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PREFACE 

In a randomized block experiment we frequently wish to test 

the hypothesis that all the treatment means are equal. When we 

have heterogeneity of error variances, the ratio of the treatment 

mean square to the error mean square is not distributed as Snedecor•s 

F. An exact method for testing the treatment means equal when we 

have heterogeneity of error variances has been given by Graybill. 

Consider a randomized block experi~ent _~ith b blocks and n1 + n2 

treatments where the error variance is crf for the first n1 treatments 

and is cr~ for the next n2 treatments. The method given by Graybill 

requires inversion of a matrix of order _n1 ~ n2 - land is subject 

to the restriction that b > n1 _+ n2 - 1. The method proposed in this 

paper does not require inversion of a matrix and is subject to the 

restzlf-ction that b > 2. In addition, the method proposed in this 

pape~ seems to be more powerful than the method proposed by Graybill. 

In general, when we have K subsets of treatments such that 

2 the first subset has error v,ari~ce cr1, the next subset has error 
2 

variance cr2, etc., the m~thod proposed in this paper requires in-

version of a smaller matrix and is subject to a less stringent res-

triction than the method proposed by Graybill. 

Indebtedness is acknowledged to Dr. Franklin Graybill for 

suggesting this problem to me, and for his help during the prep-

aration of this paper. 
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INTRODUCTION 

Consider a randomized block design with p treatments ooourring 

on each of b blocks. If eaoh of the first n1 treatment~ have variance 

2 2 
~l and each of the next n2 treatments have varia.nee a2 , eta., and 

K 
i: n1 = p, the ma.thema.tioal model is; 
i=l . 

(1.1) yijk = µ + tij + ~ + 9 ijk 

i = 1, 2, ••• , K 

j = 1, 2, ••• , n1 

k = 1, 2, •• • •, b 

where the eijk's are assumed to be normally distributed such that 

E eijk = O for all i, j, and k, 

2 2 
E eijk = cr1 for all j and k, and 

~~ 

E eijk er.mn = O unless i = r, j = m, and k = n. 

When n1 ~ 1 for all i the model is Yik =µ+ti + 1ic + eik 

. . 1 with the same assumptions as in (1.1). Graybill (2) has discussed 

the problem of testing t 1 = t~ = ••• t when n. = 1 for all i. 
~ p 1 

This method involves inversion of a matrix of order p - l in the 

numerical analysis and is valid only if b > p - 1. The purpose of 

this paper is to give a criterion for testin.g t 11 = t 12 = ••• = t 
KnK 

1Si.ngle numbers in parentheses refer to references in bibliography. 
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for the model i:n (1.1) where ni >1 1 for at least one i. It n1 > 1 

for at least cme i, the restriction b > p - 1 can be relaxed somewhat. 

It is necessary only that b > K - 1. The nwnerical analysis will 

involve inversion of a matrix of order K - 1. 



'l'EST CRITERION 

Consider the i - th subset or observations Iijk, where 

k = l, 2, ••• , b, j = l, 2, ••• , n1 • Using these observa-

tions, oonduot an analysis of variaJl.oe as below for ea.oh subset 

Due to 

Blocks 

a. r. 

b - l 

A. o. v, for i - th Subset 

Sum 0f Squares 

Treatments n1 - 1 

Error (b - i) (ni - l}---

mation over k and yij. indioa.tes the average when summed over k, etc.) 

is distributed as Snedeeor•s F with d. r. (n1 - l) and (b - l) (ni - l) 

if and cm.l.y if t 1. 1 i:111 t 1'l = • • • = t. • We will have q - l suoh 
. "" a:ni 

analyses, ea.oh yielding an F, where q - l is the number of subsets 

that n1 > l. 

Sinoe Y:t.;Jk is a. menial va.r:i,e.te and sinoe E (y :tj. - E y i~ .• ) • 
.. ~~ 

(~ ~ - E Yrj) ~ 0 for r f i, ~ j and Y:t~ are independent. There-r.i• . , r. .i• 

.2 ... . .. 2 
fore b L_ (y1 .i-. - y1 _) is i.ll).depelll.dent Qt b L (y . - y ) • 

j ·.i• .•• j rJ. r •• 



Similarly I:. (yi'k - y. k. - yij + yi· )2 is ~ndependent of jk J. 1. • .•• 

I: {y 'k - y k - y . + y )2 • We have, therefore, q - 1 ~ndepen-
jk rJ . r.. . rJ. r,... 

dent ratios, each distributed as SAedeeor's F if and only if 

t .1 • t . ..., = • • • = t 1 . for all i. 
1 14 ni 

If we average our observations within eaeh subset ever eaeh 

block we have: 

ni ni ni 

L Yi 'k / n. = µ + L t. j / n. + ~ + L e. 'k· / n. • j=l · J .. 1 j=l 1. 1 . . j=l l.J 1 
(2.1) 

Then (.2.2) 

From the assumptions in (1.1) 

ni 
~ E dij = E I: . 

n , 
j=l i 

E dij = 0 , 
·2: 

2 er •. 
E d .• = ~ 1J ni 

, 
E (di. dis) = 0 for j r s j 

,1 

E (dij drj) :::: 0 for i r r • 
Thus (2.2) is the model considered 'by Graybill a:nd we ean use 

Hetelling's 'If to test the hypothesis H0 : T1 = T2 = ••• = WK • 

Consider X. a Kxl column vector with elements 
J 

4 

- r / Cb - K + 1> b x' ,~. r.: ;ri r; , - 1 
x ... X = '- ·Xj b. Them l- il(j - ~ i.7,:j - ~ t) ! 

1 J j K - 1 j=l 



which we shall call F* has Snedeoor 1s F distribution under H0 with 

K - land b - K + 1 degrees of freedom (if b > K - l). 

= • • 

all 1; i = 1, 2, • • • K. 

Proof: l. • • • • • 

• • = thx: • 2. 

Theorem II. B is indepemdemt of F1 for all i. mn , 

Proof; Let (yij. ~ y1 •• ) = uij and (yijk - Yi.k - yij. +Yi •• )= vijk• 

Oov (B , u1 .. ) = 0 form j i. nm . J 

Let us consider the case when m = i. 
Cov (B~ , u1 .) = E (e. ) (e1 - e1 .> , 

:i.n J 1.,n . j. . •• 

i= E 

= o. 

bn1 bn.. 
1 

Let us consider the case when m = i. 

' 

' 
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Gov (B.. • vi 'k.·) = E (e. . ) (e .• 'k - e... - e. k + ei ) , in, J i.n J.J iJ. 1. •• 

=E 

2 .. E .2 r: 2 
ei 'k e. 'k . ei 'k • eij,M 
.2::...1.f - E ~ - E J . J + E J . ~,I\; 

ni bn. .2 b 2 ' 
1 ni ni 

= o. 

Since B , u. 4 .. , and vi.·J'.k·· are normal variates a.nd since 
Iml 1., 

Gov (B:rrrn, 1Lll:ij) = 0 a.nd Clov (BllJlll, vijk) = 0, Bmm. is independent of 

uij and vijk. Further B:mn is independent of any tu.notion of uij a.nd 

v. 'k ; hence B is independent of F. for all 1. 
1 J :rrrn . J. 

Since ~} is a function of Bij , ~ is independent of each of the 

(q - 1) F•s which we obtained as in the analysis of variance on page 3.,, 

We have, therefore, q independent F's, which are simultaneously dis-

tributed as Snedecor1s F if and only if H is trne: :L.~ if and only if 
0 

that we combine q independent tests of significance. 



TESXS OF SIGNIFICANCE 

l. Produot of Beta Variables (4) 

The product of 'l)eta variables with pa.raJD.eters (a,_ bi), (~ b2) •• 

• • (aq bq) such that a1 = (a1 + 1 +bi+ 1) is distributed as a beta 

variable with para.meters (aq, b1 + ••• + bq) • Since the trans­

formation. w = m F /n / (1 + mF/a) tra.n.storms F (m, n) to a beta variable 

with pa.ra.merbers o( = m/2 , fJ = n/2 , i,:n some oases we may be able to 

transform. es.oh l\ and F* to 'l)eta. variables, torm. the produot, and use 

2. Pearson's P,_ Test 

If P1 , P2 , ••• , Pq are q independent probabilities then 

2 
ii = - 2 loge Fi is distributed as ?C [2]. ; is therefore distri-

2 tributed as -x; (2q] • 

.3. Wilkinson's Methods 
I 

Reject H0 i;f' a.n.d. only if' .Pi ~D( tor r or more of the Pi s where 

r is a predetermined integer, l ::: r :5 q , andc,c is a oonstant aorres­

ponding to the desired confidence level. The q possible ahoiaes of 
-· . -~ . 

r give q different prooedures (case 11 ease 2, ete.) • Bir.n~.a.um (1) 

indicates.that, while ther~ is no single ease best far all problems, 

case l seem.a to be best for this type ef problem. 

4. Oase l of Wilkinson's Method 

Rejeot H, if and only if a.t lea.l!lt one F4 > hi where 
0 ~ ' 



P (Fi > hi j H0 ) = o( f'or all i ; o( is predetermined by the desired ty-pe 

I error, i.e. P (I) • P (of' rejeeting H0 · I given H0 is true) equals 

q 

L p (Fi > hi) ... r: p (Fi> hi) p. (Fj > hj) + 
i=l ij 

• • •· P . (F .. > h ) where the seoond sum is over all eombirla:li:ion.s of' the 
: q: q 

:numbers l, 2, ••• , q, ta.ken two at a. time, the third is over combina­

tions of' the numbers three a.t a. t;me, etc. Henoe P (I) = l - (l -o()q • 

For a.my desir~d. P {I) we aan determine o(. 

The power of the test~• P (rejeet H0 I H1) equal.a 

l - fr p (Fi< hi I Hl) • 
i=l 

5. Comparison of Gr9'1bill's Method with the Method Proposed im 

this Pa.per. 

Let us denote the method proposed in this paper by A and the method 
'. ... 

preposed by Graybill b.J' B. A aompa:r:ison of the pQWers will be ma.de cml.y 

for case 1 of Wilkinson's methods. For this comparison let us consider 

the original model {1.1) : 

Yi .k • µ + t. . + b. + e. "k J J.J "le J.J ' 

for i = 1, 2, j = l, a, . ,n1, Ilj_=_ n, ~ = 1, a.nd k = 1, 2, ••• , b. 

Method A will be considered first. Usin~ the nb observations Yljk 

form the ratio or mean square for treatments to mean square for error. 

This ratio is distributed as Snedeeor 1s F with n - land (n - l) (b - 1) 

d. r. when tll = tJ.2 = O e • = tln.• 



Consider the means: 

i = 1, 2 

k = l, 2, ••• , b. 

To test the hypothesis t 1 • = t 2• we use the ratio of the mean square tor 

treatments, I:: (y1 k· - y )2 , to the mean square £or error 
ik • • •• 

[: fari k· - .,-1.. - y k· + y }2/ (b ... 1) • This ratio is distributed. ik • . • • • • • •• 

The power of the test, p A , using method A equals 

2 
We oan evaluate p A by tra.nsf orming F 1 and F 2 to Tang's E · • M.aku.g 

the transtormation z1 = r11F1 ~ (t12 + r11F1) , .where r11 and r12 

are the d$.grees of freedom f 0r Fi , we, have z1 distributed as 

. 2 . . Tang's E with parameters n - 1, (n - 1) (b - 1), and ~l where 

2/ 2 a ~l = b ~ (t1 j - t 1.) 2~1 • Also z2 is distributed as Tang's m 



l - fogi f(z1 ) d.z1 £"1 f'(lli2 ) dz2 • 

For ID.f;lthod B Graybill ha.s shewn that it we let 

that 
\ 

(J.l) 'ii' er: brk - u} [uk - til t rl u (b - m n) b • F* 
k 

1,ci 

where U • C U . / b al'ld U = . le k 
k 

1\2 

~ 
, 

• 
• 
• ~. 

iS distributed as Snedeoor1s F with ban.db - pd. r. when 

Therefere 

where 

and 

when 

tll - '21 

tl2 - t21 

• • • 

tln - t21 

A = (a.ij) 

• 

2 2 
aij = O"l + c,i if 1. = j . , 

10 
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Wnder H1 , F* is distrib~ted as the non-eentral F with para.meters 

r -l 
n, b - n, a.nd ~3 where ~3 = µ* ~ u*. To find ~3 we must examine the 

vari~oe-oovarianoe matrix A. 

A is a oiroulant matrix and A-1 = B :ts found to be (bij) where 

2 2 
er + (n - l) O'. 

b = 1 2 
ij 2 2 2 

O"l ( 0'1 + lll0"2) 

ifi=j, 

Then ~3 = Cb/2 where C is defined as below0 

Writing t 21 as t 2 , let 

0 = ti (tli - t2> bij (tlj - t2) 

= ti (tlj - tl. - t2 - t1.> (tlj - tl. - t2 - tl.) bij 

= h ( tli - tl. )( tlj - t1.> bij - 2 t ( \2 - tl. )( tli - tl_)bij 

+ (t2 - t1.>2 Ij bij 

Let K = ~ (tlj - t 1.) (tlj - t 1.) bij • 

K p ~ (tli - tl.)2 bii + ~ ~i (tlj - tl.) (tlj - tl.) bij 



There:f' ore 

That is, 

>i.3 = ~l + ~2 • 

.3 

( 2 .. ) .. er 2 

2 
bn (t2 - t 1 ) 

+ • 
• 

l g 

Power of B = l - 0 t(z_s) d;ii,; where z3 is distributed as Tang's 
- . - . 

2 ' 
E with parameters n, b - n, and ~J. 

We oan now com.pare the power of method A with the power of 

method B. In order to use Tang's tables we mu.st compute cp1 

where 

for i = 11 2, and 3. 

Si:ro.ce ~J = >i1 + >i2, ¢ 3 is a function of ¢J_ and¢.;_. For the special 

12 

case where n = 3, b = 5, and P(I) = .02, the power of A is compared 

with the power of Bin the table on the following page. The value~ for 



1) 

the power of B were obtained by double interpolation from Tang's tables. 

Comparison of Pcwers 

~ ¢2 ,, B3 

l 1 0.118 0,053 

1 3 0.545 0.140 

1 5 0.928 0.220 

.3 l o.s2.3 0.113 

3 3 0.906 0.250 

.3 5 0.986 0 • .360 

5 l 0.999 0 • .360 

5 .3 0.999 0.406 

5 5 1.000 0.480 

These data indicate that, for small samples, method A ie more power­

ful than method B. 



CONCLUSIONS 

If an exaat method of combining independent tests of signifioanoe 

is used, the method propo~ed in __ th~s pap!~_ to test treatment means 

equal is exaot. Its power seems to be better than that of the method 
.. ·""""' - ... ,. 

proposed by Graybill. It should also be emphasized that the method 
,.,... ·- .... ··-- .. ,... . 

in this pa.per requires i:nv~rs,i~_of a eina~ler ma.t!ix-t~a.n Gray-bill's 

method. In addition, the rest.r:t.~~-i~l'l ~~a.t b ~-e __ greater than K is 

much less stringe~t than the restriotion in Gra.ybill's method that 

b be greater than p - 1. 
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