CORRELATION OF LIQUID-LIQUID

PHASE EQUILIBRIA

By

EDWARD N. PENNINGTON Bachelor of Science Carnegie Institute of Technology Pittsburgh, Pennsylvania

1948

Submitted to the School of Chemical Engineering

Oklahoma A. & M. College

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

June, 1952

AND THERE ALL ONLAHOMA AGRICULTURAL & MECHANICAL COLLEGE LIBRARY JUL 31 1952

CORRELATION OF LIQUID-LIQUID

PHASE EQUILIBRIA

EDWARD N. PENNINGTON

MASTER OF SCIENCE

1952

Thesis and Abstract Approved:

Charas K. Thesis Adviser

Faculty Representative

Dean of the Graduate School

294681

ii

ACKNOWLEDGMENT

The author wishes to express his appreciation to Phillips Petroleum Company for permission to publish this work, and to K. H. Hachmuth for his guidance and advice. The contributions of S. J. Marwil to the experimental work and calculations involved are gratefully acknowledged. The author also wishes to express his appreciation to C. L. Nickolls for his assistance in the preparation of the manuscript.

ABSTRACT

The lack of design data for liquid-liquid extraction is hindering the development of this separation process. Experimental difficulties involved in determination of the required data make a method of predicting this data very desirable. It is the purpose of this paper to present and prove a method of predicting ternary liquid-liquid phase equilibrium data and show that the method may be extended to predict multicomponent phase equilibrium data.

Mutual solubility data for thirteen hydrocarbon-solvent binary systems and ternary phase equilibrium data for two hydrocarbon-solvent systems are given.

A correlation for determining component distribution in multicomponent systems is developed and charts of partition coefficients for twelve hydrocarbons in furfural and five hydrocarbons in aniline are presented.

TABLE OF CONTENTS

CHAPTER	ι	PAGE
I	INTRODUCTION	1
II	THEORY	4
III	EXPERIMENTAL WORK	
IV	EVALUATION OF ACTIVITY COEFFICIENTS	24
v	PREDICTION OF COMPONENT DISTRIBUTION	28
VI	CORRELATION OF PARTITION COEFFICIENTS	
VII	DISCUSSION OF RESULTS	
NOMENCI	ATURE	64
LITERAT	TURE CITED	65
APPENDI	LX	
	A. Experimental methods and data.	67
	1. Mutual solubility data.	
	2. Ternary equilibrium data.	
	B. Literature survey.	85

v

LIST OF TABLES

Table		Page
I	Van Laar Activity Coefficient Constants	27
II	Comparison of Experimental and Estimated Con- centrations for N-Hexane-Methylcyclopentane- Aniline at 77°F.	33
III	Comparison of Experimental and Estimated Con- centrations for N-Heptane-Methylcyclohexane- Aniline at 77°F.	34
IV	Comparison of Experimental and Estimated Con- centrations for N-Heptane-Cyclohexane-Aniline at 77°F.	36
V	Comparison of Experimental and Estimated Con- centrations for N-Heptane-Cyclohexane-Furfural at 85.6°F.	37
VI	Comparison of Experimental and Estimated Con- centrations for Isooctane-N-Hexane-Furfural at 85.6°F.	38
VII	Mutual Solubility Methylcyclopentane-Aniline	69
VIII	Mutual Solubility 2-Methylpentane-Furfural	69
IX	Mutual Solubility 2,2-Dimethylbutane-Furfural	70
х	Mutual Solubility 2,3-Dimethylbutane-Furfural	70
XI	Mutual Solubility N-Hexane-Furfural	71
XII	Mutual Solubility 2,4-Dimethylpentane-Furfural	72
XIII	Mutual Solubility N-Heptane-Furfural	73
XIV	Mutual Solubility Isooctane-Furfural	74
XV	Mutual Solubility 2,2,5-Trimethylhexane-Furfural	75
XVI	Mutual Solubility Cyclohexane-Furfural	76
XVII	Mutual Solubility Cyclopentane-Furfural	77
XVIII	Mutual Solubility Methylcyclohexane-Furfural	78
XIX	Mutual Solubility Methylcyclopentane-Furfural	79

Table		Page
XX	Ternary Equilibria N-Heptane-Cyclohexane-Furfural	80
XXI	Ternary Equilibria Isooctane-N-Hexane-Furfural	81
XXII	Standardization of Potassium Hydroxide Solution	82
XXIII	Density Versus Composition Isooctane-N-Hexane	82
XXIV	Literature Survey	86

LIST OF FIGURES

Figur	re de la companya de	Page
ı.	Mutual Solubility Methylcyclopentane-Aniline	18
2.	Mutual Solubilities n-Heptane, i-Octane, 2,2,5- Trimethylhexane-Furfural	19
3.	Mutual Solubilities n-Hexane, 2,4-Dimethylpentane- Furfural	20
4.	Mutual Solubilities 2,3-Dimethylbutane, 2,2-Di- methylbutane, 2-Methylpentane-Furfural	21
5.	Mutual Solubilities Cyclopentane-Furfural Methylcyclopentane-Furfural	22
6.	Mutual Solubilities Cyclohexane-Furfural Methylcyclohexane-Furfural	23
7.	Activity Coefficients N-Hexane-Furfural	29
8.	Activity Coefficients Isooctane-Furfural	30
9.	Partition Coefficients Cyclopentane-Furfural	40
10.	Partition Coefficients Cyclohexane-Furfural	41
11.	Partition Coefficients Methylcyclopentane-Furfural	42
12.	Partition Coefficients Methycyclohexane-Furfural	43
13.	Partition Coefficients N-Hexane-Furfural	44
14.	Partition Coefficients 2-Methylpentane-Furfural	45
15.	Partition Coefficients 2,2-Dimethylbutane-Furfural	46
16.	Partition Coefficients 2,3-Dimethylbutane-Furfural	47
17.	Partition Coefficients N-Heptane-Furfural	48
18.	Partition Coefficients 2,4-Dimethylpentane-Furfural	50
19.	Partition Coefficients Isooctane-Furfural	52
20.	Partition Coefficients 2,2,5-Trimethylhexane- Furfural	54
21.	Partition Coefficients Cyclohexane-Aniline	56

Figur	e	Page
22.	Partition Coefficients Methylcyclopentane-Aniline	57
23.	Partition Coefficients Methylcyclohexane-Aniline	58
24.	Partition Coefficients N-Hexane-Aniline	59
25.	Partition Coefficients N-Heptane-Aniline	60
26,	Density-Composition Isooctane-N-Hexane	88
27.	Density-Composition N-Heptane-Cyclohexane	89

I. INTRODUCTION

The separation of solutions into their various components is one of the major problems confronting the chemical engineer. There are in general use many means of effecting these separations. Prominent among these are the various methods of distillation, adsorption, absorption, evaporation, and solvent extraction. In choosing a method to be employed for a given separation consideration must be given to the chemical and physical properties of the components in the solution and the type of separation desired. The various methods of separation which depend upon vaporization of the more volitile components of a solution to effect the desired separation have always dominated the field of industrial separations. But in the current day of specialization the other methods are finding a place of increasing importance in satisfying the demand for special products and pure chemicals.

This is especially true in the field of petroleum refining where the distillations methods have been developed from an art to a science and have been employed on a grandicse scale. But with the ever increasing demand for higher quality motor fuels, more specialized aviation fuels, and pure paraffins, naphthenes, and aromatics as well as pure hydrocarbon chemicals methods, other than distillation, must be introduced and developed. This is not to say that the distillation methods are becoming obsolete and must be replaced, but rather that these methods are approaching the limits of application and must be supplemented with other methods. For example fractional distillation is employed to separate solutions of hydrocarbons into other solutions of narrower boiling range or perhaps even into individual components. However the

separation obtainable is limited by the closeness of boiling points of the various components and the formation of azeotropes or constant boiling mixtures. These limitations may be avoided in some cases by use of some other separation method. One of the most promising of these other methods is liquid-liquid extraction which separates the components of a solution as to relative solubilities in a solvent.

Liquid-liquid extraction is relatively new as an engineering practice in the process industries and is seldom used for precise separations. Until recent years its application has been an art and research has been limited. In order to develop liquid-liquid extraction which separates the components of a solution by distribution of the components between two liquid phases a large amount of phase equilibrium data is required. The limited research in the field of equilibrium studies has yielded a relatively small amount of data as shown by the bibliography in the appendix. This tabulation of literature references is only for solvent-hydrocarbon systems in which the hydrocarbon has five or more carbon atoms but is essentially complete.

The experimental determination of component distribution between phases for ternary or higher systems is either very difficult or impossible. Detailed discussions of experimental difficulties and methods are given by Treybal (<u>17</u>), Bogin (<u>2</u>), Hand (<u>10</u>), and McDonald (<u>15</u>). Because of experimental difficulties a convenient means of predicting the component distribution is very desirable even though the resulting data is only a close approximation. This problem has been studied by the rather unsatisfactory methods of empirical extrapolation and interpolation of existing data. Treybal has reviewed the work done by these methods (<u>17</u>). A more fundamental approach to the problem is possible

through the concepts of thermodynamics. The work done from this approach also has been summarized by Treybal. But the amount of data actually available is very small.

It is the purpose of this paper to present a method of predicting component distribution between two liquid phases in equilibrium and prove its applicability to hydrocarbon-solvent systems. This method is based on the thermodynamic concept of activity and utilizes mutual solubility data which is relatively easily determined by experimental means.

II. THEORY

The equilibrium distribution of components between two phases is a condition of thermodynamic equilibrium. Therefore, the study of component distribution between two liquid phases under equilibrium conditions may be approached through the criteria for thermodynamic equilibria. These considerations require that when two immissible phases are in equilibrium, the activity of a given component is the same in both phases (<u>11</u>) or

$$a_{iv} = a_{ih}$$
. (1)

A more convenient function, activity coefficient, may be defined as the ratio of a component's activity to its mole fraction in the phase considered or

$$\gamma_{iv} = \frac{a_{iv}}{y_{iv}}$$
(2)

and

$$ih = \frac{a_{ih}}{x_{ih}}$$
 (3)

If equations (2) and (3) are combined with the identity, equation (1), an equilibrium relationship is derived,

$$\frac{y_{iv}}{x_{ih}} = \frac{\delta_{ih}}{\delta_{iv}} = K.$$
(4)

It will now be shown that the equilibrium relationship given by equation (4) is rigorous and fulfills the requirements of thermodynamic equilibria.

If the net work done on or by a system undergoing change at constant temperature and pressure is considered, a thermodynamic function may be defined. This function was called "thermodynamic potential" by Gibbs (8) who was the first to apply it extensively. It was later called "free energy" by which name it is more generally known. Free energy is defined by the equation

$$F = H - TS.$$
(5)

Since enthalpy is defined as

$$H = E + PV$$
(6)

then

$$F = E + PV - TS$$
(7)

and differentiation gives

$$dF = dE + PdV + VdP - TdS - SdT.$$
(8)

If the process is assumed to be reversible and the work all due to expansion then (7)

$$TdS = dE + PdV.$$
(9)

Therefore

$$dF = VdP - SdT.$$
(10)

It readily follows that at constant temperature and pressure

$$dF = 0 \tag{11}$$

The derivation of the derivative of free energy is based on the assumption of a closed system and thus does not apply to systems of two or more phases (2). Since free energy is an extensive property its magnitude is also dependent on the amounts of the constituents of the system. And since a small change in free energy, dF, is a complete differential it may be expressed as

$$dF = \left(\frac{\partial F}{\partial T}\right)_{P,n_{1},n_{2},\cdots} \left(\frac{\partial F}{\partial P}\right)_{T,n_{1},n_{2},\cdots} \left(\frac{\partial F}{\partial n_{1}}\right)_{T,P,n_{2},\cdots} \left(\frac{\partial F}{\partial n_{2}}\right)_{T,P,n_{1},\cdots} \left(\frac{\partial F}{\partial n_{2}}\right)_{T,P,n_{1},\cdots} (12)$$

where n_1 , n_2 , ---- are the numbers of moles of the various constituents making up the whole system. The quantities $\frac{\partial F}{\partial n}$ are called partial mclar free energy and is the quantity designated by Gibbs ($\underline{8}$) as the chemical potential, $\underline{4}$.

For an open system in equilibrium at constant temperature and pressure so that there is no net transfer of molecules between phases equation (12) reduces to

$$F = \mathcal{U}_1 dn_1 + \mathcal{U}_2 dn_2 + \dots = 0$$
 (13)

and

$$\mathbf{\xi} \, \boldsymbol{\mathcal{U}} \, \mathrm{dn} = \mathbf{0} \,. \tag{14}$$

Considering a binary system of components i and j, if a small quantity, ∂n_i moles, of component i is transferred from phase v to phase h it follows that

$$-\mathcal{M}_{iv}dn_{i} + \mathcal{U}_{ih}dn_{i} = 0$$
 (15)

and

$$\mathcal{U}_{iv} = \mathcal{U}_{ih}$$
 (16)

That is, when two phases are in equilibrium at constant temperature and pressure the chemical potential of any component is the same in each phase.

If the temperature is held constant equation (10) reduces to

$$dF = VdP.$$
(17)

Then assuming for the moment that the material under consideration is an ideal gas, V = RT/P and therefore

$$dF = RTd \ln P.$$
 (18)

In order to preserve this convenient form for cases in which the substance is not an ideal gas, Lewis (14) defines the function fugacity, f, by the equation

 $dF = RTd \ln f.$ (19)

For one mole of a pure substance the free energy and the chemical potential are identical; therefore equation (19) may be written

$$d\mathcal{M} = \operatorname{RTd} \ln f.$$
 (20)

This equation may be integrated at constant temperature between two states to give

$$\mathcal{U} - \mathcal{U}^{\circ} = \mathrm{RT} \ln f/f^{\circ} \tag{21}$$

where the superscript denotes an arbitrarily chosen standard state. For the purpose of this paper the standard state is defined as the pure liquid component at the pressure under consideration, which is normally one atmosphere. Equation (21) defines the function activity, $a = f/f^{\circ}$. Also if equation (21) is combined with equation (16), it is shown that the activity of any component is the same in each phase provided the same standard state is used to define both phases. This proves the validity of equation (1). It shows that equation (4) is rigorous regardless of the number of components present and fulfills the thermodynamic requirements for equilibrium. It should be noted that the activity of a component in its standard state is unity.

In order to put the activity function in a more usable form, another function, activity coefficient, is defined as the ratio of activity to the molar concentration in a solution

$$\delta = a/x \tag{22}$$

Thus equation (21) may be written

$$\mathcal{U} - \mathcal{U}^{\circ} = \mathrm{RT} \ln \mathcal{V} \mathbf{x} \tag{23}$$

or

$$\mathcal{U} - \mathcal{U}^{\circ} = RT \ln x + RT \ln \delta . \qquad (23a)$$

8

This equation may be differentiated at constant temperature and pressure to give

$$d\mathcal{M} = RTd \ln x + RTd \ln \delta.$$
 (24)

With a two component system in equilibrium at constant temperature and pressure equation (13) reduces to

$$dF = \mathcal{U}_{i}dn_{i} + \mathcal{U}_{j}dn_{j} \qquad (25)$$

which may be integrated at constant composition to give

$$F = \mathcal{U}_{i}n_{i} + \mathcal{U}_{j}n_{j}.$$
⁽²⁶⁾

This may be differentiated without restriction to constant composition to give

$$dF = \mathcal{M}_{i}dn_{i} + n_{i}d\mathcal{M}_{i} + \mathcal{M}_{j}dn_{j} + n_{j}d\mathcal{M}_{j}$$
(27)

Subtracting equation (25) from equation (27) gives

$$n_{j}d\mathcal{M}_{j} + n_{j}d\mathcal{M}_{j} = 0$$
 (28)

Also for a binary system

$$x_i + x_j = 1$$
(29)

and differentiating

$$dx_{j} + dx_{j} = 0 \tag{30}$$

also

$$x_{i} \frac{dx_{i}}{x_{i}} + x_{j} \frac{dx_{j}}{x_{j}} = 0$$
(31)

therefore

$$x_{i}d \ln x_{i} + x_{j}d \ln x_{j} = 0.$$
 (32)

If equation (28) is divided by $n_i + n_i$ it may be written

$$x_{i} d \mathcal{H}_{i} + x_{j} d \mathcal{H}_{j} = 0.$$
 (33)

Substitution from equation (24) and division by RT gives

$$x_{i}d \ln x_{i} + x_{i}d \ln x_{i} + x_{j}d \ln x_{j} + x_{j}d \ln x_{j} = 0.$$
(34)

Subtract equation (32) from equation (34) to give

$$x_{i}d \ln \delta_{i} + x_{j}d \ln \delta_{j} = 0.$$
 (35)

Or writing the equation in terms of partial differentials with respect to x_i

$$x_{i}\left(\frac{\partial \ln \gamma_{i}}{\partial x_{i}}\right)_{T, P} + x_{j}\left(\frac{\partial \ln \gamma_{j}}{\partial x_{i}}\right)_{T, P} = 0 \qquad (36)$$

This may be written in the form

$$\frac{\left(\frac{\partial \ln \mathcal{X}_{i}}{\partial x_{i}}\right)_{T, P}}{\left(\frac{\partial \ln \mathcal{X}_{j}}{\partial x_{i}}\right)_{T, P}} = \frac{-x_{j}}{x_{i}}$$
(36a)

to indicate that if the activity coefficients are plotted on a log scale versus the mole fraction of one of the components, the ratio of the slopes of the curves must be equal to the negative reciprocal of the mole fractions of the two components.

Equation (36) is of value in studying and evaluating experimental data but cannot be used to evaluate activity coefficients without being integrated. Several studies have been made to obtain convenient solutions to this equation. These studies are summarized by Carlson and Colburn (4) and are discussed and compared by Wohl (<u>18</u>). It has been found that the equations derived by van Laar (<u>13</u>) usually give values consistent with experimental liquid-liquid phase equilibria. These equations are also convenient to use. Therefore they were used in the present work to evaluate activity coefficients from mutual solubility data. Equation (19) may be integrated for an ideal solution between two states to give

$$\mathbf{F} - \mathbf{F}^{\mathbf{O}} = \mathbf{R}\mathbf{T} \ln \mathbf{x}. \tag{37}$$

For n_i moles of component i and n_i moles of component j this becomes

$$n_i F_i = n_i RT \ln x_i + n_i F_i^0$$
(38)

$$n_{j}F_{j} = n_{j}RT \ln x_{j} + n_{j}F_{j}^{0}$$
(38a)

And the total free energy of an ideal solution is

$$F = n_i F_i + n_j F_j = n_i RT \ln x_i + n_j RT \ln x_j + n_i F_i^0 + n_j F_j^0.$$
(39)

Similarly equation (23a) shows the total free energy for a

nonideal solution to be

$$F = n_i F_i + n_j F_j = n_i RT \ln x_i + n_i RT \ln \lambda_i + n_j RT \ln x_j + n_j RT \ln \lambda_j$$

+ $n_i F_i^o + n_j F_j^o$ (40)

If equation (39) is subtracted from equation (40) the remainder is termed the excess free energy. That is it is the free energy of an actual solution which is in excess of the free energy of the same solution if it were ideal. Thus

$$F_{E} = n_{i}RT \ln \delta_{i} + n_{j}RT \ln \delta_{j}$$
(41)

Differentiation at constant temperature and pressure with respect to n

$$\frac{\partial F_{E}}{\partial n_{i}} = RT \ln \mathcal{X}_{i}$$
(42)

or for an arbitrary amount of mixture, $(n_i + n_j)$

$$\frac{\partial (n_{i} + n_{j}) F_{E}}{\partial n_{i}} = RT \ln \mathcal{V}_{i}.$$
(43)

Similarly

$$\frac{\partial (n_j + n_j) F_E}{\partial n_j} = RT \ln \gamma_j.$$
(44)

It is assumed that the excess free energy is a simple function of the molar concentrations such that

$$\frac{F_E}{2.3 \text{ RT}} = x_i x_j a \tag{45}$$

where "a" is a constant. This equation may also be written for an arbitrary amount of mixture, $(n_i * n_j)$

$$\frac{(n_{i} + n_{j}) F_{E}}{2.3 \text{ RT}} = (n_{i} + n_{j}) \left(\frac{n_{i}}{n_{i} + n_{j}}\right) \left(\frac{n_{j}}{n_{i} + n_{j}}\right) a \qquad (46)$$

This equation can be made more general by multiplying each n_i on the right hand side of the equality by q_i and each n_j by q_j . These q-factors are interpreted by van Laar to be van der Waal's proper mole volumes (9). Thus equation (46) becomes

$$\frac{(n_{i} + n_{j}) F_{\mathbf{E}}}{2.3 \text{ RT}} = (q_{i}n_{i} + q_{j}n_{j}) \left(\frac{q_{i}n_{i}}{q_{i}n_{i} + q_{j}n_{j}}\right) \left(\frac{q_{j}n_{j}}{q_{i}n_{i} + q_{j}n_{j}}\right) a \qquad (47)$$

Divide both sides by $(n_i * n_j)$ and rearrange to give

$$\frac{F_{E}}{2.3 \text{ RT}} = (x_{i} + \frac{q_{j}}{q_{i}} x_{j}) \left(\frac{x_{i}}{x_{i} + \frac{q_{j}}{q_{i}} x_{j}}\right) \left(\frac{x_{j} \frac{q_{j}}{q_{i}}}{x_{i} + \frac{q_{j}}{q_{i}} x_{j}}\right) \left(\frac{x_{j} \frac{q_{j}}{q_{i}}}{x_{i} + \frac{q_{j}}{q_{i}} x_{j}}\right) q_{i}a \qquad (48)$$

Define the products qia and qia as

- $q_i a = A$ (49)
- $q_{ja} = B$ (49a)

Then divide equation (49) by equation (49a) and

$$\frac{q_{i}}{q_{j}} = \frac{A}{B}$$
(50)

This ratio may be substituted in equation (48) to give

$$\frac{F_{E}}{2.3 \text{ RT}} = (x_{i} * \frac{B}{A} x_{j}) \left(\frac{x_{i}}{x_{i} * \frac{B}{A} x_{j}} \right) \left(\frac{x_{j} \frac{B}{A}}{\overline{x_{i}} * \frac{B}{A} x_{j}} \right) A \qquad (51)$$
$$= \frac{Bx_{i}x_{j}}{x_{i} * \frac{B}{A} y_{j}}$$

Then combining with equation (42) to give the van Laar equations

$$\log \gamma_{i} = \frac{Ax_{j}}{\left(x_{j} + \frac{Ax_{i}}{B}\right)^{2}}$$
(52)

and similarly

$$\log \gamma_{j} = \frac{Bx_{i}^{2}}{\left(x_{i} + \frac{Bx_{j}}{A}\right)^{2}}$$
(52a)

That these equations are consistent with the Gibbs-Duhem equation may be shown by differentiation.

Elimination of δ 's between equation (4) and equations (52) and (52a) permits the evaluation of the constants A and B from mutual solubility data by the equations

$$A = \frac{\log (y_{i}/x_{i})}{\left[\frac{1}{1 + \frac{A}{B}\frac{x_{i}}{x_{j}}}\right]^{2} - \left[\frac{1}{1 + \frac{A}{B}\frac{y_{i}}{y_{j}}}\right]^{2}}$$
(53)

and

$$\frac{A}{B} = \frac{\begin{pmatrix} x_{i} \\ \overline{x_{j}} \\ \hline \end{pmatrix} \begin{pmatrix} y_{i} \\ \overline{y_{j}} \end{pmatrix} \begin{bmatrix} \log (y_{i}/x_{i}) \\ \log (x_{j}/y_{i}) \end{bmatrix} - 2}{\begin{pmatrix} x_{i} \\ \overline{x_{j}} \\ \hline \end{pmatrix} \begin{pmatrix} y_{i} \\ \overline{y_{j}} \end{pmatrix} - \frac{2 x_{i} y_{i} \log (y_{i}/x_{i})}{x_{j} y_{j} \log (x_{j}/y_{j})}}$$

As derived these equations are for binary mixtures. Similar equations for multicomponent mixtures are very complex and require a greater amount of data (<u>18</u>). However in hydrocarbon-solvent systems it may be assumed that the effect of the hydrocarbons on each other is negligible in comparison with the effect of the solvent. That is, it may be assumed that the hydrocarbons form perfect solutions in each other. On this basis, it may be stated that the activity coefficient of a hydrocarbon in a hydrocarbonsolvent mixture is a function of the solvent concentration only and is independent of any other hydrocarbon components present.

In approaching the study of phase equilibria attention should be given to the phase rule and its applications. The phase rule was deduced by Gibbs ($\underline{8}$) from thermodynamics and its meaning depends upon the following definitions:

Phase.--A phase is any homogeneous, physically distinct part of a system which is separated from other parts of the system by definite bounding surfaces. Thus a liquid layer although it may be a solution of two or more components is a phase.

Component.--A component is an independently variable constituent of a system. The total number of components in a system is the smallest number of such constituents by means of which the composition of each phase of the system can be expressed. Thus 13

(54)

for the single phase system n-heptane dissolved in furfural there are two components. Also for the two phase system furfural saturated with n-heptane and n-heptane saturated with furural there are two components. But for the single phase system n-heptane and cyclohexane dissolved in furfural there are three components.

Degree of Freedom.--A degree of freedom is an independent variable of a system which must be fixed in order to completely define a system at equilibrium. These variables are limited to temperature, pressure, and concentration. The number of degrees of freedom of a given system is the number of such variables which must be specified to define the system.

Assuming that the equilibrium between any number of phases is influenced only by composition, temperature, and pressure, the total number of variables affecting the equilibrium is the sum of the concentration terms required to define the system plus two. Thus in a system of C components distributed among P phases, C - 1concentration terms are required to define each phase and P(C - 1)concentration terms are required to define the system. Therefore the total number of variables is

$$P(C - 1) + 2.$$

However it has been pointed out that the equilibrium condition imposes P - 1 conditions that must be met by each component or a total of C(P - 1) conditions. Or that is C(P - 1) variables are automatically fixed. Therefore

P(C-1) + 2 - C(P-1) = C - P + 2 = F (55)

where F is the total number of degrees of freedom.

For a system of two components distributed between two liquid phases in equilibrium the phase rule gives

F = 2 - 2 + 2 = 2.

And if the pressure is fixed at one atmosphere, the temperature alone will define the system completely. That is at a given temperature the composition of the two liquid layers are fixed.

For a system of three components distributed between two liquid phases in equilibrium the phase rule gives

$$F = 3 - 2 + 2 = 3$$
.

Then at fixed temperature and pressure there remains one degree of freedom which must be the concentration of one component in one phase. This reasoning may be extended to give similar conclusions for increased number of components.

III. EXPERIMENTAL WORK

The lack of liquid-liquid phase data in the literature necessitated the experimental determination of mutual solubility data for a number of hydrocarbon-solvent systems and a limited amount of ternary equilibrium data.

Materials: The Hydrocarbons used in the experimental work were all Phillips Pure Grade hydrocarbons. The furfural used was originally obtained as technical grade furfural from the Quaker Oats Company. This furfural was further purified by distillation with the heart cut only being used. The aniline was obtained as chemically pure from Baker and Company, Inc. It was freshly distilled each day with an eighty per cent heart cut being used.

Determination of mutual solubilities: The mutual solubilities of the hydrocarbon-solvent systems were determined by the cloud point temperature of synthetic samples. A more detailed discussion of the experimental method is given in the appendix.

The solubility data are limited to that which could be obtained at atmospheric pressure. In other words no data at temperatures above the boiling point of the mixture were determined. The solubility data obtained are presented in Figures 1 through 6.

Determination of Ternary Equilibria: A limited amount of ternary equilibria was determined by making a synthetic mixture of two hydrocarbons and a solvent such that two phases were formed. The mixture was well agitated at a constant temperature until equilibrium was reached. The phases were then allowed to settle

and were separated. Each phase was analyzed for the concentration of each component. The detailed procedure is explained in the appendix. The ternary equilibrium data determined are tabulated in Tables V and VI.

FIG. 4 MUTUAL SOLUBILITIES

IV. EVALUATION OF ACTIVITY COEFFICIENTS

The activity coefficients for a binary system may be evaluated by use of the van Laar equations and mutual solubility data as was demonstrated previously. The method will now be illustrated by a sample calculation of activity coefficients for the system n-hexanefurfural at 29.8° C.

The constants A and B can be determined from equations (53) and (54) if the concentrations in the two equilibrium phases at a specific temperature are known. The equations are:

$$\frac{A}{B} = \frac{\left(\frac{x_{i}}{x_{j}} + \frac{y_{i}}{y_{j}}\right) \left[\frac{\log\left(y_{i}/x_{i}\right)}{\log\left(x_{j}/y_{j}\right)}\right] - 2}{\left(\frac{x_{i}}{x_{j}} + \frac{y_{i}}{y_{j}}\right) - 2\frac{x_{i}}{x_{j}}\frac{y_{i}}{y_{j}}\frac{\log\left(y_{i}/x_{i}\right)}{\log\left(x_{j}/y_{j}\right)}}$$

$$A = \frac{\log\left(y_{i}/x_{i}\right)}{\left[\frac{1}{1 + \frac{A}{B}\frac{x_{i}}{x_{j}}}\right]^{2} - \left[1 + \frac{A}{B}\frac{y_{i}}{y_{j}}\right]^{2}}$$

The solubility data for n-hexane-furfural from Figure 3, two points on isotherm of 29.8° C, are:

 $x_i = 0.083$ $y_i = 0.943$ $x_i + x_j = 1.0$ $y_i + y_j = 1.0$

and

where n-hexane is component i.

The calculations are as follows:

$$x_i/x_j = 0.083/0.917 = 0.0905$$
 $y_i/y_j = 0.943/0.057 = 16.544$
 $y_i/x_i = 0.943/0.083 = 11.361$ $x_j/y_j = 0.917/0.057 = 16.088$

$$\log (y_i/x_i) = 1.05542 \qquad \log (x_j/y_j) = 1.20651$$

$$\log (y_i/x_i)/\log (x_j/y_j) = 0.8748$$

$$\frac{A}{B} = \frac{(0.0905 + 16.544) - 0.8748 - 2}{(0.0905 + 16.544) - 2 \times 0.0905 \times 16.544 \times 0.8748}$$

$$= 0.8956$$

$$A = \frac{1.05542}{(1 + 0.8956 \times 0.0905)^2} = 1.239$$

$$B = 1.239/0.8956 = 1.383$$

Solutions of these equations have been plotted by Colburn and Schoenborn (5) and the actual calculations are not necessary if the charts are available.

These values for A and B should be checked for accuracy by the Gibbs-Duhem relation

$$\frac{\gamma_{ih}}{\gamma_{iv}} = \frac{y_i}{x_i}$$

The activity coefficients are evaluated by equations (52) and (52a).

$$\log \mathcal{V}_{i} = \frac{A}{\left[1 + \frac{A \times i}{B \times j}\right]^{2}}$$

$$\log \mathcal{V}_{j} = \frac{B}{\left[1 + \frac{B \times i}{A \times i}\right]^{2}}$$

$$x_{i} \quad x_{j} \quad x_{i}/x_{j} \quad \frac{A}{B} \times \frac{x_{i}}{x_{j}} \left[1 + \frac{A}{B} \times \frac{x_{i}}{x_{j}}\right]^{2} \quad \log \mathcal{V}_{ih} \quad \mathcal{V}_{ih}$$

$$0.083 \quad 0.917 \quad 0.0905 \quad 0.0810 \quad 1.1688 \qquad 1.06006 \quad 11.48$$

The activity coefficients at other concentrations may be calculated in the same manner.

The van Laar activity coefficient constants for the binary systems studied are given in Table I for the temperatures indicated. Plots of the activity coefficients for the systems n-hexane-furfural and isooctane-furfural at 29.8° C are shown in Figures 7 and 8.

TABLE I

VAN LAAR ACTIVITY COEFFICIENT CONSTANTS

System	A	В	Temperature °C
Aniline with			
N-hexane (6)* N-heptane (<u>19</u>)* Methylcyclopentane Cyclohexane (<u>12</u>)* Methylcyclohexane (<u>19</u>)*	1.248 1.371 0.918 0.861 1.041	1.309 1.248 1.089 1.117 1.140	25 25 25 25 25
Furfural with	1		
N-hexane	1.119 1.188 1.239	1.203 1.305 1.116	50 37.8 29.8
2,2-dimethylbutane 2,3-dimethylbutane N-heptane	1.181 1.169 1.334	1.328 1.333 1.322 1.365	37.8 37.8 29.8
2,4-dimethylpentane	1.357	1.373	29.8
Isooctane	1.306 1.394 1.446	1.173 1.285 1.371	50 37.8 29.8
2,2,5-Trimethylhexane Cyclopentane	1.828 0.332	1.568	37.8 37.8
Methylcyclopentane Cyclohexane	1.006	1.212 1.358	37.8 29.8 37.8
Methylcyclohexane	1.177	1.382	25 37.8

*Calculated from data as indicated by references.
V. PREDICTION OF COMPONENT DISTRIBUTION

The fact that component distribution between liquid phases in equilibrium can be predicted from activity coefficients has been demonstrated mathematically but must now be proved by comparison of calculated and experimental data. The method of calculating the predicted data is illustrated by the calculation of case 1 in Table VI.

The problem is to determine the composition of the heavy phase for the system isooctane-n-hexane-furfural when the light phase (hydrocarbon-rich phase) has a solvent-free composition of 0.841 mole fraction isooctane. The temperature is 29.8° C.

Solubilities for the system isooctane-furfural are presented in Figure 2 and for n-hexane-furfural in Figure 3.

The binary solubility data are

		Hydrocarbon Phase	Solvent Phase
Mole	fraction furfural in isooctane	0.057	0.954
Mole	fraction furfural in n-hexane	0.057	0.917

The van Laar constants and the activity coefficients are evaluated from this data as previously illustrated. The activity coefficients for these binary systems are shown in Figures 7 and 8.

The concentration of furfural in each of the two ternary phases is estimated by assuming it will be the weighted average of the concentration in the binary phases.

0.841	х	0.057	-	0.048
0.159	x	0.057	=	0.009
(Berg				0.057

estimated concentration of furfural in the hydrocarbon . phase.

The activity coefficients for these solvent concentrations are read from the curves and the partition coefficients determined. Thus the activity coefficient of icoctane in 0.057 concentration furfural is 1.006 and in 0.948 concentration furfural is 17.51, and the partition coefficient is 17.51/1.006 = 17.34. Therefore the concentration of isooctane in the heavy phase is

$$\frac{0.841 (1.000 - 0.057)}{17.34} = 0.046$$

And similarly for n-hexane the partition coefficient is 13.36/1.013 = 13.19. And the concentration in the heavy phase is

$$\frac{0.159 (1.000 - 0.057)}{13.19} = 0.011$$

Therefore the heavy phase composition is:

Component	mole fraction
isooctane	0.046
n-hexane	0.011
furfural (by difference)	0.943
	1,000

The calculated concentration of furfural in the heavy phase deviates less than one per cent from the estimated concentration. Therefore a second approximation is not necessary.

The ternary phase equilibria which have been calculated in this manner are compared in Tables II through VI with experimental data. A study of the system n-hexane-methylcyclopentane-aniline presented in Table II reveals that the experimental data is not very consistent and the predicted values are well within the range of the apparent experimental error. The experimental separation between the two hydrocarbons is in some cases greater than the predicted separation and in others not as great. The system n-heptane-methylcyclohexane-aniline as presented in Table III shows good agreement between the experimental and predicted values. With this system the predictions show a consistently smaller separation between the two hydrocarbons with the exception of Case 1 in which the experimental data are not in agreement with the rest of the data.

The data for the system n-heptane-cyclohexane-aniline compared in Table IV show very good agreement between experimental and predicted values. The predicted separation for this system is better than that obtained experimentally.

The predicted and experimental data for the system n-heptanecyclohexane-furfural compared in Table V are in good agreement. Also with the exception of Cases 1 and 2 the predicted values are conservative.

Binary solubilities for various paraffin-furfural systems indicate that it would be possible to separate two paraffins of different molecular weights by extraction with furfural. To determine the possibilities of such a separation some experimental data were determined and compared with predicted values. The comparison in Table VI shows that the experimental separation is greater than the calculations predict.

These comparisons show that useable predictions of component distribution can be made from mutual solubility data by the method illustrated. 32

TABLE II

HEXANE-METHYLCYCLOPENTANE-ANILINE AT 77°F

Cas	e 3	Case 4		Case	5	Case	Case 6 Case		
Exp	Est	Exp	Est	Exp	Est	Exp	Est	Exp	Est
0.621	0.621	0.472	0.472	0.310	0.310	0.155	0.155	0.086	0.086
).522	0.464	0.385	0.334	0.240	0.211	0.166	0.103	0.032	0.057
).139	0.104	0.090	0.117	0.104	0.131	0.120	0.145	0.130	0.151
.885	0.856	0.870	0.831	0.846	0.805	0.831	0.779	0.784	0.768
~	0.869		0.842		0.813		0.782		0.768

alues.

oon rich phase, solvent free basis.

ich phase, solvent free basis.

bon rich phase.

rich phase.

rich phase calculated from estimated values of x_j and y_j .

. Phy. Chem., <u>47</u>, 444 (1943).

33

TABLE III

OF	EXPERIMENTAL.	AND	ESTIMATED	CONCENTRATIONS	FOR	

EPTANE-METHYLCYCLOHEXANE-AN ILINE AT 77°F

	Cas	e 4	Cas	e 5	Case 6		Case 6 Case 7		Cas	e 8	Case 9	
st	Exp	Est	Exp	Est	Exp	Est	Exp	Est	Exp	Est	Exp	Est
761	0.630	0.630	0.553	0.553	0.496	0.496	0.339	0.339	0.254	0.254	0.203	0.203
541	0.494	0.497	0.401	0.421	0.328	0.366	0.233	0.237	0.157	0.174	0.112	0.138
)89	0.090	0.095	0.091	0.099	0.094	0.101	0.101	0.109	0.105	0.113	0.107	0.115
16	0.913	0.902	0.905	0.896	0.895	0.889	0.886	0.873	0.872	0.865	0.863	0.860
119		0.908		0.898		0.893		0.876		0.867		0.861

TABLE III (Continued)

PARISON OF EXPERIMENTAL AND ESTIMATED CONCENTRATIONS FOR

N-HEPTANE-METHYLCYCLOHEXANE-ANILINE AT 77°F

 $\frac{x_i}{1-x_i}$

yj

x.j

Columns headed Exp. are experimental values. Columns headed Est. are estimated or predicted values.

 $\frac{Y_i}{1-y_i}$ mole fraction heptane in hydrocarbon rich phase, solvent free basis.

mole fraction heptane in solvent rich phase, solvent free basis.

mole fraction aniline in hydrocarbon rich phase.

mole fraction aniline in solvent rich phase.

x. (Calc.) mole fraction aniline in solvent rich phase calculated from estimated values of x_j and y_j .

Experimental data from Varteressian and Fenske, Ind & Eng Chem 29, 271 (1937).

	N-HEP	TANE-CY	CLOHEXAN	E-ANILI	NE AT 77	oF		
	Cas	<u>e 1</u>	Cas	e 2	Cas	<u>e 3</u>	Cas	e 4
Concentrations	Exp	Est	Exp	Ist	Exp	Est	Exp	Est
y <u>i</u> l-yj	0.260	0.260	0.689	0.689	0.770	0.770	0.490	0.490
$\frac{x_i}{1-x_j}$	0,183	0.176	0.525	0.517	0.661	0.608	0.399	0.344
yj	0.124	0.139	0.094	0.104	0.084	0.098	0.103	0.120
×j	0.830	0.777	0.905	0,871	0.928	0.889	0.886	0.827
x _j (Calc.)	,	0.784		0.880		0.898		0.837
Columns headed	Exp. are	experim	mental v	alues.				

TABLE IV

COMPARISON OF EXPERIMENTAL AND ESTIMATED CONCENTRATIONS FOR

$\frac{y_{i}}{1-y_{j}}$	mole free	fraction n-heptane in hydrocarbon rich phase, solvent basis.
$\frac{x_i}{1-x_j}$	mole free	fraction n-heptane in solvent rich phase, solvent basis.
Уј	mole	fraction aniline in hydrocarbon rich phase.
\mathbf{x}_{j}	mole	fraction aniline in solvent rich phase.
x _j ((Calc.)	mole fraction aniline in solvent rich phase calculated from estimated values of x _j and y _j .

Experimental data from Hunter and Brown, Ind. Eng. Chem. 39, 1343, (1947).

TABLE V

COMPARISON OF EXPERIMENTAL AND ESTIMATED CONCENTRATIONS FOR

N-HEPTANE-CYCLOHEXANE-FURFURAL	AT	85.	.60	F
--------------------------------	----	-----	-----	---

Presentation of the	Cas	e l	Cas	e 2	Cas	se 3	Cas	e 4	Case	e 5	Cas	e 6
Concentrations	Exp	Est	Exp	_Est_	Exp	Est	Exp	Est	Exp	Est	Exp	Est
y _i l-y _j	0.794	0.794	0.800	0.800	0.522	0.522	0.520	0.520	0.191	0.191	0.189	0.189
$\frac{x_i}{1-x_j}$	0.716	0.690	0.717	0.698	0.389	0.399	0.387	0.398	0.122	0.133	0,120	0.131
Уj	0.061	0.060	0.060	0.060	0.060	0.061	0.072	0.061	0.059	0.063	0.058	0.063
$\mathbf{x}_{\mathbf{j}}$	0.930	0.917	0.928	0.918	0.902	0.893	0.900	0.892	0.870	0.863	0.871	0.863
x, (Calc.)	0.919		0.919		0.894		0.894		0.862		0.862

Columns headed Exp. are experimental values. Columns headed Est. are estimated or predicted values.

y _i l-y _j	Mole fraction heptane in hydrocarbon rich phase, solvent free basis.
$\frac{x_i}{1-x_j}$	Mole fraction heptane in solvent rich phase, solvent free basis.
Уj	mole fraction furfural in hydrocarbon rich phase.
xj	mole fraction furfural in solvent rich phase.
x _j (Calc.)	mole fraction furfural in solvent rich phase cal- culated from estimated values of x_j and y_j

TABLE VI

COMPARISON OF EXPERIMENTAL AND ESTIMATED CONCENTRATIONS FOR

ISOOCTANE-N-HEXANE-FURFURAL SYSTEM AT 85.6°F

	Case 1		Case 2		Case 3		Case 4		Case 5		Case 6	
Concentrations	Exp	Est										
yi l-yj	0.841	0.841	0.527	0.527	0.206	0.206	0.841	0.841	0.527	0.527	0.209	0.209
$\frac{x_i}{1-x_i}$	0.769	0.800	0.425	0.464	0.150	0.172	0.766	0.800	0.419	0.464	0.150	0.174
yj	0.061	0.057	0.061	0.057	0.057	0.057	0.071	0.057	0.062	0.057	0.057	0.057
xj	0.948	0.948	0.937	0.937	0.929	0.925	0.951	0.948	0.937	0.937	0.929	0.925
x _j (Calc.)		0.942		0.933		0.923		0.942		0.933		0.923

Columns headed Exp. are experimental values. Columns headed Est. are estimated values.

yi l-yj	mole fraction isooctane in hydrocarbon rich phase, solvent free basis.								
$\frac{x_i}{1-x_j}$	mole fraction isooctane in solvent rich phase, solvent free basis.								
Уј	mole fraction furfural in hydrocarbon rich phase.								
xj	mole fraction furfural in solvent rich phase.								
x _j (Calc.)	mole fraction furfural in solvent rich phase cal- culated from estimated values of x_i and y_i .								

VI. CORRELATION OF PARTITION COEFFICIENTS

Since the comparison of predicted and experimental values of equilibrium concentrations has proven the acceptability of the assumption that paraffin and naphthene hydrocarbons form ideal solutions in each other, the method of prediction may be extended to multicomponent systems of these hydrocarbons. Holding the assumption of ideal hydrocarbon solutions as valid, the partition coefficient becomes a function of temperature and the concentration of the solvent in each of the phases and is independent of the concentrations of the hydrocarbon components. Therefore at constant temperature a system of "K" charts similar to vapor-liquid equilibria "K" charts can be plotted. These charts would be a plot of partition coefficient versus solvent concentration in one phase with solvent concentration in the equilibrium phase serving as parameter. Such a system of charts have been prepared and are shown in Figures 9 through 25. These charts may be used to determine component distribution between phases for multicomponent systems if the assumption of ideal hydrocarbon solutions can be shown to be acceptable. In general, for systems involving paraffins, olefins, and naphthenes, in admixture the charts will give good results. However, the present state of knowledge does not permit the prediction of the effect of aromatics on hydrocarbon-solvent systems.

39

DADT T

FIG. 17 PARTITION COEFFICIENTS N-HEPTANE-FURFURAL AT 37.8°C

MOLE FRACTION FURFURAL (SOLVENT PHASE) FIG.17 PARTITION COEFFICIENTS N-HEPTANE-FURFURAL AT 37.8°C

PART I

FIG. 18 PARTITION COEFFICIENTS 2,4-DIMETHYLPENTANE-FURFURAL AT 37.8

MOLE FRACTION FURFURAL (SOLVENT PHASE)

IG.18 PARTITION COEFFICIENTS 2,4-DIMETHYLPENTANE - FURFURAL AT 37.

PART II

PART T

PARTI

FIG.19 PARTITION COEFFICIENTS ISOOCTANE-FURFURAL AT 37.8°C

0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 MOLE FRACTION FURFURAL (SOLVENT PHASE) 5.20 PARTITION COEFFICIENTS 2,2,5-TRIMETHYLHEXANE-FURFURAL AT 37. PART I

20 PARTITION COEFFICIENTS 2,2,5-TRIMETHYLHEXANE-FURFURAL AT 37.8

PART II

FIG. 21 PARTITION COEFFICIENTS CYCLOHEXANE-ANILINE AT 25°C

UG

PART I

60

FIG. 25 PARTITION COEFFICIENTS N-HEPTANE-ANILINE AT 25°C

0.80 0.81 0.82 0.83 0.85 0.86 0.86 0.87 0.88 0.89 0. MOLE FRACTION ANILINE (SOLVENT PHASE)

PART II

VII. DISCUSSION OF RESULTS

The comparison of predicted and experimental equilibrium data has shown that reasonably accurate ternary equilibrium data can be calculated from experimental mutual solubility data of binary systems. These calculations are based on the assumption that two hydrocarbons form ideal solutions in each other. It is reasonable to assume that this assumption may be extended to multicomponent systems. This was done in making the "K-charts" for this series of systems. It is thought that these charts will be of value in the study of multicomponent extraction as well as in process design.

A study of this nature can never be complete; it is a continuing and even growing process. Each new development suggests the need for further study. In addition to extending this study to other solvents and other hydrocarbons, there are other related problems to be investigated. One is the effect that aromatics would have on solventhydrocarbon systems. Since solutions of aromatics and other hydrocarbons deviate appreciably from ideal solutions, it is possible that the presence of aromatics in a hydrocarbon mixture would cause an appreciable change in the component distribution.

In an extraction process it is frequently desirable to reduce the solubility of the hydrocarbons in the solvent. This has been done by the addition of water to the system (16). For this reason a study of the effect of water on the activity coefficients of solventhydrocarbon systems would be desirable.

62

Some study has been made of the effect of temperature on component distribution $(\underline{1}, \underline{3})$ but more work needs to be done. Since there may be some economic advantage to operating extraction processes at temperatures higher than those considered in this paper, a combined study of the effect of water and temperature on component distribution may be desirable.
A	Constant in van Laar equations
a	Activity, also a constant
B	Constant in van Laar equations
C	Number of components, phase rule
E	Enternal energy
F	Gibbs free energy, also degrees of freedom, phase rule
f	Fugacity
H	Enthalpy
K	Partition coefficient
n	Number of moles of a component
P	Pressure, also number of phases, phase rule
a	Arbitrary factor sometimes defined as mole volume
R	Gas constant
S	Entropy
T	Absolute temperature
v	Volume
v	Mole fraction in solvent phase or in solution if only
~	one phase is present
	Mole fraction in bridge appendent
Y	Activity coefficient
	Activity coefficient
M	chemical potential

Subscrips and superscripts

E	Denotes excess free energy
h	Pertains to solvent phase
i	Indicates component i
j	Indicates component j
v	Pertains to hydrocarbon phase
1,2,3	Components 1,2,3, etc.
0	Indicates an arbitrary standard state

LITERATURE CITED

- Benedict, M; C. A. Johnson, E. Solomon, and L. C. Rubin. "Extractive and Azeotropic Distillation". <u>Trans. Am</u>. <u>Inst. Chem. Engr. 41</u>, 371 (1945)
- Bogin, C. D. "Analysis of Binary Mixtures." Ind. Eng. Chem. 16, 380 (1924)
- Briggs, S. W., and E. W. Comings. "Effect of Temperature on Liquid-Liquid Equilibrium." <u>Ind. Eng. Chem.</u> <u>35</u>, 411 (1943)
- 4. Carlson, H. C., and A. P. Colburn. "Vapor-Liquid Equilibria of Nonideal Solutions." Ind. Eng. Chem. 34, 581 (1942)
- 5. Colburn, A. P., and E. M. Schoenborn. "The Selection of 'Separating Agents' for Azeotropic and Extractive Distillation and for Liquid-Liquid Extraction." <u>Trans. Am. Inst. Chem.</u> <u>Engrs. 41</u>, 421 (1945)
- Darwent, B. de B., and C. A. Winkler. "The System N-Hexane-Methylcyclopentane-Aniline." J. Phys. Chem. 47, 442 (1943)
- 7. Dodge, B. F. <u>Chemical Engineering Thermodynamics</u>. McGraw-Hill Book Company, Inc., New York, 1944.
- 8. Gibbs, J. W. "Collected Works." Longmans, Green, and Company, New York, 1928.
- 9. Glasstone, S. <u>Textbook of Physical Chemistry</u>, second edition, D. Van Nostrand Company, Inc., New York, 1946.
- Hand, D. B. "Dineric Distribution." J. Phys. Chem. 34, 1961 (1930)
- 11. Hildebrand, J. H., and R. L. Scott. <u>The Solubility of</u> <u>Nonelectrolytes</u>, third edition, Reinhold Publishing Corporation, <u>New York</u>, 1950
- 12. Hunter, T. G., and T. Brown. "Distribution in Hydrocarbon-Solvent Systems." Ind. Eng. Chem. 39, 1343 (1947)
- Laar, J. J. van. "The Vapor Pressure of Binary Mixtures."
 <u>Z. physik Chem.</u>, <u>72</u>, 723 (1910), <u>83</u>, 599 (1913)
- 14. Lewis, G. N. "The Law of Physico-Chemical Change." Proc. <u>Am. Acad. Arts Sci. 37</u>, 49 (1901)
- McDonald, H. J. "The System Ethyl Alcohol-Glycerol-Benzene at 25°." J. Am. Chem. Soc. 62, 3183 (1940)

- 16. Shelton, R. O. Thesis Oklahoma A and M College (1952)
- 17. Treybal, Robert E. Liquid Extraction, McGraw-Hill Book Company, Inc., New York, 1951
- Wohl, K. "Thermodynamic Evaluation of Binary and Ternary Liquid Systems." <u>Trans. Am. Inst. Chem. Engr. 42</u>, 215 (1946)
- 19. Varteressian, K. A., and M. R. Fenske. "The System Methylcyclohexane-Aniline-n-Heptane." Ind. Eng. Chem. 29, 270 (1937)

APPENDIX

A. Experimental methods and data

1. Mutual solubility data: Solubility data for binary systems were determined by the cloud point temperature of synthetic samples. The synthetic samples were made in 20 mm test tubes by weighing in a predetermined amount of solvent, and then weighing in a predetermined amount of the hydrocarbon. A cork equipped with a thermometer and auger-type stirring rod was then inserted in the neck of the test tube. The test tube was placed in a glass jacket which was heated with a small burner. The mixture was agitated by means of a small electric motor. The mixture was heated while being agitated until one phase had been formed. The sample was then allowed to cool with agitation until a second phase appeared. The presence of a second phase is indicated by the turbidity of the mixture. The temperature at which the second phase appeared was noted and then checked by heating the sample and allowing it to cool a second time. Only the points which could be checked were accepted and recorded. The data determined are given in Tables VII through XIX.

2. Ternary equilibrium data: Equilibrium samples were mixed in a one liter separatory funnel by weighing a predetermined amount of each of the three components into the funnel. The sample was shaken well at frequent intervals and suspended in a constant temperature water bath between times. When the sample had attained the desired temperature, it was allowed to stand in the constant temperature bath until the phases had settled. The phases were then separated and analyzed. A portion of the hydrocarbon phase was titrated to determine the concentration of furfural. The procedure for the titration is as follows: Determine the density of the mixture; then at the same temperature take a ten mililiter sample. Add ten milileters of methanol, five mililiters of 2 N hydroxylamine hydrochloride and five drops of methyl orange indicator. Titrate to a clear end point with a standardized potassium hydroxide solution. The potassium hydroxide solution used was standarized against a synthetic hydrocarbon furfural mixture in order to give greater accuracy and simplify calculations.

The remaining portion of the hydrocarbon phase was washed twice with sodium bisulphite solution and three times with water. The sample was then dried and analyzed by density. The composition-density data for the system isooctane-n-hexane are given in Table XXIII and are plotted in Figure 26. The plot of the density-composition data for the system n-heptane-cyclohexane, Figure 27, was received as private communication from G. H. Dale.

The solvent phase was distilled using a one liter kettle equipped with a short packed column. The hydrocarbon distilled over was collected in a graduate, measured and the density taken for material balance. The hydrocarbon was then washed and analyzed as explained previously. The data are given in Tables XX and XXI.

TABLE VII

MUTUAL SOLUBILITY

	METHYLCYCLOPENTANE_ANILINE										
Methylcyclopentane Aniline	Molecular Weight 84.156 93.064		•				ν.				
Weight Aniline Weight Methylcyclopent Wt % Methylcyclopentan Mole % Methylcyclopent Solution Temperature °	19.2280ane3.6954ie16.12ane17.53C14.8	7.6865 2.2930 22.98 24.79 25.2	8.1725 4.8907 37.44 39.82 32.4	4.1796 7.4248 63.98 66.27 32.6	3.3065 11.0210 76.92 78.68 28.7	2.5288 12.1776 82.8 84.2 24.9	2.0674 13.2616 86.51 87.65 21.0	1.4414 14.0593 90.70 91.51 11.8			

TABLE VIII

MUTUAL SOLUBILITY

2-METHYLPENTANE-FURFURAL

Mc 2-Methylpentane Furfural	0lecular Weight 86.172 96.032								
Weight Furfural	18.5446	18.5759	18.0536	18.0436	17.9755	2.3430	1.1774	1.2026	0. 5954
Weight 2-Methylpentane	1.2068	1.6492	2.1901	1.9292	2.6914	18.5966	11.6853	16.2286	12.4104
Wt. % 2-Methylpentane	6.11	8.15	10.82	9.66	13.02	88.81	90.85	93.10	95.42
Mole % 2-Methylpentane	6.76	9.00	11.91	10.65	14.30	89.84	91.71	93.77	95.87
Solution Temperature oC	21.5	37.0	52.0	45.1	60.0	52.5	45.2	34.0	20.8

TABLE IX

MUTUAL SOLUBILITY

2,2-DIMETHYLBUTANE-FURFURAL

	Molecular Weight
2,2-Dimethylbutane	86.172
Furfural	96.032

Weight Furfural	18.3631	18.3681	18.1206	1.1710	17.9346	1.1744	1.1898	0.5629	0.8950
Weight 2,2-Dimethylbutane	1.0750	1.4628	1.7934	12.9410	1.9979	12.8752	16.2112	12.4614	13.8615
Wt. % 2,2-Dimethylbutane	5.53	7.38	9.01	91.70	10.02	91.64	93.16	95.68	93.93
Mole % 2,2-Dimethylbutane	6.13	8.15	9.93	92.49	11.05	92.43	93.82	96.11	94.52
Sclution Temperature °C	14.5	27.6	35.8	40.1	43.8	43.5	35.2	19.0	30.6

TABLE X

MUTUAL SOLUBILITY

2,3-DIMETHYLBUTANE-FURFURAL

Mol 2,3-Dimethylbutane Furfural	ecular Weight 86.172 96.032								
Weight Furfural	18.5107	18.5014	18.3779	20.9173	20.8868	1.1910	0.6082	20.8646	1.1611
Weight 2,3-Dimethylbutar	l.1048	1.8472	2.4844	2.2793	1.6248	19.1222	13.1266	1.6435	12.7997
Wt % 2,3-Dimethylbutane	5.63	9.08	11.91	9.83	7.22	94.14	95.57	7.30	91.68
Mole % 2,3-Dimethylbutar	ie 6.24	10.01	13.09	10.83	7.98	94.71	96.01	8.07	92.47
Solution Temperature °C	12.0	35.8	50.0	37.5	24.3	28.4	18.4	23.4	40.0

强

TABLE XI

1. A.

MUTUAL SOLUBILITY

N-HEXANE-FURFURAL

N-Hexane Furfural	Molecular 86.172 96.032	Weight 2 2			
Weight Furfural Weight N-hexane Wt % N-hexane Mole % N-hexane Sclution Temperature	°C	18.4635 0.8389 4.35 4.82 2.2	18.4511 1.3432 6.79 7.51 24.8	18.5564 1.4146 7.08 7.83 28.0	17.8788 1.7748 9.03 9.96 37.4
Weight Furfural Weight N-hexane Wt % N-hexane Mole % N-hexane Solution Temperature	°C	17.2734 2.7552 13.76 15.09 60.8	17.9772 1.7688 8.96 9.88 38.7	2.3397 13.8448 85.54 86.83 60.6	
Weight Furfural Weight N-hexane Wt % N-hexane Mole % N-hexane Solution Temperature	°C	2.2248 18.5570 89.29 90.29 49.2	1.2152 12.6841 91.26 92.09 41.4	1.7120 11.5846 94.21 94.78 26.4	

TABLE XII

MUTUAL SOLUBILITY

2,4-DIMETHYLPENTANE-FURFURAL

2,4-Dimethylpentane 100 Furfural 96	ar Weight .198 .032			
Weight Furfural	18.5121	18.5160	18.4797	18.5079
Weight 2,4-Dimethylpentane	0.8062	1.1707	1.7224	2.1646
Wt % 2,4-Dimethylpentane	4.17	5.95	8.53	10.47
Mole % 2,4-Dimethylpentane	4.01	5.71	8.20	10.08
Solution Temperature °C	9.9	28.3	45.2	55.8
Weight Furfural	18.5286	3.5022	17.9202	2.3363
Weight 2,4-Dimethylpentane	2.6134	19.1541	3.2862	13.7025
Wt % 2,4-Dimethylpentane	12.36	84.54	15.50	85.43
Mole % 2,4-Dimethylpentane	11.91	83.98	14.95	84.90
Solution Temperature ^O C	64.0	68.0	74.7	66.6
Weight Furfural	1.7435	1.1974	0.5879	0.7355
Weight 2,4-Dimethylpentane	16.3607	17.0926	14.5239	14.4898
Wt % 2,4-Dimethylpentane	90.37	93.45	96.11	95.17
Mole % 2,4-Dimethylpentane	89.99	93.19	95.95	94.97
Solution Temperature °C	51.3	34.8	17.0	24.8

TABLE XIII

MUTUAL SOLUBILITY

N-HEPTANE-FURFURAL

22	Molecular Weight				
N-heptane	100.198				
Furfural	93.032				
Weight Furfural Weight N-heptane Wt. % N-heptane Mole % N-heptane Solution Tempera- ture °C	18.3399 1.0120 5.23 5.02 21.6	17.8052 2.0972 10.54 10.14 55.9	17.1760 4.4919 20.73 20.04 83.6	14.9751 5.9306 28.37 27.51 91.0	12.6740 7.8735 38.32 37.32 93.6
Weight Furfural Weight N-heptane Wt % N-heptane Mole % N-heptane Solution Tempera- ture °C	10.3489 10.3406 49.98 48.92 93.7	8.0779 12.5946 60.92 59.91 91.8	4.6066 11.2557 70.96 70.07 85.7	3.4470 14.3337 80.61 79.94 73.6	2.2976 21.5900 90.38 90.00 48.8
Weight Furfural Weight N-heptane Wt % N-heptane Mole % N-heptane Sclution Tempera- ture °C	1.1298 22.6770 95.25 95.06 24.4	20.8578 1.1363 5.17 4.96 21.0	18.1247 3.3309 15.52 14.97 72.5	18.6563 1.5865 7.84 7.53 40.2	1.1736 14.9664 92.73 92.44 37.6
Weight Furfural Weight N-heptane Wt % N-heptane Mole % N-heptane Sclution Tempera- ture °C	2.3396 13.0264 84.77 84.22 64.8	0.9408 17.0203 94.76 94.55 26.7			

TABLE XIV

MUTUAL SOLUBILITY

ISOOCTANE-FURFURAL

S

Isooctane Furfural	Molecular Weight 114.224 96.032			
Weight Furfural Weight Iscoctane Wt % Iscoctane Mole % Iscoctane	18.3126 0.6482 3.42 2.89	19.4299 1.3842 6.65 5.65	17.7850 2.3353 11.61 9.94	17.3176 5.1443 22.90 19.98
ture °C	5.2	39.2	64.6	91.8
Weight Furfural Weight Iscoctane Wt % Iscoctane Mole % Iscoctane	3.4872 9.5499 73.25 69.72	3.4430 16.4064 82.65 80.03	2.3035 24.6720 91.46 90.00	0.8775 19.4167 95.68 94.90
ture °C	90.4	76.5	49.6	25.2
Weight Furfural Weight Isooctane Wt % Isooctane Mole % Isooctane Sclution Tempera-	20.9470 1.1691 5.29 4.48	18.4578 1.9508 9.56 8.16	17.3312 3.6376 17.35 15.00	0.9657 13.4852 93.32 92.15
ture ^o C	25.5	54.9	82.1	39.1

TABLE XV

MUTUAL SOLUBILITY

.

2	٠,	3	E	TO	TM	GT	VUV	ти	UV A	M	5	LIL	DT	TTL	DA1	r.
L,		٤.	2-	IU	111	C1	пі	10	CAR	111	C-	C U	UL.	UL	LA.	

Mole	cular Weight		5	10	
2,2,5-Trimethylhexane	128.250				
Furfural	96.032	2			
		1			
Weight Furfural	18.6424	18.4973	18.5564	18.3760	17.2329
Weight 2,2,5-Tri-					
methylhexane	0.6090	0.9255	1.3016	1.8400	2.6057
Wt % 2,2,5-Tri-					
methylhexane	3.34	4.77	6.55	9.10	13.13
Mole % 2,2,5-Tri-					
methylhexane	2.39	3.61	4.99	6.98	10.17
Solution Tempera-					
ture °C	14.8	33.5	48.6	63.5	79.6
Weight Furfural	15.0344	2.3679	1.7828	1.1530	0.6126
Weight 2,2,5-Tri-					
methylhexane	4.9920	12.4410	13.2518	13.8750	14.8534
Wt % 2,2,5-Tri-					
methylhexane	24.93	84.01	88.14	92.33	96.04
Mole % 2,2,5-Tri-					
methylhexane	19.91	79.73	84.77	90.01	94.78
Solution Tempera-		1000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		STREAM DAGE
ture ^C C	100.6	76.4	65.6	48.1	23.2
	0.5054	0.00/7	10 0000		4 0005
Weight Furfural	3.5218	0.9261	13.7379	11.5175	8.0725
Weight 2,2,5-Iri-	10 000/		0 0053	10 0500	10 0000
metnyinexane	10.7896	14.2404	7.8951	10.2508	10.7720
WU /o Z, Z, J-IFI-	75 26	02 00	26 50	17 00	57 16
Molo 9 2 2 5 Trai	12.20	72.07	20.20	41.09	57.10
mole / 2,2,)-iri-	60 60	02 01	20.00	20 00	1.0 08
Solution Tompore	09.00	92.01	50.09	27.77	47.70
ture C	02 2	38 5	101. 1	101. 1.	103 /
cure o	7202	J0.J	104.1	104.4	10).4
Weight Furfurel	5 7856	15 0252	0 7206	16,1314	
Weight 2.2 5-Tri-	1.10,0	1).02.72	0.1200	10.1)14	
methylbexane	11,4934	1,9892	14,1388	3.81/2	
Wt % 2 2 5-Tri-	4-04/04	40/0/~	14.1900	2.044	
methylhexane	66.52	21,93	95.15	19.12	
Mole % 2.2.5-Tri-			///-/	-/	
methylhexane	59.80	19.91	93.63	15.04	
Solution Tempera-					
ture °C	100.0	99.9	30.2	92.9	
	A CONTRACTOR OF THE	and the second sec		and a second state of the	

TABLE XVI

MUTUAL SOLUBILITY

CYCLOHEXANE-FURFURAL

Cyclohexane Furfural	Molecular 84.156 96.032	Weight 2				
Weight Furfural	00	18.3350	18.4816	17.2472	1.1943	1.1689
Weight Cyclohexane		2.3776	3.3201	5.0223	14.7066	18.2332
Wt % Cyclohexane		11.48	15.23	22.55	92.49	93.98
Mole % Cyclohexane		12.89	17.01	24.94	93.35	94.68
Solution Temperature		21.1	35.3	51.6	30.4	23.0
Weight Furfural	°C	0.8522	2.3066	19.6042	16.2949	15.9133
Weight Cyclohexane		17.7524	10.8605	2.2706	3.5334	6.0270
Wt % Cyclohexane		95.42	82.48	10.38	17.82	27.47
Mole % Cyclohexane		95.96	84.31	11.68	19.84	30.18
Solution Temperature		16.3	54.3	17.2	43.0	58.2
Weight Furfural	°C	12.0066	9.2799	1.2422	6.7400	4.5705
Weight Cyclohexane		6.9852	8.0150	18.1678	8.8654	9.2334
Wt % Cyclohexane		36.78	46.37	93.60	56.81	66.89
Mole % Cyclohexane		39.90	49.66	94.35	60.02	69.75
Sclution Temperature		64.7	66.3	26.4	66.2	65.3
Weight Furfural Weight Cyclohexane Wt % Cyclohexane Mole % Cyclohexane Solution Temperature	°c	3.1604 10.4798 76.83 79.10 60.2	1.5338 14.0223 90.14 91.25 38.7	1.5006 18.3223 92.43 93.30 28.7	1.2166 18.7281 93.90 94.61 27.0	

TABLE XVII

MUTUAL SOLUBILITY

CYCLOF	ENTANE_R	TIR FURAT	i.
OTOTOT	THE TUT WITH	Old Oldur	4

	Molecular Weigh
Cyclopentane	70.130
Furfural	96.032

Weight Furfural	2.9041	2.2300	1.7595	1.2643	1.1951	21.3856	17.0191	16.1559	13.1660
Weight Cyclopentane	13.9747	14.1789	16.5304	15.9134	15.8539	3.92.58	3.8402	3.8961	4.0670
Wt % Cyclopentane	82.79	86.41	90.38	92.64	92.99	15.51	18.41	19.43	23.60
Mole % Cyclopentane	86.82	89.70	92.79	94.52	94.78	20.09	23.61	24.82	29.72
Solution Temperature °C	41.4	35.3	25.2	18.0	16.2	19.3	27.7	30.4	38.2

TABLE XVIII

MUTUAL SOLUBILITY

METHYLCYCLOHEXANE-FURFURAL

Methylcyclohexane Furfural	98.182 96.032		3	
Weight Furfural	17.3563	17.2630	2.3373	1.1842
Weight Methylcyclohexar	12.6086	3.2840	13.3847	14.4987
Wt % Methylcyclohexane	13.07	15.98	85.13	92.45
Mole % Methylcyclohexar	12.82	15.69	84.85	92.29
Solution Temperature ^O	37.2	46.4	53.8	32.8
Weight Furfural	22.1923	20.9432	23.5489	16.4386
Weight Methylcyclohexan	1.9219	2.3012	6.1022	7.3029
Wt % Methylcyclohexane	7.97	9.90	20.58	30.76
Mole % Methylcyclohexan	ne 7.81	9.70	20.22	30.29
Solution Temperature °(13.9	24.5	56.8	69.0
Weight Furfural	12.1534	8.9818	6.3877	4.6822
Weight Methylcyclohexan	8.1090	9.0721	9.8001	11.1041
Wt % Methylcyclohexane	40.02	50.25	60.54	70.34
Mole % Methylcyclohexan	ne 39.49	49.70	60.01	69.88
Sclution Temperature °(72.8	73.2	72.6	69.9
Weight Furfural	3.0147	1.4358	1.1829	0.8990
Weight Methylcyclohexan	ne 12.2497	13.4799	14.5261	14.9849
Wt % Methylcyclohexane	80.25	90.38	92.47	94.34
Mole % Methylcyclohexan	ne 79.90	90.19	92.31	94.22
Solution Temperature O	C 61.3	40.8	32.8	24.0

TABLE XIX

MUTUAL SOLUBILITY

METHYLC YCLOPENTAN E-FURFURAL

Molecul Methylcyclopentane 84. Furfural 96.	ar Weight 156 032			
Weight Furfural	18.4889	17.3405	2.3197	14.1745
Weight Methylcyclopentane	2.3353	5.1250	14.0362	8.1685
Wt % Methylcyclopentane	11.21	22.81	85.82	36.56
Mole % Methylcyclopentane	12.60	25.22	87.35	39.67
Sclution Temperature °C	21.2	53.7	46.9	65.0
Weight Furfural	2.3307	18.5373	21.4782	18.3974
Weight Methylcyclopentane	11.8317	2.3545	2.2049	2.8002
Wt % Methylcyclopentane	83.54	11.27	9.31	13.21
Mole % Methylcyclopentane	85.28	12.66	10.49	14.80
Solution Temperature ^o C	50.8	19.6	10.2	30.3
Weight Furfural	23.7785	17.3241	14.4066	10.3369
Weight Methylcyclopentane	5.2020	6.5416	8.2417	8.9592
Wt % Methylcyclopentane	17.95	27.41	36.39	46.43
Mole % Methylcyclopentane	19.98	30.11	39.50	49.72
Solution Temperature °C	44.7	60.0	65.0	67.3
Weight Furfural	8.4873	5.9430	4.3776	3.0647
Weight Methylcyclopentane	10.1416	11.9737	15.1565	18.1592
Wt % Methylcyclopentane	54.44	66.83	77.59	85.56
Mole % Methylcyclopentane	57.69	69.68	79.80	87.12
Solution Temperature °C	67.3	65.6	59.0	46.9
Weight Furfural Weight Methylcyclopentane Wt % Methylcyclopentane Mole % Methylcyclopentane Solution Temperature ^o C	2.4567 18.9805 88.54 89.81 38.7	2.0439 19.5167 90.52 91.59 25.6		

TABLE XX

TERNARY EQUILIBRIA

N-HEPTANE-CYCLOHEXANE-FURFURAL

Sample	l	2	3	4	5	6
Charge:						
Total weight	696.3	717.1	475.4	695.0	712.6	465.7
Weight Furfural	598.5	598.9	357.5	597.7	594.2	348.5
Weight Cyclohe xane	19.7	59.2	94.6	19.4	58.9	93.9
Weight N-heptane	78.1	59.0	23.3	77.9	59.5	23.3
Weight % Cyclohexade (Solv-free)	20.14	50.08	80.24	19.94	49.75	80.12
Solvent Phase:						
Total weight	640.0	655.2	397 5	639 9	61.9.8	387.2
Volume Hydrocarbon, ml	63.0	83.0	59.5	64.0	82.0	59.5
Density Hydrocarbon	0.7131	0.71.14	0.770/	0.7118	0.7/20	0.7708
Weight Hydrocarbon	44.9	61.5	45.9	45.6	60.8	45.9
Weight Furfural	595.4	592.3	31.9.1	59/1-3	589.0	342.1
Density Hydrocarbo	0.7044	0.7338	0.7629	0.7048	0.7340	0.7631
Wt % Cyclohexane	25.5	57.5	86.1	25.4	57.7	86.4
(Solv-free)	-747			-2.14	2101	T
Hydrocarbon Phase:						
Total weight	55.3	61.5	78.2	54.7	62.1	77.6
Density	0.7071	0.7332	0.7652	0.7057	0.7318	0.7662
ml KOH	23.88	25.42	26.20	25.10	25.80	25.96
Weight Furfural/mI HC	0.0431	0.0459	0.0473	0.0427	0.0466	0.0469
Weight Furfural	3.4	3.8	4.8	3.3	4.0	4.7
Weight Hydrocarbon	51.9	57.7	73.4	51.4	58.1	72.9
Density Hydrocarbon	0.6987	0.7215	0.7547	0.6982	0.7216	0.7550
Wt % Cyclohexane	18.3	44.1	78.5	17.7	44.3	78.8

TABLE XXI

ISOOCTANE-N-HEXANE-FURFURAL

TERNARY EQUILIBRIA

Section.

Sample	l	2	3	4	5	6
Charge: Total weight Weight Furfural Weight N-hexane Weight Isooctane Weight % N-hexane (Solv-free)	702.3 603.7 18.9 79.7 19.17	649.1 551.2 48.9 49.0 49.95	596.7 497.7 79.0 20.0 79.80	701.0 600.4 20.6 80.0 20.48	649.5 552.9 49.2 47.4 50.93	595.5 496.7 79.5 19.3 80.46
Solvent Phase: Total weight Volume Hydrocarbon, ml Density Hydrocarbon Weight Hydrocarbon Weight Furfural Density Hydrocarbon Wt % N-hexane (Solv-free)	636.5 52.5 0.6936 36.4 599.8 0.6861 21.2	582.8 54.0 0.6833 36.8 545.1 0.6756 54.8	528.2 52.0 0.6743 35.1 492.0 0.6666 83.7	633.9 50.0 0.6925 34.6 599.9 0.6860 21.5	584.7 54.0 0.6828 36.9 546.5 0.6754 55.4	527.6 52.0 0.6745 35.1 492.6 0.6666 83.7
Hydrocarbon Phase: Total weight Density MI KOH Weight Furfural/ml HC Weight Furfural Weight Hydrocarbon Density Hydrocarbon Wt % N-hexane (Solv-free)	63.7 0.6943 21.44 0.0387 3.5 60.2 0.6882 14.5	65.4. 0.6848 21.78 0.0393 3.8 61.6 0.6788 44.6	67.9 0.6762 22.32 0.0403 4.0 63.9 0.6685 77.7	66.4 22.54 22.54 0.0407 4.2 62.2 0.6882 14.5	64.4 0.6858 22.56 0.0407 3.8 60.6 0.6788 44.6	67.9 0.6766 22.72 0.0410 4.1 63.8 0.6686 77.3

TABLE XXII

STANDARDJZATION OF POTASSIUM HYDROXIDE SOLUTION

Weight Furfural	M1/KOH	gms furfural/ml KOH
0.2912	16.12	0.01806
0.3179	17.62	0.01804
0.3579	19.84	0.01804
		3/0.05414
		0.01805

TABLE XXIII

DENSITY VERSUS COMPOSITION

ISOCCTANE_N_HEXANE

Weig	ht Isocctane	Weight N-hexane	Wt. % Isooctane	Density 20°C
	0.9670	18.7211	4.91	0.6631
	2.0048	17.8773	10.08	0.6646
	2.0029	17.6712	10.18	0.6650
	2.9264	16.6776	14.93	0.6664
	4.8895	14.3772	24.74	0.6691
	7.1536	12.4937	36.41	0.6728
	7.8415	11.8244	39.87	0.6745
	9.8548	9.7805	50.19	0.6772
	11.3824	7.8492	60.22	0.6807
	13.8653	6.9848	66.50	0.6823
	20.4404	3.8212	84.25	0.6878
	18.6701	1.9678	90.47	0.6897
	18,8100	0.9705	95.09	0.6912

FIG. 27 DENSITY - COMPOSITION N-HEPTANE - CYCLOHEXANE AT 20°C

B. Literature Survey: A search of the literature was made for liquid-liquid phase data on solvent-hydrocarbon systems in which the hydrocarbons are C_5 or heavier. The references found are listed in Table XXIV.

TABLE XXIV

LITERATURE SURVEY

Binary Systems	Authors	Journal	Volume	Page	Year
Aniline					
n-hexane	Hildebrand, Keys	J Am Chem Soc	37	2126	1917
Tert-butyl alcohol					
benzene	Simonsen, et al	J Am Chem Soc	68	235	1946
Chlorex	11 (14 K) 1				
n-octane	Tschamler, et al	Monatsch	80	572	1949
2,2,4-Trimethyl-					
pentane	Ibid				·····
1,4-Dioxane					
benzene	Berndt, Lynch	J Am Chem Soc	66	282	1944
Ethylene chlorohydrin					
cyclohexane	Jasper, Pohrt	J Chem Ed	26	485	1949
Isopropanol					
cyclohexane	Washburn et al	J Am Chem Soc	62	1454	1940
toluene	Washburn et al	J Am Chem Soc	61	1694	1939
Perfluoro-n-heptane					
benzene	Hildebrand et al	J Am Chem Soc	72	4348	1950
n-heptane	Ibid '		<u>8</u>)	AT 3	
2,2,4-trimethyl-					
pentane	Ibid				
Phenol					
n-hexane	Seidell	3rd Ed Vol 2		457	
n-heptane	Ibid			563	
benzene	Ibid			369	
isopentane	Ibid			312	
n-octane	Ibid /			621	10/209
Ternary Systems with o	ne hydrocarbon				
	<u></u>				
Acetone-glycol					
benzene	Trimble, Frazer	Ind Eng Chem	21	1063	1929
toluene	Ibid	-	25		
Xylene	Ibid				
Formic acid-bromoform					
benzene	Avenarius, et al	J Gen Chem	16	1777	1940
Propylene glycol-sodiu	m oleate				
benzene	Falit, McBain	Ind Eng Chem	38	741	1946

Skellysolve B, 70% methanol + 30% glycol Smith, Funk Trans AIChE 40 211 1944 Water Acetic acid benzene Othmer, Tobias Ind Eng Chem 34 690 1942 toluene Ibid Acetic acid benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 42 1048 1950 Acetone Briggs, Comings Ind Eng Chem 35 411 1943 Saidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 31 1240 1939 heytane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heytane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heytane Briggs, Cemings Ind Eng Chem 33 1240 1939 heytane Treybal, Vondrak Ind Eng Chem 33 1240 1939 vylene Briggs, Cemings Ind Eng Chem 33 1240 1939 co-xylene Hartley J Soc Chem Ind Eng Chem 33 1240 1939 co-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline Hartley J Soc Chem Ind 69 60 1950 Aniline Hartley J Soc Chem Ind 69 60 1950 Disthylamine tal J Phys Chem 48 241 1944 benzene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Smith Ind Eng Chem 41 2853 1949 Sthanol benzene Washburn et al J Phys Chem 48 241 1944 toluene Smith, Pranke Ind Eng Chem 41 2853 1949 Sthanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al J Phys Chem 42 1206 1950 Disthylamine toluene Wehn, Franke Ind Eng Chem 32 1247 1932 cyclohexane Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Hiler, McPherson J Am Chem Soc 61 1694 1939 m-xylene Hiler, McPherson J Am Chem Soc 61 1694 1939 m-xylene Hiler, McPherson J Am Chem Soc 61 1694 1939 m-xylene Hiler, McPherson J Phy Chem 42 1206 1950 Methanol cyclohexane Washburn, et al J Am Chem Soc 63 361 1934 cyclohexane Washburn, sencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, sencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, sencer J Am Chem Soc 62 1453 1940 Heyzne Miler McDraid J Am Chem Soc 62 31237 1931		Authors	Journal	Volume	Page	Year
toluene Smith, Funk Trans AIChE 40 211 1944 Water Acctic acid benzene Cthmer, Tobias Ind Eng Chem 34 690 1942 toluene Ibid Acctic acid benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 32 1043 1950 Acctone benzene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 c.xylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al And Eng Chem 41 2853 1949 Ekhanol benzene Washburn et al J And Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J And Chem Soc 54 4217 1932 cyclohexane Understal Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn et al J And Chem Soc 54 4217 1932 cyclohexane International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn et al J And Chem Soc 54 4217 1932 cyclohexane International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn, st al J An Chem Soc 57 303 1935 Smith J And Chem Soc 56 361 1934, cyclohexane Washburn, st al J An Chem Soc 56 361 1934, cyclohexane Washburn, st al J An Chem Soc 56 361 1934, cyclohexane Washburn, st al J An Chem Soc 56 3237 1931 styrene Trogan RubberAge 63 585 1928 toluene Mobranel J An Chem Soc 56 321791	Skellysolve B, 70%	methanol + 30% glycol				
Water Acstaldehyde benzene tolueneOthmer, Tobias tolueneInd Eng Chem346901942Acstic acid benzene tolueneHand LoldJ Phy Chem3419611930Acstic acid benzeneBidJ Phy Chem3419611930c-xyleneScheibal, KarrInd Eng Chem4210481950AcstoneBriggs, Comings Saidell tolueneInd Eng Chem354111943Saidell saidell Saide	toluene	Smith, Funk	Trans AIChE	40	211	1944
Acetaldehyde benzene Othmer, Tobias Ind Eng Chem 34 690 1942 toluene Ibid Acetic acid benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 34 1961 1930 co-xylene Scheibal, Karr Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith IndEng Chem 41 2853 1949 Ethanol benzene Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Washburn et al A Morem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexane International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Smith Ind Eng Chem 22 1206 1950 Methanol cyclohexane Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Knight Trans AIChE 39 439 1943 Isopropanol benzene Smith Ind Eng Chem 57 303 1935 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931 cyclohexane Washburn, et al J Am Chem Soc 53 3237 1931 softh Anchem Soc 53 3237 1931 Jon Chem Soc 53 3237 1931 Jon Chem Soc 54 4217 205 Nethanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931 styrene Miler, MoPherson J Am Chem Soc 53 3237 1931 styrene Mashburn, et al J Am Chem Soc 53 3237 1931 styrene Mashburn, te al J Am Chem Soc 53 3237 1931 styrene Mashburn, te al J Am Chem Soc 53 3237 193	Water					
benzene Cthmer, Tobias Ind Eng Chem 34 690 1942 toluene Ibid Acetic acid benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 42 1048 1950 Acetone benzene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heytane Treybal, Vondrak Ind Eng Chem 31 1240 1939 heytane Treybal, Vondrak Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 vylene Briggs, Comings Ind Eng Chem 33 1240 1939 vylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al A Ma Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexane Kashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Vashburn et al J Am Chem Soc 54 4217 1932 cyclohexane International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 54 4217 1932 cyclohexane Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn et al J Am Chem Soc 54 4217 1932 cyclohexane Mashburn, Spencer J Am Chem Soc 53 3237 1931 styrene Miller, MoPherson J Phy Chem 57 303 1935 herden Chem Soc 53 3237 1931 double Chem Soc 54 1949 herden Chem Soc 55 3237 1931 herden Chem Soc 55 3237 1931 herden Chem Soc 55 3237 1931 herden Chem Soc 55 323237 1931 herden Chem Soc 55 3237 1931	Acetaldehyde				-	
Acotic acid benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 42 1048 1950 Acotone Scheibal, Karr Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Denzene Smith IndEng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 benzene Vold, Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1930 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1930 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1930 m-xylene Miller, McPherson J Phy Chem 12 706 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1939 Mexane International Critical Tables p-xylene International Critical Tables 77 303 1935 smith Ind Eng Chem 55 3 3237 1931 sopropanol benzene Washburn et al J Am Chem Soc 57 303 1935 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 57 303 1935 Methanol cyclohexane Washburn, spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, st al J Am Chem Soc 66 361 1934 cyclohexane Washburn, st al J Am Chem Soc 66 361 1934 cyclohexane Washburn, st al J Am Chem Soc 62 3183 1940	benzene	Othmer, Tobias	Ind Eng Chem	34	690	1942
benzene Hand J Phy Chem 34 1961 1930 toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 42 1048 1950 Acetone benzene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 33 1240 1939 heptane Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 c-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Washburn et al J Phys Chem 48 241 1944 fethanol benzene Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Washburn et al J Am Chem Soc 54 4217 1935 cyclohexane Washburn et al J Am Chem Soc 54 4217 1935 cyclohexane Washburn et al J Am Chem Soc 54 4217 1938 m-xylene Miller, McPherson J Phy Chem 12 706 1908 m-xylene Miller, McPherson J Phy Chem 55 3237 1931 styrene Tregan RubberAge 55 3237 1931 styrene Tregan RubberAge 56 351 1948	Acetic acid	TOTA				
toluene Ibid o-xylene Scheibal, Karr Ind Eng Chem 42 1048 1950 Acetone benzene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 31 1240 1939 hexane Ibid toluene Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley JSoc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith IndEng Chem 41 2853 1949 Ethanol benzene Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1939 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Smith IndEng Chem 42 1206 1950 Methanol cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1933 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane Vold, Washburn et al J Am Chem Soc 54 4217 1939 cyclohexane International Critical Tables p-xylene International Critical Tables p-xylene Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn et al J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 62 3183 1940	benzene	Hand	I Phy Chem	31.	1961	1930
OriginsScheibel, KarrInd Eng Chem4210481950AcetoneBriggs, ComingsInd Eng Chem354111943Seidell3rd Ed3rd Ed3112401939heptaneTreybal, VondrakInd Eng Chem3112401939hexaneIbidInd Eng Chem354111943tolueneBriggs, ComingsInd Eng Chem354111943seidell3rd EdGthmer et alInd Eng Chem3312401939xyleneBriggs, ComingsInd Eng Chem3312401939seidell3rd EdGthmer et alInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilineTolueneSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneSmithIndEng Chem4212061950biethylaminetolueneKashurn et alJ Phys Chem482411944Tert-Dutyl alcoholwashurn et alJ Am Chem Soc5412771932cyclohexaneValt WashburnJ Am Chem Soc5412941939m-xyleneMither, McPhersonJ Phy Chem127061939washburn et alJ Am Chem Soc54142171932cyclohexaneValt WashburnJ Am Chem Soc54142171932cyclohexaneVold, WashburnJ Am Chem Soc51169	toluene	Thid	o rity onom	24	2/02	1//0
ConstructControlInt<	o-wilene	Scheibel Karr	Ind Eng Chem	1.2	101.8	1950
benzene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 heptane Treybal, Vondrak Ind Eng Chem 41 1761 1949 hexane Ibid toluene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Wehn, Franke Ind Eng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Washburn et al J Am Chem Soc 54 4217 1932 cyclohexane Vold, Washburn J Am Chem Soc 62 14,54 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 m-xylene Miller, McPherson J Phy Chem 42 1206 1950 mexpleme Shith Ind Eng Chem 55 3 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 62 14,54 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 62 14,54 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 m-xylene Miller, McPherson J Phy Chem 42 1206 1950 Methanol cyclohexane Washburn, st al J Am Chem Soc 53 3237 1931 softh Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, spencer J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 585 1948	Acctore	Scheroar, Mail	THE HIE OTHER	42	1040	1770
DenzeneDraggs, comingsInt and onen30411194.9SaidellGrim3112401939heptaneTreybal, VondrakInd Eng Chem331240hexaneIbidInd Eng Chem354111949hexaneBriggs, ComingsInd Eng Chem354111943Seidell3rd EdGtmer et alInd Eng Chem3312401939xyleneBriggs, ComingsInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilineOthmer et alInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilineOthmer et alInd Eng Chem3312401939o-xyleneSmith, DrexelInd Eng Chem3312401939o-xyleneSmith, DrexelInd Eng Chem3312401939o-xyleneSmith, DrexelInd Eng Chem3112401939benzeneSmithIndEng Chem482411944benzeneSmithIndEng Chem4212061950DiethylaminetolueneWashburn et alJ Am Chem Soc5332371931cyclohexaneVald, WashburnJ Am Chem Soc6214541940hexaneInternational Critical TablesTrans AIChE394391943isopropanolDieFurfuraltoluene	hongono	Briggs Comings	Ind Eng Cham	25	1.11	101.3
Orthor of the first of the fi	Denzene	Seidell	and Ed	,))	414	174)
heptane Treybel, Vontrak Ind Eng Chem 41 1761 1949 hexane Ibid toluene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 c-xylene Hartley J Soc Chem Ind 69 60 1950 o-xylene Hartley J Soc Chem Ind 69 60 1950 o-xylene Martley J Soc Chem Ind 69 60 1950 heilt 1 10 Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith, Drexel Ind Eng Chem 41 2853 1949 Ethanol benzene Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Washburn et al J Am Chem Soc 61 1694 1939 c-xylene Hartley J Am Chem Soc 61 1694 1939 benzene Varteressian et al J Am Chem Soc 61 1694 1939 cyclohexane Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, MoPherson J Phy Chem 12 706 1908 cyclohexane Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, MoPherson J Phy Chem 12 706 1908 c-xylene Knight Trans AIChE 39 439 1943 Isopropanol benzene Smith Ind Eng Chem 42 1206 1950 Distrylene Miller, MoPherson J Phy Chem 12 706 1908 c-xylene Miller, MoPherson J Phy Chem 12 706 1908 c-xylene Knight Trans AIChE 39 439 1943 Isopropanol benzene Washburn et al J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931 J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 555 1948 toluene Washburn, et al J Am Chem Soc 62 3183 1940		Othman at al	Ind Eng Cham	22	1240	1020
heycane Heydal, Vhirak Ind Eng Chem 41 1/01 1949 hexane Ibid toluene Briggs, Comings Ind Eng Chem 35 411 1943 Seidell 3rd Ed Othmer et al Ind Eng Chem 33 1240 1939 xylene Briggs, Comings Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem 1nd 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 33 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith Ind Eng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Miller, McPherson J Phy Chem 42 1206 1950 Methanol cyclohexane Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Miller, McPherson J Phy Chem 42 1206 1950 Methanol cyclohexane Washburn et al J Am Chem Soc 51 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Miller, McPherson J Phy Chem 12 706 1908 o-cylene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 56 361 1934 vyclohexane Washburn, spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 585 1948 toluene McDonald J Am Chem Soc 62 3183 1940	hantana	Tranhal Vandrak	Ind Eng Chem		1761	101.0
hexameDudtolueneBriggs, ComingsInd Eng Chem354111943Seidell3rd Ed03312401939xyleneBriggs, ComingsInd Eng Chem354111943Seidell3rd Ed03rd Ed1939o-xyleneHartleyJ Soc Chem3312401939o-xyleneHartleyJ Soc Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilineInd Eng Chem376011945tolueneSmith, DrexelInd Eng Chem376011945benzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithInd Eng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexaneVold, WashburnJ Am Chem Soc6116941939m-xyleneInternational Critical Tables149414941494furfuraltolueneKnightTrans AIChE394391943lsopropanolJ Am Chem Soc5730319351935benzene <td>heptane</td> <td>Thid</td> <td>The the onem</td> <td>41</td> <td>TIOT</td> <td>1949</td>	heptane	Thid	The the onem	41	TIOT	1949
tolueneDriggs, CollingsInt Eng Chem3312401945Saidell3rd EdUthmer et alInd Eng Chem3312401939xyleneBriggs, ComingsInd Eng Chem354111943Saidell3rd Ed03rd Ed1001939o-xyleneHartleyJ Soc Chem3312401939o-xyleneHartleyJ Soc Chem3312401939o-xyleneHartleyJ Soc Chem69601950AnilineJ Soc Chem1nd Eng Chem376011945n-ButanolbenzeneSmith, DrexelInd Eng Chem482411944benzeneSmithInd Eng Chem482411944benzeneSmithInd Eng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexaneWashburn et alJ Am Chem Soc5442171939n-xyleneInternational Critical Tables116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables573031935m-xyleneMightTrans AIChE394391943lsopropanol <t< td=""><td>hexane</td><td>IDIO Prince Comince</td><td>Ind Eng Cham</td><td>25</td><td>1.77</td><td>10/2</td></t<>	hexane	IDIO Prince Comince	Ind Eng Cham	25	1.77	10/2
SeldellJrd EdChmer et alInd Eng Chem3312401939seidell3rd Ed3rd Ed0Othmer et alInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilinetolueneSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithInd Eng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alRubber Age289281936cyclohexaneVold, WashburnJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6116941939m-xyleneInternational Critical Tablesrenational Critical Tables7061908o-xyleneInternational Critical Tables94391943IsopropanolDisen, WashburnJ Am Chem Soc573031935m-xyleneIbidInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et al	toruene	briggs, comings	Ind Eng Chem	22	411	1940
xyleneBriggs, ComingsInd Eng Chem3512401939xyleneBriggs, ComingsInd Eng Chem354111943Seidell3rd Ed01939o-xyleneHartleyJ Soc Chem Ind69601950AnilinetolueneSmith, DrexelInd Eng Chem3312401939tolueneSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithIndEng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexaneVold, Washburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables100819391943isopropanolJam Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935mathInd Eng Chem4212061950MethanolcyclohexaneWashburn, spencerJ Am Chem Soc563611934 <td></td> <td>Seidell</td> <td>Jra La</td> <td></td> <td>1010</td> <td>1020</td>		Seidell	Jra La		1010	1020
xyleneDriggs, ComingsInd Eng Chem354111943SeidellJrd EdOthmer et alInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilineJoc ChemInd Eng Chem376011945n-ButanolbenzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithInd Eng Chem4212061950DiethylaminetclueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexaneInternational Critical Tables169419391939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables73031935tolueneKnightTrans AIChE394391943IsopropanolJSmithInd Eng Chem421206benzeneOlsen, WashburnJ Am Chem Soc573031935m-xyleneKnightTrans AIChE394391943sopropanolbenzeneSmithInd Eng Chem421206benzeneOlsen, Washburn, SpencerJ Am Chem Soc <t< td=""><td></td><td>Othmer et al</td><td>Ind Eng Chem</td><td>33</td><td>1240</td><td>1939</td></t<>		Othmer et al	Ind Eng Chem	33	1240	1939
Saddelljrd &dOthmer et alInd Eng Chem3312401939o-xyleneHartleyJ Soc Chem Ind69601950AnilinetolueneSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneSmith, DrexelInd Eng Chem376011945benzeneSmithInd Eng Chem482411944Tert-Butyl alcoholbenzeneSmithInd Eng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables70619081908o-xyleneInternational Critical Tables7061908p-xyleneMildTrans AIChE394391943IsopropanolDisen, WashburnJ Am Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935benzeneMishburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, st al <td>xylene</td> <td>Briggs, Comings</td> <td>Ind Eng Chem</td> <td>35</td> <td>411</td> <td>1943</td>	xylene	Briggs, Comings	Ind Eng Chem	35	411	1943
o-xylene Hartley J Soc Chem 133 1240 1939 o-xylene Hartley J Soc Chem Ind 69 60 1950 Aniline toluene Smith, Drexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith IndEng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene International Critical Tables p-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables benzene Washburn et al J Am Chem Soc 57 303 1935 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 585 1948		Seidell	3rd Ed		1010	1000
c-xyleneHartleyJ Soc Chem Ind69601950AnilineSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithInd Eng Chem4212061950DiethylaminetclueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alRubber Age289281936cyclohexaneVold, WashburnJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc6214541940hexaneInternational Critical TablesJam Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tableso-xylene10081935p-xyleneIbidTrans AIChE394391943IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935benzeneOlsen, Washburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMashburn, et alJ Am Chem Soc5332371931styreneT		Othmer et al	Ind Eng Chem	33	1240	1939
AnilinetolueneSmith, DrexelInd Eng Chem376011945n-ButanolbenzeneWashburn et alJ Phys Chem482411944Tert-Butyl alcoholbenzeneSmithIndEng Chem4212061950DiethylaminetolueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936benzeneVarteressian et alRubber Age289281936cyclohexaneVold, WashburnJ Am Chem Soc5332371931cyclohexeneWashburn et alJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6116941939m-xyleneInternational Critical Tables127061908o-xyleneInternational Critical Tables294391943isopropanolJ Am Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alJ Am Chem Soc5332371931styreneT	o-xylene	Hartley	J Soc Chem Ind	69	60	1950
toluene Smith, Jrexel Ind Eng Chem 37 601 1945 n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith IndEng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Miller, Mashburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 62 31237 1931	Aniline	and the second		72.24	1.00	
n-Butanol benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith Ind Eng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexene Washburn et al J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931	toluene	Smith, Drexel	Ind Eng Chem	37	601	1945
benzene Washburn et al J Phys Chem 48 241 1944 Tert-Butyl alcohol benzene Smith Ind Eng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexene Washburn et al J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Ibid Furfural toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 53 3237 1931 toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 56 361 1934 cyclohexane Washburn, et al J Am Chem Soc 56 361 1934 cyclohexane Mashburn, et al J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 585 1948 toluene McDonald J Am Chem Soc 62 3183 1940	n-Butanol			2	0.25	2.22
Tert-Butyl alcohol benzeneSmithInd Eng Chem4212061950Diethylamine tolueneWehn, FrankeInd Eng Chem4128531949Ethanol benzeneVarteressian et al Washburn et alRubber Age J Am Chem Soc289281936cyclohexaneVold, WashburnJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexaneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical Tables127061908o-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables1943isopropanolJ Am Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935mathInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, SpencerJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMashburn, SpencerJ Am Chem Soc5332371931styreneTroganRubberAge6358519	benzene	Washburn et al	J Phys Chem	48	241	1944
benzene Smith IndEng Chem 42 1206 1950 Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexene Washburn et al J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene International Critical Tables p-xylene International Critical Tables toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, Spencer J Am Chem Soc 53 3237 1931 styrene Trogan RubberAge 63 585 1948 toluene McDonald J Am Chem Soc 62 3183 1940	Tert-Butyl alcoho					
Diethylamine toluene Wehn, Franke Ind Eng Chem 41 2853 1949 Ethanol benzene Varteressian et al Rubber Age 28 928 1936 Washburn et al J Am Chem Soc 53 3237 1931 cyclohexane Vold, Washburn J Am Chem Soc 54 4217 1932 cyclohexene Washburn et al J Am Chem Soc 62 1454 1940 hexane International Critical Tables toluene Washburn et al J Am Chem Soc 61 1694 1939 m-xylene Miller, McPherson J Phy Chem 12 706 1908 o-xylene International Critical Tables p-xylene Ibid Furfural toluene Knight Trans AIChE 39 439 1943 Isopropanol benzene Olsen, Washburn J Am Chem Soc 57 303 1935 Smith Ind Eng Chem 42 1206 1950 Methanol cyclohexane Washburn, spencer J Am Chem Soc 56 361 1934 cyclohexene Washburn, et al J Am Chem Soc 53 3237 1931	benzene	Smith	Ind Eng Chem	42	1206	1950
tclueneWehn, FrankeInd Eng Chem4128531949EthanolbenzeneVarteressian et alRubber Age289281936Washburn et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical Tables16941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables70619081908p-xyleneIbidTrans AIChE394391943IsopropanolOlsen, WashburnJ Am Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc5332371931	Diethylamine				Velleration	
EthanolbenzeneVarteressian et alRubber Age289281936Washburn et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical TablestolueneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables1943furfuraltolueneKnightTrans AIChE394391943IsopropanolSmithInd Eng Chem4212061950MethanolJ Am Chem Soc563611934cyclohexaneWashburn, SpencerJ Am Chem Soc563611934styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc5232371931	toluene	Wehn, Franke	Ind Eng Chem	41	2853	1949
ben zeneVarteressian et alRubber Age289281936Washburn et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical TablestolueneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tablesp-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc5332371931	Ethanol					
Washburn et alJ Am Chem Soc5332371931cyclohexaneVold, WashburnJ Am Chem Soc5442171932cyclohexeneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical TablesTables16941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables70619081908o-xyleneInternational Critical Tables7061908p-xyleneIbidTrans AIChE394391943IsopropanolSmithJ Am Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	ben zene	Varteressian et al	Rubber Age	28	928	1936
cyclohexane cyclohexene hexaneVold, WashburnJ Am Chem Soc5442171932cyclohexene hexaneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical TablesTables16941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables7061908p-xyleneIbidTrans AIChE394391943Isopropanol benzeneOlsen, WashburnJ Am Chem Soc573031935Methanolcyclohexane cyclohexeneWashburn, SpencerJ Am Chem Soc563611934styreneTro ganRubberAge635851948tolueneMcDonaldJ Am Chem Soc5231831940		Washburn et al	J Am Chem Soc	53	3237	1931
cyclohexene hexaneWashburn et alJ Am Chem Soc6214541940hexaneInternational Critical TablestolueneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tables7061908p-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943IsopropanolOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	cyclohexane	Vold, Washburn	J Am Chem Soc	54	4217	1932
hexaneInternational Critical TablestolueneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tablesp-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	cyclohexene	Washburn et al	J Am Chem Soc	62	1454	1940
tolueneWashburn et alJ Am Chem Soc6116941939m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tablesp-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943isopropanolJam Chem Soc573031935benzeneOlsen, WashburnJ Am Chem Soc573031935MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	hexane	International Critical	Tables			
m-xyleneMiller, McPhersonJ Phy Chem127061908o-xyleneInternational Critical Tablesp-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	toluene	Washburn et al	J Am Chem Soc	61	1694	1939
o-xyleneInternational Critical Tablesp-xyleneIbidFurfuraltoluenetolueneKnightTrans AIChE39JsopropanolbenzeneOlsen, WashburnJ Am Chem Soc57SmithInd Eng ChemMethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexaneWashburn, et alstyreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	m-xylene	Miller, McPherson	J Phy Chem	12	706	1.908
p-xyleneIbidFurfuraltolueneKnightTrans AIChE394391943IsopropanolJAm Chem Soc573031935benzeneOlsen, WashburnJAm Chem Soc573031935MethanolInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJAm Chem Soc563611934cyclohexeneWashburn, et alJAm Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJAm Chem Soc6231831940	o-xylene	International Critical	Tables			
Furfural tolueneKnightTrans AIChE394391943Isopropanol benzeneOlsen, WashburnJ Am Chem Soc573031935MethanolInd Eng Chem4212061950MethanolJ Am Chem Soc563611934cyclohexaneWashburn, SpencerJ Am Chem Soc563611934styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	p-xylene	Ibid				
tolueneKnightTrans AIChE394391943IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950Methanol </td <td>Furfural</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Furfural					
IsopropanolbenzeneOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	toluene	Knight	Trans AIChE	39	439	1943
benzeneOlsen, WashburnJ Am Chem Soc573031935SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	Isopropanol					
SmithInd Eng Chem4212061950MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	benzene	Olsen, Washburn	J Am Chem Soc	57	303	1935
MethanolcyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940		Smith	Ind Eng Chem	42	1206	1950
cyclohexaneWashburn, SpencerJ Am Chem Soc563611934cyclohexeneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	Methanol					
cyclohexene styreneWashburn, et alJ Am Chem Soc5332371931styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	cyclohexane	Washburn, Spencer	J Am Chem Soc	56	361	1934
styreneTroganRubberAge635851948tolueneMcDonaldJ Am Chem Soc6231831940	cyclohexene	Washburn, et al	J Am Chem Soc	53	3237	1931
toluene McDonald J Am Chem Soc 62 3183 1940	styrene	Trogan	RubberAge	63	585	1948
	toluene	McDonald	J Am Chem Soc	62	3183	1940

	Authors	Journal	Volume	Page	Year
xvlene	Hartley	J Soc Chem Ind	69	60	1950
Methyl ethyl keto	ne	o boo onom and	0,		-//0
heptane	Trevbal, Vondrak	Ind Eng Chem	41	1761	1949
hexane	Ibid			-10-	-/4/
2.2.4-trimethyl					
pentane	Moulton, Walkeg	Trans AIChE	40	695	1944
o-Phenylphenol	,				
cyclohexane	Galumbic, Weller	Anal Chem	22	1418	1950
Phosphate buffer,	0.5M				
cyclohexane	Ibid				
Pyridine	2				
benzene	International Critical	Tables			
	Smith, et al	Ind Eng Chem	43	190	1951
Sodium arylsulfon	ates				
benzene	Booth, Everson	Ind Eng Chem	41	2627	1949
o-cresol	Ibid	-			
hexane	Ibid				
Ternary Systems wit	h two hydrocarbons				
Aniline					
cetane					
n-heptane	Hunter, Brown	Ind Eng Chem	39	1343	1947
benzene	Ibid				
cyclohexane	Ibid				
n-heptane	7				
cyclohexane	Ibid				
methy1-	Wanter and a local land	D.L.		070	1000
cyclonexane	varteressian, et al	nubber Age	29	210	1937
n-nexane					
metny1-	Danwont Winklan	I Dhar Cham	177	112	10/2
cycropentane	Darwent, winkier	J Fily Chem	47	442	1940
cvclopentane	Serijan et al	J Am Chem Soc	68	1763	1916
cycropentane	Serijan, et at	o Am Onem Doc	00	110)	1740
Furfural					
docosane					
diphenylhexan	e Briggs, Comings	Ind Eng Chem	35	411	1943
		a constant of a constant of		172-1242	1241452.84502
Water					
toluene					
hydroformed					
naphtha	Arnold, Coghlan	Ind Eng Chem	42	177	1950
Quaternary Systems					
Acetic acid (aque	ous 97% and 98.1%)				
n-heptane-tolue	ne Othmer, Tobias	Ind Eng Chem	34	690	1942
Aniline					
Cyclobeyane_cot	ane				
benzene	Brown	Ind Eng Chem	1.0	103	191.8
n-heptane	Ibid	-ing and origin	40	20)	-/40

	Authors	Journal	Volune	Page	Year
Water					
ammonia					
hydroformed naphtha toluene	Arnold, Coghlan	Ind Eng Chem	42	1217	1950
ethylene glycol					
hydroformed naphtha					
toluene	Ibid				

VITA

Edward N. Pennington candidate for the degree of Master of Science

Thesis: CORRELATION OF LIQUID-LIQUID PHASE EQUILIBRIA

Major: Chemical Engineering

Minor: Industrial Engineering

Biographical and Other Items:

Born: December 24, 1917 at Ottawa, Kansas
Undergraduate Study: Southwest Baptist College, Bolivar, Missouri, 1936 - 1938; Carnegie Institute of Technology, Pittsburgh, Pennsylvania, 1946 - 1948.
Graduate Study: O. A. M. C., 1948 - 1952
Experiences: Employed by Hall Brothers, Inc., 1938 - 1942; Army, Transportation Corps, 1942 - 1946; Employed by Phillips Petroleum Company, 1948 - present.

Member of American Chemical Society and American Institute of Chemical Engineers.

Date of Final Examination:

THESIS TITLE: CORRELATION OF LIQUID-LIQUID PHASE EQUILIBRIA

AUTHOR: Edward N. Pennington

THESIS ADVISER: C. L. Nickolls

The content and form have been checked and approved by the author and thesis adviser. Chenges cr corrections in the thesis are not made by the Graduate School office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

TYPIST: Margaret Hartman and Charlotte White