A METHOD OF SETTING CONFIDENCE LIMITS
ON THE HERITABILITY RATIO

By
FRANK GARLAND MARTIN, JR. Bachelor of Science
Oklahoma Agricultural and Mechanical College
Stillwater, Oklahoma
1954

Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SCIENOE August, 1955

A METHOD OF SETTING CONFIDENCE LIMITS
ON THE HERITABILITY RATIO

Thesis Approved:

349215

PREFACE

Heritability of a trait is one of the important statistios that must be known if the rate of progress of a breeding program is to be correctly evaluated. There are two methods used to calculate estimates of heritability, the regression technique and the analysis of variance technique. Kempthorne (1) has shown that satisfactory oonfidence limits can be set on estimates alculated by the regression technique. Little work has been done on the setting of confidence limits when estimated by the analysis of variance technique. Osborne (2) has found an approximation of the standard error of the heritability ratio based on the assumption of normality. The purpose of this thesis is to determine a method of setting confidence limits on estimates found by the analysis of variance technique. Both the case of equal and unequal subclass numbers are considered.

Indebtedness is acknowledged to Dr. Franklin Graybill for suggesting this problem to me and for his helpful oriticism given me in the preparation of this thesis. I should also like to acknowledge my indebtedness to Mrs. Edwin Titt for her work in oalculating the data used in the empirical study.

TABLE OF CONTEITS

Chapter			Page
I.	INTRODUCTION	- • .	1
II.	DETERMINATION OF THE DEGREES	OF FREEDOM	4
III.	FURTHER JUSTIFICATION OF THE	USE OF CHI--SQUARE	10
IV.	THE CONFIDENCE INTERVAL	- • • •	14
V.	THE CASE OF UNEQUAL SUBCLASS	NUMBERS	16
VI.	SOME EMPIRICAL RESULTS	- • • • -	22
VII.	CONCLUSIONS	-•••••	25
BIBLIOGR	HY - . -	- • - • -	26

Phenotypic differences between individuals in most traits are partly due to differences in heredity and partly due to the differences of the individual's environment. Each developed trait is the result of the action of genes the action of the environment, and the interaction of the genes and the environment. Heritability is a quantitative description of the amount of hereditary variation in a trait.

It is important for the livestock breeder to know which traits have some degree of heritability if he wants to make any permanent improvement in his livestock. The only permanent changes in livestock quality are genetic changes brought about by a breeding program that will bring together favorable gene combinations. If the heritability of the trait is high, improvement will quickly follow a good breeding program. If on the other hand the heritability is low, then improvement is long in coming despite the quality of the breeding program.

It is for these reasons that it is desirable to set confidence limits on the heritability ratio, thus giving the livestock breeder an indication of what kind of program he should undertake to bring about improvement in his herd.

Consider the three-fold classification whose model is

$$
\begin{equation*}
Y_{i j k}=\mu+a_{i}+b_{i j}+c_{i j k} \tag{1.1}
\end{equation*}
$$

where $i=1,2, \ldots, r ; j=1,2, \ldots, s ;$ and $k=1,2, \ldots, t$. It is assumed that the a_{i} are distributed normally with mean zero and variance σ_{a}^{2}. Simiarly the $b_{i j}$ and the $c_{i j k}$ are distributed normally with zero means and variances σ_{b}^{2} and σ_{c}^{2} respectively. It is
further assumed that all the terms are uncorrelated. The analysis of variance is found in table 1.1.

TABLE 1.1
Analysis of Variance of the Three-fold Classification

Source of Variation	Degrees of Freedom	Mean	Expected Mean Square

Variation Freedom

A effect $\quad n_{3}=r-1$
B in A

$$
n_{2}=r(s-1)
$$

C in B in $A \quad n_{1}=r s(t-1)$

Square
$A_{3} \quad \sigma_{3}^{2}=\sigma_{c}^{2}+t \sigma_{b}^{2}+s t \sigma_{a}^{2}$
A_{2}
A_{1}
$\sigma_{2}^{2}=\sigma_{c}^{2}+t \sigma_{b}^{2}$
$\sigma_{1}^{2}=\sigma_{c}^{2}$

The purpose of this thesis will be to set confidence limits on the ratio
(1.2) $\quad h^{2}=\frac{2\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)}{\sigma_{a}^{2}+\sigma_{b}^{2}+\sigma_{c}^{2}}$.

This is the heritability ratio used in genetic studies to measure the genetic contribution of the sire and the dam to their offspring, where σ_{a}^{2} is the contribution due to the sire, σ_{b}^{2} is the contribution due to the dam, and σ_{c}^{2} is the contribution due to the offspring or the environmental effect.

It is known that the sums of squares in the analysis of variance When divided by its expected mean square is distributed as chi-square. While it is known that the linear sum of independent chi-squares is distributed as a chi-square if and only if the coefficients are unity, it seems safe to assume that a linear combination of independent chisquare variates is well approximated by some chi-square curve.

The method presented in this thesis is somewhat patterned after
the method of attack used by Satterthwaite (3) to set confidence limits on variance components. The method purposed in this thesis consists of equating the moments of a linear function
(1.3) $Y=N\left[\frac{\alpha_{2} A_{2}+\alpha_{3} A_{3}}{\sigma_{4}^{2}}\right]$ where $\sigma_{4}^{2}=\gamma\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}$
which is independent of A_{1} to the moments of a chi-square with N degrees of freedom. Equal coefficients must be chosen for σ_{a}^{2} and σ_{b}^{2} in order to derive h^{2} from (1.3). The value of N is then determined in order to find the "best" agreement among the moments. If this linear combination is closely approximated by chi-square, then the ratio

$$
\frac{Y}{\mathbb{N}} / \frac{A_{1}}{\sigma_{c}^{2}}
$$

will be approximately distributed as Snedecor's F and it will be possible to determine confidence limits on h^{2}.

DETERMINATION OF THE DEGREES OF FREEDOM

We now find the moment generating function of
(2.1) $I=N\left[\frac{\alpha_{2} A_{2}+\alpha_{3} A_{3}}{\sigma_{4}^{2}}\right]$
and determine N such that the first and second moments of (2.1) are equal to the first and second moments of a chi-square with N degrees of freedom where $\sigma_{4}^{2}=\gamma\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{q}^{2}$. Equal coefficients are chosen for σ_{a}^{2} and σ_{b}^{2} so that it is possible to set confidence limits on (1.2).

Since A_{2} and A_{3} are independent, the moment generating function of the sum is equal to the product of the moment generating functions. Hence
(2.2) $\quad M_{y}(t)=\left[M_{\theta_{2}}(t)\right]\left[M_{\theta_{3}}(t)\right]$
where $\theta_{i}=\alpha_{i} A_{i} N / \sigma_{4}^{2}, i=2$, 3. It is known that $\theta_{i}^{\prime}=n_{i} A_{i} / \sigma_{i}^{2}$ is distributed as chi-square with n_{i} degrees of freedom and its moment generating function is $(1-2 t)^{-n_{i} / 2}$. Since $A_{i}=\sigma_{i}^{2} \theta_{i}^{\prime} / n_{i}$, it follows that

$$
M_{A_{i}}(t)=\left[1-\frac{2 \sigma_{i}^{2} t}{n_{i}}\right]^{-n_{i} / 2}
$$

and finally we obtain

$$
\begin{equation*}
M_{\theta_{i}}(t)=\left[1-\frac{2 \alpha_{i} \sigma_{i}^{2} N t}{n_{i} \sigma_{4}^{2}}\right]^{-n_{i} / 2} \tag{2.3}
\end{equation*}
$$

Let $B_{i}=\alpha_{i} \sigma_{i}^{2} N / n_{i} \sigma_{4}^{2}$, then (2.2) becomes
(2.4) $\quad M_{y}(t)=\left(1-2 B_{2} t\right)^{-n_{2} / 2}\left(1-2 B_{3} t\right)^{-n_{3} / 2}$.

Expanding (2.4) we obtain
(2.5) $\quad M_{y}(t)=1+\left(n_{2} B_{2}+n_{3} B_{3}\right) t+\left[n_{2}\left(n_{2}+2\right) B_{2}^{2}+2 n_{2} n_{3} B_{2} B_{3}\right.$ $\left.+n_{3}\left(n_{3}+2\right) B_{3}^{2}\right] t^{2} / 2!$
$+\left[n_{2}\left(n_{2}+2\right)\left(n_{2}+4\right) B_{2}^{3}+3 n_{2}\left(n_{2}+2\right) n_{3} B_{2}^{2} B_{3}+3 n_{2} n_{3}\left(n_{3}+2\right) B_{2} B_{3}^{2}\right.$
$\left.+n_{3}\left(n_{3}+2\right)\left(n_{3}+4\right) B_{3}^{3}\right] t^{3} / 3!$
$+\ldots+\left[\sum_{p=2}^{3} \prod_{j=0}^{k-1} B_{p}\left(n_{p}+2 j\right)+\sum_{i=1}^{k-1}\left(\frac{k}{i}\right) \prod_{j=0}^{i-1} B_{2}\left(n_{2}+2 j\right) \prod_{m=0}^{k-i-1} B_{3}\left(n_{3}+2 m\right)\right] t^{k} / k!$

The moment generating function of a chi-square variate with N degrees of freedom is $(1-2 t)^{-N / 2}$. Expanding into an infinite series we get

$$
\begin{align*}
M_{2}^{2}(t)=1+N t+N(N+2) t^{2} / 2! & +N(N+2)(N+4) t^{3} / 3! \tag{2.6}\\
& +\ldots+\prod_{i=0}^{k-1}(N+2 i) t^{k} / k!+\ldots
\end{align*}
$$

If these two moment generating functions are to be equivalent they must have the same set of moments, i.e., equation (2.5) múst be identically equal to (2.6) for all k.

Equating the first moments of (2.5) and (2.6) we find that

$$
N=n_{2} B_{2}+n_{3} B_{3}
$$

Substituting for the B^{\prime} s in the above relation we find that

$$
\begin{equation*}
\frac{\alpha_{2} \sigma_{2}^{2}+\alpha_{3} \sigma_{3}^{2}}{\sigma_{4}^{2}}=1 \tag{2.7}
\end{equation*}
$$

It is now possible to determine the values of α_{2}, α_{3}, and γ. It follows from (2.7) and table 1.1 that

$$
\gamma\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}=a_{2}\left(\sigma_{c}^{2}+t \sigma_{b}^{2}\right)+\alpha_{3}\left(\sigma_{c}^{2}+t \sigma_{b}^{2}+s t \sigma_{a}^{2}\right)
$$

and that the following relations must hold if (2.7) is to be true:

$$
\begin{aligned}
& \text { 1. } \gamma=\operatorname{sta} \alpha_{3} \\
& \text { 2. } \gamma=\left(\alpha_{2}+\alpha_{3}\right) t \\
& \text { 3. } 1=a_{2}+\alpha_{3}
\end{aligned}
$$

The values which satisfy these conditions are $\gamma=t, \alpha_{2}=(s-1) / s$, and $\quad \alpha_{3}=1 / \mathrm{s}$.

By equating the second moments of (2.5) and (2.6) it is possible to determine the value of N. Equating the second moments we obtain (2.8) $\quad N^{2}+2 N=n_{2}\left(n_{2}+2\right) B_{2}^{2}+2 n_{2} n_{3} B_{2} B_{3}+n_{3}\left(n_{3}+2\right) B_{3}^{2}$.

Substituting for the B^{\prime} s and dividing by N^{2}, we get

$$
\begin{aligned}
1+\frac{2}{N} & =\frac{\left(n_{2}+2\right) \alpha_{2}^{2} \sigma_{2}^{4}}{n_{2} \sigma_{4}^{4}}+\frac{2 \alpha_{2} \alpha_{3} \sigma_{2}^{2} \sigma_{3}^{2}}{\sigma_{4}^{4}}+\frac{\left(n_{3}+2\right) \alpha_{3}^{2} \sigma_{3}^{4}}{n_{3} \sigma_{4}^{4}} \\
& =\frac{\alpha_{2}^{2} \sigma_{2}^{4}+2 \alpha_{2} \alpha_{3} \sigma_{2}^{2} \sigma_{3}^{2}+\alpha_{3}^{2} \sigma_{3}^{4}}{\sigma_{4}^{4}}+\frac{2 \alpha_{2}^{2} \sigma_{2}^{4}}{n_{2} \sigma_{4}^{4}}+\frac{2 \alpha_{3}^{2} \sigma_{3}^{4}}{n_{3} \sigma_{4}^{4}} \\
& =\left[\frac{\alpha_{2} \sigma_{2}^{2}+\alpha_{3} \sigma_{3}^{2}}{\sigma_{4}^{2}}\right]^{2}+\frac{2\left(n_{3} \alpha_{2}^{2} \sigma_{2}^{4}+n_{2} \alpha_{3}^{2} \sigma_{3}^{4}\right)}{n_{2} n_{3} \sigma_{4}^{4}}
\end{aligned}
$$

But the first term of the right-hand side of (2.9) is unity by (2.7),
hence

$$
\begin{equation*}
N=\frac{n_{2} n_{3} \sigma_{4}^{4}}{n_{3} \alpha_{2}^{2} \sigma_{2}^{4}+n_{2} \alpha_{3}^{2} \sigma_{3}^{4}} \tag{2.10}
\end{equation*}
$$

If we let $K=\sigma_{a}^{2} /\left(t \sigma_{b}^{2}+\sigma_{c}^{2}\right)$, then

$$
\frac{\sigma_{2}^{4}}{\sigma_{4}^{4}}=\left[\frac{\sigma_{c}^{2}+t \sigma_{b}^{2}}{t \sigma_{a}^{2}+t \sigma_{b}^{2}+\sigma_{c}^{2}}\right]^{2}=\left[\frac{I}{I+t K}\right]^{2} \quad \text { and }
$$

(2.11)

$$
\frac{\sigma_{3}^{4}}{\sigma_{4}^{4}}=\left[\frac{\sigma_{c}^{2}+t \sigma_{b}^{2}+s t \sigma_{a}^{2}}{t \sigma_{a}^{2}+t \sigma_{b}^{2}+\sigma_{c}^{2}}\right]^{2}=\left[\frac{1+s t K}{1+t K}\right]^{2}
$$

It is then easily verified that (2.10) simplifies into

$$
N=\frac{n_{2} n_{3}(I+t K)^{2}}{n_{3} a_{2}^{2}+n_{2} \alpha_{3}^{2}(1+s t K)^{2}}
$$

Finally substituting for n_{2}, n_{3}, a_{2}, and a_{3} the formula for \mathbb{N} becomes
(2.12) $N=\frac{r s^{2}(r-1)(1+t K)^{2}}{(r-1)(s-1)+r(1+s t K)^{2}}$.

In this thesis we will assume that $\sigma_{a}^{2}=\sigma_{p}^{2}$. It seems feasible to assume that in random matings the contribution of the sire and the dam to the genetic make-up of their offspring is equal since each will contribute one-half of the offspring's genes. It is also known that h^{2} as defined by (1.2) is bounded by zero and one. If we let w equal $\sigma_{d}^{2} / \sigma_{a}^{2}$, then $h^{2}=4 /(w+2)$. Then $0 \leq 1 /(w+2) \leq 0.25$ and it follows that $(t+2) \leq(t+w) \leq \infty$. Also $0 \leq \frac{1}{t+w} \leq \frac{1}{t+2}$. But $K=\frac{1}{t+w^{2}}$,
therefore
(2.13) $0 \leq t K \leq \frac{t}{t+2}$.

By using the inequality (2.13) we can determine the minimum and maximum values of N as defined by (2.12) such that the first two moments of (2.5) and (2.6) are identically equal.

When $t K=0$ (2.12) obtains its maximum value since the denominator obtains its minimum value. In this case (2.12) equals
(2.14) $\quad \frac{r s^{2}(r-1)}{r s-s+1}$.

When we substitute $t K=t /(t+2)$ into (2.12) we find the minimum value that N can take. Substituting into (2.12) we get

$$
\begin{aligned}
N & =\frac{r s^{2}(r-1)(2 t+t)^{2}}{(r-1)(s-1)(t+2)^{2}+r(s t+t+2)^{2}} \\
& =\frac{4 r s^{2}(r-1)(t+1)^{2}}{(r s-s+1)(t+2)^{2}+r s t(s t+2 t+4)}
\end{aligned}
$$

$$
=\frac{4 r s^{2}(r-1)(t+1)^{2}}{4 r s(t+1)^{2}+r s t^{2}(s-1)-(s-1)(t+2)^{2}}
$$

$$
\begin{equation*}
=\frac{4 r s^{2}(r-1)(t+1)^{2}}{4 r s(t+1)^{2}+(s-1)\left[r s t^{2}-(t+2)^{2}\right]} \tag{2.15}
\end{equation*}
$$

We now must show that N is a monotonic decreasing function of K for the values $0 \leq K \leq 1 /(t+2)$. Taking the partial derivative of N with respect to K we get

$$
\frac{\partial N}{\partial K}=\frac{2 r s^{2} t(1+t K)\left[(r-1)(s-1)+r(1+s t k)^{2}\right]-2 r^{2} s^{3} t(r-1)(1+t K)^{2}(1+s t K)}{\left[(r-1)(s-1)+r(1+s t K)^{2}\right]^{2}}
$$

If N is a monotonic decreasing function of K, then the partial
derivative must be non-positive. Hence

$$
\frac{\partial N}{\partial K} \leqslant 0 \quad \text { for } \quad 0 \leqslant K \leqslant \frac{1}{t+2}
$$

Setting $\partial N / \partial K \leq 0$ and simplifying we get

$$
l-s+r s t K-r s^{2} t K \leq 0
$$

Since $s \geq 1$ and $r s^{2} t K \geqslant r s t K$ the partial derivative is always nonpositive and N is a monotonic decreasing function of K for all values of $K \geq 0$. Therefore
(2.16) $\frac{4 r s^{2}(r-1)(t+1)^{2}}{4 r s(t+1)^{2}+(s-1)\left[r s t^{2}-(t+2)^{2}\right]} \leq N \leq \frac{r s^{2}(r-1)}{r s-s+1}$.

In order for the ratio

$$
\frac{Y}{N} / \frac{A_{1}}{\sigma_{c}^{2}}
$$

to be distributed as F the following conditions must hold:

1. Y / N be distributed as $\chi_{(N)}^{2} / N$,
2. A_{1} / σ_{c}^{2} be distributed as $\chi_{\left(n_{1}\right)}^{2} / n_{1}$, and
3. Y / \mathbb{N} and A_{1} / σ_{c}^{2} must be independent.

Conditions (2) and (3) are immediately satisfied. We now need to find how closely the moments of Y / N approximate the moments of χ^{2} / N where chi-square has N degrees of freedom.

Equating the third moments of (2.5) and (2.6) we obtain

$$
\begin{align*}
N(N+2)(N+4)= & n_{2}\left(n_{2}+2\right)\left(n_{2}+4\right) B_{2}^{3}+3 n_{2}\left(n_{2}+2\right) n_{3} B_{2}^{2} B_{3} \tag{3.1}\\
& +3 n_{2} n_{3}\left(n_{3}+2\right) B_{2} B_{3}^{2}+n_{3}\left(n_{3}+2\right)\left(n_{3}+4\right) B_{3}^{3}
\end{align*}
$$

Substituting for the $B^{1} s$ in (3.1) and dividing by N^{3} we get
$I+\frac{6}{N}+\frac{8}{N^{2}}=\frac{\left(n_{2}+2\right)\left(n_{2}+4\right) \alpha_{2}^{3} \sigma_{2}^{6}}{n_{2}^{2} \sigma_{4}^{6}}+\frac{3\left(n_{2}+2\right) \alpha_{2}^{2} \alpha_{3} \sigma_{2}^{4} \sigma_{3}^{2}}{n_{2} \sigma_{4}^{6}}+\frac{3\left(n_{3}+2\right) \alpha_{2} \alpha_{3}^{2} \sigma_{2}^{2} \sigma_{3}^{4}}{n_{3} \sigma_{4}^{6}}$

$$
+\frac{\left(n_{3}+2\right)\left(n_{3}+4\right) a_{3}^{3} \sigma_{3}^{6}}{n_{3}^{3} \sigma_{4}^{6}}
$$

Expanding the right-hand side and grouping terms we get

$$
\begin{aligned}
1+\frac{6}{N}+\frac{8}{N^{2}} & =\frac{\alpha_{2}^{3} \sigma_{2}^{6}+3 \alpha_{2}^{2} \alpha_{3} \sigma_{2}^{4} \sigma_{3}^{2}+3 \alpha_{2} \alpha_{3}^{2} \sigma_{2}^{2} \sigma_{3}^{4}+\alpha_{3}^{3} \sigma_{3}^{6}}{\sigma_{4}^{6}}+\frac{8}{\sigma_{4}^{6}}\left[\frac{\alpha_{3}^{3} \sigma_{3}^{6}}{n_{3}^{2}}+\frac{\alpha_{2}^{3} \sigma_{2}^{6}}{n_{2}^{2}}\right] \\
& +\frac{6}{\sigma_{4}^{6}}\left[\frac{\alpha_{2}^{3} \sigma_{2}^{6}}{n_{2}}+\frac{\alpha_{2} \alpha_{3}^{2} \sigma_{2}^{2} \sigma_{3}^{4}}{n_{3}}+\frac{\alpha_{2}^{2} \alpha_{3} \sigma_{2}^{4} \sigma_{3}^{2}}{n_{2}}+\frac{\alpha_{3}^{3} \sigma_{3}^{6}}{n_{3}}\right] \\
& =\left[\frac{\alpha_{2} \sigma_{2}^{2}+\alpha_{3} \sigma_{3}^{2}}{\sigma_{4}^{2}}\right]^{3}
\end{aligned}+\frac{6 \alpha_{2} \sigma_{2}^{2}}{6}\left[\frac{\sigma_{2}^{2} \sigma_{2}^{4}}{n_{2}}+\frac{\alpha_{3}^{2} \sigma_{3}^{4}}{n_{3}}\right]+\frac{6 \alpha_{3} \sigma_{3}^{2}}{\sigma_{4}^{6}}\left[\frac{\alpha_{2}^{2} \sigma_{2}^{4}}{n_{2}}+\frac{\alpha_{3}^{2} \sigma_{3}^{4}}{n_{3}}\right] .
$$

The first term of the right-hand member of equation (3.2) is unity by (2.7) as is the second factor of the second term. The first factor of the second term by (2.10) is $1 / N$. Therefore by the third moment

$$
\begin{equation*}
\frac{1}{N^{2}}=\frac{n_{3}^{2} \alpha_{2}^{3} \sigma_{2}^{6}+n_{2}^{2} \alpha_{3}^{3} \sigma_{3}^{6}}{n_{2}^{2} n_{3}^{2} \sigma_{4}^{6}} \tag{3.3}
\end{equation*}
$$

But by using the value of N as determined by the second moment
(3.4) $\frac{I_{2}}{N^{2}}=\frac{n_{3}^{2} \alpha_{2}^{4} \sigma_{2}^{8}+2 n_{2} n_{3} \alpha_{2}^{2} \alpha_{3}^{2} \sigma_{2}^{4} \sigma_{3}^{4}+n_{2}^{2} \alpha_{3}^{4} \sigma_{3}^{8}}{n_{2}^{2} n_{3}^{2} \sigma_{4}^{8}}$.

Using the common denominator $n_{2}^{2} n_{3}^{2} \sigma_{4}^{8}$ and subtracting (3.4) from
(3.3) the difference in the third moments is (working with the numerator only) equal to

$$
\begin{aligned}
& 8\left(n_{3}^{2} \alpha_{2}^{3} \sigma_{2}^{6} \sigma_{4}^{2}+n_{2}^{2} \alpha_{3}^{3} \sigma_{3}^{6} \sigma_{4}^{2}-n_{3}^{2} \alpha_{2}^{4} \sigma_{2}^{8}-2 n_{2} n_{3} \alpha_{2}^{2} \alpha_{3}^{2} \sigma_{2}^{4} \sigma_{3}^{4}-n_{2}^{2} \alpha_{3}^{4} \sigma_{3}^{8}\right) \\
= & -8\left[n_{3}^{2} \alpha_{2}^{3} \sigma_{2}^{6}\left(\alpha_{2} \sigma_{2}^{2}-\sigma_{4}^{2}\right)+2 n_{2} n_{3} \alpha_{2}^{2} \alpha_{3}^{2} \sigma_{2}^{4} \sigma_{3}^{4}+n_{2}^{2} \alpha_{3}^{3} \sigma_{3}^{6}\left(\alpha_{3} \sigma_{3}^{2}-\sigma_{4}^{2}\right)\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
\alpha_{2} \sigma_{2}^{2}-\sigma_{4}^{2} & =\frac{s-1}{s}\left(\sigma_{c}^{2}+t \sigma_{b}^{2}\right)-t\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)-\sigma_{c}^{2} \\
& =\frac{-\left(\sigma_{c}^{2}+t \sigma_{b}^{2}+s t \sigma_{a}^{2}\right)}{s} \\
& =-\alpha_{3} \sigma_{3}^{2}
\end{aligned}
$$

Similarly $\quad \alpha_{3} \sigma_{3}^{2}-\sigma_{4}^{2}=-\alpha_{2} \sigma_{2}^{2}$.

Hence the numerator of the difference equals

$$
\left.\begin{array}{rl}
& 8\left[n_{3}^{2} \alpha_{2}^{3} \alpha_{2} \sigma_{2}^{6} \sigma_{3}^{2}-2 n_{2} n_{3} \alpha_{2}^{2} \alpha_{3}^{2} \sigma_{2}^{4} \sigma_{3}^{4}+n_{2}^{2} \alpha_{2} \alpha_{3}^{3} \sigma_{2}^{2} \sigma_{3}^{6}\right.
\end{array}\right]
$$

Therefore
(3.5) $\quad d=\frac{8 \alpha_{2} \alpha_{3} \sigma_{2}^{2} \sigma_{3}^{2}\left(n_{3} \alpha_{2} \sigma_{2}^{2}-n_{2} \alpha_{3} \sigma_{3}^{2}\right)^{2}}{n_{2}^{2} n_{3}^{2} \sigma_{4}^{8}}$

Substituting for the constants in (3.5), using (2.11), and simplifying we get

$$
\begin{equation*}
d=\frac{8(s-1)(1+s t K)(1+r s t K)^{2}}{r^{2}(r-1)^{2} s^{4}(1+t K)^{4}} \tag{3.6}
\end{equation*}
$$

In heritability studies we have seen that $t K$ can vary between zero and $t /(t+2)$. By using this fact we can find the maximum and minimum difference between the third moments. When $t K=0$ the difference is a minimum and is equal to
(3.7) $\frac{8(s-1)}{s^{4} r^{2}(r-1)^{2}}$
and the difference is less than $8 / s^{3}(r-1)^{4}$ for all r and s greater than one. When $t K=t /(t+2)$ we have the greatest difference between the two moments. This difference is equal to
(3.8) $\frac{(s-1)(t+2)(s t+t+2)(r s t+t+2)^{2}}{2 r^{2}(r-1)^{2} s^{4}(t+1)^{4}}$
and the difference is less than $2 /(r-1)^{2}$ for all r and s greater than one.

It can be shown that (3.6) is a monotonic increasing function of K for $0 \leqslant K \leqslant I /(t+2)$, hence

$$
\begin{equation*}
\frac{8(s-1)}{s^{4} r^{2}(r-1)^{2}} \leq d \leq \frac{(s-1)(t+2)(s t+t+2)(r s t+t+2)^{2}}{2 r^{2}(r-1)^{2} s^{4}(t+1)^{4}} \tag{3.9}
\end{equation*}
$$

There is exact agreement between the two moments of (2.5) and (2.6) when the difference is equal to zero. Setting (3.6) equal to zero we find that

$$
8(s-1)(1+s t K)(1+r s t K)^{2}=0
$$

which implies that $(1+s t K)=0$ and/or $(1+r s t K)=0$ since s must be greater than one. This in turn implies that K must be negative. But K was defined as the ratio of positive quantities which seems to indicate that the best possible agreement that one could hope to attain between the third moments is when K is as small as possible.

We now need to determine two points, a and b, such that
(4.1) $\quad P\left(a \leq h^{2} \pm b\right)=1-2 \alpha$
where h^{2} is defined by (1.2) and $I-2 \alpha$ is the probability that the interval covers the population value of h^{2}. The value 2α is some positive quantity less than one.

We have shown that (2.1) is approximately distributed as chi-square with N degrees of freedom. We know that $\operatorname{rs}(t-1) A_{1} / \sigma_{c}^{2}$ is distributed as chi-square with $r s(t-1)$ degrees of freedom. These two quantities are independent since they are functions of independent quantities. The ratio of two independent chi-squares divided by their degrees of freedom is distributed as F. Henae the ratio

$$
\frac{Y}{\mathrm{~F}} / \frac{r s(t-1) A_{1}}{n_{1} \sigma_{c}^{2}}=F_{0}
$$

is approximately distributed as F with N and n_{1} degrees of freedom, where $n_{1}=\operatorname{rs}(t-1)$. We will assume that this ratio is distributed as F in order to determine the confidence limits. The ratio then simplifies to

$$
\begin{align*}
F_{0} & =\frac{\sigma_{e}^{2}\left(\alpha_{2} A_{2}+\alpha_{3} A_{3}\right)}{A_{1}\left(t \sigma_{a}^{2}+t \sigma_{b}^{2}+\sigma_{c}^{2}\right)} \\
& =\frac{\omega \sigma_{c}^{2}}{t\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}} \quad \text { where } \quad c=\frac{(s-1) A_{2}+A_{3}}{s A_{1}} . \tag{4.2}
\end{align*}
$$

Let F_{1} and F_{2} be values of F such that $P\left(F_{1} \leq F \leq F_{2}\right)=1-2 \alpha$ where $\int_{0}^{F_{1}} F d F=\alpha$ and $\int_{F_{2}}^{\infty} F d F=\alpha$. If we denote $F_{n_{1}, N}$ by F^{-1}, then the points F_{1} and F_{2} can be determined by $\int_{0}^{f^{f}} F^{-1} d F^{-1}=1-a$ and $\int_{0}^{F_{2}} F d F=1-\alpha$, where $f=1 / F_{1}$, and read from Snedecor's F tables.

Then to determine the points a and b we know that

$$
\begin{align*}
P\left(F_{1} \leq F_{0} \leq F_{2}\right) & =P\left[F_{1} \leq \frac{C \sigma_{c}^{2}}{t\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}} \leq F_{2}\right] \\
& =P\left[\frac{G}{F_{2}} \leq \frac{t\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{e}^{2}}{\sigma_{c}^{2}} \leq \frac{c}{F_{1}}\right] \\
& =P\left[\frac{C-F_{2}}{t F_{2}} \leq \frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{\sigma_{c}^{2}} \leq \frac{c-F_{1}}{t F_{1}}\right] \\
& =P\left[\frac{t F_{1}}{C-F_{1}}+1 \leq \frac{\sigma_{a}^{2}+\sigma_{b}^{2}+\sigma_{c}^{2}}{\sigma_{a}^{2}+\sigma_{b}^{2}} \leq \frac{t F_{2}}{0-F_{2}}+1\right] \\
& =P\left[\frac{2\left(C-F_{2}\right)}{C+(t-1) F_{2}} \leq \frac{2\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)}{\sigma_{a}^{2}+\sigma_{b}^{2}+\sigma_{c}^{2}} \leq \frac{2\left(C-F_{1}\right)}{0+(t-1) F_{1}}\right] \tag{4.3}
\end{align*}
$$

A more practical case for us to consider in a breeding program is the case of unequal subclass numbers. While we may be able to mate each sire to the same number of dams, it may be impossible for us to obtain an equal number of offspring from each dam. We will now set confidence limits on the heritability ratio as defined by (1.2) for the case of unequal subclass numbers.

Our model is
(5.1) $\quad Y_{i j k}=\mu+a_{i}+b_{i j}+c_{i j k}$
where $i=1,2, \ldots, r, j=1,2, \ldots, s_{i}, k=1,2, \ldots, t_{i j}$, and $\sum_{i, j} t_{i j}=n$. The assumptions made for the case of equal subclasses still hold. The analysis of variance is shown in table 5.1.

TABLE 5.1

Analysis of Variance of the Three-fold Classification, Unequal Subclass Numbers

Source of Variation	Degrees of Freedom	Mean	Expected Mean Square

A effect $\quad n_{3}=r-1 \quad A_{3} \quad \sigma_{3}^{2}=\sigma_{c}^{2}+k_{1} \sigma_{b}^{2}+k_{2} \sigma_{a}^{2}$
B in $A \quad n_{2}=\sum_{i} s_{i}-r \quad A_{2} \quad \sigma_{2}^{2}=\sigma_{c}^{2}+k_{0} \sigma_{b}^{2}$
C in B in $A \quad n_{1}=n-\sum_{i} s_{i} \quad A_{1} \quad \sigma_{1}^{2}=\sigma_{c}^{2}$

Ganguli (4) presents the formulas for the expected values of the mean squares when there are unequal numbers in the various subclasses. They are as follows:
$k_{1}=\sum_{i} \sum_{j} \frac{t_{i j}^{2}\left[\left(1 / t_{i}\right)-(1 / t)\right]}{n_{3}}, \quad k_{2}=\sum_{i} \frac{t_{i}^{2}\left[\left(1 / t_{i}\right)-(1 / t)\right]}{n_{3}}$,
and $k_{0}=\sum_{i} \sum_{j} \frac{t_{i, j}^{2}\left[\left(1 / t_{i, j}\right)-\left(1 / t_{i}\right)\right]}{n_{2}}$ where $t_{i j}$ is the number of
offspring of sire i and dam j, t_{i} is the total number of offspring of sire i, and t is the total number of offspring.

Let
(5.2) $Y=N\left[\frac{\alpha_{2} A_{2}+\alpha_{3} A_{3}}{\sigma_{4}^{2}}\right]$
where $\sigma_{4}^{2}=\boldsymbol{\gamma}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}$ as was done for equal subclasses. As the fact that there are unequal class numbers does not effect the distribution of the sum of squares or the fact that they are independent, then the moment generating function of (5.2) is the same as for equal subclasses. Hence the moment generating function of (5.2) is given by (2.5).

As before we desire to see if the constants $\gamma, \alpha_{2}, \alpha_{3}$, and a value for N can be determined such that the first and second moments of (5.2) are equal to the first and second moments of a chi-square with N degrees of freedom.

Equating the first moments of (2.5) and (2.6) we get

$$
N=n_{2} B_{2}+n_{3} B_{3}
$$

and substituting for the $B^{\prime} s$, where $B_{i}=N \sigma_{i}^{2} \alpha_{i} / n_{i} \sigma_{4}^{2}$, we find that (2.7) still holds, i.e.,

$$
\frac{\alpha_{2} \sigma_{2}^{2}+\alpha_{3} \sigma_{3}^{2}}{\sigma_{4}^{2}}=1
$$

or

$$
\begin{aligned}
\gamma\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2} & =a_{2}\left(\sigma_{c}^{2}+k_{0} \sigma_{b}^{2}\right)+a_{3}\left(\sigma_{c}^{2}+k_{1} \sigma_{b}^{2}+k_{2} \sigma_{a}^{2}\right) \\
& =a_{3} k_{2} \sigma_{a}^{2}+\left(a_{2} k_{0}+a_{3} k_{1}\right) \sigma_{b}^{2}+\left(\alpha_{2}+a_{3}\right) \sigma_{c}^{2}
\end{aligned}
$$

The constants are then defined by the following conditions which must hold if (2.7) is true. The conditions are:

$$
\begin{aligned}
& \text { 1. } \gamma=\alpha_{3} k_{2}=\left(\alpha_{2} k_{0}+\alpha_{3} k_{1}\right) \\
& \text { 2. } 1=\alpha_{2}+\alpha_{3}
\end{aligned}
$$

Solving the pair of equations

$$
\begin{aligned}
k_{2} \alpha_{3} & =k_{0} \alpha_{2}+k_{1} \alpha_{3} \\
1 & =\alpha_{2}+\alpha_{3}
\end{aligned}
$$

for α_{2} and α_{3} we find

$$
\alpha_{2}=\frac{k_{2}-k_{1}}{k_{0}-k_{1}+k_{2}},
$$

(5.3) $\quad a_{3}=\frac{k_{0}}{k_{0}-k_{1}+k_{2}}$
and

$$
r=\frac{k_{0} k_{2}}{k_{0}-k_{1}+k_{2}}
$$

Now by equating the second moments we can determine the value for N that will make the first two moments of (5.2) equal to those of chisquare with \mathbb{N} degrees of freedom. Equating second moments we get

$$
I+\frac{2}{N}=\frac{\left(n_{2}+2\right) \alpha_{2}^{2} \sigma_{2}^{4}}{n_{2} \sigma_{4}^{4}}+\frac{2 \alpha_{2} \alpha_{3} \sigma_{2}^{2} \sigma_{3}^{2}}{\sigma_{4}^{4}}+\frac{\left(n_{3}+2\right) \alpha_{3} \sigma_{3}^{4}}{n_{3} \sigma_{4}^{4}}
$$

after substituting for the B^{\prime} s. Simplifing we find that
(5.4) $\quad M=\frac{n_{2} n_{3} \sigma_{4}^{4}}{n_{3} \alpha_{2}^{2} \sigma_{2}^{4}+n_{2} \alpha_{3}^{2} \sigma_{3}^{4}}$.

Substituting for the constants in (5.4) we get
(5.5)

$$
N=\frac{(r-1)\left(\Sigma s_{i}-r\right)\left[\frac{k_{0} k_{2}}{k_{0}-k_{1}+k_{2}}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+\sigma_{c}^{2}\right]^{2}}{\frac{(r-1)\left(k_{2}-k_{1}\right)^{2}}{\left(k_{0}-k_{1}+k_{2}\right)^{2}}\left(\sigma_{0}^{2}+k_{0} \sigma_{b}^{2}\right)^{2}+\frac{\left(\Sigma s_{i}-r\right) k_{0}^{2}}{\left(k_{0}-k_{1}+k_{2}\right)^{2}}\left(\sigma_{c}^{2}+k_{1} \sigma_{b}^{2}+k_{2} \sigma_{a}^{2}\right)^{2}}
$$

If we let $K=\sigma_{a}^{2} /\left(T \sigma_{b}^{2}+\sigma_{c}^{2}\right)$ where $T=k_{0} k_{2} /\left(k_{0}-k_{1}+k_{2}\right)$ and if we again assume that we have random matings such that $\sigma_{a}^{2}=\sigma_{b}^{2}$, then the following relations can be derived:

$$
\begin{aligned}
& \text { 1. } \frac{\sigma_{a}^{2}}{\frac{\sigma_{4}^{2}}{2}}=\frac{\sigma_{b}^{2}}{\sigma_{4}^{2}}=\frac{K}{1+T K} \\
& \text { 2. } \frac{\sigma_{c}^{2}}{\sigma_{4}^{2}}=\frac{1-T K}{1+T K}
\end{aligned}
$$

$$
\begin{align*}
\text { 3. } \begin{aligned}
\frac{\sigma_{2}^{2}}{\sigma_{4}^{2}} & =\frac{1+\left(k_{0}-T\right) K}{1+T K}, \\
\text { 4. } \frac{\sigma_{3}^{2}}{\sigma_{4}^{2}} & =\frac{1+\left(k_{1}+k_{2}-T\right) K}{1+T K}
\end{aligned}, \text { and }, \tag{5.6}
\end{align*}
$$

Letting $k=\left(k_{0}-k_{1}+k_{2}\right)$ and using the relations (5.6) N becomes equal to

$$
\begin{equation*}
\frac{(r-1)\left(\Sigma s_{i}-r\right) k^{2}(1+T K)^{2}}{(r-1)\left(k_{2}-k_{1}\right)^{2}\left[1+\left(k_{0}-T\right) K\right]^{2}+\left(\Sigma s_{i}-r\right) k_{0}^{2}\left[1+\left(k_{1}+k_{2}-T\right) K\right]^{2}} \tag{5.7}
\end{equation*}
$$

Since we are assuming that the contribution of the sire and the dam to their offspring is equal, it can be shown that K is bounded by zero and $I /(T+2)$ by an argument similar to that used in Chapter II. By using this inequality we can determine the minimum and maximum values of N when N is defined by (5.7). When $k=0$ (5.7) obtains its maximum value and the minimum value of N is determined when $K=1 /(T+2)$. When $K=0$ (5.7) becomes
(5.8) $\frac{(r-1)\left(\Sigma s_{i}-r\right) k^{2}}{(r-1)\left(k_{2}-k_{1}\right)^{2}+\left(\Sigma s_{i}-r\right) k_{0}^{2}}$
and when $K=1 /(T+2)$ (5.7) becomes

$$
\begin{equation*}
\frac{4(r-1)\left(\Sigma s_{i}-r\right) k^{2}(1+T)^{2}}{(r-1)\left(k_{2}-k_{1}\right)^{2}\left(k_{0}+2\right)^{2}+\left(\Sigma s_{i}-r\right) k_{0}^{2}\left(k_{1}+k_{2}+2\right)^{2}} \tag{5.9}
\end{equation*}
$$

We now need to determine the points a and b such that $P\left(a \leq h^{2} \leq b\right)=1-2 \alpha$ where h^{2} is defined by (1.2), $1-2 \alpha$ is the probability that the interval covers the population value of h^{2}, and 2α is some positive quantity less than one.

The ratio

$$
\frac{Y}{N} / \frac{\left(n-\Sigma \rho_{i}\right) A_{1}}{n_{1} \sigma_{c}^{2}}=F^{*}
$$

is approximately distributed as F with N and $n-\Sigma_{i}$ degrees of freedom. We will assume that this ratio is distributed as F in order to determine the confidence limits. The ratio simplifies to

$$
F^{*}=\frac{\sigma_{c}^{2}\left(\alpha_{2} A_{2}+\alpha_{3} A_{3}\right) k}{A_{1}\left[k_{0} k_{2}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+k \sigma_{c}^{2}\right]}
$$

Let $C=\frac{\left(k_{2}-k_{1}\right) A_{2}+k_{0} A_{3}}{A_{1}}$ and $k^{*}=k_{0} k_{2}$, then F^{*} simplifies to

$$
\frac{\sigma \sigma_{c}^{2}}{k^{k}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+k \sigma_{c}^{2}}
$$

Let F_{1} and F_{2} be values of F such that $P\left(F_{1} \leq F \leq F_{2}\right)$ equals 1-2 α where $\int_{0}^{F_{1}} F d F=\alpha$ and $\int_{F_{2}}^{\infty} F d F=\alpha$. Then to determine the points a and b we know that

$$
\begin{aligned}
P\left(F_{1} \leq F^{*} \leq F_{2}\right) & =P\left[F_{1} \leq \frac{C \sigma_{c}^{2}}{k^{*}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+k \sigma_{c}^{2}} \leq F_{2}\right] \\
& =P\left[\frac{C}{k F_{2}} \leq \frac{k^{*}\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+k \sigma_{c}^{2}}{k \sigma_{c}^{2}} \leq \frac{c}{k F_{1}}\right] \\
& =P\left[\frac{k_{1}^{*}-k F_{2}}{k_{2}} \leq \frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{\sigma_{c}^{2}} \leq \frac{c-k F_{1}}{k^{*} F_{1}}\right] \\
& =P\left[\frac{k^{*} F_{1}}{C-k F_{1}}+1 \leq \frac{\sigma_{a}^{2}+\sigma_{b}^{2}+\sigma_{c}^{2}}{\sigma_{a}^{2}+\sigma_{b}^{2}} \leq \frac{k^{*} F_{2}}{0-k F_{2}}+1\right] \\
& =P\left[\frac{2\left(C-k F_{2}\right)}{C+\left(k^{*}-k\right) F_{2}} \leq \frac{2\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)}{\sigma_{a}^{2}+\sigma_{b}^{2}+\sigma_{c}^{2}} \leq \frac{2\left(C-k F_{1}\right)}{C+\left(k{ }^{*}-k\right) F_{I}}\right]
\end{aligned}
$$

Hence the points a and b are determined and (5.10) is an (1-2a)\% confidence interval on h^{2}.

A population of 100,000 items from a normal population with mean zero and variance one was used to construct a genetic model similar to the three-fold classification of sire, dam, and offspring that is found in a breeding population. From this population was constructed eight different combinations of sample sizes. The eight cases are listed in table 6.1.

TABIE 6.1
Combinations of Samples Drawn for the Empirical Study

Case	Number	Number of	Number of
Number	of Sires	Dams per Sire	Offspring per Dam

1	2	2	2
2	3	2	2
3	5	2	2
4	10	2	2
5	2	4	2
6	3	4	2
7	5	4	2
8	10	4	2

For each of the combinations a sample of size 500 was drawn from the known population and h^{2} calculated by the analysis of variance technique. Thus for each sample size combination there were calculated $500 \mathrm{~h}^{2}$ s by the use of (1.2). The estimates for the variance components were found from the analysis of variance. Then 95% confidence limits were set on each of the h^{2} s by the method presented in this thesis. To give an empirical check of the results of this method the number of intervals that contained the population value for h^{2} were counted. Since it was found that N varied according to the value of $\mathrm{K}, 95 \%$ confidence limits were calculated using the minimum, maximum,
and average value of N.
The population value of h^{2} in this empirical study was $4 / 3$. The data for this study was available from another study and this is the reason that h^{2} was greater than one. It was easier to calculate the quantities needed using this data than to construct another population where h^{2} was less than one.

To faciliate the calculation of the variance components the actual calculations were done by I.B.M. machines. The items were taken from a set of random normal deviates published by the Rand Corporation. The values of h^{2} were also calculated by I.B.M. equipment.

As the confidence limits were calculated by the use of hand calculators, a method was devised to speed up the determination of the interval. A quantity

$$
H_{o}=\frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{\sigma_{c}^{2}}
$$

was calculated and confidence limits were set on H_{0} such that the interval on h^{2} would not exceed the 95% confidence region. This is easily seen by examing the confidence interval (4.3) and expressing it in terms of the variance components. Making the necessary substitutions into (4.3) we find that
(6.1) $P\left[\frac{2\left(t H_{0}+1-F_{2}\right)}{t H_{0}+1+(t-1) F_{2}} \leq h^{2} \leq \frac{2\left(t H_{0}+1-F_{1}\right)}{t H_{0}+1+(t-1) F_{1}}\right]=1-2 \alpha$.

Since every quantity is constant for a fixed sample size and for a fixed confidence level, and since the population value of h^{2} is known, then the inequalities of (6.1) can be solved to determine the maximum and minimum values of H_{o} that will give a 95% confidence
interval on h^{2}. The results of this empirical study are listed in table 6.2.for maximum, minimum, and average \mathbb{N}.

TABLE 6.2

Percentage of Confidence Limits Containing the Population
Heritability Ratio 4/3 for Maximum, Minimum, and Average Values of N

Case Percentage of Confidence Limits Containing
Number
Maximum NV Minimum N Average N

1
2
3
4
5
6
7
8
94.8
91.6
96.2
95.8
91.6
91.0
89.6
92.6

Minimum N
97.6
93.6
96.8
96.6
96.8
95.6
93.0
94.6
97.6
93.6
96.8
96.4
93.8
93.0
90.4
94.2

This thesis proposes a method of setting confidence limits on estimates of heritability determined by the analysis of variance technique. The maximum and minimum values of N along with the formulas for determining N are presented. This value was determined so that the linear combination of the mean squares (2.1) is best approximated by a chi-square variate with N degrees of freedom. In this thesis it was assumed that the contribution of the sire and the dam to the genetic make-up of their offspring is equal in random matings.

Since the value of N that is used to set confidence limits is a function of K, one might well estimate K from the analysis of variance to decide which value of N should be used. If the estimate, $\hat{\mathrm{K}}$, lies between 0 and $1 /(t+2)$, then the value of N can be determined from (2.12). The use of an average value of N will also give good results in this case. If \hat{K} falls outside the possible range for K then the nearest possible value for K should be used.

In the case of unequal subclasses a similar procedure may be used with N being determined by (3.7). Instead of calculating the coefficients k_{0}, k_{1}, and k_{2} they may be estimated by averages. In this case k_{0} and k_{1} are estimated by the average number of offspring for each sire and dam and k_{2} is estimated by the average number of offspring for each sire. This should give fairly good results if the subclass numbers are not too divergent.

Once N is determined the values of F can be found from Snedecot's F tables and confidence limits set on h^{2}.

BIBLIOGRAPHY

(1) Kempthorne, 0., and 0. B. Tandon. "The Estimation of Heritability by Regression of Offspring on Parent". Biometrics, 9 (March, 1953.), 90-98.
(2) Osborne, R., and W. S. B. Paterson. "On the Sampling Variance of Heritability Estimates Derived fron Variance Analysis." Proceedings of the Royal Society of Edinburgh, B, LXIV (1952), 456-461.
(3) Satterthwaite, F。E.: "An Approximate Distribution of Estimates of Variance Components". Biomotries Bulletin, 2 (December, 1946), 110-114.
(4) Ganguli, M. "A Note on Nested Sampling." SankhyE, 5 (1941), 449-452.

VITA

Frank Garland Martin, Jr. candidate for the degree of Master of Science

Thesis: A NETHOD OF SETTING CONFIDENCE LIMITS ON THE HERITABILITY RATIO

Major: Mathematics
Minor: Statistics
Biographical:
Born: October 9, 1932 at New Orleans, Louisiana
Undergraduate Study: Oklahoma Agricultrual and Mechanical College, 1950-54

Graduate Study: Virginia Polytechnic Institute, 1954; Oklahoma Agricultrual and Mechanical College, 1954-55

Experiences: Night watchman, 1952-54; Computer in the Statistical Laboratory, 1954; Graduate teaching assistant in the Mathematics Department, 1954-55

Member of Phi Eta Sigma, Pi Mu Epsilion, Phi Kappa Phi, Omieron Delta Kappa, The American Statistical Association, and Associate Member of The Society of Sigma Xi.

Date of Final Examination: August, 1955

THESIS TITLE: A METHOD OF SETTING CONFIDENGE LIMITS ON THE HERITABILITY RATIO

AUTHOR: Frank Garland Martin, Jr.

THESIS ADVISER: Dr. Franklin A. Graybill

The content and form have been checked and approved by the author and thesis adviser. The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

TYPIST: Frank G. Martin, Jr.

