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PREFACE

The question of semi-rigid connections in bullding frames as compared
with simply supported members first arose in the author's mind while study-
ing semi-rigid connectiong under Professqf‘J, E, Lothers of the School of
Architectural'Engineerihg, Oklghoma A & M College, and again in the study
of the design of steel buildings, |

The incfeasing demand for steel in the defense industry~causes a,shorb-
age of steel for structural purposes, It seems important, therefore, that
more accurate design be used in building connections. The present tendency
is to assume building connections take no part‘of the load except that neo-
essary to insure a simply supported menber.

A semi-rigid connection is one which allows some rotation of the members,
such as beam andcolumn, with respect to each other before taking anmy of the
applied load. This amount of rotgtion varies with the condition of loading,
size and shape of ﬁhe members and the type of connection useds It is a local
weakéning between the column and fhe beam and can be thdught of as a concenw
trated load on the conjugate beam gpplied at the center of the connection.

Prior to Wérld War I this initial rotation was given very little consid-
eration since there seemed to be a sufficient supply of steel to allow over-
design of all members gnd thus eliminagte the effect of local weakening ecaused
‘ﬁy rotation, The amount of steel uééd during this war caused designers and
research men to realize our steel supply wes not inexhaustable, These men
became interested in the amount of initlal rotation as a ﬁeans of determining

the load earrylng eapaclty of semi-rigid conmnections, and a serles of experi-
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ments have been conducted in this country and Great Britainl’? to determine
these properties.

It is rather commonly accepted that a 20% savings of steel can be
accomplished by considering the load carried by seml-rigid connections.

The author was interested in determining the walidity of this statement,

The writter wishes to express his appreciation to Professor Ren G. Saxton,
Head of the School of Civil Engineering, Oklahoma 4 & M College, for his
assistance in developing a program of study while at Oklghoma A & M and to
Professor J. E, Lothers for his suggestions and criticisms in preparing this

paper.

1 Professor Gyril Batho, Firgh, Second, and Final Report, Steel Struc-
tures Research Committee, Department of Scientific and Industrial Research.
H. M, Stationery Office, London, 1931=1936,

27, Charles Rathbun, Transactions of the Americen Society of Civil
Engineers, Vol, 101, pp. 525=5%.,
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INTRODUCTION
‘The semi-rigld equations of Maugh? and Rathbun’ are developed in detail
and proved identities — Maugh identical to Rathbun,

The chief difference between Maugh and Rathbun is found in the quanti-
ties W & Z. Rathbun defines 2Z° as 'ﬁgucoefficien'b of M such that MZ = @ =
angle of rotation of the connection due to moment, W;::hile Maugh defines (// 6
as "the slope of the tangent to the curve" or a coefficient of @ such that
ﬁyj = M, moment required to produce an angle rotation @ at the connection,
From Fig. 1, _12- equals the slope of the tangent to the curve, therefore,

 these two quantities are interchangeable,

i
Sy Typieal tesi.; specimen
Bending Moment, M,
at connection
~—
Relative Angle Change, #,
between column and end of beam
Fig, 17
3 1L, C. Maugh, Statically Indeterminate Structures. (New York 1948),

PPe. 292"‘2% .

4 7. Charles Rathbun, Transactions of the Americsn Society of Civil
Engineers, Vol. 101, ppe 549=552+

5 Ibido, Pe 549
© Meugh, Statically Indeterminate Structures, p. 29%.

7 Bruoe Johnston and Edward X, bhunt;g%mnnﬂgn of the American
Soclety of Civil Englnecers, Vel. 107, p. 996.



The maximum moment present at the end of a member is the moment for
the completely fixed or rigid condition and the greatest material saving
possible is realized by a semi-rigid connection designed for this moment,.

In this report a single bay two story bent i1s analyzed by slope de-
flection as a rigid frame. The moments from this analysis are taken as
the design moments for the semi-rigid connectionses Rathbun!s equations
for semi-rigid connections are used to analyze this frame and these results
are checked by Maugh's equations and moment distribution. The moments
from this analysis are compared with those of a simply supported member to

determine the percentage of steel saved.
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THE DERIVATION OF RATHBUN'S EQUATIONS

Introduction.

Technical literature pertaining to structural design and analysis
contains two common difficulties for most readers.’

First, there is that of terminology. The reader may be familiar
with a term meaning one thing and the author use this same term to
designate something different, such as QU + To some readers this would.
mean "pounds per square inch", t;‘J others 1t would mean.%'where A equals
the movement of a member andxfp“ the length of this same member perpen=
dicular to A, Then too, eia‘.desigﬁated as "R" by still other authors.
It can be seen from this that terminology is a major problem, This
problem has been greatly reduced by the use of a "glossary" or table of
terms preceding technical articles, There still remé.ins a problem, how
ever, if the author takes some generally accepted term with a speéifie
meaning (such as A which génerally designates deflection) and gives it
a new and different meaning,

The second difficulty is that of signs. Some authors take counter-
clockwise moment as positive and clockwise as negative. The present
tendency 1s to designate clockwise moment as positive and counter-clock-
wise as negative, Another sign convention commonly used is the beam
e~nvention in which a load that causes a member to bend in such a way as
to "hold water" produces positive moment and to "shed water" produces
negative moment in the member. Theﬁe sign conventions can be readily

interchanged as follows:



+
Beam Convention
Counter—clockwise negative
Clockwise positive

+

Counter=clockwise positive
Clockwise negative

Figo 2

Difficulty arises, however, if the author changes from one sign con-
vention to another without ecalling the reader's attention to this change.

"Elastic Properties of Riveted Connections"® by J, Charles Rathbun
presents this diffieulty. Mr. Rathbun changes from one sign convention
to another with very little comment, which causes the reader difficulty in
deriving his equations., This point was stressed in the discussions of
Mr, Rathbun's paper by Mr. Ralph E, Goodwin as follows: "....(Rathbun)
flatters the intelligence of his readers when he .a.sauma that the steps in
his derivations and his systems of algebraic signs will be selfwevident,
In problems of this nature the diffioulty with algebraic signs becomes
almost unanmoun‘be.ﬁle unless the latter are expliocitly defined., The

8

of the Amerdcan Seclety of Civil Engineers, Vol. 101,
PPe 52559 o



Any Loading Condition

(a)
Fg. 3

n = the variable ordinate of the moment diagram due to
traverse loads - member is assumed a simple beam.



B,

tendency of experts is to grow so accustomed to their own particular
methods and sign conventions that it does not occur to them that these
methods and conventions may not be taken for granted by everyone."9
Rathbun himself aclnowledges this difficulty "the question of
signs is one that arises quite often in studies of this nature ceoo

Mr., Rathbun uses the bzam convention and a moment tending to

rotate a member clockwise as negative and counter-clockwise as positive,

Elastic Load  or Elastic Weights'® Theory.

A beam "AB" of length "L" loaded with any condition of loading is
shown in Fig. 3(a). The moment curve for this beam is shown in Fig. 3(b).
Beam A' B' of length "L" loaded with the moment curve of Fige. 3(b), each
ordinate of which is divided by EI, is shown in Fig. 3(c¢). These
ordinates now become the loads on beam A' B', In Fig, 3(¢) a straight
line is drawn from A' to the maximum ordinate of ;—&%& , similiarly a
gtraight line is drawn from B'!' to %&IE'

Triangle abde and abfd have a common base and altitude, therefore,
are equal in area. Triangle abde . minus triangle ade equals triangle
abd while triangle abfd! minus triangle bdf equals triangle abde Then
triangles ade and bdf are equal in area and abd and edf are increased

by these equal quantities to give triangles abfd and adfe. The derived

? Transactions of the American Society of Civil Engineers, Vol. 101,
Pe 564- L 2 '
10

Ibido’ Pe 591,
i John Benson Wilbur and Charles Head Norris, Elementary Structural

Anglysis, (New York, 1948), pp. 318-320,

12 Hale Sutherland and Harry Lake Bowman, Structural Theory, (New York,

1944), pp. 182-185,



properties of these triangles give the desired net properties of
triangles abd and dfe respectively. This presents a convenient method
of using elastic weights without determining points of counter flexure.

The elastic chord or dérormed structure of Fig. 3(a) due to the
given loads is shown in Fig. 3(d). The following relationships can be
derived from Fig. 3(¢) and Fig. 3(d).

The second moment-area theorem gives:

B B
%:?/%&J '!'iqfdx-%J
_ A A A
HB M
j Eﬁw =L -éﬂdx (1)

From the geometry of Fig: 3(d):

A

Bb'—l-} (2)

Substituting equdation 1 in equation 2:

f[;‘j "+ -_EBIE = (3)

The reaction of the beam in Fig. 3(c) is:

W
. - |
[ 23.B 18 o ?

BIV = T

Therefore, H.b = B‘; , which is the reaction of beam "AB"

loaded with ng dlegran, Similiarly, R, is equal to the reaction



at end A of beam "AB" loaded with the Eﬁl diagram,
From Fig. 3(e), 3(d) and by first moment-area theorem:

R :ﬁ'-&-‘AH,a ‘ (5)

(6)

(7)

Therefore, Rc = reaction at end A = area of ELI diagram -

between A and c, or Rc = shear at ¢ due to load f?'!f .

A, =R K- A, | (@)

¢
M —
A'.c-:] E“%xdﬁ.sttocg—ﬁ%x%ﬁ-ﬁxdisttocg]dx (9)
A

A = Ra. Ac - moment of area between A and . (10)

Therefore, Ac = the moment of the beam at "c" due to %lf

as the load.

From this it can be seen that the slope and deflection of
the elastic curve of a loaded Jitember is equal to the shear and
moment respectively of a new member of the same length and with

the E_!?[' diagram of the original as the load on this new member,



Here the beam "AB" has been assumed supported on unyield=
ing supports. The deflection and slope are still equal to the
moment and shear of the é% loaded member when the supports are
yielding if these quantities are measured from the original
position of the member,

If the convention used is that upward loads are positive
and downward negative, then the positive ordinates of the é%
loading indicates an upward force and the negative ordinates
indicate a negative force. Almo, positive bending moment is
plotted above the axis and negative below.

From these principles the general slope dsflection equa-
tions can be developed and in order to keep signs consistent
with Rathbun, a moment tending to rotate a member counter=clock-

wise will be taken as positive and angular rotations will be

treated in the same manner,

C. Bquations 1 snd 2 (The General Slope Deflection Equations).
The general =lope d:flection equations are developed to
present a 1ogic3; sequence of derivations for Rathbun's equa-
tions VI and VII;I
Fig. 4(e) gives the folloﬂing relationships:

(A) o<, = (Ga - Ra) ) (D) S, & (O,b - B'b)
D A
© Abzo, ® A8, o

(©) A, = (6 -R)L (F) Aps= (8, =R)L
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Any Loading Condition

Yam - "5a
A : B
el — k P
(a)
3*
® A 1
E : Y
=t EI
EL —
!
X X
— Sty ==
(b)
Original Unstrained Position
Alpr—— — —
A ' -
A& if
g Fige 4
¥ A-area of the moment diagram duve to traverse loads -

member is assumed a simple beam,



The second moment-area theorem gives:

A,o=_MBLL YaL2L Ax.._MABL Ml | ax
A 23tEr23 tEr- " &r v mr YE

G e 6EI EI

Solve (11) and (12) simultaneously for Myj.
Eq."lz x 2= Eq. 13"

ﬁa.__ﬁ

28y = 3 EI 3 EI

AR e
== BB ff

Eq; 13+ E\q. 1l = Eq. 14

1& | 2A%
o ea 2 [1-1) - 208

Substitute C and F in Eq. 14 and solve for M,j.

Mg = [2106, - ) #160, - R) - & (x-2zm) | &

=i 0, -2) +FL 6 -R) - & (ax- uz)

Let M, = .ZL (A% - 24%,) ,substitute in Eq. 15 and simplify.
12

1. ta, Mpl® Ml am

11

(11)

(12)

(13)

(11)

(14)

(15)



Mp = &L (20_+ 0, - 3R) ~ M, (Rathbun's Eq. 1)

From Fig, 4(¢) R, = R, = R
Solve Eqs 11 and Eq. 12 simultaneously for Mgy

Eq. 11 x 2 = Eq. 16.

M, .2 2
28, = -3+ A+ 28
Man 2 2 '
- L- —
Ag = ?qia EI% “_?.

Eq. 16 + Eq. 12 = Eq. 17.
' 2
L
2, +0, e T} - Yo i - 5

Substitute C and F in Eq. 17 and solve for My,.

o n [B0y - By 4500, - B) 4 g 0%, - aa8) ]

sl - R)4F06, ~B) + Bz - 2u9)

Let '1.%(“1 - 24%) = M,z , substitute in Eq. 18 and simplify.

Mg, = %I(zob + o"é 3B) + Mg (Rathbun's Eq. 2)

* Roman numerals are used to identify Rathbun's equations.

(%)

(16)

(12)

a7)

(18)

(11



It the right end of a beam "ABY is hinged, then the moment
ab end "A" (ﬂgj asn be found indivectly by taking the genersl
slope deflection equation for the moment at end "B (M}?s) ’ settiné
it equal to mero and solving this nsw equation for 6,. This
valus of 8, ean then be substitubed into the gmmeral s.ope daflesn-
tion equation of end "A" and M; fouad in btemms of @,; R and the

fived end moment of the exbernal losds shout end ®AY that iag

Mg =

- A%

p T i ' ] mﬂi
Let MB = O and substitube in BEg. 11,

S

6 = E;%E 2 46, - 3R}+“A’“3ﬁ = 25

Solve BEqa 19 fov 8,

&
O, P o con e s
b 2
W . 2 o
M, = Gk (00 w8, = 3R) - @, (AF - A%, )
oS L 5 4 &3 L‘ﬂ-m

pa]
s

(1)




Any Loading Condition

A B
(a)
Al
Myp , ¢ | *
X X,
- Pl P
(b)

_(Original Unstrained Position

4 Yo - — e —— — el

Fige 5
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. EI - | Aie ooy 2=  om
Myp = 2% (49, - 8, + 3R = 6R) - -L-z-(xl - 2%) - zé(x - 2%))

= El (3, - 3R) + %(-3?1 + 2% - 2E 4 4% (22)
3Ax,
Myp = ELI(ga - B) + __? (III)

L

If the right end of a member is hinged then MﬁA = 0 and from
Fig. 5(e).
AB

(G) o< g, = (ga - Ra) (J) °<a - T

(#H) AB = (ea - Ra)L

Map 1, o1, A%

(108 |

Substitute "H" in Eq. 23.

M,.I1° A%
- B)L - aB 7
6, - B )Lz EI EI - | (24)

Solve Eq. 24 for Myg.

o 3% |
M= Zl (e, -R)+ —-I:éﬂ (111)
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- Any Loading Condition
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E. Equations 10, 1, 12, 13 snd 14
7 The _s»10pe_ of the elastic ‘chord is the shear‘in»the eonjugate
beam, therefore, the shear, or reaction, of the coﬁjugate beam is

. equal to the slope of the elastic chord at the end of the eriginal

beam,
ZMAﬁ;O
_MBLn MarLaL L AT (o - -
E123+ Iz'B*MBZB tEr ©,-B) L=0
L,
_ ¥ypl ZMBAL L
» -é-E_-I—-I- GET +MBZB +AK-(9 -R)L—O (25)

“ 2 . 2
Mypl® = 2Mg,I°  2MpZpLET | e
- AB L ZBAC BB LA (9. -R)L=0
+ . =
ettt T e tero Y

-
221 ZMBA (L+3EIZB)+EI"(O -R)L-O (26)

Let L = L+ 3E1Z

Substitute in Eq. 26,

MypIR ZMB LL Ax
CAB” . (G
-G T + BT f@b -~R)LgO | (27)

M =0
YMarn, Mo &
(6, -R) L 51231 Er 23 T Al =
2 g TR -
MB ZMQBL '\
- (6 ~R) L--BA_ +HAZAL--§J':0 (28)
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MBA + ZMABL ZMAZALBEI _Ax

- (6, = R)L - ~%1 = =0
' !
2 .
L 2M Az
- e -R)L- - ¥gaL” AB il R , :
( ) = L + BEIZA) =5 =0 (29)
Let Loy = L 4 3EIZ,
Substitute in Eq. 29.
MBAL ABL_I_?A |
- (ga -B) L~ + ~ EI (30)
By changing all signs we get Rathbun's Eq. 10.
L, = MgI? Asr '
- M == -
@ -mr-— s 2or oo (®)

Multiplying Eq. 30 by- % and solviné for moment gives Rathbun'!s

Eq. 11,
6Ai'
2LopMy - LMy = €ET (@ = B) 4+ —& = (x1)
Multiplying Eq. 27 by éEL—I and solving for moment gives
Rathbun's Eq. 12.
. ' ‘_! - 6 _ . c
2Lplp - 1My = GBI (9, - B) - -ﬁ? =0 : (X11).
Eq. 30 x 2_1%@ = Eq. 31
: Z,M L, L A% Lo _
a a1 IEI
2MpLL,y M 12 .
-(e-R)L+—§-—3—-AB + & (27)

6EI 6EI EI
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Eq. 31 4 Eq. 27 = 32,

20%. L -
R AR =g
T6T +53 (32)
__ 2Lon(e, - - RL -
— 2Lop (6, - R) + (&; R) + GBI 24%9 Log Aﬂz (33)
flopLop = L IET (4L Lop=L")
Rathbun's Eqe. 13.
2L~(6 =R (6, - R)L 2% - %L
M, = 6E] —£5—8 )+ b ) + G4 Xl;'.@ . - (XTII)
4 5 0 R Lo, 1 =12
24%2B " ¥ 24 2B
2L /
Bq. 27 x -igiﬁ- = Eqe 34.
My nLL {5 Lo, L 247,
- ABZ28  ZTBAT242B - R 28 o
@I + = 2(8 = R)Lyy + — (34)
2MypLLoy MBAL2 : %
—_— S . - B8 =~R)L - = ' 0
o 2 a ) Tt =0 (30)
Eq' 30 + Eq' 34 = 35-
Ma 2 2UF,, A%y
()—,E-I-(z,J[.ZAL?J3 - 1) - 2(8, - R)L,, - (6, = R)L 4 —& - == 0 (35)

| GBI (oper - pw
- ~n 4 - RIL ATL, - AX L

2 2
Aloplop = L 4Algalop = L




F,

Rathbun's Eq. 14.

o oy o6 = R 4 (6, - AL _ g 2Hgy - THy

Equations 4, 3, é, Z, 8 and Q.

In the slope deflection method, as can be verified by any
textbook dealing with the subject, there are three contributing
elements that constitute the moment at the end of a member,
namely:

1. The slope of tangents to the elastic line at the ends

of the member measured from its original position,

2. The rotation of the chord joining the ends of the

elastic line, _

3. The fixed~end moment from the external loads on the

member,
The foregoing equations have been derived by the use of these
three elements similtaneously. Each element, however, could
have been developed independently and then combined by the laws
of superposition to give the same results. Since this is true
M,y and Mp can be evaluated from elemeﬁt three.

If in equation I, 8y, 6, & R w O, Myp = =M,y or M,y is the

"fixed end moment" of the external loads on member AB about:end 4,

since for Ga, Ob & R to equal zero the member must be completely
fixed against rotation and translation. Similarly, M,p is the
"fixed end moment"™ about end B.

In equation I and II, M,y and Mg are the moments at the

20

(xIV)
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support produced hy the external loads on member 4B. therefore,
the resisting or reactionary moments of the beam at 4 and B
respectively, must be 4 M,y and - M.

Letting @5, 8, & R = 0 Eqe. 15 becomes:

o = &3 (e - ) @)

Let I = L - X substitute in 15'
Moy = 2% |:2 L~z - 'i] =24 (2L - 3%) (37)
L 12

Using the Beam convention

- 24 - 3% :
My = = (2L 3x) (Rathbun's Eq. 6). (V1)

Letting e, Qb & R= 0 Eqg. 18 becomes

— _ 24 o=
Mp = %é(gf X1)

Let T L = %, and substitute in Eq. 18'.

o= A2 0om) -5 ] 2o 2 Gr oo Ge)

The sign of moment on end B of member AB is the same for the
beam convention and counter—clockwise positive as can be seen

from Fig. 2, therefore,

i

Mg = - 52% (2L - 3%)) (Rathbun's Eq.;7). : (vir}



~Equations XIII and XIV are the slope deflection eguations
in tgrms of Qa, Gb, R and the resisting moment of a member with
riveted, or elastic, connections. By using the beam convention

and letting Ga, Ob &R =0, McA and MéBvcan be evaluated.

AL - IX
Mop = - %% x 2Bl )
AlopLog = L

(Rathbun's Eq. 8).

2L, X -~ L% A
— % b4 2A xl (Ra‘thbun's qu 9)‘
4loploy = L

&
i

et M, = 04 4 2lop¥F = Ix
ch 7E 12
Loy Lop =

and MQB e %xM
L Aloplay =

The moment at the support due to the leads on AB is negative

at end 4 and positive at end B. Substituting into Eq. XIII and
X1V, M., and Mg for their equivalents and following the above

sign convention we have:

w - epy PG - B u L(zﬁ ” R M, (Rathbmn's Eq. 4)
4LoyLog = T

L Q-R"LG-R
Mpy = €EI 2 2A( B ) + L A ) + MEB_(Rathbun's Eq. 5)

.2
4hoplog = L

22

(VIII)

(1x)

(1v)

(V).



R3

Equations IV and V are identical with equations XIII and XIV when
MEA and McB are substituted from equations VIII and IX. These equations
offer a mathematical method of determining the moment reaction of a
member when the moment at the support is known.

Equations I, II, IV and V are the obsolescent forms of the slope
deflection equations in which the fixed end moment is the moment of
the loads about the support. Care must be taken in using these forms
that the moment is changed to the reactionary moment. Therefore, the
present tendency in "The Transactions of the American Society of Civil
Engineers® is to write the slope deflection equations with this

reactionary moment thus eliminating the inadvertent use of the moment

at the supports.
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MAUGH'S EQUATIONS FOR SEMI-RIGID CONNECTIONS

Maugh's equations for semi-rigid connections are developed by using
the sign‘convention that moments tending to rotate a member clockwise are
positive and angle changes are denoted similarlye.

He also uses the more generally accepted method of loading the con=
jugate beam (i.e. the %% diagram acts down on the conjugate beam.)

In Fig. 7(a) and (b) positive unit moments are applied at ends A and
B separately. The total effect of these unit moments at 4 and B are the
sum of the effects of the separately applied moments while the effect of
any moment at 4 and B is the effect of the unit moments multiplied.by the

moment at A and B respectively.,

M M
Wa Yy
¢, G| 1
[ BI
a bT

-1 i
Ry =P a = =P

Fig. 7



From Fig. 7(a) and (c)

M =0
a
. Vo 23
1
ﬁb= - ZEI-‘E (This sign depends on the counter-clockwise
angles ,Bb}):)
ZMb= 0
'B' L+ L. 1 L2L.og
EI 2 3
a ()Ua
SR TR
Porm:t .

From Fig. 7(b) and (d)

> M
a

"o
ﬁb

=0

"
-+

1
o

(This sign depends on the counter-clockwise
angle ﬁb"a.)

25

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



TotalAangle'change = total FEM x angle change due to unit angle

change, or:

ga = MAB
v | L
% = "ma ‘j‘]‘j‘f

(K) Let K = EI',I'

;J MBA
4”

» M L

Substitute K in Eq. 47 and Eqe 48.

1 {_ Y
Vel
1] tas
¢/ 6K

— " I

3K ¢;§K

Y2

1od _z.__. e
K+ L1+ :l

Substitute L and M in Eq: 49 and 50.

o =Bl 4 3k7)_ I
¥ a

a” 3K

.
o = %%F 1+ ) S D

6K

¥

26

(47)

(48)

(49)

(50)

(51)

(52)



38, = Myp E+_3.1§_ -

e

(V) Let 1 +-—?—;-{-_—= ct

a

() Let 1 4=2om = gn
¥y

o

2

EAE
2

Substitute N end P in Eq. 53 and Eq. 54.

3KQ_ = ¥ypC' E’:;_A

Y
28y, = M5O - AR

Divide Eq. 55 by C'.

.B_IEE.%_: Myp T\
c! 201

Multiply Eq. 56 by 2.
6K9b = 2C"My) = My

Add Bq. 57 and Bq. 58.

350 ”
-5;5 R [zw

- 1] = -2 (400" = 1)

201 2ct

(54)

(55)

(56)

(58)

(59)
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Solve for ME It

KO, g , 6K 12Ke. Gt '
Mag = =B 200 4 g 200 a__ ¢ b (60)
Ct 400" - 1 b 4CICM — 1 7 4C'CH - 1 7 4CtCM ~ 1

. 6 -
(Q) Let 4010:: -1 GZ

120" - -

(R) Let :
40'C" - 1 3

Substitute Q and R in Eq. 60 and substitute ELl for K from K

Moy, = :Ei]-:- (G0, + GBQb) (Maugh's Equation.) (1765)
Mﬁit%ply Ege 55 by 2.
61;{@& = 2MypCt = Mgy (61)
Divide Eq. 56 by C",

3K
MBA zgn (62)

Add Eq, 61 and Eq. 62.

3K

1 AB :
6ke . a—as;,-n = Mp (20" - 555) = 20 (401¢n - 1) (63)
Solve for MAB'
6KQ 20! 3k@, 2" 120vxe, 6Ke,

AB = 401(3:1 -1 C“ (4crCH — 1) C'C” —_ 1 + 400" - 1 (64)
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Substitute S and Q in Eq. 64.

-9

MAB = %% (@19a + 92 (Maugh's Equation.)

b

Rathbun lets:

Ly, = L+ EIZ,

Lop = L + EIZ
And Maugh lets:
C' = 1 4 3K
Va
C"—l+_3l{..

¥
But:

By substituting Z_, Z and E—I;—r- in G! and CW:

b

3817,
L

C' =1 4

er 1 FEl%

29

(17éa)
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Or:
C'L = L + 3EIZ, = Ly,
C*L =L 4 EEIZb - LZB

1 no , ' N .
Then C!' and € ;n terms of L2A and L2B becomes:

Solving Gl, 02 and 03 in terms of L2A and Lot

= 2 . (65a)

6 2
2= oy Loy~ AL iL - 12 (650)
T T -1 Tam
12L
24 12L L
¢ - _ T 24
3= L = ) (65¢)
Talpoy i

Maugh'!s equation for the FEM in riveted connections:

Ml = [V (201 = ) # My, (20, = Cy)] (1782)
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- 13
Mrpa = 2 @Fab (203 = C5) + My, (265 - Gzﬂ (178b)

Subgtitute values for Cq» C,, and G, in each of these.

2? 3

Myp(2 x 12Lypl. - 617) PG 612 - 12L,p1)

g = 3
AL = 12 4,y Lyg - 1?
o1 o Yap(#op- 1) + ZMEA(L - Lp)
| Alipplop = L
op oy Pap By = M) + L (A, - Hyp) (66)
2
llpplop = L,

Since we are dealing with only that portion of the slope deflection
equation which pertains %o external loads (the FEM of a beam) we can
evaluate MAB and MﬁA by determining the deflection of point 4 about
point B and B about 4, sebtting these deflections equal to zero and

solving the resulting equations simultaneously for Myp and My, .

\\.‘v. ] / \}/
. e EI
BT ) v ¥ :
Al
b I B4
i > e EI
ot - - — -




Z‘MA_G
L2L M.LIL A%
S i R e g
EI 23 EI 23 'EI
ZMB:

Multiply Eq. 68 by 2

Wy L2 Ay LL 20%, .

EI 23 EI 23 EI

Add qu 69 and qu 675
Myl L2
EI ~
Solving for Mpe
M = “2' fw= £ - %
e = 0% (T - 2T) = i% (% - 2%))
Subgtitute Eq. 71 in Iq. 6’7 and solve for M, .

2 -2
ML L

qﬁ&n el x
EI 3 GEI L‘?‘

= 3#9* (2% = ?1)

u(sr 25:1)+53 A% - 2% b 3T

32

)

(68)

(69)

(70)

(71)

(72)

(73)
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Substitute Mpy and Myp in Eq. 66,

v _ 24D ZLZBEZ(X-le)—(Zx- :1)_—_I+L[2(2"—x)-(x-2xl:l
lA -._Z .

2
L 4linpliop = L
_2a, ZLQB(ZE'- 4T =24 %) ¢+ L{4% - 2% - X 4 2% )
= 2 s
' Hoplop = L
f, L, = T
2% - IF o
Myp = = 88 x ZREL (Rathbun's Eq. 8) (VII)
T 1P
2428

The moment of the left end of a beam is negative in both the

beam and clockwise~positive convention.

w1 [MAB (2 x 617 = 12L,,L) Ll x 12L2AL\— 617

BA 12 I Y

4onlop oatop

g (L - 2L )t (4L, = L)y,

=L x p
blippLop — L

PLoy (A = Myp) 4 LMy, = 1))

1

L s (75)
Alonpling = L

Substituting the values for Myp and MBA from Eq. 71 and Bq. 73 in Eq. 75

i _24 Loy E(ZX < %) - (- lej +L Ez(x - 2::1) - (2% - xlj
4= % 2
~ L~

Z'L?A 2B:



=2 2L,y (4% - 2% - B4 2X)) + L(2X - 4%, - 2% 4+ Xy)
L ‘ D)

2L, 3% + L(=3%;)

= Z-L& x 5 (76)
4L 2AL2}3.: - L
. Rl X = IX \ :
W, = Q%_ x 247 e ,‘ : (77)
Aloplos =
Using She beam convention,
RLAnX = | :
gy =-88 —22——%5 (Rathbun's Eq. 9.) (1)
Alaplap =

Comparing the last terms of Rathbun's equaﬁions 13 and 14 with
equationg VIII and 77 above shows a difference in signs. Thise 1s %o
be expeoﬁed since Rathbun uges the convention that counter-clockwise
' movement produces positive moment and Maugh uses the conve?tion that
clockwlse movement produces positive moment.

‘The last term of Rathbun's equation 13 can be found by substituting
the values of Myg and My, from equations 15! and 18! in equation 66

as follows:

- 124 o ZLB[2(2'='<'1 ?0 - (=) (2= - %))] +L[2(-) (2% - x.l) - (=, - x_]

1 s i :
¥ o 4hoglop = L
L R L
4 I = I?
2ua
2L, F = IE |
:%{lx 2871 _ (661)

The last term of Rathbun's equation 14 is found simdlerly by sub-
stituting M, and My from equations 15 _-ma 18" in equation 75.
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_ | APPLICATION
A. The Rigid Fragme.

VALY
c - 14WF30 D
lﬁWFW 10WE7
I o 45702 5 K Iz 42 for |
Joints B, C, D, and E are
- 10! 10t rigid connections and the
_ v bent is rigidly anchored
B | B at A and F as slown in
» —JY . detalls 4, B, and G, 7/8"
‘ ' 18WF50 rivets are used through=
I = 800,6 out,
100F77 10WEF7
I w 45702 ' Ie if7.2
ol
A F P
77 77
— 207 s
Fig. 9

N
e
AN
P

Figo 10
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Thé moment diagram for complete fixity is showm in Fig. 10(a) and (b).
Since joints By C, D and E are rigid but not fixed they m.llrrqtate‘until
part‘of Ithe fixed end moment of the girder is taken by the columns which
reduces the negative moment at the girder ends. Since this is true, members
must be debsigned so as to withstand the maximum moment that will occur. It

can be seen that the maximum moment for a uniformly loaded member will be
R
Hi% while for a concentrated load some assumption must be made as both

positive and negabtive moments are equal for the fixed end condition, There=

fore, assume a total maximum positive moment to be %L.

The bent 1s designed by use of these principles as followss

2 )
Mo m HES o wIP0K
(cD) 0D ™ 5 =

2 ' 2
_ 2 i - 3 j @ ; /. ‘8"3
0 = _.%g.)... = 0 Ty 1LWF30; s 2 4l

l.—_-ME
(s} g

Potal % = 40,612  Then 1WF30 is eufficlent

(BE) My = LR

= - 0 IB [ I - 8 00“3
E ‘254_ 330412 85,8 Try 18WF50; “z 9

3

Total & = 86,8 ~ Then 18WF50 is-sufficient
p _

(Columns)
The maximum loaded column ig BA and FE,

Try 1OWET7

2oy e 45 . | 5 o _ A
le st =momeet %‘%% 124 4+ 87 = 4994

Then 10WF77 is sufficient
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Detgil "aA®

The bent may be rigidly anchored at the
base as shown, however, the design of
this connection is beyond the scope of
this paper and is not includedo

Detell *B! L
H "m | w
, 12 ST18WF7
7/16*L[‘ A tI ,~.f- o0 .n: |
' | 15«5" f( T \.J‘rv < ‘]

6
TP | - .
L 5/8 120 Ihis type of connection and loading non=
I ([ v dition was, the' subject of a thesis research
LOWFTY ' by Wllard Quirk and the coefficlent for

- end momeit determined to vary from ,1165

- /\‘ . to W121213 ]

13 Willard Reymond Quirk, "The Contribution of Column Flanves to the
Rotation of Partially Restrained Riveted Ccnnections in Building Frames®.
 Ihesls, Stillwater, 1948,




V = 25K

H |

e
!

= 106,11(12) = 1273.3"K

C = 18233 - 73.0mx
17 o /11._?1

=]

Hi

Connection to bean

Ho, rivets = & = 1320 = 8.1, wuse 10
R 9.02

Connection moment

wd ot
Maligslg , I oML _ 12 - 12 -bt?a=MN
24 87 ¢ 8 e e t 6 &

2

6M 6 x 73 % 5 5 = 1,100 reguired, 1.26% furnished,
J-‘ vaj pid PO 10 62 - 9 q 1L 0S o IR B 1 N

Connection to Colwm (1/7 aosumptlon)

N4 1 Mans + 2pP?
ans 2p

it

12733 % 60 %2 % 20 4 2 x 809 x 257
S EEET 3 % 8409

H

209 required, 4 vertical rows furnished,

Detail #CH

e
by

Using the proper values the design of this connection i

identical with Detail ®B¥, therefore, it is not included.

14 Je Bs Lothers, Design in Structural Steel.




In the given bent

() 3 My = My, + Mgp + My = O
(B) X My =Y -
(C) Mg Mpy + My = O
o)z B% MED u MEB + Mtr =0
(E) 3 M 1st story m ~2Eb DA

t
=
!
&
+
&
o
B
o

(F) S M 2nd story = 2BC 4 M8 | 1

2EIyp
1,

Mop = = (20, +4,) - 125

By
Myg = === (28, 4 8, = 3R))

R
Moy = 0B (2 Y
o = & (20, + 6, - 30,)

(78)
(79)
(80)
(81)
(82)

(83)

39



Yop = f-%@ (26, + 8,) + 66,666 — (84)
I

My = f%.@.@ (204 48.) - 66 666 —1 _%D' = (85)

Mmg_:%;(zed+ee-3az)ﬂ_ - K. (¢6)

NLED=-2-E;-IEQE;(296+9C1—3R2) —-T-: ? (87)

Yer = % (26, = 3Ry) —————— e (88)

Mg = -{—E-Il"/'(be - 3R1) L2 (89)

Since all members are of the same materlal, E may be neglected,

Subgtitubing the above values in A through T,

(ar)
(B')
(c*)
(p*)
(E")

(¥%)

2K, (20 = BRl) + 2K3(29b + 98)4 125 + 2K2(29'b te - 3112) =0
2K, (29@ + 8 - 332) + 21{1(2ec + 8 c1) + 66,666 = 0

21{1(29 gt 8,,) = 66,666 + 2K, (2901 + 6, = 3Ry) = 0

2K, (26, + 8y - 3R2) + 2K, (2@(3 + eb) - 125 + 2K, (28, - 3R1) =0
2K, (@ m3R1) # 2K, (28,=3R,) # 2K, (8,~3Ry) # 2K,(28 ~3R;) = O

2K, (2@b+9@-332)+21<2 (2ec+eb_332)+21<;2 (20 40 d—3112)+-21<2 (28 448 3R, = 0

K

wS



Substituting the values for Kl’ Kz, and K3 in A' through F' and
simplifying
(&) 8, (€K, 4 4K,) 4 8,(2K) +‘Gé(2K3) - 2K, (3R + R,) 4 125 = 0
4(9L.44 4 40.03)8, 4 9L.448  + 80,060, = 3(9L.44) (Ry + Ry) + 125 = 0
(B") &y (2K,) + 8. (4K, + 4K2) + 8,4 (2Ky) = 3R2(2K2) + 66.66¢g70
ILobdby, + 4(60.20)8, + 28.96(8;) = 3(9L.44)R, 4 66466 = O
(1) 8 (2K;) + 8, (4K, + 4K)) 4 8_(2K,) = 2K,3R, = 66,66 = O
28,968 + 4(60.20)8, + 9L.448, = (3)9L.44R, = 66,66 = O
(Dm) 6y, (2K5) 4 8,4(2K)) + 6, (8K, 4 4Kj) = (3Ry 4 3R,)2K, ~ 125 2 0
80,068, + 9LuddBy + 4(9Ledd + 40.03)8g - OLubh(3Ry + IRy) = 125 = 0
(Br) 8, (6K,) + 8_(6K,) - 3R (8K,) = O
3(91.44)8y + 3(91.44)8, = 12(9Lel4)Ry = O
- () Ob(éKz) + 90(6K2) +.ed(6K2) + ge(éxz) - 3R2(8K2) = 0
3(91.44)8, + 3(91.44)8, + 3(9L.44)8, + 3(9L.44)6, = 12(91u4h)R,y = O

This gives six equations wlth six uwnknowns. To evaluate these unknowns
the Gauss, or *",tabulation"':'-? method is used for obtaining spproximate velues.
These values are then used in the Itera'bionlé’ method to obtaln more accurvate

valuod,

ot E John E(iN Pa§celj; ailg‘ﬁ?orge A%fzedzgf?né 32 d 35 y Indeterming
Structures ew Yor . 22 232 and 235,

Eaie Su’oherland and H;r%gr ake’ Qmém’ Shruakr L e
1944) 5 pe 235.

16 Ibidey ps 165 (Parcel & Maney)
Ibide, pe 235 (Subherland & Bowman)



TaBle No., 1

Rigid Connections

Check
No. Oper. Ob Gc Gd Ge Rl 32 Const. Term
1 A" 525.88 91.44 80.06 =274.32  =RT4.32 ~125.00 23.74
2 Bv 91.44 240,80 28.96 =274.32 - 66,66 20,22
-3 ct 28.96 240.80 91.44 =274..32 66.66 153.54
4 Dw 80.06 9l.44 525.88 =274e32 =274.432 125.00 27374
5 En 274432 274432 -1097.28 548 .64
6 Fn 274432 274432 274432 274432 -1097.28 0
1' 1:525.88 1.00 17 15 =752 - 52 - 24 04
2! 23 91.44 1.00 2.63 «32 -3.00 - 72 .23
.3 28,96 240.80 91.44 -274..32 664,66 153.54
4‘ 4_: 80.06 1.00 1.14 6.56 -3.42 "3042 1056 3.42
5! 54274432 1.00 1.00 ~4600 =2.00
6! 6+274.32 1.00 1.00 1.00 ~ 1.00 =4.+00 0]
7 2""1' 2.4,6 n32 - 015 052 "204—8 - 048 019
3 ' 28,96 240.80 91.44 =274432 66,66 153.54
8 2'—4' 2063 - 082 - 6056 304—2 .42 "‘2.28 - 3.19
9 2"‘5' 2.63 032 - 1000 4.00 - 3000 bl 072 2023
10 21-6t 1.63 - .68 - 1.00 1.00 - 72 23
7' 7':" 2046 1000 o13 - .06 021 - 1.00 - 020 008
3‘ 3';' 28-96 1.00 8.31 3.16 - 9047 2-30 5030
8! . 8+ 2.63 1.00 - 31 =249 1.30 .16 - .87 - 1.21
9' 9‘:‘ 2.63 1000 012 - 038 1052 - 1.14 - -27 085
10' 10+ 1.63 1.00 - 42 - .61 .61 - hb 14
ll 3""7' 8.18 3022 - 021 - 804‘7 f2.50 5,22
12 31-81 8.62 5.65 -1.30 - 9.63 3.17 6.51
13 3'-9 8.19 3454 -1.52 - 8.33 2457 445
14 310! 8.73 3.77 ~10.,08 2474 5.16



11t
12!
13!
140

15
116
17

15!
16!
17!

18
19

18!
19!

20 -

11+ 8.18
12+ 8.62
13+ 8,19
14+ 8.73

12'-11
12'-13!
12'-141

15 .27

163 .23
17+ 23

17'=15"
171161

18: .17
19: .78

1812191 -

Gauss Solubion

22

232
«236
.236
.236
«236

s 01 f

«22
217
214

-e213
«212

212

1.00
1.00
1.00
1.00

o2

0219
0218
«213
212
212

.39
.66
W43
W43

27
«23
23

1.00
1.00
1.00

022

234
«235
236
0236
0236

- .02

- .18

- 013
.03
- 015

- 048
«13
- 65

- 078

"1 .OO

0

1st
2nd
3rd
4th
5th

1.03
1.12
1.02
1.15

.09
.10
.03

- 033
- -4—3
13

46
+56

2.70
J72

1.98
0]

Approximation
"

n
n
1

<30
.36
31
31

.06

.05
05

22

.22

22

NA
.75
054
59

12
21
16

41
«92
.70

«29
- .22

1070
- 28

1.74



4,

Substituting 8., &, O3 8,5 Ry and R, from Table I and the proper K

' Ve

values in equations 78 through 89 gives the end moments for all members of

the bent as follows:

4

Mg g 2K, (8, - 3R) =2 x 4;‘.72(-—.236) = = 21,58'K

My = 2K5(0y = 3By) = 2 x 45.72(-1236 % 2) = - 43.16'K

Hop = 2K; (26,48 )4125 = 2 & 40.03(=.236 x 24.236)4125 = 106.11'K
Mpp = 2K, (zeewb.)-lzs =2 ;;‘40.03(.236_ x 2= 4236)=125 = -1(56.1;'1;
MBQ = 2Ky (2éb‘+ 8, = 3By) = 2 x 45.72(~. 4236 x 2 = 212)rm - GRe54K
Mep = 2K,(26 4 @, - 332) = 2 X 45.72(-. 1212 % 2w ,236) = = 60.35'K
Map = 21{1 (20 Q-red)-c-éé.éé = 2 X 14.48(-.212 x 2+.212)¢66.j66:g«”60 521K
Mpg = 28 (20448 )=66466 = 2 = 14.48(w212 .X.25a212)—66566 == 60.52'K
My = 2K, (2054 6 =3B} & 2 ¥ 45.72(.212-% 2 4 +236) = £0435'K

Mpp = 2Ky (20, + 84 = 3B,) = 2 x 45.72(.236 x 2 4 .212) = 62.54K

1

Mop = 2K, (26, = 3Ry) = 2 2-45.72(,236 x 2) = 43.16'K
Mg = 2K, (0, - 3R)) = 2 x 45.72(,236) = 21.58'K

Substituting these moments in equations 4 through F:

(am) Mg, 4 Mo b Moo = = 43416 4 106,11 = 62454 = o41'K (4.92"K)
(BM) Moy + Mop = = 60435 ¢ 60452 = J17'K (2,04"K)

(CM) M.\ My = = 60452 4 60435 & = JL7IK (2,04"K)

(781)
(79')

(80*)

: (81') .

(821)

(83")

(841)

(g5!)

(86?)

(871)
(88?)

(891)
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(DW) Mgp 4 Moo + Mop = 62,54 = 106,11 4 43,16 = = ALK (4.927K)
(BM) Myp b M, 4+ Mo + Mo = = 21058 = 43,16 4 21,58 4 43.16 = 0
(riy Moo+ MCB + M b Mg = - 02454 = 60435 + 62454 + 60,35 = O

The ervors in AW, BW., Ol and DW can be reduced Ey carrying bthe
8 values to four or five decimal places bub this is not justified since
the I-values of the members are taken from the AISC handbook and are
given only to the first decimal places

I% was stated above, since all members were of the same material,
E could be neglected., If E were not neglected and all members still of
the same material eqguation B! would be:

() 2KE(20, + 6 - 332) + 2KE (20, + 8,) 466466 = 0

When this equation is substituted into the Gauss solution it tekes
the form:

(b) 2K,E(20, + 6, = 3R)) + 2K E(28_ 4 8,) = = 66,66

Then the vnknown angles and deflections are B8 and EA z Constant
and these constants Substituted into the slope deflection equations give
the end momentse

But B! substituted in the Gauss solution has the form:

(c) 2K,(20, 4 8, - 3R,) + 2K; (26, + 8;) = = 66466

Then for equation ¢ to be valid, @ and A must be multiplied by E
and although it was neglected in the calculations it must be remembered
that the values of the unknowns are understood to be multiplied by E and

to obtain their true values must be divided by E,
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" B, The Semi-Rigid Frame (Rathbun)

Detail ®b#
Using the proper values the design of this connection is identical

. . oo L L0089
with that at 0" and 72 is found to be *Q%ﬁl-.
]

Detail "CH

*VA ' 4% gplice-plate
Radius to allow clearance for
; N . connection angles
dipo o |e=
c >O o / \\ 7
‘ d/1po ©
: ; 1
q DO(Q T 1AWF30 o
qipo O ‘
d|P0 O
d|po © "
2~ 8 x4 x% angles
22" long
10WF77:

A, o

Y

Connection to column (1/6 assumption)

77 - _1,[18 Mans jp_rﬁ | .

ansV.  5p
z 1 JL8 x 726 60 x2 x204 5% 3x20° . 157,380
T W60 x2 x20 5x3 T 24
= 6.08 or 7, angle must be 22" long.
17

J. E. Lothers, Design in Structural Steel
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Connection to splice=plate.

8 _ 2
" -53353\/2?21: + 24MRpn

1 2 a2
2 x 175 % 3 X 2\/2 x 20° x 3° 4 24 x 726.2 x 17,5 x 3 x 2

_L‘zlo ﬁ,839,200 = 6.45 or 7, angle must be 22" long.
n19_68Re+e) 6x2(2x24 gsﬁ) = 14,08
t(hg 4 g) Sl x24 25

yl9 - h(nb = \[_'g'l:)t} = 8e - 8¢ = 20.2"
nb = t 14.88 x 4 = o5

Ent3y2 42+ 8] E x22 x o572 x 20,22 4 X2 4 2.5 E

Splice=plate to beam=web =-~ a welded connection,

The web thickness as required by moment:

20 1 |AM. A )2
. L] +\/Af 4 40)

Ap = 2,52 ¢ .-m.l%li&% (1/6 web area resists moment)
= 3.169 80 in,
A, = 3.53 sq. in,

Use h = 13"

1 3534 x 672.8 \/J.Ma.g ( 6.66)>
T + 13 16,
= 2 x20x 132[ 3.169 ? 3.169 : i :

- 6_':'7%(1618) = 239", ,270" furnished.

18 5. E. Lothers, Design in Structural Steel

1945, E. Lothers, Lransactions of the American Society of Civil
E&gim\' Vol. 116, Pe 4850

20 ;\B, Lothers, Desien in Structural Steel.
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The web thickness as required by shear:

i

7}
A
2l L —2—’1-'\4-.+ 4 (av)?
avn\ ¢

= el 34534 x 672,8° + 4(13 x 16.66)
2 x 16,66 x 132 \/ 73,169

= 525069 = W54, 270" furnished.

Splice-plate to web ——= g welded connection,

The web of the 14WF30 beam is cut out 20" from the:face of the
ecolumn and welded to the 4" splice plate, as shown. This éonstitutes
a haunched beam, the analysis of which adds nothing to this problem
and is not included; rather the flanges are assumed to extend tdbthe
column face and a weld is designed for this condition and applied to

the actual case.

obted t. 83
T = 20 4 ot 4 Sl
12 3

3
W t2 % 6,733 x 1383 x 6,737 4 SR1200U

6o

i

p - 192DLT .. 19,2 x .25 x 1.5 x 607 = 15,15"
T VEAY 116,66 x 64733 x 383 x 6.738 '

| Use 3 - % X 13" welds as shown.
23

2l 5, E. Lothers, Design in Structursl Steel.




ABC and FED are single members to which the girders (D and BE are
connected with web angle comnections. Then Mpg, Mpg, Mgp, and Mpg are

the only equations contailning properties of these elastic connections.

Mep = GRT A=) + 16 - B + .‘C;_fl. x 2LE® - ng (90)
ot - 2 K>
4LZBL2E - L ALZBLZE bl L

Mmé P (6, - R) + L(8y - R) ¢y , Pop% - Lz‘clz (91)

= , a

foplog = 17 4doplog - L
2L_.(6 - R) + L(8; - R) 2L, - 1%

Mep = &8I - gD_ ¢ 2 d + %% x —2BL S (92)
Alaclap - L 4aclop = L
2L, (@5 - R)-4 L{(8,.- R) 2Lon%, = IX

My = py —22—4 — -6 TR0 > (93)
- 4loglop - L 4laclop = L

The undte of Lop, Lyp, Lops and LZE are length. Therefore, let

|
=

1]

3 I
KA and

=
4Loplop = L dlpelop = L

2 2
also 4L2BL2E - LY = Wi and, ALZCL2D - L7 =W

But

=2}
]
)

or a uniform load

X
]

o]

n
a0

)

for a concentrated load at midspan

Substituting these values in equations 90 through 93 and letting B = 1:

M = 6K, (2Lop6, + 18.) +&x u_%&ﬁ__ (901)
Lop - L
Mg = 6, (2150, + 10y) - & x 2 = | (911)

Wy



N, -
Lo \/:,L = LT
Mpry = 6K, (21,6 + 16.) 4 98 x @l
CD EYTTED e d T Wy
2%
- " aam
) . L (2L~ =~ L%
Mpg = 6E5(2L, 0, + 10 ) - 2 s B
L > 20 d ¢ W
2
Substitute Mpp, Mm, Mop, and Hpg in 4, B, C and D. The slope
deflection equations in terng of their elastic provertles are:
. o {,L,),, - L)%
H 2K, (28, = 3R oK, (2L I 22U -
() 4(, b J‘:[_) +b.(/+( ,’&ng"“""ge) + 7, © wl
4 2K, (20, + 8 - 3R,) =
2 A (OI.P Lad L)'}
(71 =% {29 6. - 3R 4 4K.(21,_. & To.) 4 84 x tER T A
W& M.g\ﬁq c + -b 3 2} + 5(‘..1-‘2‘{) - + d,’ }:t .9 !fur
, £, ZL"(‘ - L}E V4
(XY 6%.(2L_ & ) . Of x ZTEC - K, {2¢ - 3RB.,)
VIV 6n5 (h’-‘ggéd + mcj L wz + ZXZ‘ G(T{ + ge - 2}
. (2L - L)E
(1Y 2% (26 & - 33 ¢ (2L o 8. ) Gh o ,.T_';?.y.,,_._,...__:
(L) 2K,(28_ 46, - 3R)) + 6K, (2L.8 + 18,) ~ % W
oE {1 - 2F -
+ 2K, (26 = 30;) =
- NOSCY .
Lop = Ly = L+ BB1Z = 20(12) + 36006 Le0029) = 2613
£ )
Zo = = 7 = (%, is in inches, therefore, all dimensions of len

-
=

L+

are converted to inch units)

e

FIZ = 20(12) + 3E289.6 .(.,.E@ 5 o

= 2

R

S

peat

F e - 7
- @aon b
1’;, o 200 o5 = JOO2T2
5 P § ) 2
. Ao LY
4{261,3) ~ 12{20;
EYedn) (
" AR ]
S -
/ A s N
4{255.9) = 12(20)

O
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: 2
W0 = 4(261.3)% - 12(20) = 215,000

, : —_ 2
= 4(255.9)% - 12(20)

204, 500

[sH] [

Substituting these vales in H, J, X, and L, changing K, and K to
inch units and simplifying:
(H') 6y (8K, + 6K,2L0) + 8 (2K,) + 8, (61K)) - 2K, (3R, + 3R,)
2lop - L)X
/ _+%XL£L_L=O

Wy

4 [%%Efé + 3(,00372)261.%:]eb + 3%ﬁ§400‘+ 6(240) 003728,

(90244) (3r 4 6(50)20(12)20(12) 5 2(261.3) = 240 _
- Saptet OBy 4 3R,) 4 2%452 * (215,ooo§ =0
4(10.54)8, + 7,628 + 6(240).003728, - (7.62) (3R; + 3R,)

6(50120(12)20(12)282.6 _

* 202 (215,000)

(31) 8, (2E,) + 6 (4K, + 6K.2 2D) + 6,4 (6K,L) ~ 2K, (3R,)

X Tw, ¢

9-*44 o, +2 E%}*éé + 6(.00142)255.%] o + 6(,00142)240@

- Lt 6(2020(20112(0012(2)  2(25%,9) =200 0
((GRy) ¥ 2(8)3 * (204, 500)

7.62@b + 2(9.80)9c + 6(.00142)2409d - 7.62(332)

+ 6(2)20(20)12(20)12(2)271.8 _ o
2(8)3 204, 500)



(K1) 8, (6K, L) + GdK6K52L20 + 4K,) + 0 (2K,) - 2K (3R,) -

| (2L, = L)X
_%XmﬁLngo
W,

. ngéé ANy
6(.00142)2400_ + 2 [?(.00142)255,9 4 s+ Fghs,

-.2_;44 _jzlggiggl;gig_l_gi_l _l_ﬁﬁail;:,ZA_
CRy) - =5 ®3. (0,500

6(.00142)2408  + 2(9.8)8, + 7.628_ - 7.62(3R,)
= 6(2)20(20)12(20)12(2)271.8 _
2(8)3 (204, 500)

(Lt) 0, (6K,1) 1 84 (28,) + 6, (8K + 6K,2L,q ) - 2K, 5 (3R + 3R5)

42
_ 64  (lop - L)F
L Wy

PARYA + 5 | 9L.44 ;
6(.00372)2408;, + S5 8, ¥ 4 [12 + 3(,00372)261.3 8

_ 1 ‘ 6(5020(12)20(12) ., 2(261.3) - 240
Zhadh (3, 4 3R,) -

2(4)2 (215, ooo)
6(:00372)2408;, + 7.6284 4 4(10.54)85 - 7,62(3R1 + 3R,)
_6(%o§zog;z)go(1g);8ggé .0
2(4)2 (215,000)
Rewriting E" and ™ in inch units

(1) 3(7.6208, 4 3(7.62)8, = 7.62(12R;) = O

(W) 3(7.62)8y, + 3(7.62) 6, + 3(7.62)8; + 3(7.62)6_ = 7:62(12R,) = 0

The unknowns are evaluated by the same method as the rigid connections,



Table No. 2°
Semi-Rigid Connections

) ) Check
No. Oper, ‘Ob Gc @d Ge Rl | R2‘ Const. Term
1 H! 42.16 7.62 5,36 - 22,86 = 22.86  =1425.00  -1415.58
4 L' 5436 7.62 42,16 - 22.86 - 22,86 1425.00 1434 .42
5 M 22.36 22.86 = 9144 - - - 45.72
1t 142,16 1.00 .18 12 - 54 - W54 - 33.80 - 33.58
2' 2‘:‘ 7-62 1.00 2057 026 . - 3.00 - 99074 - 98091
4! b 5.36 1.00° o 1.42 7.86 - 426 - 4426 265 .86 267.62
51 5+22.86 1.00 1.00 - 4.00 - 2.00
6' 6:-22 086 1.00 1000 1.00 l .00 . . 2 - 4.00 0
7 21-1¢ - 2.39 .26 - .2 54 - 246 - 65,9 - 65.33
9 21-51 2.57 26 . -1.00 4400 - 3.00 - 99,74 - 96.91
10 2'-6! 1057 - 074 "'l .00 1000 - 99 074 - 98091
7V 7+ 2.39 ~1.00 .10 - .05 22 - 1,02 = 27.58 = 27,33
3t 3+ 2.04 1.00 9.60 3.7 - 11,20 37254 375.68
8! 8+ 2.57 100 =45 ~3.06 1.66 49 = 142,26 = 142.62
9‘ 9+ 2.57 - 1.00 clo — 038 1055 - 1016 - 38.80 - 37.68
10" 10+ 1.57 _ 1.00 - W47 - 64 W64 - 63.52 - 62.99
11 317! 9.50 3.79 - W22 -~ 10,18 .400.12 403,01
1192 g:—gz 10.05 6.80 - 1,66 - 11.69 514,80 518.%
3 -

9.50 4.12 - 1056 - 10.04 4.11 .34 4-13036
14 3t-10t 10,07 4438 - 11.84 436,06 438 .67



i1t
12!
13!
14t

15
16
17

15¢
16¢
17t

18
19

18t
19

20

Gauss Solution

11+ 9,50
12410.05
13% 9.50
1/#10.07

12111
12t-13!

127=14" -

15%- .28
16: .25
17¢ 25

171=15"%
171167

182 .14
192 464

18t=-19¢

=38,89
3‘29 o?j.
=31a.24
‘231 088
=32.22
mBZoAD
“32352
‘“32 [ 59
'='32 wéli;
”32964
332068
"'32 369
‘='32 070
“32070
"‘32 070

“29055
‘=26 978
'526 094
“—"27 050
=28 002
‘328 ® +O
"28 064
=28,81

=28492

=28,94
=29.03
"29 o05
=29 007
=29.09
=’29 009

+1400
1.00
1.00
1.00

26,88
32.92
31,37
30,50
29,96
2966
29kl
29.31
R9.22
29622
29013
29.11
29,10
29,09
29.09

«40
68
43
43

.28
25
e25

1,00
1,00
1,00

30057
34026
34,16
33,72
33,38
33,13
32.97
32 087
32,80
32.77
32074
32,72
32,70
32,70
32,70

- 016

1.07
1.16
1.06
1.18

U I

09
10
.02

b 03?
308

«40
048

2,86
75

2011

=278
2,67
L84
1.20
78

016

04
+02

42.12
51.22

43,30
43.30

9.10
7.92
7.92
32.50
31.68
31.68

- .82

= 5,86

b 5686

4243
51.58
43.51
43455

9.15
8,07
8,03

32,68
32,28

056
.16

4,.00
25

3675

1st Approximation

2nd
3rd
Lth
5th
6th
Tth
8th
oth
10th
11th
12th
13th
14th

i1
i
2
1]
]
"
L]
1
i
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The moment equations for the columns are identical with rigid
connections except the angle changes have the values found in Table II.
Moment equations of the bent with elastic connections and values of

Table II agre:

K, = 45-*5'13 = 3.81 inch units |

271
Myp = 2K, (8 = 3R;) = 2 x 3.81(=32.70) = = 249.17"K (78")
Mgy = 2K,(26 - 3R;) = 2 x 3.81 (=32.70 x 2) = - 498.34"K (79")
, 6a . (QLop = L)%
Mg = 6K, (2Lyply + 18,) + 28 x A (90")
‘ 1
= 6 x 00372 (-32.7 x 2 x 261.3 4 240 x 32.7) 4 1425
= 1425 - 206.26 = 1218.74"K
(2L,g - L)X '
Mop = 61{4(2',[.2]3@e +1e,) - % x ——-—3%——— (91)
, - 1 |

6 x 00372 (2 % 261."3 X 32.7 = 240 x 32.7) = 1425

= = 1425 + 206,26 = - 1218.74"K

Mg = 2K, (2B + 8, = 3R)) = 2 x 3.81 (-32.7 x 2 = 29.09) (82m)
= = 719.91"K
Mop = 2K, (20, + & = 3R;) = 2 x 3.81 (~29.09 x 2 = 32.7) (83m)

- 692,50"K

x (2L2D - L)X

"

: 64
M. = 6K5 (2L2D9c + Lo d) + T (92m)

= 6 x 00142 (=29.09 x 2 x 255.9 + 240 x 29.09) + 760

= 692.651K
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Mpg = 6Ks (21,004 + 16,) - %i x E’%ﬁ? »* : (95")
= 6 x (00142 (29,09 x 2 x 255.9 = 29,09 x 240) - '760
= - 692.65"K

MDE = gxz(ggd + ge - 3R2) =2 x*§.81(2fx 29.09 + 32.7) (86")
= 692.50"K

Moy = 2K, (20, + 8 - 3B,) = 2 x 3.81 (2 x 32.7 4 29.09) (87m)
= 719.91"K

Ypp = 2K,(26_ - 3R;)) = 2 x 3.81 (2 x 32.7) (88n)
= 498.34"K

M = 2K, (6, - 38;) = 2 x 3.81 (32.7) (écy*)

249.17K

Substituting these moments in equations 4 through F:

(&) My # Mo & My = 498,34 & 1218.74 = T19.9L = 497K

(Bg) Mgp + Mgp = = 692.50 # 692.65 = J15"K

(G)) Mps + My = = 692,65 + 692.50 = = J15"K

(Dg) Mpp + Mpp + Mop = 719,91 - 121874 4 498.34 = - 49K

(B Myp 4 Moy + M | Mon = = 249017 = 498034 + 249,17 4 498.34 = O

(F,) Mpg + Mg + Mgp + Mg = = 719,91 = 692,50 4 719.9L + 69250 = 0



C. The Semi~Rigid Frame. (Maugh)

57

As a check and further proof that Rathbun's and Maugh's equations

are identicel the bent solved by use of Rathbun's equations is solved

using Maugh's equations and moment distribution. (Positive moment

tends to rotate a member counter—clockwize).

For girder BE:

RLpl 12(261.3)240 753,000

C, = - _
17 g = 12 4(261.3)2 - (200)2 215,000
= 6L2 - 6(240)? _ 345,000

Woplom = I8 4(261.3)2 = (240)% ~ 215,000 ~

.0350153!5

i

1/25"K

i |

For girder CD:
C. = 12L23L

= A = = 3.6

L 4loglap = 17 (255.9)2 - (24,0)2 204,500
Cy & b2 62400 35,000 . 1.7

| 41'201'213 - 12 4(255.9)2 (240)2 ~ 204,500

I 2
Ml = % “:’Lz (26, - €,) - % (26, - Gl}l
= (30 30)..:&.-’1.‘-"3.((;_._..3,), L (3.6 = 1
(3727 1 2/ BT LT 2 3, o7)

L (1.9) = '760“1{

lh = = 60K

= 3.5

= 1.6

%(Gl,cz)mg—(ss—l.é) LQQ&%(H)

/(6 5g,)

(65b)

65¢)

(65a)

(65%)

(65¢)
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..69‘-2 oy
' The beam'ébnﬁention is used, +135.4,

a1l moments are distributed ~827,8

'and then balanced in one .9 |

'finel balancing operation. + %
+ .

| o N

+

. M m L 4 , . '
PR KR I S SR LRk
N i - QY 05
?:l+++++!+' : i I*llllll
777Z7Uf | .

Comparing these moments with those of slope deflection
gives g maximnm deviation of less than dhe per cent.
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Resultse.
¢ 14WE30 p| 4
10t
B B
18WF55 '
10t
A F
7777 77
20! :
— -
Fige 11

s

By present Qesign procedure CD and BE should be % = 1580 60"3 16WEL0
and & = 3.%8“ = 150"3, 21WF73 respectively., Then CD and BE weigh

] A
40{20) = 800# and 73(20) = 1460#. But with semi=-rigid connections CD and

BE weigh 20(30) = 600# and 55(20) = 1100# respectively. The saving

. 200 360
el'u, ig opom 25% for CD = «b5% Do
realized is gt or % for and 7960 °F 24.65% for BE

[

(GD)' HLZ . 2(20)20(12) = 1200"K (maximum positive moment at Midespan -
-8 o simply supporbed member)

[e034

Then 692,65 is the design moment,

= Mz .,231-.5 = 3 63""3

e
[

G!H

Then 14WF30 1s required
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(eE) RL . 50(20)12 - 3000"K (meximum positive momeni ab mid-gpan ——-
4 4 simply supported member)

Design moment = 3000 = 1218,7/4 = 1781.26"K

L. Mo 178126 = g9,563"
S = A 2 94563

Then 18WF55 is required
Column desipgn |

Try 1LOWF66

lelooMow 45, 1284 =~ 145 4 825 = .§7
"ar 1s 19.4.1’?15.953 Y 53,7609 4

Then 10WF66 is sufficient

The design procedure in building frames, partleularly tall buildings,
ig to make the beam=column connections ripgld using welded diaphrams between
column flanges and the fire proofing required by building codese. This
catges the building to resist wind as & rigld frame. The girders and beanms
are designed, however, as simply supported membérso

The columns required are those necessary to regist the moments and
loads from the rigid frame analysis. Thair'weight m 20(77) = 1540#, while
the welght of the eolum for the semi~rigld frame = 20(€6) = 1320#. Each
colum offers a savings of f%%% or 14:29%. ‘

The total average saving realized from this bent by considering the

propertics of the gemi-rigld connections is 19.55%.
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\ CONCLUSION

\

It is evident that a material saving can be realized by design if
the properties of semi-rigid connections are considered. It appears
that twenty per cent is a fairly accurate estimate of this saving as
compared with results of the bent analyzed in this report.

The next problem is whether this saving is justified. Disregarding
the rapidly diminishing supply of steel, the amount of additional work
required to design a semi=-rigid frame is very little more than that re-
quired by present design practices. The beam~column connections are
assumed rigid and this moment determined to design the wind connection,
This then gives a design moment for the semi-rigid connection with no
additional analysis required.

The only difficulty in using the equations for semi-rigid connections
is involved in determining Z. This factor has been developed and deter-
mined in terms of the properties of the connection for the web angle con-
nection? by Professor J. E, Lothers of the School of Architectural Engineer-
ing of the Oklahoma A & M College. Professor Lothers has also computed a
table of Z-values?> for the standard web-angle connections listed in the
AISC Handbook. With Z known it becomes a simple matter to use either Rath-
bur’s or Maugh's equations in the analysis of semi-rigid frames.

There remains, however, one important semi-rigid connection for which

Z has not been determined and that is the combination of the elip-angle

oty Lothers, Iransactions of the American Society of Ciwil
Engineers, Vol. 116, pp. 480-502.

23 Ibid, pp. 488-489.
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and web-angle connecgbion. Once this is determined the design of frames
with semi-rigid connections involves no more work than for rigid frames.
The properties of semi-rigid connections can be used only when
rivet holes are completely filled ﬁith properly formed rivets and the
joint is tight (i.e. connections are firmly seated against beam and
column), This requires rigid inspecbion and close contact between offiece
and field.
Steel is a natural resource that is repidly diminishing and, with
the increasing demand for military uses, the expense involved in the

analysis and control of semi~rigid building frames is more than justified.
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