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PREFACE

Heritability of a trait is one of the important statistics that
must be known if the rate of progress of a breeding program is to be
ecorrectly evaluated, There are two methods used to g¢alculate estimates
of heritability, the regression technigue and the analysis of &arianqe
technique. Kempthorne (1) has shown that satisfactory confidence
limite can be set on estimates caleculated by the regression technique,
Little work has been done on the setting of econfidence limits when
estimated by the analysis of variance technique, Osborne (2) has found
en approximation of the standard error of the heritabllity ratio based
on the assumption of normality. The purpose of this thesis is to
determine a method of setting confidence limits on estimgtes found by
the analysis of variance technigue, Both the case of equal and unequal
gsubelass numbers are considered,

Indebtedness is acknowledged to Dr, Pranklin Graybill for sug-
gesting this problem to me and for his helpful eritiecism given me in
the preparation of this thesis, I should also like to acknowledge my
indebtedness to Mrs, Edwin Titt for her work in calculating the data

used in the empirical study,
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INTRODUCTION

Phenotypic differences between individuals in most traits are partly
due to differences in heredity and partly due to the differences of the
individual's environment. Each developed trait is the result of the
action of genes, the action of the environment, and the interaction of
the genes and the environment, Heritability is a quantitative descrip-
tion of the amount of hereditary variation in a trait,

It is important for the livestock breeder to know which traits have
some degree of heritability if he wants to make any permanent improve-
ment in his livestock. The only permanent changes in livestock quality
are genetic changes brought about by a breeding program that will bring
together favorable gene combinations, If the heritability of the trait
is high, improvement will quickly follow a good breeding program, If
on the other hand the heritability is low, then improvement is long in
coming despite the quality of the breeding program,

It is for these reasons that it is desirable to set confidence
limits on the heritability ratio, thus giving the livestock breeder an
indication of what kind of program he should undertake to bring about
improvement in his herd.

Congider the three~fold classification whose model is

=W +g, +Db + o

(1.1) 1 ¥ Pyt o

T3k
where i= 1’ 2, seey r; j - l’ 2, seey 8; a-nd k = l’ 2, seey t. It

is assumed that the a, are distributed normally with mean zero and

i

variance ci. Simiarly the bij and the °) ik are distributed normal-

ly with zero means and variances c% and aﬁ respectively., It is



further assumed that all the terms are uncorrelated., The analysis of

variance is found in table 1.1,

TABLE 1.1

Analysis of Variance of the Three-~fold Classification

Source of Degrees of Mean Expected Mean Square
Variation Freedom Square
& R 2 2
A effect ny = r-1 AB gg * 9, + tcb + atoﬁ
2 2 2
Bin A n, = r(s-1) A, oy = 0, * toy
Cin B in A = rg(t-l) o gl
b | Al 1 ¢

The purpose of this thesis will be to set confidence limits on the

ratio
JZ(c:'2 + 02)
0T PR e
2 2 2 i
o +ra +*qg
a b e

This is the heritability ratio used in genetic studies to measure the

genetic contribution of the sire and the dam to their offspring, where

oﬁ is the contribution due to the sire, cﬁ is the contribution due to

the dam, and ci is the contribution due to the offspring or the en-
vironmental effect,

It is known that the sums of squares in the analysis of variance
when divided by its expected mean square is distributed as chi-square,
While it is known that the linear sum of independent chi-squares is
distributed as a chi-square if and only if the coefficients are unity,
it seems safe to assume that a linear combination of independent chi-
square variates is well approximated by some chi-square curve,

The method presented in this thesis is somewhat patterned after



the method of attack used by Satterthwaite (3) to set confidence limits
on variance components. The method purposed in this thesis consists of

equating the moments of a linear funetion

(o7

K. +o.d
(1.3) Y =N _252__§~2_2 where ci = 7(o§ + c%) + oi
o
/;

which is independent of Al to the moments of a chi-sguare with N

degrees of freedom, Egqual goeffieclents must be chosen for cz and oi

in order to derive B* from {(1.3)s The value of N is then determined

in order to find the "best" agreement among the moments, If this linear

combination is closely approximated by chi-square, then the ratio

will be approximately distributed as Snedecor'!s F and it will be

possible to determine confidence limits on hz.



DETERMINATION OF THE DEGREES OF FREEDOM

We now find the moment generating function of

by * aghy
(2.1) Y =Nt 5 :
%4
and determine N such ‘that the first and second moments of (2,1) are
equal to the first and second moments of a chiwsguare with N degrees

of freedom vwhere oi = 7(02 + 0%) + sﬁ. Equal coefficients are chosen

for oi and Gﬁ so that it is possible to set confidenee limits on
(1.2).

Since 4, and AB are independent, the moment generating funcition
of the sum is equal to the product of the moment generating functions,

Henece

2.2) W) - [Mez(t)wea(w]
here 6, = aA/e%, 1=2,3. Iti that @, = n,4./65 1
where 8, = a, i//gi’ i=2, 3. s known tha g = nydy/op 1s

distributed as chi-square with n, degrees of freedom and its moment

i
- b/
generating function is (1 - Zt)'ni/z. Since Ai = oiei/ﬁi, it

follows that

n,/2
2c§t i
M, (t) = |1 -

and finglly we obtain

, a=n./2
‘ 2a10§Nt *
(2.3) Mei(t) = |1 - —=5 .




= .05 R then \
Let B; = aiciN n,0,, then (2.2) becomes

2 -n, /2

_ _ "nz/ %
(2.4) My(t) = (1 - szt) (1 - 253t) .

Expanding (2.4) we obtain
_ ? 2
(25) M (6) =1+ (nB, * nsB)e + [my(n, 2085 + 20,88,
+ nB(n3+2)B§:,'b2/2!
+ ln(n,#2)(n+4)B° + 3n,(n,+2)n BB, + 3n,n (n,*2)B B
Po\fp 2 #/P R \HpT< /gBats 2°3V3 /52 3
+ 1. (n*+2) (n,#4)B2| £7/31
e Math b Ma s :
| k-1 Bl Lo il Keiml .
* et 20 TT B (m#25) + 250 () T By(ng*23) ][ Bylng*2m) |4/
p=2 j=0 P F isl ~ j=0 © =0 -

t aee

The moment generating funetion of & chi-square variate with N degrees

of freedom is (1 - Zt)'N/Q. Expanding into an infinite series we get

(2.6) M >8(t) =1+ Wb+ N(WR)E5/20 + N(H2) (4465 /314
k-1 K
+ sen + -I_r_ (N+2i)t /k! + »..0
i=0
If these two moment generating functions are to be equivalent they must
have the same set of moments, i.e,, equatien (2,5) mist be identically
equal to (2,6) fer all k.

Equating the firgt moments of (2.5) and (2,6) we find that
N= nsz +'n3B3,

Substituting for the B's in the above relation we find that



(2.7) ....2_2.____3__2 = 1

It is now possible to determine the values of Woy  Cgy and 7. It

follows from (2,7) and table 1,1 that

2 2 2 _ 2 2 2. .2 2
7(ca + cb) * o= 2(o‘c + tcb) + 0'3(0'c * top + stca)

and that the folleowing relations must hold if (2.7) is to be true:

gto

=

»

~<
i

3’

N

-

~
I

= (a,z + G,B)t’
30 1= a’z + a’so
The values which satisfy these conditions are 7 =%, &, = (s=1)/s,

and o

3
By equating the second moments of (2,5) and (R.6) it is possible

= 1/8.

to determine the value of N. ZEgquating the second moments we obtain

, 2 _ 2 . 2
(R.8) N® + 2N = n2(n2+2)B2 + 2“2“53233 + n3(n3+2)B .

Substituting for the B's and dividing by Nz, we get

2 /4 R 2 R 4
L s 2. (n2+2)a292 . 2a2a30203 . (n3+2)a393
N n c'ZF 04 n 04
274 4 374
2 4 22 24 2 4 2 4
) %0y + 2q2a32203 + agcé . 2a202 . ZGBOB
‘ 4 A
% ny0y ngo)
212 2 4 2 4
(2.9) ) a0 +2a303 . 2(n3a202 + nzugos)
[ ] ‘ 4 *
% BoP3%,

But the first term of the right~hand side of (2,9) is wnity by (2.7),



hence
n,n 04
)
njmzoz + néxBGB

If we let K = oi/(tc% + oi), then

R 2 2 -

s

oy ) GC + tcb 3 ; .
o | toz + tcz + o° | 1+ K =
4 a b c L

(2.,11)

4 2 2 2R = 2

63 ) Gc + tcb + stca ) ; + gtk

04 t02 + t62f+ c'2 1+ tK

L a b ¢ L

It is then easily verified that (2.10) simplifies into

| 2
nong (1 + tK)

N = \
2 2 2 °
n3@2_+ nzds(l + gtK)

Finally substltuting for n,, Bgy Goy and @y the formula fer N

becomes

rsz(r—llgl + tK)?,

(2.12) N = S e
(r-1)(s=1) + r(1 + stk)

R

In this thesis we will assume that cé = oi. It seems feasible

to assume that in random matings the contribution of the sire and the
dem to the genetic make-up of their offspring is equal since each will
contribute one~half of the offspring's genes. It is algo known that

b* as defined by (1.2) is bounded by zere and one, If we let w equal

N

ci/%i, then h~ = 4/(w+2). Then 0 % %/Kw+2)n 0.25 and it follows

1 o !
that (t +2) £ (t +w) & o0, Also O & g & TH3 e But K=o,



therefore

(2.13) 0 & 4K &

By using the inequality (2.13) we can determine the minimum and
maximum values of N as defined by (2,12) such that the first two
moments of (2,5) and (2,6) are identically equal,

When tK =0 (R,12) obtains its maximum value since the denom-
inator obtains its minimum value, In this case (2,12) equals

2
(2.4) el
When we substitute tK = t/(t+2) into (2,12) we find the minimum

value that N can take, Substituting into (R.12) we get

s rgz(rh;)(2t+t)2
(r=1)(s=1) (£+2)% + r(st+t+2)?

> s (r-1) (£+1)%
(ra-s+l)(t+2)2 + pot(st+t+s)

Arso(p=1)(£+1)°
4rs(t+1)2 + rstz(s-l) - (s-l)(t+2)2

=

Lrs?(r-1) (441)2
ArS(t+l)2 + (s-l)Erstz - (t+2)21

(2.15) =

We now must show that N is a monotonic decreasing function of
K for the values 0 % K ¢ 1/(t+2), Taking the partial derivative of

N with respect to K we get

AN _ 2rs*t (1+4K) [(r-1)(5-1) + r(1+stk)?] - 2rza3t(r-1)§1+tx)2(1+stxl
= [(r=1)(s-1) + r(1+stk)?]?

If I 1is a monotonic decreasing function of K, then the partial



derivative must be non-positive, Hence

o

= Iz
th
Q

for 0 £XK & —=—

Setting 8N/8K € 0 and simplifying we get

l -s + rstk - rsgtK £ 0,

Since s 1 and rsth > pgtKk the partial derivative is always none
positive and N 1is a monotonic decreasing funetion of K for all

values of K = 0, Therefore

(2.16) 4r§2(r-;t.) (£+1)? cy £ _rszgr..l) .
srs(6+1)® + (s-1)[rst® = (142)7] w5 o8 L



FURTHER JUSTIFICATION OF THE USE OF CHI-SQUARE

In order for the ratio

gl
2

to be distributed as F +the following conditions must hold:

1. Y/N %be distributed as Xﬁ})//N y

2 A%// be distributed as 7( //' , and
(nl) 1

3, Y/N and Al// must be independent.

Conditions (2) and (3) are irmediately satisfied. We now need to find
how closely the moments of Y/N approximate the moments af'jéi/N
where chi~square hags N degrees of freedom,

Equating the third moments of (2,5) and (2.6) we obtain

(3.1) N(N+2) (N+4) = n2(n2+2)(n +4)B + 3n2(n +2)n3 283

+ 30, (ny*2)B85 + ny(ny42) (ny44)E

Substituting for the B's in (3,1) and dividing by ¥ we get

36 4L R 2 2 /L
- E . fi ) (n2+2)(n2+4)m202 (n2+2)a 0203 . 3(n3+2)G2636203
N R R 6 6 6

2%, 129, B30,

(n +2)(n *A)GS 3

3 6
3%, }

+

Expanding the right-hand side and grouping terms we get

10
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3 R 36 36 3 6
g e i 2 B2 3
6 6] 2 2
N N2 0'4 04 n3 n2
3 6 22 L 2. ke 6
5 .(.).. rzcz 8 u.20.30'20'3 " “2“'30263 " O'il
iy
GE" B3 v B3
3 A @ 2 2R 4 2
: a,0y -1-2<:r.3c:r2 . 6u.202 a.zcré % a.zo‘g > 6@253 a0y P °3°é
o cE n, ny o n, n
4 A et =) 3
236 2 .3 61
" 8 n,050, + nya50,
a? 22
4 B2 J

2 A 2
%% o 5y ) %
236 . 23
PR L “2“‘3"2} ‘
226
s

The first term of the right~hand member of equation (3.,2) is unity by
(R,7) as is the second factor of the second term, The first factor of

the second term by (2,10) is 1/N, Therefore by the third moment

236 236
1 DUa0s * 90,
N n2n30'4

P
W
L ]
I~
S
%QEA
N
N
(o2
.
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(3.3) the dj.ff‘érence in the third moments is (working with the numerator

only) equal to

= 2 36 2 2244 . 236 2 2
= w8 [n3°’2°2(“’2°2 - 4) + 2n2n30(.2a,30'20'3 + n2a363(q,30'3 -0 4)J .
) 2 - 2 2, 2y 2
Now %0y = Oy = 'S';J-'(ci + b0l ) - t‘(cra *+ o) - o
N —(cri + tci + s'bci—)-
8
= 0-2
X "@3 3 ¢
o 2 2 2
Similarly a.3c73 -0, = =0, .

i

&
3,
Q
Q

i
&
WQ
NQ
WQ
3
s
i)

1
Ly
w@
wGI

.. Therefore

a
i

(3.5)
Substituting for the constants in (3,5), using (2.11), and simplifying
we get

(3.6) a8l ¥ st * rotr)”
* ‘ : 2, \R 4 4
r°(r-1)"s¥(1+EK)Y
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In heritability studies we have seen that 1K ecan vary between
zero and t/(t+2). By using this fact we ean find the maximum and
minimum difference between the third moments, When K = 0 the dif-
ference is a minimum and is equal to

- 8(s=-1)
(3.7) T3 3
s*r"(r-1)

and the difference is less than Ej/?(r»—l)4 for 11l r and s greater
than one. When tK = t/(t+R) we have the greatest difference between

the two moments, This difference is equal %o

(5.8 Lesll(8+2)(strte2) (retrr2)®
2r° (1) (£41)%

and the difference is less than 2/(r—l)2 for all r and s greater
than one,
It can be shown that (3.6) is a monotonic inereasing function of

K for 0 %K £ 1/(t+2), hence

(3.9) 8(s=l) . é < (5-1) (£+2) (st+6+2) (rst+t+2)"
st (1) 2r(r-1)%s4 (1+1)%

s

There is exsct agreement between the two moments of (2,5) and (2,6)
when the difference is equal to zero, Setting (3.6) equal to zero we

find that
8(s-1) (1+stK) (L+rstK)® = 0

which implies that (l*stK) = 0 and/or (l+rstk) =0 since s must
be greabter than one, This in turn impliegs that X mst be negative,
But K was defined as the ratio of positive quantities which seems to
indicate that the best possible agreement that one could hope to attain

between the third moments is when K is as small as possible,



THE CONFIDENCE INTERVAL
We now need to determine two points, a and b, such that
(4.1) P(a £ e b) =1 = 20

where b* is defined by (1.2) amd 1 -~ 20 is the probability that
the interval covers the population value of hz. The value 2a is
some positive quantity less than one,

We have shown that (2,1) is approximately distributed as chi-square
with N degrees of freedom, We know that rs(t-l)Al/gi is distribe
uted as chi-square with rs(t-l) degrees of freedom, These two quan~
tities are independent ginee they are functions of independent quanii-
ties, The ratio of two independent chi-squares divided by their degrees

of freedom is distributed as F. Hence the ratio

%///rs(t-l)Al - F
)
1%

is approximately distributed as F with N and n)

dom, where n, =re(t-1). We will assume that this ratio is distrib-

degrees of free-

uted as F 1in order to determine the confidence limits. The ratio

then simplifieg to

5
- GG(GZAZ * “BAB)

F
2 2 2
° Al(taé * ta + GG)
2
GGc (S-—-l)A2 + A3
(4.2) 5 vhere 0 = o~ o

= 3 ) ” .
t(Ga ¥ Gb) ¥ ga 1
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Let F, and F, be values of F such that P<‘Fl £F £ Fz) = ] - 20

1

-1

Fl oo
wherej "FAdF =5 a a.ndj FJdF =a, Ifwedenote F . by F7,
Q

: n
FZ. 1?

£
and F, can be determined by f Fragl=1-a
Js

then the points Fl

F
and f 2 dfF =1 «a, where f = l/Fl, and read from Snedecorfs F
0

tables.
Then to determine the points & and b we know that

B 0o” N
Py & = €F
t,(cra + O'b) + ¢

e —

|
g

4F £F) =
P(F; € F_£TF,)

QN

— 2 2
_Q__L_t(ca+cl>) +¢
Fy

1
+g
AN

- 2 P - a
2(C - FZ) . Z(Ga + ozb) . 2(C - F
. : 2 2. R

C + ('b-l)Fz o, * o * o

—

(443) =P

G+ (t-1)F;

Hence the points a and b are determined and (4.3) is an (1 = 20)%

o'onfidénee interval on h'?'.



THE CASE OF UNEQUAL SUBCLASS NUMBERS

A more practical case for us to consider in a breeding program is
the case of unequal subclass numbers, While we may be able to mate each
sire to the same number of dams, it may be impossible for us to obtain
an equal number of offspring from each dam, We will now set confidence
limits on the heritability ratio as defined by (1.2) for the case of un-
equal subelass numbers.,

Our model is

(5.1) Y

=l + + +
lia.i'bo

ijk 1 © %43k

where i = 1, 2, esey T, j 5 1’ 2, eeey si’ S l! 23 vy T and

ij?

3 tij = n, The assumptions made for the case of equal subelasges gtill
]

hold, The analysis of variance is shown in table 5,1,

TABLE 5,1

Analysis of Variance of the Three-~fold Classification,
Unequal Subclass Numbers

Source of Degrees of Mean Expected Mean Square
Variation Freedom Square
A effect ny = r-1 AB o§ = ci + kloi + kzoﬁ
3 o 2
Bin A nz—i‘.si-r .&2 cz—crc-*kocb
CinBin A n; *n-gs Al 02 = 02
i i L c

Ganguli (4) presents the formlas for the expected values of the mean
squares when there are unequal numbers in the various subclasses., They

are as follows:

16
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A D S TH AN R crs)) B g (SR B
£ n T o,

2
and kj = Z 23 t_-'k.‘i Bl/t;.‘l) > (l/ti_)] where t
- n,

offspring of sire i and dam j, t 1 is the total number of offspring

is the number of

i3

of sire i, and t is the total number of offspring.

Let

u.zﬁz +ta

(5.2) Y=N 0_2
4

where o‘i = 7(02 + c%) + oﬁ as was done for equal subclasses, As the

fact that there are unequal class numbers does not effect the distribu-
tion of the sum of squares or the fact that they are independent, then
the moment generating function of (5.2) ié the same as for equal sub-
classes, Hence the moment generating function of (5.2) is given by
(2.5)s

As before we desire to see if the constants 7, «,, @ay and a

value for N ocan be determined such that the first and second moments
of (5.2) are equal to the first and second moments of a chi-square with
N degrees of freedom,

Equating the first moments of (2.5) and (2.6) we get

N = n2B2 - 113B3
and substituting for the B's, where Bi - Ncia.i/ﬁioi, we find that

(2.7) still holds, i.e.,

0-0'2"'(!-0'2

-—2—2—-—_.1-3.21

R
o

4
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or

2 R 2 _ 2 2 2 P 2
7(Ga ¥ 0-b) ¥ % ~ aZ(Gc * k005> +'G3(Ge * klgb * kZUa)

= R 2 2
= @BkZQa + szko *tag 1)05 + 012 + aB)oc.

The constants are then defined by the following econditions which must
hold if (2.7) is true, The conditions are:

1, 7 = askz = (azko + askl),

28]

.

=
H

%y + aB.
Solving the pair of equations

ka., + k

-
2
i

2°3 02 173
1= a2 + aB

(5.3)

= ’ a_nd

Now by equating the second moments we can determine the value for
N +that will make the first two moments of (5.2) equal to those of chi-

square with N degrees of freedom, Equating second moments we get

2L 22 4
142 = (ny+2)asoy . 2@2“3“2“3 . (ng¥2)ag0y
N & A o o

29, 4 3%,

after substituting for the B's, Simplifing we find that

L
n,N,0
(5.4) W= —pg Bl
n3a202 + nzagos
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Substituting for the constants in (5.4) we get

(r=1)(gs -r)[——l'fg-lfg*-(c2 + 62) + 03]2
‘ i ‘ ko--kl_*l'k2 a, b c

2 ‘ 2 .

2 2 : 2.2
12 (°§ * kogb)z + 'O‘(Ue * kl“% * kyo,)
(kegke, *ky ) (ko-kl+k2)

(545) N =—-
‘ (r-l)(k2-k

2/ 2. 2 . .
If we let K = oé/(ch + cc) where T'= kik, (ko-kl+k2) and if we

again assume that we have random matings such that ci = c%, then the

following relations can Be deriveds

2 2
) 02 c‘2 1+ TIK ’
4 4
0'2 l - TK
2, == = = ,
’ A 1+ TK ’
%
(546)
& L+ (i,~T)K
3. —'é = and
e 1+ TK
A
& 1+ (k +k - T)K
b, "% = kl_ 2 .
cz 1+ TK

Letting k =-(ko-kl+k2) and using the relations (5.6) N becomes

equal to

(r-l)(zsi-r)kz(l + .TK)2

(r?l)(kz- 1)2 L+ (kO—T)K]z‘ + (;;si.,.r)kg [+ (kl+k2"T)K]2 )

{5.7)
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Since we are assuning that the contribution of the sire and the dam
to their offspring is equal, it can be shown that K is bounded by zero
and 1/(T+2) by an argument similar to that used in Chapter II. By
using this inequality we can determine the minimum and maximum values of
N when N is defined by (5.7). When k = 0 (5.7) obtains its maximum
value and the minimum value of N is determined when K = 1/(T+2), When

K=0 (5.7) becomes

(r—l)(z:si-r)k2
(r-1) (iymy )° + (zoymr )iy

(5.8)

and when K = 1/(T+2) (5.7) becomes

4(r-1) (pa; (1 + 1)

(r-1) (ieyrley )2 (1 #2) + (2,0 )i (1 #1y42)°

(5.9)

We now need to determine the peints a and b such that
P(a = h* & b) = 1 = 20 where h® is defined by (1.2), 1 ~2a is the
probability that the interval covers the population value of h2, and Z2a
is some positive quantity less than one,

The ratio
/ (n"Eé ) - F*

is approximately distributed as F with N and n-ys. degrees of free-
dom, We will assume that this ratio is distributed as F in order to

determine the confidence limits, The ratio simplifies to
0201 +a A )k
* g0 * Sy
e P s
A1[ 0%2\% b c]

(kp=ly JA, + kA,
!

* ¥*
Let C = and k =kjk,, then F simplifies to

0
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*2 2y . . 2
k (oa + cb) + kcc

Let F

1 and F2 be values of F such that

k

2

(2.0)

r
1 - 20 where ledF=CL and FJ4F = a,

0

points a and b we know that

LR
e mF ch
P(F1 € F

Lo

=

F

i

&F

E 2

& :
1 k*(ai + a%) + kai

2)

o 2

2 24
. k (@a + cb) * ko)

G

=4

il

kF
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P(Fl £€F & Fz) equals

Then to determine the

—_—
S - ¥y

2(0 - KF.,) z(oi * o

2(C - kFl)

i

b) Z
2 2 2
o + o +g¢
a b e

(5,10)

G+ (k k)T,
L

Hence the points a and b are determined and (5

eonfidence interval on h2.

¥*
C+ (k ~k)Fl

.10) is an (1 - 20)%



SOME EMPIRICAL RESULTS

A population of 100,000 items from a normal population with mean
zero and variance one was used to construct a genetic model similar to
the three-fold classification of sire, dam, and offspring that is found
in a breeding population, From this population was constructed eight

different combinations of sample sizes., The eight cases are listed in

table 6.1,
TABLE 6,1
Combinations of Samples Drawn for the Empirical Study
Case Number Number of Number of
Number of Sires Dams per Sire Offspring per Dam

1 2 2 2

2 3 2 2

3 5 R 2

A 10 2 2

5 2 4 2

6 3 4 2

7 5 4 2

8 10 4 2

For each of the combinations a sample of size 500 was drawn from
the known population and h2 calculated by the analysis of variance
technique., Thus for each sample size combination there were calcu=
lated 500 h°'s by the use of (1.,2). The estimates for the variance
components were found from the analysis of variance, Then 95% confi-
dence limits were set on each of the hz's by the method presented in
this thesis, To give an empirical check of the results of this method
the number of intervals that contained the population value for h2
were counted, Since it was found that N varied according to the value

of K, 95% confidence limits were calculated using the minimum, maximum,

22



23

and average value of N,

The population value of b% in this empirical study was 4/3.

The data for this study was available from another study and this is
the reason that h? was greater than one, It was easier to calculate
the quantities needed using this data than to construct another popu-
lation where h2 was less than one,

To faciliate the calculation of the variance components the actual
calculations were done by I.B.M., machines. The items were taken from a
set of random normal deviates published by the Rand Corporation, The
values of h2 were also calculated by I.B.M. equipment.

As the confidence limits were calculated by the use of hand calcu-
lators, a method was devised to speed up the determination of the in-
terval, A quantity

was calculated and confidence limits were set on Ho such that the
interval on h* would not exesed the 95% confidence region, This is
easily seen by examing the confidence interval (4.3) and expressing it
in terms of the variance components., Making the necessary substitutions

into (4.3) we find that

2(tH  + 1 - Fy) . 2(tH +1 - F
W+ 1+ (s-1)F,

1)

(6.1) P tH + 1 * (t—ijfz

=J."ml.

Since every quantity is constant for a fixed sample size and for a
fixed confidence level, and since the population value of h2 is
known, then the inequalities of (6.1) can be solved to determine the

meximum and minimum values of H o that will give a 95% confidence



interval on hz. The results of this empirical study are listed in

table 6,2 for maximum, minimum, and average N.

TABLE 6,2

Percentage of Confidence Limits Containing the Population
Heritability Ratio 4/3 for Maximum, Minimum,
and Average Values of N

Case Percentage of Confidence Limits Contalning
Number Population Value for
Maximum N Minjmum N Average N
1 94,8 97.6 97,6
R 91.6 93.6 93.6
4 95.8 96,6 96,4
5 91,6 96.8 93.8
6 91,0 ’ 95,6 93.0
7 89.6 93.0 90.4
8 92,6 9,6 o2



CONCLUSIONS

This thesis proposes a method of setting confidence limits on
estimates of heritability determined by the analysis of variance tech-
nique, The maximum and minimum values of N along with the formulas
for determining N are presented. This value was determined so that
the linear combination of the mean squares (2.,1) is best approximated
by a chi-square variate with N degrees of freedom, In this thesis
it was assumed that the contribution of the sire and the dam to the
genetic make-up of their offspring is equal in random matings.

Since the value of N that is used to set confidence limits is a
function of K, one might well estimate K from the analysis of var-
iance to decide which value of N should be used, If the estimate, ﬁ,
lies between O and 1/(t+2), then the value of N can be determined
from (2,12)., The use of an average value of N will also give good
results in this case., If K falls outside the possible range for K
then the nearest possible value for K should be used.

In the case of unequal subclasses a similar procedure may be used
with N being determined by (3.7). Instead of calculating the coeffi-
cients ko, kl, and k2 they may be estimated by averages. In this
case k. and kl are estimated by the average number of offspring for

0

each sire and dam and k2

spring for each sire, This should give fairly good results if the sub-

is estimated by the average number of off-

class numbers are not too divergent,

Once N is determined the values of F can be found from Snedecof's

F tables and confidence limits set on hz.
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