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CHAETER L
INTRODUCTION:

COHN'S THEORY OF THE RADIAL DISTRIBUTION FUNCTION

The construction of a general statistical theory of dense system,
such as the dense gases and liquids, has been much developed,!?2 yet
severe mathematical difficulties still stand in its way. In the
dilute system, the particles are always far separated, so that the
kinetic energy is very large compared with the interacting potential
energy. In the dense system, the potential energy of particle interac-
tion is significantly large and complicated, which gives the construc-
tion of the partition function unintegrable. So the thermodynamic
properties derived from the partition function are very difficult.

An alternative method for evaluating the thermodynamic properties
is by the radial distribution function, p(r,n,T), which is defined
as the distribution of particles around a given particle, called the
central particle, If the local average number density at a distance
r from the central particle is n(r), then

| _ )
p(r) ===

(1.1)

is the radial distribution function of a system at some fixed tempera-
ture T and macroscopic number density n. If particles are moved far
apart, correlation between them having broken down, so o(r) = 1 as

2(r) = n for r +», But if particles are moved to the central particile,



2
p(r) = 0 as n(r) = 0 for r.i 0, where ¢ is the hard core distance
between two particles.
The thermodynamic properties (or thermodynamic functions) of a
fluid, such as pressure p, internal energy E, chemical potential y, can

be expressed in terms of the radial distribution function as follows:2’3’4

®  du

D T air) o(z,n,T) 4rr2dr (1.2)
E 3 iR ) olrn,T) 4rrldr (1.3)
NKT 2 T T o piL,I, .
-k—T- = 1n nAd + — flf U(r) o(r,n,T3E) 4nrldrdg (1.4

where £ is the charging or coupling parameter, 0 < £ < 1, this means
that the "discharged" state for a particle is £ = 0 and the "charged"
state for a particle is £ = |, U(r) is the pair potential between
two particles, = (h2/21rni<’r);5, h is Planck's constant, k is Boltz-
man's constant. We will use B = 1/kT later,

In the expressions in egs, (1.2) to (1.4), the first term in the
right hand side refers to condition for a dilute gas, while the
second term refers to dense gases and liquids arising from the interac-
tion between pairs of particles. The above formulas just involve
the pair interaction and are good only for applying to simple liquids,
such as liquid argon., For more complex liq\ﬁds, such as metallic
solution, the interaction between triplets or higher order interactions
has to be considered, because the interactions are between different

composed atoms,



The experimental determination of the radial distribution function
can be obtained according to the methods of neutron diffraction® or
X-ray scattering®. The scattered intensity I(s) depends on the angle
of the incident and scattered beams. This angle may be replaced by
2 parameter s, We can Obtain the experimental values of Im(s) and
I(s), the scattered intensities at zero demsity and at some density,

respectively. Their relation is
1= Im' {lni-iz_n_ f: [o(r) - 1] r sin (sr) dr}
By a Fourier inversion, we have
1 oL (8)
p(x) =14+ ——ronu [ [

awtnr O 1g(®)

This is the way to get the experimental curves of the radial

- IJ s sin (sr) ds

distribution function, So we can compare thermodynamic properties
calculated from the experimental radial distribution fumction and
‘the theoretical radial distribution function,

In this paper, the main purpose is to extend Cohn's theory of
the radial distribution fimction., So we will first give a brief
description of Cohn's theory as follows:

Cohn's Theory of the Radial Distribution Function:’

Consider a thermodynamic system composed of N identical and
structureless particles interacting with a pair potential U(r) im a
volume V. We devide the volume V into T cells (Ranging from 0,1,2,44¢
to t cell, There are T - 1 cells from 1 to t,), each of volume v,
around a central particle 0, In the thermodynamic limit, the cell

voiume is v = V/t = 2 finite quantity as V + « and N + », Each



cell is so small that at most only one particle can be in it, We
also assume that as each particle moves around in a cell, the total
potential energy Vp does not change significantly. So, from classical
statistical mechanics, we can write the probability P of realizing a

particular distribution of particles about the central particle as
. N-1
P = Av M - 1)} exp (-BY}) (1.5)

where A is a normalization factor. So eq. (1l.5) is true as far as
the neighboring cells are not simultaneously occupied; the contribu-
tions coming from two neighboring cells being occupied simultameously
is ignored. It is als'o true, even thcugh two or more particles are
very close, if tt’1;=_ pair potential between two particles is sufficient-
ly slowly varying.

let U j be the pair potential between particles in the i th and

i
j th cells, then

Vp = s vkl = Lol (1.6)

md ¢y = 5 Uiyl

(L.7)

Here, and from now on unless it is specified, the upper limit of the
sum is to the numbers of cells t (or t=1). 2nd ¢ 1 is the potential
energy of a particle in any cell i due to interaction with all other
particles, M is the cell occupation number of cell i, ni=0 , +1 if
the cell is unoccupied or occupied, resﬁectively. For the central

particle, u= +1. A factor % in eq. (1.6) is to avoid over counting

in the double sum,

Expanding VP of eq., (1.6) in terms of the average values of My



and ¢i’ denoted respectively as <ui> and <¢i>, by Taylor's expansion,

we rewrite eq. (1.5) as

P = AVN-I (N~-1)! exp [—B jél uj<¢j> + -g—- j—z-l <uj> <¢j> - ‘g— uo<¢°>+A]

(1.8)

where A=- —g— T Ujk (uj-<uj>) (uk-<u.k>) . (1.9)
j+k+0

<¢j> = kéj Ujk <p> (1.10)
Ip,P

and <uj> =— (.11

A is the fluctuation term of a given distribution about the
average., In eq. (1.8), if A=0, we use Po for P, The average of

this type will have a superscript zero, i,e.

Iu.P Tu B =
0. _Jo._ o _ .1 3n(fh)
<uj> = —z%— BT (1,12)
-0 ] |
where P, = exp -8 § Hy<o,> (1,13)

Using the method of steepest descents”’8 to evaluate EPO, we

then have,
-8<4,>
af =l (1.14)
1+ze h|
where the parameter z = £ eBh and £ = LA (1.15)
: %o o l-nv ¢

by assuming <¢j> = h, a constant as r + o,

By eqs. (1.8) and (1.13), we write eq. (1.11) as
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5 A ? PRI
ijPoe _ Z]JjPo(l"l'A- A +'.ll')

21 .

Q> = X ~ - (1, 16)
e s GUINE VO

<uy> = <“j>° if A =0 (1.17)

We know <uj> = avp(r) (1.18)

where r is the distance of cell j from the central particle. Then
by egs. (1.14), (1.17) and (1,18), we have

-B¢ -8(¢—h)
& or nvwp(r) = foe

(1.19)

nvp(r) = 2
1+ze-8¢

here, for convenience, the bracket < > and the subscript j are dropped

from <¢j>. By eqs. (1.15) and (1.19),

, 1 1+Eo-£°o(r)
¢${r) = h = ' In ) (1.20)

Another expression7 for ¢(r) in an integral form is derived by
considering the potential energy of any particle at a distance r
from the central particle due to all other particles (excluding the
central particle) and the contribution U(r) from the central particle.
This ¢(r) is written as (See Appendix A)

2m
T

$(r) = U(r) + == [0x 0(x) K(x,7)dx (L.21)

Combining eqs. (1.20) and (1.21), we have

1 1+E,-E, 0(x) _ 2mn @ '
ht 7 _p_(-r)_ = U(r) + - fcx p(x)K(x,r)dx (1,22)
or -Eln 1+§.(;)€.,p(r) = rU°(r) + 2m f:x p(x)K(x,r)dx (1.23)

This is Cohn's integral equation, where



V() =0 () - b (1.24)
K(x,1) = f,’;_”; E0(E) dE + G(x,x) ST EU(E) d (1.25)
G(x;r) =0 when|x-rj>0

(1.26)

1 when|x~rj <o

For a linearized version, we consider the case where we can write

p(r) = 1 +w(r) forw(r) << 1 (1.27)
then eq. (1.23) can be linearized. So, for low density, we have’
p(r) =1 - s[1+s°]’1U°(r)+x J’: x/'x(x,§)[1—3(1+so)‘ln’(cx)] dx (1.28)

where

g (1+8)1
yo

oIx~y]

A(x,y) = 5

U gl(i;) gU(8)dE + G(ox,0y)/ EU(E)dE}(1.29)

The numerical calculatior® for dilute argon, using modified
Buckingham potential fmction9’10 for eq. (1.23), showed the good
result. Cuﬁ:e,13 using Lennard - Jones potentialm, found that the
comparison of the pressure and internal energy obtained from Cohn's

theory is excellent related to MC (Monte Carlo) . and PY (Percus-Yevick) 15
methods, but not the coefficient of compressibility.

In order to see how Cohn's integral equation is different from
the others, we give some current ones as follows:

(a) B-G-Y (Rorn-Green-Yvon) and K {Kirkwood) Equations:4

Inp(1,8) = =BEU(r) + "o/ (R(r-R,E )-K(rHR, )] R (R)-1]&R  (1.30)

where
R(t,8) = BE/7 (s2-t))U(s)p(s,E)ds  (B-G-Y) (1.31)
K(t,E) = -2875/" su(s)p(s,E)dsdE (Rirkvood) (1.32)

oit!



(b) ENC (Hyper-Netted Chain) Equation2’16:

In p(z;,) = ~BU(z )4/ {o(z;)-1n o (z; )~1-8U(z, ;) Ho(z, )-1Hdr,

(1.33)

(c) P~Y (Percus—Yevick) Equationz’ls:

0 (zy,) 80(zy)) - 1-nf:{eBU(513)-1'}{p (x, -1z, ) dr, (1.3%)

These are nonlinearized equations... We see thﬁt Cohn's integral
equation has the advantage of being linear in the radial distribu-
tion function,

The original Cohn's assumptions: neighboring cells being not
simul taneously occupied and letting A = 0, make his theory applied
to a limit number density only. In Chapter II, we will comsider it
vhen A = 0, 1In Chapter III, we will consider it when A # 0, In Chapter
IV, we will consider a difference §(r) between <u;> and <ui><> and add
it in Cohn's integral equation, In Chapter V, a conclusion is made.

Finally, some mathematical derivations are included in Appendix,



CHAPTER II

CONSIDERATION WHEN A = 0

In this chapter, we will calculate the average value of cell
occupation number by using a grand partition function when A = 0; and
derive a relation, when 4 = 0, concerning the average of the product
of the cell occupation numbers., An application of this relation will

be discussed,

A, Grand Partition function with A =0

The partition function can be separated into momentum part and
configurational part. The momentum partition function is a ccmstant
and can be evaluated easily, So we may just use the configurational
partition function when we will find the average of some quantity,
From eq.(1.5), neglecting the constant part, we may define exp (—BVP)
as the relative probability of our particular distribution. Then we
can write a configurational partition function of N particles with one
fixed (central particle) and N-1 particles distributed around it as

2,01 = G 5y &y | (2.1)

3

where C is a constant factor depending on the cell volume v, VP is de=-
fined in eq.(1.6), {uj} is a set of cell occupation number, uj = ol
ceeceeslis and {uj} under the sum means that s is subjected to-two

constraints:
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By = 0, or +1 for 5 = 1,2,00000ete (2.2a)

Expanding VP in terms of <ug> and <4;>, we rewrite eq.(2.1) as

D) = @ 3 e (8 Fn <ol = B! (2.3)

h|
where

= E _8. - 3
Q exp{2 j§1<“j><¢j>'2 M, <¢o>} = a constant for N particles. (2.4)

~
and A and Po have been defined in egqs.(1.9) and (1.13) respectively.
If we fix the central particle at any definite cell, i,e,0, then

the configurational partition function of the other N-1 particles is

: . A
Zy_(V,T) = cq,[ug} exp -8 I, u<oole - (@2.5)
where

8 = exp { % éZ.<u ><¢j>} = a constant for N-1 particles., (2.6)

3

The above form of partition function is called configurational
canonical partition function which is applied to a system hawing a fixed
nutber of particles, The more genmeral form called grand partition fumc-
tion can be applied tc any number of particles in the system and is more
able to describe a general situation, like two different phases coexisting

in the same system, as binary alloy.

We define the grand partition function as

6(z,V,T) = ¢ 2 Zy = S A Z-1 2.7
?=1

N=0 N

where z is the fugacity parameter, which will be identified later, The
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constraints in eq.(2.3) are valid here, too.

For the case A=0, Z and G will also have a superseript zero,ises

(o]
zg (WD) = o }exp =8 52 <o} (2.8)

o -
2y (1) = 8, {ﬁj} exp {-BZ,u;<0>) (2.9)
Go(z,V,'r) - N—l ZN (2,10)
= goN 1 {X }Zexn {-8 & luj<¢j>}
- ® =-B<¢.>u
=% ¥ {;zxj} jEl (ze "3 by eq.(2.2b)
=Q°Jl{zj(ze8¢j)j}
or Go(z,V,T) =Q (1 + z s<d’:I. ) by eq.(2.23a) (2.11)

Note, the sum, I, is equivalent to £ I I ..... Each p, ranges over the
{uj} Ty Hy g i
values 0 or +l.

B. Average Occupation Number

The occupation number in each cell is 0 or +1, We will find the
average occupation numder in each cell, at a distance r from the central
particle,

Using the graﬂd partition function, we find

o1 @ N-=1 =B Z.u,<¢.>
<1,j> = Qo N-Z—l z {ﬁj} uje j=1"4 73 (2.12)
.13 .
=-3 a<¢j>ln G° (2.13)
By (2.11) and (2.13)
0 ze-8<¢j>

(2.14)

<p > =
3 1+ze B<(bj>
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Now we ha{re to find how 2z is related to the density n.4 Let us con-
sider a cell j. at a distance very far away from the central particle,
In that cell, p(r) =1 as r + = and <uj> = nvp(r) = nv = <uj>°.

We have mentioned before that <¢j> actually will never be zero no
matter how dilute the system is,since there is an interaction potential

between two particles, So, <¢.> approaches a constant value h if cell j

3

is very far away from the central particle, i.e,

h= <6;> Ir_m . So, by eq. (2.14)

av = ze-B.n
1+ze-Bh or
- gh - __nv
z=¢e and &= Tov (2.17)

Note, h is found9 as a constant times the number density n., This
agrees with egs. (1.14) and (1.15), which are derived from the method of

steepest descents.

C. Product Relation of Average Occupation Number

For the product of two cell occupation numbers, we may use the
grand partition function to find its average.
o_1 @ N-1 -R. L < >
<uiuj> s ﬂo Ngl 2 {Ek} uiuje k=1 uk ¢k (2.16)

1zl 3267

° g a<¢i>a<¢j>
sl 21 e o aehy o
82 a<¢i> Go °<¢j> a<¢i> a<¢j>
1 3 _n ¢, 3¢ nc }
-’,32 8<¢i> 3<¢j> 3 <¢i> a<¢j>
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1 <y $0

=~ 35S + <pi>°<pj>° by eq.(2.13) (2.17)
i

By eq,(2.14), we have
0
osp,> .
1
“§ st ylop - 2.18)
i

vhere & 14 is the Kronecker delta,

. o _ o _ 0> 0 0 N
. <piuj> Gij{<pi> <ui> } + <ui> <uj> (2.19)

or <‘uiuj>° <'pi>°<pj>o if 1 * ]

(2.20)
= <ui>° = <pj>° if i=j

Thus, if A=0, and i#j, the occupation numbers are xmcorrelated;
the average of the sroduct of two cell occupation numbers is equal to
the product of two average cell occupation numbers.,

This has some physical meaning: Because PP uj = 0 or +1, so also

uy2s ujZ =0or+l. Ifi#j, <uu >% has <(0)(1)>° or <(1)(0)>°. 1If

b
i=j, <uipj>o has <{0) (0)>° or <(1)(1)>°. When i=j, notice <uiuj>° =
<u12>° = <pi>° = <gj>° does not mean that two particles can be in the
same cell, but it means oanly that, mathematically, the average of the
square of a cell occupation number is the same as the average of a cell
occupation number, if A=0. Otherwise, <‘pipj>° = <ui>°<uj>°, if i#j.
This is similar to the discussion by Landau and Lifshitzfv

For the product of three cell occupation numbers, by the same

procedure as above, we have

0.1 8,20 <>
<”i”j”k> " Qo W 2 {51} uiujuk e 1=1"1 1 (2.22)



or

14

_1l,zLy3 33 ¢°
= \
a B a<¢i>a<¢j>a<¢k>
P O PR B B N S (i }
B 3<¢.> 0 9<9,>8<¢, > 03
i G j k G a<¢i> a<¢j>a<¢k>
=_1 _3 0 o o
3 _—-3<¢i> (<ujuk> ) + <ui> <pjuk> (2.23)

o 0. .0 o'_ 02 _ 0
RNl R R Sjk{éji(<uj> <ug> ) (1-2<p 7)1}

3

o _ 02 o o _ 02 0
+ Gji(<nj> <uj> ) <w > +6ki(<pk> <> )<uj>

o _ 02 0
+ ij(<uj> <uj> )<ui> by eq. (2.19) (2.24)
0 = 0 0 ]
<uinjuk> <ui> <q 1> <uk> if i+j*¥k ‘,
= <“1>°<“j>° if i#j, either k=i or k=j L (2.25)
|
=’ if i=j=k )

By the same method as above, we can deduce, for example, that

0 0 0 . 3=
<uiuj ukulo ee > <ui> <ul> , if i-j k*l*o xXx
(2.26)

<ui>°<uj >°<uk>°<ul>?. ooy if i%j+k#l%,,

Therefore, if A=0, the average of the product of the different

cell occupaticn numbers is equal to the product of these average cell

occupation numbers, Their correlation is zero.

D. Applications

Here we will apply the above product relation of average cell

occupation numbers to derive an equation for &(r), which is a difference

between <ui> and <ui>°. From eq. (1.16), we may write
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<uj>'° + <y ja>‘° + <ij2>°{2; +ue

Y. > =

(2.27)
J 1+ < +<a2>°/21 +,.,

In order to calculate <p.> as accurately as possible, we haye to

3

calculate <A>°, <A2>°, <ij>°, <ij2>°.,.etc. Rewrite eq.(2.27) as

<§j>£{<uj >°+<uj'A>°+ %"-<ij2>°+,, « H1-<a5°- -;_—!<A7->°+<A>°2+. .+ (2.28)
- ¥ 0 . Ox 0y, 1 2.0_.. .0_x2.0
or <]1j> <pj> +{<ujA> <~pj> <h> H 5 {<~ij > <pj> <A%>"}
+{<uj'>°<5>°2-<uja>°<5>°} to 0(22) (2.29)
By the relation in egs.(2.20),(2.25) and (2.26), we can calculate
0 ZAP’o. 1 By o ' '
B m T T 5 T 2o Tkl (i) Gy M)}
o o

=8 ' o__ .0 0, .
7 kedeolin THH > W <Bpm><uy>E<y ><y >

or <p>° = -% k#i *OUki{<'uk>o<'p1>°-<]_\k>o<u1>-<pk><u1>o+<uk><pl>} (2.30)

$(u.A)F

0

=

and <p A>° =

8 ~
. (= DR f o BagTerts (™) (ym<wyp )}

XN

IP
o 0

__8 : 0 0 ) 0 0
= = 7 kebaoTr (Mgl —SHgm> i<y > s bau ey >an >,
o 8 o, 0 0 o_ .0 o_ .0
E - - { -
or <}1jA> 7 lzl*OUld‘(pj> K> <Ky <pj>-<pk> <pl>-<pj> <111> K>

<y 3 >°<pk><pl>}

8 ) 0 0 0 ) 0.
-3 kél Ukl{<pk> <111> -<pk> <pl>—<pk> <p1> <pk>+<pk> <uk><}f1>}
J=k,3#¥1

- % kil Ukl{<p1>°<uk>°—<ul>°<uk>°<pl>-<pl>°<pk>+<u1>°<pk><ul>}
Lk (2.31)
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The aboye calculations are to be used in the right hand side of
eq.(2.29), Because the calculaticns of <A2>°, <ij2>o.,etc. are yery
long and complicated, and they are much smaller than the terms of the

first order of A, so they are neglected, We may rewrite eq.(2.29) as

py =<’ + {<p 85° = <u5%<5°1  to 0(a) (2.32)

h| 3 h| h
or Gj = <1;j15>o - <uj>°<A>° (2.33)
where we defiﬁe 6‘,'E<.>-< >0 <qu.>=<p>° +6 2.34
Ty or = (2..36)

Sustituting eq.(2.34) into eqs.(2.30) and (2.31), we have

o__B8
B> = -7 el %a %S (2.35)

o _ 8 o _ 8 o ‘. 0 o A
W= = U sndreolia binm 2 1R Uy Oy 8
- 31
B ., 50 °
P

__8 0
== 2% lebo GablrtiiTindsfrid Unds b

J*k, j#l 143 kt]
B .0 0 By 50 °
=7 CHD LU &y oy CHP O Dbk (2.36)

1% k+j

By eq.(2.35) and (2.36), we have

0 0_,0_, B 0. 0
<ujA> - <]_|j> <B>" = 2(: 2).<]_1j> ( 1+<pj> )1—§-1Uj161 (2.37)
1#j '
where the first term in eq.(2.36) just cancels <u >%>°, By eqs. (2.33)
]
and (2.37) _ o_ 02
’ 5j = g(<uj> <pj> )1§1U3151 to 0(4) (2.38)

1#3
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We know it is very difficult to solve this equation for §(r).
For very large r, <pj>° = nv, so in this limit
2 2. o
Gj = B(nv-'n.v) z,U.. & (2.39)

121741 21
1#9

For very small r, <uj>° = nvpo(r), S0

8, =8 {nv- 2?°2(n)} I, Uy 8 (2.40)

1#j
vhere we define po(r) as the radial distribution without considering

the fluctuation. _'90 (r) is used here in order to distinguish ¢(r) in
<i.1 j> = nvp(r). Because gP (r) is also a function we are looking for, so
the equation becomes very complicated and hard to solve, In the next
Chapter, we will derive a similar equation as eq.(2.38), and use a spe-
cial potential fumction to splve for 6(r). So we will not go any fur-

ther from eq.(2.38). It just shows us an application of the product of

the average cell occupation numbers,

E. Condensation when A=0

It is well known that the first order phase transition occurs at
the singularity or discontinuity in the equation of state. For any
finite system, no matter how large the volume of the system, we cannot
easily recognize the first order phase transition unless the equation of
state can be explicitly calc:ulatc-':d.18 The singularity is associated
with the limit V=, For an infinite system, according to the condensa-

. 18,19,20 .
tion theory of Yang and Lee "5 Wwe have to prove the wniform con-

vergence of fl In &(z,V) = F (z) as ¥ + = so that we can write an equa-

tion of state for a single plase as B p(z) = F_(2) and 1/5(2) = zaFw(z)/a 2,
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where ¥(z) is the specific volume, ¥ = 1/n.. Because it is very difficult
to prove the wniform convergence of F_(z) by using our grand partition
function in eqo.(Z‘. 11) for A=0, so we will use the canonical partition
function to discuss the condensation,

When A=0, the partition function for N particles with one fixed,

from eq.(2.8), can be written in an integral form as

z; = afv eXp. {-B j§1<¢j>} dgldl.'z.un.dsN (2041)

where <¢j> is the average potential on each particle, instead on each

cell as in eq.(2.8). & is another proportional constant, Or write

Zg =4/ Ve-8<¢i>d;1. eeef Ve-8<¢N> dzy

S T SO
=83 1T oy

=0 1{s ve-M(r) 4re2dr (2.42)
We see that our system has a partition function of the same form as
an ideal gas in an external field with potential energy <¢i> on i th par-
ticle,
For very large r, $(r) has the form U(r)+h, where U(zr) + 0 as e,
Let R, be the point where U(R) = 0, and R be the radius of the volume V,

{assuming we have a.spherical system), The integral can then be written

as

1878 4rctar = (PeBE yr2ar 4 B R drrtar
]

For an infinite system, V + « or R + =, the first term will be a

finite constant, the second term will be proportional to V, because its
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integral 1s 4m(R3 - R3)/3 = 4n83/3 = Vas R + », Therefore, eq.(2.52)

can be written as

Z;; =Q {cv }N (C is a proportional constant) (2,43)

Then the free energy is

= =kT In Z§ = =kT {a constant + N 1ln V} (2.44)

and the pressure is
p=-22| =xM/V  orp=nkl (2.45)
ov 'T

The pressure depends on temperature only and is independent of

volume, Therefore there is no condensation when A = 0,



CHAPTER III

CONSIDERATION WHEN 4 # 0

In Chapter I, we have mentioned that the neighboring cells are
not simultaneously occupied and let A=0 in deriving Cohn's integral
equation, eq.(1.23), will limit his theory for low demsity. In order
to apply his theory for high density; we have to overcome these two
assumptions. In Chapter II; we have tried to use the product relation
of average cell occupation numbers, when A=0, in the calculation of
the fluctuation terms, and derive an equation, eq.(2.38), governing
§(r), the difference between <ui> and <ui>°, but it tums out difficul-
ty to solve for &(r), even .the first order of fluctuation A is consi-
dered only, Here in this Chapter, we will avoid these difficulties.
When the system is getting densey and densey, the fluctuation is very
large. So we have to keep all the fluctuation terms as many as possi-
ble. The Einstein's formula?l of the probability of fluctuations is
used here to calculate the average cell occupation number <y ;> to all
the orders of A, and from which we can derive an integral equation of
6(r) for gemersl cases with genmeral pair poteritial. Since the kemel
K(x,r) we use in the integral equation is so complex that we shall
select a special potential fumction to Qolve the equation. This spe-
cial potential has the form U(r) = Uo forr<o a.nd. U(r) = A exp(-un)/r
for r > o, where Uo and u are positive constant and A is a negative
constant. In the high deasity, it is very possible that two particles

20
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are in the neighboring cells, even in the same cell (this means the

centers of two particles are in thé same cell), So the special poten~
tial function we used here U(x) = U° for r <0 is realistic.} Then we
solve §(r) for very large r and §(r) for very small r and thei_r match

point at r = r, can be foumd.

A, The Probability of Fluctuationms

Before deriving the probability of fluctuations, we explain the

ideas to calculate the fluctuation terms as follows: First, we define
- 0 . . '
X E - <pg> for all variable X, at i th cell (3.1)

where My is either 0 or +1 and <ui>° <1, s0 xi ranges from -1 to +1,

Then we can write

8 = <u> = <up> = <x> (3.2)
and so x, - 6:’. = - <> ' (3.3)
By eq.(2.27), we can write
<y ieA>° < (<ui>°+x i) eA>° o <xieA >0
D S W B0 B A W) (3.4)
<eg > <e > <e >
<x eA$°
or <U.> = <u_>° =34, =—%—o_-— .
* : o< (3.5)

In the dense system, we have to calculate <}1i> (34 Gi) as accu-
rately as possible, From the above equation, we must calculate the

average < >0 including A exactly., By eg, (1.9) and (3, 3), we may write

=-£ 5 - -
A - 2 i;j*o Uij (xi 61) (xj Gj) (306)
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which is dependent of the variable X, Therefore, in order to calcu~
late the average of some quantity including A, we must choose a pro~
bability function with the variables X0 Because X, is the deviation
of pi from its average <pi>o, so we can consider X, as a local fluctua-
tion of the i th cell occupation number; Let us denote W{Xi} as the
probability of fluctuations for this whole set of variables {xi} = X%

cosseX e Then, according Einstein's formula21, the probability of

fluctuations in an isolated system is

Wix,} = Rets/k (3.7)

where A is a proportional constant; As is the change of entropy from
equilibrium associated with the fluctuations, the variables xi; and k
is the Boltzmann constant, The above formula is valid for all equili-
brium situations.

For the calculations of the average < > of some quantity, say

f(a), with fluctuationA, we may assume that

J.-i-l '

R o+l :
<f(A)> = - locoofxt=_1 W{xi}f(A) dxloaodxt (308)

e

This assumption should be all right as far as we can express
W{xi} in terms of the variables x; instead of 4, because the left hand
side, < >°, is the 'average by using the partition function when A = 0,
Now we will derive W{xi}, from eq.(3.7), as follows:

We are considering fluctuvation at constant T and V, Expanding the

entropy S around its value at equilibrium, we have
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38 1 323
S{xi} = §(0) + E (-,-a;{:—)o 7 ifj ('5;;5;;)0 ixj t v 3.9)

For an isolated system, the entropy is a maximm in equilibrium,

so the second term yanishes, The change of entropy is then

—32—8—) X, X (3.10)
9%.9x, ‘0 "ij '
1]

= =1
= 5{x;} - 5(0) = 5 1§j ¢

Because the change of entropy and the change of energy has the

relation,
1 1 '
BS =3 AR =3 [E{x } - E(0)] for constant V (3.11)
32s 1 2% .
Bxiaxj T Sxiaxj
By egs.(3. 10) and (3,12) we may write eq.(3.7) as
Wix,) = zu K, §-1 han 613
where we define = 22 E ) - (3.14)
Akl - Bxiaxj 0 '
Now, we will evaluate Akl' Define Uij=0 for i=j, i.e, Uii=0’ then
t
Elx; ) =3 12550 iUy
1 t t
=7. § =1 >° 4+ x )(<uj> + xj)U +jil uj o3
t t )
=l.2<><p>U +12(x<y> +x<p>)U
2 1,3 Hy 3 1] P I kI ij
1 ¢ t 0
+3 iE,:j X. iji + jgl (<uj> + xj)Ujo (3.15)

The variables X, are not all independent, The sum of % is zero,
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i.e.

= - 0 =
i€ %5 T 121 (g = <up>)
(3.16)
t=l
°r x T - §1 1

Here t can be any cell (not necessary the farthest cell). In order to
differentiate eq.(3.15) respect to any of its variable x;, Ve have to
change the upper limit of sum to t-1, so x& will be independent varia-

bles,

: = 1 0 0
Blag = xpeeex )} = 353, <> <> 0

1 ts
+2(—2-)1;1x<u>Uj+2(1) tzlx<uj

1, t=1 ) 1 0
Y2Q) Iy w2 Uy, 26 x<up> U,

* % :E; =1 ¥¢%;055 ¥ %jzi X XUy * %Ei %% Ve ¥ ; XX lee
¥ ;’zi <uj>o Yo ¥ ;i *%50 * ¥ Vg zzi % Uto
= -2]: i);:] <ui>°<uj>ouij
* ;?321 "i‘“j’oU;j - §§;=1 X <u U ¥ E1 2"
; ;§; 1 %%05 " '% ?1 * %05 "% I?;=1 *1*3%¢
; i Hy Uj ;Zi jUJo + u> zzi *Uto (3.17)

Now we are ready to differentiate respect to x and then X
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—8%1:— ;'Z:; <‘uj>0Uk -Z-‘} .50, + <y >°ukt
ey by -3 e
- % ;zi xjUkt: " % Ei init + uko B Uto

aiigxk By =2 % "7 % "7 %e "7 e

Lohg e x o Yo = Ueg = Tep = Uy = Mg

(3.18)

(3.19)

(3.20)

Therefore, Akl is a symmetric functicn, By eq.(3.13) we then have

1 t=1 _
Wiz} = fe T 1b1=1 Mk BN , here {%,}is x

(3.21)

Next, we will use this probability of fluctuation to calculate

the average of the fluctuation terms.

B. The Equation for 6(r)

Here we will use W{xi} in eq.(3.21) to calculate <e

0
>, from

which we are able to derive an equation governing §(r), By eq.(3. 82

Ao _ +1 . +1 A
<e > = Ix =-'1...fx =_1 W{xi}e dxlcoodxt_l
1 t-1
Because W{xi} is from X to X1

A as the sum from 1 to t-1, By eq.(3.6),

-2xiGU +6,8.0,.)

A:-s‘-
2 1 i3 i3

t
z. x.x.U
»3=1 ( i"3713

(3.22)

, So we also have to calculate
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B tsl 8 t=l 8 t=1
=7 15521 %505 Y7 185=1 250 T 7 181 250

t=1 t=1 t=1

+8 iy3=1 16'Uij + e 1§1 16t it -8 EJ—l Xléjutj
-8 ; §.5.0
2 i%5=1 °1°313
__Btsl t=1 -
=-3 3 J5=1 %% (U T tJ -U)+ B, zj -1 1sj(n U Ufj)
-8 t §.6.U
7 12321 %1%3043
Bt g -
ora=- g E  mwh e T we, -8 n a0, 0.

In the above derivation, we have used the condition that

e et

O

L]

o

o

a}

o7

]

]
el

S, (3.24)

Gde

Substituting eqs.(3.21) and (3.23) into eq.(3.8), we have

Ao ; A : -
>’ =k fxl_ 1...f t:-1='1 W{xi}e dxl...dxt_,,here {xi} = XjeeeX,
t
8 . +1 t=1
= & exp(- 7 ;L i 616 Ll )f_l..f exp(B iZ1 xzixi)dxl...dxt_1
(3.25)
where we define A, = t 1 (3.26)
1 551 Myl .
+1 t=1 _ ot 41
and f_l...f exp (B i_§_1 }’»i)‘i)dxl"'dxt-l = igl exp(B)lix Ydx
B). =BA
_t=1 1 i i
=ihm e e D)
i
t=1 2 sinhg);
= 1
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By eqs.(3.25) and (3.27), we have

, t sinh B},
Ao ~ B 1 i
> = - — ——————
<e A exp( 7 ,j 1 5 6 U )(2) 1 _Bﬁi (3.28)
By egs.(3.25), we can find 61 by
Ao
. - <xie > ) .l 31n<eA>° (3.29)
i <eA>° B 2)}\i
t sinh BA,
°= i-8 - tel a1
In <e™> =1n A 2);‘ 1516U1]+(t1)1n2+1§11 B)‘i
(3.30)
6, = coth 8\, - —am (3.31)
se i i B)\ L
i
The right hand side is a Langevin function, i.e. af(BAi), s0
5. =L(B\,) or 8 =L@t z A, 8,) (3.32)

i i ij’J

We call this as the equatica for Gi. This is an exact equation.

In order to scive thie non-linear ejuation, we may expand the
right hand side as (Bli/3)-(Bli)3/4S+.., but ), itself is a linear suw
of Gj, so it will be better to use the inverse Langevin in the left

hand side and expand it as the order of 51, i,e,

S |
L78y = 8 E) A8, (3.33)

Here 1-16 -A ) +A26 3+,.., the constants, A,=3, A,=0,

1 2
A3=9}5 (see Appendix B). Gi is the order of zero, so the second and
third order of Gi can be neglected,

Now, we may write eq.(3.33) as
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o
I
wlmw

t
1 _& = 8
P A8, o gy = 3;(II =0T 42857 Elijj(334)
According to the same method in Appendix A, we can derive

U, .8,

AR r) dx (3.35)

where K(x,r) is defined in eq.(1.25)

Combining eqs.(3.34) and (3.35), we have

5(r) = 22— 1 % (0R(x,1)dx (3.36)
or I(r) = u:’ I(x)K(x,r)dx (3.37)
where we define I(r) = r5(2) (3.38)
and A= 27m8/3v (3.39)

Eq.{3.37) is the equation for (r), then for 6(r). If this equa-
tion has the finite upper limit, then in general, this equation has
but one solution II(r) = 0. But there exists a set of characteristic
constants )‘1’12’"" for each of which this equation has a finite
solutions IIl(r),IIZ(r)..., called the characteristic functions, 'The
solution is then obtained in the form I(r) = Ich (r) where the C,
are arbitrary constant, But our equation has the upper limit =, So
it might have a solution II(r) for certain A.

It is very difficult to solve N(r) for all regionsr, but for
very large r and very small r, we can use a good approximation to
simplify the kernel and use a special potential furction to solve for
H(r)'.‘ In the following section we will first consider the case when

r is very large., After that, we then will consider the case when r is
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very small, Then we can extend to all region r by using the condition

that ;8____161 = 0,

C. Solution of N(r) for Very Large r

If r is very large, we can simplify the kernel K(x,r) so that
I(r) can be solved easily. A special potential function is used here
to solve the equation.

From eq.(3.37), we will first solve N(r) for very large r. Since

K(x,r) in eq.(1.25), is so complex, = i.e.

K(x,r) = EU(E)dg E KI(x,r) when jx~-ri< o
: (3.40)

|x-r| EU(E) dt = KII(x r) when Ix-ri>0

We shall select a special potential fumction, which is nevertheless

realistic qualitatively, we take

U(r) Uo forr<o

it (3.41)

A

Hio

forr>o

where annd p are positive constants and A is a negative constant.
Because kernel R(x,r) is different in the regionsix - ri< ¢ and

IX = 1> 0, so we have to derive a kemel for all the region when r is

very large. In the region, r-o to rtg, since r is very large, I(r) is

almost constaat. So by eq.(3.40), we write eq.(3.37) as

n(r) = Af II(x)K_[I(x r) + MI(r)f KI(x r)dx (3.42)

lr—z?o

A oK (%, 1 dx = AT (x,2)dx + AL(D)/] KI(x r)dx

(r-xKg II
(3.43)
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Now, for very large r, we find (Appendix C)

20A e—uc

fr*r_‘f’xl(x,r)dx - (if T + ) (3.44)

3 -
2200 + _2;‘A_ e uc

(x,r)dx = (if r » =) (3.45)

flr—xFUK.[I
Substituting eqs.(3.44) and (3.45) into eq. (3.43), we have

I(r) = )\f: II{x)K[I(x,r) dx - 2&’9—3- All(T)

3

or I(r) = vf: I(x)K ; (%,7)dx (3.46)

where v = — A : (3.47)
1+(2n°o3/3)x

In the following, we will derive a simple form for Kn(x,r):

Using eq.(3.41), Kn(x,r) in eq. (3.40) can be written

‘ ' -u
Ry (er) = /20 de + f:+rgA-§- &g ifprico
-u€
= : @ ifieT> 0
. 2 - -
or U5 -““2—"2}- % O L K"I’I(x,r)
for Ix-ric o
K (1) =

(3.48)
- -ﬁ’ {e—u(’&r) - s Iéﬁ(x,r) foriz-rj> o

Note, II(r) = ré(xr), so N(x) =0 if r = 0. Also at the central
cell, the occupation number is always +1, so §(r) = 0 if r < 0. 1.e,
N(r) =0 for r < 0. Then, from eq.(3.46), the lowrlimit o in the

integral can be replaced by 0, i.e.

I(z) = vf: I(x)R (%,7)dx (3.49)
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here the integral also includes the region r-o to rtg, i.e.
r+q - rtg
IM H(x)KH(x,r)dx = II(r).i’r_(J K[I (x,1)dx (3.50)

) (2)
Tsing K;; and KII of eq.(3.48), we find, for very large r,

2U o3 -0 20 o3
w _ "o 20Ae _ o 2 240
fpmgo Fp (oD = ——+ == S0 3 C %A+ (35D
w _2A _ﬁg _ 2£
p— KH(x,r)dx— v (1-e™) 30 (3.52)
25 53 2
We assume (EUoc - 20%A) << (3.53)
2
Then we see that KII = é; can be used throughout the region 0 to
s
X (x,r) = % oW T e-u()&r)} for all x (3.54)
For very large r, we find
K[I(x,r) = % e-u(r—x) if x<r (3.55a)
Ku(x,r) = ﬁ:‘- e-u(x-r) if x>r (3.55b)

The reason is, for x>r, eq.(3.54) can be written as
Kﬁ(x,r) = % e "EeM - 7MY = % e "e'T because e "T40 as e
For x<r, eq.(3.54) can be written as
KI (x,r) = -é- e—ur(eux - e-ux) =0, ifx=0
I M
, 1f x*0, r is very large,

= A wrx
U

Therefore, for very large r, KH(x,r) has the simple form,



32

Ky (1) —Z%e‘“”“r’ for all x (3.56)

Eq. (3.48) can then be written as

Av
U

I(x) = fg Mex)e M(T %) gy 4 -—‘3"— I: M(x)e P& Dy (3.57)

We can now convert this to a differential equation as follows:

Using Leibniz's formula, we differentiate lI(r) twice, giving

dn(r) _ Av r
dr -0

16w e F g + 2160 + 27160 (e M ax

Av
H

n(r)

dn(r)

or
dr

= -t S 1e TPy + ay I8 T(x)e P gy (3.58)

a2n(r)

Ty dvufy 1 * ¥ ax - pneo + bouf n(x)e D) 4y
d

= AI(r) (3.59)
By egqs.(3.57) and (3.58), we have

a1 (x)

+ (~p% + 24v) I(x) = 0 (3.60)
dr?
The solution for this equation is
I(r) = 6°e- We-2vA T forr >+ ' (3.61)

where u2=-2vA should be positive, II(r) will drop exponentially for very

large r. And 60 is a constant,

—Jz-.vA T

or §(x) =8 = - forr+ (3.62)

Now, the constant 60 can be found as follows:
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Substituting eqs.(1.18), (1.14) and (3.62) into (3.2),

—v’ﬁz - 2VA 8¢ (). '
s & = nwp (1) - —2% (3.63)
° r 1+ze-6¢(r)

Let us assume for very large r that U(r) is very small, then
-~ - U - -
p(r) Te BU(r) o 1 - 8U(xr) (See Appendix D) (3.64)

U(r) +h (3.65)

113

acd ¢(r)

gh - _av gh

and by z e © eq. (1.15)

Eoe

We can write eq.(3.63) as, to 0(8U),

e—»’uz -2VA T

5, - 2 - n2v28U(r) (3.66)

By using the special potential in eq.(3.41) for U(r), we have

e—v’uz -2VA T -yr

> .2 €
8, - n2v2RA - (3.67)

This can only be valid if

ﬁz >> 2vA (3.68)

amd thus 60 = -n2v2BA, a positive quantity ( A < 0) (3.69)
~ur

Therefore 8(x) = 60 - forr+ o, 60 >0 (3.70)

ar I(r) = 50 e HT forr+o (3.71)

We see here, that §(r) is proportional to the pair potential for
very large r. It will drop very fast and approach 0 as r + =, In the

cext section, we will derive a relation between §(r) and a gerneral pair
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potential U(r).

D, Relation between §(r) and U(r) for Very Large r.

Here we consider the relation between §(r) and U(r) for a general

potential function when r is very large. From eq.(3.2), we write
§(r) = <u(x)> - <p(x)>° (3.72)

where r is the distance of the i th cell from the central particle.
We substitute eqs.(1.18) and (1.14) into eq.(3.72),

ze—B¢(r)

§(r) = nwp(r) -
1+ze‘B¢(r)

(3.73)

When r is very large, by egs.(3.64), (3.65) and (1.15), we may

write eq.(3.73) as

nv gh, =8{U(zr)+h}
-RU(1) _ gl-nv e) e

6(xr) = nve .
1+(13;7v eBh) e—B{U(r)+h}
é'nve-BU(r) _ nve—BU(r)
| l—nv-ane—BU(r)
= nvil-8U(n)} - —2v1=BU(D)} (3. 74)
1~nvBU(r)

vl 1-60(r) Hil el —}

-n?v2{ 1-8U(x) }BU(z) { H+nvBU(r) }
or &(x) ¥ -n?v28U(x) (3.75)

In the above derivation, because U(r) is a very small negative
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quantity when r is very large, so 18U(x)I 2 <<|BU(xr)] has been used in the
derivation, Therefore, for very large r, 8(r) is proportiomal to the
pair potential fumction U(x).

Note, §(r) is a positive quantity for large r. This is equivalent

to <u(x)> > <p(r) >° for large r. The physical explaination for why

6(z) > 0 is as follows: For large r, we expect that w> = <ui>°

Substituting this into the right hand side of eq.(2.27), we have
<ui>'o + <uiA>°° + <uiA2>°0/2! + .

<u,> =
1+ <0+ <A2>°°/2! + eee

where we use the double superscript zero on the average, < >°° for

< >° being calculated by assuming <u> >, From eqs.(2.30) and
(2.31), we find <A>%° = 0, and <p, % = 0

w> + a2+ .,

Thus, P e 00
1+ <42>°°/21 + ...

= <pi>° + <uiA2>°°/21 - <ui>°<A2>°°/2!
By eq.(1.9), we have

A2 = (- -82-)2 j*ﬁ*o 14540 jk 1m(u —<q, >)(uk-<uk>) (uy- <n1>)(v < >)

}:(..)?r 2p, (o o)P
2 2
2.0 _ o g g i 0
WA = > 7 gekeo 1680 5 bt 54820 1efoteerd 3 }
it 14l 0 i=§ i#l 0
itk im itk i#m
and
200 )P
0,20 _ o g2 0
DR - S TV, S PO 5
1] i+l )

i+k i+m
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<u iA2>° - <pi>°§A2>° is a positiye,
and so <uiA2>°° - <pi>°<A2>°° is a positiye, too.

For large r, higher order terms in A should give a negligible

contributions. Thus, for r + «, we have

<pi> > <ui>°

Therefore, when the fluctuation A is considered, the particles are
likely to move around and have more opportwnity to switch their positions
from the dense portions (near the central particle) to the dilute portion

(far away from the central particle).

E. Approximate Solution of I(r) for Small r

In the last section, we find 8(r), for very large r, decreases
proportionally to the pair potential function from positive quantity
to zero, We expect §(r), for small r, will start from the negative,
so that the sum of §(r) will be zero, Here we will solve H(r) in eq.
(3.37) for small r, and for a special types of potentizl and o 2 0.

For the moment, we consider a general potential U(r). Using the
kernel in eq.(3.40), we rewrite

KI(x,r) = Nx + 1) - N(9) when |x =~ 1| < 0O

(3.76)

Ku(x,r) = N(x + 1) - N(iz-1|) whenjx~ 1| >0

where we define

N(x) = /X gu(e)de (3.77)
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we also define M(0) % /10 N(ix-r))dx (3.78)
By the above definitions, we can write eq,(3.37) as

I(x)

SR (T R LT R WA (T WEX L TR Wi (€] SN CROF ™

A 37 I INGebr) = NGex) Hax + A S50 I(x) {N(etr) - N(o) }ax

+2S, I(x) IN(e+r) - N(x-1) Hdx

A D I@NGeT) dx - A S50 IGN(ex)dx - A f:'; T(x)N(o) dx

-2 Ir+c I{x)N(x-r)dx

il

A 17 NG N(a+n) - NGe-m¥x - 3 ST M(N(o)dx
™
+ A fr-.o I(x)N(x-r)dx
or IIi(x) = A f: T(x) {N(x+r)-N{x~r) }dx = ZoAN(o)7(x) + AN(x)M(0) (3.79)

Here we also assuee II(r) is almost constant in the region r-c to rto,

Rearrange eq.(3.79), we have

I(r) = n f: I(x) {N(xtr) - N(z-z) }dx (3.80)
where n = A (3.81)
1+202K(0)=2M(0) *

So far, we have not assumed that r is small yet. Notice, the equa-

tion is independent of the behavior of N(1Zl) foriE[< o, i.e. of U(E)

for £ <o

Eq.(3.80) can be written in two parts,
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I(r) = n J’; T(x) (N(x+r) - N(r-x) }dx + n f:n(x) (N(xbr) - N(x-1) }ax
(3.82)

By Leibniz's formula, we differentiate N(r),

an - - -
D g T e (B B0 4 4n (7100 B - By,

+ () {N(2r) ~ N(O) }-n(z) {N(2r) - N(0)} (3.83)

By eq.(3.77),

9

3 N(xtr)} = (x+r)U(zt+r) (3.84)
ai N(r-%)} = (%) U(z=%) (3.85)

-3_18." {NG=1)} = = (z=0)U(x-1) = (r-x)U(r=%) = —a%-{N(r-x)} (3.86)

The last equation is due to U(x) = U(-r), which means that the pair

potential depends only the absolute distance between two particles, then

d'n——gi) = f:n(x){(x*r)U(x‘!'t) + (3~r)U(x-r}}dx (3.87)

Note, this is an equation for general potential for all r. No
Approximation has been used except I(r) = I(x) in the region ir-xi<o,
Now, we will use the special potential in eq.(3.41) to solve the

above equation for N(r) as follows: For a special case, assume

=0 (3.88)

And write eq.(3.87) in two parts, the lower limit ¢ is replaced by 0.
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dng) = nlel(x) {aeHOHT) _ph Ry g nf:II(x) (ae M) o WG g
dn(r) _ onpe P (T . & -px
BT nAe IOH(x)s:th uxdx + 2nA cosh urfrII(x)e dx (3.89)

This is an equation for ¢=0 and all r. We may rewrite this as

—dgﬁi) = —ZnAe-urf gt(x)sinh pxdx + 2nA cosh ur{S :H(x)e-uxdx -f sﬂ(x)e-uxdx}

For very small r, i.e. r=0, the integral fz will be negligible, so

—ﬂfl—:l = 2nA(cosh yr) f:]I(x)e-uxdx forr=0 (3.90)

) - poaB(cosh ) forr <0 (3.91)

where B = f: H(x)e-uxdx = a coﬁstant (3.92)
The solution of eq,(3.91), using the condition N(0) = 0, is

() = 228 o yr (for o = 0, T = 0) (3.93)

or &(xr) = 2nAB sich ur (for c =0, r =0) (3.94)

H r

From this equation, we see the behavior of §(r). Because A is a
negative constant, If B is a positive, §(r) will be negative for small
r, the region between large r and small r is unknown., As §(r) is nega-
tive for small r and E(r) is positive for large r, we may expect to

find a satisfaction of the condition that
igl Gi-- 0 (3.95)

Later on, we will show how to find B. We will recomsider IlI(r) for
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very large r for the case when y is very small in the next sectiomn.

F. Reconsideration of NI(r) for Very Large r with py = 0

—— e e +om

When p = 0, we have a long and weak interation between two par-
ticles. We will use the results we have got before to reconsider n(r)
for very large r.

Still assuming ¢ = 0, we can use [I(r) in eq.(3.71) in the integral

f: of eq.(3.89) i.e.

_cl]'[é_r)_ = -ZnAe-ur h rn(x)sinh uxdx + 2nA cosh ur s e—zuxdx
r ) ToO
_ -Ur I . nAf, , =ur =3ur. -
= =2nde IOH(x)s:th pxdx + o (e + e ) (3.96)

For the case of very large r with u=0, the integral in the first
term will be proportional to r as the integrand approaches a constant,

and we have p=0 in the denominator of the second term. Therefore

dj((r) - nAds ~UT © ~
Fraiala e (for r » =, p =0) (3.97)

The solution of this equation requiring condition N(=) = 0, is

I(r) = —D4 5 7T (for £ + % ,p = 0) | (3.98)

2u2 °
Choosing -nA/2u2 = 1 (A < 0) (3.99)
Then I(zr) = Goe—ur (for r +=, y = 0) (3, 100)

This is the same equation as eq.(3.71). Now we will discuss the
assumptions made in these two cases, In the former, we assume

(2U°q~3/3 - 202A) <<2A0/u, eq.(3.53) and 12 >> 294, eq.(3.68). And now
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we assume -nA/2p2 = 1 and p ~ 0, When p = 0, the former assumption
can also be applied, but we have to select 2VUA even being smaller than

u2, By such assumptions, we may decide those constants A, y, Uo in

the special potential fumction in eq.(3.41).

This argument can also be applied to the case where o # 0 as

follows:

Assuming o # 0, we devide eq.(3.87) in three regionms, i.e.

) - (T T L MG [ UGe) + (D) Ux-r} dx (3.10)

We will use a special potential, eq.(3.41), for the above equation,

IO o 0 TOn) (ae M) - pe M 1y

+ nli(r) {f;-c ‘A[e-u(#r) - e—u(r—x)J dx

+ f:”A[e’“(’*r) 4 HOED] gy

+nf7, 1) (ae P D) ey (3.102)

where T(r) is assumed constant in the region r-o to rio,

or __d”g) = -2n4e™" [T TL(x) (sinh wx)dx

2na

+ 22 (i o) I(z)e 2HT

+ 2nA(cosh ur)f:+oﬂ(x)e-uxdx (for all r) (3.103)

For the case of very large r, I(r) = Goe-ur in eq.(3.71) can be

applied in the second term and the last integral. Then
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D) - onae T EON(x) (sinh px)dx + 22 (sinh po)s e HT
dr g it o )
+ _121% So(e—ur + e-3ur)' (for r » =) (3.104)

dn(r) . nA 5 Hr (for r+=, = 0) (3.105)

The solution of this equation with the condition Ni(=) = 0, is

() = —DA—ZSO eHT (for  + =, 1 = 0) (3.106)
_Zu

By the same assumption -nA/ZﬁZ = 1 as eq,(3.99), we have
(x) =5o e "t (forr+=, 1 =0) (3.107)

This is the same result as in eqs.(3.71) and (3.100). So, for large
r, we have derived the same expression for II(r) from two very different

approaches.

G. Determination of B and r

0
Here we still use the special potential fumction in eq.(3.41)

with p = 0. We have already defined B in eq.(3.92). In the previous
sections, we have derived §(r) for very special cases as r is very
large and r is very small, We have no idea how §(r) will be in the
region between these two cases. So we may approximately find a point
ro as the match point for 6(r) as r + 0 and r + =,

For the moment, in general case, we denote

II(r)

Hfr) or §(r) = Gfr) forrc<r
° (3. 108)

I(r) H?r) or §(r) = G?r) forr> T,
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For the special potential, eq.(3.41), we assume that M= 0 and

the result as in eqs.(3.94) and (3.70) as

$(r) =.27Iﬁ3 sinl;'pr ES<(r), for r< r, _
3.109

§(x) =4, e:ur 2 $(r) forr> r, ( )

This has to satisfy the condition;

2,8 =0 eq. (3.95)

.gor.g(r) 4yrtdr + j:.?(r) l.mrzdr = ‘0 (3‘-'110)

We write that 3 (r) is negative before r, and $(r) is positive

after r,. So far, we know when r is very small, §(r) goes downward

to negative, then it might go up slowly or oscillatingly to the positive

and connect with § (r) for very large r. So eq.(3.110) is an approximate

equation., Substituting eq.(3.109) into eq.(3,110), we find

So (pro + 1) e_”r°

B (3.111)
_._2%3 (pro cosh i, - sinh pre)
In the same way, we can use eq.(3.92) to find B as
- < - > -
B =j"‘x$(x)e Pax + )( x8(x)e #Xax (3.112)
] L
Using eq.(3.109) for§¢(x) and 3’(x) in eq.(3.112), we have
(§,/2p)e )"
B =
=207, (3.113)
l...q-é—. (r + € p - -—1—
P \te T T 2

Therefore, in principle,we can solve for B and r, by eq.(3,111) and

(3.113)., We next discuss the sign of B:
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In eq.(3.111), because A ¢ 0 and

MTo coshpr, - sinhur, =pr, sinh (yr, )I(/Jr,) 20

So, B is a positive constant.

Instead, we may derive the sign of B by refering to eq.(3,113).

In eq.(3.113), because A< 0 and

-2z,
r, + = -

25 T2

1 (=2pr, ) 1
T, +-2—P—{1-2pr, +——2L-— ...} ey

n

/ur: = a positive
Therefore B is a positive constant for uS 0

Again, it is important to have B as a 1.>ositi.ve constant, So that,
by eq.(3.94), §(r) will start downward to r, at where §(r), eq.(3.70),
will decrease exponentially from the positive and approach zero very
rapidly-.. Certainly $ (1) will gatisfy -"i Si =0, as B and r, are foumd

from this condition,

H. Condensation when A # 0

Here we don't prove the condensation when & # 0 in our model. We
just 1like to mention that the construction of rigourous theory of conden-—
sation has been attempted by many authors, but not quite successfully yet.

Kac, Uhlenbeck and Hemer22’23

constructed an exact one-dimensional zas
model with the pair potential U(x) = -d.exp(~¥%) for x%§ , (§is used
here as one dimensional hard core distance), and showed the phase transi-
tion in the limit ¥ 0, For the finited*, they found no phase tramsition.
Unfortunately; their method is very hard to generalize to more than one

dimensional system or to other kinds of pair potential.

Whena # 0, in order to see the condensation in our model, we have
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to calculate <ui> very rigorously. Because <]Ji> = <ui>° + Gi, SO we may
find a very exact function for §(r). Even though we can not use this §(x)
to check the condensation for our model, we still can use it in the
following chapter to construct an integral equation governing the radial
distribution function for high density, When we have solved this equa-
tion, we can use this radial distribution function to calculate the
pressure p by using eq.(1.2). From the curve of p vs n, if there is a
plateau (or discontinuity), wé then have a condensation in our model.-

The condensation theory is now beyond mathematical power, but it can be

done by the numerical calculation through present high speed computers.



CHAPTER IV

INTEGRAL EQUATION OF THE RADIAL DISTRIBUTION FUNCTION

In Chapter I, it was assumed, following Cohn, that when 4 = 0,
> = <ui>°, from which he derived the integral equation governing the
radial distribution function, eq.(1.23). The numerical results turned
out very good for low density9’13. But when the density increases, A
can not be neglected. We have to consider the difference §(r) between
<u(r)> and <p(r) >°, vhere r is the distance of a cell from the central
particle, In this Chapter, we will show the construction of the inte-

gral equation for A # 0 and its linearized solution for a gemeral poten-

tial, The solution for special potential is also discussed.

A, The Integral Equation

In the original derivation of Cohn's integral equation, <ui> =
avp(r) = <ui>° was assumed, Here we will derive a modified Cohn's
integral equation by adding §(r) to <ui>° so that his equation can be

used for much higher density.

We rewrite: <ui> = <ui>° + Gi eq.(2,34) 4.1)

and <Hg> = avp (x) eq.(1.13) (4.2)
~8<d.>
ze 1

g 30 R eq.(1.14) (4.3)

Substituting egs.(4.2) and (4.3) into eq.(4.1), we have

e 8¢ (x)

1+ze"fS $(r)

nvp(r) = + 8(x) (4.4)

46
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where ¢(r) = <¢ the bracket < > and s11b§cript are omitted,

17

1 {nvd(x) ~ §(x)}

or ¢(r) ==-=1n (4-.5)

8 z{1l-avp(x) + 8(x)}
From eq.(1.15), we have z = goeBh and nv = £°/(1+£°), then eq.. (4.5)
becomnes, |
ol () - Efo(n) - (HEIEM@)
$() =B+ g I =y = (e, )30 (4.6)
vhere we defige § (r) = 6(x)/ Eo 4.7

Eq. (4.6) is an exact equation for ¢(r). So it can be connected
directly with eq.(l.21), which is also an exact equation for 4(x).
Hence, an integral equation can be written as

(1+g) - € fo () - (HE )8}
=1
B p(z) - (£ )3(D)

= ri°(z) + me:Xp(X)K(x,r)dx (4.8)

This is a modified Cohn's integral equation, K(x,r) is defined in
eq. (1.25) and U?(r) = U(r)-h as in (1.24). Note, this is an exact inte-
gral equation for general cases. U(r) stands for the general type of
pair potential., To the extent that 8(r) could be derived exactly, this
equation can be applied to all dense systems. Here §(r) is found as in

A o

Chapter III by calculating the fluctuation terms, i.e. <xieA>°/<e > as

in eq.(3.29), a special potential function is used to solve for &(r).

B. Linearized Solution for p(r)

Here we will consider a linearized solution for p(r) in eq.(4.8).
We write p(r) = 1 + w(r) | (4.9)

vhere w(r) is not necsssary smaller than 1 as was assumed before in
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eq.(1.27), Then eq.(4.8) becomes

AL P G

Here we will make an assumption to solve the above equation, It

is just a mathematical assumption, no sufficiently physical interpre-

tation,

Assume {m(r)-(1+go)§‘(r)} «l andg <1 (4.11)

Then (1+£ }o(o)~(1+ )80 } = 80°(r) ~ ZZ84% (10 (x) R(x, 1) &
or u(x) = (148 )8(x) - ‘13:{ ) - "ij_’és 4% @K (4.12)

This equation has been linearized, By Fredholm's methodzl*, to 0(m),

vwe get
_ 'y ° 2mg 1 ®
o) = ()8 - - @) - JFE L L
-2mé¢}&ﬂﬁmﬂ&+%%%r-%Cﬂ%ﬂﬁ&ﬂk (4.13)
Define,
1,() s-% IoRR (x,7) dx (6.14)
I, (x) s.% [oxU" ()R (x, 7) dx (4.15)
%&)5%” §(K(x,r)dx (4.16)

By eqs.(4.13) to (4.16), and eq.(4.9), we have

2
p() = 1+ (Mg )T(x) = £ v0(r) - 4B 1 ¢y 4 28

T T 1,(z) - 2mBI(x)

(1+g )
4.17)
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This is the general solution for all kinds of pair potential,
Il(r) and Iz(r) can be calculated easily and have been carried out

before by using Buckingham potentialg. As for 13(1:), we first devide

the kernel into three regions. By eq,(4.16)
g 13 24 1
1 (1‘) = r X‘S(x) ‘II“{ ,T)ax + - 5(r) fr-cr xKI(x,r)ax
+ % B (2,1 & | (4.18)

where KI and KII are defined in eq.(3.40). K.[ is forix-ri< g, KII is

=gt =x
forix-r1> o, Also we denote KII = KLI for x < r and [&I = KII forx>r.
g(r) in the region r -~ ¢ to r + ¢ is considered almost constant,
Next, we denote § (r) = 811‘) for r<r,and g(r)zgfr) for r>r and apply
these for 8(r) of eq.(4.18). It depends on the position of r and

whether r < I, Oorr>r. In general, we can write

(a) For r very small,
I (r) 5-;1:- xSfx)KH(x,r)dx + = 6(r) f xKI(x r)dx
+ %[ Lo fox)K[I(Y r)dx + f x6(x)Kn(x ) dx} (4,19)
(b) For r very large,
Ia(r) 5-11':' {f?ﬁzx)lél(x,r)dx + f:_:q xgk;I(x,r) dx}
= 6( 1) R xKI(x r)dx + 1 f x:S(x)KLI(x r)dx  (4.20)

Note, eqs.(4,19) and (4.20) can be used for all kinds of pair poten-

tial, If the special potential as in eq.(3.41) is used, by egqs.(3.109)
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and (4.7), we have

g(r) - 'gz ) = 2nAB  sinh pr forr < T

qu r 0
. s s QHE (4.21)
§(x) = 8(x) == forro>r

Eo r Q

Using these two equations and the proper kernels in egs.(4.19)
and (4.20), we can find 13(1:), Then, by éq. (4.17), we will get p(x)
for all r.v
C.' Limitations

Here we will try to see the validity of eq.(4.8) for a system whose
density is so high that g, * = From eq. (1.15), g, = nv/(1-nv), g, = 0

fornv=0,0<£°<1for0 <av < 1/2, £°=lfornv=1/2,1<go<m

for—;- < nv < i, then §° > o fornv=1, So assume
Eo >» 1 (4,22)

Then eq.(4.8) becomes

r g {l=p(x) (1=6(x) /o (x)] } o -
T In NOIREIOIAG) = rU (r)+2m1f°_ xp (x)K(x,r)dx (4.23)

Since g(r)/e(r) << 1 for r + =, then the left hand side has a
term In{l-p(r)} . Because p(r) is larger than or equal to 1, so it is a
negative infinite which is no meaning at all, So eq.(4.8) is not good
for £, > 1, i.e. nv =1, As for the case of £, > 1, i.e. nv > 1/2, it
is hard to judge from eq.(4.8). But for the case Eo <1, f.e. v < 1/2,
the theory can be applied very well, according to the calculations

having carried out before9’13. This agrees with the original assumptions
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that neihboring cells are not simultaneously occupied in deriving

Cohn's integral equation,



CHAPTER V

CONCLUSION

The original Cohn's integral equation, eq.(1.23), and its modified
form, eq.(4.8), are different from the othérs, such as B-G-Y-K, HNC and
PY integral equations, eqs.(1.30) to (1.34)., The method used in our
derivation is not exact, yet it makes it possible to avoid the use of
Kirkwood's supperposition approﬁmationl*; which is used in the B-G-Y-K
integral equation for the system of not high density, and also to awoid
the use of the very complicated method of éluster diagram16, which is
used in HNC equation for the system of high density,

For sufficiently small number density (how small it is, see Cohn's
original paper), the original Cohn's integral equation, eq.(1.23), appli~-
es very well to the first order of E;o. This is due to his assumptions
that neighboring cells are not simultaneously occupied and A £ ¢, In
this paper, we extend his theory for high density by deriving the diffe-
rence &(r) between <u(r)> and <u(r)>° for the case when A + Q.

The equation governing §(r) is derived in two forms: eqs.(2.38) and
(3.33), The first one, eq.(2.38), is derived up to the first order of
A, using the relation of the product of cell occupation numbers (if A=0),
eq.(2.28), to calculate <A>°, <uiA>° etc, The second one, eq.(3.33), is
derived up to all the orders of 4, using Einstein's formula of the pro-
bability of fluctuation to calculate <eA>°, which has all the orders of
A. We use the second form to find the solution of 8(r) for very large r

52
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and for very small r, by using a special potential fumnction, eq°(3.4l).v
For very small r, §(r) starts downward in the negative direction, and
for very large r, §(r) starts from some positive quantity and decreases
exponentially to zero. For the region between very large r and very
small r, even though we have no idea how §(r) behaves, we can approxima-
tely use the condition that the sum of §(r) in all the regions vanishes
to find a point T, at where §(r) for very large r and for very small r
match, Unfortwnately, due to the special construction of the kernel,
K(x,r) in eq.(1.25), we have to use a special potential to solve for
6(x) analytically. More effort is needed to derive &(r) amalytically
for all kinds of potential fumction,

The right hand side of Cohn's integral equation, eq.(1.23) is de-
rived exactly, but not the left hand side of his equation. If we could
calculate <ug> as accuratly as possible, then it would be a very perfect
and exact integral equation governing the radial distribution fumction.
In general, we can find <p(r)>by adding 6(r) to <u(r) >° and derive the
modified Cohn's integral equation as in eq.(4.8), which would be an
exact integral equation for general cases, if d(r) could be found exact-
ly for the general potential, We show in the last chapter how to linea-
rize the integral equation and get an analytically solvable solution for
p(x)e

The fluctuation A plays a very important role in the dense system.
When A = 0, we have proved that the average of the product of several
cell occupation numbers is equal to the product of several average cell

occupation number, There is no correlation between them, We also are
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able to prove that no condensation exists in the system when A= (O,
When the density of the system increases, we can not neglect the fluc-
tuation, A# 0, there exists the possibility of condensation if the
density of the fluids is high enough for its occurrence., The proof of
the condensation for dense system is still beyond our power of mathe-~
matics, except the case of nearest neighbor interaction in one dimensio-
nal modelzz’25 and two dimensional Ising mode126, as the spontaneous
maganetization of a two-dimensional Ising model was calculated by
YangZ7. Certainly in the future, we hope that the work on one and two
dimensional models can be applied to the three dimensional model of
the real system,

Here, we like to mention that in Chapter III, the Einstein's
formula of the probability qf fluctuation being used to calculate the
average < >%t5 all the orders of A is the main key to derive an integral
equation governing §(r). We can solve §(r) for general pair potential
U(r) only when r is very large. When r is small, to solve &(r) for
general potential is still hard to do, so &(r) is solved for the spe-
cial potential only, Even using the special potential, we are still
hard to solve for §(r) in the middle region of r. We point out these
difficult works here so that the overcoming of these difficulties
might be carried out some day in the future.

The method used in developing Cohn's integral equation, eq.(1.23)
has the same technique previou;ly applied by Cohn to the theory of
electrolyteszg, in which he considered a positive (or a negative) ion

in a single occupied cell only, But when the density increases, one
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positive ion and one negative ion might bound together in one cell, so
the chemical bound and the neighboring cells being simultaneously
occupied have to be consided, We may construct a probability of dis-
tribution for some positive (or negative) ions in a single occupied
cell and some bound ions in double occupied cell, and find the average
cell occupation number, Then, by the same procedures as in this paper,
we might be able to apply Cohn's theory for the binding problems in the
theory of electrolytes., This is an another way to extend Cohn's

theory for high density.



APPENDIX

A, Derivation of Total Potential Energy ¢(r)

The potential energy ¢(r) of a particle at point P, with distance
r from the central particle O,arises from two kinds:

(1) ¢(r), the potential enmergy on P due to all particles except
the central particle 0.

(2) u(r), the pair potential between P and the central particle O.

Therefore, we may write

8(2) = $() - () . 4.1)

The contributions to ¢'(r) at P come from two categories (See

Fig, A.1) :

S8R
Wonon
o'nH
o
La=]
nou
o'

(a) When x < ¢ (b) When x > r

Fig, A.1, Contribution of particles Interaction at P,

(a) Particles in the region x < r, x > 0. See Fig. A.1(a).
We define

a=xsin 8

56
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2M(x sin 68 ) (xd6) (dx)

dt

n

dc
A= [12 + %% - 2rx cos GJ!"‘=[:vc?---1:2-?.cr];E

(xd8) sin® (AI. 2)

When x > ¢, and r - x > ¢, we have
¢'(x) =/ n(x) U(}) dr

= ZRI:: x n(x) dx S

volume
T
8=0

21rf:_6 x n(x) dx f:; U(x) de (A, 32)

U()) x sin6 de

When r - x < 0, r>x, we have, (by the same form as above)

_ r X
o' () = war_o x n(x) dx J"S U()) de (A.®)
where
_ 0\2 -x% 412
§ = '—-z—r——— (A.3b')

Therefore, the contributions to ¢'(r) from all particles in the

region x < r, x > 0 is the sum of egs. (A.3a) and (A.3), i.e.

_ -0 X T X ...
¢'(r) = Zﬂfc x n(x) dx fr—x U(}A) dec + Z'nJ’H x n(x) dx .I’6 uQ@d) de

(A.4)

(b) Particles in the region x > r, x > d. See Fig., A.1 (b).

By the same procedure as in (a), wher x >0, X - r > 0, we have

_ ® X-T .
$'(x) = 21rfrl_0 x n(x) dx 'r-(xi—r) u(x) db (A.53)
When x - r < 0, X > r, we have

-5
-(xtr)

Therefore, the contributions to ¢'(r) from all particles in the

8r) = 21T xn(x) axs TR db (A.5b)

region x>r, x>0 is the sum of eqs. (A.52) and (A.5b), i.e.
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$' () = 21f xn(x)dx I u(xa)db + var xn(x)dx f u(x)db

(x+) - (xt1)

(A.6)
The sum of eqs. (A.4) and (A.6) is equal to ¢'(r) in eq. (A.1),
therefore, after changing variables and use n(x) = np(x), we have
o(x) = U(x) + 2m f; xp (x) dx f u(x) de + me xp(x)dxf“"‘n(x)dc

(A.7)

Changing the variables by letting y=x2-r2+2cr and EW%, we have

IES0yae = 2 3D woBay = L T ewpa (a.8)
13 uyde = — A7 aueya (4.9)

Define the function G(x,r) as in eq.(1.26), we can write eq.(A.7)

as
o) = U+ {70 a) dx [ E0CE) db+S a0 (¥ dx T (x, 1) E0(E) A}

(A.10)

Using the kernal K(x,r) in eq.(1.25) and changing f: to f: on

the second term in eq.(A.10), we finally have eq.(1.21).
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B. Calculation of I—lﬁ.i

- 1
JCGi = coth Gi -3
i (B. 1)
8 g3
1 i i 1
=(—+_—"_+voo)"'—
Gi 3 45 G:I.
8 5.3
ps xi _ i
ord 8; =3 45 (8.2)
Becauseof.-l(‘fﬁi) =I(i-16i) = 5:[ , (B.3)

Ehy )3
3

and by eq.(B.2), iQﬁ-15i) = 45

Clo &l

So 3 45 i

or @)%~ 15¢s) + 455, =0 (B.4)
j_—l
Assume (; Gi) has the form as

6.3+ ... (B.5)

-1 _ 2
i Gi—AIGi+A26i +A3i

where Al’ AZ’ A3 are the constants to be found.

Substituting eq.(B.5) into (B.4), we have, to O(Gis),

3s 3 - 2 3 =
(A Gi +eeo) 15(A15i+A251 + A36i ) + 45 8; 0

1
or 5i(-15A1+45) +.512(-15A2) + 513(A13-15A3) =0 (B.6)
Because Gi#:O,_ so the coefficients of Gi's should be zero, i.e.

~15A, +45=0, A =3

1 1
"ISAZ = 0, AZ = 0 (Bo?)
3 - =27 .2
A1-15A3—0, A3— 5 =3
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By eqs.(B.5) and (B.7), we have

-l _ 943
L, = B, +3 6.3 4, (5. 8)

The second term can be neglected (as Si is the order of zero),

so L , = 36, is used to the left hand side of eq.(3.33).

C. Integrations of KI(x,r) and Kn(x,r) in the Region ir-xko for Very

Large r
IRy ndx = [T (T Euce) ag) by eq.(3.40)
= f:g ax{A ff;*r e Mear) by eq.(3.41)
) —ﬁz' (e h(@rto) | ~u(2r-0) |, o -uoy .1
= (20/we ™ ({Gfr +w) eq. (3.44)

fmsegRar T x = IF axURTeuceyag) + ST axt TR aE) by equ (3.40)

r o Xr ~u&
fr_q dx{Uofr_x EdE + Afc e " ~dE}

+ 17 axlu 10 gag+ AT &g} by eq.(3.40)

ZUoo 313 + -A-z-{e-'u (2ri-o)_e-u (2r-o)+2uce-uc} (C.2)
u

20 03/3 + (280/w)e *°  (if T + =) (eq. 3.45)

D, Derivation of p(r) = e-BU(r) as r >

Here we will first derive the relation between the radial distribu~

tion function and the potential of mean forcea’m. Let us consider two

particles, 1 and 2, with a fixed distance r apart. The mean force,<F2>1’Za
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exerted on particle 2 due to all the other particles is

-8V
1,2 fv - VZVP e P d£3o-od_1:N

<F rd = (Dn 1)
2 -8V
! ve P dza. oe d;gN

where VP is the total potential energy. We will define the potential of

mean force, W(_x;l,gz), in such a way that

1,2
Fp>707 = - VW(r,r,) = =V,H(x) (D.2)

The radial distribution function p(r) of particle 1 (central particle)

being fixed and particle 2 being with distance r from particle 1 is

VJ'V e—BVP d_1:3°. gdgﬁ :

-B
fv e P d;z.. .d;N

p(r) =

Then, eq.(D.1l) may be written as

v

~8Y. -8
<F >1,2 _ IV(-VZVP) e P d£3..0d§N fv e P dIZ...dIN

2 -8V * -8V,
fve P d;z...d;N fve P d;3...d;N

-BV. -BV.

v

rfve P drg..dry - e "'P drj...drg
BV. -8

'rV
- V.
fve P d_w_:z...d_;N fve P d;z...dgN

}

o

<1

(r)
5 }

2 e P
g {=¢ 1/

—é— V2 In p(x) (D.4)

By eqs.(D.2) and (D.4), we have

=V W(r,,r )': l v
27=1=27 8

5 In p (1)

or In p(r) = -BW(r) + C (C is a constant) (D.5)

Because p(r) + 1 and W(x) >0 as r > », so C=0, Then
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p(r) = e"BW(,r) (D-6)

When r is very large, the potential of mean force approaches the
pair potential function, i.e. W(r) »> U(r) as r + «, because it is in

the low density limit when r is very large. Therefore

p(x) & e BU(x) forr+ = eq. (3.64)



BIBLIOGRAPHY

1. Frisch, H. L. and Lebowitz, J. L. "The Equilibrium Theory of Classi-
cal Fluids", Benjamin, 1964. (a lecture notes and reprint series).

2, Cole, G. H. A., "An Introduction to the Statistical Theory of Classi-
cal Simple Dense Fluids", Pergamon, 1967.

3. Hill, T. L., "An Introduction to Statistical Thermodynamics", Addison-
Wesley, 1960, Chap. 17.

4, Hill, T. L., "Statistical Mechanics", McGraw-3i1ll, 1956, Chap. 6.

5'. Henshaw, D. G., Phys. Rev., 105, 976 (1957)

6. Einstein, A. and Gingrich, N. S., Phys. Rev. 58, 307(1940); 62, 261(1942)

7. Cohn, J., J. Phys. Chem., 72, 608 (1968)

8. Schrddinger, E., "Statistical Thermodynamics", Cambridge University,
1964, Chap. VI.

9. Hsieh, S. S.~K., M. S. Thesis (1967), University of Oklahoma,

10. Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. "Molecular Theory
of Gases and Liquids", Wiley, 1954.

11, Mason, E. A. and Rice, W. E., J. Chem. Phys. 22, 843 (1954).

12, Michels, A., Wijker, Hub, and Wijker, H. K., Physica 15, 527 (1949).

13. Cure, J. C., "Molecular Distribution of Argon Using Cohn's Integral

Equation", Universidad De Carabobo (Chile), Nov, 1971,
14, Shreider, Y. A., "The Monte Carlo Method" Pergamon, 1966,

15. Percus, J. K. and Yevick, G. J., Phys. Rev., 110, 1 (1958).
16. Morita, T., Progr. Theor. Phys. (Kyoto) 20, 920 (1958)., and Morita,

T, and Hiroike, K., Progr. Theor. Phys. (Kyoto) 23, 1003 {1960).

63



17,

18,

19,

20,

21,

22,

23,

24,

25,

26,

27,

28,

64

Landau, L, D. and Lifshitz, E, M,, "Statistical Physics", Addison~
Wesley, 1969, p.360.

Huang, K., "Statistical Mechanics", John Wiley, 1967, Chap, 15.
Yang, C. N. and Lee, T. D., Phys. Rev., 87, 404, 410 (1952),
Unlenbeck, G, E., "Statistical Physics", in 1962 Brandeis Lectures,
vol, 3, edided by Ford, K. W., p. 3344,

Glansdorff, P. and Prigogine, I: "Thermodynamic Theory of Structure,
Stability and Fluctuations. "Wiley - Interscience, 1971, p.96.
Rac, M., Uhlembeck, G, E. and Hemmer, P, C., J, Math, Phys, &, 216
(1963).

Kac, M., Uhlenbeck, G. E, and Hemmer, P, C., in "Mathematical Phy-
sics in One Dimension", edited by Lieb, E, H,, and Mattis, D. C.,
Academic Press, 1966.

Lovitt, W. V., "Linear Integral Equations", Dover, 1950, chap.2,
Takahashi, H., Proceedings of the Physico-Mathematical Society of
Japan, 24, 60 (1942),

Huang, K., "Statistical Mechanics”, John Wiley, 1967, chap.17,
Yang, C. N., Phys. Rev., 85, 808 (1952).

Cohn, J., Phys. Fluids, 6, 21 (1963).



