HETEROGENEITY OF ERROR VARIANCES

IN A
RANDOMIZED BLOCK DESIGN

By
JOHN LEROY FOLKS
Bachelor of Arts
Oklahoma Agricultural and Mechanical College Stillwater, OkIahoma

1953

Submitted to the faculty of the Graduate School of the Oklahoma Agricultaral and Meohanicel College in partial fulfillment of the requirements for the degree of MASTER OF SCIENGE

May, 1955

HETEROGENEITY OF ERROR VARIANCES

IN A

RANDOMIZED BLOCK DESIGN

Thesis Approved:

PREFACE

In a randomized block experiment we frequently wish to test the hypothesis that all the treatment means are equal. When we have heterogeneity of error variances, the ratio of the treatment mean square to the error mean square is not distributed as Snedecor's F. An exact method for testing the treatment means equal when we have heterogeneity of error variances has been given by Graybill.

Consider a randomized block experiment with b blocks and $n_{1}+n_{2}$ treatments where the error variance is σ_{1}^{2} for the first n_{1} treatments and is σ_{2}^{2} for the next n_{2} treatments. The method given by Graybill requires inversion of a matrix of order $n_{1}+n_{2}-1$ and is subject to the restriction that $b>n_{1}+n_{2}-1$. The method proposed in this paper does not require inversion of a matrix and is subject to the restriction that $\mathrm{b}>2$. In addition, the method proposed in this paper seems to be more powerful than the method proposed by Graybill.

In general, when we have K subsets of treatments such that the first subset has error variance σ_{1}^{2}, the next subset has error variance σ_{2}^{2}, etc., the method proposed in this paper requires inversion of a smaller matrix and is subject to a less stringent restriction than the method proposed by Graybill.

Indebtedness is acknowledged to Dr. Franklin Graybill for suggesting this problem to me, and for his help during the preparation of this paper.

TABIE OF CONTENTS

INTRODUCTION 1
TEST CRITERION 3
TESTS OF SIGNIFICANCE 7
CONCLUSIONS

- 14
BIBLIOGRAPHY 15

INTRODUCTION

Consider a randomized blook design with p treatments occurring on each of b blocks. If each of the first n_{l} treatments have variance σ_{1}^{2} and each of the next n_{2} treatments have variance σ_{2}^{2}, etc., and $\sum_{i=1}^{K} n_{i}=p$, the mathematical model is:
(1.1)

$$
\begin{aligned}
Y_{i j k} & =\mu+t_{i j}+b_{k}+e_{i j k} \\
i & =1,2, \ldots, k \\
j & =1,2, \ldots, n_{i} \\
k & =1,2, \ldots, b
\end{aligned}
$$

where the $e_{i j k}{ }^{\prime} s$ are assumed to be normally distributed such that

$$
\begin{aligned}
E e_{i j k} & =0 \text { for all } i, j, \text { and } k, \\
E e_{i j k}^{2} & =\sigma_{i}^{2} \text { for all } j \text { and } k, \text { and } \\
E e_{i j k} e_{r m n} & =0 \text { unless } i=r, j=m \text {, and } k=n
\end{aligned}
$$

When $n_{i}=I$ for all i the model is $Y_{i k}=\mu+t_{i}+b_{k}+e_{i k}$ with the same assurrptions as in (1.1). Graybill (2) has discussed the problem of testing $t_{1}=t_{2}=\ldots t_{p}$ when $n_{i}=1$ for all i. This method involves inversion of a matrix of order $p-1$ in the numerical analysis and is valid only if $b>p-1$. The purpose of this paper is to give a oriterion for testing $t_{11}=t_{12}=\ldots=t_{K n_{K}}$

[^0]for the model in (1.1) where $n_{i}>1$ for at least one i. If $n_{i}>1$ for at least one i, the restriction $b>p-1$ can be relaxed somewhat. It is necessary only that $b>K-1$. The numerical analysis will involve inversion of a matrix of order K - 1 .

TEST GRITERION

Consider the i - th subset of observations $Y_{i, j k}$, where $k=1,2, \ldots, b, j=1,2, \ldots, \cdot n_{i}$. Using these observations, conduct an analysis of variance as below for each subset that $n_{i}>1$.
A. O. V. for i - th Subset

Due to d. f. Sum of Squares
Blooks b-1

$$
\begin{array}{ll}
n_{i} \sum_{k}\left(y_{i, k}-y_{i \ldots}\right)^{2} & =A \\
b \sum_{j}\left(y_{i j}-y_{i \ldots}\right)^{2} & =B
\end{array}
$$

Treatments $n_{i}-1$

Error

$$
(b-i)\left(n_{i}-1\right) \quad \sum_{j k}\left(Y_{i j k}-y_{i, k}-y_{i j}+y_{i .}\right)^{2}=c
$$

The ratio $\frac{B}{n_{i}-I} / \frac{C}{(b-I)\left(n_{i}-I\right)}=F_{i}$ (where $Y_{i j}$. indicates sum-
mation over k and $y_{i j \text {. }}$. indicates the average when summed over k, ete.)
is distributed as Snedecorts F with d. $\mathrm{f}_{\mathrm{t}}\left(\mathrm{n}_{\mathrm{i}}-1\right)$ and $(b-1)\left(n_{i}-1\right)$ if and only if $t_{i I}=t_{i 2}=\ldots,=t_{n_{i}}$. We will have $q-1$ such analyses, each yielding an F, where $q-1$ is the number of subsets that $n_{i}>1$.

Since $Y_{i j k}$ is a normal variate and since $E\left(y_{i j .}-E y_{i j .}\right)$.
$\left(y_{r j .}-\mathbb{E} y_{r j,}\right)=0$ for $r \neq i, y_{r j,}$ and $y_{i j}$, are independent. Therem fore $b \sum_{j}\left(y_{i, j \bullet}-y_{i .0}\right)^{2}$ is independent of $b \sum_{j}\left(y_{r j}, y_{r_{\ldots}}\right)^{2}$.

Similarly $\sum_{j k}\left(y_{i j k}-y_{i, k}-y_{i j .}+y_{i . .}\right)^{2}$ is independent of
$\sum_{j k}\left(y_{r j k}-y_{r, k}-y_{r j .}+y_{r_{0}}\right)^{2}$. We have, therefore, $q-I$ independent ratios, each distributed as Snedecor's F if and only if $t_{i 1}=t_{i 2}=\ldots=t_{i n_{i}}$ for all i.

If we average our observations within each subset over each block we have:

$$
\begin{equation*}
\sum_{j=1}^{n_{i}} Y_{i j k} / n_{i}=\mu+\sum_{j=1}^{n_{i}} t_{i j} / n_{i}+b_{k k}+\sum_{j=1}^{n_{i}} e_{i j k} / n_{i} . \tag{2.1}
\end{equation*}
$$

Denote (2.1) by $B_{i k}$ and let $T_{i}=\sum_{j=1}^{n_{i}} t_{i j} / n_{i}$ and $d_{i k}=\sum_{j=1}^{n_{i}} e_{i j k} / n_{i}$. Then (2.2) $\quad B_{i k}=\mu+T_{i}+b_{k}+d_{i k}$

From the assumptions in (1.1)

$$
\begin{aligned}
& E d_{i j}=E \sum_{j=1}^{n_{i}} \frac{e_{i, j k}}{n_{i}}, \\
& E d_{i j}=0, \\
& E d_{i j}^{2}=\frac{o_{i}^{2}}{n_{i}}, \\
& E\left(d_{i j} d_{i s}\right)=0 \text { for } j \neq s, \\
& E\left(d_{i j} d_{r j}\right)=0 \text { for } i \neq s,
\end{aligned}
$$

Thus (2,2) is the model considered by Graybill and we can use Hotelling's T^{2} to test the hypothesis $H_{0}: T_{1}=T_{2}=\ldots=E_{K}$.

Let $X_{i j}=B_{i j}-B_{K j}$. Consider X_{j} a $K x l$ column vector with elements $x_{i j} \cdot \bar{X}=\sum_{j} \cdot x_{j} / b$. Then $\frac{(b-K+1) b \bar{X}}{K-1}\left(\sum_{j=1}^{b}\left[x_{j}-\bar{X}\right]\left[x_{j}-\bar{X}\right]^{1}\right)^{-1} \bar{X}$
which we shall call F whas Snedecor's F distribution under H_{0} with $K-I$ and $b-K+1$ degrees of freedom (if $b>K-1$).

Theorem I. $t_{11}={ }_{t_{12}}=\ldots .=t_{l n_{1}}=t_{21}=\ldots . .=t_{K n_{K}}$ if
and only if $T_{1}=T_{2}=\ldots .=T_{K}$ and $t_{i 1}=t_{i 2}=\ldots .=t_{i n_{i}}$ for
2ll i; $i=1,2, \ldots K$.
Proof: 1. If $t_{i 1}=t_{i 2}=\ldots . t_{i n_{i}}, T_{i}=t_{i 1}=t_{i 2} \ldots . .=t_{i n_{i}}$.
If $\mathrm{T}_{1}=\mathrm{T}_{2}=\ldots .=\mathrm{T}_{\mathrm{K}}$, then $\mathrm{t}_{11}=\mathrm{t}_{12}=\ldots .=\mathrm{t}_{1 n_{1}}=\mathrm{t}_{21}=\ldots$
.. $=t_{K n_{K}}$. 2. If $t_{1 I}=t_{12}=\ldots .=t_{I n_{I}}=t_{21}=\ldots .=t_{K n_{K}}$,
then $t_{i 1}=t_{i 2}=\ldots=t_{i n_{i}}$ for all i and $T_{I}=T_{2}=\ldots=T_{K}$.
Theorem II. $B_{m n}$ is independent of F_{i} for alli.
Proof: Let $\left(y_{i j .}-y_{i . .}\right)=u_{i j}$ and $\left(y_{i j k}-y_{i . k}-y_{i j .}+y_{i . .}\right)=v_{i j k}$. $\operatorname{Cov}\left(B_{m n}, u_{i j}\right)=0$ for $m \neq i$.

Let us consider the case when $m=1$.

$$
\begin{aligned}
\operatorname{Cov}\left(B_{i n}, u_{i j}\right) & =E\left(e_{i, n}\right)\left(e_{i j}-e_{i .}\right), \\
& =E \frac{e_{i, i n}^{2}}{b n_{i}}-E \frac{\sum_{j}}{\frac{\theta_{i, j n}^{2}}{b n_{i}^{2}}}, \\
& =\frac{\sigma_{i}^{2}}{b_{n}}-\frac{\sigma_{i}^{2}}{b n_{i}} \\
& = \\
& =0 .
\end{aligned}
$$

Also: \quad oor $\left(B_{m n}, v_{i j k}\right)=0$ for $m \neq i$.
Let us consider the case when $m=i$.

$$
\begin{aligned}
\operatorname{Cov}\left(B_{i n}, \nabla_{i j k}\right) & =E\left(e_{i, n}\right)\left(e_{i j k}-e_{i j}-e_{i, k}+e_{i \ldots}\right) \\
& =E \frac{e_{i, k}^{2}}{n_{i}}-E \frac{e_{i j k}}{b n_{i}}-E \frac{\sum_{i} e_{i, k}^{2}}{n_{i}^{2}}+E \frac{\sum_{j} e_{i j k}^{2}}{b n_{i}^{2}}, \\
& \because \frac{\sigma_{i}^{2}}{n_{i}}-\frac{\sigma_{i}^{2}}{b n_{i}}-\frac{\sigma_{i}^{2}}{n_{i}}+\frac{\sigma_{i}^{2}}{b n_{i}} ; \\
& =0 .
\end{aligned}
$$

Since $B_{m n}, u_{i j}$, and $\nabla_{i j k}$ are normal variates and since $\operatorname{Cov}\left(B_{m n}, u_{i j}\right)=0$ and $\operatorname{Cov}\left(B_{m n}, \nabla_{i j k}\right)=0, B_{m n}$ is independent of $u_{i j}$ and $\nabla_{i j k}$. Further $B_{m n}$ is independent of any function of $u_{i j}$ and $\nabla_{i j k}$; hence $B_{m n}$ is independent of F_{i} for all i.

Since $F *$ is a function of $B_{i j}, F \%$ is independent of each of the (q - 1) Fils which we obtained as in the analysis of variance on page 3. We have, therefore, q independent F's, $^{\prime}$ which are simultaneously distribute as Snedecor's F if and only if H_{0} is true: is if and only if $t_{11}=t_{12}=\ldots=t_{1 n_{1}}=t_{21}=\ldots=t_{K n_{K}}$. To test H_{0} requires that we combine q independent tests of significance.

1. Product of Beta Variables (4)

The product of beta variables with parameters $\left(a_{1} b_{1}\right),\left(a_{2} b_{2}\right)$. . - ($\left.a_{q} b_{q}\right)$ such that $a_{i}=\left(a_{i+1}+b_{i+1}\right)$ is distributed as a beta variable with parameters $\left(a_{q}, b_{1}+\ldots+b_{q}\right)$. Since the trans. formation $W=m F / n /(I+m F / n)$ transforms $F(m, n)$ to a beta variable with parameters $\alpha=m / 2, \beta=n / 2$, in some cases we may be able to transform each F_{i} and $F *$ to beta variables, form the product, and use Pearson's tables of the incomplete beta function to test H_{0}.
2. Pearson's P_{λ} Test

If $P_{1}, P_{2}, \ldots, P_{q}$ are q independent probabilities then $z_{i}=-2 \log _{e} P_{i}$ is distributed as χ^{2} [2], P_{λ} is therefore distritributed as X^{2} [2q].
3. Wilkinson's Methods

Reject H_{0} if and only if $P_{i} \leq \alpha$ for r or more of the $P_{i}^{\prime} s$ where r is a predetermined integer, $I \leq r \leq q$, and α is a constant corresponding to the desired confidence level. The q possible choices of r give q different procedures (case 1, case 2, etc.) . Birnbaum (1) indicates that, while there is no single case best for all problems, case 1 seems to be best for this type of problem.
4. Case 1 of Wilkinson's Method

Reject H_{0} if and only if at least one $F_{i}>h_{i}$ where
$P\left(F_{i}>h_{i} \mid H_{o}\right)=\alpha$ for all i; α is predetermined by the desired type I error, i.e. $P(I)$. P (of rejecting $H_{0} \mid$ given H_{0} is true) equals $\sum_{i=1}^{q} P\left(F_{i}>h_{i}\right)-\sum_{i j} P\left(F_{i}>h_{i}\right) P\left(F_{j}>h_{j}\right)+$
$\sum_{i j k} P\left(F_{i}>h_{i}\right) P\left(F_{j}>h_{j}\right) P\left(F_{k}>h_{k}\right) \ldots \ldots\left(F_{1}>h_{1}\right) P\left(F_{2}>h_{2}\right) \cdot$ - - $P\left(F_{q}>h_{q}\right)$ where the second sum is over all combinations of the numbers 1, 2, . . . , q taken two at a time, the third is over combinations of the numbers three at a time, etc. Hence $P(I)=1-(I-\alpha)^{q}$. For any desired $P(I)$ we can determine α.

The power of the test $\beta=P$ (reject $H_{o} \mid H_{1}$) equals

$$
I-\prod_{i=1}^{Q} P\left(F_{i}<h_{i} \mid H_{I}\right) .
$$

5. Comparison of Graybill's Method with the Method Proposed in this Paper.

Let us denote the method proposed in this paper by A and the method proposed by Graybill by B. A comparison of the powers will be made only for case 1 of Wilkinson's methods. For this comparison let us consider the original model (1.1) :

$$
Y_{i j k}=\mu+t_{i j}+b_{k}+e_{i j k}
$$

for $i=1,2, j=1,2, \ldots, n_{1}, n_{1}=n, n_{2}=1$, and $k=1,2, \ldots, b$. Method A will be considered first. Using the nb observations Y_{1} jk form the ratio of mean square for treatments to mean square for error. This ratio is distributed as Snedecor's F with $n-1$ and ($\mathrm{n}-1$) ($\mathrm{b}-1$) d. f. when $t_{11}=t_{12}=\ldots=t_{l_{n}}$.

Consider the means:

$$
\begin{aligned}
y_{i_{0} k} & =\mu+t_{i .}+b_{k}+e_{i, k} \\
i & =1,2 \\
k & =1,2, \ldots, b .
\end{aligned}
$$

To test the hypothesis $t_{1}=t_{2}$. we use the ratio of the mean square for treatments, $\sum_{i k}\left(y_{i . k}-y \ldots\right)^{2}$, to the mean square for error $\sum_{i k}\left(y_{i . k}-y_{i \ldots}-y_{\ldots k}+y_{\ldots}\right)^{2} /(b-1)$. This ratio is distributed as Snedecor's F with 1 and $b-1 d . f_{\text {. when }} t_{1}=t_{2}$.

The power of the test, β_{A}, using method A equals

$$
1-P\left(F_{1}<h_{1} \mid H_{1}\right) P\left(F_{2}<h_{2} \mid H_{1}\right) .
$$

We can evaluate $\boldsymbol{\beta}_{\mathrm{A}}$ by transforming F_{1} and F_{2} to Tang's E^{2}. Making the transformation $z_{i}=f_{i 1} F_{i} /\left(f_{i 2}+f_{i l} F_{i}\right)$, where $f_{i l}$ and $f_{i 2}$ are the degrees of freedom for F_{1}, we have z_{1} distributed as Tang's E^{2} with parameters $n-1,(n-1)(b-1)$, and λ_{1} where $\lambda_{1}=b \sum_{j}\left(t_{1 j}-t_{1}\right)^{2} / 2 \sigma_{1}^{2}$. Also z_{2} is distributed as Tang's \mathbb{E}^{2} with parameters $1, b-1$, and λ_{2} where $\lambda_{2}=\frac{b n\left(t_{1}-t_{21}\right)^{2}}{2\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \cdot$ Hence $P\left(F_{1}<h_{1} \mid H_{1}\right)=\int_{0}^{g_{1}} f\left(z_{1}\right) d z_{1}$ and $P\left(F_{2}<h_{2} \mid H_{1}\right)$ equals $\int_{0}^{g_{1}} f\left(z_{2}\right) d z_{2}$ where g_{1} and g_{2} are determined by the transformation
$g_{i}=f_{i 1} h_{i} /\left(f_{i 2}+f_{i 1} h_{i}\right)$. Therefore the power of method A equals
$1-\int_{0}^{g_{1}} f\left(z_{1}\right) d z_{1} \int_{0}^{g_{1}} f\left(z_{2}\right) d z_{2} \cdot$
For method B Graybill has shown that if we let

$$
u_{j k}=Y_{1 j k}-Y_{2 I k}
$$

that
(3.1)

$$
\bar{v}^{\prime}\left(\sum_{k}\left[u_{k}-\bar{U}\right]\left[U_{k}-\bar{U}\right]^{\prime}\right)^{-1} \frac{(b-n) b}{n}=F^{*}
$$

where $\overline{\mathrm{V}}=\sum_{\mathrm{k}} \mathrm{U}_{\mathrm{k}} / \mathrm{b}$ and $\mathrm{U}_{\mathrm{k}}=$

$$
\left[\begin{array}{c}
u_{k 1} \\
u_{k 2} \\
u_{k 3} \\
\ddots \\
\cdot \\
\cdot \\
u_{k n}
\end{array}\right],
$$

is distributed as Snedecor's F with b and $b-p d$. f. when $t_{11}=t_{12}=\cdots t_{1 n}=t_{21} \cdot$

Therefore

$$
\left.\begin{array}{rl}
U_{i} & \sim N(\mu *, A) \\
\mu & =\left[\begin{array}{c}
t_{11}-t_{21} \\
t_{12}-t_{21} \\
\cdots \\
t_{1 n}-t_{21}
\end{array}\right]
\end{array}\right] .
$$

and
where

$$
a_{i j}=\sigma_{1}^{2}+\sigma_{2}^{2} \quad \text { if } i=j,
$$

and

$$
a_{i j}=\sigma_{2}^{2} \quad \text { if } i \neq j
$$

Under H_{1}, $F \ddot{*}$ is distributed as the non-central F with parameters $n, b-n$, and λ_{3} where $\lambda_{3}=\frac{\mu_{*}^{\prime} A^{-1}}{2} u^{*} \cdot T 0$ find λ_{3} we must examine the variance-covariance matrix A.
A is a circulant matrix and $A^{-1}=B$ is found to be $\left(b_{i j}\right)$ where

$$
\begin{aligned}
& b_{i j}=\frac{\sigma_{1}^{2}+(n-1) \sigma_{2}^{2}}{\sigma_{1}^{2}\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \quad \text { if } i=j, \\
& b_{i j}=\frac{-\sigma_{2}^{2}}{\sigma_{1}^{2}\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \quad \text { if } i \neq j .
\end{aligned}
$$

Then $\lambda_{3}=C b / 2$ where C is defined as below.
Writing t_{21} as t_{2}, let

$$
\begin{aligned}
& c=\sum_{i j}\left(t_{1 i}-t_{2}\right) b_{i j}\left(t_{1 j}-t_{2}\right) \\
& =\sum_{i j}\left(t_{I j}-t_{1}-t_{2}-t_{1}\right)\left(t_{1 j}-t_{1}-t_{2}-t_{1}\right) b_{i j} \\
& =\sum_{i j}\left(t_{1 i}-t_{1}\right)\left(t_{1 j}-t_{1}\right) b_{i j}-2 \sum_{i j}\left(t_{2}-t_{1}\right)\left(t_{1 i}-t_{1}\right) b_{i j} \\
& +\left(t_{2}-t_{1}\right)^{2} \sum_{i j} b_{i j} \\
& =\sum_{i j}\left(t_{1 i}-t_{1}\right)\left(t_{1 j}-t_{1}\right) b_{i j}+\frac{\left(t_{2}-t_{1}\right)^{2}}{\sigma_{1}^{2}+n \sigma_{2}^{2}} . \\
& \text { Let } K=\sum_{i j}\left(t_{l j}-t_{l}\right)\left(t_{l j}-t_{l}\right) b_{i j} . \\
& K=\sum_{i}\left(t_{1 i}-t_{1}\right)^{2} b_{i i}+\sum_{i} \sum_{j \neq i}\left(t_{1 j}-t_{1}\right)\left(t_{1 j}-t_{1}\right) b_{i j}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i}\left(t_{1 i}-t_{1}\right)^{2} \frac{\left(\sigma_{1}^{2}+[n-1] \sigma_{2}^{2}\right)}{\sigma_{1}^{2}\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \\
& +\sum_{i}\left(t_{1 i}-t_{1}\right) \sum_{j \neq i}\left(t_{1 i}-t_{1}\right) \frac{\left(-\sigma_{2}^{2}\right)}{\sigma_{1}^{2}\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \\
= & \frac{\sum_{i}\left(t_{1 i}-t_{1}\right)^{2}\left(\sigma_{1}^{2}+[n-1] \sigma_{2}^{2}\right)+\sum_{1}\left(t_{1 i}-t_{1}\right) \sigma_{2}^{2}}{\sigma_{1}^{2}\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} \\
= & \sum_{i}\left(t_{1 i}-t_{1}\right)^{2} / \sigma_{1}^{2}
\end{aligned}
$$

Therefore

$$
\lambda_{3}=\frac{b \sum_{1}\left(t_{1 i}-t_{1}\right)^{2}}{2 \sigma_{1}^{2}}+\frac{b n\left(t_{2}-t_{1}\right)^{2}}{2\left(\sigma_{1}^{2}+n \sigma_{2}^{2}\right)} .
$$

That is,

$$
\lambda_{3}=\lambda_{1}+\lambda_{2}
$$

Power of $B=I-\int_{0}^{g_{3}} f\left(z_{3}\right) d z_{3}$ where z_{3} is distributed as Tang's E^{2} with parameters $n, b-n$, and λ_{3}.

We can now compare the power of method A with the power of method B. In order to use Tang's tables we must compute ϕ_{i}
where

$$
\phi_{i}=\sqrt{\frac{2 \lambda_{i}}{f_{i 1}+1}}
$$

for $i=1,2$, and 3 .

Since $\lambda_{3}=\lambda_{1}+\lambda_{2}, \phi_{3}$ is a function of ϕ_{1} and ϕ_{2}. For the special case where $n=3, b=5$, and $P(I)=.02$, the power of A is compared with the power of B in the table on the following page. The values for
the power of B were obtained by double interpolation from Tang's tables. Comparison of Pewers

ϕ_{1}	ϕ_{2}	A	B
I	I	0.118	0.053
I	3	0.545	0.140
1	5	0.928	0.220
3	I	0.823	0.113
3	3	0.906	0.250
3	5	0.986	0.360
5	1	0.999	0.360
5	3	0.999	0.406
5	5	1.000	0.480

These data indicate that, for small samples, method A is more powerful than method B.

If an exact method of combining independent tests of significance is used, the method proposed in this paper to test treatment means equal is exact. Its power seems to be better than that of the method proposed by Graybill. It should also be emphasized that the method In this paper requires inversion of a smaller matrix than Graybill's method. In addition, the restriction that b be greater than K is much less stringent than the restriction in Graybill's method that b be greater than $\mathrm{p}-1$.

BIBLIOGRAPHY

(1) Birnbaum, Allen. "Combining Independent Tests of Significancë." Journal of the American Statistical Association, 49 (September, 1954), 559-574.
(2) Graybill, Franklin. "Variance Heterogeneity in a Randomized Blook Design." Biometrios, 10 (December, 1954), 516-520.
(3) Kempthorne, 0. The Desigm and Analysis of Experiments. New York: John Wiley and Sons, 1950.
(4) Rao, C. Radhakrishna. Advanced Statistical Methods in Biometric Research. New York: John Wiley and Sons, 1952.

VITA

John Leroy Folks
 candidate for the degree of Master of Science

Thesis: HETEROGENEITY OF ERROR VARIANGES IN A RANDOMIZED BLOCK DESIGN
Major: Mathematics
Minor: Statisties
Biographical and Other Items:
Born: Ootober 12, 1929 near Hydro, Oklahoma
Undergraduate Study: Southwestern State College, 1947-50;O. A. M. O., 19520 53
Graduate Study: 0. A. M. © , 1953-54; V. P. I., 1954;O. A. M. C., 1954-55
Experiences: Arry, 45th Infantry Division in Japan and Korea 1950 c 52; Graduate teaching assistant in Mathematics Department 1953-54, 1954m55
Member of Pi Mu Epsilon, American Statistical Association, American Mathematical Society, and Associate Member of The Society of the Sigma Xi.
Date of Final Examination: May, 1955

THESIS TITLE: HETEROGENEITY OF ERROR VARIANGES IN A RANDOMIZED BLOCK DESICN

AUTHOR: John Leroy Folks

THESIS ADVISER: Dr. FrankIin Graybili

The content and form have been checked and approved by the author and thesis adviser. The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and faculty adviser。

TYPIST: Gayle Rogers

[^0]: $l_{\text {Single numbers in parentheses refer to references in bibliography. }}$

