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PREFACE

The research which has resulted in this dissertation was started
in the fall of 1949 when I first enrolled at the Oklahoma Agricul-
tﬁral}aﬁd,Mechanical College., Professor Charles F, Cameron of the
vSéthl of FElectrical Engineering originally suggested this subject,
éﬁd'we diScussed the various ideas involved at great length. The
vérj ﬁature of the problem intrigued me, and I undertock the task
of;solvihg,it, The thesis which I submitted in 1950 in partial
fuifiilmént of the requirements for the Master of Science degree
contained the findings of the first phase of my researches,

While the use of complex numbers in the conventional analysis
of a-c circuits has many advantages over the trigonometric solution,
there exist instances when the rules for manipulating complex nume
bers do not yield results that conform with the natural behavior of
a=-¢ quantities., It is guite customary among textbook writers to
disregard these discrepancies and merely employ an artifice, where
necessary, to obtain the correct results, Such an analysis leaves
much to be desired,

In this dissertation, I have ignored all previous methods of
network analysis that employ the complex notation, In conventional
anélysis currents, voltages, and impedances are all represented by
ekactly the same type of symbols, complex numbers, Since it is
ob&ious that these three quantities are not alike, my first objec-
tive was to find a way to determine the basic nature of these

quantitieé. Based upon the original work of Gabriel Kron, I have
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shown that current is a contravariant tensor of valence 1 (vector),
voltage is a covariant tensor of valence 1 (vector), and impedance is
a covariant tensor of valence Z, These findings are based upon the
fundamental assumption that the nature of a quantity is determined
by ﬁhe manner in which it behaves when the coordinate system‘in which
it is represented is subjected to a linear transformation,
Alternating currents and voltages of a given frequency have two
degrees of freedom, amplitude and phase., It is convenient to
represent a branch or mesh current as a single vector, In order to
accommodate a two-dimensional current by a one=dimensional vector,
I conceived the idea of representing alternating currents and vol-
tages by complex vectors, The major portion of this thesis‘deals
with the detalls of a-c network analysis where the complex vector
voltages and currents have been expressed in equivalent matrix form,
An expression of appreciestion is extended to Dr. Wayne Johnson
and Dr, Alvin Pershing for the time which they so generously spernt
discussing details of this research with me. I am especlally grate-
ful to Professor Charles F, Cameron for his guidance and counsel
during the past several years and for his willingness to serve as
chalrman of my advisory compitfitee, Typing such a necessarily
complicated notation as I have adopted in this thesis on a convene
tional typewriter is quite an accomplishment. I am deeply indebted
to my wife for her patience and understanding in mastering the

matrix eguations on the typewriter.
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CHAPTER I
BASIC CONCEPTS OF A-C CIRCUIT QUANTITIES

Introduction

This research is a contimuation of a study sterted by the author
and Professor Charleé F, Cameron in September, 1949, The earlier
efforts on this study culminated in a thesis submitted by the author
to fulfill the requirements for the Master of Science Degree in August,
1950; Frequently throughout this paper, references will be made to
pertinent sections of the thesis submitted in 1950; this thesls will
be referred to as the M, S, Thesis, Because of its pertinence, the
Introduction to the M; S; Thesis is reproduced below,

Introduction to M. S, Thesis

Often in the early development of a particular branch of sclence,
rules and regulations will be established which govern the existing
knowledge of the field at that time. Later, however, invariably many
new, and sometimes radically different, aspects of the science are
discovered, These newly discovered truths may necessitate medifica-
tions in the statement of the rules and regulations formerly estab-
lished, and in some instances may even render them void and uwseless,
For example, the development of the theory of light preopagafion and
the flow of light energy is yet to be completely explained.. At
present, the use of both the Wave and the 'Quantum Theories arve
required to explain all the phenomena of light. This is the way that
knowledge has progressed from the very earliest beginning; first, the
most elementary ideas and concepts, and then, as the known faects
increase, the more complex aspects are explained, leading to the ule
timate establishment of the sclence on a firm and sound theoretical
basis; the theory being substantiated by observation and experiment,.

The development of the field of elsctricity and magnetism has
been no exception to this general rule, The first ideas were based
almost entirely upon experimental data, but since that time more
powerful mathematical tools have been discovered and developad that
have tended to clarify and explain the wonders of electricity.



Many'@f the presently existing ideés in the field of albernating
current electricity are even yet 1ncon81ubenc,f

The student of elementary electrical technology learns Ohmts law
in the symbolic form I = E/R, which is equivalent to the verbal
statement that the current in an eléctric circuit is exact tly pIOPOfu
tional to the voltage applied to it. By assuming the truth of this
statement of the law, the student is ensbled to solve a large nunber
of simple-circult problems, and it is not until he progresses a little
further in his studies that he finds its applications to be limited
and true only under important qualifications.

In simple metallic cireuits with steady voltages, for instance,
this expression of the law holds good only when the temperature of
the material of the eireuit is meintained constant, Again, with
alternating voltages and with inductive circuits, it is true onlv if
the frequengy is also constant., If the magnetic flux causing the.
inductance flows in iron this interpretation of the law is not
correct; even with constant temperature and frequency, current is
not exactly proportional to applied voltage. Further, Chm's leaw is
known not to hold in cerbtain circults of an' electrolytic character,

The discrepancy in cases like these is somebimes explained by
using the fietion of a back EMF, ©tut this begs the whole question,
It is better to recognize that there are two distinet kinds of
electrical cirouits, the one in which Ohm's law as defined shove is
obeyed and in which current is exactly proporbional to voltage, and
the other in which this proportionality does not hold, Cirouits of
the first class are generally sald to have a linear impedance; in
circuits of the other class the 1mpedance is designated nonulvnear,

The preceding discussion quoted from G, W, Stubbings points out
several discrepancies which are present in the thinking of marny
electrical engineers, In this treatise, the discrepancies and short-
comings encountered in the usual application of complex scalar algebra
to alternating-current circull gquantibies will be disecussed. The
ulbtimate goal of this dissertation is to devise (or adapt) a branch
of mathematics to solve a~c ciroull problems that will avoid the
discrepancies encountered in the use of the complex scalar algebra,

Before proceeding further, it seems advisable to review the historicsl

*Charles w’ Jiles, A Comprehensive Study of Electrical Power
_Quantltles (unpubllmhed M, S, thesis, School of Electrical Englneer“
ing, Oklahoma A, and M, College, 1950), PPe 12

24, W, Stubbings, "Harmonics and P, F.,“ Eleotrical Review,
(June 5, 1942).




manner in which a new sclentific field is generally devel@ped; the
development of the field of electricity will be disr:ussed,;

The beginning of electrical engineering, as it 1ls known today,
was the discovery and collection of basic experimental :information.
Some of the most important of these experimenmtal and fundan}enta]
data are (1) the concept of electric and magnetic lines of force
pervading space by Faraday, (2) the connection between an electric
current and a magnetic field, arjnd the equivalence of permanent mage
nets and electromagnets by Ampere, (3) the electromagnetic wave
equations by Maxwell, and (&) the beginning of the photoelectric
and electron theories by Hertz., These basic researches and experw
iments have been given here solely for the purpose of desecribing
the nature of a science, and, iﬁ particular, the nature of the difw
ferent quantities that are studied in electrical engineering.

From this early beginning,as the field of electrical engineering
grew in extent, more advanced mathematical technidques were adopted
in an atltempt to simplify the increasing complexity of solntions
required for the types of problems that were encountered.; When
alternatingm-current electricilty replaced directecurrent electricity
in mamr commercial uses, the solutions of even elementary problems
became aquite cumbersome and unwieldy; These solutions were acc«sma‘
plished with the voltages and currents expressed in trigonometbric
form, Then, immediately after Argand devised the complex algebra,
Steinmetz applied the complex algebra to the solution of a-c cireuits,

There is a tendency among electrical engineers to forget about
the nature of the quantities with wh:iéh they deal and to think of a=¢

guantities as actually being complex numbers, This kind of thinking



(or lack of it) is errcneous and misleading. The fact is that a-c
quantities, correctly represented by trigonomeﬁic functions and orily
partially represented by ¢omplex algebra, are real physically existe
ing entitles whiéh obey certain natural laws. These nébural laws are
completely independent of any mathematical schemes or fictitlous
images dreamed up by the mind of man, If, however, i£ 50 happens -
that all the man-made laws of a perticalar branch of mathematics cone
form to all the natural laws of behavior of a set of physical objects,
thern the set of thsicél obj;cts may be properly represented by sym-
bols in that branch of mathematics, Thebmathematics may then be

used to predict unknown characteristics of the physical objects,

On the econtrary, if it is known that at least one law of manipulation
in the given branch of mathematics does not agree with the corresponds
ing natural law of manipulating the physical objects, then the
mathematicé is at best only a partial representation of the physical
objects; in this event, the mathematics should be used to predict
unknown natural behavior of the physical objects only with great
caubion and insight.

The difference between a set of physical or abstract objects and
the mathematics used to represent those objects should be clearly
understood and appreciated, Once objects have been represented in
a particular space or réference frame, there is a tendency to confuse
the mathematical representation of the objects with the objects
themselves, For example, the forces acting on a body may be

represented by vectors, but the foreces are not vectors and the

vectors are not foreces; the forces are physical objects and the



vectors are mathematical entities. Physical or abstract objects may
be represented by any mathematical system that is considered convene
lent. However, in order to have a usefﬁl representation, it is
hecessary to select a mathématical system for a given set of objects
such that the algebraic laws of the mathematical system when applied
to the set of objects yield results which agree with the known nat-
ural laws that govern the set of objects. When this has been accom-
plished, the mathematical system is a true representation of the set
of objects., However, if an occasion should arise when a partleular
aspect of the set of objects disagrees with the corresponding result
pro&uced by the algebra of the selected mathematic;l system, then it
should be recognized that the mathematical system simply does not
completely reprgsent the set Ef objects. In this event, either a
more truly representative mathematical system should be devised, or,
if éuch seems impossible, some artifice should be devised to correct
this diserepancy, When such an artifice is.used,the basic difficulty

and the reason for using it should be made clear,

Trigonometric Representation of A=C Circuit Quantities

When a voltage of sine-wave form is impressed across a sta=
tlonary electric cireuit containing linear impedance élements,trigm
nometric functions may be ﬁsed to correctly represent the various
’components of voltage, current,and power that exist in the circuit.
Therefore, this problem will first be analyzedﬁusing trigonometry
in order to deterﬁine the characteristics that any other mathemat-
ical representation of a-c gquantities must have,

If the reference axis is #o chosen that

v = ¥, sin wt (1.1)
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then | i = I, sin(wt - 8) (1.2)
The total instantaneous power is defined as
p = vi (1.3)
Substituting (;gl) and (1.2) into (1.3) gives
p = V I sinwt sin(wt -'0) (1.32)
Since sin(wt = @) = sin wt ccs @ - cos wb sin @

equation (1.3a) becomes

p = VmIm Siﬂ wt /(Sin wt cogs @ = cos whb sin Q) (1¢3b>

Il

or P VI (sin® wt cos 0 = sin wt cos wt sin 8) (1.3%)

Using the identities that

sin®? wt = 1/2 + 1/2 cos 2ut
and  sinwt cos wt = 1/2 sin 2wt
equation (1.3¢c) becomes
vﬁIm ’ vﬁlm Vﬁ;ﬁ, . . :
p = 5~ €OS @ = ~== cos @ cos 2wt - 5~ sin 0 sin 2wk (1.4)

It should be noted that the total instantaneous power (1;4) is-
composed. of thrée terms; the first term is a constant, and the other
two terms are time functions which vary at twice the frequency of
the impressed voltage., Equation (1;4) will be diseussed in greater

detail later in this chapter,

Complex Representation of A-C Cireuit Quantities
From physics, it is well known that if a body travels in uniform
cireunlar motion the projection of its instantaneous veloclby upon a
diameter of its circle of rotation will describe simple harmonic
motion, Equations (1.1) and (1,2) are obviously the equations of

simple harmonic variations and hence could be represented as & linear



projection of a line segment of a given length being rotated at a
constant angular velocity w. It will be assumed that the current as

given in (1.2) is lagging.

F

foe - - - t=0

Figure 1

Sinusoidal Functions as Linear Projections of Rotating Vechors
Referring to figure 1, it is evident that equations (1.1) and (1;2)
may be represented by the vertical (y) projections of the two vectors
of constanﬂ length, Vm and Im,reSpectivelyg These two vechtors mist
start at ©t = 0 in the position showm, and then rotate in a counter-
clockwise direction at a constant angular veloeity w, This signifiss
that, if these rotating vectors were suddenly stopped for any given
value of time, such a diagram could be used'to indicate the correct
‘phase relationship between two sine functions, This type of diagram
is of great value to the electrical engineer, Since effective
(rom.s,) values rather than maximum values are usually used, the
vectors in figure 1 must be multiplied by a constant (0,707).
Cap@ta; letters without subscripts will be used to represent effsce~

tive wvalues,



8

If figure 1 were drawn for a valuve of time other than zero, the

result would be that shown below in figure 2.

¢
A\

dor-

o,
7
Figure 2 .
Rotating Vectors with General Reference Axis
For this condition, equations (1;1) and (1,2) become ‘
v o= VT sin(ut +o(,) (L.1s)
and i = I sin(wt +da) (1.22)

If maximom values in figure 2 are replaced by effective values (by
mltiplying by 0.707), the X-axis is the real axis and the Yeaxis is

the imaginary axis, then the eguations for woltage and current become

Vo= Ty + 3V, (1.5)

and I = I, + 35, (1.6)
where V, = V cos &K, : -V, = V sinol, (1.52)
Is = Y cosels : I = I sin oy (1,_6&)

Figure 3 shows equations (1.5) and (1,6) in diagrammatical form,
This is about as muech of an introduction as most elementary texbts

usually give to the use of complex algebra in electrical engineering.



Sinee I and V as given in (1.5) and (1.6) differ in magnitude and

phase only, the a-c impedance is written in the same form as V and I.

Imaginary
Vo,
**'/S’W/ :
oL, |12
AW ! Real
Vi I,
Figure 3

Effective Voltage and Current Expressed as Complex Numbers

7 = R+ 3% (1.7)
The average real power in watts is defined aé
P = VIcos(elz = (1) = VIcos o (1.8)
and the reactive power in vars is defined as ,
P, = VI sin(e€, =<C4) = VI gin 9 (1,9)
Equations (1.8) and (1.9) indicate that P and P are the two legs of
a right triangle with VI as the hypotemuse. The product of (1,5)
and (1.6) should then give the sum of {1,8) and (1.9) at right angles,
Taking the product of (1.5) and (1.6) gives
VI = (ViIs = Valz) + 5(ViIa+ VpIi) (1.10)
If this is correct, then

P = V;LI;L o v213 o (]—alj)
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and ‘ P, = Vilp + V214 (1.12)
Expanding (1,8) yields |

P = TVI(cos olz cos o1 + 5in oLz Sin oL1) (1.8a)
Substituting from (l.5a) and (1.6a), equation (1.8a) becomes

P o= Vuly 4TI - (1.8p)

Similarly, expanding (1.9) ﬂ

Pr = VI(sin ez cos o1 = 5in ez cos oL2) (1.9a)
Again substitubing from‘(l,5a) and (1.6a) giveé

P, = VeIi - Vulp ~ (1.9)

Sinee. (1.8b) and (1.9b) are known to be correct, equations (1.11) and
(1.12) mist be incofrect. The reason for this failure in fhe complex
notation is not apparent; it is embodied within the theory of complex
algebra. It shoﬁld be recalled at this point (equation 1.@)‘that the
instantaneous power is composed of a constant term and two double-
frequency terms, The failure of the complex notation in (1,11) and
(1.12) demonstrates that complex numbers can not be used to represent
harmonic functions of different frequencies without more understand-
ing of the theory of complex numbers than 1s included in most texts
on a-c cireuits. The definitions of average power in watts (1.8)
- and reactive power in vars (1.9) are quite misleading unleés studied

carefully. The implications of these two definitions will be

analyzed in the following section.

Real and’Reactive Power
The first two terms of (1.4) are defined as the instantaneous real
power; the last term is defined as the instantaneous reactive power,

The instantaneous real active power will be dencted by pa’and the



instantaneous reactive power will be denoted by P..c
| ¥

v VT

S | mwm .

P, = T3 CO8 @ = ~3= cos § cos 2ut (1.13)
=V T ‘
Tmm . .

P, = 5~ sin @ sin 2wt (1.14)

Using effective values, (1.13) and (1.14) become

p, = VI cos © - VI cos 0 cos 2wt (1.13a)
p, =-VIsin 6 sin 2wt ' (1,14a)
The average value of a periodic funetion y = £(x) is defined as
T .
L, = %fof(x)dx | | (1.15)

The average value of the instantaneous real power (1.13a) is

- :
P = %‘Zj(VIvcos 9 = VI cos @ cos 2wt)dt (1.16)
where T is the period of the voltage or current. The second term in
(1,16) obviously venishes, leaving
P = VI cos @ (1.8)
Thus to read the average real power an electrodynamometer type move~
ment calibrated to read (1.8) may be used. Equation (1.8) can there=
fore be experimentally determined in a straight-forward manner,
~ There seems %o be no reason why the reasoning applied to p_ in
(1.132) through (1,16) should not also apply to P,. (1.14a), Apply-

ing definition (1.15) to (1.14a) gives

1 T
Prn = 7 f..VI sin @ sin 2wt dt (1.17)
o -

The average value of p as given by (1.17) is obwiously zero,
Definition (1.9) must therefore be obtained from a different kind of

reasoning than (1.8), and Pf obviously ecannot be measured with the



|

' . ‘ .
same type of instrument as P, | Tt is expedient to investigate the

type of reasoning required to obtain (1.9) from (1.1ka) and to
deterimine if (1,9) has any physical significence, One means of
obtaining (1,9) from (l.1l4a) is to retard the voltage wave by 90°.

This phase shift of -90° changes (I,1) to

i

v = V_sin(wt - 90°) (1.18)
or v :\;Vm cos w£ ’ (1.18a)
If (1.,18a) is substituted into (1;3)3 then (1.3b) becomes ’
p =<V I cos wt sinwt cos 0 +V I cos®wt sin 0 (1.19)
The average value of the first term, the instantaneous real power, in
(1.19) is obviously zero, Using the identity
cosPut = 1/2 + 1/2 cos 2wt

the instantaneous reactive power, the last term in (1.19), becomes

Vﬁlm Vﬁ;m‘
p. = > sin 0 + _— sin @ cos 2wt (1.20)

Changing to effective values, (1,20) becomes

P, = VI sin @ + VI sin @ cos 2wt (1.202)
If definition (1.15) is now applied to (1;20a),the result is

Pr = VI siny@ |
Experimentally, it is quite simple to ascomplish the =90° phase shift
in the voltage wave; an inductance, whése reaétance is large compared
to the internal resistance of the potential coil, is connected in
series with the potential coil of the wattmeter. Sinece the b, term
vanishes9 this modified Wéttmeter wili now read (1;9)3
| Tt is now apparent that (1.8) and (1.9) embody two entirely

different concepts, While (1,8) is a straight-forward definition,

the definition of Pr implies a great deal more than the simple

mathematigal statement (1;9) would lead one to believe.
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Addition of Displaced Sinusoidal Funciions

Tt has been stated earlier that alternabing currents and voltages
are cofrecfcly represented by trigonometric functions. In ofder to
cinvestigate the manner in which two alternating currents or voltages
of the same frequency combine by addition to form a single alternat-
ing eurrent of voltage, the trigonometric representation of alternat-

ing currentS‘ or voltages may be used, For illustrative purposes, two

voltages
ve o= Voo sin(wt + oly) (1,21)
and . Vp = sz sin(wt + ‘.’C?) ‘ ' (1;22)

will be chosen, Forming the sum of (1.21) and (1.22) yields |
v o= vitve = Vosin(wt + o(s) + U  sin(ut + ofz) (1.23)
Expanding the sine functions by the identity
sin(e{ + B ) = sinel cos B+ cosel sin2

gives
v = V_(sinwt cos ofs + cos wt sin A1)+ .
* (1.24)
sz(sin wt cos &l 2 + cos wt sinelz) ,
v = (V_ cos oy +V_ cos of z)sin wt + ‘
i T (1.2%a)
(lesln o1 + szs:m o 2)cos wt
Equation (1.24z) may be written in the form
v = Asinwt + B cos wt (1,,2bfb>
where 4 = lecos oy + szcos o, (1.25)
| | B = les:ln /oC:L + szsm K2 (1.26)
Equation (1.24b) can be further simplifiéd to ,
v = G sin(wt + 0) (1,20)
whers C® = A% + B? (1.27)
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, | | |
and 0 = tan“*% (1.28)
) ] ) ,
Substituting (1.25) and (1.26) into (1.27) gives |
2 _ 2 2 - et
C! Voso * TVt t 270, V0 cos(el1 = ol 2) (1.29)
Equations (1,24c) and (1.29) indicate that C is the diagonal of a

parallelecgram having legs le and sz separated by the angle o1 -~ of 2.

_ =
/
/
{
an ©
o |

Figure 4

Addition of Sinusoidal Functions
The addition of twé sinusoidal functions has been shown to follow the
parallelogram law of addi%ion; As far as the addition of alternating
currents or‘&olbages is concerned, these quantities may be represented
by any form of mathematics for which:additién follows the parallele
ogram law, Now it so happens that both vectors and complex nﬂmbers
add according to the parallelogram law, Hence, as far as addition is
concerned, either vectors or complex numbers could be used to
represent alternating currents or voltages equally well. Since the
complex represeniatidn of alternating currénts and voltages has been
demﬁnstrated, it would be instructive to dempﬁstrate the manner in

which these quantities may e represented by vegtors,
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Real Vector Representation of Alternating Currents and Voltages
|

The following analysis follows the basic ideas contained in a

paper entitled Double Frequency Quantities in Comolex Notation write

ten by AlexXander S, Lané;sdorf° This paper was never published but was
graciously loaned to the author because of mutual interests,
The Chm's Law of a-c circuits is

v = IZ. (1.30)
It must firSt be récognized that (1.30) is actually a vector equation;
V and I have magnitude and phase (equivalent to direction). Since Z
has no phase property, it is merely a complex nuﬁper;m Hereafter,
symbols with bars undef them will be used to représenﬁ vectors, and
symbols with a dot over them will be used to represent complex
numbers , Iﬁ this notation, (1,30) becormes

T = 12
Since both ¥ and I have two degrees of freedom, it will require two
real vector components to describe each of them. These components
will be taken along two orthogonal axes X1 and Xz along which two

unit real vectors g1 and gz are assumed to exiét,‘reSpecﬁivelyo The

voltage will be assumed to be of the form

v o= v sin(wt + &), (1.31)
the current of the form ,
i = I sin(wt + B), (1.32)

and the impedance of the form ,
Z = R+3X = 2z/e (1.33)
In vector notation, using effective values, these equation become

V¥ = Vies + Vaes (1.34)
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and I =!Iies + Ipge ‘ (1;35)

If the currenttin (1:35) flows‘throﬁgh 2 circuit having an impedance
as given by (1.33), then (assuming that ﬁhg ordinary laws of algebra
héld without mpdifigation), the voltage drop aéroSs the circuit shéuld

be given by (1.30a).

(Tags + Tage)(R + JX) (1.36)

i<
i

X = Ilel + IZRQE--'- I:.ngi + szjgz (10363')

Ascribing to the Operator j its usual rotational property (see Tigure

5) jer = g2 (1.37)
and Jjez = =@1 | (1;38)
X2
ﬁt‘ —————————————
Tzg2
i

>

Sy,
N \ Ta81 g X4
es
Figure 5
Two-Dimensional Real Vector Representation of A=C Current
Substituting (1.37) and (1.38) into (1,36a) gives |
Y = (IaR - I2X)gs + (IaX + IoR)ee (1.39)

Equation (1.39) agrees with the results obtained by the ﬂrigonomatric
and complex number methods, both of which are knowh' to be correct,

Let it now be required to find the total power input to a circuit when
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the applied voltage is given by (1.34) and the resulting current by
\

(1035>;

VI = (Vigs + Vaga)(Tsgs + Ioe2) (1,40)

It}

VI = Vailigsgs + Vailagues + Valseaes + Valaeoe2 (1.40a)
If, following Langsdorf, all the vector products in (1.40a) are
interpreted to be the dot product of 6rdinary vector analy§i$,£hen
| e1g1 = 1L e2e1 = 0 :
" (1.41)
g182 = O €282 = 1
Substituting (1.41) into (1.40a) gi?es the average real power in watts
P o= Vils + VoI (1.52)
Tt should be ¢learly understood that (1;42) was the result of straight-
forward miltiplication of ¥ and I without recourse to the artifice of
émploying the conjuéate as is required inithevcomplex notation to get
the correct answer, In cther woras,equations'(l,Bh) and (1.35)
appear to be a more natural representation of voltage and @urremt
than (1.5) and (1.6).
| Actually, going beyond Langsdorf, (1;40a) can be made even mors
useful by défining the vector products as given below in the

multiplication table,

: Table 1 :
Multiplication Table for Three Orthogonal Real Unit Vectors

The cross product 6f-g1 and ez gives a third mutually perpendicular

real unit vector, ea, the algebraic sign being determined by the order
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of multiplication. If this no%aticn is used, (1,40a) becomes
VI = (Valy + VoIz) + (ViIz = Vzla)es (1.43)

The scalar component of'(l;MB) is the average real power in watts as
defined by (1.8) and (1.42), and the vector part is the reactive
power in vars as defined by (1.9). Using this notation, the product
of vector voltage and vector current gives both the real and reactive ,
power, which is more in keeping with the usual notions of volt-amperes,
Equation (1.42) iS‘actuaily a modified qﬁatefnionf The differencé in
the above procedure and true quaternion algebra is that the dot prod-
ucts of the unit vectors are mimus one, i.e., g181 = «1, in quater=:
nion algebra., Since this notation wculé make the average real power
negative, such a definition of the dot product could not be tolerated
in a=-c circuit theory.

In addition to giving numerically correct results, equation (1,43)
alsbfindicate5= the physical properties of the real and reactive power
components, a desirable feature tha£ is lécking in fhe complex scalar

treatment., In order to make this distinction clear,the various quan=

titles have been listed below in trigonometric and vector notation,

Trigonometric Notation Vector Notation
v = V_sin(wt + oC) Y = Vigs +Vee2
i = I sin(wt + B ) I = Tses + Izg2
p, = VI cos @ -« VI cos @ cos 2wt P = Vili + VpaIpz, or
P = VI cos @
p, = =VI sin @ sin 2wt B, = (Vala VzIa)es, or
' Er’ = (VI sin 0)es

Table 2
Comparison of Trigonometrie and Real Vector Representations
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The values of v and 1 as ngenllm table 2 are both functions of Their
amplitudes (V and T ) and the:.r phase angles (eland B). Therefore,
it is logical to represent both v and i as two.dimensional real vecs
tors, The average values (over a complete period) of both v and i are
zero, Since o has no phase angle,it is a function of its magnitude
(-VI sin @) only; the the average value of p, (over a complete period)
is also zero, The representation of By similar to v and i; ag a onew
dimensional real vector is entirely apprOpria£e. Futhermore, the
double-frequency characteristic of p, (with respect to ¥ and i) is
indicated by directing gr normal to the plane of ¥ and I. Now the
average value of b, is not zero; it is VI cos @, Since P is defined
as the cpnstant part of Py P is bgsically independent of time; Ir
sinusoidal time functlons are represented by vectors, then obviously
termé that are independent of tims shpuld‘be described by some other
nétation. This is dccomplished inA(l;ﬂa) by representiﬂg the real
number Vl‘cos 9 as a scalar, Thus,‘when properly interpreted, equa-
tioﬁs (Z.34), (1.35), and (1.43) give a complete déscription»of volt=
age, current, réal power, and reactive power,

The term volt-amperes ﬁas been used in the preceding discussion
to refer té the vector sum of the average real power and the reactive
power as defined by (1.8) and (1.9); when harmonics are present, the
term volt-amperes is often used in an entirely different sense, In
the following section,the term volt-aﬂperes will be analyzed in
detail,

Volt-Amperes in A-C Circuits '

Most electrical engineers tend to think of volt-amperes ?S éitﬂer

the product of effective voltage and effective current or theksquare
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root of the sum of the squares of the real and reactive power, If
harmonics happen to be present‘in the voltage and current wave forms,
these two concepts of volt-amperes are not equivalent. For the sake
of brevity, only three different frequencies,‘designated by subscripts,
will be assumed to be present; the general proof follows exactly
analogous reasoning.

The effective values of voltage and current are

v

it

\/ v + V2 + V2 (1L 4Y

and’ I

NEEEEE: (1.45)
Volt-amperes defined as the product of (l.44) and (1;45) will be

dénoted by the symbol VAi, Hence

VA, = \/VE+V§+V§ . \/I§+I§+I§‘ - (1.46)

(VA1)? = Vi1% + V313 + vE1§ + ViI% + vii§ + i
' (L.47)

V3I% + V3I% + VEI% + VEI3
Volﬁ-amperes defined as the square root of the sum of the squares of
the real and reactive power will be denoted by the symbol VAz. By
definition

3 3 '
(VA2)2 = (> ViIi cos Qi)2 + (= ViIi sin Qi)z (1.48)
1 =1 i=1

If the indicated operations in (1.48) are performed, the result is

(VAz)?

i1

V1% + V312 + V318 + 2 ViIsV,I, cos @1 cos @p +

2 ViIiVaTs cos Q1 cos Qa.+ Z_VaIgvaIa cos.-Qz cos Qg +
2 VaI4V2Tz sin Q1 sin 02 + 2 ViliVala sin 01 sinlgg +
2 V2IzVaTs sin G2 sin 9a | (1.49)

By using common trigencmstric identities, (1.49) reduces at once to
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(VA2)? = VEIZ + VZIZ + VEIZ + 2 ViIiVaTs cos(01 - 02) +
(L.49a)
2 VaTlsVals cos(@s = 83) + 2 VaIzVals cos{@z - 03) ‘
The problem is now to determine the conditions under which (1.47) is
equal to (1.49a), that is | '
(Vaa)? = (VAg)? (1.50)

In order for (1.50) to be true,two significant stipulations must be

satisfied, The first condition is-obvious; it is

91 = Gz = &a (1.51)

If condition (1.51) is required, (1.49&) simplifies to (
(Vh2) = VTE + VAI3 + VBIZ + 2 VaTiVoIp+2 ValiVals + 2 V2I12Vals

' (1.52)

Eqnétion'(l,ﬁz) is evidently in general not edqual to (1;47), In

addition to (1.51), if it is further stipulated that

‘_% = % = Yfi" (1.53)
then _ vi1¢ = v3ii /
virg = viii (1.53a)
Vi3 = V313
and | IV, = ViIp ‘
IiVa = ViTs (1.530)
IVa = Vals

If (1.532) is substituted into (1.47), (1.53b) substituted into
(1,52),and each of these equations simplified by collecting like
terms, the result is ,
27412 + 2 VEIE + 2 VBIE = 2 VET3 + 2 VEIZ + 2 VBIE  (L.5%)
The left side of (1.54) is (1.47), and the right side is (1.52).
From (1.51) and (1.53),the two conditions for the validity of -

(1.50) are (1) all harmonics must have equal displacement angles
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(reierred to a base frequency) between current and voltage and (2)
the ratio of the amplitudes of‘voltage and ‘current must be equal for
all harmonies, It is easily shown that (1.53) and

01 = @z = 6 = 0 , (1.55)
are the necessary conditions for unity power factor.3

The preceding analysis has clearly established the conditions

under which (VA1)? and (VAz)? are equal, - In general, in actual cire
cuits, (1,51). and (1,53) ave not satisfied, Since in general (1.47)
and (1.48) are not egqual, it is desirable to obtaig én equation for
the difference in these two guantities, In order to avoid eQuationsv
having excessive numbers of terms, the third. harmonic components in
(1.47) and (1.48) will be omitted. The definitions and términélogy

used in the M, S, Thesis will be incorporated,® Equation (1;47)

becomes Pa, = VTR + VTR + VIIZ + VEIS (1.56)
and - (1,48) becomes P; = P? + P; (1.57)
p? = V41§ cos®@1 + 2 V1I1V,I, cos Q1 cos 9z + V3IZ cosZe; (1.58)

P2 = ViIf sin®0s + 2 ValiVoT2 sin @1 sin 0z + V3I] sin0z  (1.59)
Equation (1.56) can be written as |
P;p = V3I% cos®01 + 2 ViIiVoI2 cos' @1 cos @2 + V5IZ cos?0, +
VEI% sin®01 + 2 ViIsVoI. sin 61 sin 0; + V2I3 sin®Qz +
Vi1 + V31% - 2 ValaVaIz cos(Q1 - ©z) | (1.562)
The sum of first three terms in (1;56a) is P? as given by (1.58); the

sum of the next three terms is P; as given by (1.59). Since

P2 = P?>+P2+p2

ap r d (1.60)

®R, M, Kerchner and G, F, Corcoran, Alternating=Current Circuits,
3rd Edition, (New York, 1951), pp. 192-193,

“Chariles W, Jiles, A Comprehensive Study of Electrical Power
Quantities, pp. 27=34.
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the last.three terms in (1.56a) constitute Pé, where P, is the distora

tion power., Thus

P2 = ViIZ + V3I% « 2 VaIiVoI, cos(@s - Gz) (1.61)
The different terms in (1.56) may be analyzed as follows:

V41% - part active and part reactive power

V1% - part active and part reactive power

V1% - all distortion power
and V414 - all distortion power,
Moreover, (1,56) does not contain all the active, reactive,or distore
tion power terms, From (1.56a), it is evident that the sum of the
2 ViI4VaTIz cos @4 cos @2 term in the active power and theiz VailiVaIs
sin 01 sin 8z term in the reaétive power .cancels the =2 ValiVala
cos(Q1 = 82) term in the distortion power, Therefore, even though
(1.56)-is the correct expression for P:ﬁv the different voltage and
current components do not conibine algebraically to euwtomatically
give the three power components as given by (1.60),

Since none of the terms, or groups of terms; in (1.56) con-
stitutes either the active, reactive,or,disﬁortion power components,
it is indeed unfortunate that (1.56) was selected as the definition
of total volt-amperes (Pap)” Tt would be difficult.to devise a
mathematical representation for voltage and current such that the
product of voltage and curren£ would give (1.56) in the form of
(1;60) since, as discussed previously, part of the P, P ,and P,
expressions. are missing in (1.56). 41l of these difficulties would
have been avoided had the total volteamperes been defined to be the
véetor voltnamperes‘CRv) as given by (1.57). If the total volt.

amperes were defined by (1.57), a logical definition for power factor
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would be PF, |= e (1.62)
|V P2+ P2 |
1 r

rather than the existing definition of

.z |
P-.Fo - P . (1063)

ap ‘
It was stated earlier that the voltageé and currents of different
freqﬁencies 'Woﬁlq have to be in-phase and have equal ratios of
amplitudes in order for the P.F;‘as definsd by (1;63) to be unity,
Such a specialized definition of unity power factor would obviously
be avoiaed if (1.62) were adopted; the pbwer facforiwould be unity
whénever the regéti%e power (Pr) was Zefo.r The assogiation of unity
power factor with zero reactive power is certainly more prevalent
amoné engineers than the knowledge of the necessary conditons for
unity power in (1.63). Therefore,in the remainder of this disserta=

tion,the term volt-amperes will be used with reference to‘(1,57)

rather than (1.56).

‘ Summary of Chapter I

l. A groupgof physical entities ﬁay be represented by any mathsmafa
ical system provided that theré'éxists a one-to=one correspond-
ence between the set of physical objects and the group of
characters embraced by the mathematical system. In general, the
representation will prove to be most useful if the laws for
manipulating the mathematical characters conform with the natural
laws which govern the behavior of the physical objects.

2, éinusoidalrfuncﬁions are true representatibns of the instanténeous
%alues of alternating currents and v&ltages¢

3., Complex (scalar) algebra may be used to represent the effechtive

values of a=c circuit quantities with the following shortcomings:
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- {(a) Mey be directly ;pplied only to functions of a singie
frequency, ;
(b) No distin@hion is made between functions of time and
constants,

- {e) When applied fo fuﬁctions of ﬁwo different frequencies,
the notation does not, itéelf, distinguish one from the
other.

Two-dimensionél real vectors may be used to represent alternating
currents and voltages; *This notation avoids the‘diffi@ulties
en@ountered in the use of 'complex scalars, All the advantages

of this notation are summarized following table 2.

The definition of total volt-amperes (apparent power) as the
product of effective voltage by‘effect@ve current is unfortunate,
since this definition does not lend itself easily to analytical
methods, Therefore, in this dissertation,the term volt-amperes
ﬁill be used‘to‘refer to the square rooct of thewsum of the squares

of the active and reactive power,
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GHAPTER TIT

COMPLEX VECTORS

Introduction to Complex Vectors

Alternating currents aﬁd voltages of a given frequency have two
degrees of freedom, namely amplitude and phase., In Chapter I,the man-
ner in which sinusoidal functions Eﬁuld be represented by two=
dimensional real vectors ﬁas demonstrated, The advantages of the use
of vector notation were impressive when compared to the complex scalar
notation., Even though the results obtained using real vector notation
gave an excellent analytical descriptibn of fhe actual physical
entities involved, this representation has the shortecoming that it
does not lend itself easily to the simultaneous treatment of cur-
rents and voltages of multiple frequencies and about several loops.

In this chapter, a new notation will be described that can be readily
generalized to apply to any number of harmonies or any number of
loops (of nodes ),

It can not be emphasized too strongly that the term "vector" as
used in this treatise is not fhe primitive notion of a dquantity
possessing magnitude, direction,and sense, generally entertained in
elementary phyéics. Indeed, modern technolegy has progressed to the
point where such an intuitive definition is no longer adequate.

| It is now generally recognized that the mathematical equipment
of the well-trained physicist or engineer of thirty years ago is no
longer adequate for the physics and engineering of today. To undsy-

stand wave mechanics it 1s not sufficient t6 master an old-fashioned
treatment of vector analysis with its limitations to plane and space

26



27

vectors with réal coordinates and its emphasis on a visual realization
of the basic concepts and rela%ions, We must become familiar with
multi-dimensional vectors with complex coordinates and with the mat-
rices, or linear vector functions, which operate on these vectors,*

If a quantity is to be used in analytical expressions, it is
desirable that it be defined in an analytical menner., The following
definitions will be used throughout this dissertation. These defini-
tions and concepts were not originally formulated by the author; they

are commonly used in most recent advanced texts on the subject., The

definitions as stated are the author's own concepts which were crys-

~tallized after careful Study of several books, a complete 1list of

which is included in the bibliography,

Definitionil(Space of n dimensions)s A space of n dimensions is any
set pf objects, réal or abstract, that can be placed in a one=to=one
correspondence with the totality of ordered sets of numbers (real or

Complex) X1, }!CZ, X-ag s o w»p Xn-

Definition 2 (coordinate system): The relation that expresses the
one-to-one correspondence between the given set of objeéts and the

, ' ‘ ‘
ordered sets of numbers Xi, Xz, . « oy X, 18 the coordinate system.

Definition 3 (points in n-space): The objects are themselves the
, 1emEeLves i

points in ﬁhe ﬁ=dimenéional space,aﬁd the numbers X1,>X29 o o o X
are the coordinates of points in the coordinaﬁe system,

Definitioﬁ L (vector): The point 01, Oz, . o+, 0 and every other
point in the n-dimensional space determine an entity which is called

a vector,

Definition 5 (Buclidean space): & space is called a Euclidean spacé

- *Francis D, Mhrﬁaghan; Introduction to Applied Mathematics (New
York, 1948), p. v.




if it is possibile to construct 2 coordinate system such that the
o 1 ) ) .
distance, d, between two point%, Xﬁ and X0 is given by the formla
of Pythagoras, That is
1 1 ! 1
d = [(Xlr" Xl)z + (Xz - Xz)z + ¢ o + (Jcn "“xn)zjé‘ (an)

Definition 6 (scalar): A scalar is a number which is the same in
every coordinate systen,

The above definitions and concepts will undoubtedly seem some-
what vague and abstract at first £o‘oﬂe‘unaccustomed to thinking in
terms of generalized vectors and spaces, In particiular, for one who
has always thought of a vector as that which possesses, in addition
to the quality of magnitude, the quality of directién, definition 4
will seem abstract,

Actually it is this "coiloquial" definition that is vague. How
can we tell when something "possesses the quality of direction®? The
only answer is that it must have assigred to it, in each reference
frame [coordinate system], a pair [set] of numbers, and the various
pairs [sets], one in each reference frame, must be connected with
each other in exactly the same way as are the projections of a line
segment [linear transformations], i.e., by means of the table of
direction cosines,?

Before proceeding further,a clear distinction must be made among
the four kinds of vectors and numbers that wili be considered in this
treatise, First there are real mumbers; real numbers, i.e., 0, 1, 2,
~1l, =2 are those numbers in common everyday usage that comprise the
Field of Real MNumbers., There are also complex numbers,. Complex mims
bers are all numbers of the form a + jb, where "a" and “b' belbng 0
the Field of Real Numbers and "j" is the complex operator,V =1l. Anale-
ogous to real and complex numbers, there are also real and complex

vectors, The totality of complex numbers is called the Field of Come

plex Numbers, & real or complex vector is a vector whose coordinates

2Ibid., p. 5.
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belong to the Field of Real or Complex MNumbers, respectively, Of
course, a scalar may be eiﬁher‘a real or a complex number.,. A letter
with no modification, such as "A" or "a¥, wili be used to represent
a real number, The symbol uséd to represent a complex number is a
letter with a dot placed over it, i.e., A or 4. Real vectors will
be represented by underscored letters, i.e., & or a. An underscored
letter with a dot placed over it; such as é or &, will be used to
represent a complex vector, The‘symbol fof a complex ﬁumber or Vel
tor followed by an asterisk will be used to represent the conjugate
of the complex number 6r vector, In three-dimensional Cartesian

cbordinates,a complex vector would then be

b o= A+ Agd +hok (2.2)
where A; = Al +vjA2 (2.3a)
A2 = As + Jhs (2.35)
and e = hs + jhs | (2.3¢2)

are the complex coordinates of A. Substituting (2.3a-c) into (2.2)
gi've!s_ A = (Al +'jA‘;)_j= + (A;+~jA';-)j + (A; + jﬁg)lc_ (2.4)
If (2,4) is separated into real and imaginary parts,the result is

A = (Al + Aad + Aek) + 3(A3L + Az) + Ask) (2.5)
Equation (2.5) dbviously expresses the complex veétor é as the sum of
a real vector and aﬁ imaginary vector, Hence if ,

Au = Al + Azj + Aok (2.6)

and Bo = ML +AZi+ Ak (2.7)
then (2.5) can be written as

]

A = As+ jhe (2.8)

=

The menipulations in (2.2) through (2.8) have been performed in order
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to emphasize the meaning of the notation being used and also to clars

ify the nature of a cbmplex vector,

The Algebra of Complex Vectors
It will be assumed here that the aigebras‘of real vectors and

complex numbers as usually given in most eleméntéry texts are knéwn,’
The algebra of complex vectors is a combination of these two algebras
with a few changes and additions, Only the algebraic laws that are
different from the corresponding iaws of real vectors will be
discussed,

- The rules for the addition and subtraction of complex vectors are
the same as-those for real vectors when applied to the real and imag-
inary components of the complek vectors separately. Given two complex

L] .
vectors, A& and B, where

_Z_& = Ay + Jhe (2.9)
snd B = Bi+ iB (2.10)
then A+B = (as+Bs) + 3(As + ) (2.11)
Similarly é - é = (é; - B1) + j(A2 - Bé)_ (2.12)

Two complex vectors are equal if, and only if, their real and

‘imaginary components are separately equal, That is, if

4 = B (2.13)
then A1 = Ba (2,1&)
and . Az = Be (2,15)

‘ Analogous to the conjugate of a complex number, the conjugate of

a complex vector A (2,9) is defined as |
| o
A = A1 - jha . (2.16)

As an illustration, if A is a complex vector in 3-space as in (2;2)9
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uolng the results of (2.3), (2,4) and (2.5) the value of A is

11

(A11 + Az,l + Aak) - J(A.«.l + A;,;L + Aak) (2,17)

3%
=

I I

or

B

(Ai - jﬂi); + (Az - jAa)i + (Aa - jﬁa)g (2,18)

Equation (2,18) can also be‘written'as

LN
& o

A = Agd +A3,1+Aek - (2.19)
From (2.19), it is evident that changlng the sign »f the imaginary
component of A (2. 9) is oqulvalent to taklng the conjugates of the
complex scalar coefficients of g in (2.4).,

For vectors in‘generalizéd space, it is not possible, as is usually
done with real plane and space vectors, to approach the idea of vechtor
pro&ucts by constructing coordinate systems and considering the rel-
ati&e orientation of thé two vectors to be multiplied, Since in
spaces of more than three dimensions direction means nothing, geomet-
ric intuition can no longer be used as a guide; The absence of
geometric intﬁition actually aids in the determination of the most
important feature of complex vector algebra; This characteristiec,
as in ordinary Respace and 3=-space, is the existence of a rule for
calculating the distance between points, ' A space in which such a
rule exists is called a metric space, The most useful metric space
is the Euclldean space; 1n a Euclldean space, the distanece between
two points is given by (2.1). The magnltude of a vector in n-qpace
is the distaﬁce from the point O1y Oz &+ + ., 0, to the point x1, xa,

e oes X (see Definitio? 4), In engineering,a veétor is usually
used to represent a physical object,and the magnitude of the vector
has a physical significance,: Obﬁiously a physical entity is not it
self altered merely by representing it in different coordinate sys.

tems, Therefore the magnitude of a vector is invariant with respect
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to changes in coofdinate systems and hence is a scalar., Indeed, the
characteristic of being invariant with respect to changes in cgor-
dinaﬁe systems 1s the cardinal feature of an entire branch of
mathematics (Tensor Analysis) in which vectors appear as a speclal
case (a vector is a tensor of valence one).

In order for (2.1) to be used in determining the magnitude of a
vector, the coordinate system must be orthogonal, For the norm of a
real vector A = Aieatheget ... tAe (2420)
equation (2.,1) becomes

I

i1

af+af+af e+, .+ A7 (2.21)
The important aspect of (2,21) is that the zero vector

0 = Og1+0g2+ ...+ 0¢ (2.22)

= -n
is the only vector whose norm is zero. When the ltransition is made
from real to complex vectors,this uniqueness would no longer exist if
the magnitude of a complex vector’

L)

L L] »
= fges + Agez + ., ..+ Ae
A 1£1 + Agez o ot RS

(2.23)
were defined as the square root of the sum of the squares of its ¢omm

plex coefficients, For example, if

B = Big1i + Bege (2.24)
and Bz = 3B (2,25)
obviously B +Bf = 0 B ‘ (2426)

Thus there would be two distinct vectors, é given by (2.24) and Q '
given by (2.22)s both having a zero maénitude. The norm of A4 in
(2.21) is A2 = A s A o (2.27)
It is desirable to extend the equation for the norm of real vectors
(2.27)'to'apply to complex vectors, To avoid the oceurrence of (2.26),

for Bi and Bz not zero, the norm of a complex vector & (2.23) is
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dge:ﬁ?ﬁ;&ed as AR = A Cf é {2.28)
This definition also has the ddvanb age that the dot produst of a
vector by itself is a veal quantity. Thus the idea of lenghh can be
represented by the dot product for complex vectors (2.28) as is
commondy done for real vectors (2.27)., In most physical problems, the
concept of length (or distance) is almost imperative, thersfore one.
should suspect that a definiﬁiQn_suéh as (2,28) would be required for
the dot product of complex vegtors if the results of using this proda-

uct are to have useful physical significance. Using {2.,19), equation

LI LY

Ash., +A2Ag Foa +Ah o (2.29)

(2.28) becomes AR
N

(i

(2,23) ars unit, real, orthogonal vectors spnnn¢ﬁg the n-dimensional

i

EZ

The vectors g 15,29 3y o o 0, N) in equations (2,20} and

1

It is advantageous to introduce at this point the summabtion

convention, The notation XYy (1 =1, 2, 3B o o op D) will‘be usead

to represent the conventional summation :ZEZ: (x, 375 Yo Thus when two
1= 1

symbcls are placed together having a repeated index,the symbols are

te be summed for all permissible values of the index and, uriless spece

ified otherwise, the range bf the index will be assumed %o be 1, 2,

35 o » oy Ny Using this notation, (2.23) can be written

é‘ = (2;30)
The norm of A is simply A% = (2,31)

The two conditions necessary for the simple expression of the ncrm of
a vector as (2,28) are that the space be orthogonal and that the
squapu of a complex coefficient be defined as the product of the
GOeffiaie i and its conjugate,

Since it was mc,vssafy‘to define the dot (or inner) produch of

JE“ .
A by itself as 4 ¢ A to insure a unique value of the deot producht and
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so that the magnitude of & would be given by the rile of Pythagoras,

i [ )
it is logical that the dot product of & and B should be defined as

° sz e
4°B = Ai'j_ (?"32’>
° L] L] ]
where B = Big +Begz+ . o o+ Bngn (2.33)

s

The repeated subscripts in (2.32) indicate a summation of the
indieated products for 1 = 1, 2, 3, . « «; N. . Taking the conjugate

of both sides of (2,32) gives

'Y LI @l 0 e .
4 °*B) = <AiBi> (2.34)
o 1 i )

p S o 3 3 12
T A = A+ A (2.35)
© | . 4} .

and 3, = Byt By (2.36)
. o;;;zfz £ L : + 'B“ (2.37)
then, AB = (&, - JAn)(Bn 3 n> (2037)
- Qe _ (AVBI + A“BM:) . (AWVB! AEBH> . <? nry )
ox vy = BBy tAB) - JWAB, - AB ) (2,578

P @ B : % 4 n g L 1] )
Hencs C(ap) = (aB +AB)+I(AB -AB) (2.38)

LR ]

But (2,38) is B A , since

i B ¥ " U #on LR ' Vua y
(Bn - JBH) (An + JAn) = (AmBn + Aan) + j (An]srl - Aan) (2,,,38)
° g * B 25 @ senle o ® ° o -
therefore = = o ° (D 3
1.hur§£ ore (4 iBi) BiAi BiAi B*°A w,g)

° e

4°8B = (8-4) (2,40)

e

Fyom (2a39)
In words, an interchange of two complex vectors in a scalar product
changes the complex scalar product to its conjugate. Clearly, ﬁhé
scalax*nmltiplication of two complex vectors 1s not in general
commitetive  Sealar multiplicstion is commubative only for the sine
ular case where the scalar product is real.

- In equations (2,2) through (2,19),the algebraic laws for comw
bining GOmpiex,ve@ﬂors were given for vectors of not. more than thess
dimensions, Since these same laws may be extended diremkly‘to apply

to nedimensional complex vechors,they will not be repsated,
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Representation of Sinusoidal Functions by Complex Vectors
Let £{xz) be a complex-valued function of the real variable x
! - . S
which is abt least piscewise-continuous for wvalues of x within a

prescribed interval, a <x<b, The real and imaginary parts of £(x)

mist each be plecewise=continuous over the interval ab (figurs 6).

¢

v = £(x)

{

B x

Figure 6
Complex=Valued Function to Be Represented by Complex Vector

Tt will now e shown thatlf(x)_can be represeénted by a k-dimensional
complex vechoxr, éi (L =1, 2, « « s, k), where k is the number of
values which X may assume in the interval ab,

For ease of visualization, let.k = 3 and f(x) be real, II each
value of x (xi, X2 and X3) is substituted into £(x), the regulﬁing‘
three values of y in y = f£(x) (2.41)
will be vi, vz and y3., These three values of y as ordinates plotbed
against the three values of x as abscissas determine three poinbs on
the eurve of figure 6, However, rather than thinking of figure &6,
the funetion £(x) may be considered as a 3edimensional real vectur G,
The thres values of f(x) are then the components of G. The square of

the magnitude of G is
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6% = > f(w)ilx) = > [£(x)]? (2.02)
i:il ‘ ) 1:1 - ]
or 6% = [£(x)]? + [£(x2)]? + [£(xe)]® (2.43)

The components of G may then be interpreted in the 3-dimensional

Cartesian coordinate system as shown in figure 7.

Xa
[T 7
/ /
/ .
/ /|
/ ’ I
VAR _fﬁx_z-)ﬂ - !
{-
| , ' |
i > | |
! : ' /
[ b
(I
b/ |/
L/ £(xs) |/
________ iV
Figure 7

Graphical Representation of Function Vector

If £{x) is defined for all values of x in the interval_ab {(fizure
6), then there is an infinite number. of values of f(x) @Qrfesponding
to each value of 'x in the interval, The summation of (2,42) nec=
essarily changes to an integrel and
G® = /fh[fgﬁ)]?dx (for £(x) real) (2.44)
If £(x) is now consider:& as complex-valued, (2,44) becomes ’
G2 = .J(?f(x)*f(x)dx ‘ (2.44a)
By énalogy with the scalar~pro;;ct of two complex vector (2;32),J tha

scalar product of gi\and,gj, representing the two complex-valued

funetions f(x)i‘and f(x)jg is defined as
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g

. . B -4 -

Gi gj = WA f()i)i f(x>3 dx (20"‘2"3>
The sonditicn for the armmgpnaiity of the functions f(x)i and f(x)j
is that 5 G, = 2.

is that g " 8y 0 {2.46)

A general sinusoidal function is represerted by the equation

ey = Em; sin x (mnggxégn) (2?4?)
a 1 H
where E,= B *IE. | (2.48)

Employing the concept of the rotating vector (figure 1) and using
effective values, equation (2.48) may then be represented by the come
© a

plex vector Bi. §1’x/Emi sin x (2.49)

In a similar manner, the function

¢z = E_ Sin 2x {2,50)
ma ’
may be represented by the complex véctorlgg.
_ Ez vE sin 2% {(2.51)
e na
Applying (2.45)
- ,
L4 o Oak A & . N
Ey ° Bp = ‘[17 (Em;, s:r.n;;)(Emz sin 2x)dx (2952)
wh ) @ R ) 3 ihe T i 2.&:.; < = 2- Y
but | Es ° E2 (Em;Ema> ﬂs:m X sin 2x dx 0 (2.53)

Thus the two funchlions Eml sin x and‘Emz sin 2x are orthogonal £y
tions,

Geom@"ﬁrically9 a complex vector determines a plans since 1t bhas
two degrees of freedﬁmw Therefore it is impossible to mentally

© e

pleture Ex and Ez as two orthogonal wectors; to accomplish this woald
require the visual concept of a Nedimensional space of which the
limited human intellect cannot perceive, Since geomstric inkuitioﬁ
can no longer be relied upon, it is more satisfying to consider eackh
harmonis as a function (similar to figure 6) defined over ﬁhelimﬁezwal
-1 bo +m, each funchtion being represented by a complex vector, Thé
totality of these complex vectors, one for each harmoniz, forms an

orthogonal set,



38

éThe idea of representing sinusoidal alternating currents and volbe
ages as complex vectors was first conceived b& the author without the
© knowledge that”su@hfa notatigh had been used elsewhere, Singe that
time, While making an intensive study of the available literature on |
this subject, two other texts have been found in whicﬁ the authors
made use of the complex vector concept,?* HoﬁeverD in both instances
the use actually made of the propgrties‘of cqmpleX'Vector algebra was
so small that it could be considered trivial, It is felt that this
elight use.ef the complex vectorvnotation in no way detracts from the

originality of this dissertation,

Surmary of Chapter II

1, ‘The_metricrproperty is one of the most important'characteristics
of a space, The most fundamentally important feature of a metric
space is the nature of the rule which prescribes the manmer in
which the distance between points is to be measured,

2, 'In general,most of the rules for‘manipulating complex vectors are
the same as the corresponding rules for real vector algebra and
complex scalar algebfd. The major exception te this statement is
encountered in the scalar product, In order to insure that the
norm of the zero vecter only is zero and to make the norm of a

. non-zero vector be real, it was necessary to define the scalar.
product of compiGX'vectors in a different manner than is come-

monly defined for real vectors,

®Bdith Clarke, Circuit Analysis of Anc Power SVSBemS (New York
1943), Volume 1, pp. 4=15,

%A, Pern-Tung Sah, Dyadic Circuit Analysis (Scranton, Permsylvania,
1939>9 pp. 62-70.
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When appiied to alternating~current quaﬁtities; somplex vectors
fall to give results in a form which may be physicélly interpreted
as well as the.results which were obtained using two-dimensional
real vectors in Chapter I, waéver, complex vectors lend thema_

selves in a natural manner to 'the. study of spaces of higher
dimensions and to the methods of matrix analysis, The manie-
pulation of two-dimensional real vectors generalized in this

menner would be extremely awkward and clumsy, if not impossibla,



CHAPTER III

LINEAR SINGLE-ILOCP CIRCUIT ANALYSIS WITH

SINUSOIDAL APPLIED VOLTAGE

~In Chapter II,it was shown that sinusoidal functions may be repre-
sented by complex vectqrs, In this chapter, it will be demonstrated
that by representing sinusoidal a-c quantities by complex vectors a
consistent scheme of representation_can be devised which, when applied
by the rules of the algebra of complex vectors discussedieérlier;

i : .
yiefds results that agree with the known correct results,’

In the following analysis,the circuits considered will be assumed
to be linear and bilateral, and the voltage impressed across the ter-
minals of these circuits will be assumed to be a pure sinusoid, VOltm
age and current,; belng sinusoidal functions of a single frequency,
will be represented by one-dimensional. vectors with complex coeffi=
cients, The a-c¢ ilmpedance has no sinusoidal property, being a con-
stant independent of time, and hence willzbe represented by a- complex

number,

_T—"—>‘

i o
[nS]

Figure 8
-Linear Single=Loop Network

40
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Z = R+ 3X (3.1
* * t ]
'E = Eei= (E + JE )es (3.2)
e * 1 " : :
I = Tes= (I +J3I)es (3.3)

The complex number Z is geometrically represented by a point in the

complex plane as shown in figure 9, -

Imaginary Axis

o

Z X

Resal Axis

Figure 9
Impedance in Complex Plane

Recalling that complex vectors have two degrees of freedom, the come
plei vectors representing voltage (3.2) and current (3}3) determine
a plane., In order to achieve a ggometric concept of these two vecs
tors, the plane of the paper may be arbitrarily taken as the plane of
the complex ve@tors,ana the complex coefficients plotted as shown in

X : Tmaginary Axis
figurs 10, & T A,

E °
<
1t
JE
- . Real Axis
E I
Figure 10

One-Dimensional Complex Vector Space (Plane)



b2

Equa%ions {3.2) and (3.3) may be written in the form

i
it

[ f
Ees + jEer= Eis+ jEz (3.2a)

] t
ITei+jles

|
H

I + Jle (3.32)

.....

The complex vectors E and I may then be geometrically represented as

shown in figure 11. Gomplex«vqctOT Axis

§ ‘
3l
Es  Is Real Vector Axis
Figure 11

One-Dimensional Complex Vector Space (Plane)

There is another quantity, with its components, in addition to
voltage, current,and impedénce which is of importance in circuilt anale
ysis, This quantity is the a-c volt-amperes, which was diseussed
earlier in Chapter T. Before proceeding with the analysis of the cir
cuit shown in figure 8, it would be instructive to examine a-c volt-
amperes further,

In 1934,the Committee on Electrical and Magnetic Units which
met in Paris decided that the reactive power in inductive eircuits
should be considered negative,and the reactive power in capacitive
circuits should be considered positive, Thistdécision meriﬁé cares
fuljthought; for it to be useful, it must conform with the basiec
equations of a-c eircuits, It should be recalled from elementary
trigonomstry that cos(=6). = cos 8 (3}4)

Jsin @ (3.5)

i

and sin(~0)



From (1.8) and (1.9), the active and reactive powers are

i1

P = VI cos 0 O (3.6)

and P
r

1

VI sin 6 (3.7)
The significance of defining Pr as being plus or minus for a given
type of circuil is merely choosing either the voltage or current as
the reference axis, For example, assuming an in&uetive circuit there

would be two types of vector diagrams as shown in figure 12,

e I

;‘ ! ‘ K"}‘
reference o} reference

o
b

(a) (b)

Figure 12
Two Different Reference Axes
Of course, actually figure 12(a) specifies that the phase angle shall
be measured frﬁm the current vector to the woltage vector, and figure
12(b) specifies that the phase angle shall be measured from the volt-
age vector. to the curreht vector, The sign of P as given by (3.6) is
obviously positive for boﬁh figure iZ(a)‘and figure 12(7;))n The sign
of P, (3;?) for figufellz(a) is positive, whereas the algebraic sign
of Pr for figure 12{b) is negative., In accordance with the sonclu-
sions reached in Chapter I, the symbol év will be used to represent
thejsoacailed "yechtor volteamperes', Using equations (3,2) and (3.3)
for‘voltage and current, the value of év represented by figurs 12(a)

. L @ t ] H [
would be  B,= I -E = (I =3I )E + JB) (3.8)

[

1 #of Pou "og
o .= (IE +IE)+j(IE -=IE) (3.8a)
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Similarly, the velue of P_ represented by figure 12(b) would be

° e ° : t 1 i 4]
P = E «I = (E = JE XTI + jI) | (3.9)
. | I | , nou ]I [ ‘

or P,=(EI +EI)-3J(EI -=ETI) (3.9a)

The equation that is selected for Pv’ (3.8a) or (3.92), must alsc

satisfy the equation 127 = év (3,10)
Solving for %uin (3.10) gives .
7 = ;% (3.108)
In (3,10a) both i and év are complex numbers, whereas I? (the norm of
;‘i> is a real rmmber. Therefore, if (3.10a) is an equality, the real
and imaginary terms on both sides of (3.10a) must each be equal in

magnitude and sign, Equation (3.82) can be written as

P, = P+ JP, (3.11)

and (3.%a) can be written as
= P = JF, (3.12)

o

A

Since the circuit was assumed to be inductive, Z is correctly given

by (3.1). Substituting (3.1) and (3.11) into (3.10a) gives
| P+ jPF :
1%

but substituting (3.1) and (3.12) into (3.10a) yields

P - JPP 4
R+ 3jX = (3.14)
IB
Equation (3.14) is obviously false, since
=3P .
+ 3 4 , | (3.15)
IB

Therefore if basic equation (3,10) is to be used in circuit analysis,
then {3.8) rather than (3.9) must be chosen as the defining equation
for‘EV, It is unfortunate that the Committee on Electrical and

Magnatic Units chose the sign of Pr for inductive cirsuits to be
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négativeo This choice would not allow the use of‘(BnlOa) to caleulate
Z, and RV could not be ecalgulated from the simpie relation

L] ° '

P, = I?2 = IR+ jX) = IR+ JI%X (3.16)
As‘mentioned earlier, the use of (3.8) for év really means that pos- '
itive phase angles will be measured from the currént vector (as
reference) to the véltage ve@tér,

Example l:

Let

i

(50 + jB6,6)es volts

fito o

i

and (8,66 + j5)es1 amperes

H

Using (3.8) B, = (8,66 - 35)(50 + 386.6) volt-amperes

o

B = 866 + 3500 volteamperes
IF= I°1 = (8,66 = j5)(8,66+ j5)
I2 = 100 amperes squared

Svbstituting into (3,10a)

Z = éééigaiégg ohms

L]

Z = 8,66+ j5 ohms
where R = 8,66 ohms resistance
and XL = 5 ohms inductiVe reactance

The nature of the caleculated Z is inductive, which is as it should be
o ' o

since obvicusly the essumed I lags the assumed E by 30°. Had the

recommendation of the Committee on-Electriecal and Magnetic Units been

fellowed, the value of P, would be,
P, = 866 = j500 volt-amperes

where inductive vars are considered negative, The calculated value

of Z would be, Z = 806 = 1300 ohms
Hd 100 ‘
or Z = 8,66 - 35 ohms
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and thus i is appérently capacitive, which is clearly incorrect.
Theréfore the recommendation that inductive vérs be consideréd nege
ative will be ignored; throughout the remainder of this'dissertation
inductive vars will be considered positive, i.e., equation (3.8) will
be used for voltuamperes'(év);
There are essentlally three basic types of problems encountered

in the sclution of singlesloop networks, These ﬁrqblemﬁ are

Case I - Given E'and,i;ldefermine'é;‘

Case IT - Given é_and é;“detefmine-i;.and

Case III - Given _J_; and i, determine g
Of course, for any of these three cases additional information such
as active power, power factor, etec., méy be required, Cases I - IIT
will be analyzed in chronolagiéal order, with a numerical example )
being included for each case.
Lase T = Given ﬁ and i, determine i:

Equations (3.2) and (3.3) mey be written

° . : 1 i 3
E = Ee1 = (E + jE)es = Eegglgz = E/Q: es (3917)
© ° 1. j{} 3
I = Tes= (T +31)es= Te9%1= I/0ze:  (3,18)

The Ohm's law equation for Z

7 = (3.19)

=i ‘i l Sk

may be solved using either of the four notations for E and I in
(3,17) and (3.18). The calculation of Z will be performed using the

two most common forms of E and .
1 ¢ 1
% . (E + 3B )es
5 Z = TR T (3,20)
‘ (I + 31 es
Tn order tc solve for Z in (3,.20), it is necessary to take the scalar

product of the rumerator and denominator of the right-hand side of
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(3,20) with I. Recalling that the scalar product of complex vectors

is nbt‘commutaﬁive; the qnestién is whether the leftshand or righte
hand scalar product shoﬁld be used, BEquation (3.8) ahd the results
of Example 1 indicate that the left-hand scalar product must be used,
1 ] ] . ]
(I = JI )(E + JE )

.é = W i ] (3.21)
‘ (I = 3T XTI + 3I)

!t 1 noun T " LU |
(IE +IE)+jJj(IE -TIE)
or z = T T (3.22)
(TP + (T)E

£

The value of P, is actually the numerator of (3.22), but using (3.8)

. . . [4 it i N
P.= I°E = (I «3I)E +JE) ‘
° L [ ) gt u g
or B, = (IE +IEBE)+3(IE =1IE) - (3.23)
- The power factor is
. P : ’
P.F, = =1 (3.24)
(P? + P2)*
r
where P = P+ jP
v r
| S non
IAE + IE

| P,F. = (3.25)

o [ Ty 1
% [(I“En +IE)2+ (IE -IE)?]?

Employing the other most used notation,equations (3.20) through (3.25)

. E/Q1 e1

I/9z &1

I/=02 * E[0y
Z = : (3 0213-)

T[=92 * 1[0

3

. BEI '
or Z = — 181 = 8, (3,22a)
I

I

or P, = IE[8y = Op (3.238)
P
;



P = IE cos(0s % 9z) + JIE sin(Qs - 62)

IE cos(0s - 62)

PF, = N

[(IE cos(6s - 02)% + éIE sin(Q1 = éa)zjz

Example 2: | |
Let the: applied ﬁbl'bage be

= (50 + j50)es volts

= 70;7 [45° e vol’fs

and the resulting current be

Pte s

or

I = (6+ 38)es amperes
or I = 10 /53,2° e1 amperes
Equation (3.20) is then '

. (50 + j50)es
Z = ohms

(6 + 38)es

. | '?l’O.’? _ﬁjéi §_1

and (3.202) is

L o= ohms
10 /53,2°% es
Equation (3.21) becomes _
S (60350

| (6 - 38)(6 + 38)
and (3,21a) becomes ' ’

. 10 /=53.2° x 70.7 [u5°
Z = - e ohms

10 [=53.2° x 10 /[53,2°

The final expression for Z (3.22) is

(300 + 200) + 3(300 = 400)
Z = = 7 « 31 ohms
36 + 64

&

or using (3.22a)
| oo OETOT juse o 53,00

= 7,07 [=8,2° ohms
100 '

The value of P_ given by (3.23) is

L]

v

P = (6 - 38)(50 + j50) = (300 + 400) + (300 - 100)

(3.25a)
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or | ' P, = 700 «: 3100 wvolt-amperes
e ;

: . | .
and the value of B given by (3.23a) is'

P = 10 x 70,7 [45° = 53,2° volt-amperes
or o = 707 [=8,2° volt-zmperes

The power factor given by (3.25) is

700 . 700 -
PF, = =, = 0,990

; £
2

[(700)* + (~100)®

and the power factor given by (3.25a) is

o 10 x 70,7 cos(=8.2°)
P.F, = ' '

L
2

(707 c08(<8.2°))2 + (707 sin(~8.2°))2]

700 700
|P-F9 = _:1__ = . = OG990
[(700)2 + (=100)2%72 707

The calcwlated quantities are:

2 = 7,07 ohms, R = 7.0 ohms; X, = 1.0 ohm

C

Pv = 707 volteamperes, P = 700 watts, Pr = =100 vars (3abacitive)

Powey factor angle = .8,2° (léading) and P,F. = 0,990
‘gégg;;g - Given E and 2, determine I:
From equations (3.1) and (3.2)

L

Z

it

R+ jX (3.26)
° | S 14

and E = (B + JBE )es (3.27)

Ohm's Laws applied to acc circuits states that

-]

E

I = -~ (3.28)
Z
1 ] .
| . (E + JE Jes
Therefore I = (3,29)
‘ R+ X

Rationalizing (3.29) gives

1 8 3] 1
. [(RE + XE )+ j(RE ~ XE )]es |
; == (3030>
R? + X?
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If I is expressed in the form

o

| i
I=(1+ 5T e (3.31)

I

then from (3,30) t "
i . RE +XE

I = ’ (3.32)
R? + x? |
" 1 l . { ’
and T = M -IE (3.33)
' RZ + X2
Using (3.29) : " 1 " _
o e (B = JE ) (B + JE )
I+1 = 1* = x : (3.34)
(3 - 3X) . (R +va)
N
(B )2+ (& )? |
Thus 1% = (3.34a)
R2 + X2 .
From (3.16) P = T2 (3.35)
Substituting (3.26) and (3.3%a) into (3.35) gives
1 4] .
[(E )2+ (B )2](R + jX)
\P'V = (3036>
: R2 + XZ
t 1 ; ",
: R[(E )2 # (B )] Jx[(B)*+ (E)?)] 3.56)
or | P_= + 3.30a
| v R? + X2 R? + X2
1 §
R[(E )? + (B )]
where P = (3,37)
R? + X2
1t
XE(E )2 + (B )2] :
and P = (3@38>
xr RZ + Xz ’
Substituting (3,37 and (3.38) into
: + 30, b ,
PF, = ey (3.39)
(P2 + P %)2
gives the equation for power factor in terms of é and é
. - |
N P.F. = (301‘3”0)

S
. (RZ + XB)"Q’



Example 3:

Q

ﬁ = (60 + j80)es X

Figure 13
Circuit for Example 3

Given R = 30 ohms, X, = 20 ohms’and‘XL = 60 ohms, let it be

C
required to caculate I, P, Pr' P.F,, PV and the voltage drop across
X, Yo

Z = R+ jﬁXL - XC) ohms

2 o

= 30 + j(60 - 20) = 30+ j4O ohms

 Using (3.32) : \
: 30 x 60 + 40 x 80 1800 + 3200

I e o) [ ———

302 + 402 900 + 1600

1
. I = 2,0 amperes
u
(3433) gives

Solving for T
# 30X80~11LOX6O

T =
30% & 40?
T = 0 amperes
Therefore iv = (II + quﬁgi
i = 2 €1 . amperes

Using (3.37)
30(60% + 802) 30 x 10,000,

P = =
30% + 4o? 2500
_ P = 120 watts
Using (3.38)
10(60% + 80%) 40 x 10,000.
P = =
r

20% + 40? 2500



. If

P, = 160%vars (inductive)

. \ .
Hence P, = 120 + j160 volt-amperes
and Pv = 200 volfu-;mamperes ‘

The power factor as given by (3,39) is
' P

PJF, = —

P,F, = = = 0,60

The impedance of the coil is

2y = Jj6o- ohms

By Omm's law,the voltage drop across the _é:oil9 }_[L,, is

EL:,ZLX.:E
I = 360 x 2 es
V= 3120 g1

Case IIT - Given I and Z, determine E:

Let I,= (T +3T des
and Z = R+ 3X
The equation for _I_::j is
E = 2x]

Substituting (3.41) and (3.42) into (3.13)

° g tt
gives E = R+ 3N + 3T es
e 1. it 1] b
E = [(RI -XI )+ jRI + XI )les
o 1 N '
E = (B + jE )es
] t [}
‘theni E = RI « XI
1 W 1
and E = RI + XTI

Ed

, » . ° o . H L] 1 L]
From (3.41) I*I = I xI = (I, =3I )T +jI)

1 it
or 2 = (I)%+ (I)%

52

(3.41)
(3.42)

(3.43)

(3.44)

(3.45)
(3.46)

(3.47)



The equation for volt-amperes is

| 13v = 122
P = I*(R+ jX) = IR+ JI’K (3.48)
Substituting (3.47) into (3.48) yields |
B, = R[(I)F+ (T)%]+ SM(X)? + (1)) - (3.49)
Where P = B[(I)®+ (1) (3.50)
and = X(I)?+ (I)?] (3.51)

The ecmation- for power factor is
I P ,
P,F, = =y (3.52)
(PZ:J:_'_ P 2)2
. . ol
If (3.50) and (3.51) are substituted into (3,52), the result is the

equation for power factor in terms of impedance

A B :
P.F, = —mm—mmemy (3.53)
(R® +'X?)3
Example 4:
Let it be required to solve the circuit of figure 13 when a2 curs
| : ’

rent of: I = (8.66 + j5)er amperes

is flowing through the given impedances,

R = 300hms; X = 6020 = 40 ohms; Z = R+ 3X = 30+ 340

ohms, Using equation (3.45)
?

E = 30 x 8,66 - 40 x5

E 60

1]

Using equation (3.46) ’ '
_ E = 30x 5+ 40 x 8,66

L

E = h96.h

I e

Hence = (60 + 3496.4)es volts
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From equation (3,50)

P o= 30[(8.66)% + (5)2]
P = 3000 watts

Using equation (3,51)
P = L40[(8.66)% + (5)2]

T
Pr = LO00 vars (inductive)
It follows that . L ‘
Rv = 3000 + j4000 volt-amperes
and , P, = 5000 volt-amperes
From (3.53) . 30
PoFc = s
(302 + 40%)%
PoFo = 0060 '

The voltage drop across the capacitor is

E, = I % ZC

=
il

E, = (8.66 + j5)es x (-j20)

=
1

(100 - j173.2)es volts:

Summary of Chapter III

1. The geometrie representation of a one-dimensional complex vector
requires a plane, since a complex vectof has two degrees of free-
dom,

2, Using the complex vector notation, a=c impedance and volt-amperes
are represented by complex sqalars,wheréas current and voltage
are represented by one-dimensional eompleX<vectors (for single-
;oop'ﬁetWOPks).

3, &hé recormendation of thg'Commiitee on Electrical -and Magnetics
Units, which met in Paris in 1934, that capacitive reactive power

be considered positive is not consistent with the' fundamental
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Chmﬁsﬁlaw equation for aecécircuits.l Therefore in this

dissertation inductive reagtive power will be considersed pose

itiVe,and capacitive reactive power will be considered negative,
L, Complex vector algebra can be used to solve. single-loop 2«c Cire

cuits in a simple, straight-forward manner,

Conclusions

In this chapter, a new concept of complex vectors has‘been
introduced to represent sinusoidal fungtions of time, and a method _
for solving single-loop networks has beén presented using this new
concept, It is apparent that the major difference in using the come
plex vector notation, rather than the commonly used complex scalar
notation, lies in the definition of the scalar product of two complex
vectors, This definﬁtion gives the correct expression for vcli-
amperes as discussed earlier, Since the reason for the failure of
the complex scalar notation has been discussed,the question loge
ically arises, why not explain the reason for the'failure, use the
conjugate of the current to arrive at the correct answer, and then
conbinue using the complex scalar notation as before? Indeed, if
this were to be the only use of the complex vector notation, this
would eertainly be the most satisfactory course %o puréuel However,
this is only a fragmentary portion of“the reason for adopﬁing the ©
complex vector representation of simusoidal funetions of time., In

the‘remainder of this dissertation,the concept of complex vectors

‘ P
will be generalized and applied to multiple-loop networks -with both
simisoidal and nonsimsoidal wave forms of voltages and currents,

where the nonsimsoidal wave forms are such that they can be analyzed
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into sinusaidal gomponents by %he methods of the qurier AnalySié°

It will be seen later that the;concept‘of the complex vector notation
will readily lend itself to representation by matrices and subsequent-
1y to representati;n by tensors; The concepts and use of' complex
vectors developed up to this point are the author's own ideas; later
this new concept will be adapted to a procedure formilated prine

cipally by Gabriel Kron.



CHAPTER IV
THE THEORY OF MATRICES

The Basic Concept of a Matrix

A large portion of the study of electrical engineering deals baso
ically with transformations, most of which ére assumed Linear, Unfore
tunately, however, the mention of such a wofd as "transformation” is
usually sufficient to scare éway most electrical engineers, The
matrix is a mathematical tool that is ideally suited for dealing with
problems involving irrotational transformations, The rapidly increas-
ing use of matrlx methods by electrical englneers durlbb the last
several years is indeed encouraging, and it is the author's conviction
that matrix algebra will take its place as a stahdard undergraduate
course in the electrical engineering schools of the leading urdvers
sities within the next‘decadeq

The problems of the engineer are fundamentally the same as those
of the physicist; both express physical phenomena in mathematical syme
bols, Generally speaking, the physicist endeavors to reduce natural
phenomena to their Slmplest possible form, uuU&lly'eprPQSLblf by a
few, mostly one, equations, 1ntroduclng only as many mathematical syme
bols as there are corresponding physical concepts, That is, the phys-
icist sets up an equation for, say, the conduction of electriciby
between "two" electrodes, or for an electro-magnetiec wave traveling
along a "single" conductor; or for the electromotive foree generated
in a "single" conductor moving in a magnetic field, or for the pas-
sage of light through a lens, etc, Once the equaflon for the phenorme-
enon is set up, the physmclst‘S‘role:has ended,

This is where the engineer's role begins. The engineer takes a
two=eleatrode tube and adds several additional eleéetrodes: and for
goad measure he eonnects them to different types of netwerks; or he
builds transmission, networks covering whole continents; or he takes
“several’ moving conductors and construets a large varieby of complex
rotating electrisal machines; or he combines a series of lenses inte
an optical instrument, and so on,
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‘ That is, "the engineer generalizes the onee, twWo-, or three-
dimensional prob:lem of the phybl@:tS’b to k dlmensmns“ And that is
where his difficulty originates . . . . .«

In order to organize the large vamety of engineering problems
into the absolubte minimum number of standardized types in whlsh the
physicist has expressed them, it is necessary to introduyse new points
of view, new symbols, new mental and physical concepts,

A matrix is a highly condensed method of writing a system of

linear equations, Let such a set of equations be

y1 = a1ax’ + aix® + aj.axa
y2 = azix® + azax? + agzsx® (Brol)
ys = assx® + asax? asaK_

Equations (4.1) represent a transformation of the variables xi, x?

and x° into the variables yi, yz and ya. The set of equations (4,1)
may be interpreted in two. different _.ways;z

2

{a); The quanbtities x*, X and 353_ may be regarded as components of a

vector g_g, and the quantilties yi, yz and y» as components of anobher
. .

o L]
vector Y, where both X and Y are referred to the same coordinate
system and set of base vectors.ei, ez and ea; in this case, equations

(%,1) are to be thought of as representing a transformation of the

vector X into another vector Y.

(b) The two sets of quantities (x*, x*, x*) and (y1, y2, y3) may be

*
regarded as components of the same vector X, when X is referred to
two different coordinate systems determined by the two sets of base
{

vectors, (e1, ez, e3) and (eg_%,, ea, ea) in this event, equations {&.1)

are considered as transforming the coordinate axes,

‘Gabriel Kron, Tensor Analysis .of Networks (New Tork, 1‘9’*'93,,
. 1-2,

i 27, 8. Sokolnikoff, Tensor Ana”lvss,s (New York, 19! 1) Ps 20,




Def;i"ni't.ion 1 (matrix): A ‘t;abilie of mn rumbers, czalied' elements,
arranged in a rectangular ari*éSr of m rows and n colums is called a
matrix with m rows and n colums.?

The matrix of (4,1) is

2411 aiz . 813

a21 222 ' a4z (Bhe2)

agi a2 A33
A rectangular array of numbers enclosed in brackets, as in (4,2),
will be used to represent a matrix in expanded form. A single cap=
ital-letter symbol enclosed in brackets will also ‘be need
represent a matrix, For example, (4.,2) W.lll be written as
ai1 aiz 213 ‘
[A] = |aza ézz az3 (43)
ass asz aas
A matrix having m rows and n colmﬁns is éaileci ‘a‘n (mxn) 'matrix; “ﬁs.hug
(4,3) is a (3 x 3) matrix, A matrix in which m = n, as in (&.,3), is
called a square matrix,

In order to illustrate the use of the matrix nbtation, equations
(4,1) will be expressed in matrix fo:‘r’rﬁ., If the vé‘uantities Vi, Yz and
ya are ccnsidered as the elements of a (3 x 1) matrix, then

T '
LY = | ye CRD

ya

*Aristotle D, Michal, Matrix and Tensor Calculus (Wew York,
19137) » Do Lo
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x* |
Similarly [x] = |=®) (4,5)

Tn matrix notation, (4.1) becomes

[¥] = [A] x [X] (5.6)

i
cr in expanded form
- — - F ]
Vi a1 a1z aia X
yz2| = |azs azz a23| X x? (4,7)
‘ 3
ya aai asz a3 b

The space economy of matrix notatioh is amply illustrated by (4.6),
\Wh€£ it is realized that (4.6) could refer to n equations in n
unknowns just as easily as it refers to (4,1). The mexmer in which
the two matrices on the right<hand side of (4,7) will be multipiied
together to yield the right-hand side of (4,1) will be explained in
the next section in this chapter.
Using the summation convention,(4.1) can be ﬁrittan /
y, = aijxj (i, 3 = 1, 2, 3) (4,8)
It is apparent that the value assigned ﬁo i specifies the row and the
value assigned to j specifies the column in which the element aij is
located, Hereafter the symbol aij will be used to refer to the
element in the ith row and jth column of [A]. The matrix (4.2) will
also be written as [aij]’ where the ranges of i and j are either
specified or understocd, |
} Equations (4.1) through (4,8) have been devised with the number
of %ariables (xj or yi) purposely limited to three, This would pere

\ o
mit matrices (4,4) and (4.5) to be interpreted as two vectors, ¥ and
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and X, in ordinary threeadimensiénal Cartesian coordinates, This
restriction causes no 10ss of generality, since all the discussion
thus far would‘stiil apply if [A] were an (m x n) rather than a

(3 % 3) matrix,

The Algebra of Matrices
vDef:"my,ition 2 (equality): Two matrices [A] and [B] are equal if, and
only if, each element of [A] is egual to ﬁhe corresponding elemen‘@i
of [B]. That is 84 = bij\ (4,9)
It should be noted that thé equality of two matrices requires that
‘the two matrices have ‘the same number of rows and the same number of
colwns, |
Definition 3 (sum and differeﬁc;e): The sum or difference of two
matrices [A] and [B] is a matrix [C], each element of [C] being the .

sum or difference of the two! cofresponding elements of [A] and [B];

ARy | [A] +[B] = [C] (4.10)
then 2 5 +~bij. = oy (4,11)
3 .
Also, if [A]-[B] = [c] (4.12)
) |
then 34 = bij = ¢y (&.13)

In order to be added or subtracted,two matrices must have the same
number of rows and the same number of columns., If [A] and [B] are

(m x n) matrices, then'in expanded form

’-— —
811 a1z s e 0 a:.n
j az1 azz ° o o 2n
G e o L2 ¢ o ‘
[A] = (M‘olh’) v
o e L] 0 o L]
o L] L 0 L] o
a a, = a
My e vt an
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_ -
bll; b.ia s o » bin
ba;f bZ? ° s e bzn

[B] = ' o | (4,15)
b Pm o Pm

The sum of (4,14) and (4;1;} is [C], where

. - -
Féli‘f bi1 a1 + biz o o o axn + bin

+ + + ¥
az1 + baa az2 b2z . . o & bgn

L] L L] L L o

el = ' L ' (h,16)

o L] & e -3 o
] L] » ] ‘e -
a +b a_ +b s o s & _ +Db
ma msa jig$3 mz o7 mn mn

b paa.

The matrix [Cu] in (4,12) is obtéined by replacing the plus signs in
(4,16) by minus signs.,

Definition 4 (conformeble matrices): Two matrices [A] and [B] are
said to be conformable if the number of columns in [A] équalé the-
number of rows in [B],

If [A] is cc@formable to [B],then [A] has the same numbér of columns
as [B] has rows; this does not necessarily imply that [B] is eonforme
able to [A]. Two matrices [aij]'and [brs] are conformable to each
other only if i = s and j = r,

Defihition 5 (product of a matrix by a matrix): The product of two

" _ o . b s o
mat?;@es [amn] and [bnp] is an (m x p) matrix [Cmp]° in which the

i3 2433

elements are - c,. = b, . (4,17)
where (L =1, 2, o o oy M)y (3 =1, 2, o o oy Pl and (k =1, 2, . o .,

n), It should be remembered that in (4,17) the repeated index k
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denotes a summation, It is actually more informative to desecribe the

process by which the product of two matrices is formed than to merely

state the definition of the product, The steps to be followed in

determining the product of two matrices are

(1) Maltiply aii by bii, aiz by bas, 213 by bas, . 03 am by b

(2),

(3)

(4)

na’

and form the sum of all these products; the result is the @1,§3meﬁ*t;
in the first row and first column of [C], the product mal;rrfiﬁ_,
Using the elements of the second colwm of [B], bai, D2z, o « o4

bgn" rather than the first column, repeat (1); the result is

“the element in the first row and sécond column of [C].

Repeat the process of forming the sums ‘oi“the ‘pmﬂu»@ts‘ of the
elements q.f.' the first row of [A] with the corres’ponding element s
of successive colums of [B], until all p eolums of [B] have
been exhausted.,

Repeat steps (1) through (3) for successive rows of [A] %o obtain

successive rows of [C], When all m rows of [A] have been used

in this manner once, the matrix [C] will have been completed,

Example 1:

b =2 3
Let, [A] =
=3 5 1
1 -1
[B] = |0 &
3 2
The preodust of [B] by [A] is —~ -
| - 1 -1
L o2 3 13 <6
' x |0 =

%35'1
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The ﬁultiplication of matrices is not commatative. That i# ‘
(4] x (8] # (5] x [A] (4.18)

The validity of (4,18) is evident, since the product [B] x [A] may
not even exist even though the product [A] x [B] is well defined.
Even if the two products on both sides of (4,18) did exist, the two
product matrices would not be of the same ordef unless [A] and [B]
were both square matrices,
Example 2

Using the two matrices [A] and [B] given in Example 1; let it be

required to find the product [B] x [A].

1 <4
L =2 3
Bl x[4a] = |0 &| x =

The rumerical results of Examples 1 and 2 demonstrate the general
validity of (4.18),

Definition 6 (product of a scalar and a matrix): The prodact of a
matfix and a scalar is formed by miltiplying each elemsnt of the
matrix by the scalar,

Taking into consideration (4,1), the reason for Definition 6 is
apparent., The matrix product [A]‘x [B] will be called the premuiti-
pl;cation of [B] by [A],andithe métrix product [B] x [A] will be
calléd the postmuitipli@ation of [B] by [4].

There are several special types of matrices that are used
exténsively‘in applications, These matrices and their mest importamnt
characteristics will now be described and defined,

Definition 7 (row or eolumn‘matrik): A row or column matrix is a

- matrix containing a single row or column of elements,



The slements of a row or Goluﬂm}nmirix may be considered as the
coordinabes of a single row oricolumn veqtor;'ﬁhe elements of the
different rows and columns of any mafrix may be considered as the
coordinates of a set of row or column vectors, The result of
premultiplying a géneral (m x n) matrix by & (1 x m) row matrix is
a (1 x n) matrix; an (m x n) matrix postmultiplied by a (n x 1) colw
umn matrix yields an (m x 1) column matrix,
Definition 8 (null maﬁri#): A matrix in which all the elements are
zero is called the null matrix ahd is represented by the symbol [0].
Definition 9 (diagonal matrix): A square matrix in which all the
elements are zero except those along the prinéipalndiagonal is called
a diagonal matrix, The principal diagoﬁal of a square matrix [ahn]
contains the elements a,, (i =1, 2,.; o oy n>°' |
Definition 10 (scalar matrix): A diagonal matrix in which all the
elements along the prinecipsl diagonal are equal 1s called a scalar
matrix,
Definition 11 (unit matrix): A unit matrix [I] is a scalar matrix
in which the eleménts of the principal diagonal are egqual to,one;
Definition 12 (transpose):  If the rows and columns of a matrix [A]
are . interchanged,the result is}called the transpose of [A] and is
represented by the symbol [At]°
The following rules will be stated without proof:

([a] + [B1), = [AgD + [B,]

([2] = [B]), = [B.J x [A]

Definition 13 (singular matrix): A square matrix [A] for which the

i

i

determinant of the elements, writtenl A, is zero is called a sin-

gular matrix; if the determinant of a sdquare matrix is not zero, the
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matrix is said to be nonsingular,

i

Definition 14 (cofactor): The‘cofactor of the element aij of the
square matrix [A], written Aij’ is (-:1)i +\j times the détérminant
formed by deleting the elements of tﬁe ith row‘and jth column, If
this determipant, usually called the mindr of éij’ is repfesentedlby
the symbol Mij,then Aij = (f-‘].)fL +J Mﬁj‘ ‘ : (4,19)
Definition 15 (adjoint): The matrix [A] which is the transpose of -
the matrix in which the eiéments‘are the cofactors of the elements

of [Aj is called the adjoint of [A].
[a] = [A] = [A[[I] o (Be20)

Definition 16 (inverse): The inverse [4°%7] of a matrix [A] saﬁisfiéé
the equation [A] = [A™*] = [I] (&,21)
From (4,20), obviously oy - [A]
| " (A7) = — (4,22)
| | 4] |
Also [A] x [&™*] = [a7*]x [Aa] = [I] o (B,23)

By premultiplying both sidés of (4,6) by [A™],the inverse of the
transformation (4.1) is

[X] = [A"*] x [Y] (&ro20)
Definition 17 (symmetric métrix): If the transpose [At] of a matrix
[A] is the same as [Aj, the matrix [A] is called a symmetric matrix,
That is, [A] 1s symmetric if

(a1 = [a.] (4.25)

Definition 18 (skew symmetric matrix):
Ir [A] = -[4.] (B.26)

the ﬁatrix [A] is called a skew symmetric matrix,
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Definition 19 (orthogonal matrix): L If the tranSpase'[At]‘of a matrix

[4] is equal to the inverss [A”*] of [A], then the metrix [A] is

called an orthogonal matrix,

= [47%] (%.27)

| (a1
Premultiplying (4.27) by [Aj gives (
(4] x [&,] = [I] ' (4,28
From (1,28) or (%.27) |a]? = 1 (429
la] = 21 (.30)

1.

5

- Summary of Chapter IV

The addition (or subtraction)
ciative, [A] + [B]

([A] + [B]) + [c]

of matrices is commbative and assos
[B] + [A]
[A] + ([B] +[c])

i

I

The rultiplication of matrices is associative and distributivs,

(a4l = ([B] x [cD)
[al = ([B] + [c])

4

([a] = [BD) = [C]
(Al x [B] + [a) x [C]

1

The multiplication of matrices is not in general commutative

(4] x [B] # [B] x [A]

But (Al x [I] =

The matrix equation

(1] x [a] = [A]

[al x [B] = [0]
does not imply that either [A] or [B] is necessarily [0].

With the exception of special operations, such as the transpose,

the differences in matrix algebra and scalar algebra are contained

in items 3 and 4, That is, if"a and b are scalars,

ab

and ab

mast be zero,

= ba

]

0 implies that either a or b



CHAPTER V
THE TENSORIAL NATURE OF A-C NETWORK QUANTITIES

A major portion of the material presented in this chapter is
based upoﬁ the works of Gabriel Kronvand P, Le Corbeiller given in
the general bibiiography.‘ While sgveral new concepts have been
introduced by the author, the tensor character of a=c circult quans

tities was originally the work of Kron.

The Topology of Electric Networks

The terms branoheé, nodes, loops, and meshes are used extensively
in electrical engineering. Since different writeré'use tﬁese terms
to mean different things, to avoid confusion these terms will be
defined below in the way that théy will be used in this>di$serta@ioh;
Definition 1 (branch): A branch of a network is‘a‘series combina;
tion of circuit elementé between two terminals,
Definition 2 (junction): A junction is a point common to more than
two branéhes° | |
Definition 3 (node): A node is a terminai;>a node is usually3lbﬁﬁ
not necessarily, a junction.f’
Dgf?nition 4 (mesh): A mesh (also called loop) is any closed contoir
drawn on a netwbrk diagram. |
Defi%ition 5 (subnetwork): The various parts of a given network that
are @oupled magneticaily’bui not conductively are called subnetworks

of the given network, ',
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Definition 6 (node-pair): Any ﬁwo nodes within a single network
constitute a node«pair, ‘
Let S = mumber of subnetworks

B = number of branches

N = number of ﬁodes
and M o= numbef of meshes
A network in which all coupled meshes’ are conductiveiy coupled will
be called a “cbmpletely connected" network, A network that is come
pletely connected obviously has only one subnefwork,

In a completely connected*network‘havihg B‘bfanches and N nodes,

there are $N(N - 1) node-pairs and hence, considering polarity,
. N(N'= 1) voltages. Iet one of the N nodes be considered as the ref-
erence n&de‘(grounded); the voltages of all theiother N = 1 nodes
may be measured with respect to this réferénce node, The voltagewbe%‘z
twesn any twé‘nod@s is theidifferenbe between the‘&oltages of %hese
two nodes measured with respect to the referenée no&e; Thus the

N(N - 1) voltages may be expressed linearly in tefms of only N = 1

voltages,
CIf P = number of independent voltages ‘
then P = Nal | (5.1)

For a network containing S subnetworks, equation (5.1) may be applied
! .
to each subnetwork Pivﬂ N,o-1 (=1, 2, .0 o5 8)(5.2)

If the S equations represented by (5.2) are added, the left side
be@oﬁes Py +Pa+, o oF PS =, P (5,3)
and the right side becomes

(NL»E’ 1)"’ (NZ nd 1) + . e p + (NS b 1) = N = 5 (50LL>
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wheré P and N are the total nu@ber of independent voltages and~nodés;
respectively, in the network, yEquating (5.3) and (5.4) gives
P = N-S§ (5:5)
independent voltage eguations, Fo: a'n@tWQrk having B bran@hes,;
total of B independent equations are fequiréﬁ to solve for'ﬂhe B
unknown branch currents., Therefore thé number of mesh equations, M,
that must be formulated is o
M = BuP = BaN+S5 (5.6)
For a completely conmected network
M = BaN+1 (5.7)
In solving networks,the number of independent eQuations required is
of primary importance, Equations (5_.5)_9 (5.6), and (5.7) are
fundamental topologic relations which férm the basis of electrical

network analysis.

WA Particular Solution of a Given
Network Using Matrix Algebra
The concepts that will bé preéented in the remainder of this.

chapter can be best introduced in the solubion of a speeific nebwork,®
It will be assumed that the voltages of the six generators, ga, gb,
E 9 Ed’ Ef and E- are'given."The generators, as usual, are assumed
to be constantevoltage machlnes all generating a single frequency.

The six given branch impedances, Zan zb,pzc, Zd, Zf and Zg will be
assumed to have no mutual-magnetic coupling, The problem is to

determine the six branch currents, ;a, ;b, ;c, Id If and 1b in

tp, Te Corbelller, Matrix Analysis of Electric Networks (New
Yorkﬂ 1950), pp.. 2734,
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Figure 14
Glven Network

§

figure 15, The reason for writing the current indices as super-
seripts, rather than subscripts as used for voltage'and impedance,
will be explained later in this chapter0 The positive direction éf
each branch current will be assumed to be in the indicated positilve
directioﬁ of the generated voltage (figure 14) in that branch,
There are four nodes in figure 14 which are labeled as A, B, G,
and D, Applying,Kirchhoff‘s current law to each of these (N = 4)

nodes gives the four equations

2.

°
o,
Hy

node A I+ +;:t; = (5.8)

node B ai& - ib “‘ig = 0 (5}9) ‘
node C ib + ic a,if = 0 (5,10)
node D _\eiq = id + ig = 0 4 (5;11)

Since their sum is zero, these four equations are dependenté There
are (see 5,1) only'three‘(N - 1) independent node equations, There
are six (B = 6) branch currents, Using (5;7)9 a total of

M = BaoN+1 = 6=54+1 = 3
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more equations mast be foupd in ordérlto solve for-the gix branch
currents, These three mesh’eqﬁations méy be obtained by applying

- Kirchhoff's second law to three independent meshes constructed on
figﬁre 14, A simple way £o construct three independent meshes is to
trace-out on figure 14 three closed contours that contain each cire.
cuit element of the network at'l@ést once, The three Such meshes
chosen for this example are shown in figure 15, The voltage
equations around the’thrée meshes are: |

formesh1 B, - 21%+2.I - B, +z.b_ E = (5.12)

-
<

Mesh 3

Y

Figure 15
Mesh Contours

LI

L] L L ] Od - L] .c L4 _ .
for mesh 2 E, - Zf;f + ZdF g, - L +~§G = 0 (5.13)
and for me“‘lh 3 . Y . . . o °
E -251°+ z I° E +2 ; -E =0 o (5.18)

The three ind@pendent equations out of the four equations\(s,S) -
(5,11) that will be used in this solution are equations (5.8), (5.90,
and (5.10). A set of six equations (5.8, .9, .10, .12, .13, .14)

has been obtained which may be solved for the six branch currents,
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TIf the Maxwell cyclic curfent method Lad been used,a set of only
three equations in three unkno%ns would haﬁe resulted; This method
assumes that there are three mesh currents which circulate in the
three meshes of figure 15. By correlating figure 15 ﬁiﬁh figure 14,
the equations which express the branch curfents in terms;of the mesh

currents can be written by inspection as

= I

ib = ~i1 fia

= o .-
.id = aiz (5,15)
o= .1 fiz

€ = T

Substituting (5.15) into equations (5.12) = (5.14) and simplifying

gives
) . o ~1 [ .2 o 03 _ L] ~ .
(za-a-zf-a-z;b);" v Bl  -2I=EF -E. - E
. .1 . ° ] » .2 . -3 _ ;1 ° °
-t b (Lt 2g +3)I - =E -E - E
L3 o: . s ; » . @ 6 ° ; -
1 2 4 3.,
- 2,1 -2 % (3, + 2, + Zg)i =h - E, - E,
(5.16)

The system of three equations (5;17) with the three mesh Qurrents as
unknowns may now be readily solved. Once the mesh currents have’beén
determined,the branch currents may be immediately found usirg (5;15).
The process of determing the unknown«branch currents from the
calculated mesh currents is so simple that-nobody before Kron ever
thoﬁght about the significance of such an cobvious step., The branch
currents, being one~dimensional complex vectors, .can be expressed

in matrix form as



o

[1] = | (5:17)

Similarly, the three mesh currents may be expressed in matrix form as

— -}

-

-Ii

[1']= |1 (5.18)

| 2
The wnderscore notation for vectérs has teen dropped. in (5017) and
(5.18) since no confusion can'arisg regarding the nature of the
currents involved, In this treatise,the elements of a single colum
(or row) matrix will be consideréd‘as the projectidns of a vector in
that particular reference frame, In (5.17),the vertical array of
six complex quantities ia ; . ;‘ig are the projections of a single
complex vector i. Cdrreépqndiﬁg{tg (5.17) and (5.18) the branch

voltage matrix and the mesh VO;tage matrix are

:
-
:, i
[E] = |.° (5.19), and  [B] = |E? (5.20)
Ed. X ‘ s ‘
. Ed
f
E
&)

Two equations derived in Chapter 1T
‘ . ¢ 5 .

II = I xI = I? - (5.21)
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and | P=1'E=1xE | (5.22)
shouid be recalled at this poiﬁt. ‘From (5.21) aﬁd‘(5022),it‘is seen
that if i and ﬁ are to be expressed in matrix form then the multipli-
cation of single-column matrices would be most useful if 'defined so
that [it] . [i] would be a real magnitude, This product of 1=djmﬁnm
sional complex ma£rices (vectors) will be distinguished from the
product of other matrices by placing a dot (father than a cross)
between the two column (or row) matrices,
Definition 7 (product of single-column métrices - vectors): The
productwof two single-column matriées:is obtained by multiplying the
conjugates of the elements of the first matrix by the corresponding
elements of the second matrix and adding these proddcts,

The coefficients of the meshncurrgnts ih (5.15) may be arranged

in the matrix form _ -

1 0 0
-] 0 1
0 1 1 )
' [C] = a : (5023)
0 =1 0
-1 1 0
| 0 0 --v:l__J

Using the rule for the mﬁltiplicaﬁion of matrices given in Chapter TV,
it can be readily verified that

[1] = [€1x[T] (5.21)
where [i] and [iu] are given by (5.17) and (5,18). The transforma=
tion?matrix (5.23) is of the greatest fundamental impbrtancen As

indicated iy (5024),the manner in which the closed contours are

traced and the polarities assigned in the branches and meshes
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detefminﬁ the reference frame (or coordinate syst@ﬁ) in which these
qﬁamﬁities are mathematically err@sented, A.set of currents used in
writing equations around one set of closed contours may be determined
from the values of other currents calcwlated using another set of
contowrs and a transformation matrix; this matrix will genérally be
different for each different set of meshes used in writing the -
equations,

The reiaﬁions of the elements of the [é“] matrix (5.20) to £h@
branch voltages are contained in (5.16), Thus

* .

Es = Ea_a'Ef = By

Ez = B, + E; = E, (5.25)
By = B =B, = EEr

If the mesh impedances, the coefficients of the mesh corrents in (5.16),

are written in the matrix form

‘Za +‘Zf + Zb ' -.Zf | - Zb »
(57 = | b ioviwd i | (5.26)
i - Zb - ZC ' Zb + ZC.+ Z%J
then the Ommis law of the given netﬁorklin matrix notabion is
(£] = [21x01'] G

The elements of the principal diagonal of (5.26) are the self imped-
ances of the three meshes,and thé remaining elements are the mutual
impedances among the three meshes. m§ince any two mesh currents
always flow through a mutual impedanca in opposite directlons and
the airection‘of flow of each mesh current around its own mesh is

‘ : |
always considered positlve, the self impedances will always be.pose

itiveyand ‘the mutual impedances will always be negative, A more
i



compact notation for (5.26) is%

[z ]

=

le .

211

L)
=Zz1
.

«Z31

where the repeated subscripts refer

meshes, and two different subscripts indicate the two meshes to

which the impedance is common,

*
812

*
Zz2

=232

-
~Z13
L

~Z23

a
Z3a
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(5,26a)

to the self impedances of the

Since no magnetic coupling was assumed to exist among the six

branches, the branch impedance matrix is simply the disgonsl matrix

[z) =

°

0

0

a

(o

O.

0

OD_C\'!'O'

™~

O .

(@]

0

o

0 0
o 0
0o 0
i o
0o 1,
0 0

I (5,23) is multiplied by (5.28),the result is

-

Z 0

a

o 2
L 0 0
(2] = [c] =

0o 0

0o 0

o 0

0

0 0
0 0
0 0
0 0
Z, O
o 'z

- {99

—

1
=1
x| 0

0

-1

-

0

|07

(5.28)

(5.29)



s
| z, 0
\ ‘Zb 0
. 0z
[2]-= [c] = .
0 0
—

The 'transpose of (5,23) is

1T <1 0 0 -1 O

[Ct] x[2]x[C]=]0 0 1 -1 1 0] x

0 1 <1 ¢ 0 =1

Ly * 2y ¥ 2p = %5
[ct] x[2] x[C)=| . -2 Z,* 2%y
_ .3 s
L (o]

=l

0

Z 0 0
L&

2, 0 &
0 éc ch
0 =C3 0

=Zf Af 0
o 0 -Z

g€

-]

#
<Y

w7
o

L] ’ ) a8 L]
Zb +Z + 2
« C g

Equation (5,31a) is exactly the same as (5.26); that is

1 (z'7 = 6] x [2] = [C]

~J
o0

(5.294)

(5.30)

(5431)

(5.31a)

(5.32)

Equation (5.32) is of equal importance to (5.24), The mesh impedanae

matrix is détermined from the branch impedance matrix and the

transformation matrix using this equation (5.32).

Even with magnetic
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. i ‘

coupling of branches present, :IL‘h is usually a simple ma‘t:t‘ef £o write
down the branch impedance maﬂr:%.x [é]. In fairly simple ci:r"cui‘té
with magnetic coupling of branches,the task of wri%,ing down the mesh
impedance matrix directly becomes highly COmplica:;c,ed and strict
attention must be paid to signs, However, even for more éomplibated
networks, theé transformation equatibn (5.32) always gives the
cofrect magnitudes and signs of fhe ‘various elements of ‘thav mesh
impedahw matrix [én]. .

I the branch voi'tage matrit (5.19)' is multiplied by the

transpose of [C] (5.30), the result is

T."’
a
3
1T .1 0 0 -1 0 .
e x[E] = |0 0 1 -1 1 of x|.° (5.33)
0 1 -1 0 0 1 2
E:J‘.‘
E '
| &
-' L ] '_‘
B, - B - B, |
(0,1 x (8] = |&, - B, + 5 (5.332)
_Eb “ By - ‘*g

The qo’lurm matrix (5,33a) is exactly the same as the mesh voltage
matrix (5.20), the elements ,Qf nvrhivch are defined by ( 5.25),' That is
[B'] = [0,] x [E] (5.38)
Equation (5.34) specifies the marner in which the mesh volﬁage‘matrix
may Ee obtained f:éom the branch voltage matrix and ‘the tra;nsfchma{;ion

matrix,
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Given the network in figuf@ 14,£he«steps?necessary to arrive at, .
a solution for.the branch currénts may be summarized' as foliows:
1, From the given network,write down the two matrices [ﬁ] (5;19)'
and [2].(5.28).
2; Construct a suitable set of B-P'§= 3)‘meshes,and construct the
transformation matrix [C] (5;23); | ‘
3. By matrix‘multiplication;deﬁerﬁiﬁe [ﬁ'] (5.34) and [E‘] (5032)°
4, Multiply both sides of (5.27) by the inverse of [ék] to give
(1] = (2747 % (E]

5. Using (5.24), determine the branch currents from

[I] = [0]x([I']

Géneré;’Proof of the Transformation Equations
for Voltage and Impedance

The network given in figure 14 will bé‘usad as a visual aid in
formilating the general transformation equaéionsnof voltage and imped-
ance. The proof will make use of two auxiliary networks; the first
of these two networks Kron called the Y"primitive netw?rkﬂ. The prime
itive network consists of B meshes obtained by shortecircuiting each
branch of the given network, The primitive network of figure 14 is

shovm in figure 16,

i b se W of

<y
fey
0q

g+ .| .| . R P .
Q) |2, |@ 1%,|@ |20|Q) 1z4\@) |z |@) |z,
£, . E, E, E, ggx
Figure 16

Primitive Network
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. It is evident that the branch voltage matrix and-thé bran@ﬁ“impedance

! ' \
matrix are the same for the primitive network (figure 16) and for the
given network (figure 14)., Since the currents for the primitive net-
work afa obviously different from the branch currents of the given

network, these currents will beﬁrepresentéd by the matrix

.33’ ‘

[J] = 5d (5435)

Jf

L3§J
The Ohm's law equation fbr'th@,primitivé¥network is 4
(E] = [2]=x[7] (5.36)
where‘[ﬁ] and,[é] are defined by\(5ﬂ19} and (5.28), respectively.. -
The second auxiliary network needed in the proof Kron called the
"intermediate network?!, The intermediate network is obtained firom
the given network by adding enough impedance-less' connections so that
each branch‘of the given network is short-circuited. The interme.

diate network of figure 14 is shown in figure 17.

-
+
e
£
i
[¢:]

| S
o
03
+
N
+
e
&

Figure 17
Intermediate Network
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Thefe are numerous ways of conétfucting tﬁe intermediate network
pictured im figure 17. Six suitéble meshes must now fe selected on
figure 17, The first three meshes seleeted will be the same three
used in the previous solution of figgrévlu:as indicated in figure
15, Each of thé last three meshes chosen must include at least 6ne
of the short-circuits,and all three of the short-cireuits must be
used, The last three meshes wlll be chosen as follows:

nesh 4 = branch d and shortecireuit DA -

mesh 5 ~ branch f and short-cireuit CA

mesh 6 - branch g and éhortaéircuit BD
- Of course, many other c¢hoices were possible for meshes Maé;
The branch current ma£rix [(i)] and the mesh current matrix

a1
[(I )] of the intermediate network are

@ @)
(1) (12)
: (1% y (@)
(o] = | . (5:37), and (a1 = | . (5.38)
(1) (™
1) (1%)
(18) (1)

where the parentheses 'within the'brackets refer to the currents of
the intermediate network, From figure 17, the felationlbatween the

branch currents and mesh currents of the intermediate network is
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(1) 1 0 0 0 P | (1)
(1°) 210 1 0 0 0 )
(1™, 0 1 1 0.0 0 (1°) i
el = x | . (5.39)
(™ 0 -1 .01 0 O (I
,(i ) <1 1 0 0 1 0 (is)
(@] o o0 o0 o @)
or (D] = DO=LE)] (5.392)

The currents in the primitive network afe numerically equal to
the branch currents [(I)] in the intermediate network., Equation
- (5,39a) is valid for all namericél‘vaiqws of the. two sets‘of‘curreﬁts;

this equation depends only on the topology of the network, i.e., the

meshes chosen and the positive directidﬁs aséigned‘in the branches
and in the meshes. The values of the two sets of currents coﬁld be
changed by changihg the values of thé'branch impedances. In partice.
ular, if the impedance-less connections were openuciréuiﬁ@d; 1eBe,

the impedanca‘madé infinite, the two sets of currents would become

the corresponding two sets of the given network (figure 14), Thus

|12 N

1 ot

s 1) . 1
[(I)] = (i ) becom,@_s [I] = ‘:“Edv (50}4{))

1@ | It

La® )
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(1%)
(1*)
(1)
(%)

a2

becomes

(1]

oo

0

8k

(5 o i1 >

© L] * ' f
since 1%, I5 and I® are now zero, However, regardless of the values

of the two sets of currents,equation (5.3%9a) still holds, hence

f
L0

1
1

1
0
0

=1

0

0

0

[(M] = [ir]

0

a1

0

0

-0

1

0

0

0

0

0

0

1

0

o

=1

0

(5,52)

(5.k2a)

When multiplied together, the elemehts of the last three columns of

the matrix [M] will be multiplied by the ca"empnia of the last three

. 1 o : . .
rows of [I ], which are zero, Therefore the last three columns of

the nonsingular matrix [M] may be set equal to zero giving the

“ “ ' 3 o vy B
singular matrix [M ], sines the values of the branch currents will

not be affected,

F al

T
il o)
im
d

-

e
]

!
[ B
p 0=

=

LO

(5.43)
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or M s MM (5,432)
Equations (5.43) and.(5,43a) afe equivalen£ to
B 1 0 o
g -1 0 1 ";
1° 01 -1 I '.
al T, g o F I: - (5.44)
1 2 1 o U
iFd 0 0 1]
or (1] = [e]=x[I'] L (5.a)

Thus the rectangular (B x M) matrix [C] has been derived from the
nonsingular square matrix [M],

The wvolt-amperes in the primitive network are given by

P, = [J,]° [E] | (5.45)
as given by definition 7 and (5.22), Each branch of the intermediate
network (figure 17) is short-circuited the same as each element of
the primitive network (figure 16)° Therefore the a~-c volt-amperes

for the intermediate network are the same as for the primitive nete

work, Hence | év = [(i)t] ° [ﬁj ' < (5.46)

Equating (5.,45) and -(5.46) and substituting for [(i)] from (5;39a)
gives (3, * [E] = (@ x [(T)]), - [E] (5.47)
Denoting the mesh.vﬁltage‘métrix'by [(ﬁS]m'tﬁe vpitmamperes for the
intermediate network may be written in terms of the mesh voltage
matrix [(ﬁv)] and %he mesh current matrixv[(in)] as

SR = [(T)] 0 [E)] (5.48)

Ty
_Equating‘(5.47) and (5.48) gives

(X)) » [E)HT = (f = (@), - [E] (5.49)
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or [A),] + [EDT = (A1 - (1] = (] (5.192)
Since (5.49a) must hold for ali values of [(iu)],then ‘
[(E)] =: (4] x [E] ©(5,50)

The form of (5,50) is not affected by the topology of the network,
hence removing the short;éifguitﬁ (5.,50) becomes
(£'] = (4] x [E] (5.51)
As showm in (5.43) and (5.44), when #he impedancealessvconnécﬁions
are removed the matrix tM] becomes [C], Equation (5,51) can thus be
weithen (E'] = [c,]x[E] (5.52)
Equation (5.52) is the same as (5,34); the véltage transformation
equation‘hasfthﬁs been proven.
For the primitive network,the equation

o (E] = [%] x (1) (5.53)

becomes [ﬁ] [éj X [(i)]  , - (5.53)

when the branch currents of the intermgdiate network are used, Sub;

n

stituting [(i)] from (5.39a) into (5.53) gives

[E) = [2])x [M] x [(I)] (5054)
‘SubSt:L.'bu"blng (5.54) anto (5.51) yields |
o IET = s [ZJ x (1] x [(T))] (5:55)
The equations [(E] = [2]1x[I] (5.56)
and (5., 5@) must hold for all values of [__(iI )1, hence ,
| (2'] = (4] x (2] x [¥]  (5.57)

|
Replacing [M] by [C], equation (5.57) becomes the same as (5.32), the

se@dnd transformation relation that was to be proven;
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Covariance‘and Contravariance of Voltage
and Current Vectors
Tt was pointed out earlier that the transformation matrix [C]
(5.23) is entirely determined by the topology of the given network
(figure 14), i.2., the location of the meshes and the positive
directions assigned in the branchés and meshes. Allowing the
pdssibility of using the same branch more than once in a mesh; the
numbér of different meshes that can be drawn is obviously infinite,
Le Corbeiller has shown that for eé@h vathesez(B'xIM)‘transforma?
tion matrices  [Csl [Cals [0ods o o vy [GT4 o v o (5.57)

there exists a corresponding CKJX‘M) nonsingular matrix [K] sate.

ifying the equation® [c,] = [C:] x[K] (5,58)
Thﬁs;there isla one=to-one correspondence between the two sets of
matrices _‘[c;J,ltczj, [Cals o o os [Cn]o,ot§‘; (5659)
and [T (Kl [Kede o o o [K D0 o o

The [C] matrices (5,57) are rectangular and consequently have no
inverses. The nonsingular square [K] mat;iceé (5;59) may be used
in derivations requiring matrices which have inverses.

The.@oﬁbaﬁts of covariancé and contravariance of voltage and
current are closely associated with similar concepts’of thevme@hanical‘
analogies of electrical quantities, Tperefore an examéle from
mechanies ofra particle of wnit mass,m§ving in a plane und;r‘the
influence of a force F will be used to introduce these soncepts, '

If a Cartesian coordinate system is constructed on the plane of

motion of the particle, the projections of thelforce acting on the

zIbidﬂv p. 52=56a

. o -
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X1 X1

particle are

_ %&(:{z, Xz) (5.60)

and F
Xz Xz

where Y(x1, Xz) is the velocity of the particle, & linear transforma-
tion from the old coordinates (xi, Xz) to new ones (x}, xi)

x} = axa + bxe

cx1 + dxp (5561)

it

1
X3

may be expressed in matrix form as

x} a b X1 '
= x - (5.62)
x‘z c d Xa ,
or xt7] = [T] x [X] : (5.622)

Expressed in terms of the new coordinates (%}, x) ), the projsciions

of the velocity of the particle are

= gxi . .dx, dx,
Ve T @ T %t Pt ‘.
S ) (5.63)
= 49X . 8x 4G
Vg T @ T %a&t v 9
 Eauation (5.63) expressed in matrix form is
P sh.}
VX;'L a b ‘, az : ~
= X | ax (5.64)
VXL e d a‘EZ
or (vl = [T]x[V] (5.64a)

 In terms of 'the ‘new coordinates,the projections of the force are

F . o= M(X‘iwxg) PA PRI VU Jxe ,

Fxt 0 X Px, Jx}  Jx, Jxb (5?6 )
, 165

po= 2Vt xy) | 4V dxi 4V dxe

U=l FES )X, Jxy T Jxp J%

Solving for xi and xz in terms of xj and x} gives

d i b t
freed x . .
e T I T (5.66)




(93]
0

; ‘t
aa (3 1 a, x

*2 = aﬁlafbc'xi * 74 - be *2 <5f66>
or [x1 = [Eglj,x‘[X"]v ‘ (5,662)

Substituting the appropriate derivativésof (5.66) into (5.65) gives

d w «C

= I I -
xf  ad - be 31 + ad = be *2
' | (5.67)
S =b__F a__F
Fx; ad « be Xe *+ ad ~ be Xz
or [F1] = [T;*] x [F] (5.67)

Thus when the coordinates are transformed by the matrix [T], the
velocity of the partiéle is transformed by [T] als'b9 but the force
~aebing on the particle is transformed by the transpose of the inverse
of [T], [TE*]o In general, quantities which are transformed by [T]
when the coordinates are transformed by [T]'are‘called "eontrae
variant! quantities; quantities that ére transibrmedkw"[TEi] as a
result of the coordinates being transformed by [T] are called
Yeovariantt quantities,

In the solution of the network given in figure 14, it was shown

(5i2&) that the branch and mesh currents are related by the equation

[T] = [cal x[I] (5.68)
If another set of meshes were chosen,the equation analogous to (5.68)
would be [i] = [Cz] x [E"] (5.69)
From (5.58) [C2] = [Ca] x [Ke] (5.70)
Hence, equating‘(5a68) and (5,69)
[cad=[I] = [Ce]x[I] (5.71)
or [1'] = [K]x[I] (5.712)
Considering voltages [ﬁj] = [C;t] x [é] (5.72)

ALl

and [E'] = [0z] x [E] (5.73)

i
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- | | |
but [Cay ] = ([Cs] x[KaD)y = [Xap] x [Os] (5.70a)

Hence ‘ [ﬁﬁﬂ ="Eth] x [Cat] X [é] (BaVé)
From (5.72) and (5.74), it"folloWS that ,
(£'] = (K )% [E] (5.75)
Since [Kz] is nonsingular, (5‘.7‘5) may be solved for [é-'J | |
| ('] = (62 x () (5.76)

Equations (5.71a) and (5.76) show ﬁhé basicldifferenée in thé transa
formation of currents and voltages, 'EquatiOn'(507la) and (5.76) are
of the same type as (5.64a) and (5;67a). If one of the two sets of
quantities, currents or voltages, aré transformed by a certain none
singular matrix, the other is transfprméd by the tfanspose of the
inverse of that matrix. Acfually, either set of quanfitieso currents
or voltages, could be transformed first, The tendénéy of engineers
to begin the analysis of a network by establishing the relations
between the branch and mesh;cgrrents and the prevalent'use of the
forceuvoltage,‘massnindﬁctance and Velocity—current system of
mechanical analogies diétate the choice of currents as conﬁravariant
quantities and voltageé as covériant quantities. ‘The location of
the indices will be used to indicate whether a vector is covariant
or conbtravariant, A single superscript will be used to denote a
contravariant vector, and a single subscript will be uSea to denote

a covariant vector, This'nqtation will be ﬁsed throughout this
dissertation, Latér in this chapter,it will be shoun that a
covariant or contravariant vector is a special case of a mofe general

entity, a tensor,
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The Nature of AnC-N%twcrk\Quanbities as Determined
by Theié Transfofmations

The manner in whiéh simisoidal vdltages and cu:rehts could be
represented by one-dimensional complei vectors was demonétrated in
Chapter II, This demonstration ﬁas based upon the geometric cone
cepf &f a rotating vector, Such an explanation of the representas
tion of aag VOltages and currénts by complex véptors was sufficient
at that time and permitted the illustrations‘of‘the'uSe‘of the'notay
tion to be presented immediately in Chapter III, How_e'vero to" the
troly inquiring mindsthe establislment of an algebra upon a concept
no more concrete tﬂan the intultive didea of a rotating vector is
far from satisfying, In this section,it will be shown that the
fundamental reason for representing’amclvoltages and currents as
compléx vectﬁrs is based upon the manner in which these quantities,
currents and'voltagéé; are transformed when the reference frame in"
which they are represented is subjected to a linear transformation,

Earlier in this chapterjit was shown that there existed a set .
éf'transformatién matrices [C] (5.23), relating the branch and mesh.
currents, ﬁhe_elements of whibh,wére‘dependent upon ‘the topology of
the given network, For each choice of meshes, there exists a partic-
ular transformation matrix [C] and a corre3ponding meshscurrent
matrixx[ilj.

Matrices were' first introduced to reduce the large number of
symbolslbr equations that had to be manipulated to a single symbol .or
equation, The first result of the adoption of the matrix notation

was an obvious economy of space realized for a given mumber of
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,manipulations; But now it is ﬁound that £he entities, matficesg
which were introduced to r‘educei the mumber of quantities to be manip-
ulated have become great in numbef,also;’ For example, there aré many
meshacurrent matrices [i’jb This line of reasoning leadslin'a Hate
ural way to the following definition..
Definition 8 (tensor): A collection of n-way matrices forms ‘& phys-
ical entity, a tensoriof valence n;:if with the aia of a group of
transformation matrices [C] they can be transformed imto one another,®

The process of changing from one set of meshés to another’ set
of meshes is equivalent to changing coordinate systems, The colleg-
tion of ali the mesh~current matrices forms the meshwcurrent tensor)
each of the mesh.current matrices is the projection of the meshe
current tensor in that particular coordinate system (rbference frame) .
Since the meshecurrent matrices are i-way (9olumn)'matrices§ the
mesh=current tensor is a tensor of valence 1., A tensor of valence 1
is calleéd a vector, Thus the mesﬁ;gurrent vector is the collection
of alivthe‘mesh-durrenﬁ matrices Liq], each particular meshpcurrent‘
vmatfix being the projection of the mesh-current vector in that
particular reference frame, It has been shown that the meshgﬁurrént |
‘matrides transform as contravariant quantities (5;'?13.)o Hence the'
collection of the mesh-current matrices is a contravariant tensor
(or vector) of valence 1, |

For each of the‘meshugurrent matrices resulting from choosing
sevefal differenﬁ éets of meshes, there is a éorr65ponding meshe
voltage matriﬁe Tﬁé collection of all the 1—way’mésh4voltage matrices

is the mesh-voltage tensor (or vector) of valence 1, . It has been

3Gabriel Kron, Tensof Analysis ' (Vew York, 1942), p. 40,
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shown that the mﬁﬁhpvoitage matrices transform as covariant guantitizss
(5;76)o Thérefore the collection of all the meshevoltage matrices
constitutes a covariant tensor‘(or vector) of valence 1,

The transformation eguation of the impedance [E]fhaé been shéwnj
to be [z'] = [6] x [2] x [C] (5.32)
It should be noted that while the transformation equations' of carrents
(5,24) and voltages (5.,34) attract only one fransformation matrix
each, the transformdtiop equation of impedance (5,32) attracls two
transformation matrices, The terml"valence" grew out of this
“chemicél" property of different kinds of tensors,
Definition 9 Cvaleneg): The valence of a given tensor is the rmumber
of transformation tensors required to transform the given tensor
whenfthe reference frame has been subjected to a linear transforme.
tion, |
From the previous hnalyﬁis and definitions 8 and 9, it is apparent
that the collection of all the Zmﬁay impédanc@ matria@s, COrresponde
ing to the various choices of meshes, constitutes a tensor of
valence 2, In indexinotation,(5,32) is v

AN A (5077)

The equations of transformation for currents (5;2@) and voltages

(5,3%4) may be written in index notation as

j:m cm ima <%078)

_ = Vs
and E.= C.E, : (5.79)

The positions of the indices in (5.78) and (5.79) are used to indicate
the contravariant nature of the currents and the covariant nature of

. & .
the voltages, The double indices of Z in (5.77) are both subsecripts,
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Equation (5.77) is a covariantitransformafion of inta’zmpns, Thus
' I ﬁ a ‘
the collection of all the impedance matrices. [Z] is a tensor of

Z
mn

covariant valence 2,
The law of transformation,éf the transformation matrix [C]

(5,23) will now be derived, Given the equation

[1] = [c]x[I] (5.80) -

let [I] and [I'] be changed by | | |

[I) = [ =[I] (5.81)

md [ = feadx i (5.82)
Substitutiné_ (5381) and ‘(5':.82) in (5.80) gives

[0 x[T'] = [€]x[C]x[T ] (5.83)

[I'] = (67 x[c)xcalx I ] (5.84)

If ~ ('] = [(¢1x[I ] (5.85)

then [c'] = [03*]x[6]x[Ca) (5.86)

or in index notation 0213 = c, g" 2&5 (5.86a)

It is evident from: (5,86) and (5.862) that the collection of all the
£ransformation'matriqes'[cj is a tensor of wvalence two, but the posi-
tions of the indices indicate that the transformation tensor is dif=
ferent from the impedance tensor, The two" indices on the
transformation tensor an refer to two different reference frames,
whereas the two indicés on the impedance tenéor_zmn both refer to
the same reference frame, Sinée the transformation tensor has one
ﬁpper and one lower index,it is called a mixed tensor of covariant
valénce 1 and contravariant valence 1,

The equation for the total volt-amperes

B = [L] - [E] (5.87)



gives the same results regardless of what set of &oltages and
éorresponding set of currents a&e used,“ The indicated matrix
multiplication in (5.87) gives a singlé quantity, a‘écalaro hence
%v is an invariant, Thé‘essence of (5.87) is that the'mere
representation of currents and voltageé in different reference frames
does not change the total energyvinbuﬁ‘ﬁo the network in which these
“voltages and currents exist, This result is certainly 16gi@a;,and
its truth is<se1fmevideﬁt,, In ‘the Sﬁmmary of Chapter II, 1t was
observed'th%t the representaﬂion of a«¢ voltages and currents by

. A v ,

.qomﬁlex:vectors lost part of the geometric descripﬁion gained by the

use of two-dimensional real vectors, However, the invariant nature

t

of volteamperes gained by using tensor (complex vector) notation is

of far more significance than the slight loss of the desariptiveness

of ‘two-dimensional real vectors,

The greatest single advantage of representing a-¢ network quans

merely ah ex@ression of the natural behavior ﬁf sevgral associated
physical quentities, It can not be over-emphasized, tﬁat the natural
beﬂa&ibr of alphysiaal quantity does not change{reéardless of the

- system. (network) that it is placed in or ﬁﬁe mathematical reference
frame in which it might be represgnted,i Thus a tensor equation that
has been established for one system (network) is the same for all
ané;ogous systems (netmorks), The form of a tensor equation is
Cinvariant, Of course, the campoﬁents of the tensors, the n-way
metrices, are different for different sysiems {networks), The two
major differences in neway matrices and tensors are (L) a matwrix

equation is valid for only one rdference frame, whereas a tensor
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equation is valid for all reference frames of all physically anala
o ! .

ogous systems, and (2) a tensor always has associated with it a

definite law of transformation but an neway matrix does not, For

stationary networks, for example, the tensor equations

E = Z2x1I
Py= I,°E

1

are inveriant, Since these are ténsor equations, the brackets, used
to identify matrices, have been dropped, Furthermore, the transforma.

tion equations of the tensors

L] ﬂﬂ
I = Cx1I
BU ?
E = C_t % E

o ‘ ‘ :. )
= Ct XxZx0C

) “

and c = 0i* x C x .Gz

are invariant also, That is, each tensor has assoclated with it a

permanent law of transformation,

Summary of Chapter V
1J(a) In a conductively connected network having N nodes, the rumber
of independent current equations.(P) that may be written is
P = N1,
(b) - If the network in (a) has B branches; the number of mesh-volbe
age equations (M) required for a solution of the network is
‘M = B - P,
2. Stationary networks may be readily solved‘using matrices. The
ﬁecessary steps may be summarized as follows:
(aj From the given network,write down the two matrices [ﬁ] (5%19) -

and [E] (5028)0
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(b) Gonstruct a suitable (iﬁdependent) set of B « P meshes,and

determine the matrix [Cj (5,23) which expresses the relations

between the branch and mesh currents,

(c) Using the transformation equations (5.34) and (5.32),determine

D‘“ eg } .
[E ] and [Z ], the mesh voltage and impgdance matrices, from

the branch voltage and impedance matrices [E] and [Z].

Qu i Qn ‘l"
(d) Having determined [Z ] and [E ], solve for [I ] in the equa-:

tion , [ig] = [éi"ij x [ﬁ‘]

(e) Using the transformation matrix [C], determine the desired

branch currents from the calculated mesh currents using the

equation ‘[i] = [C] x [iﬁj_

.Because of the mammer in which they transform, if either voltages

or currents is covariant\theyoﬁher iS'ﬁecessarily @ontravariant,ﬂ

Following the féfceavoltage, velocity=current system of mechan.

ical analogies, currents are contravariant and voltages are

covariant. A contravariant vector is denoted by a Siﬁgievsuperw
|

seript, and a covariant vector is dencted by a single subscript,

In advanced analysis,the basic nature of a guantity is determined

by the manner in which the quantity behaves when the reference

frame iﬁ whidhlit 1s represented is subjected to a linear
transformation. Such intuitive and primitive concepts as “rotate
ing vaétors",and "a vector having magnitude, direction and sense"
must be discarded,

As determinéd‘by tﬁeir laws of transformation,the various elec-

tricel quantities have been found to be the following:

(2) current - a tensor of contravariant valence 1 - represented

in each reference frame by a l.way matrix - the elements of
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the l-way matrices for different reférence frames are different,

, o
(b) voltage - 2 tensor of covdriant valence 1 - represented in each

reference frame by a leway matrix - the elements of the l-way

matrices for different reference frames are different.
|

‘(p) impedance - & tensor of covariant valence 2 - represented in

1

each reference frame by a: 2-way matrix - the elements of the
2=-way matrices for different refefenée frames are different;
(d) wolt=amperes = a tensor of valence iefoo or a scalar -
represented in each reference‘frﬁﬁe byla;single complex
number - the complex number is the same for'all;refefence
frames of a given network,
A tensor equation may be written in terms of its components
(matrices) for any particular preference frame of a gi‘vennsystemn
A tensor equation established for a given‘sysﬁem is also valid
for all analogous systeﬁs.
This chapter is the work of Kron and Le Corbeiller adapted to
“the complex vector hotation, of éourse; the use of complex veg-

tors necessitated the modification of several formulas, i.g8.,

(5.87),



AN APPLICATION OF THE TENSCR METHOD TO THREE-PHASE CIRCUITS

Basic Considerations
In Chapter V, the basic equatiéns of‘stationary electric networks
were derived and expressed as tensors, The élegancg‘and_simplicity,"
of the forms of these ﬁasic formulas aré indéed impfessivé, However,
becauSé of the necessary general character of these'equations; the
manipulations required for the mumerical solution of a given problem
may not be at all apparent to one having no previous training in
¥ .

tensor analysis. ébnsequentiy,'as an‘illustnation,.the“tensor eqﬁam
tions of Chapter V will'be used to golve a familiar three-phase
network. The first two sections‘of this chapter are the authort s
own original work; tﬁé final two sections dealing with the combinae
tions qf series and‘parailel threéuphase loads folleow, the original
work of Sah. Itris recognized, of course, that there are other,
perha§$ simpler, ways of‘solving the exampleiwhich will be solved °
by the tensor method in this chapter, but it should be borne in
mind that this ié‘a very elementéry illustration of a powerful tool
which.mayvbe used to solvé more Qbmplicated problems.,

The stationary four-terminal network shown in figure 18 will .
now be conéideredo Tefminals_l, 2,and 3 are assumed to be commected
to tﬁe three lines of a thrée;phase grounded system,and terminal 4
is conﬁected tq the system ground.. The assumed positive directions

of the three line currents are indicated in figure 18, Denoting the

99
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. Figure 18
Three-FPhase Grounded Load
i [

three line-to=ground voltages by the symbols Ei, Bs, and Es, the

Kirchhoff voltage equations for the three phases are

] .

o * L] » o
Bi = Z1aI' + 23512 + Z1a]

® L] - [} .. L] L
Bz = ZpaI* + 222T% + 22213 | (6.1)
Es = 23T + Z321% % ZsaI>

where: +the E's and I's are one-dimensional complex vectors,
the é‘s withlrepgated subscript afe the series self impad;
‘ances per phase,‘and
the é“s with two different éubscripts are mubual impedances
between the phases indicated by the two subscripts.
In index notation, (6.1) wduld”be simply wriﬂten‘as

L) L] L]

e . n ,
E =2z I (mn=1,2 3) (6.12)

° ¥
The significance of (6.1la) is that the second subscript of Z (n) acts
~as a dummy index with the superscript (n) on I, thereby leaving the
first subscript of Z (m) as the identifying index of E. In terms of

»

L]
unit vestors, the vanishing of the n index on 2 and I signifies that
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a wnit vector associated with §3is being dot (scalar) multiplied by

a similar unit vector associated with ig thus losing their vector
identity. This leaves the unit veétor‘aSSOciated with é corresponding:
to the subscfipt m as the identifying unit vector for the correspond-
ing component of é, Using the customary unit real vectors i, Jsand

k, (6.1) can be written

Eii = i;;;_; x i‘;;_ + Zaaii x I%4 + Ziadk x Tk |
| Epj = Zasid x I% + 233,1;1 x 121 + zm;g_g x Tk (6.2)
i‘.;g = éa ki x iri_j; + i;z};j X iﬁjﬂ + isagg_; x iag
where . | ° b', °
Ex= Eai  I'= T |
Ba= B 1P = I% (6.3)
B= Bk D= Ik
Expanding (6,2) gives
ﬁ;; = (ia1i$ + é;ziz + Egaigji
ﬁai = (éa;iif+ éaaiz + ééai;>j , (6,4)
ﬁbg = ‘(éazii + iaéiz + éaai?)k “

The three voltage vectors and the three current vectors of (6.3) may
be thought of as the components along the three Cartesian coordinate
axes of a space voltage vector and a space current vector, That is

Eil + Ez] + Esk (6.5)

it

and

fido it

= T4 + 185 + I3 ' (6.6)

The equations (6,2) are more neatly expressed in matrix notation as
\ - . .

— s — — — e

N 211 Zaz  Zaz| | i

| Ez| = |Zz1 Zzz  Zza| X I? (6:7)
| Es| Zss Zaz Zas i

b e = - -

Each phase of the three-phase system is thus represented by a
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i
onendimensionél comﬁlex vector;space. The collection of the three
one~dimensional compléx vectorispaces forms a threefdimensional
complex vector space, |
Phase 1 is represented by the 1adiménsiohallspa¢é i
Phase 2 is reﬁresented by the l-dimensional space J

Phase 3 is represented by the l-dimensional Spade k

Solution of Three-Phase Network

The three-phase network given in figure 18 will now be solved
using the method presented in Chapfer V. Reférenée will be made to
each general equation of Chapter V as it is used in £he solution,
It will be aésumed that é‘wyemgonnectéd generator with a grounded
neutral supplies the three-phase voltages applied to terminals 1, 2,
and 3 of :E';igufe 18.

The given network has two nodes, hénce fhere is (5,1)

P =2-17=1

‘one independent current equatidn; Since the given network-hasrthree
‘branches, the number of additional mesh voltage equations required for
a sélution (5,6) is M = 3a-1 =2
The two meshes that will be chosen for this:example are (a) the mesh
composed of phasés 1 and 2 of source and 1Qédp and (b) the mesh
composed. 6f‘phase§i2 and 3 of source and load, The twolmeéh currents
will be assumed to circulate in a clockwise direction:around.tﬁeir
resp?ctive meshes, The equations relating the two mesh currents, iil
andiizég and the three branch currents are

! i* - ;iiu

® O’ 0'
12 = 1% + 12

i

IS

i

.Z\]
= I
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ormation matrix [C] (5,23) is

[¢] = | -1 1

Tne branch volbage matrix (5.19) is

B
LE] = |E2

P B P o 5 A s
and the branch impedance matrix (5.28) is

I » o
Z14 Zi1a L3
o » L4 ‘
i

[2] = 1221 Zzz2 Zasz)

Zas  Zap dan

Using the transformation equation (5.34), the mesh voltage matrix is
Ey

B 7
R 0| _

[BE] = Ez
O j« o o
L_ﬁE')

Lpplying transformation equation (5.32),the mesh impsedancs

[
jo]
e
3

. # " 1 i
_ Z1s Ziz Ziss b {
o 1oLl0 . . ’ !
[z 1] = x| das  Zaz dza| x iml i
|

o 1

Zai1  Zaz 33
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! o 1) Q L)
' {211 = Zag Ziz . Zaz|-
Cooeg 1,;;-1 O } ° © t ° o.
[(z1 = ’ X {221 = Zp2 Zoz = Z23
0 1 =1 . o ° » ,‘ ®
- L?s; - Z3z laz = Z33
L) . L) - * 3 ° Ll ® L]
oy o | 214 = 212 = Z2a * Lz Ziz = Zig = Zzz * Lza
[Z ] = ° 3 6 o @ . s : © °
py = L22 = Zas + Zaz Zzz = a3z = Zaz * Zas

The equation for the-meshkcurrentS.is
oy Sty Ay
[l o= [277] =B ]

oﬁ»
The matrix the elements of which are cofactors of the elements of [Z ]

1

Ld * L] o % ° o -]
18 lzz = 423 = Zaz + Zas (221 = Z22 = Za1 + Zaz)
Cof, matrix = . s e e . . . .
«(Z1z = Z1a = Zzz + Z23) L1y = Zig = Zp3 + Zz2
The transpose of the cofactor matrix is
I~ » ) ® » - ° L. [
L2z = b23 = L3z + Zaa “(Zyp = Zaa = Zzz + Zz3)
P ° ° . . ! » o e
«(Z21 = Z22 = Za1 + Z32) Z11 = L1z = Za1 * L2z
HeI'\.C@ O ° 3 » » . 07. o vav
1y 7 Zaz = d23 = Z3pz + Zas «(Z12 = Zaz = Zzz + Zz3)
[Z ] = 5 8 1; . .9 - - °>. 8 . o !.7
(Z2s = Zaz = Zas + Z32) li1 = Zap = Zz3 t L2z

where D = (211 - iiz - ﬁzi + ézé)(éaz - iaa’m 233 + i&@)-
=(£1a - éis - iz; + é;a)(izi - ézz = 231 + éaz)
the determinant of the ﬁa&ﬁix‘[éu]. JIf the given staﬂionary'metwwfk
(figure 18) were also bilateral,then
i3 Ji
and ﬁhelexpression for [i"1] would be greatly simplified, Performe
ing the indicated matrix multiplication in the equation

(1’1 = 27 x (£
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[ ﬁ ° ° a ° % © ° e e.. ] ce ?lk
1* 1 (222-Z23=232+L33) (Ba-Ez) = (23205132224 023 )(Ep-Ea )

LI | - © o L M . . e ' . s © o -
12 (Zii=zgaazzl+222)(E2~Es) o (221222231232 )(E1-Ez)

The branch enrrents as determined by (5.24) are

1 O c"

Ii

= "71 l X LI |
Ia

0 .,.:I; P

(Z22-%23-232+233) (E1=-Ez)

(Z12-213-%22%%23 ) (Ez=E3 )

.’ii o - . , * L4 - L] o L] o ° o

i? 1 (Z12-Z12-Z22%+223 ) (E2-Es) = (Z2z-Zz3-B32%Z33)(Bs~Ez) -
= 5 : o L] ° ' L L] ° . * ! :- L] B, J

‘ (Z21Z2223 1+232)(Ez=Es) + (Z11-212-223F022 ) (BE1-Ez)’

I : . -

B

(221222003 1%232)(Bs=Ez)

(Z11-212=Z23%%22)(E2=Ea)
From the definition of the equality of two matrices, the Qoeffi@ientﬁ
of the three branch currents aré équal to the ‘corresponding three

rows of the matrix on the right of the above equation, - That is

T' = (Zzz2~Z23=Zaztlsa)(E1=Ez)

i

(ZmzaZ13aZzz+Zza)(E2=Ea>

12 = (Z12-Z13-Z22+%23)(Ez-Ea) = (Z22-Z23-Zaztlas)(Bs-Bz) -

[

(Z21-Z22-Z31+%2 ) (Ea=Fs ) + (Z21=B12-%21+%22)(E1-Ez)

I; = (221=ZRBGZ31+Z32)(E1?E3> (211-212“Z21+222>(E2°E3>

[}

Even though the three equations above for the three branch surrents
(lire currents) are rather involved funetions of the Self'jmpedances,
the ﬁuiual impedances,and the phase voltages,-the procedure used in
deri%ing these equations is quite simple, Of course, the thres«phase
cireuit bf‘figure 18, having no neutral-to-ground impedanse, is a

simple twoemesh problem. Exactly the same procedure would have been
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followed regardless of the numb%r of meshes invdlved,or whether the

network were unilateral or bilateral, symmetriec or antisymmetric,
The total volb-amperes input is
L} ‘ L)

P, = (3] [E] = [L] - [E]

or in vegtor notation '

. L. »
P = « B

*

Substituting I and E from (6.5) and (6,6)

h

Po= (I3 + I%] + T°k) o (Eei + Bz + Bsk)

' ° nl*. ' 02*6 ;3;,“

Thus P = I Ey + I° Ea + I° Ea

The complex scalar Pv is the sum of three complex scalars, each being
the volteamperes for one of the three phases of the given three-phase

network,

Methods for Combining Three-Phase Loads
In order to solve three-phase networks effectively, it Willibe
necessary to show how to coﬁbihe impe%ance tensors tﬁéﬁ are in
series cor parallel., Of course, for a given reference frame (choice
of meshes and positive directions of currents) the impedﬁnce 2=tensor
will be repfesented by a préylmatrix,
Two séts of three impedandes are shown connected in series in

figure 19,

. ° 1 |

1 2y, Zs ———— 7}

. X i

2 Z;:_ Zs — 2

. kX ¢

3 Zs i 3
Figure 19

Three-Phase Series Loads
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o

@ ] : ] .
Assuming no coupling between the Z impedances and the 2 impedancss,

the two impedance matrices are

7 2 o v [ sy oy ]
231 Ziz  Zaa ‘ 1Z1s . Z1z  Zia
o ° o o R s oq sy

(2] = 1221 2zz2 Z2a| (6:8), and. [Z ] = [Z21 Zazz Zaa| (6.9)

v . 1 oy ° 1

234 Zap Zsfj Zas 2oz Zaa

The line currents are obviously common to both sets of impedances,
Thus [E] = [2] = [I] (6.10)

where the elements of the mabrix

Eg ‘
[(EB] = [Ez|- (6,11)
s

are the voltagefdrops across the corresponding elements of lthe impeda
ance!matrix‘[Z]. Similarly .
.l ﬂn o
(E] = [2]=x[I] o (6.12)

i e § [
The voltage-drops from terminals (1, 2, 3) to (1 , 2 , 3 ) are

[B] = [E]+[E] (613)
Substituting (6.10) and (6.12) into (6.13) |
gives [5,] = [2] = [1]+ (2] x (1] 6w
Using the distributive proper@y of matriz multiplication, (6.14)
becomes (B8] = ((2]+[Z]) x [I] (6.13)
Setting ['ES] = [i]+[§"j (6.16)

it

[2_] x [I] (6.17)

From (6.,16),it is seen that two impedance matrices reprssenting two

(6.15). can be written (E,]

sets of impedances which are connected as shown in figure 19 may be
added to give the impedance matrix which represents the sombination

of both sets of impedances. In expanded form,(6,16) is
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|
|
i
® 1 ‘J Ll °3 L} eg—’-

Lig + Zas ;. dyp + Zia Ziz + Zia
° e @y o 9 <°11. . LR
[Zs]‘v= Zpy + Zz3 Zgz + 222 Zaa + Zaa (6,16a)
' » o] LI .y ° oy
| Z31 + Zay Zaz + Z3z Zas + Zsa

The three-phase circuit shown in figure 20 will now be considered,.

Figure 20
ThreeuPhase Load with Reo1utance Graund
Each»qf the three line-to-ground voltages is composed of two parhs,
the veltage drop from the line to poiﬁﬁ n and the voltaée’drop from
point n to ground across the common grounding resistor Rg,' The thres

line~to=ground Kirchhoif voltage equations are

Ei = ZaaI' + 22277 + ZaaT’ + Rg(ll + 1%+ 1)
E, = z“:[ + zzz*2 + 22313 + R I*+ 12+ 1 (6.18)
BEx = danIL + Aagla + 43313 + R (Il + I2 + I%)

The first three terms on the rnghi of (6 18) are the same as (6,1)
and hence can be expressed in matrix form as (6.7). The last term

on the right of’ (6 18) may be written wn matrix form as

o

E [-R R R T

. B g '8 ¢ i

(B3 = B = By Ry Ryl x|T (6.19)
B R R R| |T®
ST O S -S4 B el
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R N B R
1

or [E.] = R 1 1| x| I3 (6,20)

11

|+
i~
(2]

Equation (6,18) ean then be written

[E] = [Z] x (I]

211 + Rg Ziz + Rg gy + Rg

=4

where (2] = |Zzs + Rg Zgz‘+'Rg Zaa + Rg (6.21)

Zzy + R Zzz + R Zaa + R
Lax g 32 e .a; o

As a final illustration,the circuit shown in figure 21 consisting

of two three-phase loads in parallel will be analyzed.

1
L 0“
L1 211
R S ) \\\\\\,
3 |
Figure 21
Parallel Three=Phase Loads. Solidly Grounded
o ] n_ L °ﬂ '
[B] = [2)x[1] = [2]x[I] (6.22)
Hence (11 = [27*] x [E] (6,23)
0' Di o l .
and [I1= [2 7 x [E] (6424)

The matrix of the total line wurrents [I_] is
* o og’
[(I,1= {1 +[11] (6.25)
Substituting into (6,25) frdm (6,23) and (6.24), and simplifying gives

(1] = (2% + 2 ™) = (8] (6.26)
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Solving for [E] gives

‘

(] = (271 +[2 7™ = [1,] - (6.27)
Therefore ) [é] = [ésj X [isj ‘ (6,28)
where [és] = ([é“‘] + [Eﬁmlj)al (6.29)

Thus the matrix which representé the combination of two parallel
impedance matrices is the inverse of the sum of ithe inverses of the
two impedance matrices, Equation (6.29) is entirely analogous to

the familiar rule for combining parallel scalar impedances,



CHAPTER VII

APPLICATION OF TENSORS TO THE ANALYSIS OF ELECTRIC NETWORKS

WITH NONSINUSOIDAL APPLIED VOLTAGES

In Chapter V,the basic tensor formulas of electric networks were
derived,and in Chapter VI these equations were applied to a few sime
ple three-phase circuits, Throughout these derivations it was

: )
always assumed, without being specifically pointed out, that the
branch (or mesh) driving vblﬁages were' allitrue sinusoids of a‘single
frequency, A‘meihod of solving electric networks with nonsinusoidal
appiiedjvpltgges using the tensor'equations of Chapter V will be
déveloped and illustrated in this chapter, ‘Kron's original work which
was adapted in Chapter Vzconsidered only sinusoidal functions of a
single frequency. The extension'of Kron's work developed in this

chapter is the author's own original work., The impedance elements

of the networks considered will be assumed to 'be linear,

In@foductory Concepts .

The solutions of a major portion of the problems encountered in
electrical engineering are BaSed’upon‘the assum@&ionithat the driving
voltage is a sine-wave variation. Such an assumption may or may not
be justified. In many eircuits,ponsinusoidal‘voltage variations are
as ccmmon as sinusoidal variations, and in many supposedly "sine-wave
cireuits® nonsinusoidal variations must be occasionally cé@éidered,

Fortunately, most periodic nonsinusoidal variations that are

encountered in electrical engiieering vary in such a manner that they

111
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can be analyzed by the mehhodsgof the Fourier Analysis in@o'the
Fourier Sine.Series, Any funcgion £(x), that is periodic, Singleu
valued, plece-wise continuous, and does not have an infinite number
of maxima or minima in ihe neigﬁborhood of éﬁy point, may be
represented by the following series:
£(x) = Ao 4 As sinx+ Az sin2x+, ., .+ A sin nx
; Bi cos x + B;'coé 2x + ogo . + B cos nmx (7.1)

where the A's and the B's are reai mmbers, By simply combining
corresP@nding sine and desine terms,(?,l) can e written

PR(x) = GCo 4 61 sin x + ég sin éx oo ot én sin nx  (7.2)

where Co = Ao and the other C's are complex numbers defined as

. follows Ci = As + jBs
' (7.3)
g 'f’
n = An + JBl’l

As showm in Chapﬁers IT and V,the terms in (7.2) mey be represented

by complex vectors which form .an orthogonal set, If £(x) ig the volte

age function e(t),then (6.2) can be written

. . s - °
E = oBag+aBog+Eag+ ..o+ E e (7.4)

The presence of the real vector oE i1g presents no difficulty in

manipulating E, but it does .cause n 1E ﬁo be associated with S
This would prevent the use of indices to indicate summation., There
fore (7,4) will be written in the symmetrib form

»

-] -] o £ .
E = sBugtEg+taBagt, ..+ E o ¢ (7.5)
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If the dec term is present in (%.2) then it‘may be interpreted to be
the 1% 18 term‘inﬁ(7,5), the a;o components being repraéented by the
remaining terms of (7.5).

The purpose of this chapter is to present a method of solviﬁg
linear networks by the use of matrices (gomponents Qf tensors in a
given reference frame) when voltages of the form 67;5) are applied
to the networks, Theoretically, there 1s an infinite number of
terms in (7.5), but in practical problems only a finite number of
terms, wsually only a véry few, is required to obtain the deslrsd
accuracy, Therefore this chapter will be conderned with the
application of matrices having a finite number of elements.

Before proceeding further,it appears desirable to clarify the
symbolism that will be used;

[ﬁ] and [i] refer to branch values,
[é']:and [I'7 refer to mesh values,

L] "

1 ] .
i, B2y o o 4y B, are elements of LE].

PR n s
1+, I3, . . ., I are elements of [I],
.y *y LN .y
Hay Hay o o oy En are elements of [E ],
* l‘ ‘ o

1#', 12, ., 7 are elements of [T I.
Harmonles will be denoted by leftehand indices. The element
representing the second harmonic of the voltage in braueh thres will
be written symbolically as zﬁa.

As demonstrated in Chapters V and VI,the branch (or mesh) volte
ages and currents of a given network may be represented as orthogonal
components of thﬁ'géneralized space volbage and mufrént veutors
(tensors of valence 1), When harmonics are present, each of ‘the

branch (or mesh) voltages or currents is the sum of a set of
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orthogonal time (or frequency) vectors (7.5). This each of the branch
(or mesh) Qné=dimensiona1 space vectors spans an nedimensional
orthogonal time-vector-space, The n;dimensional orthogonal time-

vector-space of (7.5) is called a Hilbert Space,

Single-Mesh Circuit Analysis

)
S

" Figure 22 ‘
SinglealMesh Circuit with Nonsinusoidal Excitation

The voltage and current of figure 22 expressed as vectors may be

written in terms of their components as

- a » » L B
E1 = 1F1 181 + 2B 81 + aBs a1 + . . o+ HE1 e, (7.6)
. [} L] ‘. : L]
. n
and It = 1t q;;-h?llzgg +3T 80+, ..+ T ¥, (7.7)

where the left indices refer to the order of the harmonics and the
right indices (all 1) identify the mesh, Since thére is only one
mesh in figure 22, the right'indiceg in (?;6) and (7,7) could be
dropped ‘with no 1éss of clarity, resulting in the form (7;5), How=
ever, in order to maintain the notation here that will be required
in the following section, the right indices will not he dropped,
The:voltage and current‘vectors of (7;6) and , (7.7) expressed as

column matrices are
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;Ei ; iri
aéi aii
(Bs] = | (7.8)y and [I'] = (7.9)
: n“gi
n s , 1
- n L -

- The d=c¢ impedance of the circuit shown in figure 22 is generally

different for each different harmonic (frequency)., The scalar equaw

° L <
tions are By = 1231 x It
» ) 2‘1‘
2By = 2244 x °I
s . . o
. (7.10)
* . L
* » o
° L4 nﬁja
E = 2 X7
n:. N a1
Expressed in tensor notation,(7.10) becomes
| ° > L 4o
1By 181 = 1%24 181 181 X 17 g1
y ; . 2r1
2B1 281 = 2211 281 281 X "I 281
. - . |
(7.11)
L] 0 L]
- L) »
. . ; o
no4
E e = % e e x°I" e
no1na ‘hiia N7 g Sy

If the impedance tensor is represented by the matrix
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. O 0 -3Z11 ® o o O Y
[214] = ) (7.12)

L n “:_
then the matrix_equation
I o —-T _go -.‘ ’—, .d
1By 1211 O 0 . . . 0 i1t
281 | 0 2211 O . . . 0 272
2E1 0 0 sZax . . . O erd
EI I e s . S S (7.13)
°v ‘ : n'i
e I R B I
or | [Ei] = [21a] x [I%] ’ (7..14)

is a correct‘reﬁresentation of the set of equatﬁions,‘(?‘.ll)o The
matrix of the impedances to the various harmonics (7;12) is a diagonal
matrix, The determinant of the matrix (7.12) is

s : ®

Dy = Léiifx g&ti X 9211 X o o o x 2 - (7.15)
The cofactor of any element 'of the prineipal diagonal of (7.12) is
merely the product of all the other elements of the principal diage

onal., The matrix whose elements are the cofactors of the alements

of (7.,12) is selfwtransposed, Therefore the inverse of (7.12) is
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12 0 0 . . . o
o% o ., . . 0
-1 0 0 3% B ¢ |
[221] = I (7,16)

L] 9 . L] . Ld L]

A

o O 0 o L] - !‘r}m
5|

(A in (7,16) is the cofactor of ,Zas in (7.12)., Substituting

for the A's in (7.16) in terms of the Zis of (7.12), equation (7.16)

where

becomes % 0 0 . . 0
1213 l
0 Jnﬂ 0 'y . o‘ O
o 2da4 : :
s 0 0 T . . . 0 |
[2:4] = | - alaa ~ : : (7.17)
° . & . . .
0 0 0 . . . %
2
N R noa1
. o d
Multiplying both sides of (7.14) by [Zii],the current is
LI 6:,1 [} N ‘
[1*] = [211] x [Es] O (7.8)

Tt is well known that currents and voltages of different integral fre-
quen#ies‘do net combine to produce any avefage volt-amperes, The
total complex volt=amperes (Ev) is the algebraic sum of the @ompiex

scalar volt-amperes due to each harmonic, Hence

B, = [I}] * [Ed] | (7.29)
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1a1* L] 120,1,* @ 1’1.1* e
or . P = "I x4Bs +°1" xBs+ .., .+ 1I° x &

v : : L R |

Multi-Mesh Network Analysis v’ri"t;h
Nonsinusoidal Applied Voltages
The analysis of general networks ivhj.ch may have nonsinusoidal
o | ,
voltages and currents presen;b begins in a manner similar to the
me‘bhc;d wsed in analyzing the ne*bwork of figure 14 in Chapter V
The essential difference bé*bwe_en the method to bé presented. here
and the method deveJ oped in Chapter V is that the ' elemems of
equations (5.24), (5.32), and (5. 3k4) are *bhemse‘lvecs matrices; the
matrices of Chapter V are actually '-‘cplnpouz}d matrices" when harmonics
are present., The rules :ﬁ‘or’ manipulating cémpéund matrices are given
and illustrated below;
A gfn.ven matm}c may be partnt:l.oned into beveral submatrmc-es by
drawing horizon'tal or vertical lines through the matrix, These

submatrices may then be manipulated exactly as if ‘thej were elements

of the matrix, The matrix

0 =11 0 =1 |
[z]= |-1 o]0 0 1 (7,20) |

2 -1]-3 1 0

0 =2/ 0 1 1

Z11
[2] = (7.21)
a1
1 3 2 4 0
Wwhere [221] = | 0 =1}, [Z:2] = |1 0 <14,
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!
L.
|

o 2 -1 | =3 1 o0
. [Z42]) = and  [222] =
0 =2 ‘ ‘ 0 1 1
Similarly the matrix
- ijl
3 —
- Il
[1] = 21 = (7.22)
. 12
1 L=
-l
If [E] = [2] x[I]
Zi1 21z eI ‘
then [E] = x| - (7.23)
Za1 Zaz| |I®|-
E1 | 21T + Z1.T° )
or ’ [E] = = - - (7 .24)
Ez 224T* + 22,712

Either of the voltages Ei or Ez may be determined from (7.24) without
1calculating‘the other, . If Ej and Ep were given, then It or I? @ould
be determined, The calculation of It or*I? wﬁuid involve at most the
caleulation of'fhé inverse of a2 (3 x 3) matrix, rather than the givé%‘
(5 x 5) matrix, If gnly'the components of I* or I? were desired, the
use of submatrices would achieve a tremendous economy of’timé:and“
effort, ‘
The matrices I' and 1% of (7.24) may be evaluated by thé follow-
ing proqeduré, Of the four submatrices,only Zzi‘énd‘iig'have
inVé%ses;i'EquatiQn (7&2&)’writtén as two eqﬁaﬂi&@s'is

By

i

Z11I* + Z4,1° (?§25).

i

Bz = Zgil' + ZoI® (7.26)
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To determine I3 first solve (7;26) for Zg;Illgiving ‘
Z2aI* = Bz - Zg2I? (7.27)
Multiplying both sides of.(7.27) byjzz; giﬁesv ‘
It = zZ:f(Ea; Z221%) (7.28)

By substitution of (7,28) into (7.25)

" [ r'mi -8 r L.
Ei = 211 221(Bz = Z22T%) + Z12 I° (7.29)
= ) . =1 .
Ey = Z11 Z21 B2 = (Z12 = Z11 Zz1 Z22)1° _
s . ' =4
12 = (2142 = 211 Zz1 222) t(By = Za1 Zz1 Ea) (7.30%

A similar determination of I* gives
T* = (Zas - Zaz Z1s Z11) *(Ba - Z22 Z1s Bx) (7.31)

Tt should be emphasized that iﬁ calculatiﬁg T? and I* it is necessary
to determine the inverses of 6n1y (2 x 2) énd (3 x 3) matrices, In
partitioning the two matrices (7,20) and, (7%22}, care must be taken
that the“submaﬁriéeg 50 férmed are conformabie, else they cannot be
multiplied, Two matrices in a matrix product are :conformably
partitioned if for every vertical partitioning line between eolumns
of the matrix on the left there is a partiti@ﬁing'liné between
corresponding rows of the matrix on the rigﬂt,

As a means of illustrating the procedure to be used in anelyzing

a general netWork,thé network shown in figufe 23 will be solwed,

-+ * + T\ o
" 211 | ) Z22

El Z:33 _@2 m
. =, ¢

(o) Bs ; lé

ks T
+ m
’;0 B Ia
Zs 5 -
Figore 23

T1lustrative Example



The positive directions of the five branch currents will be chosen

so that the murvents flow out of the positive terminals of the

generators, It will be assumed that there is no_magnetié coupling

among branches, and the generators génerate first, third,and fifth

harmonics. The presence of magnhetic coupling among branches would

§ '
merely require additional nonezero elements in the'branch impedance

matrix; the procedure would be exactly the same.

From figure 23,the equations relating the branch’'and mesh

currents are | it = iié\+‘0 +0
. .y :
=0 -TF o (7.32)
P =1 i1 s ‘
S A
= 1t o -1
The transformation matrix is
”i 0 d_
0 -1 0 |
o2 B [ S N (733)
o 1 -1
ENEIEY
The branch voltage matrix isf ]
Bs
. I.::‘?' :
[E] = |Es (7.34)
:é’:u
From {7.34) and the voltage transformation equaﬁion _
[E'] = [¢]x [E] (7.35)



the m?.esh voltage matrix is 3 _1:31_
1.0 1.0 1 |E
(B'7 = |o -1 .1 1 o] x|&
[0 0 0 -1,-1 B,
Es
Ey + Bs + B
[ﬁ'] = -ﬁa - é; + ﬁa »
R
The product of the 'branéh impedance matrix
iu 0 0 0 O
0 2220 0 0
[é] = [0 0 ésg 0 0
0 0 0 Zay O
Lp 0 0 0 vési
and [Cj is B B -
Zy1 0 0 0 0 1
0 %220 0 O 0
[iJXL’C]= 0 0 Zsa0 0 |x |1
0 0 0 Zuu 'o. 0
0 0 0. 0 Zss 1
é;zl 0 0
0 222 O

[2]x [6] =
to

233 =233 O

L] o
{255 O  <Zss]|

L

L]
e
24457544

=1

=1

i
8
™

(7.36)
(7.37)
(7.38)
0
O -
0 (7.39)
w1
@]
(7.40)
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Substituting (7.40) into the iﬁpedaﬁée ifansformahion equation

gives

rz']

[2'] = [0 x [2]x [c]

L1y O 0

1 0 1 0 1 0 %2z O

ML ° .
| [Z] = 0 "’-1 -l 1 0f x 2‘33' ~Zaa 0

®

5

0 0 0 =1 =1 |0 Zuw <Zas

255‘ ‘0” 9-25%-

(7.41)

F-G . L] o L
Z11 + Zaz *+ Zss . = Za3 = Zss

= ~ Baa Zaz + Zas + Zus = Zuy| (7.42)
L = Zgs e Z,’q.‘sa._ Zyp + ZSS_

' |
The mesh currents are

(17 = 247 x (5]

(7.44)

Using general impedance symbols,the'ihve‘rs‘e‘ of (7.43) is too ‘bulky

to write down, For ‘given numerical values of the parameters, of

. : gy . .
- course, each element of {Z ] and [Z "f"] would be a single complex

. *q
nunber, ' If the eléments of the inverse of [Z.] are denoted by

{A11 -~ A1z Aas

. . o .
[2 7% = lAz1 A2z ‘Aza

Aa1 Az Aa:ﬁ_‘

then from (7;&»&)

Ai1:s A1z Ads Ey + Es + Eg ;

o

Azx  Asz - Ass|

=By = By

Agg (Byta+Bs ) + Agp(<Ep=Ba+Ey) + Asa (~Ey-Es)

Azs(By+E3+B8s) + Az2(-Ez-Ea+Ey) + Aza (aEu=E5)

A3 1(EatEa+Es) + Aaz(-Bz-BatBi) + A3z (~Es-Es)|

(7.45)

(7.,46)

C (7.7)
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From the ecurrent transformation egquation.
,.° LX] ; .
[I] = [C}=x[I] ‘ {7.48)

the branch currents may now be determined. If (7.47) is written in

the. Form lii“
[(1]= |12 - (7.
= |1 - (7.49)
P
3
[
then the branch current matrix is
- _ — -
it 0 0 1t
0 -
0 -I* 0 12 |
' . 1‘ L} °
(17 = |I* =12 o | = |1 | {7.50)
o e |
:1“ °3u :5
_I 0 nI._ *;_J

The branch impedance matrix (7;38);’the branch voltage matrix (7.34),
and the branch current matrix (7.50) have beéen determined,

From the results of the preceding ‘section of this chapter, the
elements of the branch matrices (7,34);'(7,38),énd1(7°50) ars theme
selves matrices., The elements‘bf the mesh matrices (7.37), (7.43),
and (7.49) are métric@é alsq; but,bran&h valueé:arg more useful in
caleulating voltage=drops; voituamperes per bfanch, ete,

‘The voltage-drops across the branch impedance elements of figure

23 are Vel 7420 0 0O O Tt
Va 0 %220 0 0 1%
Vs = 0 0 Zas O 0 X 13 <ri 05_1>
Ty 0] 0 Q 249‘0 14
. ' e
LV%J _Q 0 0 0 Zsij “;~_
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Equation (7.51) is actually the equation of the primitive network of
the ‘given network (see Chapter‘V), _Recélling the assumption that
only the first, third,and £ifth harmonics were present in the
generated voltages, the five equations given by (7.51) are actually

matrix equations, Thus

A _ 1Z3s 0 . 0 Rl B ,
[v1] fisd 3V1 = 0 13211. 0 ,X 311 (7052)
csv\; Q 0 E‘;Zi_:!'._ SILJW

The other four equations for branches 2, 3, 4,and 5 are similar to
(7.52), The voltage drop across any impedance due to any harmonic
can be caloulated using the five sets of eguations of the type (7;52)

as determined by (7:51).

The total volt-amperes of ﬂhé'given‘neﬁwork are given by

-
Ey
o
B

L

B, = [I]~[E] = [I*I°T° I* I°] « B (7.53)

L]

LI L L LI L . » ” o““ LI vo .‘
or B, = I*x By + I2 x Bpi+ 1° x By + I*'x By + I x B (7.54)
Each of the elements in the matrices of (7.53) is a 3-element matrix,

The volte-amperes delivered to branch 1 are

i

by = [I8) ¢ (B = [T °T* °1%] - [aks (7.55)

| 5By

° ° PR 2 o W ¢ '
or Pv; = 4 x 4By + %I  x 3By + 5T x 5By - (7.56)
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Equation (7.56) may be written

= P+ P+ P (7.57)

Vi 1 Ve 3 V1 s Vi
. e L] v

where F_, , and Pv are the complex scalar vollwamperss in
5 Vi : E ’

1 Vs a Va

branch 1 due to the first, third,and £ifth harmonics, respectively,

Sunmary of Chapter VII

l. In many network problems encountered in eiectrical engineering,the
presence of harmonics must be considered in the' solutions of the
networks, |

2, The harmonic compbnent§~of a l=dimensional voltag¢ (or ourrent.)
vector may be represenﬁed;by an orthogonal setfof:@oﬁplex TeCtors,
The n harmonic compoﬁents of a voltage vector span an n-dimen-
sional time subspace of the l-dimensional complex vector space
in whigh the Voltageivector is represented,

3. $ingle=mesh circuits in which the appiied voltages contain
harmonics may be sélved using matrix algebra. The orthogonal
components of the voltage and current vectofs are!repreSehted
by the elements of single;@olumnimatrice§,@nd thetaac impeda
ances to the different harmonics are fepresented'by the elements
on the principal diagonal of a Zematrix, all elements not on
the principal diagonal beiﬂg zero (no magnetic coupling).

L4, The addition of more than -one branch or mesh to the network
merely adds more space aimensions to. the complex voltage and
kurrent vectors,

5. Matrices, the éleménts of which are'themSelves'matrices, are
called com@ound matrices,and the elements are called submatrices,
Gom@oﬁnd‘matrices are manipulated in the same manner as ordinary

matrices,
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The method of analysis of‘dhapter V may be applied to the sclution
of networks with nonsinusoidal applied.véltages, This exfensipn
of the analysis of Kron was originally developed by the author.

It is necessary to recognize thaﬁ‘the matriées of. Chapter V are
then actually compound maﬁrices; the submatrices (elemehts) of
these compound matrices form the equations‘fdfheach branch or
mesh in terms of the harmonic gomponenﬁb of the bfanch or mesh

voltage, current,and impedance,



CHAPTER VITI
SUMMARY AND CONCLUSTONS

The analysis of a-c circuits was originally performed using
unwieldly trigonometric equations, The use of conmplex numbers,
first adapted to a-c circuit analysis by Steimmetz, was a tremendous
stride in the advancement of electrical engineering te@hnologja
Rather than manipulating equations in terms of instantaneous valués,
the complex notation expressed a-c¢ duantities in terms of effective
(r.m,s.) or average values, Thusfanswers obtained using the coﬁplex
notation were the same values that could be read dirécﬁly'ffom CONw
ventional.electrical‘indicating instrdments, ‘The contrast between
complex and tfigonométﬁic equations was e@uivalent to that between
shorthand and longhand, The advantages of the compact complex notas
tion over the cumbersome trigonometric notation were manifold, Withe
in'a few years after its incaption,the complex notation had sﬂpﬁlanted
fhe trigonometric notation ih most electrical engineering texthooks:
the trigonometyric notation was uswally retained only for the purpose
of introducing the student to the complex notation in a logical |
manner.

The relative advantages of the complex notation wers sofmanifést
that apparently few electrical engineers havé ever Questiohed %h@
validity of the . complex representation of a=c¢ circult quantities,: Yet,
there are glarinngefects and inconsiStenéies"in this representation

of a-c quantities that cannot be compromised, Several of these
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deficiencies are as following:§

(1) The complex notation can be simulténeously applied to quantities
of different frequencies only by exercising great care and Wi@h an
understanding of complex rmbers not pdssessed Ey ihe\averége junipra
level student in eléatrical engineeriﬁg. For example, when the come
plex product of current andfvoltage is formed to give volbeamperss
(a double=frequen@y>quantityp,thé result is not'the correct énswer;
It is customary in all‘elementary texts to employ the conjugate of
either the'current of the voltage' simply béCauSe‘this artifice yiélds
fhe»known correct result. In engineering,correct answers are impore
tant, but to tacitly inject'sudh énvartifice with no‘explanation is
indeed distressing to the true scholar,.

(2) The same type of complex notation 'is used to représenﬂv@dﬁstants
and time-functions, No distinection is méde between ihe_sinusoidal'
current I =‘I|:+'jI" and the constant impédance'i =R +‘jX, »

(3); The complex notation does. not distinguish;between,two*sjhﬁSOid&l
functions of two different frequencies,

A method has been devised in Chapter IT and illustrated in Chap
ter IIT for representihg_auc véltages and currents by complex védtoréo
Although the representation of a=c voltages and currents by complex
vectors was intfbducea in Chapter IT using ﬁﬁe intuitin‘(geometri@)
concept of a ro%ating vector, the analytical justiiicatioh'was pT’=
posely delayed until Chépter V. The use of the compléx vechbor
Pepfesentation of a-c voltages and currents avoids-mqst of the short-
comﬁhgs of .the qpmplex.scalar notationvdiscussea abo&e, _kﬁ_no place
in the anélysis is theﬂuse of artifices neeessary’iﬁ order to obtain

the correct results, Rather the rules that have been given for
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manipulating complex vectors a¥e based upon the metric properties of
the épace in which the cdmplex vecﬁors are fepresented. A space in
which a rule exists for caleulating the distance beiween two points

" (the length of a line segﬁent or magnitude of alvector) is ecalled a
metric spacé. In engineering,the most useful expression for the
magnitude of a vector is that the squaré of the real magnituﬁe (norm)
be equgl to the sum of the.squares of the .components; atmetric Spﬁce
in which such a rule exists is called a Buclidean space, The scalar
product of two complex vectors was so formulated in Chapter II that
the complex vector space would be Buclidean, The examples‘§olved in
Ghaptér IT were included principally to demonstrate that complex
vector algebra can be used to solve the simpler types of problems'
just as readily as complex scalar algebra,

| The extension of complex vector analysis to multi-mesh networks
adds additionalvdiﬁansions to the voltage and current vectors, Matrix
algebra was intrdduced_in Chapter IV as a tool to‘Be used in manip-
ulating complex vectors of higher dimensions. In matrig notation,a
complex current‘ér véitage vector 1s represented by a one«column
matrix the elements of which are the_gémplex coefficients of the dif-
ferent components of the given vector, Matrix algebra is basically
a condensed shorthand riotation for representinga set (any numbér) of
linear equations. : A set of linear equations is a single mabrix
vequation.' Thus the use of matrices enables the engineer to focus his
attention upon the basic physical principlés of the problem which he
is solwving rather than a host of nﬁmbefs, variables,and equations,
Matrix algebra does not eliminate thennecessity of making numerical

caleulations in the solution of a specific problem; it merely places
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the numerical calculations in ah‘inconspicudus‘locatian at the end
of the solution., wawvér, in eventltﬁat the values of only part of
the variables involved are desired, then matrix algebra can greatly
reduce the labor ihvolved in making the numerical calculations,

The analytical foundation for the complex'vector reﬁreséntationﬂ
used throughout this dissertaion was presented in Chapter V. A major
portion of the analeis presented ;n‘Cpapter V is the amﬁhorfs
adaptation of work previously published by Gabriel Kron and P, Le
Corbeiller, The nature of a Quantity is determined by the wﬁy it
behaves when the coordinate system in which it is.repfesented“is sub=
jécted to a linear transformation, As determined by their laws of |
transformation, it was established in Chapter V that the various
electrical quantities are as following:

(1) current - a tensor of contravafiant valemceyl (a Vecton)

(2) voltage - 2 tensor of covariant valence 1 (a yector)

(3) impedance - a tensor of quariant valence 2

(&) volt-amperes - a tensor of valence 0 (a scalar)

These tensors are represented in a particular doordinate system by a
matrix, the order of‘which is equal to the valeh@e"of‘the tensor,
Therefqre for a specific coordinate system (reference frame) currents
andvvoltages (branch or mesh values) Wwere expressed as the elements
of l=way (column) matrices,and“impedanbes were represented by the
elements of a 2-way matrix., In electric neéWork analys;s,the selec-
tioﬁ of the required meshes and the aséignment of_positivaﬂdireﬁtions
in thé meshes and branches determine the coordinate system,

The components (matrices) of the voltage and carrent tensors will

generaliy have different values (different elements) in different
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, coordinate systems, In the‘eléctrical engineér“s language, this means
that the mesh eurrents will be different for each different set of
meshes chosen, From a physical viewpoint,this result is almost selfa
evident, A similar argument is valid for the impedapce tensor, The
results of the anelysis showed that the‘vo1t=amp§res for a given
network were a scalar. In tensor parlance,this means that the volte
amperes were invariant. That is, when the coordinate system was
subjected to a linear transformation the volt-amperes did not change,
Physically, this is exactly as it shguld‘bé,.sincelthe mere cholce
of a different set of meshes in the analysis of a network certéinly
does not:alter‘the Volt-amperes input to the heﬁwork,

- The voltages or currents 'of independent branches or meshes may
be considered as the orthggonal components of a gene#aliﬁed space
voltage or current vector. Perhaps the most common multi-mesh net-
works are the variations of three-phase networks. In Ghapter Vi,
sevéral three-phase networks were so;ved illustrating_the correlation
between the orthogonal components of space vectors agdztﬁe elements -
of 1MWay matrices, .

‘The method of analyzing networks using maﬂrices that was
develaped in Chapter V was extended by the author in Chaﬁter.VII to‘
apply to networks with noﬁsihusoidal applied volﬁagés, The voltages
were aésumed to be sueh that they cOuld‘be analyzed-by the methqu
of Eourier Analysis inﬁo the Fouriér Sine.Series. It was showm that
ﬂheéharmonic components of a nonsinusgidal function, ﬁhen eﬁpressed
in éomplex:vector notation, form an oréhggonal set, For a single-

mesh network the k harmonics of the voltage or current span g k= -

dimensional orthogonal time subspace of the l.dimensicnal voltage or
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current space vectors. The addition of meshes (or branches) merely
changes the space-diniensions of the voltage and current véctorso'

The method to be followed in sol#ing sigglemmesh;circuits in
which the applied voltage contains harmoniecs was devised in Chapter
VII, The crthogonal harmonic compdnenﬁs of the voltage and éﬁrrent
vectors were represented by the elements of single-column matrices,
The a-c impedances to the different harmonics‘weré représentedvﬁyj
the elements on the principal diagonal of a 2mﬁay diagénaj.mamrixa
vIn extending the method of analysis of Chaptef V to multi-mesh net-
works with nonsinusoidal applied voltages,it was necessary to rec¢e
ognize that the matrices of Chapter V Were actuallyldompound matrices,
The submatrices (elements) of these compound matrices formed the
vequations for each branch (or mesh) in'terms of the harmoni@vcompom
nents of the branch (or mesh) voltage,vcurrent,;nd impedance,

A tensor edquatlon is. an expressioh of the natural behavior of
several aésociated physical quanﬁiﬁieé, It follows ﬁh@n that the
forﬁ of a tensor equation i1s the same for all analogous networks,
The tensor e@uations in this dissertation were formulated‘for St 8=
ﬁionary'netwdrks, One of the most important aspects of tensor
analysis is that once a tensor equation has been formulated for a
glven system, exactly the same equation applies to all analogous
systems., Thus the tensor'equaﬁions which have been established are
valid for all stationary networks,

The analysis of electric networks which has been developed in
this treatise using matrices and tenéors is only a fragmentary portion
of the possible applicatiﬁns‘of'ﬁhese powerful tools in the scolution

of electrical engineering problems., Engineers are currently using
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matrix algebra more and more in the analysis of electron tube and
transistor cireuits, There are myriad otherlapplicatiens of thess
tools to networks, rotatirg machinery, etd. With.the ever increasing
nomber of variations in gikcuits and equipments whi@h he must‘undera
stand, it is becoming increasingly imperafive that the electrical
engineer visualize physical laws in teﬁsor form'and‘think'of the

' '

projections of tensors in different coordinste systems as matrices,
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APPENDIX
Key to Notation

Reél numbey'm A, D

Complex namberlb'é, T

Conjugate of'Complexinumber o i*, T
Real vector « E, A

Complex vector « E, I

Conjugate of coﬁplex‘vector‘u ﬁ?,'i*"
Complex contravariant vector - i
Complex covariant vectqr‘- ék
Matrix having real elements'w [C]

Matrix having complex elements - [é]

Matrix ecomposed of branch elements - [éj, [i]
Matrix composed of mesh elements - [Q'], [i‘]

L o
Total current in branch one = I%, [I*]
L]
Second harmonic current in branch one - 2I*
Transpose of matrix = [Zb]

Inverse of matrix - [C%]

\/al =
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