Date: May 12, 1952

Name: Glen A. McClain
Position: Student
Institution: Okla. A \& M College Location: Stillwater, Okla.
Title of Study: Factors That May Have Influenced The Grades Made on The Junior Standing Examinations In Mathematics And English By Students At The Oklahoma Agricultural And Mechanical College In The Fall of 1951.
lumber of Pages in Study: 95
Under Direction of Whet Department: Agricultural Education
Statement of Problem: Each semester many students fail the junior standing mathematics and English examination at Oklehome Agricultural and Mechanical College. The peimary purpose of this study was to recognize factors which may have been responsible fur the failures of students to pass these junior standing examinations.

Method of Procedure: The high school and college transcripts of all students who failed the examinations were compered with the transcripts of students who passed the examinetions. Comparisons were rede to determine if the number of units completed in high school and the number of hours completed in college were factors that influenced the ability of students to pass the examinations. Comparisons were also made to determine if the number of units of science completed in high school had any influence upon the grades mede in science in college.

Findings and Conclusions: The number of units of methemetics and English completed in high school seem to have little influence upon the ability of the student to pass the junior standing mathematics or English examination. Hours of mathematics and English completed in college also seem to have little influence upon the grades made by students on the examinations. This study also shows that there is little relationship between the number of units of science completed in high school and the grades made by students in science in college. The grade point made in technical agriculture seems to be a better inalation of the student's ability to pass the examinations then units or hours of work completed. Dairy $1 \approx 3$ and agriculture economics 233 seem to be of some benefit in preparing students for the mathematics examination. Wile students who failed the mathematics examination are definitely weak in solving percent problems, there is evidence the indicates that highly specialized problems were responsible for the failure of many of them.

FACTORS THAT MAY HEVE ING GENCDD THE GRADES

 COLLGOE IN SHE FALL OF 1951

By
Glen A. MeClain
Bechelor of Science
Klahoma Agriculturel and Rechenical College
Stillwater, Okiahome
1951

Submitted to the Factity of the Graduate School of the OKlahome Agriculturd and Mechanicel College
in Partial Fulfillment of the Requirenents
for the Degree of
Whatin ur Suledue
1hay, 1952

FACTORS THAT MAY HAVE INFLUENCED THE GRADES MADE ON THE JUNIOR STANDING EXALINATIONS IN MATHEMATICS AND ENGLISH BY STUDENAS AT THK MKaHOMAA AGRICULTURAL AND MECHNNICAL COLLEGE IN THE PALL OF 1951

Thesis Approved:

20473%

The mater mishes to express his apprectetion to the stafir of the seluulturel Bucetion Depatment of Mlehome Agriculturgh end acoheniegl College fon their helptul duice and oritucisms and espectally to professor 0 . L. dagerer and Professor Don w. orr vader whoge dinection this chests wes prepared.

The writer wishes aiso to express is sincere grathtude end aporectation to the folloming persons ron the aid they geve him in securing the records needed in this study:

Dr. Herbat Dateerson, Dean of Homintstrotion.
Dr. Rendall J. Jones, Associete Deen of Agrieultare and Ascociete Director of Ageicultume.

Dr. H. K. Erobst, Dixector of the Eureau of Tests and Heesurements.

Due credit and thanks should be given to itary, my mire, for her untiring efforts to assist, encourege, and inspire ne in the writing of this thests.
TABLE OF COMENTS
RHGE
Introduction 1
Review of Literature 4
Method of grocedure 9
Presentation and stnalysis of Date 15
Anelysis of Problems and Errors 39
Anclysis of Data Concerning the Junior Standing English Examinetion 70
Analysis of Deta Concerning Gredes Made In Science In College 87
Summery and Conclusions 89
Selected References 94
Table Page

1. Comparison of the Records of 109 Students who Passed the Mathematics Examination with the Records of 87 who Failed it as to Number of Units of Certain High School Subjects Com- pleted 16
2. A Comparison of the College Records of 109
Students who Passed the Mathematics Examina- tion with the College Records of 87 Students who Failed it in Total Hours Completed and Average Grade Point made in Technical Agri- culture 18
3. Comparison of 109 Students who Passed the Mathematics Examination with 87 who Failed it as to Hours of Certain College Subjects Completed with a Grade of D or Higher. 20
4. Distribution of Q Scores made on Psycho- logical Tests by 62 Students who Failed the Mathematics Examination 21
5. Distribution of Q Scores made on Psycho- logical Tests by 72 Students who Passed the Mathematics Exemination. 22
6. Distribution of T Scores made on Psycho- logical Tests by 62 Students who Failed the Mathematics Examination. 23
7. Distribution of T Scores made on Psycho- logical Tests by 72 Students who Passed the Mathematics Examination. 24
8. A Comparison of the Examination Grades of Students who Completed all College Mathe- matics at Oklahoma Agricultural and Mechani- cal College with the Examination Grades of Students who Completed all College Mathe- matics at Other Institutions 26
9. Average Grades Made on the Mathematics Exam- ination by Students Without Gredit in any College Mathematics Compared on the Basis of Where Other College Work was Completed. 28
10. Comparison of Grades made on the Mathematics Examination by Students with Credit in College Mathematics and Students without Credit in College Mathematics 30
11. Distribution of the Scores made by 196 Students on the Mathematics Examination. 32
12. Distribution of the Scores made by 27 Students on the Mathemetics Examination who Took all of Their College Mathematics at Oklahoma A. \& M. College 33
13. Distribution of the Scores made by 56 Students on the Mathematics Examination who Took all of Their College Mathemetics at Institutions Other than Oklahoma A. \& M. College. 34
14. Distribution of the Scores made by 65 Students on the Mathematics Examination who did all of Their College Work at Okla. A. \& M. College, but did not have Credit in any College Mathe- metics 36
15. Distribution of the Scores made by 47 Students on the Mathematics Examjnation who did College Work at Okla. A. \& M. College and Other Institu- tions, but did not have credit in any College Mathematics 37
16. Results of the Junior Standing Mathematics Exam- ination Showing the Number and Percent of all Students Working Each Problem Correctly and Incorrectly 40
17. A Comparison of 109 Students who Passed the Mathematics Examination with 87 Students who Failed the Examination in Ability to Solve each Problem 42
18. Errors Indicating why Problems were Scored
as Incorrect 44
19. Comparison of Errors made by Students who
Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problera One 46
20. Comparison of Drrors made by Students who Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Two. 49
21. Comparison of Errors made by Students who Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Three 52
22. Comparison of Errors made by Students who Passed the Mathematics Examination With Errors made by those who Failed it in Solving Problem Four. 54
23. Comparison of Errors made by Students who
Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Five 56
24. Comparison of Errors made by Students who
Passed the Matheratics Examination with Errors made by those who Failed it in Solving Problem Six. 58
25. Comparison of Errors made by Students who Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Seven 60
26. Comparison of Errors made by Students who
Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Eight 62
27. Comparison of Errors made by Students who Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Nine. 65
28. Comparison of Errors made by Students who Passed the Mathematics Examination with Errors made by those who Failed it in Solving Problem Ten. 68
29. Results of the Junior Standing English Examina- tion. 71
30. The Judgment of the Graders of Six Depertments as to Themes being Satisfactory or Unsatisfac- tory 73
31. A Comparison of 46 Students, Chosen at Rendom from the 256 Students who Passed the English Examination, with the 54 Students who Failed, as to Units of Certain High School Subjects Completed 75
32. A Comparison of 46 Students, Chosen at Random
from the 256 Students who Passed the English
Examination, with the 54 Students who Failed,
in Total Hours of College Work Completed and
Average Grade Point made in Technical Agri
cultural 77
33. A Comparison of 46 Students, Chosen at Random from the 256 Students who Passed the English Examination, with the 54 Students who Failed, as to Hours of College English Completed with a Grade of D or Higher 79
34. Distribution of L Scores made on Psychological Tests by 40 Students who Failed the English Examination81
35. Distribution of L Scores made on Psychological Tests by 29 Students who Passed the English Examinetion. 82
36. Distribution of T Scores made on Psychological Tests by 40 Students who Feiled the English Examination. 84
37. Distribution of T Scores made on Psychological Tests by 29 Students who Passed the English Examination. 85
38. Average Grades made in Science in College Com-pared on a Basis of the Number of Units ofScience Completed in High School by 221 Stu-dents.87

INTRODUCTION

The Oklahoma Agricultural and Mechanical College catalogue states that, before admission to the junior year, all students in the School of Agriculture are required to pass comprehensive tests in English and mathematics. These tests, commonly called junior standing examinations, are required of all students regardless of the number of hours of English or mathematics the student may have previously completed in college. Students who fail the tests have the privilege of taking them over at a later date; however, if the student fails the second time, it is usually required thet he enroll in a basic course in the subject he failed, before being permitted to take the junior standing examinations again.

The results of these tests have brought dismay and embarrassment to many students and faculty members alike. Each semester a relatively high percent of the students fail the examinations; this is especially true of the mathematics examination. Of those who took the examination during the fall of 1951, seventeen percent failed in English, and forty-four percent failed in mathematics. These figures should indicate why teachers are so concerned over the matter.

In addition to mathematics and English, students also
seem to have difficulty with science courses, and low grades are common.

Factors responsible for the low grades made by students are many, and it is often difficult to determine the mejor ones. This study has been made in an attempt to determine some of the factors which mey have been responsible for the high percent of failures in the junior standing English and mathematics examination.

This problem was limited to a study of the records of 196 stucents who took the mathematics examination and one hundred students who took the English examination during the fall semester of 1951.

purposes of the Study

The purposes of this study are:
(1) To recognize factors which may be responsible for the failure of students to pass the junior standing English and mathematics examination at Oklahoma Agricultural and Mechenical College.
(2) To determine the relationship, if any, between the units of mathematics studied in high school and the grade made on the junior standing mathematics examination.
(3) To determine the relationship, if any, between the units of English studied in high school and the grade made on the junior standing English examination.
(4) To determine the relationship, if any, between certain college subjects taken and the grade made on the junior standing examinations.
(5) To determine the reletionship, if any, between the grades made on the college entrance examinations and the grades made on the funior strnding English and mathematics exeminetions.
(6) To determine the relationship, if any, between the number of units of science taken in high school ond the gredes made in science in college.

REVIEN OF LITERATURE

In attempting to predict the success of students in college, several studies have been made of various factors which may have influenced their grades. Scott and Gil1 of the University of Alabama, considered only two factors, the number of years intervening between the last year of high school algebra and entrance into college and the number of units of high school mathematics; of these only the number of units of high school mathematics was significant in predicting probable success in college mathematics. Payne ${ }^{2}$ conducted a study to determine whet effect the length of time intervening between the completion of high school algebra and the taking up of the study of college algebra had upon grades made in college algebra. He found that more than twice as many students make higher grades in college algebra after the lapse of one year than they do sfter the lapse of two years.

Douglass and Michaelson ${ }^{3}$ found that the average mark

1 W. M. Scott and J. P. Gill, "A Prediction of Pupil Success in College Algebra," The Mathematics Teacher, XXXIV (December 1941) pp. 357-359.

Z Seborn Julius Payne, "A Study of Some Factors That Tend To Affect Freshmen College Algebra Grades," M.S. Thesis, Oklahoma Agricultural and Mechanical College Library, 1933.

3 H. R. Douglass and J. H. Michaelson, "The Relation of High School Mathematics to College Marks and of Other Factors To College Marks in Mathematics," School Review, XLIV (1936) pp. 615-619.
in high school mathematics had a definite correlation with the average college mark in every field. They also concluded from their studies that the success of students in college mathematics cannot be predicted with any high degree of accuracy from the number of units of mathematics taken in high school, rank on the psychological examination of the Amexicen Council on Education or a combination of these factors.

Daniel ${ }^{4}$ compared the individual entrance scores on the arithmetic unit of the Oklahoma Agricultural and Mechanical College Mathematics Placement Test with the grades made in mathematics and chemistry in college. The study included 434 students who took the test in September 1937. She concluded that persons who score high in the arithmetic and entrance algebra tests tend to make higher grades in chemistry and mathematics, particularly in the more advanced courses in mathematics.

Shirley ${ }^{5}$ conducted an experiment at Oklahoma Agricultural and Mechanical College to determine the value of grades made on placement tests as a means of determining the mathematics course in which beginning students should enroll. He concluded that in predicting grades for students

[^0]who enrolled in business mathematics and elementary algebra none of the placement tests given were of any value. However, in predicting grades made by students in the higher algebra courses the tests were of some value.

In a study at the University of Oregon, C. F. Kossack ${ }^{6}$ states that of the different factors he considered for determining a student's probable success in a first course in college mathematics, the two most importent ones were the student's grade on a placement or training test and his high school mathematies score. He found that the score on a psychological test, the high school scholastic rank, and the number of years since graduation were not significant.

Heid ${ }^{7}$ reports that placing students in mathematics classes on the basis of the number of units of mathematics completed in high school is not satisfactory. For the year of his study, failures were reduced from twenty-one percent to six percent by sectioning students according to their score on the placement test.

Freeman ${ }^{8}$ conducted a study to determine the arithmetical abilities of eighth grade pupils and teachers in train-

[^1]ing. In this study she found that courses in high school and college mathematics did not seem to affect the college student's ability in elementary arithmetic.

Emme ${ }^{9}$ states that Russell found that success depends more on certain factors--motivation; physical and mental health; personal and social relationships of the student with perents, fellow students, and faculty; on the degree which home and school have prepared students for independent living and self-direction--then on marks and tests.

It may be concluded that the value of certain factors in predicting college success is often disputed by different investigators. Contradictory findings were quoted in this study regarding the value of the number of units of mathemailes taken in high school and the use of placement tests in predicting college success. Also difference of opinion existed as to what effect the length of time intervening between completion of high school mathematics had upon the grades made in college mathematics. As stated before, factors affecting the grades made by students in college are meny, and these factors are often difficult to measure. This is especially true of the personal factors mentioned by Russell. It seems likely that the difficulty in measuring these personel factors may account for the fact that

[^2]often two investigetors repoxt dinferent results from the seme type of investigetion.

WHTHOD Of PRLCUOURE
The data used in this study mere celculated from the records on fille in the Registrar's office and the ofice of the Testing Dureau gt the Oklahome Agriculturel and Bechonicel College. Scholestic records of 196 students who took the mathematics examinetion mere examined, and from these records the number of unjts of high school methemetics, vocational agriculture, and science completed by each student mas obtained. Other scholustic deta obtained for each student consisted of the total hours of college work completed, total hours of technicel agriculture conpleted, avercge grede point made in technical agrionlture and seience in college, and total houm of mithematios completed in college. Students mere elso checked to see if they had teken deiry 123 and agricultural economies 23S. In the leboratory exercises of these two courses, students are required to work meny problems reloted to the detry industry end farm manegement. They were included in this study to determine of whet value they were in preparing students to pass the mathematics examination. Bcones made on psychological tests at the time the student first enrolled at Oxlehoma agriculturel and Wechenical College were obtined for 154 students. Scores for the other sixty-two were mavilable. These scores consisted of the grade made by the student on the section deeling with mathemetics or quantitative reasoning end the total
score which represents the average of the score made on the quentitative reasoning section and the score mede on the lenguage section. The quantitative reasoning score, the language score, and the total score will hereafter be knom as the G score, L score, and I score respectively.

The juntor stending test papers of all 196 students who took the mathemetics exmination mere obtained from the Dean of Agriculture. Problems were studied, and the kinds of errors made in arithmetic were recorded.

Conperisons mere made between the 109 students who passed the mathemetics exeminetion and the eighty-seven who feiled the exmmination on a basis of the percent of each group taking vocetional agriculture and mathemotics in high school, end the average number of mits of these subjects completed by esch group. Other comparisons made between the students who passed the methematics examination and those who feiled it were made on besis of the average hours of college work completed, average hours of technjecl agriculture completed, average grade point made in technicol agriculture, percent of students who hed completed deiry 183 and agriculturel economics 263 , and the $\%$ and I scores mede on the psychological tests. Problems missed and the kinds of errors mede in arithmetic wexe the besis for another comperison between the group thet passed and the group that fajled. Comperisons were also made betmeen students conpleting all college mathematies et Oklahome Agriculturel and Bechenical College and students completing all college methemotics et other institutions, and between students taking the mathe-
matics examination who had not completed any mathematics in college and students taking the methenetics examination who had credit in one or more hours of methematics in college.

Scholastic records of the fifty-four students who failed the English examination and forty-six of the 256 students who pessed it were exemined. The number of units of English, vocationel agriculture, and science completed in high school were obtained for each student. The data obtained for each student from the coliege records consisted of the total number of hours of college mork coinpleted, totel hours of technicel agriculture completed, average grade point mede in technicel agriculture and college science, total hours of Buglish completed in college, and the L and T scores made on the psychologicel tests. The in and scores were outained ror sixty-nine students; scores for the other thirty-one were unavaileble.

The check list of forty-six students who pessed the Whglish examinetion was chosen at rendom from the totel of 256 students who passed the linglish exemination.

Comparisons were made between the group that passed the English examination and the group that foiled in number of units of English and vocational agriculture completed in high school, everage number of hours completed in college, average number of hours of technicel agriculture completed, Everage grede point made in technical esriculture, average number of hours of English completed in college, and average L and T seores made on the psychologicel tests.

The grodes made in science in college by 221 students were comperea on the besis of the number of units of high school science completed.

In this study the term completed meens the high schocl unjtis and college hours the student had on record with a grade of D or higher at the time of the examination.

The following instructions and problems were given on the junior stending mathematies exemination, November I, 1951.

IRSTRUCTIUNS:

Show the major steps in solving eech problem using the space provided. Trial calculations may be mede on another sheet. Please sjrcle the answex for each problem. You mill have $\&$ hours to complete the examination. Grades wil be posted on the Agriculural bulletin boerd in about one meek. I. A certain hybid corn outyielded an open pollinated variety by 25%. How much more money per acre did a farmer make by using the hybrid corn in a jear when the hybrid yielded 50 buchels per ecre and corn sold for $\$ 2.00$ per bushel
2. In nitrogen, avallable phosphoric cacid, and potash in fertilizers are considered worth, respectively, l4, 7\%, and 6q per pound, whet should be the totel cost of a 4-8-4 Pertilizer applied to 60 acres of com land et the rate of 250 10. per acre?
 How many bushels of wheat does it contain if it is three-
fourths full? (I bu. of wheat occupies ly cu. it.)
4. If a board foot of lumber is I ft. long, 1 ft. wide and 1 inch thick, how meny boerd eect are in a timber 50 ft . Iong and 18 inches square?
5. 1,000 lbs . of milk when seperated gave 105 pounds of cream testing 55% butteriat and 895 1bs. of skim milk testing 0.05% butterfat. What percent butterfet did the milk contain?
6. A butcher buys a 1200 lb . steer at 820.00 per cwt. The steer shrenk 5\% during his trip to the slatghter house and dressed out 60\%. For hov much per pound will he have to sell the dressed carcess to break even? Lebor costs are not considexed.
7. Three cows prodveed a totel of 30,000 pounds of milk in a year. Cow A produced 450 Ibs. butterfat. Cows E and C together produced 20,000 los. of milk. If milk from the three cows everaged 5\% butterfat, what Tes the averege percent of bows B and C ?
8. A loed of zo feeder calves meighed 15,500 pounds when loaded in Texas and cost 88.00 per omt. During shipment to Stillwater these calves shrank 3%, and the freight cost was $\$ 45.00$, whet would be the $f i n a l$ cost per owt. When unloaded in Stillweter?
9. Row meny pounds of cottonseed med enelyzing 41.9% crude protein should be added to 100 Ibs. of feed analyzing 16.3% crude protein to produce a feed contoining 23% crude proteins
10. A man pays Be00 per acre for 160 ecres of lend. His taxes ere z200 pex year end his repair cocts for Eences, builainge, ctc. are 50.00 per yeer. For hom much will he heve to rent his farm per year to meke 5 , on his onde snad juvestment?

 thet the fectors responsible for the inebility of a student to pass the methemetics examination are many, it is often assumed thate mejor one is the student's frilure to teke sufficient voits of methemetics in high school. In order to detemine the validity of the above assumption, the 196 students mo took the mathemetics examination mere divided into two groups for study and comperison. The two groups consisted of the 109 students mo pessed the mathemeties exemination and the esghty-seven who feiled it. From the high school transcripts, total units of methemetics and vocational agriculture completed by ecch group were found, and averages computed from the totals. Table I presents a comperison of the number of units of methemeties and vocetionsi agrieulture completed by each group in high school.
 that there is very littie reletionship between the undts of methematics completed in high school and a student's ability to pess the junjor standing methematies examination. It is intarenting to note that the average number of units of methemetics completed in high school by each group is practicelly the same. The percent of each group completing $\frac{7}{*}$ unit or more of algebre and geometry is slightly higher in the group that failed the examination then in the group

CaELE I
 WTH THE REORDS OF 87 HO FALLD II \&S TO MUMLR OF UMIS OR CERTATN HIGHi SChuOL SUBJECLS COMPLLTED

Hiph School Subject Studied	Students Who Passed The Examinetion		Students Who Failed The Bxeminetion	
	Percent Completing 总 Unit or More	Average Number of Units	: Percent Completing : Unjt or hlore	Average Number of Units
			:	:
Vocationel			:	:
Aspiculture	44.95	3.08	10.23	2.31
Algebra	94.49	1.29	97.70	1.26
Geometry	71.55	1.02	: 79.31	1.03
Composite			:	:
Wathemetics	26.60	1.00	$: 88.73$: 1.00
Other			,	:
Methemetics	26.60	. 70	22.98	. 67
			:	:
			:	:
			$: \longrightarrow$	

that passed the examination. The greatest difference to be found between the two groups is in the average number of units of vocational agriculture completed, and it is doubtful if this difference is great enough to be significant.

From the college records the average number of hours completed in college, average number of hours of technical agriculture completed, and the average grade point made in technical agriculture were found for the group that failed the mathematics test and the group that passed it. Table II presents a comparison of the two groups on this basis. INFLUENCE OF COLLEGE HOURS COMPLETED--Table II shows that the group that passed the examination averaged 5.72 more college hours, and 2.64 more hours of technical agriculture than the group that failed the examination. Within the group that failed the examination, total hours of college work completed ranged from a low of one student with only twenty-six hours to a high of one student with 1.50 hours. Within the group that passed the examination, the range was from one student with thirty-one college hours completed to one student with 194 hours. The range in hours of technicel agriculture completed was from zero to fiftyseven in the group that failed and from zero to sixty-eight in the group that passed the examination. While the group that passed the examination averaged only .30 of a grade point higher in technical agriculture than the group that failed, this difference may have been greater if all opportunity for cheating during the examination had been elimi-

TABLE II

nated. Differences between the group that failed and the group that passed in average hours of college work completed and average hours of technical agriculture completed do not seem to be great enough to be of any importance.

What effect does the completion of certain college subjects prior to the examination have upon a student's ability to pass the mathematics examinations Table III shows the results of a comparison made between the group that passed and the group that failed on the basis of the percent of each group that had completed one or more hours of mathematics in college, agricultural economics 233 , and dairy 123. INFLUENCE OF OTHIR COLLEGE SUBJECTS--As shown in Table III, a slightly higher percent of the students who passed the examination had completed one or more hours of college algebra, trigonometry, and other mathematics than the group which failed. However, the group which failed showed a higher average in number of college hours of algebra, trigonometry, and other mathematics completed than the group which passed. This seems to indicate that the college mathematics completed by a student had very little influence upon his ability to pass the junior stending examination. Table III shows that the percent of students completing agricultural economics 233 and dairy 123 was considerably higher for the group that pessed then for the group that failed. This difference amounted to over seventeen percent for agricultural economics 233 and over thirteen percent for dairy 123. This indicates that the problems worked in

TABLE III

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

the Laboratory exercises of these two subjects are of aid to the student in passing the mathemeties eromination.

Tebles IV and V show the distribution of the geores of sixty-two students who gailed the methematics examination and seventy-two students who passed. Theee percentile soores Indicate the renk of the students in comperison with other college freshmen throughout the Untted states.

TABLE IV
DISNRIBUTION OF Q ECORES HADE ON PSYCHOLOGICAL TESTS BY 62 STUDENTG WO FATDD THE MATHWATYCS ENAMNATLON

Table V

n	72
Medien	41.75
Mean	45.00

${ }^{4} \mathrm{G}$ Seones-muantitative Reesoning Bcores
AHamsLS UF GOORS--In Teble IV it nay be noted that seven of the sixty-two students who falled the examination made scores above the seventieth percentile while in Table V, twelve of the seventy-two who pessed the examination mode scores below the eleventh percentile. Approximetely thirty percent of the group that pessed ana the group that failed made scores below the twenty-first percentile. Btudents who passed the examinetion heve a mean score thet is 7.02 higher then the students who failed. The difference in the meajon Is 11.25 in favor of the students who pessed. It seems thet
there is not es much difference between the quantitative reasoning ability of the two groups as may heve been expected.

Tables VI and VII shon the distribution of the T seores of sixty-two students who failed the methemeties examination and seventy-two students who pessed. These percentile scores represent the average of the scores made on the quentitative reasoning section end the language section of the psychological tests.

TAELE VI

TH Bores--Totsl score is the everage or the scores mede on the guantjtative reasoning and languege sections of the placement test.

```
    TaBLE VII
    DTSTRIBUTIOR UR I SCORE* MDE ON HQYUOLOCTUNL THSTS BY 7E
```


聏 72
median
meen

35.06
"r scones-Total score is the average of the scores made on the quantitetive reasoning and laguage sections of the placement test.
 two students who failed the examination, five were above the seventieth percentile while thirty-eight were below the thinty-first percentile. As shom in Teble VII, eight of the seventy-two etwents who pessed the examinetion were above the seventieth percentile and forty were below the thirtyfirst percentile. Students who passed the examination have a mean score that is 5.43 higher than for the students who failed. The difierence in the median is 3.34 in favor of the
students who pessed. It seems thet there is very littie reletionship between the total scores made on the oklahoma Agriculturel and Rechanical College plecement test and the ability to pass the junior standing mathemetics examination.
Table VIII presents the results of a comparison of the average grades made on the examination by students who completed all college mathematics at oklahoma nericultural and Wechenical College and those students who completed all college mathematica at other institutions.

ABLE VIII

 indicated in Pable VIIT, studemts mo took their college mathematics et other institutions demonstireted thet they were as cepable of passing the junion standing mathematics exenination es were the students who took all of thein eollege methemetics et Mabaone Agriculturel and Hechanical College. The aroup thet took all of thelr college mathemetics et other institutions made scores that averaged 7.44 higher than the average score made by the group thet took all of their college mathematics at Orlahoma ignoulturel and Echanieci College.

Table Ir shows a comperigon of the gredes made on the examinetion by sturonts monote creatt in any college mothemetios. Students mo completed all of their college mork at OkZhome kgiculturel and hecnanioel College axe compared with stwdente who completed pert of their college work et other institutions.

TABLE IK

INPLUEXCL OP TMSTTUTION WEERE OTACR COLLEGE WORK WAS GOPPLUED-Table IK shows thet students who transfercd some college hours from other institutions averaged 5.31 points nigher on the methemetics examination then did students who completed ell college monk st Onghoma Arioultural end Meohenical College. This seens to indicete thet trensfer students ere ss capoble of possing the junior standing exemInation es are students who heve completed all of thejx colLege mork et Oxlahone Aericultural and Hechanical College.

In Table 2 all stucents mithout credit in any college methemethes are compered to ell students with eredit in college methematios on the begts of the sverage grade mede on the examinetion.

TABLE 8

Students ith One or More Howrs of _ College Mathemetics		:	Students Without Oredit In\qquad College isthematjes	
Totel Momber	84	:	Total Mumber	112
Percent of Totel	42.66	:	Percent of Totel	57.14
Average Grade Made		:	average Grade inde	
on mxaminetion	70.86	:	On Examinetion	67.15
		:		

INELUENCE OR COLLBAL MATHMALES-Table X is merely another wey of showing that the number of hours of methematies completed in college prior to the examinetion has very Iittle influence upon the grade mede by the student on the funior standing examination. Students with credit in college methenetics averesed 3.71 points higher on the test than students without creait in any methemetics in college. College methemetics seem to be of little benefit in preparing students for the mathematics examination. Ihis may indicate that the junjor standing exemination is a specialized test composed of problems with which the students are unfamilier.

Table XI shows the distribution of scores mede by all students on the junior standing mathemetics examination, and is self explanetory. Rables XII and XIII show the distribution of seores made on the examination by students who completed all college methematics et Oklahoms Agrieulturel end Wechanical College and students who completed all college nathemetios at other institutions.

TAKLE XI

Tabus x II

DISTRIBUTION OF THE SCORLS MADE BY 27 SIUDENR ON THE

TABLE KIII

DISTRDEUTON OF GHE SGORES MADE EY 56 ETUDETS ON THE MATHEHATICS RHMIMATION THO TOOK ALL OF THAE COLEEGE WARHMATIOS

Scores	:	Frequency
	:	
96-100	:	5
91-95	:	1
86-90	:	10
81-85	:	1
76-80	:	14
71-75	:	1
66-70	:	6
51-65	:	1
56-60	:	6
51-55	:	1
46-50	;	3
41-45	:	3
36-40	:	3
31-35	:	0
26-30	:	1
	:	
	:	
	:	

N
56
iledien 76.57
Mean 71.40

DIGTRIBUION of scores--It will be noted that the meen scoves given in Tables XII and XIII are slightly lower thon the averages given for these two groups in Table VIII. Averages used in Teble VIII were computed from ungrouped scores which would account for this difference. Tables XII and XIII show thet the students who completed all college mathematics at other institutions have a mean score that is 7.47 higher and a medien that is 13.57 higher than students who completed all college mathemetics at Oxlahoma Agricuitural and Hechenical College.

Tables XIV and XV show the distribution of scores made on the mathemetics examination by students without credit in any college mathematics. Table XIV shows the scores of students who completed ell college work at Oklahoma Agricultural and Mechenical College, and Table XV shoms the scores made by students who completed port of their college work at other institutions.

TABLE XIV

DISTRIMUTIUN OF THE BCORES WADE EY 65 STUDENTS ON THE WATMEMARICS LXAMMAMION WHO DID ALL OR THAR CULLEGE WORK AT OKLA. A * M COLLBGE, EUT DID NOT HaVE CREDIL IN ANY COLLEE DATHEATLCS

THBLB MV

DISTRDEULUN OF THE BCURES HEDE BY 47 STUDMNS ON TRE MATHE-

 COLUEGE MTHEANHCS

Scores	:	Ereauency
	:	
96-100	:	5
91-95	:	0
86-90	:	9
81-85	:	0
$76-80$:	5
71-75	:	1
66-70	:	5
61-65	:	1
56-60	:	12
51-55	:	2
$46-50$:	2
41×45	:	1
36-40	:	2
$21=85$	\%	0
26-30	4	1
21-25	:	0
16-20	:	1
	¢	
	i	
W		
Preaten		
Pean		

AHaLYSTS OF TABLES XIV AND KV-The meen scores shown in Tables XIV and XV are slightly lower then the averages shom in Table IX. Averages for Table IX were computed from ungrouped date which accounts for this difference. Students Who completed sone college work ot other institutions have a meen score thet is 5.37 higher then students who completed all college work at Oklehome Agricultural and Mechenical College; however, the median for the two groups is practically the same. Tables XIV and XV seem to indicete thet there u not as much difference betneen the two groups as is indicated from the avereges computed from the ungrouped data.

ANALYSIS O PROBLEAG AMD WRRORS

DRFINIMION OF IERMS--In the following enelysis of the problems given on the junior standing methemetics examination, the term exror in method is used frequently. The term error in method is used to denote an error in thinking-an error in the wey the student attempted to solve the problem. Errors made in the use of the fundamentel processes ere those errors thet students made in multiplicetion, division, addition, and subtraction.

The junior standing mathemetics examination given November 1, 1951, consisted of ten problems. Each problem Wes given a value of ten points, and a student was required to moke a grede of seventy or higher in order to pess the examination.

PROCOURE-OR the 196 students who took the exeminetion, eighty-seven students made below seventy on the test. Papers of all students mere carefully checked and the errors made mere recorded. Errors shown in the teblem following each problem will be only the errors detected by the grader in greding the pepers. Other errors found by the writer will be given in the cinalysis of each problem.

COAPARISON OF PROBLUME-Table XVI presents a comparison of the problems based on the ability of the 196 students to solve them correctly.

THBLE XVI

As indiceted in rable XVI, problens nine, one, two, eight, five, and ten were the most difficult to solve in that order. Problems six, four, three, sind seven were the easiest to solve in that order. Thw two most difecult problems to solve were problems nine and one. Only thirtyfive percent of the students morked problem aine correctly, and only forty-four percent morked problem one correctly. In contrast over ainety-seven percent of the students worked problem sit correctly.

Table XVI presents another comparison of the problems besed upon the ability of the students to solve them. In this table, students who feiled the examination and students who passed are compered as to ability to solve each problem correctly.

Table XVII

Table XVII shows that the five most difficult problems for the group that passed are also the five most difficult problems for the group that failed; however, the most difficult problem for the group that passed is not the most difficult problem for the group thet failed the examination. As indicated in lable XVII, problems nine, two, one, eight, and five were the most difficult to solve, in thet order, for the group that passed the examination; problems one, nine, eight, five, and two were the most difficult to solve, in that order, for the grovp thet failed the examination.

In comparison with the students who passed the examinetion, it seens that an unduly high percent of the students who failed, missed problems one, three, four, five, seven, eight, and ten. This may indicate a definite weakness of this group in working certein kinds of problems. Also it will be noted that a rather high percent of the students who pessed the examination missed problems nine and two. This may indicate that problems nine and two are of a specialized nature.

GRRORS MDE IN WORING RROBLAMS--Table XVIII shows the errors made by students in attempting to solve each problem.

ERRORS IWOICATTNG WHY PRORLUS WORR SOORID AS TMCORRET

\therefore

Teble XVIII indjeates that in nine of the ten problems more students missed the problem by method then all other errors combined. In problem five mone students missed the problem by an ermor in plscing the decimsl then by method. It is interesting to note that only a reletively smell number of students missed problems by errors other then an exror in method used.

AMALISIS OF PROLRES AND ERRORS--Problem 1. A certain hyorid com outyielded en open pollineted variety by 25%. How much more money per acre did a famer make by using the hybrid corn in a year when the hybrid yielded 50 bushels per acre and com sold for $\$ 2.00$ per bushel?

Table XTX presents a comparison of the errors made by students who pessed the examinetion with the errors mede by students who failed the examination in solving problem one.

HBLEXXX
 HADE BY TEUSE HO FALLAD IS IN GOLVING RROBLER ONE

ANALYSTS OF PROLLW OTR--As indicated in Table XX, problem one wes a difficult problem for the stwdents who failed the exemination. Eighty-three of the eighty-seven students who failed the examination missed problem one. Only tmenty-seven of the 109 students who pessed the examination missed this problem. Of the 110 students who missed this problem, 102 of them made the sene mistake. The comon error was mede by taking twenty-five pereent of fifty bushels which gave twelve and five tenths bushels, and then multiplying this answer times two dollars to get an answer of twenty-five dollars.

Displte the instructions given at the top of pege one of the test, twelve students, of the 109 who passed, failed to show the mejor steps in solving this problem. all twelve of these pepers were counted as correct. Two students of the 109 who pessed the exemination showed the correct gnswer, but all work shown was incorrect. These two papers were also counted as conrect by the greder. The reilure to show the mejor steps involved may indicate cheeting. This is especially likely in the two examoles where all of the work wes incorrect, yet the correct answer wes shown.

Evidently many students did not learn how to salve percentege problems, similer to problem one, in high school, or If they did leam, they have not been required to solve problems of this nature since, and have forgotten the necessary steps involved.

Problem e--If nitrogen, availebie phosphoric acid, and
potesh in fextilizens are considered worth, respectively, 14. 7 , 7 , and 6 per pound, what shoula be the totel cost of a $4-8-4$ fertilizer applied to 60 acres of com lend ot the rete of 250 ID. per acref

Table x shows a comparison of the expors made by students who pessed the examintion with the errors made by those tho folled it in eolving problera two.

MALEAX

ANAVSIG OF PROBLGH DWO-TEDIE XX shoms that out of the totel of etghty-seven students who missed this problem, seventymine missed the problem by an erron in method. Sixtyseven of the seventy-nine students made the same exror. This error was made becense the stadent did not understend the meaning of the numerals represcnting the pormule of the fertilizer used. The student ascumed thet the formule $4-8-4$ indiceted that unentymive peroont of the rentiliaer was nitrogen, fifty percent $P_{2} O_{5}$, and twonty-five peroent K_{2}. They evidently did not know thet the fertilizex conteined any fillex.

Very few students beve had any experience in distributing fertiliect, end have hed little oceasion for solving problems of this neture. Leck of expertemee in solving fertilizer problems was not limited to sophomores end funtors as is evidenced by the fact that trenty-nine of the eightyseven students who missed this problem clessixjed themselves as sentors.

Answers given for problen two by the students who missed it ranged Prom 2 low of tmelve dollexs and seventyfive cents to one student's high of 220,520 . The most common enswer given was 1275 . These answers indicate that the student did not heve any conception of the cost of fertiLizing crops, or they did not check their enswers to detexmine how reasonable the enswers were.

From the evidence given, it seems thet problem two is rether spectelized.

As shown in Table $X X$, only ejght students missed probIem two by exrors other then an error in method. One student failed to shon the mator steps involved in solving this prob1em, end another student geve the right answer although all work chom wes incorrect, These two papers were combed as correct by the greder. Sixtcen students who missed the problen by an error in method also mode other errors. Thelve of these students made mistekes in the use of one or more of the fundementel processes, and four mece errors in the plecing on the dectmal.

Problem Three-A wheat bin is 8 ft. Iong, 6 ft. Wide, and 4 f.t. deep. How many bushels of wheat does it contain If it is three-fourths full? (1 bu. of wheat occupies la cu. It.)

Table Xxy presents a comparison of the errors made by students who pasced the examinetion fith the erroxs mede by those who fafled it in solving problem three.

CABLE AXI

NMLASTE OF RROBLD ThPEE-AS indicated in Table XXI, twenty-two of the thirty-one students who missed this problem missed it by an error in method. Twenty-one of these mere students who foiled the excmintion. Ten of the students multiplied one and one-helf cubic feet times the volume in cubie feet found th the bin instead of divioing this figure by one and one-half cubie reet. Five students failed to take three-fourths of the volume of the bin. Three students evidently did not kov how to find the volume of the bin in cuble foet, One student morked the problem correctiy, then scratched through his worls and circled the wrong answer. As this stodent did not show how he arrived et this enswer, it may be thet he borrowed it from a neighbor.

Problem roux-Tf e board foot of lumben is 1 ft. long, Ift. wide and I inoh thick, hon many board feet are in a timber 30 xt. long and 18 inches squere?

Trbie $X X I T$ presents a comparison of the exrors made by students who pessed the examinetion with the errors made by the students wo rajled the examinetion in solving problem four.

TABLE XXIT

AMALISTS OF PROBLW FOUR-AE indicated in Toble XXI, thirty students missed problem four. Tventy-four of these students missed the problem by an error an method. The ensmers of thirty board feet given by two students are examples of the fnebility of many students to rationalize their answers. In Problem four, it may be seen that each runing foot conteins one and one-helf board feet of lumber; therefore, in order to solve the problem, the student menely needed to multiply $30 \times 1.5 \times 18$ to get the conrect answer. Wight students multiplied $30 \mathrm{X} 1.5 \times 1.5$ to get an ansmer of 67.5 board feet. Five students multiplied 30 X 1.5 to get en answer of 45 bowrd feet.

Problem Five-- 1,000 1bs. of milk when sepereted geve 105 pounds of creem testing 35% butterfet and 895 Ibs. skim milk testing 0.05\% butterfat. Whet percent butterfet did the milk contrin?

Table $X X I L I$ presents a comparison of the errors mede by students who passed the examination with errors made by the students who feiled the examination in solving problem five.

TABLE XXITI

 the major error made in solving problem five wes made in the placing of the decimal. In this problem a higher percent of the students who pessed the mathenatics examination mede emors in the plecing of the aecimel than did the students who falled the mathematics examinetion. In multiplying $.05 \% \times 895$, many students multiplied $.05 \times 895$ instead of .0005.

Problem five seems to be a rather specialized problem, and it is doubtful if meny students heve hed any experience in solving problems of this nature. This problen seems to ewphesize the dificoulty many students heve with percent problems in generel.

Problem Bix-A butcher buys a 1800 Mb . steer at ge 0.00 per cut. The steer shrank 5% during his trip to the shevghter house and dressed ont 60\%. For how much per pown mill he have to sell the aressed carcass to break even? Labor costs ere not considered.

Teble XXIV presents a conperison of the errors mede by students who passed the examination with exrors mede by the students who feiled the exeminction in solving problem six.

MBLA XXIV

Students tho Pessea The dxemintion : Studente Mo Feiled The Treminetion						
	:		:	,		
Method	: 1	200	: Metrioa	4	4	100
Fundemental	:		: F undenental	:	-	
Processes	:		: Processes	:	:	
Mattiplication			: Waltiplication:		;	
Subtraction	:		- Subtraction	:	:	
Adaition	:		- Adation	-	:	
Division	;		- Division	:	:	
Placing Decimal	:		: Mecing Decimal:		!	
Other Errors	;		- ther Eroms			
	: \bar{I}	$\overline{100}$			\square	
1otels	: 1		$: \quad$ Totals	$: 4$	4	100
	:		$: \longrightarrow$			

AMALYSTS Of PROELH STK-Teble XXIV indicates thet only five students missed problem six, and all of these missed by en error in method. Ine other students calevleted this probIem incorrectly, but their answers were accepted as correct by the greder. Five students did not show the steps involved in solving this problem but the grader accepted their onswers as correct.

Problem Seven--Three coms produced a total of 30,000 pounds of milk in e year. Con A produced 450 Ibs. butterfat. Cows B and C together produced $20,000 \mathrm{lbs}$. of milk. If milk from the three coms everaged 5% butterfat, whet wes the Qverage percent of Cows B and C ?

Table XXV presents a comperison of the errors mede by students who passea the examination with the errors made by those who failed the examination in solving problem seven.
TGELE XXV

 thirty-five students missed problem seven. Twenty of the stum dents who failed the exmantion missed the problem by an error in method, and seven missed the problem by an error in one on more of the fundemental processes. Only five of the students who passed the examination missed this problem. Weny different answers were given for this problem. hnswers renged from one student's low of . 25% to one student's high of $.55 \%$. Four students ald not show the major steps imvolved in solving the problem, but their answers were accepted as correct. The work shown by one student was incorrect, but the enswer wes correct, and the student received credit for morking the problem correctly. This problem again indiceted thet meny students have difficulty in solving percent problens.

Problem Eight--A load of 30 feeder calves weighed 15,500 pounds when loaded in Texas and cost 80.00 per cet. Duxing shipment to Stillwater these celves shrenk 3%, and the frefght cost wes 45.00 , whet would be the rincl cost per ewt. when unloeded in Stillweter?

Table XXVI presents a comparison of the erroms made by students who passed the exeminetion with the exrors mede by those who failed the examinction in solving problem eight.

FABLI XNM

ANALYETS OF REOEDA EIGHP-Teble XXVI indicetes thet a total of eighty-eight students failed to compute problem eight correctly. Fifty-four of the students who fgiled the examination missed this problem by an error in method as compared to thirteen of the students who pessed the examination. Nine of the students who pessed the examination. missed the problem by an exror in the use of one or more of the fundamentel processes as compared to eight of the students who failed.

Again it is notea thet meny students Iail to rationaljze their answers. Despite the fact that the problem calls for the cost per cut., meny students gave answers of over \%1000, and one student gave an answer of $\% 2,322.20$. One student's answer of ${ }_{6} 6.11$ is considerable lower than the 8.00 per hundred pajd for the calves, yet it is stated in the problem that the calves shrank 3% and the freight cost mas $\$ 45.00$.

Twenty students edded the 3 \% shrink. ge to the original cost, then took 3% shrinkege from the weight of the calves which ectually mede a shrinkege of 6\%. Tvelve students divided the weight of the calves by the total cost fnstead of dividing the cost by the weight. Nine students failed to take into consideration the 3% shrinkage, and three students failed to add the freight rates.

Answers seem to indicate that mony students were careless in checking the entire problem, and.especadly in checking their answers to determine if the answers were
reesoneble for this problem.
Problem Nine-whow many pounds of cottonseed meal
analyzing 41.9 percent crude protein shoula be edded to 100
Ibs. of feed cnalyzing 16.3 percent crude protein to produce a feed contalning 20% erude proteins

Teble RXVII presents a comperison of the empors made by students tho pessed the examjnetion with the errore mede by those who falled the examination in solving problem nine.

RGELE XADI

 problem nine was the most aifficult problem, and wes missed by a total of 187 students. Of the students who failed the examination, sixty-six missed this problem by an exror in method as compared to fifty of the students mho passed the examinetion.

Of the total students who missed this problem, thirtyeight subtrected 16.3% from 23% then divided this answer by .419. Fighteen students attempted to solve the problem by the square method. In most ceses the student set up the square correctly, but did not reelize the true neaning of the figures after he subtracted. Eight students subtracted 16.3% from 23% then mutiplied the ansmer by 419 . Ten students made no sttempt to solve this problem. Three students circled the correct answer, but all the work shown by these students wes wrong.

This seems to be enother specialized problem thet meny students heve had little experience in solving. It is true that many students heve hed problems of this type in certain college courses, however, without further practice, it is dificult to remember how to solve a problem of this nature.

Of the 127 students who failed to solve this problem, thirty-nine ciassified themselves as seniors.

Problem Ten-A man pays $\$ 200$ per acre for 160 ecres of land. His taxes ere $\beta 00$ per year and his repeir costs for fences, buildings, etc., are $\$ 50.00$ per year. For how mach
will he hove to romt his from per year to meke 6% on his ontghel invertments

Roble xunt presento comparinon on erxors made by studente who pessed the exeminetion thth the empors mede by those who geiled the exametion in solving problen ten.

HBBL XXVIII
 Made by miose mir Falled in In golvimg broblem TEM

Students tho Possed The Praminstion :					
Type of Erxor	: Mumber of gtudents : Comptting Problem : Incorrectly	Percent: Type of Error		: Inmber of Students: Percent Computiag Troblem : : Incorrectiy:	
	:		,		
We thod	: 18	100	: Lethod	: 39	95.12
Fundamental	:		- ${ }^{\text {undamentel }}$:	
Processes	:		: Procesces	:	
Wultiplicetion:	:		- Wutiplicetion:		
Subtrection	:		: Subtrection :		
Addition	:		: Addition	:	
Division			: Division	1	2.44
Plecing Decimel	:		: Rlecing Decimal	: 1	2.44
Other Proros	:		: Other frrors		
Totals :	: $\overline{18}$	100	Totals	$\overline{41}$	100.00
	: 18		Nouals	41	
	:		$: \quad$:		

 Aiftymine students missed problem ten. Only two students nissed this problem by errors other then an erpor in method. Thirty-seven of the totel of fiffty-nine students who missed this problem added all expenses to the cost of the land, and then took five percent of this figure. Seventeen students took five percent of the cost of the lant, but did not sad the other expenses to this figure. One student hed the correct onswer, but all of his work wes wrong.

$$
\begin{aligned}
& \text { ANGDSES O DATA DONGRTME THE JUNOR }
\end{aligned}
$$

PURPOEE ATD MSTHURIUMS--The primery purpose of the junior standing mglish exeminetion is to determine if the studert is capable of expressing himself in writing in e clear, concise maner. Generally, minor exrors in punctuetion and ocessional errors in graman and spelling are ignored by the greder if the student cen erpress his ideas ciearly, students are permitted to write on topies releted to agriculture, and content of the theme is not as importent as the memer in which it is steted.

An instruction sheet conteining the following informetion mas given to each of the 310 students who took the junior stending English exeminetion October 25, 1951.

JUNIUR STAMOTMG EMGLISH BANLMATLON
SUBJECT: "Recent Advences In Azriculture"
INSTRUCTIUNS:
Put your name and nejor department on the front of the blue book.

OEJECT:

This test is to ascertain whether the student cen express his ideas clearly in miting.

TESE:

Write a short theme about 4 peges on a subject thet wil be ennownced. The use of a dictionary will be pormitted. (please bring one with you) It is an excellent idee for e friter to outline a theme betore sturting to write, espeaiclly if he hes trouble with English.

GRODITC:
The theme will be read by 4 steff members of the major
department. The themes will be classinied as satisfactory or unsatisfectory. In case tmo staff members mark setisfactory, and two merk unsatisfectory, afich individual will read the theme and pass judgment.

CAOIION:

The English and Ginemetics Testa mut be pessed before a student cen greduate. If a student fails either test twice, he must prescnt evidence thet he hes made fuxther study of the subject before he will be pemmitted to take the test a third time.

An examinetion of the test peners reveal thet the students were not limited to the tithe given in the instruction sheet. They were permitted to mrite on marming as A Way of Life" or "Conservation of Our Neturel Resources", ip they preferred.

Table XXIX shows the pereent of the students who rajled this exsminetion.

TABCE XXIX
BESULS OR THE JUALOR STRDDMG WWLISH EXAMMATION

Students Who pessed		Btudents Whe Eriled	
Totel Number	256	Total Mmber	54
Percent	82.58	Percent	17.42

How memis mere Grabub-ovidently in most departments, the themes were read by three steff members, and the members graded the themes either setisfectory or unsetisfectory. If as many as two of the graders considered the theme satisfactory, it was considered that the student had passed the examinetion. Pepers indiceting how the graders scored eech theme were available for six departments. These papers indicate
thet tho greden were wot dmaga in complete agrement es to whether e cherc photid be araed as sattsfactory on unsetiscactomy.

Teble XK chon mow the gredons on six departuente Grabed the themes of students in thejr bepeptment.

TABLE XXX

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AWAMSTS OF TABL MXX-manle MA shows thet out of a

 totel of 192 themes graced in the six departments, there mes some discgreement es to now fipty-three of these papers should be geaded.In order to compare the etudents wo passed the examination when the studente who failed the examination, gorty-six students were chosen at rendom from the students who pessed the examinetion. Toble XuI presents comparison of these students whth the stucents who deiled the examinetion in units of Engligh end vocationel agriculore completed in high school.

ThBLEXNXI

 GUBJECN 3 MRLDRD

MALYELS OF TGLA XXI-Table DXXI indicates that a mirgtly higher percent of the stodents who passed the exemingtion had completed tuat or more of Daglish in high school then hed the stweats wo felled the examination. The of the stwants who selled the examinetion vere special stradents without creat in eny high school work. This rect accounts for the difference between these two groups in percent of students who had completed that or more of kngLish. It mey be noted that there is very little alference between these two groups in average number of units of Inglish completed, sverage number of mits of vocational agriculture completed, and in the percent of ecch group who had completed $\frac{1}{3}$ or more units of vocational agriculture. It seems that the units of high school English and vocational agriculture completed by the student had Iittle influence upon his ability to pess the junion standing figlish exarnjnetion.

Table XXXII presents a comparison of forty-six students who pessed the exemination with the fifty-four students who Railed it theverage number of college hours completed, average hours of technical agriculture completed, and average grade point made in techical agricultare.

MABLE X XXII

Total Number	46	Total Number	54
Average Hours of		Average 5ours of	
College Completea	84.69	- Sollege Dompleted	76.00
Average College		: Average College	
Hours of Technicel		- hours of Technioal	
Agriculture Completed	29.91	Agriculture Com- pleted	24.79
Averege Grace Point In Pechnicel Agei-		nverage Grade polnt In Technicel kgri-	
culture	2.72	culture	2.42

 dents who pessed the exemingtion hed completed nore college hours and more hours of teohmoel egriculture than hed the group who fuiled. Students who pessed the examinttion avercged 8.69 hours mone of college woris completed and 5.12 hours more of technicel agriculture completed then did the students who falled. The diference in average grade point made in techacel agriculture is . 00 in a avor of the students who pessed the examination. Tt seems that the ajference between the tho groups in everage number of college hours completed, average nomber of hours of technicel agrioulture completed, and averege grade point made in technical agricuiture is not great enough to be significent.

Teble xXXIII presente e comparison of forty-six students who passed the excminetion with the filtty-four who failed in hours of English completed in college.

For the benefit of readers who are unfomiliar with the Fugltsh courses listed in Pable Xuall, the following description is given: English 103 is a basjo cowse for students who heve difficulty in miting; it is especielly recommended for students who melre low scores on the entracee tests. English 115 is freshmen composition. Students are treined in correct and efeetive witing of inglish through rhetoric, composition, comection of themes, and selected readings. Rnglish 203 is more edvenced course in Muglish composition. This courge is besed upon discussion of reguired reading and the mriting of pepers based on the reading.

TABLE AKMIII

ANALYEIS OF TAPLE XXXIII-TEble XXXIII shows thet over twenty percent more of the students who failed the exemination had completed English loz then had the students who pessed the examinetion; however, over twenty percent more of the students who passed the examination had completed English 203 than hed the students who failed. Students who took English 113 and 203 demonstrated thet they were more cepable of passing the examinetion than were students who took English 103 and 11z. Average hours of English completed in college are the same for both groups in all courses except courses listed as other English, and the percent of students taking other Znglish courses is not large enough to be significent. It will be noted that students who failed hed grade point averages in English composition below two point while the students who passed hed grede point everages slightly above this figure. This study does not show any relationship between the number of hours of inglish completed in college and the student's ability to pess the junion stending English examinetion.

Tables XXXIV and XexV show the distribution of the L scores of forty students who failed the examination and twenty-nine students who passed the examination. These percentile scores indicate the renk of the students in comparison with other college freshmen throughout the United States.

ThBLE KXCIV

 shows that ondy one of the foley students who fandec the examination mede an L bcone above the sixtieth percentile, and bwenty of the forty studente made scones belon the caeventh pereentile. The Low medion and mean soore shom that thes group is defnitely low in lenguege ability compared to other college reshmen.

Table XXV shows that gin of the twemty-nine students who pessed the exemination mede L scores above the sixtieth percentile and six made scores below the eleventh percentile. me modian and meen scores of this group is detinttely Wigher than those for the group who failed the exambation. The dinerence between the medjan and mean scores of the two groups is 15.75 and 18.50 respoctively.

Tables dxavI and XXVII show the distribution of the 1 scores of forty students who feiled the Eaghish examinetion, and twenty-nine students who passed the haglish examinetion.

RADLE XOEVI

Cable XXXVII

 Shows thet of the forty students who sathed the Whgligh examInction, only one stratont made a score above the sixtieth peramtile male gighteen shudnts mede T goones below the stuteenth pereatile. Table XuvII chows that of the taentynine students who pasaed the examinetion, six made scores ebove the sixticth pereadile wile only seven mede T scones below the sixteenth percentile. The medion end meen scones of the students who pessed ere considerabie higher then the scores of the studente who Selied. The dinerence Netpeen the medisn and mean scores of the two groups is 14.37 and 15.72 mespectively. These scores secm to indicate that the students tho pessed the Raglish exomination soore higher in reasoning and languege wbility then the stodents Who fatled the Thglish excmination.
 IHFLUENCE OF HIGE SOHOOL SOIEACE-A reason thet is often given for low grades mede by students in college science is thet many students do not take enough science in high school to give them the proper background. In order to determine the influence thet units of science completed in high school have upon the grades mede in science in college, the average units of science completed in high school and the averege grade point made in science in college were computed for 221 students whose records were checked for the English snd mathemetics exemination study.

Teble XXavill presents a comparison of the grades mode in science in college by students who had completed from one to four units of science in high school.

TABLE XXXVIII
AVERAGE GRADES RADE IM SCTMOE IN COLLEGE COLPRED ON A BABIS
 221 BIUDENTS

Number of gtudents	Units of High School Science	: Averege Grade Point : In College Science
		: ${ }^{\text {a }}$
7	0	$: \quad 2.49$
77	1	2.31
104	2	8.35
2	2	2.73
23	3	2.52
1	3 3 $\frac{1}{2}$	2.53
7	4	1.85

ANALYSTS OF TABLE RXVII--Table KRXVIII indicates thet units of science completed in high school heve very little influence upon the grades mede in science in college. Btudents who had completed one unit of science in high school and those tho had completed two made practicelly the same gredes in science in college. Students who hed completed three units of science in high school made slighty higher grades in college then those who hed completed one or two units. The difference does not appear great enough to be of any importence. Students without credit in any science in high school and those who had completed four units were too few to offer a true comprison.

SURMary and COMCLUEIONS

Units of rathemetics completed in high school and hours of matheratics completed in college heve little influence upon the ablilty of students to make a passing grade on the junior stending mathematies exemination. This is especielly true in the case of algebra, geometry, and trignometry. It seens likely that the lack of similerity between the problems studied in these courses and the problems given on the junior stending examinetion is a major reason why these courses do not jnfluence the gredes mede by students on the exemination.

Agriculturel economics 233 and deiry 123 seen to be of some benefit in preparing students for the junior standing exeminetion. Similarity of problems worked in laboratory exercises to problems given on the examination is probably a mejor reason for this influence. Problems seven, five, and nine are good exemples of the type of problems found in the laboratory exercises of dairy 123 .

Students who failed the examinetion are definitely weak in the ability to solve percent problems. This wes especially evident in problem five in which meny students demonstrated thet they could not convert . 05% to the decimal form. Another weakness of the students wes their inability to retionelize their answers. Failure to rationalize mey be due to the lack of experience of the student or to neglect in comparine
answers to the demends of the problem.
Geverel problems given in this examination may be considered specielized. This is especially true of problems two, five, seven, and nine. hile students mey hove solved problems similar to these in certain college courses, jt is evident thet they did not leem thoroughly enough to remember the necessery steps involved.

Is the abjlity to solve problems similar to the ones given on the junior standing examination necessery in order for the stuacnt to do satispectory work in technical agricolture? Evidenty it is not, when it is recalled thet the students who pajled the examination averaged 6.48 in technicel agriculture. This seems to be further borme out by the fact that twenty-five of the eighty-seven students mho fajled the examinetion were seniors.

It is the opinion of the witer thet the longer the student delays in taking the examination, the less likely he is of pessjns it; therefore, it seems thet the methemetios examination should be given sometime during the freshracn year. This exsmination should consist of problems of an unspecialized nature. If cheeting were elimineted on this examinetion, students who were weak in methemetics could be detected. Students who were in need of more treining in methemetics could then enroll in a besic course $2 n$ farm arithmetic at the beginning of their sophomore yeer.

Unt ts of English completed in high school and hours of English completed in college heve little influence upon the
ability of students to make a passing grade on the junior stenaing Bnglish examination. Hovever, students who took English 113 and 203 demonstrated that they were more capable of passing the junior standing English examination than Were the students who took English 103 and 113.

In reading the themes of the students who failed the English examinetion, the writer found considerable evidence that indicated thet the students did not read the themes efter they hod written them. This cerelessness was evidenced by the number of students who hed omitted words, and failed to use the correct tense in the use of simple verbs. Misspelled dords were common, and a few students aisspelled a word in the title. Poor sentence structure, incorrect punctwetion, and a leck of coherence were other comon errors. Students who feiled the English exemination had en average of 2.42 in technical agriculture which shows that they were doing feirly satisfactory work without the ability to express thenselves adequetely in writing. This may indicate thet the junior standing inglish examination is not an accurete measure of the student's ability to write, or that instructors in the school of agriculture have rather low stendards for students written assignments.

Students mho passed the methemetics examination mede slightly higher scores on the college entrance examinetion then did the students who failed the examinetion. This difference did not appear great enough to be importent. Students who passed the Knglish examination made considerably higher
grades on the college entrance examination than did the students who failed. Explanations as to why there mere greater difference between the scores made on the entrance examinetion betmeen the group that failed and the group that passed the English examination then there aere between the group thet failed and the group that passed the mathematics examination is beyond the scope of this study. It may be mentioned here, however, thet sixteen strudents falled both the Haglish and the arthemetic: exemination. If the scores mede by these students were extremely low, these scores mould lower the average of the group that failed the English examination more then they would lower the averege score made by the group that failed the mathemetics examination.

The fact that several seniors failed the tests indicetes that there is very little advantage in waiting until the senior year to take the junior standing exeminations. It may be that several of the senior students hed taken the examinations before and failed them. Sophomores demonstreted that they mere as capoble of passing the exeminations as were the juniors and seniors.

A few of the stucents who railed the exeminetions had extremely low grede point averages in all college subjects. It is probable the these stuatents are incapable of doing setisfactory college tork. This is especially true of senior students who heve more then enough hours for a degree, but whose low grede point average prevents them from graduating.

There is some evidence that the college grade point of
the student is a better indication of the student's ability to pass the junior standing examinetion then waits od hours of work completed. Students who failed the examinetion hed averege grade points under 0.5 winle the students who possed hed averege grede points of appoximately 2.7 .

The mater must adnit that the factors thet mey heve influenced the gredes mede on the exemination by the students ere still rether obscure. Qerheps more wes accomplished in disproving the influence of eertein factore then in detemminIng the fectors that influence the grodes mede ly stwdents in college mathemetics, m ghish, and science.

This study shows thet in the ease of soicnce, methemettes, and English, whits completed in high school and kurs completed in college heve littie influence upon the student's ebility to meke satisfectory gredes in these subjects. onfioial credit in a course is no guerentee thet the student has mastered the sunject or thot he vill lons remember whet he dio leam. It seems likely the thany frotors thet are difficult to messure ere more importent then offecial credit in a course. The naturel sbility of the student, interest be had in the course et the time he was taking it, and the quelity of the instruction he received, cemot be shom on e stuont's transcript, yet it may be that these and other personal factors are fer more importent than units ox hours completed as foctors infurncing the grades aede by students in college.

SLLRTAD RETHRWUES

Dicir, Womris Myers. Gementery Stetisties. New York: Henry Holt and Co., 1944.

Daniel, Vergaret Way. "Some Velues of The 1937 Oxhehome ngricuturel End Wechenicel College Methemetics Placement Test In Predicting Scholarship," W. . "hesis, Oklehoma Ggroulturel end Mechenical Gollege Librery, 1989.

Dougless, H. A. and Hichevlson, J. H. "The Helation of High School iththemetics lo Dollege harks and of Other lioctorg to College Rexles in Methemetics," Dohool Heviem, xulV (1936) pp. 615-619.

Wme, Bamle B. "Redicting College Success," Jowmad of ELther Loucetion, xIII (Wey 1940) pp. 862-266.

Freemen, Bessie Lee. "Arithmetical hbilities of Iighth Grede Pupils and Teachers In Treining," W. S. Thesis, Oklehome Agrievitural end Eechenicel College Library. 1924.

Held, C. C. "A College Wathemetios Plecement Test," Jowracl of Wigher Educetion, XII pp. 39-40.

Kossack, C. F. "Mathematics placement At the University of Oregon," The Americen fathemetical Monthly, "LIX (April 1942) pp. 234-287.

Peyne, Seborn Julius. "A Study of Some Fectors Thet Tend To Affect Freshmen College Algebre Gredes, " . S. Thesis, Onlahome Agriculturel end bechenicel Gollege Library, 1903.

Soott, U. N. end Gill, J.P. "A Prediction of Pupil Success In College AIgebra," The hathenetics leacher, XixIV (December 1941) pp. 357-859.

Bhirley, Walter Garren. "The Use of Plecenent Tests In Freshmen Methemetics," S. Thesis, Uklehoma Arricultural and Nechenicel College Librery, 1949.

VIPA

> alen A. Moclein
> cendidate for the degree of Waster of Sefence

 dechancha COLhbG in THE FaLd UF 1951

Major: Agricultural Lducation
Elogrephicel and Other Items:
Born: August en, 1915 near poteau, Dklehome
Undergreduate Study: Poteau Junior College, 1947-49; . $5.1 .0 ., 1949-52$
Experiences: Farming; Army, 43rd Engineers in Australia and New Gohea 1941-45; mployed as a fellow student by the Agricultural Edveation Department 1951-52.

Date of Final Examination: pay 12, 1958

```
IXOLSM buG*
```

IS TITLE:	Factors That Wey Have Influenced The Gredes Vade On The Junior Standing examinations In MatheMetios and English By Students At the Oflehome farioulturel and Mechenicsl College in The Fell of 1951.

AUHAOR: Glen a. Moclein

```
HHSTS |DVGQER: C. L. Angerer
```

```
The content and Iorm have been checked and cparoved by the author and thesis adviser. Chenges or corrections in the thesis are not made by the Graduate School oficice or by cny commttee. the copies are sent to the bindery just as they are epproved by the guthor and faculty adviser.
```

TYPIST: Mery Meclein

[^0]: 4 Margaret May Daniel, "Some Values of the 1937 Oklahoma Agricultural and Mechanical College Mathematics Placement Test in Predicting Scholarship," M.S. Thesis, Oklahoma Agriculuural and Mechanical College Library, 1939.

 5 Walter Warren Shirley, "The Use of Placement Tests In Freshman Mathematics," M. S. Thesis, Oklahoma Agricultural and Mechanicel College Library, 1949.

[^1]: 6 C. B. Kossack, "Mathematics Placement at the University of Oregon," The Americen Mathematical Monthly, XIIX (April 1942) pp. 234--237.

 7 C. C. Held, "A College Mathematics Placement Test," Journel of Higher EDucation, XIII (1942) pp. 39-40.
 of Bessie Iee Freemen, "Arithmetical Abilities of Eighth Grade Pupils and Teachers in Training," M.S. Thesis, Oklahoma Agricultursl and Mechenical College Library, 1934.

[^2]: 9 Earle E. Enme, "Predicting College Success," Journel of Higher Education, XIII (May 1942) pp. 263-266.

