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PREFAOE 

Heritability 0£ a tra.it :i,s one of th.e i.mporta.n,t sta.ti1:3tios that 

must be known i£ the rate of progress of~ br,~ding program is to be 

o~reotly evaluated. There are two methods used to 9aloulate estimates 

of heritability, the regression technique ~nd tne anaJ.y~is of varia.nqe 

technique. Kempthorne (l) ha.a shown that satisfaetory qonfi4enoe 

limi,ts oan be set on estini.a,tes Ofil.louJ.ated by the rep-EUH~ion teohn:i.qu.e. 

Little WQrk has been done on the setting of: oonfidenee l\mits w4en 

estimated by the analysis of va.ria.nae teqhn;i.que. Osbc;,rne (2) ha.ei :e'ou.nd 

an a.pprold,ma.tion of the sta.r;i.da.rd error o~ tbe her~tabilitr rati9 ~sed 

on the assu,mpt:i,on of nor:m.ality. The purpose of this thesis is to 

determine a method or setting eon;f'~denoe limits on estims.tes found py 

the analysis of variance teoh.niq~e. Both the ease of e~u.a.l and unequal 

subelass numbers are eonsider~d. 

Indebtedness is aoknowledged tQ Or. Frank;J.i;p. Qray-b5.ll £Qr sug• 

gesting this problem to me and for hi$ h,ell):fw.. or;Ltieism given me in 

the preparation of this thesis. I should al.•0 l~ke to e.Ql!;nc,wledge II\Y' 

indebtedness to lVJrs. Edwin T;i.tt for l;ler work in Qtil,l,culating the de.ta 

used in the empirical study. 
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INTRODUCTION 

Phenotypic differenc~s between individual~ in most traits are partly 

due to differences in heredity and partly dµe tp the differenqes of the 

individual's enviromnent. Each developed trait is the result of the 

action of genes,, the action of the environment, and the interaction or 

the genes and the environment. Heritability is a quantitative descrip­

tion of the amount of hereditary variation in a trait. 

It is important for the livestock breeder to know which traits h~ve 

some degree of heritability if he wants to make a.rzy- p~rmane~t improve-

ment in his livestock. The only permanent changes in livestock quality 

are genetic changes brought about by a breeding program ~hat will bring 

together favorable gene combinations. If the heritability or the trait 

is highf improvement will quickly follow a good breedi:pg program. If 

on the other hand the heritability is low, then improvement is long in 

coming despite the quality of the breeding progr~. 

It is for these reasons that it is desirable to set confidence 

limits on the heritability ratio, th~s giving t~e livestoqk ~reeder an 

indication of what kind of program he should underta.ke to bring about 

improvement in his herd. 

Consider the three-fold classification whose model is 

(1.1) 

where i = 1, 2, ••• , r; j = l, 2, ••• , s; and k ~ 1, 2, ••• , t. It 

is assumed that the a1 are distributed nQrma.lly with mean zero a,nd 

variance cr:. Simiarly the bij a,nd the 

2 ly with zero means and variances c:rb and 

1 

oijk are distributed normal-

2 a respectively. It is 
0 



further assumed that all the terms are uncorrelated. The analysis of 

variance is found in table 1.1. 

ratio 

(1.2) 

TABLE 1.1 

Analysis of Variance Qf the Three-fold Classification 

Source of Degrees of Mean Expected Mean Square 
Variation Freedom Square 

A effect n3 = r-1 A3 
2 2 + t 2 + 2 

0'3 = Cf O'b stcra 
C 

B in A n2 = r(s-1) A2 
2 2 2 

(1'2 = O' + tcrb 
C 

CinBinA I1J. = rs(t-1) ~ 
2 2 

O'l. = (ij 
C 

The purpose of this thesis will be to set confidence limits on the 

2(cr: + <{) 
h2 = ~~--~----2 2 2 • O' +o: +er 

a b C 

This is the heritability ratio used in genetic studies to measure the 

2 

genetic contribution of the sire and the dam to their offspring, where 

cr! is the contribution due to the sire, O'~ is the contribution due to 

the dam, and cr2 is the contribution due to the offspring or the en-c 

vironmental effect. 

It is known that the sums of squares in the analysis of variance 

when divided by its expected mean square is distributed as chi-square. 

While it is known that the linear sun+ of independent chi-squares is 

distributed as a chi-square if and only if the coefficients are unity, 

it seems safe to assume that a linear combination of independent chi-

square variates is well approximated by some ohi~square curve. 

The method presented in this thesis is somewhat patterned after 



the Inf;3thod of attaok used by Satterthwaite (J) to set 09nfidenoe limits 

on variance eomponents. The ~thod pux-posed in this thesis oonsists or 
equating the moments of a linear f,m,otion 

(l.3) 

whio~ is independent of t 1 to the moments of a ohi~squa.re with N 
2 2 degrees of freedom. Equal ooeffioients must be chosen for aa and ab 

in order to derive h2 from (1.3). The val~e Qf N is then determined 

in order to find the "best" agreement among the moments. If this linear 

combination is closely approximated by ohi-.sq:i:~are, then the ratio 

xv·~ N 2 
(1 

0 

will b~ approximately distributed as Snedeoor•s F and tt will be 

possible to determine confidence limits on ~2• 



DETERMIN.A.'.l'ION OF THE DEGREES Olr FREEDOM 

We now fin~ the moment generat~ng ;f'unation of 

and determine N s~oh that the first and seoond moments of (2.l) are 

equaJ. to the first and seeo;n<;I. mome:ntt:J of a ehi..square with N degrees 
2 2 2 2 . of freedom where a4 = 7(G + ~~) + ~ • Eqli:lal eoef'fioients a.re ehosen . a ~ @ 

for Q'! and a; so that it is JHi>ss:lbl.e t& set oontide,nee lunits an 

(l,2). 

Si?lee A2 and A.1 a.re independe;nt, the mement genera.ting :tvnat~on 

of the sum is eq~ to the product of the mOlllept genera.ting t'unotions. 

Henoe 

distributed as ohi-sqµare with n1 degi,,es of freeQ.om and its ~em.en~ 

ienera.ti~g f~otion is (l .- 2t)~ni/2• Sin.Ge 41 = Q':e~i.' it 

f'ollows tha.t 

and finally we o~tain 

4 



Let Bi= ~i~~n1~, then (2.2) becomes 

(2.4) 
... n,2/2 . . . -n'J/2 

My(t) = (l .., 2B2t) (l - 2Bit,) · • 

Expanding (2.4) we obtain 

(2 • .5) My(t) = 1 + (n2B2 + n.3B.3)t + ~:/n2+2)B~ + 2n;at1..3B2B.3 

+ n3 (ia,+2 )B;}2 /2! 

+ j;cn2+2)(n2+4)B~ + 3n2(n2+2)n3B~B.3 + ]nin3(n.:/2)B2:a; 

+ ;n3(n3+2)(~+4}B~ t 3 /.3! 

~
..1-. k-.1 . k-1 k i-1 . k*l ·J k 

,. • • • + ~.. lT ... ·. .· B (n +2j) + 2:::.. . (. ) 1T. .· B2 (n,/2j) -.11 ··.· :a3 (n1 .. +;am) . t /kl 
p:=2 j'=O p p i:;;l 1. j=O · · m=O 

+ •••. 

The moment generating function of a ohi-square variate with N degrees 

of freedom is (1 - 2t)-N/2• Expanding into an infinite ~eries we get 

(206) ~ ( t) = l + Nt + N(N+2)i? /;2J + N(N+2){N+4)t.3 /.31 

k ... l 
+ ••• + 1f (Nit2i)tli:Al + ••• 

i=Q 

If these two moment gene?,-ating functions are to l;)e eqaj.valent they must 

have the same set Qf moments, ~.e,, equation (2.5) nnist be i<;lentieaJ.ly 

equal to (2.6) for all k. 

Equating the first moments of (2.5) and {2.6) we find tlla.t 

Substi tut:i.ng for the BI s :i.11 the abQve relation we find that 

5 



(2.7) 

;rt :ts·now possible to deternrl..ne the valu~s of! a.~, a.;3, and 7. It 

follows from (2.7) and tab~e 1.1 t~at 

2 2 2 2 . 2 2 2 2 7(a +ab)+ a ~ ~~(a + tqb_) + a.~(a +tab+ sta) a . o A e ~ Q • a 

and th.at t4e following relationij must bqld if (2.7) is to be true: 

1. 1 = sta.3, 

2. 1 = (a.2 + a,J)t, 

The values whioh satis:f'y these eonditiQ~S are 1 = t, a.2 ~ (s~l)/s, 

and a.3 = l/s. 

By equating the second moments of (2.;) and (2.6) it ia possible 

to determine the value of _N. Equattng the second moments we obtain 

Substituting .for th'i! B1_s and dividlng by N2, we get 

(2.9) 



henoe 

(2.10) 

(2.11) 

4 G2 2 2J· ~ j2 cr . (j + ta. + sto- 1··. .. ... atK · :1 ,:: () b 9; = 
4 2 2 · 2 ·. • 

(j4 tcr + to:b.+ a l + tK • a C 

It is then easily verified that (2.J.,O) Eiimplifies into 

2 _ n2n3(1 + tK) 
N - 2 ·· 2 · . 2 • 

n3a.2 + n2a.3(1 + stK) 

Finally substituting for n2, n.3• a.21 and a., the formula for N 

becomes 

rs2(r.-l){l + tK)2 
N = -....:..::;._...,.:w-......... ....,..__._,,.,.._ -..2 • 

(r-l)(s-1) + r(l + stK) 

ln this thesis we will assume that 

to assume that in random matings the oon;trib\lt1.on of the sire and the 

da.m tG the genetic make-up of their offspring is equal sinee ea.ah will 

contribute one-half of the offspring's ge~es. It is also kn.own that 

7 

2 . 
h as defined by (l.~) is bounde~ by zero an.done, It we let w equal 

2. 2 . 2 . .. . 
<!T:/Q'a' then h = 4/(w+2). '.l.'hen O '= lj(w+2)._ '= 0.2~ find it f0llows 

that (t + 2) ~ (t + w) '=: oo.. Also O '= t : w 6 t ; 2 • Bu;h K = t ; w' 



therefore 

(2.13) 0 f tK 6 t ! 2 • 

By using the inequality (2.13) we can determine the minimum and 

maximum values of N as defined by (2.12) such that the first two 

moments of (2.5) and (2.6) are identically equal. 

When tK = O (2.12) obtains its ~imum value since the denom-

inator obtains its minimum value. In this case (2.i2) equals 

(2.14) rs2(r ... 1) 
rs - s + 1 • 

When we substitute tK = t/(t+2) into (2.12) we .find the minimum 

value that N can talce. Substituting into {2.1~) we get 

(2.15) 

2 2 
N = -----'r ... s___..,( .... r-.... l ... )...,( __ 2t,_.+ ...... t...,) __ ___,. 

(r-1.)(s-l)( t+2}2 + r(st+t+2)2 

= _____ 4 ..... r __ s_2.._( r"----' 1 .... ) .... ( t,_.+ __ 1 __ )_2 __ _ 

(rs-s+l)( t+2}2 + rst(st+2t+4) 

= -----=4~rs~2~<~r~-l~l~<~t~+l=· >~2-----~ 
4rs(t+1)2 + rst2(s-1) - (s-l)(t+2)2 

= 4rs2(r-l)(t+1)2 
2 . 2 . 2J 

4rs(t+l) + (s-1) [rst - (t+2) 
• 

We now must show that N is a monotonic decreasing function of 

K for the values O 6 K 6 1/(t+2). Talcing the partial derivative of 

N with respect to K we get 

8 

ON= 2rs2t(l+tK) [(r-l)(s-1) + r(l+stk)2] - 2r2s3t(r-l)(l+tK)2{1+stK) 

oK [(r-1) (s-1) + r{l+stK)~ 2 • 

I f N Ls a monotonic decreasing function of K, then the partial 



derivative mu.st be non~positive. ijenae 

il! ' O· @K 
O~K~-l,_ t + ! • 

Setting aN/aK' o and simplifying we get 

2 
1 - s + rstK - rs tK 6 o. 

Sinoe s ~ 1 and r~2tK :!II rstK the ~ri:lia.l deri va it;i ve is always non- . 

positive and N is a monotonie qeoreasin~ funotion ¢f K for all 

values of K ~ o. Therefore 

(2.16) 
2( . }( }2 a, ) _ 4'!!sr-l Jt+l; . ~ N , rs ~r.l , • 

4rs(t+l/ + (s-1) [rst2 .. (t+2/J l'S ... s + 1 



FURTH:$R JUSTIFICATION OF THE USE OF OHI~SQUA:BE 

In order for the ratio 

. /Ai I -N 2 
C1 

0 

to be distributed as F the following oondit:l.ons llnl.st hold; 

2 2· /. 
2. Ai),0 be distributed as X(ni)/ nl' and 

2 
,;. I/N and \fa0 mJ.1st be ~nc;lependent. 

Conditions (2) and (;3) are immediately "a.tisf!ed, We new need to :f.'ind 

hOW' olosely the moments of Y/N approximate the moments of 'X2/N 
where ohi-squa.re has N qegrees of freedom. 

Equating the thilrd moments of' (2.J) a.nd (2,6) we obtain 

Expanding the right-hand side and ~ouping terms we get 

10 
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(3.2) 

The first term of the right-hand member of equation (3.2) is unity by 

(2.7) as is the second faotor of the second term. The first factor of 

the seoond term by (2.10) is 1/N. Theref0re by the third moment 

(3.3) 

But by using the value of N as determined by the seoond moment 

(3.4) • 

2 2 8 Using the common denominator n2n3~4 and subtracting (3.4) from 



12 

(.3 • .3) the d;i.fferenee ;i.n the third mome.!1ts is (working with the munerator 

only) equ.a.1 to 

. Now 

2 2 2 
~(cre + tcrb + stcra) 

== . ' -
s 

Silpila.rly 

2 
- Cl C. 

Hence the nUt"'D.erator of the difference equals 

[ 2 .3 6 2 . . 2 2 1,, 4 2 .3 2 61 
8 e.30,;:2°·20";;f .3 - 2~n.30,20,·J/32cr-, + ~°'20,.30"~{'".3 J 

_ 2 2( 2 2 4 .. .2 2 2 2 1,.) 
- 8a,2a,'3cr2<:J3 n.3a.2cr.2 - 2~n.3°''2?3cr2cr3 + ~°'3'5 

2 2 · . 2 . 2 2 = 8a,20,·:l'·2?3 (n30,zCJ"2 - ~0,3cr3) 0 

Therefore 

(.3.5) 

Subst;itut:i,ng for the constants in (.3o5), using (2.11), and simplifying 

we get 

(.3.6) d ='1 8( s-1} {3=.. + stK)(l t ~rstK)2 

· · r 2 (r-1)2s4(l+i;K)4 • 



In heritability studies we have seen that tK can vary between 

zero and t/( t+2) • By using this fact we can find the maximu:m and 

minimum d:i.fference between the third moments. When tK = O the dif-

f'erenoe is a minim.um and is equal to 

(3.7) 8(s-l) 
s4:r/(r-l)2 

1:3 

and the difference is less than o/e'(r-1)4 for all r and s greater 

than one. When tK = t/(t+2) we have the greatest difference between 

the two moments. This difference is equal to 

(3.8) ( s-1) ( t+2) (grb+t+2) (rst+t+2)2 

2r2(r-l)i2s4( t+1)4 

an~ the difference is less than 2/(r-1)2 for all r and s greater 

than one. 

rt can be shown that (.3.6) is a monotonic increasing function of 

K for O 6 K ~ 1/(t+.2), hence 

.,_ ~ ,( s-1 )( t+2 )( st+t+2 )( rst+t;+.2) 2 

r d ~ 2r2(r-l)2s4(t+1)4 
(3.9) 8(s.-l) 

4 2 2 s r (r-1) 
• 

Tnere is exact agreement between the two moments of (2.5) and (2.6) 

when the difference is equal to zero. Setting (3.6) equal to zero we 

find that 

8(s-.l)(l+stK)(l+rstK)2 = O 

which implies that (l+stK) = O and/or (l+rstK) = O since s must 

be greater than one. This in turn implies that K must be negative. 

But K was defined as the ratio of positive quantities which seems to 

indioate that the best possible agreement that one oould hope to attain 

between the third moments is when K is as small as possible. 



THE OONFIPENCE INTERVAL 

We now need to dete:r:-:rnine two points, a a.nd b, such that 

where h2 is defined by (1.2) and J, - ;;?J:J, is the probability that 
2 the interval covers the population value of h. The value 2a. is 

some positive quantity less tha,n one. 

We have shown that (2.l) is approximately distributed as ehi-squa.re 

with N degrees of freedom. We know that rs(t-l)AJcr! is distrib,.. 

uted as chi .... squa.re with rs(t ... 1) degrees of freedom. These two qua.n ... 

tities a.re independen·h since they are functions of independent qua.nti ... 

ties. The ratio of two independent chi-squares divided by their degrees 

of freedom is distributed as F. Hence the ratio 

xy·.. rs(. t-... l)A1 = F. N . o 
2 

n1.cr 
0 

is approximately distributed as F with N and n1 degrees of free­

dom, where ~ = rs(t-1). We will assu.me that this ratio is distrib­

uted as F in order to determine the confidence limits. The ratio 

then simplifies to 

where 
= (s-l)A2 + A.1 

a a.A:· o 
l 
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JF2 
and F ~ = l ... a., whe.re t 111 1/11, ~d x-ee.d frem Snedeoor 1s F 

0 

tables. 

Then to detem:i,ne the p0ip.tfi! a e.nd b we know that 

(4.$) 

Renee th.e points e. and 'b a.re deteX'Illi.ned and (4.3) i19 an (l • 2a.)~ 

. ~ eonf'idenoe interval cm n. 



THE CASE OF UNEQUAL SUBCLASS NUMBERS 

A more practical case for us to consider in a breeding program is 

the case of unequal s-qbolass numbers. While we may be able to mate each 

sire to the same number of dams, it may be impossible for us to obtain 

an equal number of off spring fr em each dam. W~ will now set confidence 

limits on the heritability ratio as d~fined by (1.2) for the case of un-

equal subclass numbers. 

Our model is 

(5.1) 

where i = 1, 2, •••, r, j = 1, 2, •••, Si' k = 1, 2, ••• , t . . , 
J.J 

and 

~ti.= n. The assumptions made for the case of equal subclasses still 
i,j J 

hold. The analysis of variance is shown in table 5.1. 

TABLE 5.1 

.A,.nalysis of Variance of the Three-fold Classification, 
Unequal Subclass Numbers 

Source of Degrees of Mean Expected Mean Square 
Variat;i.on Freedom. Square 

A effect = r-1 A3 
2 2 

+ k1 er~ + kir! n.3 O' = (J 3 C 

Bin A A2 
2 2 2 nz = ;s1 - r (J2 = (j + k a 

C 0 b 
J. 

C in Bin A Al 
2 cl· nJ. = n - ESi (Jl = 

i C 

Ganguli (4) presents the formulas for the expected values of the mean 

squares when there are unequal numbers in the various subclasses. They 

are as follws: 
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~ = ~ tf [(1/ti) - (1/t~ 

i. n.3 

and k0 = ~ L t~j [(l/tij) - (l/ti )] where tiJ' is the number of 
i j n2 

offspring of sire i and dam j, t:i, is the total number of offspring 

of sire i, and t is the total number of offspring. 

Let 

2 2 2 2 where cr4 = r(cr + ~b) + cr as was done for equal subclasses. As the a e 

fact that there are unequal class numbers does not effect the distribu-

tion of the sum of squares or the fact that they are independent, then 

the moment generating function of (5.2) is the same as for equal sub­

classes. Hence the moment generating function of (5.2) is given by 

(2.5). 

As bef~e we desire to see if the constants r, a.2 , a.3, and a 

value for N can be determined such that the first and second moments 

of (5.2) are equal to the first and second moments of a chi-square with 

N degrees of freedom. 

Equating the first moments of (2.5) and (2.6) we get 

N = n2B2 + n.3B.3 

2 _ fn 2 . and substituting for the B's, where B1 = Ncr1a.:i/ __ icr4, we find that 

(2.7) still holds, i.e., 

2 2 
a.2cr2 + a.3cr3 

2 ::: l 
cr4 



or 

The aonstants are then defined by the following aonditions whiah must 

hold if (2.7) is true. The conditions are: 

Solving the pair of equations 

for a.2 and a.3 we find 

( ' • .3) and 

• 

Now by equating the second moments we aan determine the value for 

18 

N that will make the first two moments of (5.2) equal to th9se of chi-

after substituting for the B•s. Simplifing we find that 

(5.4) 



following relations oa.n be derived; 

(5.6) 

equal to 

(S.7) 

2 
O' 

l. 
a - :;:: 
2 

0'4 

2 
O' 

2. 0 - :;:: 
2 

(J' 4 

2 
0"1 

4 -"' = . • 2 
<14 

2 K (jb - ;,;: 
2 

O' I+ l + TK 

l ... TK , 
1 + TK 

1 + (k -T)K 
0 

1 + TK 

1 + TK 

a.nd 

• 

2 .. 2 (r-l)(~s1-r)k (1 + ',rK) 

19 

a.nd if we 

then the 
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Since we are assuming that the contribution of the sire and the da.m 

to their effspring is equal, it can be shown that K is bounded by zero 

and l/(T+2) by an argument similar to that used in Chapter II. By 

using this inequa~ity we can determine the minimum and maximum values ef 

N when N is defined by (5.7). When k = 0 (5.7) obtains its maximum 

value and the minimum value of N is determined when K = 1/ ( T+2) • When 

K = 0 (5.7) becomes 

(5.8) 
2 (r-1) (E's. -r )k 

1 

and when K = l/(T+2) (5.7) becomes 

4(r-l)(ts.-r)k2(1 + T)2 
1 (5.9) 

We now need to determine the points a and b such that 

P(a ~ h2 ~ b) = 1 - 2a. where h2 is defined by (1.2), 1 - 2~ is the 

probability that the interval covers the population value of h2, and 2~ 

is some positive quantity less than one. 

The ratio 

I/(n-l}li)Al = F* 
N 2 

nlcrc 

is approximately distributed as F with N and n-xsi degrees of free­

dom. We will assume that this ratio is distributed as F in order to 

determine the confidence limits. The ratio simplifies to 

Let C 
= (k2-~)A2 + kaAJ 

Al 
* then F simplifies to 



0 2 
ere 

21 

l - 2o. whore ~Fl F dF = .. and J "' F iJ1! = a., Th'ltl to determine the 

2 

points a and b we knQW that 

~
* 2 2 2 * ~ k F ~ + ~ + O" k F2 + l. 

:;,p l. +1' a. •. 2b 206_ 
0 - kFl O"a + O"b O - kF2 

(,.10) 

Henoe the poipts a and b a~e de~ermined and {S.10) is an (1 - 2~)% 

2 oonfidenoe interval on h • 



SOME EMPIRICAL RESULTS 

A population of 100,000 items from a normal population with mean 

zero and variance one was used to construct a genetic model similar to 

the three-fold classification of sire, dam, and offspring that is found 

in a breeding population. From this population was constructed eight 

different combinations of sample sizes. The eight cases are listed in 

table 6.1. 

TABLE 6.1 

Combinations of Samples Drawn fer the EmpirieaL Study 

Case Number 
Number of Sires 

1 2 
2 3 
3 5 
4 10 
5 2 
6 3 
7 5 
8 10 

Number of 
Dams per Sire 

2 
2 
2 
2 
4 
4 
4 
4 

Number of 
Offspring per Dam 

2 
2 
2 
2 
2 
2 
2 
2 

For each of the combinations a sample of size 500 was drawn from 

the known population and h2 calculated by the analysis of variance 

technique. Thus for each sample size combination there were calcu­

lated 500 h21 s by the use of (1.2). The estimates for the variance 

components were found from the analysis of variance. Then 95% confi­

dence limits were set on each of the h2 's by the method presented in 

this thesis. To give an empirical check of the results ef this method 

2 the number of intervals that contained the population value for h 

were counted. Since it was found that N varied acco,:rding to the value 

of K, 95% confidence limits were calculated using the minimum, maximum, 
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and average value of N. 

The population value of h2 in this empirical study was 4/3. 

The data for this study was available from another study and this is 

2 the reason that h was greater than one. It was easier to calculate 

the quantities needed using this data than to construct another popu-

2 lation where ~ was less than one. 

To faailiate the oalculation of the variance components the actual 

calculations were done by I.B.M. ma.chines. The items were taken from a 

set of random normal deviates published by the Rand Corporation. The 

2 values of h were also calculated by I.B.M. equipment. 

As the confidence limits were calculated by the use of hand calcu-

lators, a method was devised to speed up the determination of the in-

terval. A quantity 

2 2 
era+ CTb 

H =---o 2 
(] 

C 

was calculated and confidence limits were set on H such that the 
0 

interval on h2 would not exceed the 95% confidence region. This is 

easily seen by examing the confidence interval (4.3) and expressing it 

23 

in terms of the variance components. Making the necessary substitutions 

into (4.3) we find that 

{6.1) 
') 2(tH + 1 - F1) J ~ ~ L O ' 

- h - tH + 1 + (t-l)F = 1 - 2a, • 
0 1 

Since every quantity is constant for a ;fixed sample size and for a 

fixed confidence level, and sine e the population value of h2 is 

known, then the inequalities of (6.1) can be solved to determine the 

~ and minimwn values of H that will give a 95% confidence 
0 



interval on rt'. '.l;'he results o:f' this emp:l.rieal study are l;tsted in 

table 6.2 ,.tor maximum, minSJnum., and average N. 

Percentage of Confidence Limits Oontaining the Population 
Heritability Ratio 4/3 :f'or Maximum, Minimumt 

Oas~ 
Number 

l 
2 
3 
4 

' 6 
7 
$ 

and Average Values of N 

Percentage of Oonfidenee Lim.its Containing 
Population Value fe>X' 

Maximum. N Min;i.mum. N Average N 

94.8 
91.6 
96.2 
95.8 
91.6 
91.0 
89.6 
92.6 

97.6 
9:,.6 
96.S 
96.6 
96.8 
95.6 
93.0 
94.6 

97.6 
9.3.6 
96.s 
96.4 
9;3.8 
9.3.0 
90.4 
94.2 
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CONCLUSIONS 

This thesis proposes a method of setting confidence limits on 

estimates of heritability determined by the analysis of variance tech-

nique. The maximum and minimum values of N along with the formulas 

for determining N are presented. This value was determined so that 

the linear combination of the mean squares (2.1) is best approximated 

by a chi-square variate with N degrees of freedom. In this thesis 

it was as~umed that the contribution of the sire and the dam to the 

genetic make-up of their offspring is equal in random matings. 

Since the value of N that is used to set confidence limits is a 

function of K, one might well estimate K from the analysis of var-
A 

iance to decide which value of N should be used. If the estimate, K, 

lies between O and l/(t+2), then the value of N can be determined 

from (2.12). The use of an average value of N will also give good 
~ 

results in this case. If K falls outside the possible range for K 

then the nearest possible value for K should be used. 

In the case of unequal subclasses a similar procedure may be used 

with N being determined by (3.7). Instead of calculating the coeffi-

oients k0, ~, and k2 they ma:y be estimated by averages. In this 

case k0 and ~ are estimated by the average number of offspring for 

eaeh sire and dam and k2 is estimated by the average number of off­

spring for each sire. This should give fairly good results if the sub-

olass numbers are not too divergent. 

Once N is determined the values of F can be found from Snedeco:t's 

F tables and confidence limits set on h2• 
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