By
 CHARIES H. HUBER
 Bachelor of Science
 Oklahoma Agricultural and Mechanical College Stillwater, OklaHoma

1951

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College
in Partial Folfillment of the Requirements
for the Degree of
MASTER OF SCIENGE
1952

PREFACE

The constont effort to improve the efficiency of internal combustion engines has led to the investigation of recovery of power from the exhaust gases of reciprocating engines.

The first practical application of the exhaust gases to power recovery was the turbo-supercharger . Although the turbo-supercharger does not contribute power directly to the propeller shaft, it relieves the engine of the burden of mechanical supercharging, thus increasing the net power output. However, its usefulness is limited to high-altitude operation, since the operation of a supercharger at low altitudes usually stresses the engine past the safety requirement.

The next step in power recovery was to gear the exhaust turbine to the propeller shaft; thus, the power recovered by the exhaust turbine could be used at low altitudes without overstressing the cylinders.

In present engines the exhaust gases are expanded through poppet valves and conducted to turbines where the kinetic energy of the gases is converted to mechanical energy.

The purpose of this report is to suggest a method for designing a valve mechanism of the nozzle type to produce on improvement in the expansion process.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION AND STATEMENT OF PROBLEM I
II DISCUSSION AND ANALYSIS OF THE PROBLEM . . . 3
III APPLICATION OF THERMODYNAMIC EQUAT IONS TOFLOW FROM A CYLINDER THROUGH A VALVE . . . 6
IV SOLUTION OF A TYPICAL CASE. 12
V KINEMATIC PRESENTATION. 31
VI ANALYSIS AND CONCLUSIONS. 36

LIST OF SYMBOLS

Upper Case

$A=$ Cross-sectional Area $-f t^{2}$
$C=$ Constant
$D=$ Piston Displacement $-\mathrm{ft}^{3}$
$\mathrm{K}=$ Constant
$M=$ Mass $-\operatorname{lbs}$
$R=$ Gas Constant for air -53.3 ft Ips/oR
$T=$ Temperature - ${ }^{\circ} \mathrm{R}$ or ${ }^{{ }^{\circ} F}$
$\mathrm{V}=\mathrm{Volume}-\mathrm{ft}^{3}$
$W=$ Work - ft. $^{\mathrm{L}} \mathrm{Ibs}$
Z = The Ratio of Crank Radius Over Connecting Rod Length

Lower Case
$a=$ Sonic Velocity $-\mathrm{ft} / \mathrm{sec}$ 。
$\mathrm{g}=$ Acceleration of Gravity $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$p=\operatorname{pressure}-1 b s / \mathrm{ft}^{2}$
$r=$ ratio
$r_{C=}$ compression ratio
$\mathrm{t}=\mathrm{time} \mathrm{m}$ seconds
$u=$ Velocity $-\mathrm{ft} / \mathrm{sec}$
$\mathrm{w}=$ Angular Velocity - ropom. or Rads/sec

Greek

```
\propto m Angular Constant
    \gamma= Ratio of Specific Heats
    0=Crank Angle - either radians or degrees
    M= Mach Number
    \rho= Density lbs/ft 3
    Subscripts and Superscripts
    0 = Reservoir Condition
    1-2-3=To distinguish Successive Constants
    * = Throat Condition
    e= Exit Condition
    i= Initial Condition (at the instant flow begins)
        Abbreviations
    ft := feet
    Rad=Radian
    Sec = Seconds
    lbs = Pounds
    rpm a Revolutions per Minute
```


CHAPTER I

INTRODUCTION AND STATEMENI OF PROBIEM

The reciprocating internal combustion engine, which will be callea the engine for simplicity, fails to make full use of the energy in the products of combustion, which for the purpose of this report will be called the gas. At the time the gas is released from the cylinder, ite temperatureand pressure conditions are above those of the atmosphere Thus the gas is still capable of expansion which, if controlled, could deliver additional work to the drive shaft. The reciprocating engine cannot develop this work economically because of the large volume rem quired to expand the gas to atmospherio pressure. The mechanism required for the additional expansion would add excessive weight and bulk to the engine, consequentiy, in the usuml engine, some of the energy is Iost.

The advent of the gas turbine affords means for developing useful. work from large volumes of gas. The application of the turbine to the task of controlling the expanaion of exhaust gases introduces a host of new problems. Some of these problems arise from the fact that the turbine is essentially a constant-speed prime mover and as such requires constantflow conditions; the engine, howevery delivers a pulsating flow of exhaust gas, and these pulsations limit the efficiency of the turbine. Therefore, one of the problems in recovering energy from the exhaust is to minimize the adverse effect of the pulsating flow. Compromises in the design of the turbine wheel can reduce some of the adverse effects of this varying
flow. Compromises in the engine design might achieve similar results, how ever, this report is only concerned with, the turbine nozzle design. The engine design and the turbine-wheel design are excluded from consideration.

Since the De Laval nozzle is a constant-flow device it must be designed for a given flow and a given pressure drop, in order to achieve maximum efficiency. Since the output of an impulse turbine depends on the kinetic energy developed in the nozzle, a nozzle subject to variable flow must be made to change its shape and size according to the flow and pressure variations.

In particular this report develops an ideal nozzle which is made to vary in shape and cross-sectional area (called a variable nozzle) in such a manner that the maximum kinetic energy shall be developed in the exhaust gas. The ideal nozzle is then modified because of practical limitations. Lastly the kinematics of a mechanism for the practical variable nozzle are presented. The kinematics are intended to show only that a variable nozzle is mechanically possible.

CHAPTER II

DISCUSSION AND ANALYSIS OF THE PROBLEM

Some of the conditions to be met in this problem are unusual in that the engineer seldom needs to analyze them. This chapter presents a non-technical discussion in preparation for the development to follow.

The first problem which may trouble the reader is the behavior of the gases within the cylinder during the exhaust process. This problem may be clarified by concentrating attention on some fraction of the gas within the cylinder. It may be assumed that this fraction contains only those particles which remain in the cylinder during any one instant of time. If all particles of gas other than those in the assumed fraction escape from the cylinder, the assumed fraction will expand to fill the space previously occupied by the escaped particles. Now the original shape of the assumed fraction is not specified; however, the shape has no effect on the process since the forces transmitted across its boundaries are the same as the forces experienced by every other particle within the cylinder during the process. Thus, though the actual shape is arbitrary as shown in Fig. (II-I) (a), the whole effect would be unchanged if the shape were assumed to be cylindrical as shown in Fig. (II-I)(b) with the boundary rem maining a flat circular surface throughout the process. As far as the assumed fraction of the gas is concerned the flat boundary might just as well be replaced by another piston. This concept of a fictitious piston makes it easier to see that the gas within the cylinder follows the same pressure, temperature, and density relations as a process within a closed
cylinder. These relations can be found in most text books on thermodynamics.

(a)
[xxxxy Assumed fraction

(b)
Fig. (II-l) Assumed Division of the Gas.

The next problem is the determination of the relationship between the gas conditions within the cylinder and the flow produced. It has been established that the temperature, pressure, and density within the cylinder are related by know functions; if we can relate any one of these to the flow the immediate problem will be solved. The mass within the cylinder can be determined by the product of density and volume. If this product is differentiated with respect to time, the mass flow (change of mass in the cylinder) is established. Thus the density relates the conditions in the cylinder to the flow produced.

The channel area required for this flow will be determined by DeLaval nozzle theory. For super-critical flow the channel must have a throat followed by a divergent section; for sub-critical flow the channel must converge to the exit section. The flow conditions of the exhaust process change from super-critical at the beginning of the process to sub-
critical during the last portion of the process. Therefore, the nozzle must change its shape from convergent-divergent, to convergent in order to expand the flow properly.

The poppet valve which is used in most engines cannot satisfy these requirements for expansion because the divergence eannot be controlled independently from the throat area. This valve has other undesirable features such as sudden changes in the direction of flow, and discontinuities in the channel area.

In order to satisfy the nozzle design a mechanism must be provided which will furnish: (I) independent control of both the throat and exit area, and (2) a smooth channel with minimum changes in the direction of flow. Also since the mechanism is to be used as a valve it must provide a satisfactory seal when closed.

The use of steady-flow relations on the unsteady flow of the exhaust process is justified because the acceleration forces caused by the unsteady motion are small compared to the other forces acting on the flow. This fact has been verified by experiment. ${ }^{I}$

1 Tsung-chi Tsu, "Theory of the Inlet and Exhaust Processes of Internal Combustion Engines," NACA-TN No. 1446, p. 40.

One of the objects of this investigation is to incorporate in the design of the exhaust valve the function of a nozzle in such a way that the maximum kinetic energy in the exhaust gas is developed throughout the exhaust process without affecting the normal pressure time relationship within the cylinder.

The solution is based on certain assumptions which simplify the procedure. These assumptions are stated below.
I. Air is the medium; it replaces the burned air-fuel mixture. Although the exhaust contains other gases, air is the principal component and the behavior of the gases is nearly the same as air under the same conditions.
2. Air is a perfect gas; this is generally accepted as approximately true.
3. Isentropic processes; the effects of friction and heat transfer on the exhaust flow and expansion within the cylinder are neglected for the sake of simplicity.
4. Steady flow condftions exist in the nozzle. Actually the flow is unsteady but this assurption introduces negligible errors. 1

As a result of these assumptions the relationship between pressure,

1 Tsunmehi Tsu, "Theory of the Inlet and Exhaust Processes of Internal Combustion Engines," NACA-TN No. 1446, p. 40.
density, and temperature within the cylinder can be expressed as ${ }^{2}$

$$
\begin{equation*}
p_{0}=\rho_{0}^{\gamma} x \text { constant }=T \frac{\gamma}{\gamma-1} \times \text { constant } \tag{III-I}
\end{equation*}
$$

where $\mathrm{p}=$ pressure
$p=$ density
$T=a b s o l u t e ~ t e m p e r a t u r e$
$\gamma=\frac{C_{p}}{C_{v}}=1.4=$ ratio of specific heats for air.
The subscript 0 specifies conditions within the cylinder at any given instant of time.

Since the expansion across the nozzle has been assumed isentropic these conditions may be expressed as ${ }^{3}$

$$
\begin{equation*}
\left(\frac{p_{e}}{p_{0}}\right)=\left(\frac{\rho_{e}}{\rho_{0}}\right)^{\gamma}=\left(\frac{T_{e}}{T_{0}}\right)^{\frac{\gamma}{\gamma-1}} \tag{III-2}
\end{equation*}
$$

where p_{e}, ρ_{e}, and T_{e} are the properties of the gas when expanded isentropically to the external pressure, these shall be called the exit conditions.

The mass rate of flow, the exit cross-sectional area of the channel and the conditions in the cylinder are related by the following function, ${ }^{4}$

$$
\begin{equation*}
-\frac{d M}{d t}=A_{e} \sqrt{\frac{2 \gamma}{\gamma-1} p_{o} p_{0}\left(\frac{p_{e}}{p_{0}}\right)^{2 / \gamma}\left[1-\left(\frac{p_{\theta}}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}}\right]} \tag{III-3}
\end{equation*}
$$

where $\mathrm{M}=$ mass within the oylinder
$t=$ time
$\mathrm{p}=$ pressure
$A=$ exit cross-sectional area of the channel.
H. W. Liepman and A. E. Puckett, Introduction to Aerodynamics of a Comoressible Flow, p. 12.

3 Ibid, p. 18.
4 Ibid, p. 32.

The negative sign before $d M / d t$ indicates that the mass passing through the channel is leaving the cylinder. As the oylinder conditions are related by (III-2) and density is the condition most directly related to mass, it is convenient to rewrite (III-3) thus:

$$
\begin{equation*}
=\frac{d M}{d t}=A_{e} \sqrt{\frac{2 \gamma}{\gamma-1} p_{e} \rho_{e} \sqrt{\left(\frac{\rho_{0}}{\rho_{e}}\right)^{\gamma-1}-1}} \tag{III-3}
\end{equation*}
$$

Complete expansion at the exit section, when the flow is supercritical, requires a throat in the channel. The conditions in the throat can be determined by the following relations ${ }^{5}$

$$
\begin{equation*}
p^{*}=p_{0}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \rho^{*}=\rho_{0}\left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} T^{*}=T_{0}\left(\frac{2}{\gamma+1}\right) \tag{III-4}
\end{equation*}
$$

where the asterisk identifies the states in the throat. The size of the throat area may be determined by dividing the mass rate of flow by the product of the throat velocity and density. Thus:

$$
\begin{equation*}
A^{*}=\frac{-d M / d t}{a^{*} \rho^{*}} \tag{III-5}
\end{equation*}
$$

where a* is the throat sonic velocity which is identical to the value of the throat velocity.

Since sonic velocity is proportional to the square root of temperature and density is related to temperature by (III-2) sonic velocity in the throat may be expressed as a function of the density thus,

$$
a^{*}=a_{e}\left(\frac{T^{*}}{T e}\right)^{\frac{1}{2}}=a_{e}\left(\frac{\rho_{*}}{\rho_{e}}\right)^{\frac{\gamma-1}{2}}=a_{e} \rho_{e}^{\frac{1-\gamma}{2}} \rho^{*} \frac{\gamma-1}{2}
$$

By combining this relation with (III-4) and (III-5) yields,

$$
\begin{equation*}
A^{*}=\frac{-d M / d t}{a_{e} \rho_{e}^{\frac{1-\gamma}{2}} \rho_{*}^{\frac{\gamma+1}{2}}}=\frac{-d M / d t}{a_{e} \rho_{e}^{\frac{1-\gamma}{2}} \rho_{0}^{\frac{\gamma+1}{2}}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma-1}{2(\gamma-1)}}} \tag{III-6}
\end{equation*}
$$

Since the exit conditions a_{e} and ρ_{e} are constants for any given solution (III-6) may be expressed thus

$$
\begin{equation*}
A^{*}=-K \rho_{0}^{-\frac{\gamma+1}{2}} \frac{d M}{d t} \tag{III-6}
\end{equation*}
$$

where $K=\frac{1}{a_{\theta} \rho_{\theta} \frac{1-\gamma}{2}\left(\frac{2}{\gamma-1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}}$

The ratio of throat to exit area is obtained by substituting (III-3)' in (III-6) and dividing by A_{θ}. Performing this operation and simplifying yields.

$$
\begin{equation*}
\frac{A^{*}}{A_{e}}=\sqrt{\frac{\left(\frac{\gamma-1}{2}\right)}{\left(\frac{2}{-1}\right)^{\frac{\gamma+1}{\gamma-1}}}\left(\frac{\rho_{e}}{\rho_{0}}\right)^{2}\left[I=\left(\frac{\rho_{e}}{\rho_{0}}\right)^{\gamma-1}\right]} \tag{III-7}
\end{equation*}
$$

Equation (ITI-7) determines the relative sizes of the throat and exit area, this term will be called the divergence function.

The mass within the cylinder can be determined by the product of the density and the volume within the cylinder. The volume-time relationship is fixed by the crank linkage; thus, if a density-time relationehip is established, the mass rate of flow may be determined by differentiating the product of the volume and density functions.

Thus,

$$
\begin{equation*}
\frac{d M}{d t}=\frac{d\left(\rho_{0} V\right)}{d \theta} \frac{d \theta}{d t}=\left[\rho_{O} \frac{d V}{d \theta}+V \frac{d \rho_{0}}{d \theta}\right] \frac{d \theta}{d t} \tag{III-8}
\end{equation*}
$$

where $V=$ volume within the cylinder
$\theta=$ crank angle.
This solution depends on the selection of an appropriate densitytime relationshipo Since the density within the cylinder is related to the pressure by (III-2), the density-time relationship may be derived from the desired indicator card for the engine. This method of solution produces the necessary area-time relationship for a given pressure-time relation.

A solution is also possible by assuming an area-time relationship and deriving the pressure-time relation. If the solution is carried out in this way, it would be convenient to change the form of (III-6)'. This method requires an integration process in which it becomes expedient to separate the variables. As density is determined by the quotient of mass and volume, (III-6)' may be rewritten in the form,

$$
A^{*}=-K\left(\frac{M}{V}\right)^{-\frac{I+\gamma}{2}} \frac{d M}{d t}
$$

Since V and A^{*} are related to time, the variables may be separated thus:

$$
\frac{A^{*}}{\frac{1+\gamma}{2}} d t=-K M \frac{-\frac{1+\gamma}{2}}{V^{2}} d M
$$

The integration of this function yields

$$
\begin{equation*}
\int \frac{A^{*}}{\frac{1+\gamma}{V^{2}}} d t=\frac{2 K}{1+\gamma} M^{\frac{7 m \gamma}{2}}+C \tag{III-9}
\end{equation*}
$$

where C is the constant of integration.
Both of these solutions are simplifications of the problem and may produce some undesirable or impractical values of exit area. In both solutions the flow conditions are determined before the divergence function is applied. Consequently where the effect of this function is large, the exit area-time curve may have undesirable characteristics. This effect will be illustrated in the solution of a typical case.

A. Statement of Problem.

In order to clarify the procedures established in Chapter III we shall attempt a solution for an arbitrary set of specifications.

A variable nozzle is to be developed which is to act as a valve for the following hypothetical engine. 1

1. A four stroke, otto-cycle, aircraft engine.
2. Bore 6-inches, stroke 6-inches, connecting rod 12-inches long.
3. Compression ration $r_{c}=6.5$.
4. Engine speed $w=2400 \mathrm{rpm}$.
5. Assumed indicator card of Fig. (IV-1).

Fig. (IV-1) Assumed Indicator Card.
$\mathrm{p}_{1}=\mathrm{p}_{5}=15 \mathrm{psia}, \mathrm{T}_{1}=60^{\circ} \mathrm{F}, \mathrm{p}_{4}=80 \mathrm{psia}$. Exhaust to begin at point $I=135^{\circ}$ of crank travel.

1 These values based on information taken from K. D. Wood, Technical Aerodynamics, Table C.

The dashed lines in Fig. (IV-1) outline the familiar Otto Air Cycle. The area 1451 represents the work which could be recovered by complete expansion of the gas.

B. Investigate the Recoverable Power.

Before attempting the solution it is well to examine the source of the power to be recovered and estimate the amount of energy which could be recovered.

Otto Cycle. The ideal work produced by the Otto Cycle referred to the conditions at point 4 of Flg.(IV-I) may be computed by the following relation.

$$
W=p_{4} V_{4}\left(\frac{\left(1-\frac{p_{1}}{p_{4}}\right)}{(1.4-1)}\left[\left(\frac{V_{4}}{V_{3}}\right)^{1.4-1}-1\right]\right.
$$

Substituting for the values of $\frac{p_{1}}{p_{4}}, \frac{V_{4}}{V_{3}}$ yields

$$
\begin{aligned}
& W=p_{4} V_{4} \frac{\left(1-\frac{15}{80}\right)}{0.4}\left[6.5^{.4}-1\right] \\
& W=2.19 \mathrm{p}_{4} V_{4}
\end{aligned}
$$

The Recovery Process. The area 1451 represents the work which could be developed by complete expansion of the exhaust gas and, therefore, is the equivalent of the maximum kinetic energy which the exhaust gases could attain. This work may be computed by

$$
\begin{aligned}
W^{8} & =\int_{4}^{5} \mathrm{pdV}-\mathrm{p}_{1}\left(V_{5}-V_{4}\right) \\
& =p_{4} V_{4}\left\{\frac{1}{1-4-1}\left[\left(\frac{V_{5}}{V_{4}}\right)^{(I \cdot 4-1)}-1\right]-\left(\frac{p_{1}}{p_{4}}\right)\left[\left(\frac{V_{5}}{V_{4}}\right)-I\right]\right\}
\end{aligned}
$$

From assumption No. 5

$$
p_{4} V_{4}^{I .4}=p_{5} V_{5}^{I .4}
$$

or

$$
\begin{aligned}
& \frac{V_{5}}{V_{4}}=\left(\frac{p_{4}}{p_{5}}\right)^{\frac{1}{1.4}}=\left(\frac{80}{15}\right)^{\frac{1}{1.4}}=3.305 \\
& \left(\frac{V_{5}}{V_{4}}\right)^{1.4-1}=(3.305)^{0.4}=1.612
\end{aligned}
$$

thus the recoverable work becomes

$$
\begin{aligned}
& W^{8}=p_{4} V_{4}\left\{\frac{1}{0.4}(1.612-1)-\frac{15}{80}(3.305-1)\right\} \\
& W^{\prime}=1.097 p_{4} V_{4} \\
& \frac{W^{V}}{W}=\frac{1.097}{2.19} \frac{p_{4} V_{4}}{p_{4} V_{4}}=.501
\end{aligned}
$$

This shows that the power can be increased by 50.1 per cent if the entire available energy is recovered.

Now let us consider what happens when the gas is exhausted through a poppet valve. The effect of the sudden changes in area, and direction of flow, make the effect of this valve akin to exhausting through an orifice.

Let us assume the turbulence, induced by the sudden change in section, and the shock losses limit the recoverable kinetic energy to that attained at the critical section. In other words the flow is expanded in an isentropic process to the critical pressure, at which time it crosses the minimum section where the remaining pressure must change to the exthaust pressure.

Figure (IV-2) represents an enlargement of the exhaust process of Fig. (IV-1), where the Iine $4^{1}-5^{\prime}$ represents the critical pressure or $0.528 \mathrm{p}_{45^{\circ}}$ Thus those particles expelled from the cylinder are able to recover the kinetic energy equivalent of the cross-hatched area $455^{1} 4^{1} 46$ The lost availability may be represented by area $4^{1} 5^{1} 14^{\prime}$. Thus under this assumiption the minimum energy lost is

$$
\begin{gathered}
W_{L}=\int_{4^{\prime}}^{5^{\prime}} \mathrm{pdV}-p_{1}\left(V_{5^{\prime}}-V_{4^{i}}\right) \\
\text { where } p_{4^{\prime} 5^{\prime}}=0.528 p_{45}=0.528 \frac{\mathrm{~K}}{\mathrm{~V}^{1.4}}
\end{gathered}
$$

Fig. (IV-2) . The Exhaust Process.

The integral becomes

$$
\int_{4^{8}}^{5^{8}} \mathrm{pdV}=.528 \mathrm{~K}_{I} \int_{4^{1}}^{V_{4^{0} 5^{8}}^{I_{0}}} \frac{\mathrm{dV}}{I_{4}}=0.528 \frac{p_{4} V_{4}}{0.4}\left[\left(\frac{V_{5^{\prime}}}{V_{4^{\prime}}^{0.4}}\right)^{0.1}\right]
$$

Evaluating the ratio $\frac{V_{5}}{V_{4}}$ yields

$$
\frac{V_{1}}{V_{4}}=2.092
$$

Substituting this value in W yields

$$
\begin{aligned}
& W_{L}=\cdots .028 \frac{p_{4} V_{4}}{.4} \times(2.092-1)-p_{4} V_{4} \frac{15}{80} \quad 2.092-1 \\
& W_{L}=p_{4} V_{4}(0.249)
\end{aligned}
$$

The fraction lost becomes

$$
\frac{W_{L}}{W}-\frac{0249}{2.19}=.1137
$$

Thus the per cent recovery in this case would be

$$
\frac{W^{2}}{W}-\frac{W_{L}}{W} \times 100=38.73 \text { per cent. }
$$

This loss represents 11.37 per cent of the idealized power reprem sented in the original Otto Cycle. This indicates that the power which could be recovered by exhausting through a poppet valve is of the order of 40 per cent of the engine's power, where cormplete expansion could produce an increase of the order of 50 per cent.

The manufacturers of compound engines using poppet valves, claim recovery factors of the order of 20 per cent. This fact indicates a conm siderable loss of recoverable power which may be explained as follows. This discrepancy is caused by the effect of wiremdrawing, the use of an imperfect gas, and the fact that the turbine can not efficiently recover all the energy of a variable flow; also, it is probable that the poppet valve with its ducting does not deliver the full kinetic energy that is developed at the throat. Even a poorilymesigned nozzle could reduce this loss considerably, for all that is required is to have a fairlycontinuous channel section.

C. Assume Density Function.

This case will be solved by assuming a characteristic density-time curve and determining the required area-time curve for the flow.

Let us now proceed to establish a density function to fit the general requirements.

Referring to Fig. (IV-3), the portion of the curve from I to B could be approximated by the function

$$
\begin{equation*}
\frac{P_{0}}{P_{e}}=\left[K_{1}-K_{2} \cos \left(\frac{5}{3} \theta-\alpha\right)\right] \tag{IV-I}
\end{equation*}
$$

where K_{I}, K_{2}, and \propto are constants to be determined by the conditions to be imposed on the curve. These conditions are the ordinate and slope of the curve at point $I_{\text {g }}$ and the ordinate at point B.

It is now necessary to determine these conditions for a density function. Conditions at point I shall be called initial conditions and will be designated by the subscript i, as in Fig. (IV-I).

The initial mass within the cylinder will be assumed the same as that at the beginning of the compression stroke. Thus by the perfect gas law:

$$
M_{i}=M_{I}=\frac{p_{I} V_{I}}{M_{I}}
$$

By assumption No. 5

$$
\begin{aligned}
& P_{I}=15 \times 144=2160 \text { p.s.f. } \\
& T_{I}=460-60=520^{\circ} \mathrm{R} \\
& V_{I}=D\left(\frac{r_{c}}{r_{c}-7}\right)=\frac{6}{12} \times\left(\frac{6}{12}\right)^{2} \frac{\pi}{4}\left(\frac{6.5}{6.5-1}\right)=.0982 \times \frac{6.5}{5.5}=116 \mathrm{ft}^{3}
\end{aligned}
$$

where $D=$ piston displacement $m .0982 \mathrm{ft}^{3}$.

Fig. (IV-3). Assumed Density Relation

$$
M_{i}=\frac{2160 \times .116}{53.3 \times 520} z, 00894 \mathrm{lbs} .
$$

The volume relation to crank angle may be expressed thus ${ }^{2}$

$$
\begin{align*}
V & =D\left[\frac{1}{r_{c}-1}-\frac{1}{2}\left(1-\cos \theta-\frac{1}{2} z \sin ^{2} \theta\right)\right] \tag{IV-2}\\
& =.0982\left[.182-\frac{1}{2}\left(1-\cos \theta-\frac{1}{8} \sin ^{2} \theta\right)\right]
\end{align*}
$$

where Z is the ratio of the crank radius to the connecting rod length (in this problem $Z=3^{\prime \prime} / 12^{11}=\frac{1}{4}$)

Since the initial conditions are at 135° the initial volume is

$$
\begin{aligned}
& \nabla_{i}=0.0982\left[\frac{1}{6.5-1}-\frac{1}{2}(1.770)\right]=0.0982 \times(.182-.885) \\
& \nabla_{i}=0.0982 \times 1.067=0.1048 \mathrm{ft}^{3}
\end{aligned}
$$

Thus the initial density is

$$
P_{i}=\frac{M_{i}}{V_{i}}=\frac{000894}{.1048}=0.0852 \mathrm{Ibs} / \mathrm{ft}^{3}
$$

At the initial point the slope of the density curve must be

$$
\frac{d P_{i}}{d \theta}=\frac{d\left(\frac{M_{i}}{V_{i}}\right)}{d \theta}=-\left(\frac{M_{1}}{V_{i}}\right) \frac{d V_{i}}{d \theta}=\frac{-P_{i}}{V_{i}} \frac{d V_{i}}{d \theta}
$$

The values of this function can be found tabulated for various values of θ and Z in a text by, J. Liston; Aircraft Engine Design, Table 4-3, p. 47.

The derivative of the volume function is ${ }^{3}$

$$
\begin{equation*}
\frac{d V}{d \theta}=D \frac{1}{2}\left(\sin \theta-\frac{1}{2} Z \sin 2 \theta\right)=\frac{.0982}{2}\left(\sin \theta-\frac{1}{8} \sin 2 \theta\right) \tag{IV-3}
\end{equation*}
$$

Substitution for D, Z, and θ for initial conditions yields

$$
\frac{d v_{i}}{d \theta}=\frac{.0982}{2}(0.582)=.0286 \mathrm{ft}^{3} / \mathrm{Rad} .
$$

Thus

$$
\frac{d \rho_{i}}{d \theta}=\frac{0.0852}{0.1048} \times 0.0286=-.0233 \mathrm{Ibs} / \mathrm{ft}^{3} \mathrm{Rad}
$$

The density at B is determined by the pressure desired at B. This pressure will be assumed as 2 psig or $p_{b}=17$ psia. As the initial pressure can be determined by

$$
p_{i}=p_{1}\left(\frac{p_{i}}{p_{1}}\right)^{1.4}=p_{1}\left(\frac{V_{1}}{V_{i}}\right)^{1.4}=80\left(\frac{0.116}{0.1048}\right)^{1.4}=92 \text { psia }
$$

The density at B is determined by

$$
\rho_{b}=\rho_{i}\left(\frac{p_{\theta}}{p_{i}}\right)^{\frac{1}{1.4}}=.0852\left(\frac{17}{92}\right)^{\frac{1}{1.4}}=.02556 \mathrm{Ibs} / \mathrm{ft}^{3}
$$

where the subscript b denotes a condition at point B . Now the density of the gas at the exit becomes

$$
P_{e}=P_{i}\left(\frac{p_{e}}{p_{i}}\right)^{\frac{1}{1.4}}=.0852\left(\frac{15}{92}\right)^{\frac{1}{1.4}}=.0234 \text { Ibs } / \mathrm{ft}^{3}
$$

Ibid, Table 4-1, p. 39.

Referring all conditions to the exit density we obtain

$$
\begin{gathered}
r_{i}=\frac{\rho_{\mathrm{I}}}{\rho_{e}}=\frac{.0852}{.0234}=3.64 \quad r_{b}=\frac{\rho_{b}}{\rho_{e}}=\frac{.02556}{.0234}=1.092 \\
\cdot \\
\frac{d r_{i}}{d \theta}=\frac{1}{\rho_{e}} \frac{d \rho_{i}}{d \theta}=-\frac{.0233}{.0234}=-.995
\end{gathered}
$$

Now we obtain the conditions to be imposed on (IV-I). Applying these conditions we obtain at $\theta=135^{\circ}$

$$
\begin{aligned}
3.64 & =\left[K_{I}-K_{2} \cos \left(\frac{5}{3} 135^{\circ}-\alpha\right)\right]=\left[K_{I}-K_{2} \cos \left(225^{\circ}-\alpha\right)\right] \\
-.995 & =-\frac{5}{3} K_{2} \sin \left(225^{\circ}-\alpha\right)
\end{aligned}
$$

The minimum value of this relation is at point B and is to be

$$
\begin{aligned}
& \frac{\rho_{0}}{\rho_{e}}=r_{b}=1.092 \text { where } \cos \left(\frac{5}{3} \theta_{b}-\alpha\right)=-I \\
& r_{b}=1.092=K_{I}-K_{2}
\end{aligned}
$$

Solving these equations simultaneously yields

$$
\begin{array}{ll}
\alpha=-198.3^{\circ} & \theta_{b}=227^{\circ} \\
K_{2}=1.345 & \\
K_{1}=2.437 &
\end{array}
$$

Thus from $\theta=135^{\circ}$ to $\theta=227^{\circ}$, (IV-1) becomes

$$
\begin{equation*}
\frac{\rho_{o}}{\rho_{e}}=2.437-1.34 .5 \cos \left(\frac{5}{3} \theta-1983\right) \tag{IV-4}
\end{equation*}
$$

Differentiating ($I V-4$) with respect to θ yields

$$
\begin{equation*}
\frac{1}{\rho_{e}} \frac{d \rho_{o}}{d \theta}=-2.041 \sin \left(\frac{5}{3} \theta-198.3\right) \tag{IV-5}
\end{equation*}
$$

The mass rate of flow may be determined by substituting (IVm3), (IV-4), and (IV-5) in (III-8).

Thus

$$
\begin{align*}
\frac{d M}{d t} & =\left[V \frac{d x}{\rho_{e} d \theta}+\frac{\rho}{\rho_{e}} \frac{d V}{}\right] \rho_{e} \\
& =[(I V-2)(I V-5)+(I V-3)(I V-4)] \rho_{e} W \tag{IV-6}
\end{align*}
$$

where the substitutions are indicated by the equation reference number. Following this same procedure the throat area becomes

$$
\begin{align*}
A^{*} & =w K \rho_{e}^{-1.2}\left(\frac{\rho_{0}}{\rho_{e}}\right)^{-1.2} \frac{d M}{d t} \\
& =w K \rho_{e}^{-1.2}(I V-4) \quad(I V=6) \tag{IV=7}
\end{align*}
$$

The calculation of the divergence function (III-7) can be simplified by using "Computation Curves for Compesaible Fluid Problems"4. Once the value of (ITI-7) is determined for a given point the exit area may be computed by the quotient of (IV $\mathrm{m}_{\mathrm{m}} 7$) and (III=7),

$$
\begin{equation*}
A_{e}=\frac{A^{\#}}{A^{*} / A_{e}}=\frac{\left(I V_{-7} 7\right)}{(I I I-7)} \tag{IV-8}
\end{equation*}
$$

4 C. L. Dailey and F. C. Wood, Computation Curves for Compressible Fluid Problems.

Table (IV-il) presents the computations indicated above. Figures (IV-4), (IV-5), (IV-b), and (IV-7) show the values of $P_{o} / P_{e}, A^{*}, A_{e}$, and $d M / d \theta$ as conputed in Table (IV-I); these are plotted as a function of the crank angle. The area curves were modified in order to provide more continuous curves. These modifications, and their effect on the density curve, are described by the dashed lines in each Figure.

The density curve represents the original assumption. The area curves constitute the essential information for the valve action required of the nozzle. Though this report is not primarily concerned with the mass rate of flow, the flow has an important bearing on the solutiong therefore, this curve is also included.

Table (IV-I)
Calculation of Volume, and Density Curves

$1401.0910 .2601 .070233 .3 \quad 35.0 \cdots 819.574$ 1.102 3.539 .220
$1501.1310 .1961 .110250 .0 \quad 51.7$. $620.660 \quad 0.8353 .272 .242$
160 I. $159 \quad 0.131$ I. $136266.7 \quad 68.4$. 369 . $894 \quad 0.4962 .933 \quad$. 275
$1701.1760 .0651 .152283 .3 \quad 95.0-087 \quad .995 \quad 0.1172 .544 .318$
180 1.182 0.000 1. $160300.0101 .7-202.980-0.2722 .165 .396$
$1901.176-0.0651 .152316 .6118 .3-0473.880-0.6371 .800 .994$
200 1. $159-0.131$ 1. $136333.3135 .0-.707$. $707-0.9531 .484-623$
210 I. $131-0.196$ I. 110 350.0 151.7-. 881 . 474 - I. 185 1. 252.763
220 1.091 -0.260 1.070 $366.7168 .7-.979$. $202-1.318$ 1. 119 . 874
225 1.068 $-0.2911 .047375 .0176 .7 \times .998 \quad 055-1.3411 .096 .896$
230 1.040 - 0.321 1.020 383.3184 .01 .000 .000 -1.345 1.092 .900

$270 \quad 0.744-0.500 \quad 0.729 \quad " \quad 1 \quad 1.000 \quad 000-1.3451 .092 \quad .900$
$290 \quad 0.566-0.5100 .555 \quad$ " $\quad 1.000 .000-1.3451 .092 .900$
$3100.474-0.4450 .436 \quad " \quad 1 \quad 1.000 .000-1.3451 .092 .900$
$330 \quad 0.264-0.3040 .259 \quad$ " \quad " $1.000 .000-1.3451 .092 .900$
$350 \quad 0.191=0.1080 .183 \quad \| \quad$ " $1.000 .000-1.3451 .092 .900$
$360 \quad 0.182-0.0000 .177 \quad \| \quad$ " $1.000 .000 \quad-1.3451 .092 .900$
Colum 2 fe ($0.182+\frac{2}{2}$ the value of the piston travel factor as read from Table 4-3, Aircraft Engine Design by J. Liston.
Column 3 dfe $=\frac{1}{2}$ the value of the piston velocity factor as read from Table $4=1$, Aircraft Engine Design by JoListon.

Table (IV-l) extended
Calculation of Area Curves

Evaluation of Constants

$$
\begin{aligned}
& \mathrm{w}=2400 \mathrm{rpm}=251 \mathrm{Rads} / \mathrm{sec} \\
& \text { wK } P_{e}^{-1.2}=\frac{w e^{-1.2}}{a_{e} P_{e}^{-0.2}\left(\frac{-2}{2.4}\right)^{3}}=\frac{w}{a_{e} P_{e}\left(\frac{1}{1_{0} 2}\right)^{3}} \\
& a_{e}-49.1 \sqrt{T_{e}}=49.1 \sqrt{\frac{p_{e}}{R_{e}}}= \\
& a_{e}=49.1 \sqrt{\frac{2160}{53.3 \times .0234}}=2,045 \mathrm{fps} \\
& w K P_{e}^{\sim 1.2}=\frac{251}{2045 \times .0234}(1.2)^{3}=9.09
\end{aligned}
$$

Crank Angle - θ - Degrees from Top Dead Center

Grank Angle - θ - Degrees from Top Dead Center

Crank Angle - θ - Degrees from Top Dead Center

Crank Angle - θ - Degrees from Top Dead Center

CHAPTER V

KINEMATIC PRESENTATION

The preceding chapter developed the necessary areatime relations for the nozzle. The remaining task is to demonstrate that a reasonable and practical mechanism can control the throat and exit areas according to the desired values.
This chapter describes only the essential parta of the mochanism. It is only intended to show that such a device is posaible. The drawings are schematic and the Linkges are simplified for the ake of clarity.
Figuxe (V oil) is a diagramatio sepresentation of a mochanism which oon perform the required motions. The device also satisfies the requirements of a amooth continuous channel, and a reasonable seal when olosed.

Fig. (V-il). Schematic Diagram of the Valwe Mechanism.
The easential parta of this valve are the movable boundary (A) supported by the sliding block (B) which also provides the necessary seal when the valve is closed. The push rod connections must allow for the lateral motion of the movable boundary,

Fige (Va2). Schematio Diagram of the Valve (closed position).

Fig. (V-3). Profile of the Throat Area. Cam.

This Figure shows the shape of the throat area cam. The drawing is a segment of a ring type cam. This cam with a knife edge follower controls the throat area A^{*} of the nozzle. The solid line represents the contour needed to satisfy the throat area conditions as computed from the density curve assumption; the dashed outine reprem sents the modified throat area curve.

Fig. (Vm4). Profile of the Exit Area Cam.

This Figure shows the shape of the exit area cam. The drawing is a segment of a ring type cam. This cam with a knife edge follower controls the exit area A_{e} of the nozzle. The solid line represents the contour needed to satisfy the exit area conditions as computed from the density curve assumption; the dashed outline represents the modified exit area curve.

GIIAPTER VI

ANALYSIS AND CONCLUSIONS

A. Analysis of Area Curves.

Both of the developed area curves show an undesirable discontinuity in the region of 210°. Since the flow is sub-critical in this region there is no need for a throat, the nozzle will expand the gas to the exit conditions without the expanding channel which is required for the super-critical flow. Thus the exact shape of the throat area curve (in the sub-critical region) has little bearing on the objective of this report; but the kinematics of the valve require that the mechanism (which provided the throat for the super-critical region) have a continuous motion. Therefore, an arbitrary curve was selected to suit this requirement.

The exit area curve must also be modified to suit the kinematic rem quirement of continuity. However, the exit area controls the subcritical flow; therefore, any changes in this curve will affect the assumed density vs. time relationship. An arbitrary exit area curve for this region was selected to fit the kinematic requirement. A point by point computation was carried out to determine the effect of the new curve on the assumed density-time relationship. It is evident from Fig. (VI-4) that the effect is small. The reason for this is found in the fact that, when the value of the density ratio approaches unity, the density ratio is insensitive to changes in the divergence function.

Although the altered exit area curve produces changes in the shape of the assumed density curve, the total developed kinetic energy remains
unchanged.
B. Discussion of Attempted Solutions. This section presents the experience encountered in the several attempts toward a solution. The solutions are classified according to initial assumptions.

1. Gas state assumptions. This type of solution depends on the selection of an appropriate gas condition versus time curve from which the required area curves are computed. Solutions were attempted for each of the following gas properties: (1) pressure, (2) temperature, (3) density. The density solution is the one which is presented in detail in this report. Since density is closely related to mass there are fewer operations required in the solution. This simplifies the calculations. The results obtained with the pressure and temperature assumptions were essentially the same as those obtained from the density assumption.

Several different types of mathematical curves were tried in an attempt to improve the submeritical solution. It was found that this solution could be improved by increasing the complexity of the curve, but these improvements required a disproportionate amount of labor. The additional labor is not justified in view of the fact that the area curves may be altered in the manner described in the analysis of the area curves.
2. Throat area assumption. This type of solution depends on the appropriate selection of a throat area versus time curve and calculating the required ges properties and exit area.

The approach to this solution is indicated by the development which precedes and includes equation (III-9). This solution produces
smoother area curves in the super-critical region, but tends to produce impractical and imaginary values of the exit area in the sub-critical region. In order to avoid this difficulty great care must be exercised to insure that the density ratio is greater than unity at all times.

This solution involves an integration process and, therefore, is more tedious than the solutions based on the gas state assumption. The integration indicated in the left hand term of equation (III-9) can be simplified by assuming a throat area vso time function of the following form:

$$
\begin{aligned}
& A^{*}=V^{\frac{\gamma+1}{2}}\left(K_{1}-K_{2} \cos w t-K_{3} \cos 2 w t \cdot \ldots .\right. \\
& \left.-K_{5} \sin w t-K_{6} \sin 2 w t \ldots\right) \\
& \text { where } K_{1,2,3} \ldots . \quad \text { Fourier Coefficients }
\end{aligned}
$$

Thus the fraction $A^{*} / V^{\frac{\gamma+1}{2}}$ can be integrated directly.
If the throat area curve is carefully selected, this solution can yield better results than the gas state solutions, but is inherently more tedious.
3. Exit area assumption. This solution depends on the appropriate selection of an exit area versus time curve and the calculation of the required gas conditions and throat area.

This solution gives the best results in both the super-critical and subecritical regions, but requires the integration of equation (III-3). This integration cannot be performed directiy and must be solved by means of the calculus of finite differences. The improvement In the results is hardly worth the effort.

This method is suggested if a differential analyser is available for the integration of equation (III-3).
C. Conclusions.

The results of this report indicate that a considerable improvement is possible in the performance of compound engines. Part of this improvement can be effected by developing the maximum kinetic energy in the exhaust gases with an exhaust valve designed like a DeLaval nozzle. The thermodynamic requirements of the nozzle can be solved with a reasonable amount of effort. Finally it is possible to design a mechanism to act as a variable nozzle exhaust valve.

Dailey, C. L. \& Wood, F. C. Comoutation Curves for Compressible Flow Problems. New York: John Wiley \& Sons, 1949.

Guillet. Kinematics of Machines. New York: John Wiley \& Sons, 1948.
Liepmani, H. W. \& Puckett, A. E. Introduction to the Aerodynamics of a Compressible Fluid. New York: John Wiley \& Sons, 1947.

Liston, J. Aircraft Engine Design. New York: McGraw-Hill Book Co., 1942.
Tsu, Tsung-chi. "Theory of the Inlet and Exhaust Processes of Internal Combustion Engines." National Advisory Comnittee for Aeronautics Technical Note No. 146, Washington, D. C., January 1949.

Wood, K. D. Technical Aerodynamics. New York: MeGraw-Hill, 1947.
Young, V. W. and Young, G. A. Elementary Thermodynomics. New York: McGraw-Hill Book Co, 1947.

Zucrow, M. J. Principles of Gas Turbines and Jet Propulsion. New York: John Wiley \& Sons, 1948.

THESIS TITLE: KINEMATICS OF A VARIABLE NOZZIE USED AS AN EXHAUST VALVE FOR RECOVERY OF POWER FROM IMIERNAL COMBUSTION ENGINES

NAME OF AUTHOR: CHARLES H. HUBER

THESIS ADVISER: L. J. FILA

The content and form have been checked and approved by the author and report adviser. "Instructions for Typing and Arranging the Thesis" are available in the Graduate School office. Changes or corrections in the thesis are not made by the Graduate School office or by any comrittee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

NAME OF TYPIST: Fern B. Hall

