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PREFACE 

This investigation stemmed from the writer's desire to 

add the complement of experiment to his study of mathemat

ical methods of stress analysis. It was at the suggestion 

of Professor R. E. Means that the experimentation took the 

direction indicated by the title. 

As the investigation proceeded, two objectives evolved. 

The first was to detennine the accuracy of the model method 

when the defonnations are large. The second was to develop 

a practical technique of model construction and manipula

tion. 

Acknowledgement must be made to Professors J.E. 

Lothers and R. E. Means of the Department of Architecture 

at Oklahoma A. and M. College. It was from their inspired 

instruction in the field of structural engineering that the 

writer acquired the background necessary to proceed with 

this study. 

The writer expresses appreciation to his wife, Jean 

Marie Cotner, for her excellent assistance as proof reader 

and editor of this paper; also for being, during the entire 

period of this study, the kind of encouraging critic that 

only a wife can be. 
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A. GENERAL DISCUSSION OF THEORY 

There appeared in the April 186~ issue of Philosophical 

Magazine, an English journal, a paper by that distinguished 

English mathematician and physicist, James Clerk Maxwell. 

Clerk Maxwell is rightly celebrated for his contribution to 

the expansion of knowledge in the field of electricity. 

This paper, entitled "The Calculation of the Equilibrium 

and Stiffness of Frames• was, however, an incursion into 

mechanics; and blessed that science with the wonderful 

principle known as Maxwell's Law of Reciprocal Deflections. 

A reprint of this paper is included in a recent article by 

Professor A. s. Niles of Stanford University, California. 1 

In his paper Maxwell presented a method of computing 

the axial loads in the members and the relative displace

ments of pairs of joints in a redundant pin-jointed truss. 

He derived his method by the principle of •conservation of 

Energy•--more popularly known today as •Least Work." His 

paper attracted little notice, and much credit must be given 

to others (Professor Niles does so) for expanding the 

applications of the principle. 2 

1 A. s. Niles, •Clerk Maxwell and the Theory of 
Indeterminate Structures,• Engineering (London), (September, 
1950), P• 170. 

2 ~., P• 172. 
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Maxwell's law can be presented in its general form in 

the following manner. Consider any elastic solid or framed 

structure to be in equilibrium under forces or moments 

represented by P1, P2•••Pn, Mi, Mi,•••Mn, and let the dis

placements of these forces and moments be represented by 

~1,~2,•••8n,€71,-ET2•••E1n• Let these forces and moments 

be replaced by a second system in equilibrium represented by 

P1', P2 • ••• Pn', M1•, ~'···~', acting in each case in the 

same direction as the corresponding forces and moments of 

the first system. Let the displacements of the second 

system be denoted by 81',82'···~n',t31',e2'···-E>-n'· 

Maxwell's law then states that 

P18'1 + P2A'2 + ••• PnA'n + M1e1' + ~62' + ••• ~e'n: 

P181 + P'2A2 + •••Pn'An + M1'91 + M'262 + •••~'e-n 

The law can perhaps be best illustrated by the simple 

particular case shown in Figure A-1. 
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Let P1 be any force acting in any direction at any 

point, C, on structure AB, and assume the structure will 

take the shape shown by the dashed line, the deflection at 
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A and C being denoted by .6.1 and .6. 1 , respectively. Let P1 ' 

acting through the line of movement of .6.1 be the force 

required at A to cause .6.1 at A and .6. 1 ' at c. Then 

P1.6.1' = P1'.6.1 or P1'/P1: .6.1•/.6.1 

A similar simple illustration can be made for moment. 
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With reference to Figure A-2, Maxwell's law states that 

P1.6.1' = M1'e1 or M1'/P1 • .6.1'/61• 

Since mathematical proofs of this law are well known 

one will not be included at this point. Such a proof is 

included in the appendix. The writer feels that the best 

proof is to be found in the results of model testing. 

Referring again to Figure A-1, it is apparent that if 

the value of either of the forces were known the other could 

be evaluated by causing a known deflection at either A or 

C and measuring the deflection at the other point. 



It was this application of Maxwell's Law that the late 

George E. Beggs used when developing the model method of 

stress analysis that bears his name.3 

In the Beggs method the models are made from paper. 

cardboard. acrylic base plastics. etc. They are scale 

models of the prototype structure. The deformations caused 

are microscopic. being produced by special gauges called 

deforrneters. The method is now well established. the 

deforrneters and special microscopes being produced commer

cially. Though the Beggs method is good. it has two dis

advantages. The first is that the deformeters and micro

scopes are expensive. The second is that it is not possible 

to view the deformed structure as a whole due to the limited 

field of vision of the microscope. A. J. s. Pippard states 

that. 

Errors are introduced if the temperature of the 
model changes during an experiment as the conse
quent thermal movements are comparable with those 
produced by the imposed displacements.4 

This writer has not had experience with the Beggs method 

and thus cannot accurately evaluate Mr. Pippard's statement. 

This writer feels. however. that thermal errors are probably 

not in most cases a real disadvantage of the method. 

3 George E. Beggs. Transactions.&!!_. §.2£.. ~ Vol. 
gg (1925}. p. 120~. 

4 A. J. s. Pippard. Ih!. Experimental Study 2f. 
Structures. P• 44. 



It is apparent that a model method based upon the law 

of reciprocal deflections will yield accurate results .only 

if the model offers a resistance to deformation similar to 

that of the prototype. (This is a loose expression.) The 

idea can perhaps be expressed better with reference to 

Figure A-3. 
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Let ABCD represent any real structure of which abed is 

a model to any scale. Let Q be any point on the structure 

and let q be the corresponding point on the model. Let ~ Q 

be the deflection of point Q that results when e:,.A is 

produced at A; and let ~q be the deflection of point q 

when .6a is produced at a. Then 6.q/lla must equal K6.Q/6.q 

wherein K is some constant (However. it is not necessary to 

evaluate Kin order to use a model method.). If /J.A were 

caused by a force. let that force be P. and let p be a force 



that could cause ~a• Let E1 be the modulus of elasticity 

of the prototype and E2 that of the model. For simplicity 

let all parts of the prototype have the same moment of 

inertia r1; let r 2 be the moment of inertia of all parts of 

the model. 

wherein MA and~ 

load at A; and Ma 

a 1# load at a. 

are the moments at A and Q due to a 1# 

and M are the moments at a and q due to q 
These statements are proved in the appen-
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dix. They neglect the deformation caused by direct stress 

and shear. Such deformation is small and is practically 

always neglected in stress analysis methods based on the 

geometry of deformation--two prominent examples of which 

(in addition to the model method) are the methods of slope 

deflection and moment distribution. If the problem was the 

analysis of a truss, deformation due to direct stress could 

not be neglected. 

In the statements for ~Q and ~q let p: k1P, 

E2 = k2E1 , and I 2 • k3r1• Since MA~ and MaMq are all 

functions of a 1# imaginary load, let MA~: f{i) and 

MaMq: k4 f(i). The statements may now be written in this 

f(i)ds i;k4f(i)ds . form .6.Q : P E I and .6.q : k1P placing the 
l 1 k2E1k3I1 

constants in front of the integral sign the latter statement 



becomes 

Thus it can be seen that~ - k'~Q. q -

7 

It can be similarly proved that ~a: k 1 •.6.A. Then letting 

k•/k'': kit can be stated that.l1q/.l1 : k~Q/~. a q 

It will be observed that the illustration is over-

simplified because in an actual structure the values of I 

are usually different for each member; in fact, members 

often have a variable I. The writer does not apologize for 

the simplification, because the mathematical relationships 

are offered only as illustrations. The writer feels that 

the experiments that follow provide the real proof, and the 

experiments cover the cases of different l's in different 

members and varying I's. 

As previously stated, the Beggs method uses models of 

the same shape as the prototype, thus the different constant 

relationships between the factors affecting deflection of 

the model and the prototype are taken care of automatically. 

Since a model cut from a thin sheet would buckle 

laterally when subjected to large deformations, some other 

method of constructing the models is necessary if large 

deformations are to be applied. That other method must 

still satisfy the constant relationships between the factors 

affecting deflection. Such a method is presented later. 



B. INVESTIGATION OF ACCURACY 

As stated in The General Discussion of Theory the 

accuracy of the model method has been well established when 

the deformations are microscopic. One of the objectives of 

this study is to determine the accuracy of the method when 

the deformations are megascopic. Of course if the deforma

tions are so great as to cause any portion of the model to 

be stressed beyond its elastic limit the results will not 

be accurate. Excluding such deformations it appears that 

Maxwell's Law will hold and that a large deformation method 

will give accurate results. 

The first experiment was to determine the reactions of 

the statically indeterminate frame illustrated in Figure 

B-1. 

FIGURE B-1 
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The model of this frame was constructed by bending a 

wire to the shape of the structure. The scale of the model 

was l" • 10 1 • The wire was a piece of cold drawn steel 

wire {piano wire) of the type obtainable at model airplane 

supply shops. The diameter of the wire was 1/32". The 

vertical legs of the model were allowed to extend past the 

10 inch length; however the points representing the end of 

the frame were marked on the wire. The point •A• on the 

horizontal member 4" from the left was also marked. A line 

drawing was made representing the axis of the model in a 

non-deformed state. At each reaction the lines shown on 

Figure B-2 were drawn. 

FIGURE B-2 
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The wire was placed on the drawing and aligned on the 

axis. The end of the right member was fixed by sticking 

pins along side the wire into the drawing board underneath. 

The left member was then displaced to the left and aligned 

on the vertical line which was drawn one inch to the left 

of the axis. The deflection from the horizontal was 

measured at point "A" and found to be .14 inches. This 

measurement was made with a 12• triangular engineer's scale. 

This procedure is illustrated by Photograph I. Then 

according to Maxwell's Law ~: ·i~• wherein His the hori

zontal component of the left reaction and Pis the unit load 

at the point •A•. Since Pis unity, H: .14; however, this 

is not the finally accepted value of H, as will be 

explained. 

The left member was then freed; the right member 

remaining fixed all during the manipulation of the left. 

The left member was displaced l" to the right, 1• up, and 1• 

down. I~ was rotated .2 radian to the left and .2 radian to 

the right. The deflection from horizontal of point •A• 

being read for each displacement of the left member. From 

these deflections values were obtained (in addition to the 

horizontal component of the left reaction) for the vertical 

component and the moment as illustrated in Table 1. 
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TABLE 1 

ner!ection or MoaeI Value of 
It left reaction At point A Average Reaction 

1• to left .14" .12• H = .12 
1n to right .10" 
l" up .62• .62" V - .62 -l" down .628 

.2 rad 1t..1 .04" .07• M - .35 -.2 rad '-' .10• 

When discussing the large displacement model method 

A. J. s. Pippard states, 

It should be noted that a movement on each side of 
the normal is the usual technique adopted as to 
some extent it counteracts the small errors in
volved in the slight alterations of configura1ion 
due to the imposition of large displacements. 

It was this statement that led the writer to take 

deflection readings at point "A" for equal but opposite 

displacements of the left member and to use the average 

value of the deflections in evaluating the components of 

the left reaction. However the writer was not expecting 

differences in deflection as great as those measured for 

the two rotational displacements. 

12 

Being anxious to know if the average of two greatly 

differing deflections would give a correct answer for the 

reaction component, the writer next determined the reactions 

1 A. J. s. Pippard, !.h!_ Experimental Study 2f. 
Structures, p.44. 
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of the frame by the method of moment distribution. The com

putations for which are shown in Figures B-3 and B-4• 

Comparative values for the left reaction are shown below: 

H 

V 

M 

Model Method 

.12 

.62 

.35 

Moment Distribution 

.12 

.60 

.36 

The correct value for Vis of course .60, but the 

correct value for M may be just as near .35 as it is .36. 

In any event the values were close enough to the truth to 

satisfy the writer. 

The next step was to complete the experiment by eval

uating the components of the right reaction. The procedure 

was to fix the end of the left member; cause the various 

displacements of the right member; and measure the deflec

tions of point "A" from the horizontal. The results are 

summarized in Table 2. 

TABLE 2 

betlection ot Mottel Value of 
At right reaction At point l Average Reaction 

1• to left .12• .125" H - .125 -1• to right .13• 
1• up .38• • .39• V :: .39 
1• down .4on 
.2 rad u .10• .085• M: .425 
.2 rad '-" .07n 
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Comparative values for the left reaction are shown 

below: 

Model Method 

H .125 

V .39 

M .425 

Moment Distribution 

.12 

.40 

.44 
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The writer was satisfied with the accuracy of the 

results of this experiment, and decided to forego further 

experiments directed toward the sole aim of determining 

accuracy. It was decided to proceed toward the second 

objective of the study, which was to develop a practical 

technique of model construction and manipulation. It was 

felt that experiments along the latter line, if successful, 

would further substantiate the accuracy of the method. 

Before doing any further experimental work; however, 

the writer felt that it was necessary to know why displace

ments on opposite sides of the normal at the reaction did 

not give the same deflections at the point of load. 

In the general discussion of theory it was stated that 

moment was the principal cause of deflection in a solid 

member structure, and the reader was referred to the 

appendix for a proof of Maxwell's Law. If the reader will 

again consider the proof (for any solid member structure) 

in the appendix, he will note that it is predicated on the 



proposition that the only •real• stress is due to moment, 

and that all of the deflection at •A• is due to moment. 
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Actually, if angle change in a structure is caused by 

a direct force acting on (or a linear displacement of) 

some section there will exist in the structure beth moment 

and direct stress. 

Consider Figure B-5 which shows the wire model in a 

deformed position. The axis of the model in the non

deformed state is shown by the dashed lines. 

FIGURE B-5 
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Let ,6,. represent the total deflection from the horizon

tal of the point •AW. Let •Q• represent the direct force 

applied to the ends of the horizontal member by the deformed 

vertical members. Angle change is also applied to the 

horizontal member, and the angle change, of course, causes an 

upward deflection, ~ 1• Since a direct force applied to the 
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end of a bent member will cause it to bend still more, the 

force •Q• will cause an additional deflection, ~ 2• It will 

be noted from the figure that the deformation of the verti

cal members has pulled the ends of the horizontal member 

below the a.xis. Let this downward deflection be .6. 3• Then 

6-= '6.1 + Ll2 - 63• 

Consider now Figure B-6. 
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FIGURE B-6 
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In this case the vertical members apply a direct 

tensile force to the ends of the horizontal member. The 

deflection due to angle change, ~l' is downward. The 

deflection, ~ 2, due to •T• is upward; and there is again 

the downward deflection, ~ 3 , at the ends of the horizontal 

member. Then in this case Ll = 6 1 - Ll 2 + 6. 3 • 
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Observation of the measured deflections recorded in 

Tables land 2 indicate that the downward deflections at the 

ends of the beam have a larger relative effect on the total 

deflection than do the deflections due to direct stress. 

The case just illustrated was one in which the deformed 

model assumed a shape that was symmetrical about a vertical 

axis. Similar illustrations could be made for the cases 

where the deformed model was not symmetrical. Angle change 

and vertical displacements would cause the unsymmetrical 

cases. If the model assumed an unsymmetrical shape, moment, 

direct stress, and translation of the horizontal member 

would all contribute to the deflection at the point of load 

as before; however, the ends of the horizontal member would 

not be translated an equal distance. 

It is perhaps possible to proceed from the above 

generalized statements to mathematical relationships which 

would prove that the average of the two deflections on 

either side of the normal is the value that gives the 

correct answer when solving reciprocal deflection problems. 

However, the writer did not attempt to develop mathematical 

proofs, again preferring to let the experiments furnish the 

proofs. 

Evidently in the Beggs method the deflection at a 

section is in general small enough that the small direct 

stresses do not appreciably affect the total deflection. 

Also the translation of entire members is generally of a 



negligible magnitude. It is to these very small deforma

tions that the proof (for solid member structures) in the 

appendix applies. 
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C. THE EVOLUTION OF A TECHNIQUE 

The type of wire used in the first experiment (or any 

other kind of tempered wire) has many qualities that would 

make it an excellent material for models. Wire has one 

serious drawback, however. The range of moment of inertia 

values of the different available diameters is limited. 

For example, the range of a few of the available diameters 

of piano wire is as follows: 1/64•, 1/32", and 1/16•. 

Since the moment of inertia of a circle varies directly as 

the fourth power of the diameter, it can readily be seen 

that it would be a practical impossibility to use wire in 

building a model of an actual structure. 

As mentioned earlier the type of model used in the 

Beggs' method would buckle if subjected to large deforma

tions and would thus be unsatisfactory. If a scale model 

of the same shape as the structure was constructed with a 

width sufficient to prevent buckling, it would be so stiff 

that the application of the large deformations would become 

a difficulty. 

While following this line of reasoning the writer 

evolved the idea of making models that would have small 

depths and large widths of section. Such models would 

offer little resistance to the applied deformations, but 

would offer great resistance to buckling. 
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It was decided to try to solve the frame illustrated in 

Figure B-1 with such a model. The material chosen for the 

model was 1/32" sheet balsa wood. The reason for this 

choice was probably that this material had mildly stirred 

the writer's curiosity during the visit to the model 

airplane shop when purchasing the wire for the first exper

iment. 

The balsa model was constructed with a constant width 

of section of 1/4•. The members were made separately and 

the joints cemented with •model airplane• cement. The scale 

of lengths of members was l" = l' the same as was used for 

the wire model. and as before the vertical legs were allowed 

to extend past the 10" points. 

A drawing was prepared very similar to that shown in 

Figure B-2. The same drawing was not used because the balsa 

model turned out to be about 1/32" wider than the wire 

model. The balsa model was then manipulated in the very 

same way the wire model had been. Pins alongside the 

extensions of the vertical legs again being used to hold 

the model in its various deformed shapes. Photograph II 

illustrates the model with the end of the left member 

rotated .25 radians counter-clockwise. The recorded deflec

tions and computed values of the components of the reactions 

are shown in Table 3. They are also compared with the 

values obtained by moment distribution. 
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TABLE 3 

Values by 
Deflection of Model Value of Moment 

It Ielt reaction It ;eoint I Av. Reaction Distribution 

11• le.ft .20• .13• H - .13 .12 -1• right .06• 
1• up • 56• .63• V = .63 .60 
l" down .70• 
• 2 5 rad v .04• .11• JI - .44 .35 -.25 rad u .1a• 

---~--~---------~--------~-----~----~-------~---------------At right reaction 

l" left .10• .14• H - .14 .12 -l" right .1a• 
l" up .30• .35• V = .35 .40 
l" down .40• 
.25 rad u .19" .125" M = • 50 .44 
.25 rad~ .06• 

The values obtained with the balsa model would be 

accurate enough for design purposes but they are not as 

accurate as those obtained with the wire model. The writer 

discovered two possible reasons for this. The first is that 

pins (common straight pins as used by dressmakers) are 

tapered and are very unhandy for fixing a model of 1/4" 

breadth in position. Pins also become inconvenient when 

it is necessary to stick them in a spot that is very near 

to an existing pin hole. It is believed that part of the 

inaccuracy may have been due to inexactness of the caused 

deformations. 

A second cause of inaccuracy may have been variations 

in depth of section of the model. Such variation was large 
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PHOTOGRAPH II 



enough to be detected by eye, and after detection was 

measured with a micrometer. Figure C-1 illustrates these 

variations. 

FIGURE C-1 
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The maximum difference in depth is .0541 - .0418 = 
.0123•; and .0123 is 22.7% of .0541. Since the moment of 

inertia varies directly as the depth to the third power it 

is felt that this variation in depth would certainly give 

rise to inaccuracies. 

To see if all balsa wood sheet were subject to this 

variation, another 1/32• sheet was examined. In the second 

sheet no variation in thickness was discernible by visual 

inspection. The thickness of the sheet was then measured 

at several points with the micrometer. The measured 

thicknesses are illustrated in Figure c-2. 



26 

FIGURE C-2 
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For this sheet the maximum difference in thickness is 

.0355 - .0326 = .0029•; this difference is 8.17% of .0355. 

It was decided to try balsa wood again. building the model 

from this second sheet. 

For this third experiment the frame illustrated in 

Figure C-3 was solved for the reactions. 
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It will be noted that the moment of inertia of the 

horizontal member is different from that of the vertical 

members. From the illustration in the General Discussion 
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of Theory it can be stated that the moment of inertia of 

each part of the model must have the same constant rela

tionship to the corresponding part of the prototype. This 

statement is true if similar constant relationships exist 

for the modulus of elasticity and the scale of lengths of 

the parts. It is, of course, not convenient to vary the 

modulus of elasticity or the scale of lengths. 

The moment of inertia of a rectangular section is 
bdJ expressed by the equation I= --- • If two rectangular 
12 

sections had the same depth their moments of inertia would 

vary directly as their widths. It was arbitrarily decided 

to let the vertical members of the model have a width of 
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3/16". The width of the horizontal member of the model was 

then equal to 960036001875 = .50•. 

The scale of lengths chosen was 1°: 1 1 • The model was 

constructed by cutting the members separately and jointing 

them with model airplane cement. On this model the joints 

were reinforced with a little •haunch• of 1/16• x 1/16" 

strip balsa. This "haunch" was made to extend nearly to 

the edge of the wider member. 

The axis and the guide lines for the caused deforma

tions were drawn as before. This time, however, 2" linear 

displacements and 1/2 radian angular displacements were 

caused at the ends of the vertical members. These larger 

displacements were necessary because the model was so limber 

that inertia and frictional resistances could not be over-

come by displacements of the magnitude previously used. 

The model was placed on the drawing and manipulated in 

the previously described manner. Pins were discarded for 

this experiment, however; the extensions of the vertical 

members being fixed between two pieces of 2• x 2" x 4u 

steel bar stock. The forces exerted on the bars by the 

deformed model were not great enough to overcome the inertia 

of the bars, and thus they remained in whatever position 

they were placed. The bar method was very successful, and 

its great flexibility simplified and speeded up the manipu

lation of the model. 
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The results of the experiment are presented in Table 4. 

They are also compared with results obtained by moment dis

tribution. The moment distribution solution is illustrated 

by Figure C-4· 

Defiection of Model 
At left At point 
reaction of load av. 

2" left .JO" .268 

2" right .22" 
2• up 1.20n 1.20" 
2" down 1.20" 
.5 radu .1811 .35t1 
.5 radu .5211 

TABLE 4 

Value By 
Value of Moment % 
Reaction Distribution Difference 

H - .13 .14 7.1% -
V - .60 .60 0 % -
M -- .70 .76 7-9% 

----------~-~----------~------~----------~~---~~~~~----~~---At right 
Reaction 

2" left .2211 .26" H - .13 .14 2.9% -2" right .JO" 
2" up .74n .74• V - .37 .40 7.1% -2" down .74• 
.5 radu .32• .17" M - .34 .35 7-5% -.5 radu .02" 

The writer feels that this experiment indicates that 

balsa wood is a good material for this type of model if the 

thickness of the sheet is uniform to the required degree. 

The "if• in the preceeding statement is not a disadvantage 

of the material because visual inspection is sufficient to 

establish whether or not the required degree of uniformity 

exists. 



UN IT Ll?AC 

1'2.. 
'1 

I 

FIGURE C-4 

I<. 20 T = (15)'%" : . oee,q 

Viz 30 
~ • (10)2 :11 , '3000 

I">, /Lr :. . oee9 _ 
E. 1"1/L~ . "3 ee 9 • 

~ /L\ . . 3000 _ 
2:. ~/l . ~~ -. 

.228 

,172 

. 
'3 )( ~. ~--~- : - ' 0 G\ .,., } 

I~ +.0%7 
3 X .41 : t.l'"''2.0 10 ~CJ 

.228 X .027 ::. , 00 ~I'=> 

. 77 2 ll. • M .. 7 "' . o '2. 060 
oo (;:, I "' >< 7, ? -:: . 0~ ? 2. 

. 02080 11. 15.<? :: • I 040 

3 )(-. 08 
I '!> 

'3 "' ' 7..'3 
\0 

: -. 0 I "10} 
+ .n,:; 

.. t- • D '=>Cl 0 

. '2.1.B ~ , 053 " . 0 I "Z I 

.77'Zx.or;~ .. ,04?4 

3 \ ;· 0~ ,. _ • 0~ "'j + 

3 ,.. . OB -= i' . O'Z.'4 
\0 

.'228 • .Ol8 : . 00411 
• 7 7 Z /( . 0 18 -: . 0 I 3 q 0 

.o,e 

. 0 I 2 I x 7, !' :. . 0 "1 (') '-
• 041 Q "I>< r;.o •. zo-45' 

.00-111 x 7,5 .. . 0308 

. 0 I 3<l? 'I '5. 0 :: . I? 6 '9 5 
------------·-------------·------·--------·----

CHE.Cl') STORY 
v:. -l.'38-.7'-' 

17 

.<.7 

19,I~ ~1~ o ~ C ~()I:) ~=2~ 
I -;1, , I , 1 o 

- :io 
0 

- .11 
() 

-'!>.&4 
n .. '4<i> 
'!'i'":16 

SHE.AR. ; 

+ \.1'3 ~ ,'37 
10 

:: +. 0/') !7 
.:: L,:;,f ~ _ r,-__,v'{~,r!L, 

- I ."33 
7"i49 
- 3.12 

0 
- .07 

() 

- .17 
0 

•. % 
- 1.9Z 

,lj7 

~,~ ;!~ ('.) ~ Cl ~ ~ C 

++I I I I 

30 

I 
I 

I 
I 
II 
! 

I 

I 

I 

I 
I 

11 
' 

I 
lf 



31 

Not wishing to overlook the possibility of finding a 

better model material the writer decided to solve Frame B 

with a model made of sheet plastic (Plexiglass) and compare 

the results with those obtained with the balsa model. 

A model was then constructed of 1/16" sheet plastic, 

the members being cut out separately and jointed with "model 

airplane" cement. A small "haunch" was used to reinforce 

the joint. The lengths of members and the widths of the 

sections were made the same as for the balsa model. Due to 

the human element, the plastic model was not exactly the 

same size as the balsa one; and so it was necessary to pre

pare a new drawing upon which to perform the manipulations. 

The various deformations were caused and the deflections at 

the point of load were measured. Photograph III illustrates 

the model with the left end rotated 1/2 radian counter

clockwise. 

In Table 5 the results obtained with the plastic model 

are compared with those obtained from moment distribution. 
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PHOTOGRAPH III 
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TABLE 5 

Deflection or Moae! Value by 
% At iert At point Value of Moment 

reaction of load av. Reaction Distribution Difference 

2" left .36n .27• H - .135 .14 3.6 -2" right .18" 
2" up 1.16" 1.18• V = .59 .60 1.7 
2" down 1.20" 
.5 rad,v .24• .36• M -- .72 .76 5.3 
.5 radv .4gn 

-----~----~~~~------~-----~------~-------~-~----~~----------At right 
Reaction 

2" left .26" .30• H - .15 .14 7.1 -2" right .34n 
2" up .72• .74n V - .37 .40 7.5 -2" down .76tt 
.5 radv .3an .20" M - .40 .35 12.5 -.5 rad v, .02• 

These results indicate that slightly greater accuracy 

was obtained with the balsa model. The writer had expected 

the opposite to occur, because wood is not a homogenous 

material. Perhaps plastic is not homogenous either, and 

perhaps the homogenity of the material is not too great a 

factor in the results. It was observed that the plastic 

model was subject to variations in depth of section similar 

to that of the first balsa model. Possibly these variations 

affected the results. The model was checked with the micro-

meter. The depth variations are shown in Figure C-5. 



·r-----
1 

I 
I 
j 

I 
I 

FIGURE C-5 

01.., 
o'°1 
• I 

I 

,, 
~ 

O~I 

34 

The maximum variation is .0625• - .0500• = .0125", and 

.0125" is 20.0% of .0625"• 

The writer feels that the results obtained with the 

plastic model would be good enough to use in the design of 

a structure, however plastic has two distinct disadvantages 

when compared to balsa wood. One is that it is more expen

sive; another is that it is much more difficult to cut. 

During the cutting of the members for the plastic model the 

writer resorted to a jig saw; a coping saw could have done 

the job if time had been of no importance. Thin sheet 

balsa, on the other hand, can be most readily cut with a 

razor blade or a model maker's knife. 

So far all experiments had been confined to determining 

reactions and moments at the ends of framed structures. 

Maxwell's Law is not limited to such special cases; so, for 
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the next experiment, the writer decided to try to determine 

the moment and shear at a point 8 inches £rom the right end 

on the horizontal member 0£ the frame illustrated in 

Figure C-J. The previously constructed balsa model 0£ this 

£rame was used for this experiment. 

In order to cause angle change or shear displacement 

at the selected point it was necessary to cut the model 

there. In order to apply the angle change "levers" were 

made from 1/4" sheet balsa and cemented to the horizontal 

member. These "levers" were made as indicated in Figure 

c-6. 
FIGURE C-6 
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An angle of 1/4 radian was laid of£ on the drawing board 

and used as a template for the angular end of the lever. 

The end of the lever was £irst sliced off at appro~imately 

the correct angle with a razor blade. Then by a trial and 
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error process of making long sweeps across a large sheet of 

"00" sandpaper, flat on the drawing board, and checking the 

resulting angle with the template, surprisingly accurate 

results were obtained. 

After the four levers were cemented to the model the 

actual angles were measured. Figure C-7 shows the measured 

angles. 

FIGURE C-7 
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The angles were measured by placing the model on the 

drawing board and tracing with a pencil along the inside 

edge of the levers and along both sides of the horizontal 

member. The pencil lines were extended and right triangles 

were formed by drawing lines perpendicular to the horizontal 

member. The opposite and adjacent sides of the angle sought 

were measured and the tangent of the angle computed. 

If the two bottom levers were rotated about the point 

of intersection of the four levers until they met, an angle 
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change of .4S2 radians would be induced. The original 

thought had been to use a metal clamp (paper clamp) to hold 

the levers in such a position. However, it was decided to 

use a rubber band instead in order to keep the mass of the 

model at a minimum. 

Since rubber has considerable frictional resistance it 

was necessary to suspend the model. Two cantilever frames 

were made by bending 1/16" welding rod and from these the 

model was suspended with threads. 

The model was suspended above the drawing prepared for 

it when the reactions were being sought. This time the ends 

of the vertical members were fixed, with the steel bars, in 

an undisplaced position. A rubber band was then "doubled" 

several times and looped over two of the levers. The 

deflection of the point of load was then measured. Moment 

displacement is illustrated in Photograph IV. 

It was discovered that it was difficult to measure this 

deflection accurately due to the vertical distance between 

the top of the model and the drawing of the axis. To over

come this difficulty a small flat mirror was obtained and 

marked with a glass cutter as shown in Figure C-8. Small 

pieces of drafting tape were stuck to the corners of the 

mirror. The mirror was then placed on the drawing board 

underneath the model and moved until the point of load on 

the model was directly over the point of intersection of 

the lines on the mirror. The mirror was then taped into 
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position and the distance from the axis to the point of 

intersection of the lines on the mirror was measured. For 

very small deflections the intersection of the line and the 

edge of the mirror was used. 

To solve for shear at the point where the model was 

cut the drawing was added to as indicated by Figure C-9. 
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TABLE 6 

De?Iectlon or MoaeI 
At point 8" from value of 

right on at point adjusted stress value by % 
horizontal member of bad av erase function math. diff. 

.4,S2 rad iv 1.02" .993 M = 1.90 1.97 3.6% 

.523 rad u .ggtt 

-4h-2" 
1.54• 1.60 V = .40 .40 0 % 

-~~- 1.6611 

It was necessary to use an adjusted average in 

computing the moment. because the opposite angle changes 

caused were not equal. This adjusted average was arrived 

at in the following manner: The deflection at the point of 

load due to an angle change of .523 radian ~ was assumed 

to equal • 523 x 1 •02 = 1.105•; the average of this value and .4s2 

.ggn was what the writer called the adjusted average. This 

adjusted average was then divided by .523 radian to obtain 

the moment. 

It should be noted that the average value of the 

deflection of the point of load for the shear displacement 

was divided by 4" instead of 2". Even though the right part 

of the cut model was not used for the shear experiment. it 

had to be kept in mind that shear at a section tends to 

displace the parts adjacent to that section in opposite 

directions. 



D. EXPANSION OF THE TECHNIQUE 

Experiments thus far have indicated that the technique 

can be applied with success to the solution of structures 

in which the several members may have different. constant 

moments of inertia. The question next to arise was: Can 

the technique be applied to the solution of structures in 

which the member or members have varying moments of inertia? 

To obtain a manifestation of a possible answer to the 

question. it was decided to solve the parabolic, elastic 

arch illustrated by Figure C-1 for unit loads at •A, B, C, 

j 

I 

I 

and n.• 
FIGURE D-1 
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Failing to conceive a method of causing sheet balsa to 

assume the parabolic shape in a non-stressed condition, the 

writer decided to build an approximate model by dividing the 

arch into parts. To do this it was necessary to know the 

depth of the arch section at the points of division. These 

depths could have been computed mathematically; they were, 

however, obtained by the more practical method of scaling 

them from a carefully prepared, large scale drawing of the 

arch. This drawing was made to the scale of l": 3,. For 

each of the curves of the extrados, intrados, and axis, two 

points were known (These points, at the crown and the right 

springing, were established graphically.). It was also 

known, of course, that the axes of the parabolas were verti

cal. The two known points of a curve thus were opposite 

corners of rectangles. Parabolas were inscribed in the 

three rectangles by the geometrical method of locating the 

intersection of the tangent and the normal at any point on 
1 

the parabola. Thirty-six points on each of the parabolas 

were thus plotted and connected with straight lines. Very 

close approximations of the true parabolas were thus 

obtained. In the interest of accuracy, all drawing was done 

with a light touch; and thus the drawing can not be repro

duced in this paper. 

1 Charles George Ramsey and Harold Reeve Sleeper, 
Architectural Graphic Standards, Third Edition, p. 297. 
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It was decided to divide the arch into fifteen parts, 

each having a horizontally projected length of eight feet. 

These eight foot lengths were laid off on the large scale 

drawing and projected vertically till they intersected the 

arch axis. At these points of intersection, perpendiculars 

to the tangent of the axis were constructed. The depth of 

the arch at each point was then scaled along these perpen

diculars. The distance along the axis between division 

points was scaled; also the vertical distances from the 

horizontal line through the axis at the crown to the 

division points were scaled. These scaled distances are 

illustrated in Figure D-2. 

The moment of inertia of a section of the arch is 

directly proportional to the third power of the depth at 

that section. The model, having a constant depth of 

section, had to be so constructed that the widths of the 

sections at the division points were all in the same con

stant ratio to the depths, to the third power, for the 

corresponding sections of the prototype. It was arbitrarily 

decided to let the model have a width of .25 inches at the 

crown. The width of the model at the right springing thus 

became .25 X (J.50)3 .....,,5-.......,.-. ............. _ = 2.31 inches. The required width of 
4.62 

the model at each point of division was similarly computed. 
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The model was then laid out on a sheet of balsa 

selected for uniform thickness by visual inspection. The 

layout is illustrated by Figure D-J. The scale of lengths 

chosen was l": 6•. 

A drawing of the "approximate" axis was made from the 

data illustrated in Figure D-2. The model layout was then 

cut nearly through along the lines (shown dashed in Figure 

D-3) separating the parts. The drawing of the axis was 

used as a template, and the sheet of balsa was bent at the 

cut lines so that it aligned with the axis. The steel bars 



were used to hold the sheet in place as "model airplane• 

cement was applied to both sides of the joint. It was thus 

necessary to cement one joint at a time. Four minutes was 

allowed for the cement to dry at each joint. After the 

model was formed to the shape of the axis it was cut to 

width, and the model was complete. 

FIGURE D-3 
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Perhaps the procedure just outlined for constructing 

the model seems tedious. Certainly it is one of the dis

advantages of the method being developed by the writer. 

However, it is not as great a disadvantage as the preceding 

description may have caused it to seem. After the first 

large scale drawing of the arch was finished, less than two 

hours were required to complete the model. The first 

l 
I 
l 

I 
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drawing (or some other method of detennining the dimensions 

of the arch at any section) would also be required for a 

mathematical solution of the problem. 

The •feel• of the stiffness of the model indicated that 

the caused displacements at the springings should be of the 

magnitude of l/2 inch for linear displacements and .2 radian 

for angular displacements. Guide lines for such displace

ments were then added to the drawing of the axis. 

The model was placed on the drawing and manipulated as 

before. Using the mirror. as previously described. deflec

tions from the horizontal were measured at points •A. B. c. 
and D". The horizontal and vertical components of the 

reaction. and the moment. were obtained at each springing 

for a unit load at each point. The results of this experi

ment are shown in Tables 7 and S. Photograph VI illustrates 

the model in a deformed configuration due to angle change at 

the left springing. 
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TABLE 7 

DeFiection of Mooe! 
At Left 

~ Springing At Point of Load Scale Value of 
I B C D Av. A-z. Factor Reaction 

.31" .29• 1.45 6 MA: $.70 

.27" 
.2 radu .09" .045tt .225 6 MB : 1.35 
.2 radu .00" 

.28" .225" 1.125 6 Mc: 6.75 

.17• 
.09" .10" • 50 6 ~: 3.00 
.11" 

----------------------------------~-------------------------
.23" .235" HA: .47 
.24" g: left .53n .575n HB: 1.15 

right .62" 
.44• .49n He: .9g 
.54n 

.13" .15" HD= .30 

.17" 
-----------------~--------------~---------------------------

-4511 .42n VA: .e4 
.39n r· up .J7" .245n VB: .49 

It down .12" 
.14" .07" Ve: .14 
.00" 

.0011 .01" VD: .02 

.02" 



TABLE 8 

Deflection of Modei 
At Right 

Springing At Point of Load 
A B c D Av. 

.2211 .215" 

.21" 
.2 rad u .39n .38" 
.2 radu .37n 

.07" .135" 

.2011 

.34n .405" 

.47n 

51 

.6.,/ Scale Value of 
/.61. Factor Reaction 

1.075 6 MA= 6.45 

1.90 6 ~ = 11.40 

.675 6 Mc= 4.05 

2.025 6 MD: 12.15 

---------------------------------------------------~---------
.23• • 23 5" HA= .47 
.24• 

t" left .61" .565• HB: 1.13 ~· right .52n 
.5ou .49tt He: .9$ 
.48" 

.1511 .16" HD= .32 

.17• 

----------------------------------------------~----~-------~-
.07" .07" VA - .14 -.07" 

j" up .33n .25" VB = .50 
~" down .17" 

.47tt .415" Ve - • 83 -.3611 

.48" .49n VD: .9$ 

.5on 
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PHOTOGRAPH VI 
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It should be noted from Tables 7 and$ that there is 

involved, in the computations for moment, what the writer 

calls a scale factor. Actually this scale factor was 

present in all the previous experiments; however, since its 

value was unity, a discussion of it was deferred. Moment 

has the dimensions of force-times-distance; while angle 

changes are dimensionless ratios. Consider the deflection 

at point "A• on the arch when an angle change of .2 radian 

was caused at the left springing {see Table 7). The average 

deflection was expressed in terms of inches, and was equal 

to .29 inches. Since one inch on the model was equal to 6 

feet on the prototype, when .29 inches was divided by .2, 

the moment (1.45) at the left springing of the prototype due 

to a unit load at "A" was in terms of 1/6 foot pounds (if 

the unit load was one pound). 

When single dimension quantities {shear, horizontal 

and vertical components of reactions, etc.) are being 

sought, there is no scale factor; because the applied dis

placements have the dimension of distance. 

The arch was solved by the method developed by Pro

fessor Hardy Cross which combines the Column Analogy and 

graphic statics. 2 This solution is illustrated by Figures 

2 Hardy Cross and Newlin Dolbey Morgan, Continuous 
Frames of Reinforced Concrete, p. 279-2$$. 
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D-4, D-5, and D-6. The results are compared with the exper

imental results in Table 9. 

TABLE 9 

EXPERIMENTAL VALUES 
From Displacements From Displacements 
At Left Springing At Right Springing 

COLUMN' ANALOGY VALUES 

~A: S.67 
~13 = 1.55 
Mc: 7.11 
MD: 2.95 

------------------------------------------------------------

Ve= .157 
VD: .023 

------------------------------------------------------------
~_A. = 6.45 
IV113: 11.40 Mc: 4.05 
MD: 12.15 

---~--------------------------------------------------------

------------------------------------------------------------
.14 
.50 
.$3 
.9$ 

.155 

.524 
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FIGURE D-6 
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The values for the moments by the column analogy were 

obtained by multiplying the horizontal component of a 

pressure line by the scaled distance along a vertical line 

through the axis, at the springing, to the intersection of 

the vertical line and the pressure line. 
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Figure D-7 shows a force polygon constructed from the 

average values, experimentally obtained, of the horizontal 

and vertical components of the reactions. Figure D-8 com

pares the pressure lines obtained experimentally with those 

obtained by the column analogy (column analogy pressure 

lines are shown dashed). The experimentally obtained 

pressure lines were located on the arch by reversing the 

procedure described in the preceding paragraph. 

Table$ and Figure D-8 indicate that the experimentally 

obtained moment at the right sprining due to a unit load at 

· •c• is in error. This moment was rechecked; but the same 

result was obtained, so the error will have to remain. 

However, the writer feels that the experimental solution of 

the arch was quite successful. The values of stresses thus 

obtained would be well within the limits of accuracy 

necessary to design such a structure. 
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FIGURE D-7 
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E. A PRACTICAL APPLICATION 

The prototype structure of the preceding experiment 

could very well have been the arch of a bridge; if so, it 

would have had a superstructure. Undoubtedly such a 

structure would be of reinforced concrete which is an 

inherently continuous material. It was however analyzed, 

both experimentally and mathematically, as though the arch 

and superstructure acted independently. The assumption 

being made that the columns of the superstructure applied 

direct vertical loads to the arch at points "A, B, C, and 

D". This assumption is always made in any mathematical 

analysis of this type of problem, because an attempt to 

consider the arch and superstructure as monolithic in a 

mathematical analysis would prove to be too difficult to be 

practical. To be sure, a good designer would consider the 

effect of the superstructure on the arch; but his consid

eration would be based upon his judgement, and he would not 

have any "numbers" arrived at mathematically to aid such 

judgement. 

It appeared to the writer that it would not be diffi

cult, by the experimental method presented in this paper, 

to make an analysis of the structure as an entity; so the 

superstructure illustrated by Figure E-1 was added to the 

model of the arch. 



FIGURE E-1 

OIME.N.SIONS SHOW~ ARE WIDTH.S , 

OF MEMBE.R.S 
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The stiffnesses of the members of the superstructure, 

as determined by their widths of section, were made propor

tionate to what their actual stiffnesses might be, if the 

structure followed the form that American engineers 

customarily use (See Photograph VII). Of course those 

stiffnesses could take other relative values; the arch might 

become as thin as the superstructure members (See Photo

graphs VIII and IX). The writer does not know how Mr. 

Maillart analyzed his bridge. There are rumors that he used 

a model method; other rumors have it that instinct was his 

primary tool of analysis. However that may be, the writer 

believes experimental methods of analysis to be instruments 

that could transport the designer of structures beyond the 

prosaic limits within which a sole dependence upon mathe

matics would confine him. 
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PHOTOGRAPH VII 

216. Hainbow Bridge n 'ar Carmel. alif rnia. Thr :ame problem - a narro1L' unr!J 
a~· in the u.'is ml/ey. 'sing the normal conslrucliun, the approach liad lo be built in · 
'/t'rf'd ~t,rf ions; I he alignment of the bridye rould not IJe curi•ed. 

Photographs VII, VIII, and IX are reproduced from 

Space,~ !!!1 Architecture by Sigfried Gideon. 



PHOTOGRAPH VIII 

The bridge illustrated in Photographs VIII and IX was 

designed by the late Robert Maillart. renowned Swiss engineer. 
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PHOTOGRAPH IX 

211. \I \ILL\ltT. Sdnrn11dbad1-Brii"k1•, Canton B1·mt•. JlJ:n. Air 1•i1•11·. \111i/larl 

rt'. u/1'1'1! liritl!fl'-liurliliny into a sysln11 <~{ .flat and r11rr•1•d slalm. In ,\laillarf's lr11111/s !hr 
riy,,/ify ,~r flw s/<1/1. ltiflwr/o (Ill inl'alnllah/1• .f111'lur in ('()flslrudion, lwrnflrt' (If/ 11dir1• /Jc(lrin!l 
.·111'(11,·, ·. 'J'lw lur.·101111/ sfrni11 tlml 1rn11/d lrm·1· lob(• ollorl'1•d for in II row·rcfr brhlyr huilt 011 
"r11nin111diu11r,wnl r1111 lw 11/ili:,·d only Iii' lltis 111rflwd <d ronslr11rlw11. 
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To return to the experiment at hand, the superstructure 

was fabricated of 1/32" sheet balsa. The parts were joined 

and cemented to the arch with model airplane cement. The 

model was then placed on the drawing prepared for the pre

ceding experiment, and the reactions were determined for 

unit loads at •A, B, c, and D". This was done in order to 

obtain results that could be compared with those of the 

previous experiment, so that the effect of the superstruc

ture could be demonstrated. Actually, one of the advantages 

of the experimental solution of this type of problem is that 

the location of the load or loads that will produce the max

imum values of the stress function sought can be quickly 

determined. Thus, if the arch with superstructure were 

being analyzed for moving loads, deflection measurements for 

points other than •A, B, C, and D" would have been taken. 

The results of the experiment are presented in Tables 10 and 

11. In Table 12 these results are compared with the experi

mental results for the arch alone. Photograph X illustrates 

the model with the right springing displaced .25 radian \J. 

The writer feels that the best procedure of analysis 

with the model would be to solve only for the reactions, 

including moment, experimentally; and then obtain values of 

the various stress functions at other sections of the 

structure.by statics. 
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TABLE 11 

Deflection of Model 
Xt Right 

Springing 

.5 radv 

.5 radu 

i: left 
right 

At Point of Load 
A B C D 

.17" 

.13" 
.11" 
.24" 

.10" 

.09" 
.25" 
-35" 

.26" 

.28" 
.62" 
.491t 

.49n 

.42n 
.16" 
.21" 

6-,L' Scale Value of 
Av. /6. 2. Factor Reaction 

.15 .75 6 MA II 4.50 

.175 .875 6 MB= 5.25 

.095 .475 6 Mc = 2.85 

.30 1.50 6 Mo a 9.00 

.27" HA• .54 

.555n HB • 1.11 

.4551t He= .91 

.185" Hn = .37 

-----~----~------~---~----------------~----------~----------
.11" .10" VA = .20 
.09" 

i: up -34" .255" VB = .51 
down .17" 

.46tt .395" Ve = .79 

.33« 
.44n .46tr VD - .92 -.4sn 
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TABLE 12 

REACTIONS AT LEFT SPRINGING REACTIONS AT RIGHT SPRINGING 
With Without With Without 

Superstructure Superstructure Superstructure Superstructure 

MA 5.S5 8.70 4.50 6.45 
MB 1.95 1.35 5.25 11.40 

~ 
4.20 6.75 2.85 4.05 
2.55 3.00 9.00 12.15 

HA • 56 .47 • 54 .47 
HB 1.15 1.15 1.11 1.13 
He .93 .9g .91 .98 
Hn .36 .30 .37 .32 

VA .e1 .$4 .20 .14 
VB .49 .49 .51 .50 
Ve .19 .14 .79 .BJ 
Vn .10 .02 .92 .9$ 
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PHOTOGRAPH X 



F. CONCLUSIONS 

Though the number of experiments performed was not 

sufficiently exhaustive that absolute truths could be estab

lished, the writer feels that the experiments did give 

indications as to what such truths might be. 

It is felt that if there are inherent inaccuracies, in 

the reciprocal deflection model method, due to the imposi

tion of relatively large displacements, that such inaccura

cies are small, so long as the elastic limit is not 

exceeded; and so long as the average value of displacements 

on either side of the normal is used. Probably the next 

step in the verification of the accuracy of the method 

should be the derivation of mathematical relationships which 

would prove or disprove such accuracy; and which would 

explain why it is necessary to use the average of the two 

deflections. 

The experiments indicate that the method of model con

struction and manipulation evolved and presented in this 

paper can yield results sufficiently accurate for the design 

of structures; and that the method can be applied to struc

tures too difficult to analyze by mathematics. This appears 

to be true in spite of the fact that a model constructed by 

the presented method does not take into account the cross 



sectional area of the prototype structure; even though 

direct stress in the members of the model would seem to be 
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a factor that can not be neglected as a cause of deflection. 

Here again a mathematical study is in order. 

The writer at this point would like to say that he has 

not intended to minimize the importance of mathematics. It 

is. of course. a most necessary adjunct to experimentation 

in the development of scientific theories; and it can be a 

powerful tool to the designer of structures. The writer 

does believe. however. that •calculations" should be servant 

and not master. 

For a closing statement it would be impossible to do 
l 

better than quote Leonardo Da Vinci who said. 

"Those sciences are vain and full of errors which do 

not end with one clear experiment." 

l Harvey F. Girvin.! Historical Appraisal .2f. 
Mechanics. p. 57. 



G. APPENDIX 

The following proof of Maxwell's Law of Reciprocal 

Deflections was presented in Architecture 434, a course in 

statically indeterminate structures at Oklahoma A. and M. 

College, by Professor R. E. Means. 

In any structure made up of trusses or solid members, 

such as shown in the illustration on following page, assume 

an imaginary unit load at a point where the deflection is 

desired acting in the direction of the deflection. If the 

deflection is due to change in length of members in the 

truss or to change in length of fibers in the solid members 

(angle change), then the external virtual work done equals 

the deflection (distance through which the imaginary unit 

load is moved) times one; i.e., l ~A• and the internal 

virtual work done is equal to the stress in each member 

caused by the imaginary unit load times the change in length 

of the members (distance through which stress is moved). 
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ANY SOLID MEMBER STRUCTLJP:E. 
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