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PREFACE 

An attempt to plot the response of a band-pass amplifier often corr-

fronts the radio engineer. In this thesis a method is worked out in 

which the response of the circuit to frequencies very near the resonant 

frequency may be readily calculated. It will be assumed that the reader 

is familiar with alternating current ~heory and its associated mathematics. 

Excellent work has been done in analyzing double tuned circuits by 
l 

modifying the coupling circuit in one manner or another. Usually in 

this type of analysis some of tbs circuit reactances are assumed to 

remain constant with variations in frequency. Although , this assumption 

generally contributes negligible errors in design, occasionally an 

engineer needs to work a problem to a specified degree of accuracy. 

This thesis was written in order to eliminate the tedious work of an 

exact solution and yet allow an engineer some knowledge of the degree 

of accuracy of the solution of his problem. 

l.L&~nce Balter Arguimbau, Vac~b& QJ.rcuits, PP• 21Cr-li1: . s . 
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CHAPTER. I 

INTRODUCTION 

~he typical band-pass amplifier may be analyzed by considering 

the circuit to the left of terminals A and B to be an equivalent gen-

erator with an internal impedance. The impedance looking to the left 

"B+ 

Fignre 1 Circuit for a band-pass tuned, 
ra~io-frequency amplifier 

of terminals A and Bis Rp in parallel with x~ ,1 
2 .:i. wl 

~ _ ~ Xa-JRpXcJ (1) 

·JXcf -R! R; + X~I 
The reactive term is --2 2 • With a peritode tube the value of R 

t(p + Xe, p 
is generally much larger than x01• The expression for Zg then 

simplifies to 

Z= ;3 

The equivalent circuit then becomes 
Xcf C, A 
~ 

__.JVVVW1""'--I ~ 

B 

C2. 

Figure 2 Equivalent circuit 

1w.L. Everitt, E.E., Ph.D., Communication Engineering, R• 496. 
-----~- - .-;; - ' · ~# · 

(2) 
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The loading of the generator introduces the additional resistance in 

series with the primary circuit. 

The following symbols will be used to simplify the circuit to a 

greater extent. 

R11 = resistance around the primary mesh 

L11 = inductance of the primary mesh with the secondary open 
circuited 

011 = capacitance of the primary mesh 

R22 = resistance of the 1econdary mesh 

L22 = inductance of the secondary mesh 

C22 = eapaoitance of the secondary including distributed capacity 
and input capacitance of the next . tube 

E = primary applied voltage which is~ Eg Xci• This analysis 
will assume that E remains constant tliroughout a small 
band of frequencies. Another chapter will cover the case 
of E as a function of frequency. . · 

The circuit of Figure 2 simplifies into Figure 3. : 
~~~...MRN.,IMI\"---- ~ 

'M L C2. 
C,1 L11 Z.2. Eou-r 

--1-
Figure 3 Equivalent circuit of mesh impedances. 

The impedance of mesh one with all other meshes open-circuited is 

z11 • The impedance of mesh two with all other meshes open-circuited 

is Z22• The mutual impedance between mesh one and mesh two is z12 •2 

From Figure 3 

_I _ _ , 
JWC 

( 3) 
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- J WM. 

fhe E.M.F. equations for each mesh may be written 

E = 

0 = 

The current 12 may be found by 

Eour -

solving 

211 

212 

the simultaneous equations 

E 

0 

-E(-JWM) 

Examining (10) with principal interest on the denominator, some 

tacts are apparent. If both meshes are individually resonant at the 

same frequency, the denominator will be resistive at resonance. The 

reaotive term in the denominator at frequencies slightly different 

from resonance will be the difference between two relatively large 

numbers. This makes it necessary to compute the rea.ctance of each 

( 4) 

( 5) 

( 6) 

( 7) 

( 8) 

( 9) 

(10) 



term to a high degree of aocuraoy before (10) WOU'ld be of muoh value 

in plotting a response. With this in mind it wmild be well to seek 

another method 0£ plotting the response without having to resort to 

extensive multiplication to evaluate the reactive terms. 

4 



CH.APTER II 

TAYLOR'S SERIES SOLUTION 

Taylor's theorem as applied to the expansion of a single variable 

l 
is /(X) = f(Xo+ ~) = /(XJ + h. d /(X) I + h2 i Ax) l 

3 3 d X X=Xo jg_ J X2 : Xo 

+ _h_ d 1( X) I + - - - - - - - - - - ( 11) 

@. dx3 X•X. 

In an effort to provide an accurate equation for the response of a b~d-

pass amplifier this theorem will be appli~d. Let Eout be some function 

of omega.. 

Eaur - ftw) -
f11 + (WLir - 1-) J L WC11 

and let w0 occur when 

= 

I = --

The first two terms of the expansion then become 

Eour -
EM 
C22 

These two terms are simple enough and would be easy to apply. 

1Austin v. Eastman, x.s., FUNDAMENTALS OF VACUUM TUBES, P• 499. 

(12) 

( 13) 

(14) 
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However, three tenns and possibly more are necessary. The second term 

should be examined before it is evaluated at W: w0• The first 

derivative is 

The third term of the expansion requires the (iifferentiation of the 

second derivative before the second derivative is evaluated ~t W= WQ. 

Since the second derivative itself is a very complicated equation. the 

third derivative would be extremely laborious to evaluate. Therefore, 

it would be better to use some other approach to solve the ~roblem. 

6 



CHAPTE:R III 

ALGQRAIC Ell'.ANSION OF TAYLOR'S SERIES 

The sha.pe of equation (10) is known to be Uke Figure 4, depending, 

of course, upon the degree of coupling of the circuit o 

w 
J'igare 4 Response of a slightlY' over 

oou:pled ba.nd-"pass &nl)Ufier., 

Equation (10) can be rewritten for convenience. 

EM 

EouT =, [Ru+J(W4r~] [R2:L22 · .1 > ]+v!J 
. Cu W· C22 

The a.ngu.lar velocity W can be ex.pressed aei a.nw0 + s. 

W = Wo + S 

(10.) 

(17) 

:L'he value of s ma.y be either a positive or negative angular velocity~ 

In actual practic~ the primary and secondary meshes are seldom 

identical. However, if identical primary a.nd secondary circuits ar~ 

assume4, tlle the process 9f Qoroputi:P.~ 1,ha r~~ponse wil]. be much simpler. 

~ -l....oUT -- ,(16) 

7 



EM 
~ 

Multiplyj,ng both the numerator and denominator by w2 c2 gives 
""" • - - • ,_ ~~ ..... " < ... ,. ·•. •• -- • 

Tb.a powers _of w ma.y bE3 oom1,>uted using equation (17). 

W2 . = W! + 2WoS -+ S2 

I 

W' = ~ + 3~S+3WoS' + 1 

Substitute for the w4(M2c2 - 1202) term. in the deno~inator 
.. , '·- ... . .. ' ,, ' .... 

(w! +- 4W~S + 6~s2 + 4W0s3. + s 4 ) (M2o2 - 1202 ). Thh will give 
. -.~ '· •' ~ . ' ' 

~ (M2o2 - L2o2 ) + 4W3S(M2c2 -1202 ) + 6~S2 (M2o2 - 1202 ) + 0 0 . . ... 

4W0S3(:M2c2 - 1202 ) + s4 (M2c2 -- 1202). Substitute for the j2Rw31c2 

term j2RL02wg + j6RLO~~ s + j6RLC2vv0s2 + j2RL02s3• Substitute for 

(19) 

{20) 

(21) 

(22) 

(2.3) 

the w2{a2o2 .+ 2LC) term W~(R2c2 + 2LC) + 2WoS(R2c2 + 2LO) + s.2 {a2o2 +210). 

Substitute for the -j2RWC term -j2RCW0 - j2ROS~ 

. The next .pr9oess is to oolleot aoaffioients ;Of ea.ch power 0£ 

s. The COS'fficient of each power of s is listed on the- rie:it :page. · 

8 



Let G equal the ooeffiaients o'! s0 •. r 

G = w!(:M20~ L2C2 ) + .j2:RL02w~ + ro (R2o2 .+ 2LO) - j2RCW0 - 1 (24) 

Let F equal the coefficients of s. 

F: 4Wf(J,2o2 - L2o2 ) +. j6RLC~ + 2Wo(R2o2 + 2LO) - j2RC {25) 
'' ·2 

Let E equal the coe£ticients of s • 

E = 6Wi(l42o2 - L2c2 ) + j6RLC2w0 + R2o2 + 2LO (26) 

Let H equal the coefficients of s3• 

H = 4Wo(:M2o2 - L2o2 ) + J2RLC2 

Let D equal the coefficients of s4 • 

D = M2o2 - t 2c2 

The numerator of {20) can be expressed as 

.. .. . . 

Again, the coefficients of each powa.r'' o±' S· must be separated. 

0: W3 EMO 

B: 2W0 EMO 

A= EMC 

The substitutions (24) through {32) reduce the output voltage 

a.cross the condenser to 

. Eout = 
0 + BS + A s2 

G +. FS + ES2 + HS 3 + DS4 

By long division the expression for the output voltage becomes 

Eout = c/G + S ( ,B - CF/G) + s2 ( A - CE/G -FB/G + OF2/G2 ) 
G G 

.. 

{27) 

(28) 

{30) 

( 31) 

(32) 

(33) 

(34) 

+ s3( 2CEF2/G2 - BE/G - CH/G - AF/G ·+ BF2 /G2 - CF3 /G3 ) + 
: . G . . 

9 



+ S4 ( 20FH/G3 - BH/G2 - DP/G2 - .A:E/G2 -:- 3CEF2/G4 - F 3B/G4 - OF4/G5 

+ OE2/o3 + 2FBE/G3 + AF2/o3 ) 

rt might be well to pause at this point a.!ld examine the meaning 

(34) 

of (34). The first term corresponds to the value of Eout at the resonant 

frequency. If s is zero then the oat put will be c/o. This can be 

shown to be logically true by observillg Fig11re 4o The coefficient of 

S is. the evaluation of the first derivative at W = w0 • The coefficient 

of('s2 is the evaluation of the second derivative at W = w0 • The 

coefficients of s3 and. s4 are the evaluations of the third and fourth 

derivatives respectively a.t W = w0 • The S in (~4):"¢0:rre1:1ponds to 

the ..1l_ in the Taylors expansion or (ll). 

10 



CH.AP!rEB. IV 

·. SAMPLE PROBLEM 

' ·, ... 
.An example of the se~ies solution and how it compares with an 

e.xaot solution would be -yery instru.otiveo fhe primary ari.d secondary 

E 
M 

Figure 5 ~ad circuits with identical 
primary and secondary 

oireuits are to be id~ntioal. The circuit constants used a.re values 

(11) 

that one might expect from an ordinary intermediate frequency transformer. 

R = R11 = R22 = 20 ohms 

L: L11 = L22:::: 1 millihenry 

.. C - 011 = c22 = 125 micromicrofa.rads 

X: coefficient of coupling= OoOOS 

E= l VC>lt 

M: 8 miorohenry 

X0 = l/W00 • W0 L !!Ill 2,830 ohms 

f 0 = w0 /2~ = 450 9 158 cycles per second 

fo = resonant frequency of the primary 
and secondary tuned individually 

Equations 24 to 32 must be evaluated. 

0: 8 X 10-3 

B. ~ 5660 :x 10-l~ 

4.= 10-15 



D :-150625 ~ 10-27 

E = 50C X 10-15 

F:-jlO-S 

G: 114 X 10-G 

H= -176.8 x.10-21 

C/G = 70o2 ( 35) 

B - CF/G : -j 00616 :x: 10-2 ( 36) . 

G 

A - cE/G - FB/G + cF2Lo2 = "'."'22905 :x. 10-9( 37) 
G 

20~2 -;.'. BE/o':.'- CH/~ :_·AF/G + BF2/o2 - CF3/o 3 = j47 ol x 10-·12 ( 38) 

G 

2CFH/G3 - BH/G2 -DC/G2 ..J. il/G2 - 3CEF2/G4 - F3B/o4 - CF4/o5 

12 

( 39) . 

The values above are approximate because they a.re 9 for the most part, 

slide rule accura.oyo The expansion to five terms is 

Eout = 70o2 + S ( -j 00616 X 10-2) + s2 ( -22905 X 10-9) 

+ S3 ( +j 47ol X 10-12) + S4 ( 90881 X 10-15 )0 
, {40) 

The values of Sat which the peak output voltage occurs may be found 

by differ~ntiating the equation of the output voltage written with 

four terms of the serieso 

Eout = 70o.2 + S ( -j 0.616 x 10-2 , + s2 .( -22905 x 10-9) 

+ 93 ( +j 47ol X 10-12 ) 
(41) 

d Eout = 0 = -j 00616 X 10-2 + 28 {-229.5 X 10-9 ) + 3S2 (+j47ol :it lt,12) 

ds (42) 



Solving equation 42 for S gives 

-7 .Raa.l part of S = .:!:. j 18009 x 10 =-1! 
j 6 X 47ol X 10 

6400 radians/secondo . 

The upper and lower peak frequencies from resonance would be . 

6400/211 = 1018 oyolesc,, 

It might be asked why the fifth term was omitted.. If the fifth te:tm. 

was considered the 4erivative would have involve~ solving a cubic 

equationo The solution of a oubio equation besides being more tedious 9 

usually involves. suca~ssive approximations. Using the first four terms 

is a. satisfaatory approximation by itselfo 

Using (40) a.nd allowing S to vary in steps of 628 radians the 

response was computed. For comparison the response was computed using 

the exact solution of (18)., Both responses are shown on page l4o 

The series respo~se was computed with only a slide ru.le. The exact 

response was computed on a computing machine with the accuracy main-

tained high enough so that the final result was correct to four 

significant figares ... 

For frequencies very near the resonant frequency, the series 

solution is very aocurateo .T~e.work done for the exact solution was 

much lo~er and required extensive trigonometric tabl_es. Jotice that 

the series solution becomes quite inaccurate above about 800 cycles. 

However, the value of frequency that produces a peak output as 
. . ' . ~ . 

dete:r:mined by the exact solution appears to be around 900 cycles. This 
. .· . , 

agrees remarkably well with the value 1018 cycles as determined by the 

series solutiono 

1~ 



_14 

n--,quenay · ~quenay Eout Eout 
off R~scinanae By Series E:xaa.t By (1.8) 

448,158 - 1200 Cycles 64 .. 6 70<130 · .40 .. 50 
4499138 - 1020 Cycles 6605 701)74 34055 
449,156 - 1000 Oyoles 67.0 70~76. .. 33080 
449,256 900 Cycles 6602 70064 30ol0 
449,358 600 Cycles 69.8 · 70083 .. 26A5 
449·,459· - 700 cycles 6908. 70o7.7' ·22·~95 
449,558. ,600 Oyoles 70.0 70068 l9e-45 

i 449,656 500 Cycles 70.2 70057 ~ .. 16 .. 10 
449,758 400 Oycles ·10.3: 70.45 12078 
449,858 . 300 . Oyciles 10·.2 70.35 ''.'.9~54 
449,956 200 Cycles 70o2 70a27 ... f;'. 33 
450,058 100 Cycles 70.2 70.,20 3/(7 
450,158 ·ocyoles 

.. 
70.2 70017 0 . .:t. 

450,258 + 100 Cycles 70.2 70.17 -sas 
450,358 t 200·Cyoles 70.2 70~19 -6 .. 32 
450,458 + 300 Cycles 70.2 70.24 ...;9.51 
450,558 + 400 Cycles 70·.3 70031 -'12. 7·5 
450;658 + 500 Cycles 70o2 70.39 ..:..16~05 
450,756 + 600 Cycles 70 .. 0 10·.50. -19-036 
450,858 + 700 Oyo1es 69~6 70.54 ;...zz·.ao 
450,958 + 800 Cycles 69.8 70.57 --26.15 
451,056 + 900 Cycles 6802 70.56 -29090 
451,158 +. iooo Cycles 67.,0 70 .. 40 -33a60 
451,178 + .1020 Cycles 6605 70.44 
451,358 + 1200 · Cycles 64aS 70a03 



CH.APTER V 

THE SOLUTION WITH APPLIED VOLTAGE VARYING 

WITH FBEQUENOY 

Equation 3~ was developed assuming that the applied vol ta.ge does 

not cha.nge_with frequencya Fig12re 2 show~ that the assumption is not 

true~ From Figure 2 the EQMoFo equations may be written as 

gm Eg 1/wc1 : I1 Z11 + I2 Z12 

0 = I1 z12 + I2 Z120 

The current r 2 ma.y be found by solving (43) a.?ld (44) 'by determinantsa 

- Z1z.&i Eg/WO! 
Z11 Z12 . - Z12 . 

T.he denominator of the expression for r2 shm1ld be simplified 

a.nd oan be expressed as 

(43) 

(44) 

(45) 

15 



-P9 4 L2 - _.bt. -~ + I ) + W2 M2 

C2 c, : vi C1 C2 

Ma.ltiplying the numerator and denominator by w3 yields for the numerator 

a.nd for the denomina.tor 

Since the out1>ut voltage is r2 x02 or I2 l/jwo2 the numerator above 

becomes 

2 
. GM .. EG w M 

C1 C2 

-. 

~. the denominator remains. the. sameo 

16 



~~ oompl~te equation for the outp12t voltage is (47)o Notice that 

the principal difference between (47) and (20.) i.s that (47) has a 

fifth power equation in the d~nominator whereas (20) has only a fourth 

~ower equation in the denomina.torQ 2 
WM 

WC RL2 - ) -
ctRp c,c2 

J 
2 C, C2 Rp 

For convenience (l7), (21) 9 {22) 9 and (23) will be repeatedo 

W .;:: . W0 + s 
w2 ~ + 2W0S + s2 

w3 - w& + 3W~S + 3W s2 
0 + s3 

w4 w! + 4W3s 0 . + sw2s2 
0 

+ 4W s 3 
0 

' 

(17) 

(2.1) 

{22) 

+ s4 (2S.). 

· w5 = wg + s~s + 1ow~s2 + 1ow; s3· + 5w0 s4 ... s5 · 
(48) 

· Equations(l7) 9 (21h (22) 9 (23) 9 and (46) must be substituted into 

(47)o After the substitution is carried out, the coefficients of 

' ea.oh power of S must be detenninedo Let the constants A 9 B, .c, D, · 

E, and F be be equal to the coefficients of s0 , S9 s~·, s3, s4 , and 

s5 in the denominator respeativelyo 

17 



+ wg ( L2/C1 ) + W~ { j Lz/Cy Hp .... j R11/c2 - .1 R:r:;2/cl ) 

+ Wo { R1:/ci ~ - 1/0102 ) - j/cy c2 Rp 

(49) 

jRL L1 + JR1. Lz) + ,.,zw~ ( L1/02 ) + 
2 l · (50) 

+ 2Wo ( JLz/Ci RP - JR11/C2 - JR12/C1) 

3 · __ 2 .--2 
0 .... lOW0 ( 1r--L1L2) + 6Wo ( jRL L, + jR... Lz) + ~o ( L1/02) 

2 :' -"Ll , (51) 

+ ~Wo ( Lz/C1 ·+ R11 RL.2) + j( Lz/Ci lip - R11/c2 - R12/01) 

D - 1oro ( M2-L1L2 ) + 4\V0 ( jR12 L1 + JRLl Lz _) + L1/C2 + (52) 

F = m2 ~ 1 12 1 .. 

Tha numerator of (47) can be expressed as 

gm Es: M ( ~ + 2WOS + s2 ) = Efui Eg M ~ + &n Eg M 2 Wo S 

- Cf .C,i 01 Oz 01 02 

+ gm, ~g M S2 
0 

C1 02. 

Thi$ can be written as G + HS + I s2 where 

G =·.Sm Eg MW~ 

01 02 

(53) 

(54) 

18 



H -

I -, 

gm Eg lVl 2 W0 

01 02 

Using (49) to (57) the output voltage equation simplifies to 

.G. + H S + I s2 

~--------------------~------ 0 

A+ B 6 + 0 s2 + D sZ·+ E s4 + F 96. 

(57) 

(58) 

.(69) 

If the division indicated in (59) is carried out the quotient is 

a. Taylor's e.xpansion of the output voltageo. 

Eou~ ,;:: G/A + S/A ( H.-. GB/A) + s2/A ( I - GO/A_. BH(A + B2G/A2 ) 

+ S'/;/A ( 2CGB/A2 + B2H/A~ - OH/A - .GD/A - :BI/A~ B3G/A~\ 

(60) 

In (60) the .§. terms ,correspond to the ,a terms in (11) o The coefficients 

of ea.ch S term in ( 60) is nothing more than the eva;luation of ~aah 

derivative at the frequency selected to expand. aroundo 

0 

19 



CHAPTER VI 

CONCLUSIONS 

A comparison of .the calculated response of equation 18 and 

equation ZZ shows that the series is extremely accurate for frequencies 

near resona.nceo However, certain approximations were made in evaluating 

the derivatives at W0 o If the smaller component of a derivative was 

less than 1/10 the larger component, then the smaller component was 

neglectedo Actually~ this need not have been done, but it shortened 

the computations considerablyo Increased accuracy over a wider range 

with less terms of the series used could probably be attained by 

using both components of each derivativeo 

The series converges very rapidly near the resonant frequency. 

With frequencies far from resonance the terms required fo~ convergence 

becomes largeo The error in the series at any frequency can .be made 

as small as desired by ta.king a sufficient number of termso 

At frequencies several thousand cycles from resonance the exact 

method for evaluating response ( by equation lS ) should be perfectly 

satisfactory. The difference in the reactive terms in the denomina.tor 

should be large enough to be readily determined by .a slide ruleo 

20 
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