron, ∆Ēe can be calculated following the

approach of [135],

∆Ēe = Ēbb − ERyd, (6.9)

where, ERyd = 1/n∗2, is the absolute value of the energy level of the Rydberg
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atom, and Ēbb is the average energy of an absorbed blackbody photon,

Ēbb =

∫ ∞
ERyd

EbbσERyd
(Ebb)

E2
bb

eEbb/(kBT ) − 1
dEbb∫ ∞

ERyd

σERyd
(Ebb)

E2
bb

eEbb/(kBT ) − 1
dEbb

. (6.10)

σERyd
(Ebb) is the photoabsorption cross section for photons with energy Ebb for

a Rydberg state with energy, −ERyd, where,

σERyd
(Ebb) ∝ Ebb(E

3/4
RydE

−5/3
bb )2. (6.11)

Electrons blackbody ionized from the 81D5/2 state have an average kinetic

energy, ∆Ēe = 9.26 meV. For n = 40 − 100 the kinetic energies range from

∆Ēe = 7.92 − 15.16 meV. The energies are consistent with complimentary

calculations [59].

6.3 Experimental Results

Using Rydberg atom EIT with absorption imaging the electric field near quartz is

measured. The electric field near the quartz surface is determined by measuring

the frequency shift of the Rydberg state, and comparing the observed shift to a

Stark shift calculation. The electric field was measured at a distance of 500µm

from the surface for a range of different quartz temperatures from 28 ◦C to

80 ◦C. Data was taken in two different regimes, high and low Rydberg atom

population. The amount of Rydberg excitation was controlled by changing Ωp.

The results for low Rydberg atom population is shown in black in Fig. 6.4. Over
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the temperature range sampled the electric field is reduced by a factor of 34, from

1.7 V/cm to 0.05 V/cm. The reduction of the electric field is due to the thermal

desorption. From the spatial variation of the field, the size of the adsorbate

patch is calculated to be, L = 10 mm at Tq = 28 ◦C. The calculated dipole

density, P = 5× 106 D/µm, is consistent with the dipole density observed in an

experiment with Rb adsorbates on evaporated SiO2 [114]. Assuming a constant

L with increasing Tq, the electric field is only dependent on the dipole density

P . Using the dipole moment per adatom of Eq. 6.5, the adsorbate density is,

ρa =
P

d(ρa)
. (6.12)

Combining Eq. 6.5, 6.7, and 6.12, the data in black is fit to C and Ea, and is

plotted as the black line. The fit yields an activation energy of Ea = 0.66±0.2 eV,

which is consistent with the measured Ea of alkali atoms on similar surfaces

[120, 138, 139, 140]. At Tq = 28 ◦C, the coverage is, θ = 0.11, and the average

spacing between Rb atoms is ∼ 1.5 nm.

From the fit, C = 1 × 10−12. C can also be calculated for experimental

parameters using Eq. 6.8. Eq. 6.8 needs to be slightly modified because it

assumes adsorption is due to background gas. In the experiment the main source

of the Rb adsorbate electric field is the MOT atoms. Disabling the magnetic trap

for ∼ 10 min did not change the electric field, however, disabling the MOT for

the same period changes the electric field. Using the ideal gas law, P = ρkBTgas,

where ρ is the density of atoms in the MOT. With the estimated parameters of
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the MOT during the loading phase of, ρ = 1× 107 atoms/cm3, and Tgas = 1 mK

yields, C = 2× 10−12.

For one ML of Rb, Fig. 6.1 shows lowest bound state of an adsorbate has an

energy of, Eb = 0.35 eV. For the lower experimentally investigated coverages,

the DFT calculations show an increase of Eb by ∼ 1.4 to 0.49 eV. The energy

of the bound state is the least amount of thermal energy needed to desorb

an atom. Depending on the details of the atom-surface bond and desorption

dynamics more thermal energy is needed. The calculated Eb at low coverages

is comparable in magnitude with the measured Ea, and is consistent with the

expectation Eb ≤ Ea [141, 142].

The electric field from the adsorbates points away from the surface as con-

firmed by applying an external compensating field. From the calculations

outlined in Appendix A, the electric field is estimated to point perpendicular

to the surface to within 15◦. This estimate is the result of the good agreement

between the overall and differential shifts of the different mJ states, for a variety

of n used in experiments.

Over the extent of the magnetic trap the electric field was observed to be

homogeneous. An inhomogeneous electric field across the atomic sample would

cause a broadening of the EIT resonance, since the absorption images reveal

the OD over the ∼ 2 mm depth of the sample. The width of the EIT signal was

not detectably broadened, and variation of the electric field measured in the
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Figure 6.4: The measured electric fields due to Rb adsorbates on the

(0001) surface of quartz as a function temperature, at a distance of

500µm from the surface. The black points the result of experimental

data taken in the limit of low Rydberg atom production. The black

line is a fit to the Langmuir isobar of Eq. 6.7. The red data points

were taken with high Rydberg atom production. The horizontal error

bars are due to the uncertainty in the temperature, Tq. The vertical

errors bars are the standard deviation of the experimental data. In

the case of high (low) Rydberg atom production the Rabi frequencies

of the probe and coupling lasers are Ωp = 2π × 3.5(0.5) MHz and

Ωc = 2π × 4(4) MHz.
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z-direction is < 0.1 V/cm. These observations indicate that the Rb is spread

out evenly on the surface and is not forming large clusters on the surface. If

large clusters are formed then Brunauer–Emmett–Teller (BET) theory needs to

be used instead of the Langmuir equation [143].

The data in black is taken with minimal Rydberg atom population. The

Rabi frequencies of the probe and coupling were, Ωp = 2π × 0.5 MHz and

Ωc = 2π × 4 MHz. If Ωp is increased to 2π × 3.5 MHz, the measured electric

field is greatly reduced. The data with the increased probe Rabi frequency is

plotted as the red points in Fig. 6.4. At Tq = 28 ◦C the electric field is reduced

by a factor 30. The reduction in the electric field is due to electrons binding

to the surface and partially canceling out the electric field from the adsorbates.

Blackbody ionization of Rydberg atoms is the source of the slow electrons. With

the increase in probe Rabi frequency, the amount of atoms that are blackbody

ionized increases by a factor of 20. This is calculated by solving the density

matrix equations time dependently for the experimental parameters, including

an extra state for blackbody decay from the Rydberg state.

The electric field from the electrons on the surface is modeled as a square

sheet of length Le with uniform charge density, σ,

Ee(z) =
σ

πε0
tan−1

(
L2
e

z
√

2L2
e + z2

)
. (6.13)

The total electric field is the sum of the electric field from the adsorbates and
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Figure 6.5: Schematic of the dipole and electron sheet used to model

the electric field.

the electrons,

Etot(z) = E(z) + Ee(z). (6.14)

Experimentally it is observed that after prolonged Rydberg excitation the

electric field reaches a steady state value, indicating that the surface is saturated

with electrons. The surface saturation suggests the electric field from the electrons

completely cancels the electric fields from the adsorbates. Requiring Etot(0) = 0,

and using the black line in Fig. 6.4, with Le = L, the charge density σ for the

electrons is calculated. Using this information, Etot(z) can be calculated, and is

plotted as the red line in Fig. 6.4. The overlap of the experimental data with

the calculation is an indication that the reduction of electric fields is due to the

binding of the electrons on the surface.

Using the calculated charge density of the electrons, σ, the number and

density of electrons on the surface can be calculated. At Tq = 28 ◦C, σ =
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200 electrons/mm2, with a total of 20, 000 electrons of the surface. During

experiments with Ωp = 2π × 3.5 MHz, 200 Rydberg atoms are ionized during

each experiment sequence, compared to 10 electrons when Ωp = 2π × 0.5 MHz.

6.4 Electrons on Liquid Helium

This system closely resembles that of electrons bound to the surface of liquid

helium [144, 145, 146]. The electrons are bound in the Coulomb potential near

the surface due to their image potential,

V (z) =
(ε− 1)e2

4(ε+ 1)z
forx > 0, (6.15)

where, ε is the static dielectric constant. A potential wall at the surface prevents

low energy electrons from penetrating into the bulk liquid helium, and the

electrons are trapped in the Coulomb states. The potential wall at the surface

is due to the negative electron affinity(NEA) of the surface [147].

In semiconductors and insulators, electron affinity, χ, is defined as [128],

χ = Evac − Eboc, (6.16)

where Evac is the energy level of the vacuum, and Eboc is the energy level of the

bottom of the conduction band. This is shown schematically in Fig. 6.6. When

χ < 0, Evac is in the band gap below the bottom of the conduction band Eboc.

Since the Fermi energy, EF lies in the band gap all of the electronic states in

the valence band are filled. A barrier is created where an electron needs kinetic

energy to access states in the conduction band.
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Figure 6.6: Diagram of the general band structure of an undoped

semiconductor or insulator. If Evac > Eboc, then the surface has a

positive electron affinity. Conversely, if Evac < Eboc the surface has

a negative electron affinity.

In liquid helium the height of this barrier is 1 eV. Approximating the barrier

as infinite in height the 1D Schrödinger equation, equivalent to that of a 1D

hydrogen atom can be solved. Eigenenergies are in agreement with spectroscopic

measurements [148, 149].

Electrons on the surface of liquid helium can remain bound for tens of hours

[146]. Surface states exist on surfaces that have a positive electron affinity such

as copper, lithium and silver, however their lifetimes are short, usually on the

order of ∼ 10 fs [150]. Liquid helium is not the only surface demonstrated to have

a negative electron affinity and bind electrons on the surface. Other surfaces

include liquid H2, and liquid Ne [146].
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6.5 Inducing Negative Electron Affinity

The surface of quartz, like most materials, has a positive electron affinity. It

has been experimentally measured to be 1 eV [151, 152]. However, through

adsorption of atoms or molecules the electron affinity of a surface can be shifted.

If the shift is large enough a negative electron affinity can be induced. Through

adsorption of a similar alkali atom cesium, materials such as diamond, gallium

nitride, aluminum nitride, and boron nitride [153, 154, 155, 156, 157], can shift

the electron affinity of their surface from positive to negative.

Using DFT, the density of states, as well as the vacuum energy with varying

amounts of Rb coverage is calculated, Fig. 6.7. EF is set equal to zero, and lies

in the middle of the band gap. The energies of the top of the valence band, Etov,

and bottom of the conduction band, Eboc, of bulk quartz are at ±3.05 eV and

indicated by the purple and green lines respectively. Consistent with experiment,

the vacuum energy of a clean surface, V clean(∞) is above Eboc indicating a

positive electron affinity. As the Rb coverage increases the vacuum level shifts

downward, and a negative electron affinity is induced around 0.5 ML.

The shift in electron affinity can also be calculated using electrostatic methods.

The atomic dipoles on the surface create an electric field that lowers Evac. The

shift in electron affinity can be calculated using [130],

∆χ = −ed(ρa)ρa
ε0

. (6.17)

With the calculated dipole moment, d0 = 12 D, and experimental values for
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Figure 6.7: Density of states of bulk α-quartz from DFT calculations.

The energy of the bottom of the conduction band, Eboc is shown in

green. The vacuum energies are plotted for a clean surface (blue),

and for increasing Rb coverage. Increasing the amount of Rb coverage

shifts the vacuum level down in energy. With one ML of Rb on the

surface (red line), the vacuum energy dips below the bottom of the

conduction band (green line), indicating the formation of a NEA

surface.

ρa = 4.2× 105 atoms/µm2 at T = 28 ◦C, ∆χ = −1.9 eV. Combining this shift

with the experimental value of χ = 1 eV, indicates onset on a NEA surface at

28 ◦C. This model shows a NEA surface up to ∼ 40 ◦C.
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6.6 Surface Potential

The potential that an electron experiences is a combination of its image potential

and a potential created from the adsorbates on the surface. The image potential

will dominate at distances close to the surface, while far away from the surface

the adsorbate potential will dominate. Using Eq. 6.15 with ε = 3.85 for quartz

[158], the image potential for an electron is calculated. The potential from the

adsorbate field can be calculated by integrating Eq. 6.6. The total potential

is plotted in Fig. 6.8. At distances of ∼ mm from the surface, the adsorbate

field dominates and attract electrons toward the surface. When the electron is

near the surface the image potential is dominant. The lowest bound state in

the image potential has an energy of 0.3 eV. Note that the kinetic energies of

the blackbody electrons is much lower than these energy scales. The electron

will collide with the surface and needs to lose its kinetic energy in order to be

trapped. The loss in energy can be mediated by the surface, similar to the

adsorption of an atom on a surface. As electrons are added to the surface, the

adsorbate part of the potential is lowered.

6.7 Small Fields Near The Surface

Since the electric field is reduced at high temperature and high Rydberg atom

population, the electric field close the surface is investigated in this limit. With

Tq = 79 ◦C, and Ωp = 2π× 3.5 MHz, the measured electric field is shown in black
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Figure 6.8: Plots of the potential for an electron above the quartz

surface. (a) The long range potential is due to the adsorbates of

the surface. As electrons accumulate on the surface this part of the

potential decreases. (b) A zoomed in look at the image potential for

an electron on quartz. The black lines indicate the energies of the

first two bound states.

in Fig. 6.9. For z > 200µm the electric field is negligible within experimental

error. For z < 200µm the electric field increases to E =∼ 30 mV/cm, 20µm

from the surface. As can be seen in the experimental traces, Fig. 6.10, the width

of the EIT resonance increases from 2 MHz far from the surface to 4 MHz for

z ≤ 50µm.

Under experimental conditions the estimated electron density is∼ 10 electrons/mm2,

yielding an average electron spacing of ∼ 300µm. At distances less that the

electron spacing, Eq. 6.13 breaks down, and the electric field becomes inhomoge-
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Figure 6.9: In the limit of large numbers of Rydberg atoms, the

electric field is measured at distances of ∼ 20–800µm from the

quartz surface at Tq = 79 ◦C. The electric field is calculated using

the difference in frequency shifts of the mJ = 1/2 and 5/2 states

of the 81D5/2 state. Black points are taken from different pixels

on the CCD camera. The error bars are the standard deviation

of the measurement. The red line is a fit to Eq. 6.6, showing the

inhomogeneity of the electric field. Calculations indicate that the

electric field at z < 200µm is caused by the large spacing between

the electrons.

neous. The red line in Fig. 6.9 is a fit to Eq. 6.6, with L = 200µm, demonstrating

the inhomogeneity of the field.
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Figure 6.10: EIT spectra taken at 2 different positions z = 150µm

(upper) and z = 50µm (lower) for 81D5/2 mJ = 1/2 (left) and

mJ = 5/2 (right). The black points are pixel values of 3 averaged

images, and the error bars are the standard deviation of the pixel

values. The red lines are Lorentzian fits to the data. At z = 50µm

the mJ = 1/2 state is broadened and shifted corresponding to an

electric field of 0.02 V/cm. The dashed lines indicate the zero electric

field frequencies for the mJ = 5/2 and 1/2 states.

6.8 Electron Photodesorption with UV LEDs

The electrons on the surface can be removed by using UV light. The UV light is

generated by light emitting diodes (LEDs) with emission centered at 400 nm.

The LEDs are placed below the quartz surface outside vacuum and are directed
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Figure 6.11: Schematic of the setup used to remove electrons from

the quartz surface. The light from the LEDs is applied through a

viewport on the bottom of the vacuum chamber.

upward as shown in Fig. 6.11. The effects of varying pulse lengths of UV light is

studied. Before every UV pulse, the surface is saturated with electrons. During

the MOT loading sequence the LEDs are pulsed on for a variable amount of

time. After the pulse, the electric field near the surface is measured. A plot of

the electric field with the substrate at 56 ◦C is shown in Fig. 6.12a. As the pulse

length increases the electric field also increases until in reaches a constant value,

∼ 0.2 V/cm. The data is fit to,

E(t) = A(1− e−bt), (6.18)

where b is the photodesorption rate constant. Eq. 6.18 is motivated by the

study of photodesorption of atoms and molecules [159, 160]. From the fit to
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Eq. 6.18, the photodesorption rate constant, b, is extracted. b was measured

for several different temperatures and was found to change significantly. The

results are shown in Fig. 6.12(b). The changing rate constant suggests that the

electron binding is changing with quartz temperature. The data in Fig. 6.12(b)

is fit to an Arrhenius equation similar to Eq. 6.7, with an activation energy of

0.7±0.07 eV. The activation energy is consistent with that of the Rb adsorption,

which suggests that the electron binding is strongly dependent on the amount of

Rb on the surface.

The surface is not only sensitive to light at 400 nm, but to visible light as

well. Careful alignment of the coupling beam is needed to avoid clipping the

quartz and generating large electric fields. Changing electric fields were also seen

using a helium-neon laser to illuminate the surface, and sensitivity to ambient

room lights was also observed. The area around the optical table and chamber

is shielded from abient light. Changing the power of the MOT beams incident

on the quartz by a factor of 2 does not change the electric field on the surface.

Equivalently using the same power as the MOT beams, light at 1064 nm also

does not change the electric field.

6.9 Conclusions

Adsorbate electric fields near the surface of the (0001) surface of quartz have been

characterized. In the limit of low Rydberg atom excitation, Rb adsorption follows
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Figure 6.12: (a) The increase of the electric field with the pulse

duration at Tq = 56 ◦C. The black points are experimental data, and

the error bars are the standard deviation of the measurement. The

red line is a fit to E(t) = A(1 − e−bt), where the photodesorption

rate constant b is extracted from the fit. (b) Plot of b measured for

different quartz temperatures. The error bars are the uncertainty

in the fit of the data to b. The blue line is a fit of the data to an

Arrhenius equation, with an activation energy of 0.7± 0.07 eV.

the theory of Langmuir adsorption, with an activation energy, Ea = 0.66 eV.

Measurements of the dipole density and Ea are consistent with experimental

results of other groups. Electric fields can be reduced by increasing the quartz

temperature and thermally desorbing Rb from the surface. Results of DFT

calculations were presented that investigated the microscopic nature of Rb

binding to the (0001) surface of quartz. The calculations reveal that the Rb

atoms are bound to two different oxygen atoms on the surface.
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Increasing the amount of Rydberg atom excitation reduces the electric field

even further. Electric fields as low as 30 mV/cm have been measured 20µm

from the surface. Electrons binding to the surface and canceling out the electric

field from the Rb adsorbates are responsible for the small magnitude of the field.

With the reduction in the field, it is shown that coherent excitation of Rydberg

atoms at high principal quantum numbers is possible near a quartz surface. To

date, most experiments involving Rydberg atoms near surface use states with

n ≤ 50. The ability to use Rydberg atoms with higher n includes the advantages

of longer lifetimes and stronger Rydberg-Rydberg interactions.
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Chapter 7

Conclusions and Future Directions

In this thesis, measurements of microwave and dc electric fields have been made.

The fields were measured using Rydberg atom EIT as a spectroscopic tool.

In recent years, the use of Rydberg EIT has been steadily increasing due to

its experimental simplicity and non-invasiveness. The theoretical basics of 3

and 4-level EIT are discussed. Experimental and theoretical results have been

presented showing the viability of using Rydberg EIT in vapor cells to measure

the absolute electric field and polarization of microwaves. These methods have

reached amplitudes as low as 8µV/cm and an angular resolution of 0.5◦. With

technical improvements in the experiment, and new ideas, these limits will soon

be surpassed.

Since the results presented here, the microwave experiment has been moved

over to a different setup in our lab using Cs. It has demonstrated spatial

sensitivity [86], as well as insensitivity to perturbations of the electric field from

the vapor cell [85]. Some of the current efforts include using FM spectroscopy

to push the sensitivity toward the standard quantum limit, and use a 3-photon

scheme for Rydberg excitation to cancel out the Doppler shift.

Rydberg EIT near a quartz surface has been used to show low electric fields.

Electrons binding to the surface are responsible for the fields that can be as

low as 30µV/cm at a distance of 20µm from the quartz surface. It is possible
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that increasing the quartz temperature could push the minimum electric field

down even further. DFT and electrostatic calculations qualitatively agree with

the induction of a NEA of the surface of quartz. Perhaps these results can

encourage more theoretical and experimental work on atom-surface interactions.

The experimental results shown in Chapter 6 show that Rydberg atom-surface

experiments are indeed possible.

Many pieces of experimental apparatus were designed and constructed. The

design and operation of a bow-tie cavity for generation of 480 nm light was

described. The system has been used successfully in both microwave and surface

experiments, and currently is being used in an atom-cavity experiment in our lab.

The cold atom apparatus including the magnetic trap is a robust environment

for the study of Rydberg atoms in free space or near a surface.

Extensions of the work with the Rb-quartz system will be focussed on

determining the details of the electron binding. One of the biggest questions

is, are electrons bound to individual adsorbates, or are they a 2D gas? In an

attempt to answer this question, we plan to measure the mobility of electrons in

a similar fashion to experiments done with electrons on liquid helium [161, 162].

To do the experiment, the gold mirror needs to be modified into three different

electrodes as shown in Fig. 7.1. An ac voltage is sent to one of the electrodes.

The electrons on the surface move back and forth and couple the ac signal to

the output electrode. The relative phase shift is dependent on the phase shift

between the input and output signals.
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Figure 7.1: Schematic of a future experiment. The gold mirror for

the mirror-MOT is turned into 3 electrodes. Electrons on the surface

will transfer the signal on the input electrode to the output electrode.

In its current state the experiment is setup to study the coupling of Ry-

dberg atoms to surface phonon polaritons on quartz. Transitions between

Rydberg states have frequencies that overlap with frequencies of surface-phonon-

polaritions on dielectric materials such as quartz. In the near-field, the coupling

between the Rydberg atom and surface-phonon-polaritons enhances the atomic

decay, transferring the energy of the excitation to the surface [163].

The lowest frequency surface-polarition mode in quartz has a frequency of 3.8

THz [164]. To achieve sufficient coupling the atoms need to be in the near-field,

λ/2π = 12µm. Imaging the atoms this close to the surface is pushing the limit

of direct absorption imaging. An alternative is to use grazing incident imaging

[112]. With grazing incident imaging, the imaging beam is incident upon the

mirror at a small angle, and due to the reflection off of the mirror two images

of the atomic cloud are produced. The distance between the two images in the

plane of the CCD camera are related to the distance of the atoms from the
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surface. The 500µm thickness of the quartz prevents us from imaging at angles

of a few degrees that are typically used. One possible solution is to set up the

absorption imaging along a different axis and use an incident angle close to 45◦.

Another possible experiment is to use a material that has lower frequency

surface polarition modes. For natural dielectrics, there is not a large variance of

the lowest resonance frequencies. A solution that our group has theoretically

investigated is to artificially construct periodically poled materials that can

have lower frequency modes, ∼ 500 MHz to 5 GHz [165]. Using this approach

atom-surface coupling can be in the strong-coupling regime at mm-distances.

The measurements in this thesis describe measurements of dc fields and

resonant microwave fields. Recently, techniques for measuring non-resonant

electric fields are being developed by other groups. In [121], electric field noise

near the surface of an atom chip was measured by using microwaves to drive spin-

echo and spin-locking sequences between two Rydberg states. In [64, 166, 167], rf

signals with frequencies from 10 kHz− 100 MHz have been applied to vapor cells

via external electrodes. The applied electric fields are measured with Rydberg

atom EIT. With some modifications both the vapor cell and surface experiments

could be adapted to study non-resonant ac electric fields. This could prove to be

useful in characterizing the frequency characteristics of adsorbate electric fields

that have plagued surface ion trapping efforts.

With the work presented here combined with the work of others, atom based

sensing of electric fields is a promising and rapidly advancing area of research.
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Specifically measurement of electric fields with Rydberg atom EIT has been shown

to be a robust and minimally invasive measurement tool. There are numerous

applications of these senors including as an electric field standard, characterizing

passive intermodulation in microwave circuits, detecting geoelectromagnetic

noise, and measuring electric fields near surfaces.
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81 (2014).

[112] D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S.
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S. G. Przhibelskǐi, and V. V. Khromov, Zh. Eksp. Teor. Fiz 97, 1077
(1990).

[160] Y. Shapira, S. Cox, and D. Lichtman, Surf. Sci. 50, 503 (1975).

[161] W. T. Sommer and D. J. Tanner, Phys. Rev. Lett. 27, 1345 (1971).

[162] R. Mehrotra and A. J. Dahm, Journal of Low Temperature Physics 67,
115 (1987).

[163] H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, Phys. Rev.
Lett. 88, 243603 (2002).

[164] H. J. Falge and A. Otto, Phys. Status Solidi (b) 56, 523 (1973).

[165] Y. Chao, J. Sheng, J. A. Sedlacek, and J. P. Shaffer, Phys. Rev. B 93,
045419 (2016).

[166] Y. Jiao, Z. Yang, J. Li, G. Raithel, J. Zhao, and S. Jia, arXiv:1601.01748
(2016).

[167] S. A. Miller, D. A. Anderson, and G. Raithel, arXiv:1601.06840 (2016).

[168] M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms
(Oxford University Press, New York, 2010).

[169] B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules,
Second Edition (Prentice Hall, 2003).

[170] J. Hare, M. Gross, and P. Goy, Phys. Rev. Lett. 61, 1938 (1988).

[171] M. Weisbluth, Atoms and Molecules (Academic, New York, 1978).

[172] R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chem-
istry and Physics (John Wiley & Sons, 1989).

161

http://dx.doi.org/10.1063/1.121528
http://dx.doi.org/10.1007/978-0-387-29185-7
http://dx.doi.org/10.1016/0039-6028(75)90040-0
http://dx.doi.org/10.1103/PhysRevLett.27.1345
http://dx.doi.org/10.1007/BF01070654
http://dx.doi.org/10.1007/BF01070654
http://dx.doi.org/10.1103/PhysRevLett.88.243603
http://dx.doi.org/10.1103/PhysRevLett.88.243603
http://dx.doi.org/10.1002/pssb.2220560213
http://dx.doi.org/10.1103/PhysRevB.93.045419
http://dx.doi.org/10.1103/PhysRevB.93.045419
http://arxiv.org/abs/1601.01748
http://arxiv.org/abs/1601.01748
http://arxiv.org/abs/1601.06840
http://dx.doi.org/10.1103/PhysRevLett.61.1938


Appendix A

Rydberg Atoms in External Fields

The preceding chapters show results of spectroscopy of Rydberg atoms in ex-

ternal dc electric and magnetic fields. The effects are theoretically analyzed by

constructing the full Hamiltonian and rediagonalizing it, which is equivalent to

solving the time independent Schrödinger equation. The full Hamiltonian is,

H = Hatom +Hatom−field, (A.1)

where Hatom−field is the Hamiltonian due to the interaction between the atom

and an external field. In this section, the external field will be either a magnetic

field, an electric field, or both. Hatom is the bare atom Hamiltonian consisting of

the energies of the states along the diagonal,

Hatom =


E1

E2 0
E3

0
. . .

Ej

 . (A.2)

In matrix form the Hamiltonian due to external fields is,

Hatom−field =

〈ψ1|Hatom−field|ψ1〉 · · · 〈ψ1|Hatom−field|ψj〉
...

. . .
...

〈ψi|Hatom−field|ψ1〉 · · · 〈ψi|Hatom−field|ψj〉

 . (A.3)

The details of calculating the matrix elements for Hatom−field for different cases

are given in the following sections.
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A.1 Rydberg Atoms in a Magnetic Field

A.1.1 Hamiltonian and Basis

The interaction between a magnetic field, ~B, and an atom is described by the

magnetic dipole Hamiltonian,

HB = −~µ · ~B, (A.4)

with the magnetic moment ~µ = −µBgL~L− µBgS ~S. Rb is an atom with a single

valence electron, so the g-factors are gL = 1 and gL ' 2 [168]. There is also a

diamagnetic Hamiltonian, HD, in addition to HB . However its effect is small

and it is neglected. The relative magnitude of the diamagnetic term to the dipole

term is [169],

HD

HB

≈ n4

Z2
B 106, (A.5)

where Ze is the nuclear charge and B is the magnetic field in T. For Rb with

Z = 37, n = 100 and B = 100 G the relative magnitude is ∼ 10−3.

The Zeeman shift is a valid approximation when the interaction with a

magnetic field is much smaller in energy that the splitting between states. In

the case of magnetically trapping the ground state of 87Rb with magnetic fields

(< 30 G), the approximation holds. For Rydberg atoms, this is not always the

case, as the fine structure splitting scales ∼ n−3. At high n the fine structure

splitting can be small. The calculations involving Rydberg atoms are done in
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the |JmJ〉 basis. In this basis HB becomes (with ~L = ~J − ~S),

HB = µB( ~J + ~S) · ~B. (A.6)

A.1.2 Matrix Elements

The matrix elements of HB are

HBij
=µBB

+1∑
q=−1

Aq (〈nLSJmJ |J |n′L′S ′J ′m′J〉+ 〈nLSJmJ |S|n′L′S ′J ′m′J〉)

× 〈nL|n′L′〉,
(A.7)

where 〈nL|n′L′〉 is an integral using the radial part of the wavefunction for state

n and L. Since the radial wavefunctions are orthogonal,

〈nL|n′L′〉 = δnn′δLL′ , (A.8)

where δij is the Kronecker delta. The values of Aq depend on the angle α between

~B and the quantization axis along ~z, as shown in Fig. A.1. ~B is decomposed

into ~x and ~z components following Table 3.2,

A−1 =
1√
2

sinα

A0 = cosα

A+1 = − 1√
2

sinα.

(A.9)

Typically the quantization axis is chosen along ~B, however this is not always

the case, in particular when ~E and ~B are both present and pointing in different

directions [170].
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Figure A.1: Angle α of the magnetic field ~B with respect to the

quantization axis ~z.

The values for 〈J〉 and 〈S〉 can be evaluated using the Wigner-Eckart theorem

[171]. Using the Wigner-Eckart theorem, 〈J〉 is,

〈nLSJmJ |J |n′L′S ′J ′m′J〉 = (−1)J−mJ

(
J 1 J ′

−mJ q m′J

)
〈nLSJ ||J ||n′L′S ′J ′〉,

(A.10)

with the reduced matrix element 〈||J ||〉 [171],

〈nLSJ ||J ||n′L′S ′J ′〉 = δJJ ′
√
J(2J + 1)(J ′ + 1). (A.11)

A similar process can be followed to evaluate 〈S〉,

〈nLSJmJ |S|n′L′S ′J ′m′J〉 = (−1)J−mJ

(
J 1 J ′

−mJ q m′J

)
〈nLSJ ||S||n′L′S ′J ′〉,

(A.12)
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Table A.1: List of selection rules for magnetic dipole (M1) transitions

in two different bases.

∆n

∆L

∆S

∆J

∆mJ

∆F

∆mF

|JmJ〉 |FmF 〉
0

0

0

±1, 0(0 = 0)

±1, 0(0 = 0 if ∆J = 0)

-

-

0

0

0

±1, 0(0 = 0)

-

±1, 0(0 = 0)

±1, 0(0 = 0 if ∆F = 0)

with,

〈nLSJ ||S||n′L′S ′J ′〉 =(−1)L+S′+J+1δLL′
√

(2J + 1)(2J ′ + 1)

×

{
J 1 J ′

S ′ L S

}
〈nS||S||n′S ′〉,

(A.13)

and,

〈nS||S||n′S ′〉 =
√

(2S + 1)(S + 1)SδSS′ . (A.14)

After combining equations the Hamiltonian becomes

HB =µBB
+1∑
q=−1

Aq(−1)J−mJ
√

(2J + 1)δnn′δLL′

(
J 1 J ′

−mJ q m′J

)[√
J(J + 1)δJJ ′

+(−1)L+S′+J+1
√
S(2S + 1)(S + 1)(2J ′ + 1)δSS′

{
J 1 J ′

S ′ L S

}]
.

(A.15)

The Kronecker deltas represent selection rules and only allow coupling between

certain states. Other selection rules arise when evaluating the 3j and 6j symbols,

a complete list is compiled in Table A.1. By analyzing selection rules, it can

be seen that only states with the same n and L will couple to each other and
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produce nonzero values. For D states with S = 1/2, 10 states are needed to

construct HB. With α = 0, HB in units of MHz with B in units of G is,

(A.16)

Most of the elements are zero as a result of the selection rules. The energies

along the diagonal are equal to the Zeeman shift for low fields,

∆E = gJµBBmJ

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
.

(A.17)

Following a similar process, calculations can be carried out in the |F,mF 〉

basis,

HB =µBB
+1∑
q=−1

Aq(−1)F−mF +I+J+F ′+1δnn′δLL′δII′
√

(2F + 1)(2F ′ + 1)(2J + 1)(
F 1 F ′

−mF q m′F

){
F 1 F ′

J ′ I J

}[
δJJ ′

√
J(J + 1)+

(−1)L+S+J+1δSS′
√
S(2S + 1)(S + 1)(2J ′ + 1)

{
J 1 J ′

S ′ L S

}]
.

(A.18)

Using this Hamiltonian the shifts of 5S and 5P states can be calculated. Ex-
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pressions are equivalent to the Breit-Rabi formulas in [57], but are not restricted

to J = 1/2 states. A list of selection rules also apply to this basis and are listed

in Table A.1.

A.1.3 Results

After constructing the bare atom Hamiltonian with quantum defects, the energy

shifts can be calculated. Results are shown in Fig. A.2 for the 41D and 81D

states with α = 0, so a comparison can be made with the first order Zeeman

shift. HB is same for both states, however the fine structure splitting is not the

same which accounts for the difference in calculated energies. For the 41D states

Eq. A.17 is a good approximation until ∼ 50 G. At higher n, the fine structure

splitting is smaller, so the approximation of Eq. A.17 breaks down at a smaller

magnetic field. For the 81D states this happens at ∼ 20 G.

To compare to calculations, the energy level shift between Rydberg states

is measured using Rydberg atom EIT. A solenoid around a vapor cell is used

to create a uniform B field. The B field splits the fine structure states into

its different mJ components. The frequency difference between the |5/2 5/2〉

and |5/2 1/2〉 states is measured. There are many more states, however most

are not observed as a result of selection rules due to the relative orientation of

the magnetic field to laser polarizations. These two states are the strongest.

Experimental results for the 81D states are shown in Fig. A.3.

At high magnetic fields when the energy shifts are large compared to the fine
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Figure A.2: Energy shift of the 41D (a) and 81D states (b). The

states are labeled by |JmJ〉 which are only good quantum numbers

for small energy shifts. The dashed red lines are calculated using

Eq. A.17.

structure splitting, J and mJ are no longer good quantum numbers. The shift

can be approximated by [169],

∆E = µB(mL + 2mS). (A.19)

A comparison between this approximation and the matrix diagonalization for

the 81D state is shown in Fig. A.4.
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Figure A.3: Theory and experimental measurement of the energy

difference between the |5/2 5/2〉 and |5/2 1/2〉 states in the 81D

manifold.

170



0 100 200 300 400 500

-2000

-1500

-1000

-500

0

500

1000

1500

2000  Diagonalization
 First Order Perturbation Theory

  mS

{1/2

{1/2

{1/2
1/2

{1/2
1/2

{1/2
1/2

1/2

1/2

mL

E
n
er

gy
 (

M
H

z) 2

1

0

{2 

{1 

{2

{1

0

1

2

B (G)

Figure A.4: Plot of the energy levels of the 81D state in the Paschen-Back regime.

A.2 Rydberg Atoms in an Electric Field

A.2.1 Hamiltonian and Basis

The interaction between an electric field ~E and an atom is described by the

electric dipole Hamiltonian,

HE = −~µ · ~E, (A.20)

where ~µ = e~r is the electric dipole moment. From second order perturbation

theory the Stark shift is

∆E = −1

2
αE2, (A.21)

where α is the polarizability. The approximation holds when the energy shifts

are small. As shown in Fig. 1.1b the polarizability of the ground state of 5S1/2
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of Rb is ∼ 109 times smaller than the polarizability of the 60S1/2 state. Since

the polarizability of Rydberg states are orders of magnitude higher that of the

ground state, second order perturbation theory breaks down at a much smaller

electric field. Similarly to the B field calculations, the Stark shift calculations

are carried out in the |JmJ〉 basis.

A.2.2 Matrix Elements

The matrix elements of HE are

HEij
= Eµij. (A.22)

The transition dipole moments can be separated into angular and radial parts,

µij = µrij × µaij . The radial part only depends on the radial wave functions,

µrij =

∫ ∞
0

Rn,L(r)rRn′L′(r)r
2dr. (A.23)

The angular part of the transition dipole moment is,

µaij =
+1∑
q=−1

Aq〈nLJmJ |εq|n′L′J ′m′J〉 (A.24)

The values of Aq depend on the relative angle β between ~E and the quantization

axis along ~z as shown in Fig. A.1. ~E is decomposed into ~x and ~z components

following Table 3.2,

A−1 =
1√
2

sin β

A0 = cos β

A+1 = − 1√
2

sin β.

(A.25)
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Similarly to the matrix elements for the magnetic dipole Hamiltonian, the values

for 〈εq〉 can be evaluated using the Wigner-Eckart theorem,

〈nLSJmJ |εq|n′L′S ′J ′m′J〉 = (−1)J−mJ

(
J 1 J ′

−mJ q m′J

)
〈nLSJ ||ε||n′L′S ′J ′〉,

(A.26)

and,

〈nLSJ ||ε||n′L′S ′J ′〉 =(−1)L+S+J ′+1δSS′
√

(2J + 1)(2J ′ + 1)

×

{
J 1 J ′

L′ S L

}
〈nL||ε||n′L′〉,

(A.27)

and [172],

〈nL||ε||n′L′〉 = (−1)L
√

(2L+ 1)(2L′ + 1)

(
L 1 L′

0 0 0

)
. (A.28)

Combining terms the µaij becomes,

µaij =
+1∑
q=−1

Aq(−1)J+J ′+S+1−mJ δSS′
√

(2J + 1)(2J ′ + 1)(2L+ 1)(2L′ + 1)

×

(
J 1 J ′

−mJ q m′J

){
J 1 J ′

L′ S L

}(
L 1 L′

0 0 0

)
.

(A.29)

Following a similar process calculations can be carried out in the |FmF 〉.

The difference is in the angular matrix elements,

µaij =
+1∑
q=−1

Aq(−1)F+F ′+J+J ′+I+S−mF δII′δSS′

×
√

(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)(2L+ 1)(2L′ + 1)

×

(
F 1 F ′

−mF q m′F

){
F 1 F ′

J ′ I J

}{
J 1 J ′

L′ S L

}(
L 1 L′

0 0 0

)
.

(A.30)

The transition dipole moments used in Chapter 3 are calculated using Eq. A.23

and A.30.
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Table A.2: List of selection rules for electric dipole (E1) transitions

in two different bases.

∆L

∆J

∆mJ

∆F

∆mF

|JmJ〉 |FmF 〉
±1

±1, 0(0 = 0)

±1, 0(0 = 0 if ∆J = 0)

-

-

±1

±1, 0(0 = 0)

-

±1, 0(0 = 0)

±1, 0(0 = 0 if ∆F = 0)

A.2.3 Results

There is a separate set of selection rules for electric dipole transitions listed in

Table A.2. There is no restriction on ∆n, so many nearby states need to be

included in the calculation. For example when calculating the Stark shift for

a nS or nD state, states from n± 4, (L = 0− 3) and n− 4 to n (L = 4− 13)

are used. All states with |mJ | ≤ 9/2 are included in the calculation, resulting in

1278 states. The matrix is too large for Mathematica to diagonalize algebraically,

so the calculation is done numerically for each value of the electric field. The

results of the calculation for the 81D5/2 state is shown in Fig. A.5. Only three

curves are shown because the ±mJ states are degenerate. At low electric field

the curves can be fit to Eq. A.21 to obtain a polarizability. As the electric field

increases mixing from nearby states becomes large and the shifts no longer obey

Eq. A.21.
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Figure A.5: Stark shift calculation for 81D with ~E ‖ ~z (β = 0).

A.3 Magnetic and Electric Fields

In Chapters 5 and 6 experiments are carried out in both ~B and ~E fields. In

this case Hatom−field = HB +HE and H is diagonalized. In the calculations, B is

considered to be aligned along the ~z axis with α = 0. Changing β, the angle of

~E dramatically changes the energy levels of the Rydberg states. As an example,

Fig. A.6 shows the results of calculations of the 81D state with B = 14.3 G with

~E ‖ ~B in Fig. A.6(a) and ~E ⊥ ~B in Fig. A.6(b). The states are labeled in terms

of magnetic quantum number. The presence of the magnetic field breaks the

degeneracy of mJ .
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Figure A.6: Calculation of the shift of 81D states for two different

cases with B = 14.3 G. (a) ~E and ~B are perpendicular. (b) ~E and ~B

are parallel.
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Appendix B

Alignment of the Bow-tie cavity

The following is the procedure used for the alignment of the bow-tie cavity. The

procedure follows the nomenclature and orientation of the cavity in Fig. 4.19a.

B.1 Alignment Procedure

1. The center the mirrors should be at the same height as each other as well as

at the height of the crystal. Place the mirrors roughly in the calculated positions

for the desired cavity.

2. Align the input beam so that it is centered on M1 and M2

3. Remove M1 and adjust M2 so that the beam is centered on M3.

4. Adjust M3 to get the maximum single pass blue power by measuring the blue

light passing through M4. If the beam is clipping or off center while passing

through the crystal, steps 2-4 should be repeated as many times as necessary.

The single pass efficiency should be around 1% for input powers of 800 mW−1 W.

If the single pass efficiency is low then the output of the bow-tie cavity will be

low. If the alignment looks good, but the blue power is low, then lens L1 may

need to be moved, or the temperature of the crystal adjusted.

5. After the single pass efficiency is maximized, put M1 back in place. This

will change the pointing of the input beam slightly, so make small adjustments

to M2 and M3 to again maximize the single pass power. Now that the single
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pass is peaked up, mirrors M2 or M3 should not be adjusted for the rest of the

procedure. The rest of the alignment will be done by adjusting M1 and M4.

6. The idea is to overlap the circulating beam with the input beam that is

aligned correctly and has a high conversion efficiency. A small amount of blue

light will be reflected by M4. Make sure this is passing through M1. Using an IR

card, adjust M4 so that blue spot is overlapped with the reflected beam close to

M1. Then adjust M1 so that the blue spot and reflected IR beam are overlapped

far away from M1. Perform several iterations of adjusting M4 and M1, soon the

beams will start to overlap and the cavity will start to flicker. The cavity is

resonant with many TEM modes, and when the cavity is flickering it is switching

between being resonant with many spatial modes. The air currents in the room

cause the optical path length inside the cavity to change, thus changing the

resonant frequency of the cavity and the TEM mode supported.

7. Put a box around the cavity to shield it from most of the air currents. Look

at the blue output modes of the cavity on an index card. Iteratively adjust M4

and M1 to minimize the spatial extent of the modes. After this is done, the

brightest mode should be the desired TEM00 mode.

8. Put the cover on. While measuring the blue power after M4 and scanning

across the TEM00 mode with the piezo, make fine adjustments to the input

mirrors to maximize the output power.
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