By
ManGOD R. MAHOUD.
"
Bechelor of Scionce
Forouk I Univeraity
Alexandria, Beypt
1951

Sunitted to the Fralty of the Graduate Bchool of the OL lohome Amiontwral and mocheaical College
in Pertisul Fulfillment of the Feguinements
for the Dogree of
WASTMA CF SCI WOED
xay, 1952

ACKMOLEDGEMENT

The writer wishes to express his sincere appreciation to Professor R. R. Irwin of the School of Mechanical Engineering, Oklahoma Agricultural and Mechanical College, Stillwater, Oklahoma, for his valuable assistance rendered in the capacity of major adviser.

He would also like to acknowledge the suggestions and cooperation offered by the members of the Mechanical Engineering faculty, ospecially by Professor R. E. Venn, Head of the School of Mechanical Engineering, and Professor B. M. Aldrich.

TABLE OF CONTENTS
Page
ACKNONLEDGEMENT iv
INTRODUCTION AND SCOPE 2
THE HEATING AND COOLING SYSTEMS 9
THE HEATING AND COOLING LOADS 21
THB HEATING AND COOLING DATA 30
DISCUSSION OF THE HEATING DATA 43
DISCUSSION OF THE COOLING DATA 47
GEIIERAL REMMARKS AID RECOMMENDATIONS 49
APPENDIX 53
$a=$ portion, expressed as a decimal, of the impinging solax radiation that is absorbed by the well surface.
$A=$ area of vell or roof, sc. ft.
$F=$ portion, expressed as a decimal of the absorbed solar radiation that is tranmoitted to the inside.
$\mathrm{B}=$ total heat gain through a wall.
$H_{t}=$ heat gain due to oir temperature difference.
$H_{R}=$ heat gain due to sun radiation.
$I=$ actual intensity of soler radiation striking the surface, Btu per hr. per sq. ft.
$U=$ coefficient of heat transaission, Btu. per sq. ft. per hr per degree difference in temperature between room air and outdoor air.

TNTRODUCTION AMD SCOPE

Panel Eadiant Heating:

The object of heating or cooling living spaces is to provide healthful and comfortable conditions. The flow of heat between bodies may occur in one or more of three essentially different ways: direct contact, known as coaduction; circulation of currents of gases or liquids, known as convection; and finally, passage of heat-carrying rays through space without having any pronowned effect upon its temperature, known as radiant heat, or radiation.

Historical:

Excavations uncovered the renains of many radiant heating systens constructed and used by the early Romens. The famous baths at Porapeii provide outstanding examples of engineering skill displayed in the design of these early warm air radiant heating systems. Wood or charcoal was the fuel. The products of combustion, warm air and snoke, passed through stone chambers under the masonry floors.

During the carly part of this century interest in radiant heating was rem vived by the use of hot water coils in Furope. The first of the modern engineered installations appears to have been made in Eritain under the direction of Professor A. Barker about 1907. Today, about two thousand installations of this type are operating in Fronce and England. In the United States, radiant heating becane firnly established with the first noteworthy installations in a
small village school at Glen Park, Indiana, in 1909, and in a large Chicago garage in 1912.

Heat Radiation and Euman Confort:

Healthful confort requires that heat shall escape from the hunan body at the same rate it is generated. The nomally active muma body generates heat at the rate of $500 \mathrm{Btu} / \mathrm{hr}$. approximately. As only $100 \mathrm{Btu} / \mathrm{hr}$. are required for intemal, functional mergy, the rate of heat dissipation is 400 Btu/hr. Any greater rate of dissipation causes a sensation of coldness, any lesser rate a feeling of hatness. Under normel conditions nature maintains a proper balance in accordance with the following table of heat dissipation: $190 \mathrm{Btu} / \mathrm{hr}$ by radiation,

110 Btu/hr by convection and evaporation, and
$100 \mathrm{Btu} / \mathrm{hr}$ by exhalation. $400 \mathrm{Btu} / \mathrm{hr}$

The body has other methods of disposing of heat but thesc are of negligible importance. With heat being dissipated at the previously mentioned rate and in the proportions indicated, the temperature of the body will renain normal at $98.6^{\circ} \mathrm{F}$ and an average overall temperature of the exposed parts of the body and clothes at $81^{\circ} \mathrm{F}$.

However, in sumer, when the outside temperature is high the averege temperature of the exposed parts of body and clothes is also higher, Most people curing the sumer wear thinner and fewer clothes, so that a greater part of the body is exposed and, consequently, the average surface temperature is higher than for the winter time. This average temperature is found to vary between $85^{\circ} \mathrm{F}$ and $89^{\circ} \mathrm{F}$ depending on the amount and nature of
the clothes, the temperature of the surrounding air surfaces, the air motion and a few other minor factors. Obviously the body will lose heat by convection to any surrounding atnosphere with lower temperature and by radiation to any adjacent solid surfaces, walls, ceiling, floor, etc, having a lover temperature. This later temperature is alled the Mean Radiant Temperature.

The single basic requirement of a heating or cocling systen is to establish such conditions in any area so that die occupants will lose their heat through convection and radiation at a miform hourly rate of approximately 300 Btu .

Advantages of a Panel System:

One of the outstanding advantages of panel heating systems is that the system is not apparent in the living quarters. This appeals very strongly to the architects and to the home owners. Also, thermal air currents are substentially reduced and less dirt is picked up to be deposited on walls, ceiling or draperies. This cleaner air establishes more sanitary condition in the home as there is a lesser concentration of the dust-borne disease germa in the air. Pinally, the operating econonics of circulating water may be utilized in the panol heating systen.

Panel Location:

Panels may be located in the ceiling, in the floor, in walls or in any combination of the three. At present there are two general preferences, one is to use the floor location and the other favors the ceiling.

If the panels are in the floor, then it is necessary to maintain a floor temperature below $90^{\circ} \mathrm{F}$ to avoid over heating the feet. Such a floor will erait about 35 or 40 Btu per hour square feet while if ve locate the coils

In the ceiling, the ceiling temperature can safely be raised to about $115^{\circ} \mathrm{F}$. If these figures are applied to the experinental house, which has a floor area of 406 square feet, it is essential that the heat loss in the walls, ceiling, windows, infiltration will not oxceed $16,000 \mathrm{Btu} / \mathrm{hr}$ at nost. This means, therefore, that the construction of the house definitely must be checked before a floor panel system is applied.

On the other hand, if the coils are located in the ceiling, the ceiling temperature nay safely be as high as $115^{\circ} \mathrm{F}$. This temperature now raises the maximun heat loss or emission to about $40,000 \mathrm{Btu} / \mathrm{hr}$.

It is apparent that a wall panel installation is a compromise between the floor and ceiling locations. Its main disedvantage is the presence of furniture which partly amuls the heating effect fron the wall radiations.

The heating loed of the experimental house was found to be about 35,500 Btu/hr. This, of course, eliminates the possibility of using the floor penels. On the other hand, the ceiling panels are barely adequate. If a well installation is added to the ceiling systen, then the combination should be satisfactory for the heating load.

For these experiments both the ceiling and wall installations vere used. Some of the testing wes performed with both panels in operation and the remainder of the testing with only the ceiling coils supplying radiant heat. During the period February 24, 1952 to Herch 4, 1952, both panels were in operation while during March 5, 1952 to March 26, 1952, only the ceiling panels were used.

The purpose of this work is to compare the effect of the ceiling installation with the ceiling and wall combination for comfort and distribution of heat throughout the room.

 fecl College and is occupted by sone of the college porsonnel.

Professor Fobert it. Imin desipned the smervised the Installetion of the honting axe cooling ayston wo well as the rocoring bevices. Ho dso collected the cooling date.

THI HBATMG ADD CCLIMG SYSTMS

Fig. 2.

THE HEATMNG PLANI

The heating systen is installed in the storage room on the south side of the apartment. The systen consists of the following components:

1. The Boiler: The vertical fire-tube steel boiler (itg. 2) for heating the circulating water is located in the midde of the storage roon. It is gas fired and has a reted output of 77,000 Btu with a gas input rating of $144,000 \mathrm{Btu} / \mathrm{hr}$. The boiler has a heating surface of $19 \mathrm{sq} . \mathrm{ft} .$, a fire box volume of 2.9 cu . ft. and a shell diameter of 20 inches.
2. The Pump: A small centrifugal pump is used to circulate the beating water. It is belt-driven by a $3 / 4$ horse-power General Hlectric motor running at 1725 R. P. M.
3. The Piping: Figure "A" and Figure 3 show the piping system, the connections to the heating coils, the valves, and the method of venting.

METHOD OF GOMTROL

If the outside temperature drops considerably, the drop will not be detected by the room thermostat valve until some time has elapsed. After the roon thermostat responds to the cold by increasing the heat to the circulating water there will be on additional delay before the heat is delivered to the space. Then, after the temperature of the panel rises, the panel will continue to emit heat to the roon for some time after the thermostat cuts off the heat because of the heat storage eapacity of the circulating vater. To avoid the uncomfortable conditions encountered in

both of these cases, the following method of control is applied to the system. An immersion thermostat is installed in the hot water supply main so that it will be directly affected by the hot water circulated to the radiant coils.

An electronic relay picks up the responses of this thermostat and operates to control the gas burner in the boiler. The outdoor temperature variations are also transmitted to the relay through the outdoor thermostat.

Room Thermostat:

A sensitive electronic room thermostat is placed about 4 feet from the floor on the middle of the south wall of the apartment. In this location it is far removed from any outside door cold drafts, far from any appliance giving out heat and is unexposed to any possible mechanical injuries. It is also quite near the breathing level of people sitting or sleeping in the apartment.

Outdoor Thermostat:

This is a well mounted device used in the electronic control system to measure the outdoor temperature. It is mounted high on the outside north wall in a shaded place and out of reach of inquisitive fingers.

Both the room and the outdoor thermostats are manufactured by MinneapolisHoneywell.

The Control Circuit:

Fig. B shows the control circuits and its connections to the mechanical system. It ilso shows the location of the electronic relay and the switching relay in the circuit. These are also shown in Fig. 5.

Fig. 4.

The Temperature-Fecorcine for the Heating Plant:
Six thermocouples are strategicelly located in the apartment to measure the temperature variations. They are loceted on the following surfaces: the floor, the east wall, the wall pipe, the ceiling, the ceiling pipe and the water pipe. Fhese thermocouples are connected to a potentioneter as shown in Fig. 5 on which the temperatures can be read at any time.

The Control and Pemperature Recording for the Cooling Systern:
The cooling load data were measured before the control systea was placed in peration. The cooling vater adjusted its temperature according to the cooling load variations.

The recorded data were collected by using three temperature and hundity recording instruments. One of then was placed inside the aportment, one outside in the shade and the third to record the termperatures of the inlet and outlet cooling water. Although the first two instruments recorded the humidity, the recording is not rrecise because the instruments were not calibrated.

THE COOLING TOWER.

1. Cooling Tover:

A small cooling tower which is located on the north east side of the apartment is primarily used for cooling the circulating vater during the sumer time. Trom the temperature recordings of the inlet and outlet cooling water to the coils it may be seen that the water is cooled fron 4 to 6 degrees within the cooling tower.

2. Pump and Motor:

The same pump and its motor which are used for circulating the heating water are also used for circulating the cooling water.

Two valves have been used in the water pipes to by-pass either the cooling tower or the boiler as occasion reguires.

Fig. 7 shows a picture of the cooling tower usec.
Fig. 4 shows the circulating pump together with its ariving motor and the main pipe lines.

THE PANELS.

THE HEATING AND COOLING LOADS

Calculations of both the winter heating load and the summer cooling load are presented here to illustrate the requirements from the heating and cooling systems and to discuss their ability to carry these loads.

CALCULAETMG THE WTMPE HEATING LOAD

Design Temperstures:

Outside Temperature $=0^{\circ} \mathrm{P}$.
Roon Temperature $=70^{\circ} \mathrm{F}$.
Area of floor and ceiling $=414 \mathrm{sc}$. ft.
Area of east and west walls $=160 \mathrm{sc} . \mathrm{ft}$.
Area of north and south walls $=162.6 \mathrm{sc}$. ft.
Area of north wall glass $=19.1 \mathrm{sq}$. ft.
Area of west wall glass $=24.8 \mathrm{sc} . \mathrm{ft}$.
Area of east whll glass $=19.1 \mathrm{sq}$. ft.
Area of outside door $\quad=19.5 \mathrm{sc} . \mathrm{ft}$.
Total area of glass $=63$. sq. ft.
Total area of exposec walls $=482.6 \mathrm{sq}$. Et.
Net area of exposed walls $=482.6-63$
$=419.6 \mathrm{sq} . \mathrm{It}$.
Area of cold partitions $=162.6 \mathrm{sq} . \mathrm{ft}$.
Coefricient of heat transmission for floor $=0.30 \mathrm{Btu} / \mathrm{hr}$ sq. ft. ${ }^{\circ} \mathrm{F}$.
Goefficient of heat transmission for ceiling $=0.20 \mathrm{Btu} / \mathrm{hr} \mathrm{sq}$. ft. ${ }^{\circ}$ F. Coefficient of heat trenomission for walls $=0.06 \mathrm{Btu} / \mathrm{hr} \mathrm{sc} \cdot \mathrm{ft} .{ }^{\circ}$ F. Coefficient of heet transmission for the cold partitions

$$
=0.12 \mathrm{Btu} / \mathrm{hr} \text { sa. ft. }{ }^{0} \mathrm{~F} .
$$

Coefficient of heat for transmission for the windows

$$
=1.13 \mathrm{But} / \mathrm{hr} \mathrm{sq}, \mathrm{ft} .{ }^{\circ} \mathrm{Ft}
$$

Coefficient of heat transission for the door $=1.13 \mathrm{Btu} / \mathrm{hr} \mathrm{Bq} . \mathrm{ft} .{ }^{\circ}$. Infiltration factor for windows, for 70° is temperature-difference

$$
=140 \mathrm{C} \cdot \mathrm{~F} \cdot \mathrm{M} / \mathrm{RE} \text { crack. }
$$

Infiltration factor for the doos, for $70^{\circ} \mathrm{F}$ tomexeturemfference

$$
=280 \text { O.F.M/Ft crack. }
$$

Dtu loss fron exposed vells $=419.6 \times 0.06 \times(70-0)$
$=2760 \mathrm{Bta} / \mathrm{hr}$.
Btu loss from the cold partition $=162.6 \times 0.12 \times(70-0)$
$=1370 \mathrm{Bta} / \mathrm{hr}$.
Btu loss fron the floor $=114 \times 0.30 \times(70-0)=8700 \mathrm{Btu} / \mathrm{hr}$. Btw loss from the roof $=44 \times 0.20 \times(70-0)=5800 \mathrm{Btu} / \mathrm{hr}$. Btu loss from the windows $=63 \times 1.13 \times(70-0)=5000 \mathrm{Btu} / \mathrm{hr}$. Btu loss from the door $=19.5 \times 1.13 \times(70-0)=1510$ Bta/hr. Btu loss due to infiltration from the windows $=49 \times 1,0=6850 \mathrm{Btu} / \mathrm{hr}$. Bta loss due to infiltration from the door $=19 \times 280=4500 \mathrm{Btu} / \mathrm{hr}$. Totel Btu loss of the house $=35,500 \mathrm{Btu} / \mathrm{hr}$.

GALCULATIG THE SUMPG GOOLING LOAD
Calculation of Leat Gain per Square Foot
of Walls and Glass

								hr. So	Pt.
	Time	Time of oad source	I	di	U	F	${ }_{4}$	${ }_{\text {H }}^{\text {H }}$	H
East Wall	17 Mm	4 AM	0	8	0.06	0.0138	0.48	0.	0.480
(5 krs.	11 All	6 A \%	56	5.4			0.324	5.510	0.734
lag)	3 Pl	10 M 4	152	19.2			1.15	14.70	15.35
	5 Pr	12 Noon	26	25.7			1.54	2.51	4.05
	7 Pr	2 Pa	23.5	28.5		8	1.71	2.27	3.95
	$9 \mathrm{P4}$	4 PM	17	30.1		$\stackrel{*}{*}$	1.805	1.64	3.445
Glass	9 At		195	13.9	2.13	0	15.70	11.30	27.0
(Vene-	11. AM		94	22.5		[40)	25.40	54.55	79.95
tian	3 PI		21	29.7			33.60	12.18	45.78
Blinds	5 PM		12	29.5			33.30	6.35	39.68
500 I)	7 PM		2.5	24.5			27.70	1.45	29.15
	9 PM		0	13.2			25.55	0	20.55

Calculation of Heat Gain per Squere Foot
of Volls and Glass (continued)

> Calculation of Heat Gain per Square Foot of Walls and Glass (continued)

	Tine	$\begin{aligned} & \text { Thme of } \\ & \text { Iogd cource } \end{aligned}$	I	dT	U	F	H_{6}	H_{R}	12
North Wall	9 M	4 AF	0	8	0.06	0.0138	0.48	0	0.480
(5 hrs .	11. AM	6 Am	49	5.4			0.324	4.73	5.054
lag)	$3 P M$	10 AM	54	19.2			2.15	5.22	6.37
	5 PL	12 moon	26	25.7		$\begin{aligned} & 6 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	1.54	2.51	4.05
	7 PM	2 PM	23.6	28.5			1.71	2.27	3.98
	9 PM	$4 P \mathrm{C}$	17	30.1			1.805	1.644	3.445
Glass	9 Als		102	13.9	1.13	$\begin{aligned} & 0 \\ & 4 \\ & 4 \end{aligned}$	15.70	59.20	74.90
(Vene-	II AT		28	22.5		E	25.4	16.24	41.64
tian	3 Pr		21	29.7			33.60	12.18	45.78
Blinds	5 Pa		11	29.5			33.30	6.38	39.65
58\% I)	7 PM		2.5	24.5			27.70	1.45	29.15
	9 Pa		0	18.2			20.55	0	20.55

	Time	Time of loed source	I	dT	U	F	H_{t}	H_{R}	H
South Wazl	1310	4. AM		8	0.06		0.48		0.48
$(5 \mathrm{hrs}$.	11 AM	6 M		5.4			0.324		0.324
1as)	3 Pat	10 A		19.2			1.15		2.15
	5 PM	12 Noon		25.7			1.54		1.54
	7 PM	$2 P M$		20.5			1.71		2.71
	9 Pr	4 Pr		30.1			1.305		2.805
Roor	9 A_{4}	7 AM			0.2				
(2)ms.	11 Am	9 Al							
leg)	3 PH	1 PM		${ }^{\text {ca }}$					
	3 H	1 Mm		$O cin$					8
	5 PM	3 PM							-
	7 PM	5 Pa		营					\cdots
	9 PM	7 PM		绪					$\xrightarrow{4}$

Calculetion of Went Cains
in the House

	Area Area Ans. Area Area Area	cst and ! freth and loor and ast $V 111$ est $5 a l 1$ Horth Hell	Vells $1 \mathrm{Mal1s}$ ing 5	60 sq. 62.6 sc 14 ธ๐. 9.1. se. 6.8 sc. 9.1 se.		
	$9 \mathrm{~A}^{4}$	21. A	3 Pr	5 Pr	7 T	9 Pr
East bay	76.8	127.3	254,0	650	637	55%
Mest Glass	535	1522	875	757	556	392
West vell	76.8	131.4	54.7	650	262	355
Hesb Glass	690	995	117.	312	771	507
South Wall	78	52.6	137	250	278	293.5
\$002 (Gavemu	14554	455\%	455\%	6554	4554	4554
Warth Hell	76	822	1035	660	648	560
Worbh Glass	$1 / 30$	795	375	757	557	392
Totel Btu's	77.95 .6	8979.3	1072\%	1120	8263	3505.5

Decupants:
Considoring 4 porgons in the aporment,
Songhle Heat Loen $=4 \times 300=1200 \mathrm{Btm} / \mathrm{hr}$.
Letent feet hode $=1$ a $100=400 \mathrm{Bta} / \mathrm{hr}$.

Total $1600 \mathrm{Btw} / \mathrm{m}$.

Lighting:

To calculate the heat gains due to lighting in the aparthent an illunim nation of 2 watts per square foot of the floor area is assuned. No larger demand for electrical lighting is expected during the time of maximua cooling load, Therefore, the lighting effect is $2 \cdot 414 \cdot 3.413=7780 \mathrm{Btu} / \mathrm{hr}$.

Infiltration:

If 2 air changes per hour are assumed for the apartment which has no windows on three sides, the sensible heat gain due to infiltration in the apartment can be found to be

$$
=\frac{2 \cdot 3100 \cdot 29.5}{55.2}=3310 \mathrm{Btu} / \mathrm{hr} .
$$

Therefore, the maximum cooling load in the apartment may be found to be

$$
=11,420+1600+7780+3310=24,110 \mathrm{Btu} / \mathrm{hr} .
$$

ThT HESTITG DATA
Ruv I: Using Both the Ceiling and Wall Panels

Date	Tine	Ontside Temp.	r1000	Ma11-Pipe	Hal1	Ceiling-Pipe	Ceiling	Weter-Pipe
Sunday								
2/24/52	11:30 A 1	37	66	24	95.5	93	92	96.5
	3:00 Pr	33	68	94	94	90	90	93
	12:00 Pit	--.*	70	93	92	89	87	92
Monday								
2/25/52	10:00 A1	30.5	62.5	99	100	98	96.5	102
	3:00 P89	33	64	97	97	95	93	100
	6:00 Ph	35	63	05	96	93	91	94
2/26/52	8:00 A ${ }^{\text {a }}$	--*	67	96	96	94.5	92	95
	12:00 Noon	39	65	94	94	91	90	93
	77:00 P39	37.5	70	93	92	90	90	94
Wednesday								
2/27/52	9:00 AR	35	63	80	80	79	79	82
	12:00 Noon	57	67	98	83	81.5	79	105
	6:00 PM	67	70	92	92	93	92	91
Thurscay								
2/28/52	9:00 A	43	64	85	86	81	81	92
	4:00 P7	60	69	88	89	86	35	95
Friday								
2/29/52	10:00 AM	36	63	103	102	100	99	102
	7:00 PM	36	68	99	99	95	94	98
Seturday								
3/1/52	10:00 A	--*	62	105	102	99	95	105
	7:00 PM	--*	62	96	98	94	94	97
Sunday								
3/2/52	12:00 ioon	57	68	90	\$8	85	85	100
Tuesday								
3/4/52	3: PM	--**	67	98	96	96	95	102
	8: PR	-*	69	95	95	93	94	98

* These temperstures could not be recorded by the Meteorological Department.

TEE MWASIM DAEA
ROT II: Usine the Coiling Fancls Only

Date	tine	Dutside Temp.	Hloor	Hal1-Pipe	Well	Cejling-tipe	Ceiling	Heter-Pipe
Wednesday								
3/5/52	11:00 AM	--*	63	106	106	102	99	107
	6:00 PM	-	67	99	99	97.5	96	108
Thursiay								
3/6/52	9:00 AM	--*	62	82	33	116	108	125
	3:00 Pru	--*	65	88	87	102	101	106
Saturday								
3/8/52	10:00 AM	-***	64	104	104	110	110	120
	7:00 PM	-*	70	92	92	98	97	107
Moncay								
3/10/52	9:00 AM	-**	65	80	80	80	80	30
	6:00 PM	-**	65	82	82	84	84	84
Tuesday								
3/11/52	$\begin{array}{r} 11: 00 \mathrm{~A} \\ 5: 00 \mathrm{PM} \end{array}$	-**********)	66 70	74 78	74.	$\begin{aligned} & 74 \\ & 78 \end{aligned}$	$\begin{aligned} & 7 / 4 \\ & 78 \end{aligned}$	74 78
Hednesday								
3/12/52	1:00 PM	60	70	78	76	94	56	125
	6:00 PM	54	70	85	85	92	92	105
rriday								
3/14/52	12:00 Woon	40	65	84	84	112	110	115
	6:00 PM	41.5	68	88	88	98	99	104
$3 / 15 / 52$	9:00 A5	35	63	77	77	92	82	125
	12:00 Noon	42	70	84	55	96	98	98
Tuestay								
3/18/52	9:00 A1	-**	65	85	85	94	94	98
	3:00 P 4	52	67	83	83	89	39	100
3/22/52	3:00 PM	34	66	79	79	87	36	90
	6:00 PM	30	68	83	82	34.	84	95
Wednesday								

[^0]COCLING DATA

Date	Temperature	$2: 00$	$\begin{array}{r} 5: 00 \\ \hline \end{array}$	$\begin{gathered} 8: 00 \\ 141 \end{gathered}$	$\begin{gathered} 1.100 \\ M M \end{gathered}$	$\begin{gathered} 2: 00 \\ \mathrm{PM} \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \\ \mathrm{PM} \end{gathered}$	$\begin{gathered} 8: 00 \\ \text { PM } \end{gathered}$	$\begin{gathered} 11: 00 \\ \mathrm{PM} \end{gathered}$
1951									
July 22	Outside temp.	77	74	81	88	96	97	88	74
	Rocm terp.	76	74	75	78	80	82	80	78
	Inlet water terap.	--	--	--	--	--	--	--	--
	Outlet water temp.	--	--	-	--	--	--	--	--
July 23	ontside tomp.	77	71	75	86	90	51	80	76
	Room temp.	76	75	75	76	87	78	78	76
	Inlet water terp.	--	--	--	--	-	--	--	--
	cutlet water temp.	--	--	--	--	-	--	--	--
July 24	Outside ternp.	74	71	78	85	86	85	80	77
	Rocm terp.	75	74	74	75	77	79	97	77
	Inlet water temp.	--	-	--	--	--	--	--	--
	Outlet water temp.	--	--	--	--	--	--	--	--
July 25	Cutside temp.	74	72	77	85	90	90	83	78
	Room terip.	75	74	74	75	76	79	80	78
	Inlet water temp.	--	--	--	--	--	--	--	--
	Cutlet water temp.	--	-	--	--	--	--	--	--
July 27	Outside temp.	--	--	80	89	92	89	84	79
	Room temp.	--	--	73	75	77	79	79	77
	Inlet water temp.	--	--	--	--	-	--	--	--
	Outlet water temp.	--	--	--	--	--	--	--	-
July 28	Outside temp.	76	74	87	91	94	92	82	78
	Foom temp.	75	75	75	76	78	79	78	76
	Inlet water temp.	--	--	--	--	80	80	76	73
	Outlet water temp.	--	--	--	-	82	82	81	80

COCLING DATA (continued)

Date	Terupersture	$\begin{array}{r} 2: 00 \\ \mathrm{AM} \end{array}$	$\begin{gathered} 5: 00 \\ A M \end{gathered}$	$\begin{gathered} 8: 00 \\ \mathrm{AM} \end{gathered}$	$\begin{aligned} & 11: 00 \\ & \mathrm{AM} \end{aligned}$	$\begin{gathered} 2: 00 \\ P_{4} \end{gathered}$	$\begin{gathered} 5: 00 \\ 101 \end{gathered}$	$\begin{gathered} 8: 00 \\ \mathrm{PM} \end{gathered}$	$11: 00$
1951									
July 29	Cutside temp.	75	75	78	88	90	90	84	79
	Roon temp.	74	74	74	75	76	79	77	75
	Inlet water temp.	71	71	73	75	79	75	77	75
	Outlat water temp.	77	77	77	79	80	81	79	78
July 30	Outside temp.	75	72	78	92	94	94	85	80
	Room temp.	74	74	74	76	77	78	78	76
	Inlet water temp.	72	71	74	75	77	77	75	73
	Outlet water temp.	77	77	77	79	80	80	79	78
July 31	Cutside temp.	76	75	78	74	79	79	76	74
	Room temp.	74	74	74	74	74	75	75	74
	Inlet water temp.	72	71	74	77	78	79	78	74
	Cutlet water temp.	77	77	77	60	81	81	82	79
Aug. 1	Cutside tomp.	72	72	76	86	88	89	80	75
	Room temp.	73	73	74	74	76	77	75	75
	Inlet water temp.	71.	71	74	72	76	80	78	75
	Outlet water temp.	77	77	77	77	78	82	81	78
Aug. 2	Cutside tern.	73	70	80	93	97	97	87	80
	Room tersp.	73	73	73	75	76	78	78	76
	Inlet water temp.	71	70	73	76	78	78	76	73
	Cutlet water temp.	77	76	77	78	80	81	79	78
Aug. 3	Cutside tomp.	77	72	82					
	Room temp.	74	74	74	75	77	79	79	77
	Inlet water temp.	71	70	75	76	79	79	78	77
	Cutlet water temp.	77	76	76	80	83	84	81	79

CCOLIMG DATA (continued)

Date	Themegature	$\begin{array}{r} 2: 00 \\ 4 . \\ \hline \end{array}$	$\begin{array}{r} 5: 00 \\ -M 4 \\ \hline \end{array}$	$\begin{gathered} 8: 00 \\ M \end{gathered}$	$11: 00$	$\begin{array}{r} 2: 00 \\ \text { PM } \end{array}$	$\begin{gathered} 5: 00 \\ 1 m \end{gathered}$	$8: 00$	$\begin{aligned} & 11.00 \\ & \text { PM } \\ & \hline \end{aligned}$
1951									
$\operatorname{Amg} 4$	Cutside temp.	--	--	82	91	98	97	87	S5
	Boon tomp.	76	75	76	78	79	79	79	78
	Inlet water tenp.	73	73	78	80	79	79	80	77
	Cutlet wator terp.	78	77	80	82	82	81	83	81
Auc. 5	Cutside tomp.	77	75	34	94	100	100	90	55
	Room terap.	76	76	76	78	79	80	80	78
	Inlet water teme.	75	74	75	80	81	81	30	74.
	Gutlet water teray.	60	79	79	81	83	85	82	79
Aug. 6	Cubside temp.	81	78	86	98	--	--	--	-
	Roore tenp.	77	76	76	78	79	80	30	78
	inlet water temp.	75	74	76	76	80	3 3	80	78
	cutlet water temo.	80	79	79	78	33	82.	83	52
Aug. 7	Cutside temp.	-	--	--	-	105	103	93	88
	Room temp.	76	76	75	76	79	80	79	77
	Inlet weter temp.	75	72	75	77	79	83	80	78
	Gutiet water terp.	80	78	80	30	83	95	83	82
Aug. 8	Cutside temp.	84	80	76	77	81	91	81	78
	Roonin temp.	75	74	74	74	79	80	79	77
	Inlet water temp.	72	72	72	72	79	79	76	73
	Cutlet water terig.	777	77	77	77	84	82	81	79
Aug. 9	Cutside temp.	76	71	70	69	80	84	78	74
	Room temp.	75	72	73	72	73	75	76	74
	Inlet water temp.	73	69	69	68	72	76	75	73
	Outiat water temp.	78	76	75	74	76	78	78	77

Collhe para (Continued)

Date	Aemperaturs	$2: 00$	$5: 00$	$\begin{array}{r} 8: 00 \\ 4 \\ \hline \end{array}$	$\begin{gathered} 11.00 \\ \hline \end{gathered}$	2.00	5.00	$\begin{gathered} 8: 00 \\ 9 \mathrm{~N} \end{gathered}$	$\begin{gathered} 11.00 \\ P M \end{gathered}$
1951									
August 10	Outside temp.	72	68	77	82	65	67	69	67
	Room teap.	73	73	73	74	75	73	72	70
	Inlet water tome.	71	69	71	74	74	74	67	66
	Cutiot water temp.	76	75	75	77	77	78	73	73
Aug. 17	Gutside tomp.	66	65	70	22	84	85	82	75
	Foom temp.	80	69	70	72	72	75	75	74.
	Inlet water temp.	65	65	66	72	75	68	73	72
	Outlet water temp.	72	72	72	74	78	74	77	76
Aug. 12	Gutside terap.	72	69	77	84	89	90	82	77
	Roon terap.	72	72	73	74	74	77	77	75
	Inlet vater teap.	70	68	69	74	77	77	76	74
	Gutlet water terap.	75	74	74	76	79	80	50	78
Aug. 13	Gutside tarp.	74	72	70	34	90	93	83	77
	Rroona temp.	74	73	72	73	75	78	79	77
	Inlet water temp.	72	71.	67	7%	76	79	76	76
	Cutlat water term.	77	76	77	76	81	82	81	79
Aug. 14	Cutside temp.	73	73	3_{4}	95	$9 ?$	97	86	82
	Hoom termp.	75	74.	74	75	76	78	77	75
	Inlet weter temp.	75	73	73	75	76	76	75	72
	Gutlet wator temp.	76	74	75	76	77	so	79	77
Aug. 15	Outside tomp.	78	75	80	86	86	85	75	${ }^{71}$
	Rcon temp.	74	73	73	74.	75	77	75	73
	Inlet vater toap.	70	69	71	74	72	74	69	67
	Cutlot vater temp.	76	75	75	77	7	70	75	74

CCLILG DATA (continued)

Dete	Semparature	$\begin{gathered} 2: 00 \\ \hline \end{gathered}$	$\begin{gathered} 5: 00 \\ 451 \end{gathered}$	$\begin{gathered} 8: 00 \\ 18 \end{gathered}$	$\begin{gathered} 11: 00 \\ \mathrm{AM} \\ \hline \end{gathered}$	$\begin{gathered} 2: 00 \\ 4 \end{gathered}$	$\begin{gathered} 5: 00 \\ \mathrm{Pn} \end{gathered}$	$\begin{gathered} 8.00 \\ \hline 10 \end{gathered}$	$\begin{gathered} 12: 00 \\ \mathrm{PM14} \end{gathered}$
1951									
Aus. 16	Cutside tomp.	68	66	73	83	87	90	60	74.
	Scos temp.	71	70	70	72	'7\%	75	76	74
	Inlet water temp.	66	65	66	70	72	74	7%	72
	Catlet water temp.	73	72	72	74.	76	77	78	76
Auge 17	Gutside tamp.	72	70	$3 / 4$	95	102	96	82	80
	Roon tem.	73	73	73	75	76	80	76	73
	inlet water temp.	70	71	71	72	76	77	69	68
	Cutlet water temp.	75	75	75	78	60	80	77	75
Aus. 18	Cutside terg.	74	72	72	82	85	d7	79	76
	Boon tery.	73	73	73	74	76	79	7 c	75
	Iniet vater temp.	72	72	71	74	77	78	76	73
	Outlot water terip.	76	76	76	77.	80	79	60	78
Aug. 19	Outaide terp.	72	70	80	93	95	96	85	79
	Root terp.	74	73	73	76.	79	80	80	77
	Iniot whter tern.	72	69	70	75	--	--.	--	--
	Cutlet weter temp,	77	75	75	77	--	--	--	--
Ane. 20	Outaide terp.	76	74	dit	99	94	$\%$	87	co
	incom temp.	75	75	33	75	77	78	79	75
	Iniet wetor terp.	--	-	--	--	75	75	76	73
	Gutlet water temp.	--	--	--	--	79	80	79	78
Aug. 21.	outside tomp.	77	70	69	71	---	--	-	\cdots
	Row tens.	74	73	73	72	73	72	73	72
	Imlat wethe temat	70	68	70	70	70	70	69	69
	Cutlet water teap.	77	76	75	75	75	75	74.	73

COCLTH DATA (continued)

Date	Tonuerature	$\begin{array}{r} 2: 00 \\ \hline \end{array}$	$\begin{gathered} 5: 00 \\ \text { A } 10 \\ \hline \end{gathered}$	$\begin{gathered} 8: 00 \\ \text { AM } \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \\ \text { A } \end{gathered}$	$\begin{gathered} 2: 00 \\ 2 n \end{gathered}$	$\begin{array}{r} 5: 00 \\ \hline \end{array}$	$\begin{gathered} 8: 00 \\ \mathrm{FI} \\ \hline \end{gathered}$	$\begin{gathered} 11: 00 \\ \hline \end{gathered}$
1951									
Ang. 22	Outside temp.	--	-	--	--	--	74	73	70
	Roorn temp.	68	68	68	68	69	71	72	71
	Inlet water tenp.	69	68	63	70	67	69	67	6
	Cublet water terip.	73	73	73	73	70	71	71	70
Aus. 23	Outside torap.	68	67	69	72	77	81	79	72
	Roca temp.	70	70	72	70	72	73	73	72
	Inlot watar temp.	69	62	63	65	72	74	73	70
	Gutlet water terp.	70	70	69	71	74	76	77	75
Aug. 24	Outside temp.	70	69	75	86	91	91	83	73
	Room temp.	71	71	71	72	74	76	77	75
	Inlet water temp.	69	60	79	77	78	76	74	72
	Cutiets water temp.	74	74	74	78	80	80	78	77
Aus. 25	Cutside tomp,	75	73	82	79	94	92	80	77
	Roon temp.	74	73	73	74	76	80	78	76
	Inlet wator tomp.	70	70	73	74	78	78	76	73
	cutiot water temp.	68	76	77	77	79	83	80	78
Aucc. 26	Outside temp.	76	76	77	90	90	77	76	75
	Room temp.	74	73	73	74	76	76	75	76
	Inlet water temp.	71	69	69	75	77	74	73	73
	Outlet vater temo.	77	75	75	77	79	78	78	77
Aug. 27	Outside terp.	73	74	82	84	98	95	86	33
	Rocn temp	74	73	73	74	76	77	76	75
	Inlet water temp.	71	70	71	72	---	--	--	--
	Catlet water temp.	77	78	78	77	--	--	--	--

Coogmg Data (cominued)

Dete	Temperature	$\begin{gathered} 2: 00 \\ \text { An } \end{gathered}$	$\begin{gathered} 5: 00 \\ \text { AM } \end{gathered}$	$\begin{gathered} 3: 00 \\ A M \end{gathered}$	$\frac{11: 00}{\mathrm{AM}}$	$\begin{array}{r} 2: 00 \\ 3: 1 \end{array}$	$\begin{gathered} 5: 00 \\ \text { PM } \end{gathered}$	$\begin{gathered} 8: 00 \\ \mathrm{PM} \end{gathered}$	$\frac{11: 00}{P M}$
1951									
3tys. 28	Outside temp.	80	78	86	86	100	99	89	84
	Room terp.	74	73	74	75	77	30	79	77
	Inlet water temp.	--	--	--	--	79	79	77	74
	Outlet weter temp.	--	--	\cdots	--	80	32	\$0	79
nue. 29	Outside terp.	80	77	\% 5	96	102	101	90	84
	Roon temp.	75	74	7%	75	77	80	80	77
	Inlet water texp.	71	69	79	76	--	--	--	--
	Outlet water temp.	77	76	75	78	-	-	-	--
Ave. 30.	Outside terap.	79	${ }^{7} 74$	85	99	222	20	39	83
	Room temp.	75	74	74	77	79	79	79	78
	Inlet water temp.	--	--	-	-	75	78	76	75
	Gutlet water teap.	-	--	--	--	80	81	80	78
Aug. 31	Outside tem.	76	74.	85	99	104	102	92	84
	Room temb.	75	74	75	774	77	78	78	76
	Inlet weter terp.	70	68	71	76	78	78	76	73
	Outlet water temp.	77	75	75	78	80	81	\$0	78
Sept. 1	Outside temp.	32	78	79	85	98	100	89	81
	Roon temp.	75	74	76	75	77	78	75	76
	Inlet weter temp.	71	71.	73	76	78	78	76	73
	Outlet water tera.	79	79	79	50	82	81	80	79
Sept. 2	Outside temp.	75	72	79	90	96	97	32	7%
	Roora terap.	75	74	75	75	77	79	79	76
	Inlet water temp.	72	70	71	76	80	81	76	72
	Outlet weter texas.	77	76	76	76	81	83	83	78

Date	Temperature	$\begin{gathered} 2: 00 \\ \mathrm{Am} \end{gathered}$	$\begin{gathered} 5: 00 \\ 1 M \end{gathered}$	$\begin{gathered} 8: 00 \\ \text { ARI } \end{gathered}$	$11: 00$ 4	$\begin{gathered} 2: 00 \\ 34 \end{gathered}$	$5: 00$	$\begin{gathered} 8: 00 \\ \mathrm{PM} \end{gathered}$	$\begin{gathered} \frac{11: 00}{\text { PM }} \end{gathered}$
1951 -									
Sept. 3	Outsicie teap,	72	69	${ }^{7} 9$	87	93	94	85	79
	Roon temp.	76	74	73	74	76	78	73	77
	Inlet weter tomp.	70	69	71	76	78	79	78	75
	Outlet water temp.	77	76	76	78	80	87.	83	80
Sept. 4	Outside teap.	75	72	72	33	92	95	85	79
	Roon temp.	75	75	74	74	76	78	78	76
	Inlet water temp.	73	71	69	74	77	78	76	74
	Oulet water terap.	78	77	76	77	79	81	80	79
Sept. 5.	Outside temp.	65	67	69	80	36	72	69	68
	Roon temp.	74	71	71	71	72	7%	74.	72
	InIet weter temp.	68	66	66	66	70	72	69	68
	Outlet weter temp.	76	74.	73	73	75	75	75	74
Sept. 6	Outside terap.	68	66	68	66	73	75	70	68
	Roon teap.	71	70	70	70	72	73	73	72
	Injet weter terip.	67	67	67	-	70	71	69	63
	Outlet water terap.	73	73	73	--	75	76	75	$7 / 4$
Sept. 7	Outside tenp.	69	65	64	64	65	65	65	64
	Roon terap.	71	70	69	69	69	69	69	68
	Inlet water temp.	69	68	67	67	69	71	71	69
	Outhet weter terap.	73	72	72	72	71	72	71	71
Sept. ${ }^{\text {a }}$	Outside temp.	64	62	66	73	79	78	72	70
	Roon temp.	67	67	67	69	71	73	73	71
	Injet water temp.	64	63	65	66	70	71	--	--
	Outlet water temp.	70	70	70	71	73	75	--	--

g00114 DMA (continuod)

Pute	Terserstuec	2.0	$5: 00$	3.60	$31: 00$ A5	$2: 00$	$5: 60$	$\begin{gathered} 8.09 \\ \mathrm{EPI} \end{gathered}$	$\frac{1103}{P}$
2951									
Sept. 9	Cubide tomit.	9	70	63	7	69	68	6	65
	Fome tomp.	73	69	69	69	73	73	71	70
	Indet wher torpx	--	--	--	--	--	79	63	66
	Guthet woser terp.	-	-	-	-	--	76	74	73
Seg. 40	Grictide temp.	62	60	69	33	2	03	73	69
	Boon tome.	67	67	67	69	71	72	73	70
	Injet wobe ters.	6	6	6	67	71	r	6	6
	Oublet vater temp.	72	70	69	71	74	73	75	73
Sept. 12	Outsice tere.	69	69	75	6	6	6	76	77
	Room tem.	70	73	70	73	75	76	75	76
	Tulct witer tens.	63	63	69	75	76	76	73	${ }^{7} 1$
	Catlet werer towp.	73	73	73	76	78	r9	7 m	87
$\operatorname{sent} \mathrm{I}^{2}$	Crataice tomy.	7%	74	73	63	67	6	6	60
	Rown tomb.	73	72	7	$7{ }^{7}$	72	73	73	67
	Intet were tomp.	\%	70	71	65	65	6	62	60
	Gutlet water texts.	76	75	75	73	72	71	70	69
Sept. 13	butario werp.	57	53	62	72	\%	\%	68	62
	Roon texas.	6	63	63	63	69	71	73	72
	Inlot water terp.	57	55	56	63	63	73	72	69
	Onter weter teap.	67	65	65	72	73	75	75	73

govitu Mhe (contimed)

Mate	Tomperburo	$\begin{array}{r} 2.00 \\ 8 . \\ \hline \end{array}$	$\begin{gathered} 5: 2 \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} 6.60 \\ \hline \end{gathered}$	$21: 10$	$\begin{gathered} 2.00 \\ \mathrm{~m} \end{gathered}$	$\begin{array}{r} 5 \cdot 09 \\ \hline \end{array}$	$\begin{gathered} 8: 00 \\ 345 \end{gathered}$	$\begin{gathered} 11: 00 \\ 84 \end{gathered}$
sept. U\%	Outsice bexp.	59	56	66	78	$\underline{8}$	33	70	63
	Goon ters.	70	69	69	70	71	re	70	67
	Inlot rator tems.	\%	65	68	65	68	6	67	63
	outlet water tome.	73	7	79	72	73	7	$\%$	69
Sept. 15.	Outsice tert.	57	55	6	3	70	70	65	57
	Woon temp.	65	62	63	65	67	67	65	6
	Trlet mater terp.	53	57	5	6	63	60	58	54
	Ontet vater tom.	67	66	66	63	$\%$	68	06	64
30n\%. 76	cutaide tomp.	53	52	-	-	\cdots	-	--	
	noom temp.	60	6	60	6	63	65	65	65
	Inlet yetar torp.	5	53	53	5	61	62	60	63
	putiet mome tor.	6	62	63	6	66	67	66	68
Cept. 27	Cutside tomb.	\cdots	-	62	75	79	78	67	59
	nom temar.	64	-	64	65	66	63	70	70
	Thet wher tomp.	--	-	--	--	--	\cdots	-	--
	Huthet weter wery.	-	-	\cdots	-	-	-	-	\cdots
Sept. 13	Cutatio temg.	55	5	61	7	-	-	-	-
	Woon tomp.	68	67	67	63	-	-	-	-
	Thlet water tom,	--	-	-	-	--	-	-	-
	Duthet mber tery.	\cdots	-	-	-	-	-	-m	\cdots

dTsCOSSION OR THE HEATHG DATA
 I. Usine Doth the Gejling and ball Golis

1. The Floor:

The tempereture ranged from $62^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F} ; 62^{\circ} \mathrm{F}$ was recorded on a cold weather day, (unrecorded outside benperature), while 62.5 p was recorded st on outside temperature on 30.5° F. A xise in temperatme of moor wes noticed to oectr in the onternoon, and in the evening and on ind weather days. It was also noticed that a floor terperature of $70^{\circ} \mathrm{F}$ was recorded when the outside tepperature was near freezing. This high reeding was observed when the occupants were in the house. Under octuation the floor temperature remaned steedy at $70^{\circ} \mathrm{F}$ during the recording period.
2. The Mall Pive:

The terperature ronged nom ${ }^{3} 5^{\circ}$ Fo 105 F . The lowest tomperature of 86° W was recorded on a fair outside weather at $57 \% \mathrm{~F}$. As the outside tempera. ture decreased, the vall pipe tempercture shoved an increase. Thus, 103° F was recorded ageinst on outside temperature of 36°. The outside terperature was not recorded on harch 11, 1951 at 10 A . T. When the wall pipe temperature was 705°, but it tas noticod that the cutside teaperatre st this tine was below freexing. The wall pipe temperature showed a quick response to the weather conditions in nost of the recorded cases, although in one case it shoved a temperature of $85^{\circ} \mathrm{P}$ on Eebruary 29, 1952 at 9:00 A. W. when the outside temperature was only 43°. .
3. The HoII:

against an outside temperature of $57^{\circ} \mathrm{F}$, when the weather was nild and no appreciable anount of heat was required. The wall tomporature showed a rise in temerature with the owtide colder weather and a temperature of $100^{\circ} \mathrm{F}$ was recorded at $30.5^{\circ} \mathrm{F}$. Also a tomperature of $102^{\circ} \mathrm{F}$ was rocorded against $30^{\circ} \mathrm{F}$ outside bemperature. The wall temperature showed a good response to weather variations needs. It was sometines higher then the temperature of the well pipe itseli.

4. Ceilins Pipe:

The tomperture renged botween $81^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{F}$. The highest temperature wes recorded againct ax outside weather of 36° it Also a temperature of 98° F wan recorded on the outside temperature of 30.50 . On the other hand, the lovest benperabme recorded was $61^{\circ} \mathrm{F}$ against an outsjde rather cold weather of 41°. This shows a veakness in the systen to uithstand the variations In the outside westher conditions.

5. The Qejling Tomperature:

The ceiling temperature shoved a very slight tomperature difforontial from that of the deillag pipe. It varied from $79^{\circ} p$ at the outside mild weather of 79° F w $96.5^{\circ} \mathrm{F}$ at the coldest recorded tenperature or 30.5° F. Except on Pebruary 27, 1952 and Februmy 23, 1952 temperature bowed a steedily incresse with outside colder venther.
6. The Later Pioe:

The temperature showed a variation botween $91^{\circ} \mathrm{F}$ and $105^{\circ} \mathrm{F}$. The lowest temperature was recorded against the highest outside temperature rem corded of 67° F. Uith some exceptions it showed a more or less good response to heat demaras in the bouse.

Generally, considering the surface temperatures of the inside surfaces of the apartment, as a combination they showed a rise in temperature with cold outside weather with the exception of the floor which showed a decrease in teaperature when the hent demands increased and when a higher floor tompernture would be more desirable.

1I. Using the Ceiling Coils Only

On Harch 10, 1952 and harch 12,1952 , then the outside temperature was near freezing the system did not function properly due to sone wnom reason. As the temperature recorded on these two days are tisleading, the discussion of the system operation does not taike these temperotures in consideration.

1. The Floor:

The temperature renged from $62^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{P}$. The lower temperatures were recorded in cold teather condtions. The higher temperatures were recorded either during fair weathor or in the aiternoons.
2. The Wall Pipe and the Wall Temperstures ranced between $82^{\circ} \mathrm{F}$ and $106^{\circ} \mathrm{F}$. The temperature wes neer the lowor limit during cold weather.
3. The Cefling Pipe pemperature:

This teaperature ranged between $34^{\circ} \mathrm{F}$ and $116^{\circ} \mathrm{F}$. Mith teraperatures Were recorced on cold veather, a temperature of 112° F was recorded against en outside tenperature of $10^{\circ} \mathrm{F}$. The systen did not show a quick response to the heat demands as a ceiling pipe temperature of 34° was recorded against on outside weather of 30° while a $92^{\circ} \mathrm{F}$ tenpereture vas recorded when the outside temperature was either 35° Por $54^{\circ} \mathrm{F}$.
4. The Ceiling Temperature:

This temperature varied between 84 and $110^{\circ} \mathrm{F}$ and was always vory close to coiling sipe temperature.

5. The Vater Pipe Tempersture:

With the oxception of one case it varied between $95^{\circ} \mathrm{F}$ and $125^{\circ} \mathrm{F}$. Higher temperatures were recorded when big heet demands ware reguired.

Comorison Between the Two Cases:
The floor temperatures showed no variation botwen the two cases, indicating that there may be a foult in the construction of the floor itself.

Althoug the hot water circulation wes out frow the wall piping in the second case, tho wall temporature was high enough to indicato both that the roon temperaturo was satisfactory and that the drop in the floor temperature was rainly due to rapid leakage of heat through the floox srea, rather than due to a lack in the mount of heat handed by the aystem.

The ceiling pipe shown that it is capable of hending the required amount of heat in the second case. In the other hand, the recorded terperetures in the first case did not display a satisiactory indication of the characteristic ceiling pipe snd ceiling tamperatures.

The water-pipe temperature indiceted a quick response to the heat domands. This was nore apparent in the second ense as the quantity of water circulated in this case was less and the temperatures were higher than in the firct case.

The outside tonperature varied between 105° on 2:00 P. K., August 17, 1951 and $52^{\circ} 7$ on Septenber 16 and 13 , 1951. The roon temperatme in the first case way 79° In and rose to 80° E at $5: 00$ E. M. with an outside tenperam twe of 103° T. The highest room tomgerature recorded was $52^{\circ} \mathrm{F}$. This was Observed at 5:00 P. M., on July 22,1951 and was masured against an outside tempereture of $97^{\circ} \mathrm{F}$. whe roon temperature was $60^{\circ} \mathrm{F}$ on September 16 and $67^{\circ} \mathrm{F}$ on Septenber 18 when the outside texperature was $52^{\circ} \mathrm{F}$. The $60^{\circ} \mathrm{F}$ terperature was the lovest inside terperature recorded during the testing period.

The maximu daily temperature variation between day and night times was observed on August 18. It anounted to $30^{\circ} \mathrm{F}$, when the temperature was $72^{\circ} \mathrm{F}$ at 2:00 A. 4 . and climbed to $102^{\circ} \mathrm{F}$ at 2:00 P. M. The roon tenperature varied between $73^{\circ} \mathrm{F}$ at 2:00 A. M. and $76^{\circ} \mathrm{F}$ at 2:00 P. K but it climbed wp to $80^{\circ} \mathrm{F}$ at 5:00 P. M. When the outside temperature was $96^{\circ} \mathrm{F}$.

The maximun daily roon tomperature variation was of the order of $10^{\circ} \mathrm{F}$. It was recorded on September 13 between $5: 00$ and $8: 00$ A. M. and $8: 00$ P. M. against an outside temperature differential of 22°. A roon temperature differential of $7^{\circ} \mathrm{F}$ was recorded on August 17 , August 25 and August 28 with outside temperature differentials of $30^{\circ} \mathrm{F}, 21^{\circ}$ I and $25^{\circ} \mathrm{T}$ respectively.

The minimu daily roon temperature variation was $3^{\circ} \mathrm{F}$ against an outside tompercture variation of $15^{\circ} \mathrm{F}$. This was observed on August 26, 1951.

The roon temperature variation on an average day ranged between $4^{\circ} \mathrm{F}$
and $50^{\circ} \mathrm{F}$ ove the 24 hours.
The inlet cooling water had a maximur temperature of 83° F on August 6 and August 7 at 5:00 P. The outside temperature in the second case was $103^{\circ} \mathrm{F}$, the outside temperature in the first case could not be recorded but it seemed to be equelly high.

The lowest inlet water temperature recorded during the testing period was $53^{\circ} \mathrm{F}$ on August 16 against an outside temperature of $52^{\circ} \mathrm{F}$. Also, a temperature of $55^{\circ} \mathrm{F}$ was observed on September 13 against an outside weather of $53^{\circ} \mathrm{F}$. In nost of the ceses, the inlet cooling water temperature ranged between $70^{\circ} \mathrm{F}$ and $75^{\circ} \mathrm{F}$ when the outdoor temperature varied between $75^{\circ} \mathrm{F}$ and $95^{\circ} \mathrm{F}$. It rose to above $80^{\circ} \mathrm{F}$ on the extrenely hot days and followed the outside terperatures when they fell below $70^{\circ} \mathrm{F}$. The inlet water tem perature was observed to be about 20 F below the roon temperature in most cases although it vas higher in a fow instances.

The rise in the outlet cooling water temperature above the inlet cooling water temperature varied between $1^{\circ} P$ and $7^{\circ} F$, but in most or the coses it was observed to be af the order of $5^{\circ} \mathrm{F}$.

GOMBRL REMARES AND RECCMENDAPICIS

I. THE HEASING LOAD

As seen from the data collected during the heating season, the floor temperature never rose above 70° P. Many authorities claim that this tenperature should be the minimun limit for the floor surface temperature. Reducing this temperature below $70^{\circ} F$ was found to be objectionable even in the sumer time to alderly people and to those who are subject to rheumatism.

The floor construction is a 2 -inch concrete slab above the gravel layer. No insulation has been applied to the floor. This floor has an estinated U-factor of 0.50 which increases the heating load by 32.7 percent over a floor that has a U-factor of 0.10 . This comparison is obtained from the heating load calculations. The test data and the load calculations indicate that the floor is the weak link of the heating experiment. The most obvious reason for this is the poor construction of the floor itself. The system seems to be quite capable of handling the required amount of heat. It keeps the temperatures of the walls and the ceiling reasonably high, but due to the quick leakage of heat fron the space to the ground, a sufficiently high floor surface temperature could not be atteined especially under severe cold weather conditions.

It appears highly desirable to cover the floor with a 2-inch cork slab which would prevent the quick leakage of the heating load from the space to the ground and which would in all probability keep the floor surface tempereture reasonably high.

Also, it is observed that the door and windows are rather poorly fitted
and none of then weather-stripped or equipped with a storm sash. This increases the heating load considerably in severe weather due to the great mount of infilbration taking place especially with cold stormy weather. Use of veather-stripped or storm-sashed windows and door is highly recomendel. Calculations show that such door and windows may effect a decrease in the heating load by as much as 24.75 percent.

II. THE COOLING LOAD

The room temperature was found to be very close to the outside temperature in the period between 11:00 P. M. every night and 5:00 A. M. on the following morning. But a temperature differential between the indoor and the outdoor conditions would rise to about $15^{\circ} \mathrm{F}$ in the period betreen 2:00 P. M. and 5:00 P. M. This temperature differential wes observed to clinb to $27^{\circ} \mathrm{F}$ on August 31, 1951, with an outside temperature of $104^{\circ} \mathrm{F}$ and an indoor teraperature of $77^{\circ} \mathrm{F}$. Also, a temperature differential of $26^{\circ} \mathrm{F}$ was observed on August 7at 2:00 P. M. and on August 17 at 2:00 P. M.

On nany a cold morning, the indoor tomperature was several degrees above the outside temperature. The room temperature was found to be $14_{4}^{\circ} \mathrm{F}$ above the outdoor temperature at 2:00 A. M. on August 11. Also, a difference of $13^{\circ} \mathrm{F}$ was noticed on September 14, at 5:00 A. M.

From the above observations, it may be concluded that the cooling system is capable of cooling the apartment even in the extremely hot weather conditions when the cooling load exceeds $24,000 \mathrm{Btu} / \mathrm{hr}$. Hore comfortable conditions could be maintained in the apartraent if the control systen is applied to the cooling system. By means of control system, uneomfortably low temperatures could be avoided on cold nornings. The system would be
set to stop the flow of cold circulating water if the incoor temperature fell below a certein limit. Also, the system covid respond quickly to the changing requirements imposed by outside-temperature fluctuations.

The foregoing discussicn dealt with the dry-bulb temperature. It is known that the wet-bulb temperature measures the totel heat in the air and is, therefore, a basic factor in juging the cooling capecity of the system as well as its effect on hunan comfort, Unfortunately, due to some technical difficulties, correct values of the relative humidity could not be obtained and consequently, the vet-bulb temperatures covld not be evaluated.

APPEDIX

Selected average outsido dry bulb temperatures for cooling load design. Bnsed on maximum temporature of $100^{\circ} \mathrm{F}$. Location: Stilluetor, © lahona.

6:00 A. ${ }^{\text {a }}$	75.4
7:00 A. ${ }^{\text {L }}$.	77.3
8:00 A. R.	80.3
9:00 A. M.	83.9
10:00 F . H	89.2
11:00 A. N .	92.5
12:00 Moon	95.7
1:00 F. U.	97.2
2:00 P. A.	98.5
3:00 P. 2.	9.7
$4: 00 \mathrm{P} . \mathrm{N}$.	100.1
5:00 F. H.	99.5
6:005. E .	97.7
7:00 P. H.	94.5
5:00 1. 4.	90.1
9:00 P. H .	83.2
10:00 P.	87.0

11:00 P. $\mathrm{H}^{\text {. }}$	86.0
12:00 Manieht	85.0
1:00 A. M.	84.0
2:00 A. A.	52.0
3:00 A. A .	30.0
4:00 A. M.	78.0
5:00 A. ${ }^{\text {a }}$.	77.0

THESIS fTPIE: PANEL HEATING AMD COOLING

AUPEOE: MATHOU M. NOMMOUD

THESIS ADVISER: R. R. TRUIN

The content and form have been checked and approved by the author and thesis adviser. Changes or corrections in the thesis are not made by the Graduate School office or by any comittee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

IYPIST: E. GRACE PEEDLES

[^0]: * These teaperatures could not be recorded by the weterolosioch mepartant.

