HETEROGENEITY OF ERROR VARIANCES
IN A
RANDOMIZED BLOCK DESIGN

By
JOHN LEROY FOLKS
Bachelor of Arts
Oklahoma Agricultural and Mechanical College
Stillwater, Oklahoma
1953

Submitted to the faculty of the Graduate School of
the Oklahoma Agricultural and Mechanical College
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
May, 1955
HETEROGENEITY OF ERROR VARIANCES
IN A
RANDOMIZED BLOCK DESIGN

Thesis Approved:

Franklin Hayfiel Thesis Adviser

Herbert Scholz

J. Wayman Johnson

Dean of the Graduate School
In a randomized block experiment we frequently wish to test the hypothesis that all the treatment means are equal. When we have heterogeneity of error variances, the ratio of the treatment mean square to the error mean square is not distributed as Snedecor's F. An exact method for testing the treatment means equal when we have heterogeneity of error variances has been given by Graybill.

Consider a randomized block experiment with b blocks and \(n_1 + n_2 \) treatments where the error variance is \(\sigma_1^2 \) for the first \(n_1 \) treatments and is \(\sigma_2^2 \) for the next \(n_2 \) treatments. The method given by Graybill requires inversion of a matrix of order \(n_1 + n_2 - 1 \) and is subject to the restriction that \(b > n_1 + n_2 - 1 \). The method proposed in this paper does not require inversion of a matrix and is subject to the restriction that \(b > 2 \). In addition, the method proposed in this paper seems to be more powerful than the method proposed by Graybill.

In general, when we have \(K \) subsets of treatments such that the first subset has error variance \(\sigma_1^2 \), the next subset has error variance \(\sigma_2^2 \), etc., the method proposed in this paper requires inversion of a smaller matrix and is subject to a less stringent restriction than the method proposed by Graybill.

Indebtedness is acknowledged to Dr. Franklin Graybill for suggesting this problem to me, and for his help during the preparation of this paper.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>TEST CRITERION</td>
<td>3</td>
</tr>
<tr>
<td>TESTS OF SIGNIFICANCE</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

Consider a randomized block design with p treatments occurring on each of b blocks. If each of the first n_1 treatments have variance σ_1^2 and each of the next n_2 treatments have variance σ_2^2, etc., and $\sum_{i=1}^{K} n_i = p$, the mathematical model is:

$$Y_{ijk} = \mu + t_{ij} + b_k + e_{ijk}$$

$i = 1, 2, \ldots, K$

$j = 1, 2, \ldots, n_i$

$k = 1, 2, \ldots, b$

where the e_{ijk}'s are assumed to be normally distributed such that

$E e_{ijk} = 0$ for all i, j, and k,

$E e_{ijk}^2 = \sigma_i^2$ for all j and k, and

$E e_{ijk} e_{rnm} = 0$ unless $i = r$, $j = m$, and $k = n$.

When $n_i = 1$ for all i the model is $Y_{ik} = \mu + t_i + b_k + e_{ik}$ with the same assumptions as in (1.1). Graybill (2)\(^1\) has discussed the problem of testing $t_1 = t_2 = \ldots = t_p$ when $n_i = 1$ for all i. This method involves inversion of a matrix of order $p - 1$ in the numerical analysis and is valid only if $b > p - 1$. The purpose of this paper is to give a criterion for testing $t_{11} = t_{12} = \ldots = t_{KnK}$

\(^1\)Single numbers in parentheses refer to references in bibliography.
for the model in (1.1) where \(n_i > 1 \) for at least one \(i \). If \(n_i > 1 \) for at least one \(i \), the restriction \(b > p - 1 \) can be relaxed somewhat. It is necessary only that \(b > K - 1 \). The numerical analysis will involve inversion of a matrix of order \(K - 1 \).
TEST CRITERION

Consider the i-th subset of observations Y_{ijk}, where $k = 1, 2, \ldots, b$, $j = 1, 2, \ldots, n_i$. Using these observations, conduct an analysis of variance as below for each subset that $n_i > 1$.

A. O. V, for i-th Subset

Due to d. f. Sum of Squares

Blocks $b - 1$ $n_i \sum_k (Y_{i.k} - Y_{i..})^2 = A$

Treatments $n_i - 1$ $b \sum_j (Y_{ij.} - Y_{i..})^2 = B$

Error $(b - 1) (n_i - 1)$ $\sum_{jk} (Y_{ijk} - Y_{i.k} - Y_{ij.} + Y_{i..})^2 = C$

The ratio $\frac{B}{n_i - 1} / \frac{C}{(b - 1) (n_i - 1)} = F_i$ (where $Y_{ij.}$ indicates summation over k and $Y_{ij.}$ indicates the average when summed over k, etc.) is distributed as Snedecor's F with d. f. $(n_i - 1)$ and $(b - 1) (n_i - 1)$ if and only if $t_{il} = t_{i2} = \ldots = t_{in_i}$. We will have $q - 1$ such analyses, each yielding an F, where $q - 1$ is the number of subsets that $n_i > 1$.

Since Y_{ijk} is a normal variate and since $E (Y_{ij.} - E Y_{ij.})$

$(Y_{rj.} - E Y_{rj.}) = 0$ for $r \neq i$, $Y_{rj.}$ and $Y_{ij.}$ are independent. Therefore $b \sum_j (Y_{ij.} - Y_{i..})^2$ is independent of $b \sum_j (Y_{rj.} - Y_{r..})^2$.

Similarly \(\sum_{jk} (y_{ijk} - y_{i,k} - y_{ij} + y_{i..})^2 \) is independent of \(\sum_{jk} (y_{rjk} - y_{r,k} - y_{rj} + y_{r..})^2 \). We have, therefore, \(q - 1 \) independent ratios, each distributed as Snedecor's F if and only if \(t_{i1} = t_{i2} = \ldots = t_{in_i} \) for all \(i \).

If we average our observations within each subset over each block we have:

\[
(2.1) \quad \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ijk} = \mu + \frac{1}{n_i} \sum_{j=1}^{n_i} t_{ij} / n_i + b_k + \frac{1}{n_i} e_{ij} / n_i.
\]

Denote (2.1) by \(T_{1k} \) and let \(T_{1} = \sum_{j=1}^{n_i} t_{ij} / n_i \) and \(d_{ik} = \frac{1}{n_i} e_{ij} / n_i \).

Then (2.2)

\[
B_{ik} = \mu + T_{1} + b_k + d_{ik}.
\]

From the assumptions in (1.1)

\[
E d_{ij} = E \frac{1}{n_i} \sum_{j=1}^{n_i} e_{ij} / n_i,
\]

\[
E d_{ij} = 0,
\]

\[
E d_{ij}^2 = \frac{\sigma_j^2}{n_i},
\]

\[
E (d_{ij} d_{is}) = 0 \text{ for } j \neq s,
\]

\[
E (d_{ij} d_{ir}) = 0 \text{ for } i \neq r.
\]

Thus (2.2) is the model considered by Graybill and we can use Hotelling's \(T^2 \) to test the hypothesis \(H_0 : T_1 = T_2 = \ldots = T_K \).

Let \(X_{ij} = B_{ij} - B_{ij} \). Consider \(X_j \) a \(K \times 1 \) column vector with elements

\[
x_{ij} \cdot X = \sum_j x_{ij} / b. \quad \text{Then} \quad \frac{b(K + 1)}{b(K - 1)} \left(\frac{1}{K} \sum_{j=1}^{K} [X_j - \bar{X}] [X_j - \bar{X}]^T \right)^{-1} \bar{X}
\]
which we shall call F^* has Snedecor's F distribution under H_0 with $K - 1$ and $b - K + 1$ degrees of freedom (if $b > K - 1$).

Theorem I. \[t_{11} = t_{12} = \cdots = t_{1n_1} = t_{21} = \cdots = t_{Kn_K} \]

and only if $T_1 = T_2 = \cdots = T_K$ and $t_{11} = t_{12} = \cdots = t_{in_1}$ for all i, $i = 1, 2, \ldots, K$.

Proof: 1. If $t_{11} = t_{12} = \cdots = t_{in_1}$, $T_1 = t_{11} = t_{12} = \cdots = t_{in_1}$.

If $T_1 = T_2 = \cdots = T_K$, then $t_{11} = t_{12} = \cdots = t_{in_1} = t_{21} = \cdots = t_{Kn_K}$.

2. If $t_{11} = t_{12} = \cdots = t_{in_1} = t_{21} = \cdots = t_{Kn_K}$, then $t_{11} = t_{12} = \cdots = t_{in_1}$ for all i and $T_1 = T_2 = \cdots = T_K$.

Theorem II. B_{mn} is independent of F_i for all i.

Proof: Let $(y_{ij} - y_{i..}) = u_{ij}$ and $(y_{ij} - y_{i..} - y_{i..} + y_{i..}) = v_{ijk}$.

$$\text{Cov} (B_{mn}, u_{ij}) = 0 \text{ for } m \neq i.$$

Let us consider the case when $m = i$.

$$\text{Cov} (B_{in}, u_{ij}) = E (e_{in} (e_{ij} - e_{i..})),$$

$$= E \frac{e_{in}^2}{bn_i} - E \sum_j \frac{e_{ij}^2}{bn_i},$$

$$= \sigma_i^2 - \sigma^2,$$

$$= \frac{\sigma_i^2}{bn_i} - \frac{\sigma^2}{bn_i},$$

$$= 0.$$

Also, $\text{Cov} (B_{mn}, v_{ijk}) = 0$ for $m \neq i$.

Let us consider the case when $m = i$.

\[
\text{Cov} (B_{in}, v_{ijk}) = E (e_{in}) (e_{ijk} - e_{ij} - e_{ik} + e_{i..}),
\]
\[
= E \frac{e_{ijk}^2}{n_i} - E \frac{e_{ijk}}{bn_i} - E \frac{\sum e_{1jk}^2}{n_i} + E \frac{\sum e_{1jk}}{bn_i},
\]
\[
= \frac{\sigma_i^2}{n_i} - \frac{\sigma_i^2}{bn_i} - \frac{\sigma_i^2}{n_i} + \frac{\sigma_i^2}{bn_i},
\]
\[
= 0.
\]

Since \(B_{mn}, u_{ij}, \) and \(v_{ijk}\) are normal variates and since \(\text{Cov} (B_{mn}, u_{ij}) = 0 \) and \(\text{Cov} (B_{mn}, v_{ijk}) = 0\), \(B_{mn}\) is independent of \(u_{ij}\) and \(v_{ijk}\). Further \(B_{mn}\) is independent of any function of \(u_{ij}\) and \(v_{ijk}\); hence \(B_{mn}\) is independent of \(F_i\) for all \(i\).

Since \(F^*\) is a function of \(B_{ij}\), \(F^*\) is independent of each of the \((q - 1)\) \(F\)'s which we obtained as in the analysis of variance on page 3.

We have, therefore, \(q\) independent \(F\)'s, which are simultaneously distributed as Snedecor's \(F\) if and only if \(H_0\) is true; i.e. if and only if \(t_{11} = t_{12} = \ldots = t_{1n_1} = t_{21} = \ldots = t_{Kn_K}\). To test \(H_0\) requires that we combine \(q\) independent tests of significance.
1. Product of Beta Variables (4)

The product of beta variables with parameters \((a_1 b_1), (a_2 b_2)\)...
\((a_q b_q)\) such that \(a_1 = (a_i + 1 + b_i + 1)\) is distributed as a beta variable with parameters \((a_q, b_1 + \ldots + b_q)\). Since the transformation \(w = \frac{m F/n}{(1 + mF/n)}\) transforms \(F (m, n)\) to a beta variable with parameters \(\alpha = m/2, \beta = n/2\), in some cases we may be able to transform each \(F_i\) and \(F^*\) to beta variables, form the product, and use Pearson's tables of the incomplete beta function to test \(H_0\).

2. Pearson's \(P_\lambda\) Test

If \(P_1, P_2, \ldots, P_q\) are \(q\) independent probabilities then
\[z_1 = -2 \log_e P_1 \] is distributed as \(\chi^2 [2]\). \(P_\lambda\) is therefore distributed as \(\chi^2 [2q]\).

3. Wilkinson's Methods

Reject \(H_0\) if and only if \(P_1 \leq \alpha\) for \(r\) or more of the \(P_i\)'s where \(r\) is a predetermined integer, \(1 \leq r \leq q\), and \(\alpha\) is a constant corresponding to the desired confidence level. The \(q\) possible choices of \(r\) give \(q\) different procedures (case 1, case 2, etc.). Birnbaum (1) indicates that, while there is no single case best for all problems, case 1 seems to be best for this type of problem.

4. Case 1 of Wilkinson's Method

Reject \(H_0\) if and only if at least one \(F_i > h_1\) where
\(P(F_i > h_i \mid H_o) = \alpha \) for all \(i \); \(\alpha \) is predetermined by the desired type I error, i.e., \(P(I) \). \(P(\text{of rejecting } H_o \mid \text{given } H_o \text{ is true}) \) equals

\[
\sum_{i=1}^{q} P(F_i > h_i) - \sum_{ij} P(F_i > h_i) P(F_j > h_j) + \sum_{ijk} P(F_i > h_i) P(F_j > h_j) P(F_k > h_k) - \cdots - \cdots - \sum P(F_1 > h_1) P(F_2 > h_2) \cdot \]

\[
\cdots \cdots \ P(F_q > h_q) \] where the second sum is over all combinations of the numbers 1, 2, \ldots, \(q \) taken two at a time, the third is over combinations of the numbers three at a time, etc. Hence \(P(I) = 1 - (1 - \alpha)^q \).

For any desired \(P(I) \) we can determine \(\alpha \).

The power of the test \(\beta = P(\text{reject } H_o \mid H_1) \) equals

\[
1 - \frac{q}{\sum_{i=1}^{q}} P(F_i < h_i \mid H_1).
\]

Let us denote the method proposed in this paper by \(A \) and the method proposed by Graybill by \(B \). A comparison of the powers will be made only for case 1 of Wilkinson's methods. For this comparison let us consider the original model (1.1):

\[
Y_{ijk} = \mu + t_{ij} + h_k + e_{ijk}
\]

for \(i = 1, 2, j = 1, 2, \ldots, n_1, n_1 = n, n_2 = 1, \) and \(k = 1, 2, \ldots, b \).

Method \(A \) will be considered first. Using the nb observations \(Y_{ijk} \) form the ratio of mean square for treatments to mean square for error. This ratio is distributed as Snedecor's \(F \) with \(n - 1 \) and \((n - 1)(b - 1) \) d. f. when \(t_{11} = t_{12} = \cdots = t_{ln} \).
Consider the means:

\[y_{i,k} = \mu + t_i \cdot + b_k + e_{i,k} \]

\[i = 1, 2 \]

\[k = 1, 2, \ldots, b. \]

To test the hypothesis \(t_1. = t_2. \) we use the ratio of the mean square for treatments, \(\sum_{ik} (y_{i,k} - y_{..})^2 \), to the mean square for error

\[\sum_{ik} (y_{i,k} - y_{i..} - y_{..k} + y_{..})^2 / (b - 1). \]

This ratio is distributed as Snedecor's F with 1 and \(b - 1 \) d. f. when \(t_1. = t_2. \).

The power of the test, \(\beta_A \), using method A equals

\[1 - P \left(F_1 < h_1 \mid H_1 \right) P \left(F_2 < h_2 \mid H_1 \right). \]

We can evaluate \(\beta_A \) by transforming \(F_1 \) and \(F_2 \) to Tang's \(E^2 \). Making the transformation \(z_1 = f_{11} F_1 / (f_{12} + f_{11} F_1) \), where \(f_{11} \) and \(f_{12} \) are the degrees of freedom for \(F_1 \), we have \(z_1 \) distributed as Tang's \(E^2 \) with parameters \(n - 1, (n - 1)(b - 1) \), and \(\lambda_1 \) where

\[\lambda_1 = b \sum_j (t_{1j} - t_{1.})^2 / 2\sigma_1^2. \]

Also \(z_2 \) is distributed as Tang's \(E^2 \) with parameters 1, \(b - 1 \), and \(\lambda_2 \) where \(\lambda_2 = \frac{bn (t_{1.} - t_{21})^2}{2 (\sigma_1^2 + \sigma_2^2)} \).

Hence \(P \left(F_1 < h_1 \mid H_1 \right) = \int_{-\infty}^{g_1} f(z_1) \, dz_1 \) and \(P \left(F_2 < h_2 \mid H_1 \right) \) equals

\[\int_{-\infty}^{g_1} f(z_2) \, dz_2 \] where \(g_1 \) and \(g_2 \) are determined by the transformation
\[e_i = \frac{f_{i1} h_i}{f_{12} + f_{i1} h_i} \]. Therefore the power of method A equals

\[1 - \int_0^{e_1} f(z_1) \, dz_1 \int_0^{e_2} f(z_2) \, dz_2. \]

For method B Graybill has shown that if we let

\[u_{jk} = y_{1jk} - y_{2jk} \]

that

\[(3,1) \quad \mathbf{U}' \left(\sum_k [\mathbf{U}_k - \mathbf{U}] [\mathbf{U}_k - \mathbf{U}]' \right)^{-1} \mathbf{U} \left(b - \frac{n}{\mathbf{b}} \right) \mathbf{b} = \mathbf{r} \]

where \(\mathbf{U} = \sum_k \mathbf{U}_k / \mathbf{b} \) and \(\mathbf{U}_k = \)

\[\begin{bmatrix}
 u_{k1} \\
 u_{k2} \\
 u_{k3} \\
 \vdots \\
 u_{kn}
\end{bmatrix}, \]

is distributed as Snedecor's F with b and \(b - p d, f \). when

\[t_{11} = t_{12} = \cdots = t_{1n} = t_{21}. \]

Therefore

\[U_i \sim N(\mu^*, A) \]

where

\[\mu^* = \]

\[\begin{bmatrix}
 t_{11} - t_{21} \\
 t_{12} - t_{21} \\
 \vdots \\
 t_{1n} - t_{21}
\end{bmatrix}. \]

and

\[A = (a_{ij}) \]

where

\[a_{ij} = \sigma_i^2 + \sigma_j^2 \quad \text{if} \ i = j, \]

and

\[a_{ij} = \sigma_2^2 \quad \text{if} \ i \neq j. \]
Under H₁, F* is distributed as the non-central F with parameters n, b-n, and λ₃ where \(\lambda₃ = \frac{\mu* A \mu*}{2} \). To find \(\lambda₃ \) we must examine the variance-covariance matrix A.

A is a circulant matrix and \(A^{-1} = B \) is found to be \((b_{ij})\) where

\[
\begin{align*}
b_{ij} &= \frac{\sigma_1^2 + (n - 1) \sigma_2^2}{\sigma_1^2 (\sigma_1^2 + n \sigma_2^2)} \quad \text{if } i = j, \\
b_{ij} &= \frac{\sigma_2^2}{\sigma_1^2 (\sigma_1^2 + n \sigma_2^2)} \quad \text{if } i \neq j.
\end{align*}
\]

Then \(\lambda₃ = Cb/2 \) where C is defined as below.

Writing \(t_{21} \) as \(t_2 \), let

\[
C = \sum_{i,j} (t_{1i} - t_2) b_{ij} (t_{1j} - t_2)
\]

\[
= \sum_{i,j} (t_{1i} - t_{1.} - t_2 - t_{1.}) (t_{1j} - t_{1.} - t_2 - t_{1.}) b_{ij}
\]

\[
= \sum_{i,j} (t_{1i} - t_{1.}) (t_{1j} - t_{1.}) b_{ij} - 2 \sum_{i,j} (t_2 - t_{1.}) (t_{1i} - t_{1.}) b_{ij}
\]

\[
+ (t_2 - t_{1.})^2 \sum_{i,j} b_{ij}
\]

\[
= \sum_{i,j} (t_{1i} - t_{1.}) (t_{1j} - t_{1.}) b_{ij} + \frac{(t_2 - t_{1.})^2}{\sigma_1^2 + n \sigma_2^2}.
\]

Let \(K = \sum_{i,j} (t_{1i} - t_{1.}) (t_{1j} - t_{1.}) b_{ij} \).

\[
K = \sum_i (t_{1i} - t_{1.})^2 b_{ii} + \sum_i \sum_{j \neq i} (t_{1i} - t_{1.}) (t_{1j} - t_{1.}) b_{ij}
\]
\[
= \sum_i (t_{i1} - t_{1*})^2 \frac{(\sigma_1^2 + [n - 1] \sigma_2^2)}{\sigma_1^2 (\sigma_1^2 + n \sigma_2^2)}
+ \sum_i (t_{i1} - t_{1*}) \sum_j (t_{1j} - t_{1*}) \frac{(-\sigma_2^2)}{\sigma_1^2 (\sigma_1^2 + n \sigma_2^2)}
- \sum_i (t_{i1} - t_{1*})^2 (\sigma_1^2 + [n - 1] \sigma_2^2) + \sum_i (t_{i1} - t_{1*}) \sigma_2^2
\]
\[
= \sum_i (t_{i1} - t_{1*})^2 / \sigma_1^2.
\]

Therefore
\[
\lambda_3 = \frac{b \sum_i (t_{i1} - t_{1*})^2}{2 \sigma_1^2} + \frac{bn (t_2 - t_{1*})^2}{2(\sigma_1^2 + n \sigma_2^2)}.
\]

That is,
\[
\lambda_3 = \lambda_1 + \lambda_2.
\]

Power of B = 1 - \int_{z_3}^{\infty} f(z_3) \, dz_3 where z_3 is distributed as Tang's E^2 with parameters n, b - n, and \lambda_3.

We can now compare the power of method A with the power of method B. In order to use Tang's tables we must compute \(\phi_i \)

\[
\phi_i = \frac{2\lambda_i}{\sqrt{\lambda_{11} + 1}}
\]

for \(i = 1, 2, \) and 3. Since \(\lambda_3 = \lambda_1 + \lambda_2, \phi_3 \) is a function of \(\phi_1 \) and \(\phi_2 \). For the special case where \(n = 3, b = 5, \) and \(P(I) = .02 \), the power of A is compared with the power of B in the table on the following page. The values for
the power of B were obtained by double interpolation from Tang's tables.

Comparison of Powers

<table>
<thead>
<tr>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.118</td>
<td>0.053</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.545</td>
<td>0.140</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0.928</td>
<td>0.220</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.823</td>
<td>0.113</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.906</td>
<td>0.250</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.986</td>
<td>0.360</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.999</td>
<td>0.360</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.999</td>
<td>0.406</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.000</td>
<td>0.480</td>
</tr>
</tbody>
</table>

These data indicate that, for small samples, method A is more powerful than method B.
CONCLUSIONS

If an exact method of combining independent tests of significance is used, the method proposed in this paper to test treatment means equal is exact. Its power seems to be better than that of the method proposed by Graybill. It should also be emphasized that the method in this paper requires inversion of a smaller matrix than Graybill's method. In addition, the restriction that \(b \) be greater than \(K \) is much less stringent than the restriction in Graybill's method that \(b \) be greater than \(p - 1 \).
BIBLIOGRAPHY

VITA

John Leroy Folks
candidate for the degree of
Master of Science

Thesis: HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN

Major: Mathematics

Minor: Statistics

Biographical and Other Items:

Born: October 12, 1929 near Hydor, Oklahoma

Undergraduate Study: Southwestern State College, 1947-50; O. A. M. C., 1952-53

Graduate Study: O. A. M. C., 1953-54; V. P. I., 1954; O. A. M. C., 1954-55

Experiences: Army, 45th Infantry Division in Japan and Korea 1950-52; Graduate teaching assistant in Mathematics Department 1953-54, 1954-55

Member of Pi Mu Epsilon, American Statistical Association, American Mathematical Society, and Associate Member of The Society of the Sigma Xi.

Date of Final Examination: May, 1955
THESIS TITLE: HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN

AUTHOR: John Leroy Folks

THESIS ADVISER: Dr. Franklin Graybill

The content and form have been checked and approved by the author and thesis adviser. The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

TYPIST: Gayle Rogers