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Abstract 

The purpose of this study is to create a genetic algorithm to further enhance the 

current half season ticket packaging process in the event industry through a case study 

with the Cleveland Cavaliers of the National Basketball Association. The focus of this study 

is on the integration of machine learning and heuristic methods to simulate the human 

decision making currently taking place across the industry. This study will cover the 

methodologies being proposed for the overall, integrated approach. The methods that we 

cover in this study  surround the tiering of events using K-Medoids and the makeup of the 

genetic algorithm that was implemented to solve for optimal half season packages using 

the Cleveland Cavaliers home schedule. Then, using the interaction between these two 

methodologies, we analyze the results in collaboration with domain experts from the 

Cavaliers. This study will show how the usage of machine learning paired with a genetic 

algorithm can affectively simulate and improve upon the current process for determining 

half season ticket packages. Furthermore, future improvements, such as the addition of 

predictive analytics and fan behavior are explored to supplement this work and lead to 

future areas of research and development.  
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Chapter 1: Introduction 

The entertainment and event industry has been a hallmark of recreation for people  

worldwide. From large venue concerts to sporting events, there exists a wide array of 

events that have varying appeal to consumers. Some patrons have their preferences for 

entertainment and choose to purchase tickets in bundles to save money and secure their 

spot at their favorite events.  The National Basketball Association (NBA) is a multi-billion 

dollar-industry, with ticket sales serving as a crucial revenue stream for teams (Forbes, 

2023). As one of the most successful franchises in the league, the Cleveland Cavaliers 

(Cavs) provide an excellent case study for examining the intricacies of ticket sales and the 

potential for optimization. In an increasingly competitive market, sports organizations 

must adapt and innovate to maximize efficiency and enhance the fan buying experience.  

Currently, NBA teams employ various ticketing strategies, such as season tickets, 

split season packages, and single-game sales. However, the strategies to create the split 

season packages often face limitations in terms of efficiency leading to suboptimal time to 

market after the season schedule is released. The process is rather manual, which opens 

the door for subjective opinions to be put into consideration rather than objective 

decisions driven by previous buying behavior. The approach fails to account for the holistic 

nature of the schedule due to the complexity and wide array of decisions that need to be 

made for a 40-game schedule. With each decision being multidimensional, it can become 

tough to analyze each one in depth in a standard fashion.  The approach is collaborative, 

which should be celebrated in any business process, but with many decisions to be made, 
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this causes an inefficient process that can take one to two weeks to make a final decision. 

While the process is important to improve upon, the end product is the true focus.  

A season split package is when the home schedule for a team is split into 2 or more 

offerings for purchase by fans. Each package contains games that are dispersed throughout 

the entire season. When creating split season packages in half and quarter seasons, it is 

paramount to provide an equivalent value to consumers. Viewing the packages as separate 

inventory items, the goal is to make each package as appealing as the other to equalize 

consumer demand. The consequences of not doing so could lead to an underselling of 

certain packages, which can impact the revenue gained for the games within those 

packages. Additionally, if the higher demand value packages sell out it can leave consumers 

feeling slighted, leading to consumer dissatisfaction. Optimizing ticket packages is crucial 

for teams to maximize attendance, revenue, and fan satisfaction. 

The advent of technology presents a unique opportunity for organizations to 

leverage advanced methods, such as machine learning and genetic algorithms, to 

dynamically optimize ticketing packages. By adapting to this new paradigm, teams can gain 

a significant competitive advantage and better serve their fans. 

One key aspect of the proposed solution is tiering the games. This involves 

categorizing games based on their expected demand, such as high-demand marquee 

matchups and lower-demand regular-season games. Ticket tiering allows teams to price 

tickets more effectively, aligning with the perceived value of each game. Machine learning, 

a branch of artificial intelligence, can be applied to analyze historical data, such as past 
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attendance, opponent strength, and day of the week, to predict demand and automatically 

assign games to appropriate tiers. 

By harnessing the power of machine learning, NBA teams can make data-driven 

decisions and optimize their ticketing strategies. This benefits the organization through 

increased revenue and provides fans with more tailored and appealing ticket options. 

While machine learning offers a way to tier games effectively, the genetic algorithm brings 

a unique optimization solution to the table, enabling teams to create the most attractive 

and balanced ticket packages. 

Genetic algorithms, inspired by the principles of natural selection, have proven to be 

powerful tools for solving complex optimization problems. These algorithms have found 

applications in various domains, such as supply chain management (Altiparmak et al., 

2006), financial portfolio optimization (Metaxiotis & Liagkouras, 2012), and transportation 

routing (Jozefowiez et al., 2008). In the context of the NBA, a genetic algorithm can be 

employed to optimize the scheduling of ticket packages, ensuring an even distribution of 

high-demand and low-demand games within each package. 

The interplay between machine learning for game tiering and genetic algorithms for 

package optimization offers a sophisticated and adaptive approach to solving the ticket 

package optimization problem in the NBA. This powerful combination has the potential to 

revolutionize ticketing strategies and set a new standard for this time-consuming process. 

The genetic algorithm, as applied in this context, works by encoding potential 

package combinations as "chromosomes" and iteratively evolving them through selection, 
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crossover, and mutation operations. The fitness of each package combination is evaluated 

based on criteria such as the balance of game tiers and the spacing between games, which 

contribute to the overall attractiveness to fans. At the time of this writing, the fitness 

evaluation metric presented in this research represents a novel approach in the field of 

optimization, offering a unique and comprehensive method for maximizing equivalence. 

Through successive generations, the algorithm converges towards an optimal set of ticket 

packages that helps maximize the revenue potential by providing equal package splits. 

The significance of this study extends beyond the Cavs and the NBA, as the findings 

and methodologies presented here can be adapted and applied to other sports leagues and 

the broader event and entertainment industry. By showcasing the benefits of advanced 

optimization techniques, this study encourages organizations to embrace data-driven 

decision-making and innovative ticketing strategies. The successful implementation of 

these methods can lead to a more sustainable and efficient process, benefiting both 

organizations and their patrons. This application of a genetic algorithm, paired with a 

machine learning-based game tiering, presents a novel approach to optimizing ticket 

package combinations in the event and entertainment industry, offering opportunities for 

operational efficiencies and customer satisfaction, as demonstrated through a case study of 

the Cleveland Cavaliers' 2023-24 half season ticket packages. 
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Chapter 2: Literature Review 

2.1 Sports Ticketing Analytics 

   2.1.1 Broader purposes and methodology 

      The act of searching for the most favorable deal while buying tickets for sporting events 

over a period of time is fundamentally comparable to a behavior observed in behavioral 

ecology known as foraging and patch exploitation (Ødegaard et al., 2023; Drayer et al., 

2022). Optimization models have been utilized by behavioral ecologists to examine how 

animals seek out natural food resources at regular intervals while considering uncertain 

time and environmental constraints (Reese and Bennett, 2013). Similarly, consumers 

engage and search to make predictions and decisions on when to purchase tickets based on 

various indicators and evaluations of uncertainty in the pre-sale ticketing environment 

(Ødegaard et al., 2023). 

Research in the field of sports has highlighted the significant level of uncertainty 

associated with pre-sale ticketing, which makes it inherently difficult to predict demand 

and prices for sports events (Jee and Hyun, 2023). This uncertainty is influenced not only 

by factors related to time and environmental variables (such as temperature, precipitation, 

time of the event, part of season, weekday/weekend, days before event, etc.) (Marquez, 

2020), but also by dynamic team and individual performance factors (such as star player 

injuries, home and team winning percentage, season rankings, playoff contention, etc.) 

(Arslan et al., 2020; Solanellas et al. 2022), which have been found to have a significant 

impact on game attendance and ticket prices. Sports fans value the unpredictability of the 

product, which can change rapidly and frequently throughout the season, and this 

ultimately affects their perception of the product's usefulness. 
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Jee and Hyun (2023) suggest that given complete information, consumers would 

have access to all the relevant context they need to make decisions about when to purchase 

sports event tickets. However, due to inherent time and resource constraints, as well as 

natural cognitive limitations, consumers often use quick and automatic decision-making 

that are influenced by their intuition. 

Drayer et al. (2022) note that the value of a sport ticket changes constantly, making 

it challenging for consumers to accurately determine the optimal time to purchase tickets 

for a sporting event. This dynamic pricing environment in sports ticketing introduces 

additional complexity and uncertainty for consumers. 

The different consumers of sports products are further divided into various 

segments of sports enthusiasts who possess a comprehensive understanding of the product 

elements and exhibit a significant psychological and emotional connection to it . Passionate 

sports fans closely track daily game statistics, player salaries, and injury reports and have a 

profound emotional attachment to their team and players. This creates a fanatic culture in 

which die-hard sports fans consistently follow and discuss the latest updates and real-time 

information through dedicated sports media channels and social media platforms online. 

Reese and Bennett (2013) found that the degree of fan involvement with their 

preferred sports team can impact their risk perceptions. A risk to the sports fan can be a 

star player sitting out or their favorite team not winning the game they choose to attend.  

High levels of fan involvement generally led to lower risk perceptions and higher levels of 

risk-taking behavior. This is frequently attributed to the emotional attachment that fans 

develop with their team, which can lead to a sense of invulnerability and a willingness to 

overlook potential risks. 
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2.1.2 Analytical Methods Used in Sports Business 

The industry of sports ticketing has witnessed a significant transformation in recent 

years, with the advent of advanced analytical methods and technologies. These innovative 

approaches have empowered organizations to optimize their ticketing strategies, enhance 

revenue generation, and improve the overall fan experience. In this section, we will look 

into the various analytical methods employed in sports ticketing, including data mining, 

predictive modeling, and machine learning, and explore their applications in the industry. 

Data mining has emerged as a crucial tool in the sports ticketing landscape, enabling 

organizations to uncover valuable insights from vast amounts of data. By leveraging data 

mining techniques, teams can identify patterns, trends, and correlations in ticket sales, 

customer behavior, and market dynamics (Singh, 2020). This knowledge allows them to 

make data-driven decisions, such as identifying high-demand games, optimizing pricing 

strategies, and targeting specific customer segments. Sacha et al. (2014) demonstrates the 

effectiveness of feature-driven visual analytics in soccer data, highlighting the potential of 

data mining in sports analytics. 

Predictive modeling is another powerful analytical method that has gained traction 

in sports ticketing. By utilizing historical data and machine learning algorithms, predictive 

models can forecast future ticket demand, revenue, and customer behavior (Brooks et al., 

2016). These models consider a wide range of factors, such as team performance, opponent 

strength, weather conditions, and promotional activities, to generate accurate predictions. 

Predictive modeling enables organizations to proactively adjust their ticketing strategies, 

optimize inventory management, and enhance dynamic pricing capabilities.  
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Machine learning, a subset of artificial intelligence, has revolutionized the way 

sports organizations approach ticketing analytics. Machine learning algorithms can 

automatically learn from data, identify complex patterns, and make intelligent predictions 

without being explicitly programmed (Bhatnagar & Babbar, 2019). In the context of sports 

ticketing, machine learning can be applied to various tasks, such as demand forecasting, 

price optimization, and customer segmentation. By continuously learning from new data, 

machine learning models can adapt to changing market conditions and consumer 

preferences, enabling organizations to stay ahead of the curve. 

The concept of variable ticket pricing (VTP) has gained traction in the sports 

industry as a means to optimize revenue by adjusting ticket prices based on factors such as 

opponent quality, day of the week, and special events. Rascher et al. (2007) investigate the 

application of VTP in Major League Baseball (MLB), showcasing how teams can leverage 

this strategy to increase ticket revenue by aligning prices with demand fluctuations. Their 

findings indicate that optimal VTP implementation can yield substantial revenue gains for 

MLB teams, highlighting the importance of data-driven strategies in sports ticketing. 

Specific techniques within these analytical methods have proven to be particularly 

effective in sports ticketing. Clustering, for instance, allows organizations to group 

customers based on their purchasing behavior, preferences, and demographics (Bhatnagar 

& Babbar, 2019). This segmentation enables targeted marketing campaigns, personalized 

offers, and tailored ticketing packages. Regression analysis, on the other hand, helps in 

understanding the relationship between ticket sales and various influencing factors, such 

as team performance, ticket prices, and promotional activities (Brooks et al., 2016). Time 

series forecasting techniques, such as ARIMA and exponential smoothing, are employed to 
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predict future ticket demand based on historical sales data, enabling organizations to 

optimize inventory and pricing decisions (Singh, 2020). 

The application of analytical methods in sports ticketing has seen significant 

advancements in recent years, with organizations leveraging these techniques to optimize 

revenue management and enhance fan engagement. One such area of focus is the bundling 

of tickets and the scheduling of league games to maximize revenue generation. Duran et al. 

(2012) explore the interplay between league scheduling and game bundling decisions in a 

double round robin tournament setting. By utilizing a heuristic method that incorporates 

approximate expected revenue values based on revenue increase and decrease patterns of 

bundled tickets, they demonstrate the potential for significant revenue enhancements 

through strategic scheduling and bundling practices. 

The use of evolutionary algorithms has emerged as a promising approach for 

tackling the complex challenges of sports scheduling. Barone et al. (2006) propose a multi-

objective evolutionary algorithm for fixture scheduling in the Australian Football League 

(AFL), this method takes into account various factors such as competition fairness, revenue 

expectations, and venue availability. By simultaneously optimizing multiple objectives, 

their approach generates a range of alternative solutions that trade off different criteria, 

offering flexibility to decision-makers. The successful application of evolutionary 

algorithms in this context underscores the potential of these techniques to address the 

intricate requirements and constraints inherent in sports scheduling problems. 

As the sports industry continues to evolve, the integration of advanced analytical 

methods and innovative ticketing strategies will become increasingly crucial for 

organizations seeking to stay ahead of the curve. By using data mining, predictive 
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modeling, and machine learning, teams can uncover valuable insights, optimize pricing and 

bundling decisions, and create better fan experiences that drive long-term success.  

2.2 Clustering and Tiering 

   2.2.1 Overall methods 

Clustering is a fundamental technique in data analysis and pattern recognition that 

plays a pivotal role in uncovering hidden structures and relationships within datasets (Xu 

& Tian, 2015). By grouping similar objects together based on their inherent characteristics, 

clustering enables people to gain valuable insights and make data-driven decisions.  

The origins of clustering algorithms can be traced back to the seminal work of Hugo 

Steinhaus in 1956. In his paper "Sur la division des corps matériels en parties," Steinhaus 

formulated the problem of partitioning a set of points into K clusters in a finite-dimensional 

space, with the objective of minimizing the sum of squared distances between each point 

and its assigned cluster centroid (Steinhaus, 1956). This formulation laid the foundation 

for the development of the K-means algorithm and its variants, which have become 

indispensable tools in the field of data clustering. 

K-means stands out as a simple yet powerful method for partitioning data into K 

clusters (MacQueen, 1967). The algorithm iteratively assigns each data point to the nearest 

cluster centroid and updates the centroids based on the mean of the assigned points. 

Despite its simplicity, K-means has proven to be effective in various domains, including 

customer segmentation and product categorization (Punj & Stewart, 1983). Another 

popular clustering algorithm is K-medoids, also known as Partitioning Around Medoids 

(PAM) (Kaufman & Rousseeuw, 1990). Unlike K-means, which uses the mean of the data 

points as the cluster centroid, K-medoids selects actual data points as cluster 
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representatives (medoids). This property makes K-medoids more robust to outliers and 

noise compared to K-means, as the medoids are less sensitive to extreme values (Park & 

Jun, 2009). 

Density-based clustering algorithms, such as DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise) (Ester et al., 1996), offer a different perspective on 

clustering. These algorithms define clusters as dense regions separated by areas of lower 

density. DBSCAN can discover clusters of arbitrary shape and is particularly effective in 

handling datasets with noise and outliers. By setting appropriate parameters for density 

thresholds, DBSCAN can uncover meaningful clusters that may be overlooked by other 

algorithms (Schubert et al., 2017). The choice of clustering algorithm depends on various 

factors, including the nature of the data, the desired number of clusters, and the presence of 

noise or outliers. In the context of tiering, the selected algorithm should be able to capture 

the underlying patterns and similarities among customers or products, enabling the 

creation of meaningful and actionable segments. 

K-means, K-medoids (PAM), and density-based clustering algorithms (e.g., DBSCAN) 

are three prominent clustering techniques, each with its own strengths and weaknesses. K-

means and K-medoids tend to produce spherical clusters, while density-based algorithms 

like DBSCAN can identify clusters of arbitrary shapes and are less sensitive to outliers K-

means is relatively efficient but sensitive to the initial choice of cluster centers, while K-

medoids is more robust to outliers but less scalable. Density-based algorithms require 

careful parameter tuning and may struggle with high-dimensional data (Saxena, A., Mittal, 

M., & Goyal, L. M., 2015). 

 2.2.2 Determining Number of Clusters 
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At the core of the clustering algorithms is figuring out how many clusters is optimal 

for the dataset. First proposed by Robert L. Thorndike was a version of what is now 

referred to as the elbow method. Thorndike, R. L. (1953). In this work, he speculated about 

the use of plotting the explained variance as a function of the number of clusters and 

identifying the "elbow" of the curve as the optimal number of clusters to use. This 

approximation, while computationally efficient, has its limitations.  

As Schubert (2023) points out, the elbow plot lacks a clear theoretical foundation 

and is highly sensitive to the scaling of the axes and the range of k values considered. The 

author argues that the heuristic approaches used to formalize the notion of an "elbow" are 

often based on visual interpretation and fail to take into account the underlying process 

that generates the data. Furthermore, the elbow method has been found to perform poorly 

on datasets with overlapping clusters, non-convex shapes, or varying cluster sizes 

(Schubert, 2023). These limitations suggest that relying solely on the elbow method for 

determining the number of clusters can lead to suboptimal results and that alternative 

methods should be considered instead. 

 The gap statistic proposed by Tibshirani et al. (2001) offers a more principled 

approach to estimating the optimal number of clusters. The gap statistic compares the 

observed within-cluster dispersion to the expected dispersion under a null reference 

distribution, typically generated by sampling uniformly from the range of the data. By 

standardizing the graph of 𝑙𝑜𝑔(𝑊𝑘) against this reference distribution, the gap statistic 

aims to identify the value of k  for which the observed dispersion falls furthest below the 

reference curve. This approach effectively addresses some of the shortcomings of the 

elbow method, such as the lack of a clear theoretical foundation and sensitivity to the 
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scaling of the axes. However, as Schubert (2023) notes, the gap statistic's performance can 

be sensitive to the choice of reference distribution and may exhibit instability with default 

sample sizes on challenging data sets. 

    2.2.3 Tiering 

In the context of customer segmentation and product categorization, the concept of 

tiering emerges as a powerful application of clustering techniques. This method involves 

the strategic splitting up of customers or products into distinct groups based on their value, 

preferences, or other relevant attributes (Zeithaml et al., 2001). This approach allows 

organizations to tailor their offerings, pricing strategies, and marketing efforts to specific 

segments, thereby enhancing customer satisfaction and optimizing revenue potential. The 

process of tiering relies heavily on the effective implementation of clustering algorithms, 

which can identify meaningful patterns and similarities within the data. 

Currently,  the Cleveland Cavaliers tier their games using a weighted k-means 

cluster algorithm to form hierarchical tiers based on a cumulative value. For instance, the 

Boston Celtics on a Saturday, would be weighted higher than a Houston Rockets game on a 

Wednesday. This is due to the Celtics having a better record and being on a weekend, which 

historically has been understood to be a better revenue generating day of the week. This 

approach has proven to be an effective means for the organization to understand the 

relative value of games compared to one another. Using a method like this has led to better 

interpretability and understanding of the method for the business’s stakeholders. However, 

this method does have its drawbacks. The weights given to each metric are arbitrary on 

how individuals feel the variable should rank in terms of importance on the model. While 

weights are a great strategy to further reduce the decision down to a single point, more 
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work should be done to determine the true importance of variables outside of this study. 

Overall, it is a great step in the right direction by integrating machine learning techniques 

into the current business process (Quinn Spangler, personal communication, June 13, 

2024).  

The application of machine learning in ticket tiering is just one example of its 

potential in the sports industry. In various other sectors, such as retail and finance, 

machine learning has been successfully employed for customer segmentation (Neptune.ai, 

2023), fraud detection (Ravelin Technology, n.d.), and predictive maintenance (SCW.AI, 

2023).  

2.3 Heuristics & Optimizations 

   2.3.1 Purpose  

Metaheuristics have emerged as a powerful class of algorithms that can effectively 

navigate vast search spaces and find near-optimal solutions in a reasonable amount of time 

(Yang 2020). These techniques have gained significant attention due to their ability to 

adapt to various problem domains and their potential to tackle real-world challenges that 

traditional optimization methods struggle with. 

At their core, metaheuristics are high-level problem-independent algorithmic 

frameworks that guide the search process through a complex solution space (Sörensen et 

al. 2017). They combine heuristics, which are problem-specific strategies, with overarching 

frameworks to efficiently explore and exploit promising regions of the search space. 

Heuristics play a crucial role in metaheuristics by providing domain knowledge and 

guiding the search towards feasible solutions (Gendreau and Potvin 2005). These 

heuristics are often inspired by natural phenomena, such as evolution, swarm intelligence, 
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and physical processes, leading to the development of a diverse range of metaheuristic 

algorithms. 

The primary goal of optimization techniques is to find the best solution among a set 

of alternatives while satisfying given constraints (Talbi 2009). Traditional optimization 

methods, such as linear programming and gradient-based techniques, have been 

successfully applied to well-defined problems with specific properties. However, many 

real-world optimization problems are characterized by non-linearity, multi-modality, and 

high dimensionality, rendering these classical methods ineffective or computationally 

intractable (Mahdavi et al. 2015). Metaheuristics have emerged as a powerful alternative, 

capable of handling the complexities and uncertainties inherent in these challenging 

problems. 

One of the key advantages of metaheuristics is their flexibility and adaptability. 

Unlike problem-specific algorithms, metaheuristics provide a general-purpose 

optimization framework that can be easily tailored to suit different problem domains 

(Molina et al. 2020). This versatility has led to the successful application of metaheuristics 

across a wide range of fields, including engineering, finance, healthcare, and logistics. 

Moreover, metaheuristics can effectively handle problems with discrete, continuous, or 

mixed-integer variables, as well as those with multiple objectives and constraints 

(Tzanetos and Dounias 2021). The development of metaheuristics has been driven by the 

need to solve increasingly complex optimization problems in a computationally efficient 

manner. As the size and complexity of these problems grow, exact methods become 

impractical due to their exponential time complexity (Yang 2020). Metaheuristics provide a 

pragmatic approach by striking a balance between exploration and exploitation of the 
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search space. Exploration refers to the ability to broadly search the solution space and 

identify promising regions, while exploitation focuses on refining and intensifying the 

search within these regions (Črepinšek et al. 2013). By carefully balancing these two 

aspects, metaheuristics can efficiently navigate the search space and converge towards 

high-quality solutions. 

   2.3.2 Broader Methods  

Over the past few decades, numerous metaheuristic algorithms have been proposed, 

each with its unique characteristics and inspired by different natural phenomena. Some of 

the most well-known metaheuristics include Genetic Algorithms (Holland 1991), Particle 

Swarm Optimization (Eberhart and Kennedy 1995), Ant Colony Optimization (Dorigo et al. 

2006), and Simulated Annealing (Kirkpatrick et al. 1983). These algorithms have been 

extensively studied and applied to a wide range of optimization problems, demonstrating 

their effectiveness and robustness. 

More recently, there has been a surge in the development of new metaheuristic 

algorithms, with over 500 new algorithms proposed to date (Rajwar et al. 2023). This 

proliferation of metaheuristics has led to concerns about the novelty and originality of 

some of these algorithms, as many of them share substantial similarities with existing 

techniques (Tzanetos and Dounias 2021). Despite these concerns, the continued interest in 

metaheuristics highlights their potential to address the ever-growing complexity of 

optimization problems in various domains. 

The field of methods has emerged as a powerful class of optimization techniques 

capable of tackling complex, real-world problems. By combining problem-specific 

heuristics with overarching frameworks, metaheuristics provide a flexible and adaptable 
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approach to optimization. As the field continues to evolve, the development and application 

of metaheuristic algorithms will remain a critical area of research, driving innovation and 

enabling the solution of increasingly challenging optimization problems with efficient 

computational methods.  

2.4 Genetic Algorithms 

   2.4.1 Overview 

Genetic algorithms (GAs) are a nature-inspired optimization technique that draws 

upon the principles of evolution to solve complex problems. John Holland first showcased 

this in the 1970s. GAs have since been widely applied across various domains, including 

engineering, economics, and artificial intelligence (Holland, 1992). The power of genetic 

algorithms lies in their ability to efficiently explore solution spaces and find near-optimal 

solutions without requiring explicit knowledge of the problem structure. An overview of 

the process of a genetic algorithm can be seen in Figure 1 below.  
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Figure 1: Process Diagram for a Genetic Algorithm (Albadr et al. 2020)  

At the core of genetic algorithms are the key components that mimic the processes 

of natural evolution. These steps include population initialization, fitness evaluation, 

selection, crossover, and mutation (Mitchell, 1998). The GA begins by initializing a 

population of candidate solutions. Most of the time these are represented as binary strings 

or other encodings suitable for the problem at hand. Every individual in the population is 

then evaluated based on a fitness function, which shows its quality in context of the 

problem. 
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The selection process in genetic algorithms favors individuals with higher fitness 

values, allowing them to pass their genetics to the next generation. Common selection 

methods include roulette wheel selection, tournament selection, and rank-based selection 

(Goldberg & Deb, 1991). By giving preference to fitter individuals, the algorithm gradually 

improves the overall quality of the population over successive generations, while 

preserving the fittest individuals over successive populations.  

Crossover and mutation are the primary genetic operators responsible for creating 

new offspring and introducing diversity into the population. Crossover involves exchanging 

genetic material between two parent individuals, typically by swapping segments of their 

encodings at one or more randomly chosen points. This process allows the algorithm to 

combine promising features from different solutions and explore new regions of the search 

space. On the other hand, mutation introduces random modifications to the genetic 

material of individuals, helping to maintain diversity and prevent premature convergence 

to suboptimal solutions (Eiben & Smith, 2015). 

One of the key advantages of genetic algorithms is their ability to tackle complex 

optimization problems that are difficult to solve using traditional methods. GAs are 

particularly well-suited for problems with large, high-dimensional search spaces, where 

exhaustive enumeration of all possible solutions is infeasible. Using the principles of 

evolution genetic algorithms can efficiently search spaces and find almost optimal solutions 

in a reasonable amount of time (Goldberg, 1989). 

Overall, genetic algorithms are versatile and can be adapted to a wide range of 

problems. They have been successfully applied to diverse domains, including function 

optimization, machine learning, scheduling, and design optimization (Coello et al., 2007). 
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The flexibility of GAs allows them to handle both continuous and discrete variables, as well 

as linear and nonlinear objective functions, making them a powerful optimization tool. This 

research will dive a bit deeper into two applications: scheduling and inventory 

optimization.  

   2.4.2 Scheduling Problems 

      Scheduling problems are a class of optimization problems that involve allocating 

resources to tasks over time with the goal of optimizing certain objectives. These problems 

are commonly encountered in various domains, including manufacturing, transportation, 

and project management.  

One application of genetic algorithms in scheduling is the job shop scheduling 

problem. In this problem, a set of jobs needs to be processed on a set of machines. Each job 

consists of a sequence of operations that must be performed in order. The objective is to 

minimize the total time required to complete all jobs. Ding et al. proposed a hybrid genetic 

algorithm for solving this problem. Their approach combined a genetic algorithm with a 

local search technique to improve the quality of solutions. The experimental results 

demonstrated the effectiveness of the hybrid algorithm in finding near-optimal solutions in 

regards to their benchmark instances (Ding et al. 2023). 

Another important scheduling problem is the resource-constrained project 

scheduling problem. This involves scheduling a set of activities subject to precedence 

constraints and resource availability constraints. The objective is to minimize the project 

duration while respecting the constraints of the problem. Wang and Song developed a GA 

for solving the problem. They introduced a new encoding scheme and designed specialized 

operators to handle the constraints effectively. An algorithm was tested on their set of 
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benchmark instances and showed promising results in terms of solution quality and 

efficiency (Wang and Song 2023).  

A third application has been in the vehicle routing problem, which is a problem in 

transportation and logistics. This involves designing optimal routes for a fleet of vehicles to 

serve a set of customers while minimizing the total travel distance or cost. Xiong and Xu 

proposed a fish swarm algorithm, which is a variant of genetic algorithms, for solving this 

problem. Their approach utilized the collective intelligence of fish swarms to explore the 

search space and find high-quality solutions. The experimental results demonstrated the 

effectiveness of the fish swarm algorithm in quickly converging to the shortest path and 

outperforming traditional methods (Xiong & Xu 2021).  

Overall, GAs have been a very useful technique for solving a wide range of 

scheduling problems. Their ability to handle complex constraints, optimize multiple 

objectives, and adapt to different problem variants has made them a popular in the field. As 

the complexity of scheduling problems continues to increase, it’s safe to say GAs and their 

variants are set up to play an important role in developing efficient and effective solutions.  

   2.4.3 Inventory Optimization 

      Various inventory management problems have used GAs  successfully. In the context of 

inventory optimization, GAs can be used to determine optimal product assortment, stock 

levels, and strategies to maximize efficiency and profitability. 

One of the key advantages of using GAs for inventory optimization is their ability to 

handle complex, multi-objective problems. As discussed by Valova et al. (2014), GAs can be 

implemented with variable-length chromosomes, allowing for dynamic optimization of 

inventory-related decisions. This flexibility enables GAs to adapt to changing market 
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conditions and consumer preferences, making them well-suited for inventory management 

in dynamic environments. This becomes prevalent in the NBA packaging problem since 

most years have 41 home games.  

Al-Ashhab and Alghamdi (2017) use GAs in solving university course timetabling 

problems, which share similarities with inventory optimization. Both problems involve the 

allocation of limited resources (e.g., time slots, products) to maximize a specific objective 

(e.g., student satisfaction, profitability). The authors' successful usage of a two-stage GA 

model highlights the potential for applying GAs to inventory optimization, where the 

algorithm can be designed to optimize product assortment and stock levels in a multi-stage 

process. 

When applying GAs to inventory optimization, the chromosomes can represent 

various aspects of the inventory management strategy, such as product selection, order 

quantities, and reorder points (Valova et al., 2014). The fitness function can be designed to 

evaluate the performance of each solution based on metrics such as revenue, customer 

satisfaction, and inventory turnover. By iteratively evolving the population of solutions 

through selection, crossover, and mutation operators, GAs can explore a wide range of 

inventory strategies and converge towards optimal solutions. 

Also, GAs can be combined with other techniques, such as data analytics, to further 

enhance their effectiveness in inventory optimization. For example, historical sales data 

and demand forecasts can be used to initialize the GA population with promising solutions 

(Al-Ashhab & Alghamdi, 2017). This hybrid approach can lead to more robust and adaptive 

inventory management strategies that can cope with the uncertainties and challenges of 

real-world supply chains. 
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GAs prove useful got optimizing inventory management. By leveraging their ability 

to handle complex, multi-objective problems, GAs can help businesses determine the best  

product assortment, stock levels, and strategies to maximize efficiency and profitability. 

The integration of GAs with other techniques, such as data analytics, holds great promise 

for developing more sophisticated and effective inventory management solutions. 
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Chapter 3: Methodology 

 This chapter presents the methodology. I describe data preparation in section 

3.1, the tiering process in section 3.2, and the method to optimize the ticket packages in 

Section 3.3. An outline of the entire process can be seen in Figure 2 on the following page.  
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Figure 2: Methodology Process Diagram 
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3.1 Data Preparation 

   3.1.1 Data Sources 

The data for this study is drawn from two primary sources: a ticketing database and 

basketball reference. These two sources combined help paint the picture of how events are 

vied from a high level. By using these in tandem,  fan purchase behavior with opposing 

team performance and marquee factor can be understood together.  

The ticketing database describes the fan ticket purchase behavior via a breakdown 

of inventory purchased on the seat level. The database is a well modeled ticketing manifest 

that outlines each seat for an event, sold or available. To query this information from the 

database, there are filters and functions needed.   

Due to the Cavalier’s recent success and the COVID-19 pandemic impacting in 

person events, the ticketing information will be filtered from the 2021-22 season onward. 

This is to account for the shift in behavior from the two potential sources of bias in the 

dataset. Next, high-level filters are used to make sure that the dataset only includes 

admissions tickets for Cavaliers games. The exclusion of any tickets that are contracted out 

to partners is necessary, as those are bought in a separate process by our sponsor 

companies as part of a partnership deal. The last filter needed on this database is to remove 

all playoff and preseason games hosted, since the season ticket packages only include 

regular season matchups.  

When pulling down the information from this data source, there are functions built 

into SQL that will help smooth out data preprocessing. First, the event data timestamp is 

split into three columns: time of the game, day of the week, and month. The sold status of 

the seat is reduced to a binary where 1 is the sold and 0 is available. If a fan chooses to 
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resell their ticket, this is marked in binary as 1 and 0 signifies the ticket was not resold. 

When a fan attends an event, or scanned in, is reduced to a binary where 1 is scanned and 0 

is unscanned. Finally, there is a concept in ticketing called a price type groups (PTGs). This 

is a logical method of grouping different types of ticketing inventories together. For this 

study, a simplified breakdown was used of five categories. Season is the grouping of tickets 

that are bought in quarter half, or full season packages. Individual is when the fan buys one 

or more tickets for a single game. Complimentary, or comp, are tickets that have been given 

out free of charge. Group tickets are defined as groups of 10 or more tickets purchased 

together. Partial plans are special packages available for a small selection of games, such as 

games around Christmas. The resulting query yields a dataset with no null or missing 

values, as seen in the sample in Table 1 below. 

Table 1: Ticketing Database Sample Data 

Basketball reference is a repository for statistics. This study will use the team level 

statistics to account for the fan’s perception of the opposing team based on performance 

from the previous year. The two metrics used in this study are the rank in conference and 

number of all stars. Rank in the respective conference is used as an aggregation of team 

performance relative to their competition. Interpretability of this variable is the advantage 

of including it. Not only are the top teams from the entire season are ranked high, it also 

helps determine if the team were in the playoffs. The duality of this variable accounts for 

date day_of_week game_time paid_amount ptg scanned resold seat_sold 

3/31/23 Friday 19:30:00 76 group 0 0 1 

3/15/23 Wednesday 19:30:00 61 member 1 1 1 

3/28/22 Monday 19:00:00 33 member 1 1 1 

3/28/22 Monday 19:00:00 33 member 1 1 1 

3/15/23 Wednesday 19:30:00 61 member 1 1 1 
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both the fans that are locked into the regular season and the recency bias of the playoffs 

occurring in the early summer. To account for the marquee matchups, the number of all-

stars from the previous season present on the team is derived from this source. While some 

teams may perform poorly in the previous year, they may have the star power that drives 

fans to watch the superstars of the league. Additionally, this accounts for any offseason 

moves our opponents make to improve their roster. These two factors will be used to  

 access the on-court product. A sample of this data can be seen in Table 2 below.  

Table 2: Basketball Reference Sample Data 

An additional data point is determined from baseball reference. This data source, 

along with other derived fields outlined in section 3.1.3, determines the competing events 

in the sports marketplace. This source will inform what the Guardians home schedule is. 

Since these events compete for fans, it will be important to include it as an external factor 

in the tiering model.  

By using these three sources, an understanding of how fans perceive the value of 

events using the method of tiering will be determined. From there, the perceived value tier 

combined with certain event data derived from the ticketing database will be used for the 

genetic algorithm. In the next section, an outline of the aggregations and additional 

preprocessing will be addressed.    

 

season Opponent conference win_perc rank_in_conference num_all_stars 

2021-22 Atlanta Hawks East 0.569444 4 0 

2021-22 Boston Celtics East 0.506849 7 2 

2021-22 Brooklyn Nets East 0.666667 2 2 

2021-22 Chicago Bulls East 0.430556 11 1 

2021-22 
Charlotte 
Hornets East 0.452055 10 0 
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   3.1.2 Feature Engineering 

The creation of new features is crucial in preparing the ticketing dataset for tiering 

the games. This process involves aggregating the data at the event level, which provides a 

comprehensive view of each game's performance. By using Python and the Pandas library, 

we can efficiently transform the raw data into a structured format that enables us to derive 

meaningful insights.  

The process begins by creating a new data frame which contains a row for each 

Cavaliers event with event-related information such as the event date, day of the week, 

month, game time, and event name. This data frame serves as the foundation for the 

subsequent aggregations.  

Several key metrics are calculated and added to the data frame. These include the 

total revenue, total tickets sold, total attendance, median paid amount, and minimum paid 

amount for each event. Additionally, the number of tickets sold for different PTGs are 

determined and included in the aggregated data frame. These metrics show the 

performance of a game from a direct financial perspective. Finally, the number of tickets 

resold for each event is calculated and added to the data frame. This provides insights into 

the secondary market activity for each event. 

The aggregation process reduces the granularity of the ticketing data from the 

individual ticket level to the event level. By doing so, it enables a more manageable and 

meaningful analysis of ticket sales and attendance patterns across different events. The 

resulting data frame contains a wide range of event-level metrics that can be used for the 

game tiering decision-making process. The resulting dataset consists of 1 row for each of 

the 122 home games of the past 3 seasons.  
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Then, the information on the teams from the previous year is pulled down from 

Basketball Reference via their API. By joining on the season and team, the number of all-

stars, the team’s conference, and respective rank in the conference is added to the 

overarching data frame. Now, the model will be able to account for the level of competition 

faced in each game.  

In a similar fashion, the Guardian’s schedule is pulled from the Baseball Reference 

API and joined onto the data frame based on the date. Then, to take into account for college 

and National Football League (NFL) games, a binary variable is added for each where true 

is the existence of a game, and false is the absence of a game. For college football, the 

defined schedule is each Saturday from September through December. In the NFL, the 

schedule is defined as each Sunday from September through January. Each of these 

variables is added onto the data frame by joining on the date. By adding this variable, the 

model is now informed about the competitive sports market in Cleveland. 

An additional feature is added to account for Lebron James of the Los Angelos 

Lakers. The gravity of his presence when he returns to Cleveland is immense since he won 

a championship with the team in 2016. There remain many fans in the Cleveland area who 

still revere the NBA superstar as the best Cavaliers player of all time. To account for this, a 

binary variable is set to true for the three games played in Cleveland against the Lakers.  

The feature engineering step is crucial in transforming the raw ticketing data into a 

structured and aggregated format that facilitates the tiering methods outlined in section 

3.2. The aggregated event-level metrics provide a comprehensive view of the ticketing 

landscape, allowing for a deeper understanding of games from the perspectives of ticket 

sales, opponent quality, and competing events in the sports market.  
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      3.1.3 Data Exploration and Cleaning 

  When the original data was pulled from the sources, there existed no null values. 

However, post-aggregation, there exists a need to clean up the information within the new 

data model since the left joins produced null values in the dataset. First, the missing values 

in the data will be explored.  

 

Figure 1: Number of Null Values in Tiering Dataset 

 According to figure 1, there exists two columns with null values. The missing values 

can be categorized as not missing at random. For the partial column, this means the game 

was not a part of a partial package, and therefore there were no tickets sold in this 
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category. Since this affects a large subset of the games, this column should be removed to 

focus on primary ticketing channels to help the interpretability of the model. In the 

Guardians game column, the null values represent the games where there were no 

Guardian’s games. Thus, the null values can be imputed to 0 to indicate the occurrence of a 

Guardian’s game being false.  

 Currently, the dataset holds a variable for the month of a game. To decrease the bias 

of the date on the resulting model, this variable will be factor reduced. In place of one-hot 

encoding the variable, creating a variable for each month of the season, a logical breakup of 

the NBA calendar is the All-Star break. This milestone of the season is considered the 

halfway point of the season. This will help create less of a weight on the time of the year on 

the model’s decision making.  

 Another time-based variable exists in the form of game time. This variable will be 

converted to a binary variable called late night game. The instance of true encapsulates the 

games that start at a time greater than or equal to 7pm. By reducing this variable, it can 

now influence the model based on the time of game without having a disproportionate 

explanation of the model.  

 Day of the week is another time-based variable that will be factor reduced. This 

variable is converted to explain if the game exists on a weekend. The weekend games for 

the NBA are Friday, Saturday, and Sunday. The value of true is assigned to the weekend 

games and false is assigned to the weekday games. Again, this factor reduction is used to 

prevent a disproportionate impact on the model.  

The resulting data set for tiering is 82 rows by 18 columns. Before the scaling, the 

40 games for the 2023-24 season were split off, where they will be run against the model 
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for inference. For the remaining 40 games, the columns of total revenue, show rate, comp, 

individual, member, group, and secondary market sales will be removed to simulate the 

schedule being released without previous knowledge of game performance. This split off 

data set will later be used to run inference on the model using a pairwise comparison.  

The scale of the variables of total revenue, show rate, median paid amount, 

opponent win percentage, comp, individual, member, group, and secondary market sales 

must be addressed for the 82 previous games. Each variable is put on a scale relative to the 

mean of the distribution of the column, with each of the values representing the distance 

from the mean in standard deviations. The use of the standard scaler is for these variables 

to in the model’s ability to interpret the variables. Additionally, the inclusion of these data 

points in the training of the model will aide with the interpretability of the model’s results.  

Now that the tiering dataset is prepared (refer to Appendix A for a sample of the 

data), an analysis of the correlations between variables will be conducted. A correlation 

matrix is crucial for understanding relationships between variables and identifying 

potential multicollinearity issues that can impact model performance and interpretability. 

The correlation heatmap in Figure 2 provides a visual representation of these relationships, 

informing decisions regarding variable selection. By looking at the visualization, we can 

detect strong linear relationships between variables, positive or negative correlations, and 

potential redundancies. Interpreting the correlation heatmap while considering domain 

knowledge is essential for model development.  
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Figure 2: Correlation Heatmap 

By examining the correlation heatmap in Figure 2, several notable patterns and 

relationships emerge. The intensity of the color scale immediately draws attention to a 

cluster of highly correlated variables, including total revenue and median paid amount  

This strong positive correlation suggests potential multicollinearity, which is 

understandable since the higher the median ticket price is for a game, more revenue would 

be produced. By looking at the intensity of correlations with other variables, notice that 

median paid amount has more intense correlations with other variables in the data set over 
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total revenue. The removal of median paid amount from the dataset is then executed to 

avoid giving too much weight to the factor of revenue on the model. Total revenue 

encapsulates both tickets sold and paid amount, giving it strong interpretability for 

applying domain knowledge to the results.  

Additionally, the intense blue, or negative, coloring draws eyes to win percentage 

and rank in conference. Since a higher rank in conference is determined by a team’s win 

percentage, this heavy correlation makes sense. The rank in the dataset is on a scale with 1 

being the highest and 15 being the lowest, therefore a team with a high winning percentage 

would have a low rank, resulting in this negative correlation. The removal of win 

percentage is then executed to avoid multicollinearity that could weigh the model too 

heavily on team performance since conference rank’s playoff logic is favorable for 

interpretability of the model’s results.  

Interestingly, the variable comp tickets exhibit a moderate negative correlation with 

total revenue, secondary market sales, individual, member, and group tickets. This 

indicates an inverse relationship. In the context of these tickets being freely given away, 

this observation aligns with the expected behavior, as there are more tickets given for free 

when there is available inventory in the other categories which then negatively impacts the 

total revenue. These games are generally less desirable, making the inclusion of this 

variable, and its relationships, important to preserve.  

However, it is crucial to interpret these correlations cautiously, as they may not 

necessarily imply causation. For instance, the weak correlation exists between show rate 

and many of the other variables. This could be attributed to fans being more likely to show 

up to an event they spend their discretionary income on. In a prior case study on the 



 36 

 

 

Cleveland Cavalier’s show rate (Levicki 2024), it was noticed that generally fans who buy 

tickets show up to a given game.  

Overall, the correlation heatmap provides valuable insights into the relationships 

within the dataset, guiding our feature selection and modeling strategies. By integrating 

domain knowledge and contextual understanding, these insights can be effectively 

leveraged to tier games for the genetic algorithm’s evaluation metric. The resulting dataset 

used for training can be referred to in Appendix B for data definitions of the dataset. 

3.2 Game Tiering 

   3.2.1 Overall Tiering Methodology 

Game tiering is a crucial step in optimizing ticket packages by categorizing games 

based on their demand and revenue potential. This creates a groups game of similar appeal 

to the fans. This section will outline a proposed method for determining the perceived 

value of a game to feed into the genetic algorithm.  

The chosen algorithm for the tiering method in this study is K-medoids. This method 

is chosen since the sensitivity to outliers and noise in the dataset. This allows the model to 

not be as sensitive to overperforming games. The implications of misclassifying a game 

would negatively affect the packaging of games since there could be an imbalance in fan 

demand where they would favor one package over another. Then, to determine the optimal 

number of clusters, the gap stat method will be employed. Using this methodology, on a 

non-complex data set of a small size fits the algorithm well. In doing so, this will help give 

an exact number of tiers for the analysis. Finally, we will use UMAP to reduce the 

dimensions of the clusters for visual analysis for separation of the clusters.  
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   3.2.2 Optimizing the Number of Tiers: Gap Stat 

The estimation of the optimal number of clusters in a dataset is a crucial step in 

cluster analysis. One widely used approach to determine the appropriate number of 

clusters is the "gap statistic" method, proposed by Tibshirani, Walther, and Hastie (2001). 

This method provides a statistical procedure to formalize the heuristic of identifying the 

"elbow" in the plot of the within-cluster dispersion against the number of clusters. 

The gap statistic compares the observed within-cluster dispersion to its expected 

value under an appropriate null reference distribution. The optimal number of clusters is 

then estimated as the value of 𝑘 for which the observed within-cluster dispersion falls the 

farthest below the reference curve. 

   3.2.2.1 Mathematical Formulation  

Let {𝑥𝑖𝑗}, 𝑖 = 1,2, . . . , 𝑛, 𝑗 = 1,2, . . . , 𝑝, be the data consisting of 𝑝 features measured 

on 𝑛 independent observations. Let dii' denote the distance between observations 𝑖 and 𝑖′, 

typically the squared Euclidean distance ∑ (𝑥𝑖𝑗  −  𝑥𝑖𝑗)2
𝑗  

Suppose we have clustered the data into k clusters C1, C2, ..., Ck, with Cr denoting 

the indices of observations in cluster r, and nr = |Cr|. Let Dr be the sum of the pairwise 

distances for all points in cluster r, and define the within-cluster dispersion as: 

𝑊𝑘 = ∑  
𝑘

𝑟 =1

1

2𝑛𝑟
∗ 𝐷𝑟 

 The gap statistic is then defined as:  

Gap𝑛(𝑘) = 𝐸𝑛
∗{log(𝑊𝑘)} − log(𝑊𝑘) 

 Where 𝐸𝑛
∗  denotes the expectation under a sample of size n from the reference 

distribution. 
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   3.2.2.2 Computational Implementation 

The choice of the reference distribution is crucial for the gap statistic method. 

Tibshirani et al. (2001) proposed two options. The first entails generating each reference 

feature uniformly over the range of the observed values for that feature. And the second is 

to generate the reference features from a uniform distribution over a box aligned with the 

principal components of the data. 

The implementation of the gap statistic involves the following steps: 

1. Cluster the observed data, varying the total number of clusters from 𝑘 = 1,2, . . . , 𝐾, 

giving within-dispersion measures 𝑊𝑘, 𝑘 = 1,2, . . . , 𝐾. 

2. Generate 𝐵 reference data sets, using the chosen reference distribution (uniform or 

principal component-based), and cluster each one, giving within-dispersion 

measures 𝑊𝑘𝑏
∗ , 𝑏 = 1,2, . . . , 𝐵, 𝑘 = 1,2, . . . , 𝐾. 

3. Compute the estimated gap statistic: 

𝐺𝑎𝑝(𝑘)  =  (1/𝐵) ∑ 𝑙𝑜𝑔(𝑊𝑘𝑏
∗ ) −  𝑙𝑜𝑔(𝑊𝑘)

𝑏

. 

4. Let 𝑙 ̅ = (
1

𝐵
) ∑ log(𝑊𝑘𝑏

∗ )𝑏 , Compute the standard deviation 

𝑠𝑑𝑘 = [(1/𝐵) ∑ 𝑙𝑜𝑔(𝑊𝑘𝑏
∗ )  −  𝑙𝑜𝑔(𝑊𝑘)− 𝑙̅ }2]1/2 

𝑏

 

5. Define 𝑠𝑘  =  𝑠𝑑𝑘√((1 + 1/𝐵)). 

6. Choose the number of clusters k̂ as the smallest k such that 

𝐺𝑎𝑝(𝑘)  ≥  𝐺𝑎𝑝(𝑘 + 1) − 𝑠{𝑘+1} 

 Using this as the baseline methodology  
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   3.2.2.3 Code Implementation 

 The gap stat method will be put into place using an imported Python created on 

Github (Maloney, 2019). Not only will the computations of the gap statistic be enabled with 

this, but visualizations will also be provided. The results of using this heuristic method will 

be presented in the results section.  

   3.2.3 Tiering Algorithm: K-Medoids 

 The k-medoids method is a robust and effective clustering technique that partitions 

a dataset into k clusters. Unlike traditional clustering methods like k-means, which use 

centroids (mean vectors) to represent clusters, the k-medoids method employs actual data 

points, called medoids, as cluster representatives (Kaufman & Rousseeuw, 1990). This 

approach offers several advantages, particularly in handling outliers and noise within the 

dataset. With some observed noise in the correlation heatmap, this method is a great fit for 

the given situation.  

The objective of the k-medoids method is to minimize the sum of dissimilarities 

between each object and its closest medoid. Mathematically, the objective function can be 

expressed as: 

𝑚𝑖𝑛 ∑ ∑ 𝑑(𝑥𝑖 , 𝑚𝑗)𝑢𝑖𝑗

𝑘

𝑗=1

𝑛

𝑖=1
 

where: 

• 𝑛 is the number of objects 

• 𝑘 is the number of clusters 

• 𝑑(𝑥𝑖 , 𝑚𝑗) is the dissimilarity between object 𝑥𝑖 and medoid 𝑚𝑗 
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• 𝑢𝑖𝑗 is a binary variable indicating whether object 𝑥𝑖 belongs to the cluster 

represented by medoid 𝑚𝑗 

This algorithm follows an iterative approach to find the optimal set of medoids and 

cluster assignments. Following the general steps below: 

1. Randomly select 𝑘 objects as the initial medoids. 

2. Assign each object to the cluster represented by its closest medoid. 

3. For each cluster, find the 𝑘 objects that have the smallest sum of dissimilarities to all 

other objects in the cluster. Replace the current medoid with this new object. 

4. Repeat steps 2 and 3 until convergence, where there would be no change in medoids 

or cluster assignments. 

   3.2.4 Tier Evaluation and Validation 

This method will be implemented within Python using the scikit learn package. In 

doing so, we will assign games from the previous two years into logical clusters, which will 

be analyzed by their medoids as well as visually. The visualizations that will be used in the 

results section are produced by applying a UMAP dimension reduction technique to allow 

the clusters to be viewed in 3 dimensions to apply a visual inspection of the separation of 

clusters. Statistical measures such as silhouette score were used to assess the clustering 

performance as well. Then, assigning tiers will be conducted by assigning value to each 

cluster based on the medoids according to domain knowledge and consulting with subject 

matter experts with in-depth understanding of the business’s requirements.  

After the determination of tiers, each tier's characteristics and implications for 

ticket packages will be interpreted and discussed. Examples of games assigned to each tier 

will be provided, highlighting their distinguishing features. Then, a comparison with the 
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game tiers used for 2023-24 season will ensue. By leveraging the opinions of several 

subject matter experts, a comparison of the advantages and disadvantages of the two 

results will be discussed.  

Then, the 2023-24 season’s schedule, which only includes information that would be 

included upon the release of the schedule, will be compared to the cluster centers using the 

pairwise distance of each data point against each of the clusters. This process simulates the 

real-world decision needed to be made upon the release of the schedule. The data points 

that will be included in this analysis are NFL Sunday, College Football Sunday, Rank in 

Conference, Number of All-Stars, Guardians Game, After All-Star, Is Weekend, and Lebron.  

3.2.5 Integration with Genetic Algorithm 

The game tiers for the 2023-24 season will be fed into a genetic algorithm to 

optimize the composition of half and quarter season ticket packages. The other data points 

that are derive from each of the games include a binary weekend variable, day number, and 

conference. Day number is a numeric variable where the event lies on the calendar’s 

distribution where the first day is zero and the final day is the days from the first game of 

the season. This data set will be the basis of the genetic algorithm and will be used in 

evaluating the packages as a metric that considers all four variables. Refer to Appendix C 

for definitions of the data. It is important to note that these tiers are not necessary for the 

evaluation function, as it is agnostic to the value given to the clusters. Tiers exist as a 

business construct to better interpret and understand the relative value for a group of 

games compared to another. 
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3.3 Ticket Package Optimization 

   3.3.1 Evaluation Function 

      The evaluation function is the heart of the ticket package optimization process. It 

assesses the quality of ticket package solutions by comparing them against global metrics. 

The function takes in the ticket package solutions and optional weights for different 

attributes (perceived value, weekend/weekday, conference, and date range). It then 

calculates global metrics for each attribute across all ticket packages, providing a 

benchmark for comparison. By setting this benchmark, it makes way for the comparison of 

each packages distributions to be compared to the entire schedule. Each individual ticket 

package is then compared to the global metrics. Then, similarity scores for each attribute 

are normalized and weighted based on the provided weights, allowing for customization 

and fine tuning of the evaluation process using domain expertise. Finally, an overall 

similarity score is calculated as the weighted sum of the attribute similarity scores, 

providing a single metric to assess the quality of the ticket package solutions. Below is a 

breakdown of the evaluation algorithm’s process. Then, calculation of this metric will be 

broken down in the following subsections.  

1. Input Collection: The function receives ticket package solutions and optional 

weights for the various attributes.  

2. Global Metric Calculation: Global metrics are computed for each attribute across all 

ticket packages, establishing benchmarks for comparison. This creates a baseline for 

which individual splits can be evaluated against.  

3. Attribute Breakdown: Individual components such as perceived value, 

weekend/weekday distribution, conference distribution, and date distribution are  
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each given similarity scores. This provides insight into specific aspects of  

equivalence between half season splits.  

4. Normalization and Weighting: Similarity scores for each attribute are normalized 

and weighted based on provided inputs. This allows for customization of the 

evaluation process using domain expertise. 

5. Overall Similarity Calculation: A weighted sum of attribute similarity scores is 

computed, producing a single metric representing package quality. This 

consolidates multiple factors into one comprehensive score from 0 to 1. This final 

step yields a comprehensive assessment of how well each equivalent each half 

season split is to its counterpart.  

   3.3.1.1 Perceived Value  

Let's define the following variables: 

• 𝑋: The perceived value distribution in the array being analyzed 

• 𝑌: The global perceived value distribution 

• 𝑛: The number of elements in the array being analyzed 

• 𝑁: The total number of elements in the global distribution 

• 𝑂𝑖: The observed frequency of the i-th perceived value in the array 

• 𝐸𝑖: The expected frequency of the i-th perceived value based on the global 

distribution 

The perceived value metric is calculated using the chi-square goodness-of-fit test, which 

compares the observed distribution (𝑋) with the expected distribution (𝑌). The formula for 

the chi-square statistic is:  

𝜒² =  𝛴 ((𝑂𝑖  −  𝐸𝑖)² / 𝐸𝑖) 
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Where the summation is taken over all possible perceived values. The expected 

frequency 𝐸𝑖 is calculated as:  

𝐸𝑖  =  (n / N)  ∗  𝑌𝑖 

Where 𝑌𝑖 is the count of the i-th perceived value in the global distribution. The 

perceived value metric is then calculated as: 

𝑠1  =  𝑝_𝑣𝑎𝑙𝑢𝑒 

Where the 𝑝_𝑣𝑎𝑙𝑢𝑒 is the probability of obtaining the observed chi-square statistic 

or a more extreme value, assuming that the null hypothesis, or the observed distribution 

matches the expected distribution, is true. 

   3.3.1.2 Weekend/weekday  

Let's define the variables: 

• 𝑋: The weekend/weekday distribution in the array being analyzed (0 for weekday, 1 

for weekend) 

• 𝑌: The global weekend/weekday distribution 

• 𝑛: The number of elements in the array being analyzed 

• 𝑁: The total number of elements in the global distribution 

• 𝑂0: The observed frequency of weekdays in the array 

• 𝑂1: The observed frequency of weekends in the array 

• 𝐸0: The expected frequency of weekdays based on the global distribution 

• 𝐸 1
⬚

: The expected frequency of weekends based on the global distribution 

Now, The weekend metric is calculated using the chi-square goodness-of-fit test for a 

binary distribution: 

𝜒² =  ((𝑂0  −  𝐸0)² / 𝐸0) + ((𝑂1  −  𝐸1)² / 𝐸1) 
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Then, the expected frequencies 𝐸0 and 𝐸1 are calculated as: 

𝐸0  =  (𝑛 / 𝑁)  ∗  𝑌0 

𝐸1  =  (𝑛 / 𝑁)  ∗  𝑌1 

Where 𝑌0 and 𝑌1 are the counts of weekdays and weekends, respectively, in the 

global distribution. The weekend metric is then calculated as: 

𝑠2  =   𝑝_𝑣𝑎𝑙𝑢𝑒 

Where the 𝑝_𝑣𝑎𝑙𝑢𝑒 is the probability of obtaining the observed chi-square statistic 

or a more extreme value, assuming that the null hypothesis, or the observed distribution 

matches the expected distribution, is true. 

   3.3.1.3 Conference 

The conference distribution is calculated in a similar way to the weekend/weekday 

distribution, using the chi-square goodness-of-fit test for a binary distribution. 

Let’s define the variables for conference:  

• 𝑋: The conference distribution in the array being analyzed (0 for non-conference, 1 

for in conference) 

• 𝑌: The global conference distribution 

• 𝑛: The number of elements in the array being analyzed 

• 𝑁: The total number of elements in the global distribution 

• 𝑂0: The observed frequency of non-conference games in the array 

• 𝑂1: The observed frequency of in conference games in the array 

• 𝐸0: The expected frequency of non-conference games based on global distribution 

• 𝐸 1
⬚

: The expected frequency of in conference games based on the global distribution 
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Using the same methodology used in the above section (3.3.1.2), where the chi-square 

statistic and expected frequencies are calculated for a binary distribution, the conference 

metric is calculated as:  

𝑠3  =   𝑝_𝑣𝑎𝑙𝑢𝑒 

Where the 𝑝_𝑣𝑎𝑙𝑢𝑒 is the probability of obtaining the observed chi-square statistic 

or a more extreme value, assuming that the null hypothesis, or the observed distribution 

matches the expected distribution, is true. 

   3.3.1.4 Date 

Let's define the following variables: 

• 𝐷: The set of dates in the ticket package being analyzed,  {𝑑1 , 𝑑2 , . . . , 𝑑𝑛}  

• 𝑛: The number of dates in the set 𝐷 

• 𝑑𝑖: The i-th date in the set 𝐷 

• 𝑅: The maximum date range in the global distribution 

• 𝑤𝑑 : The weight value assigned to the distance metric 

• 𝑤𝑟: The weight value assigned to the range metric 

The date score is calculated as a weighted average of two components: normalized 

average distance and normalized date range. This is calculated by  

𝑠4 = (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑣𝑔𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗  0.5) + (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑒 𝑟𝑎𝑛𝑔𝑒 ∗  0.5) 

   3.3.1.4.1 Normalized Average Distance 

This metric is used to understand the distance between games. The inclusion of this 

metric is to avoid clustering of games together within packages and ensure an even spacing 

of games within the same package consistent with the overall schedule.  

The list of distances between consecutive dates is given by  
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𝛥𝑑𝑖 =  𝑑{𝑖+1}  −  𝑑𝑖 , 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑛 − 1 

The average distance between dates is calculated as  

𝜇𝛥𝑑  =  (1 / (𝑛 − 1)) ∗  ∑ 𝛥𝑑𝑖

𝑛−1

𝑖=1
 

The maximum possible average distance is  

𝜇𝑚𝑎𝑥  =  𝑅 / (𝑛 − 1) 

The mean absolute deviation (MAD) of distances is calculated as 

𝑀𝐴𝐷 =  (1 / (𝑛 − 1))  ∗  ∑ |𝛥𝑑_𝑖 −  𝜇_𝛥𝑑|

𝑛−1

𝑖=1

  

The normalized MAD is then defined as 

𝑀𝐴𝐷𝑛𝑜𝑟𝑚  =  1 − (𝑀𝐴𝐷 / 𝜇𝑚𝑎𝑥) 

   3.3.1.4.2 Normalized Date Range 

 This metric is used to understand the overall range of  games in each section. The 

inclusion of this metric is to analyze for an even span of games within the same package 

compared to the overall schedule.  

The minimum and maximum dates in the set 𝐷 are given by 

𝑑𝑚𝑖𝑛  =  𝑚𝑖𝑛(𝐷) 

𝑑𝑚𝑎𝑥  =  𝑚𝑎𝑥(𝐷) 

The date range in the set D is 

𝑟𝐷 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 

Finally, the normalized date range is defined as 

𝑟𝑛𝑜𝑟𝑚  =  𝑟𝐷 / 𝑅 
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3.3.1.5 Overall Similarity Score  

 The overall similarity score is calculated as a weighted average of the individual 

metric scores. This is done to take into account each variable in the evaluation of the ticket 

packages as a holistic look at how close the packages are to the overall schedule 

distributions.  

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝛴 (𝑠𝑖  ∗  𝑤𝑖  ) 

Where 𝑠𝑖 is the similarity score for the i-th metric (perceived value, weekend, 

conference, date score) and 𝑤𝑖  is the weight assigned to the i-th metric.  

The weights are normalized to sum up to 1  

𝑤𝑡  =  𝛴 𝑤𝑖  

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 /𝑤𝑡 

 Where 𝑤𝑡   summation is taken over all metrics and 𝑤𝑒𝑖𝑔ℎ𝑡 is the given weight 

assigned to a metric. Using the metrics shown in the previous sections, here is the formula: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  (𝑠1  ∗  𝑤1  ) + (𝑠2  ∗  𝑤2  ) + (𝑠3  ∗  𝑤3 ) + (𝑠4  ∗  𝑤4 ) 

The evaluation metric presented through these formal equations plays a crucial role 

in the context of a genetic algorithm, serving as the fitness function that quantifies the 

quality of each proposed ticket package combination. By incorporating various components 

such as perceived value distribution, weekend/weekday distribution, conference 

distribution, and date distribution, and utilizing statistical measures like the chi-square 

goodness-of-fit test and normalization techniques, this evaluation metric provides a 

comprehensive and robust assessment of ticket packages. The similarity score guides the 

genetic algorithm in selecting the fittest solutions for evolution while being an 

interpretable metric on the scale of 0 to 1.  
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   3.3.2 Initializing Population 

In the context of ticket package optimization, chromosomes represent potential 

solutions. The creation of chromosomes in this problem instance is to create the different 

combinations of tickets for each member of the population. Each chromosome in the 

population is split into the desired number of packages, representing each split of the 

season schedule. Thus, each member of the population is a pre-selected breeding pair since 

open cross breeding of chromosomes could lead to duplicate games being included in 

chromosomes. Upon initialization of the population, each member of the population 

contains a pre-selected number of chromosomes for inner breeding.  

The function takes in the dataset described in section 3.2.4, the desired number of 

chromosome pairs (𝑛), and the number of splits (𝑠) for each pair. It starts by determining 

the equal-sized splits for each chromosome pair, ensuring a balanced distribution of games 

across the packages. Then, games are randomly selected for each split without 

replacement, creating diverse chromosome pairs. Then, the evaluation function is then 

used to evaluate each chromosome pair, calculating overall fitness of the solutions. Finally, 

the chromosome pairs are sorted based on their overall similarity scores in descending 

order, prioritizing the best solutions. By organizing the solutions, the preservation of the 

fittest chromosome can be easily accessible by the algorithm.  

3.3.3 Tournament Selection 

For genetic algorithms, tournament selection is a technique for selecting individuals 

from the population to participate in the breeding process. This method mimics the natural 

selection process, where the fittest individuals are more likely to forward their genetic 

material to the next generation. The function enters a loop that continues until the desired 
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number of parents is obtained. Within each iteration, the steps for this function are as 

follows: 

1. Random Selection: A random subset of 𝑘 individuals is chosen from the population. 

This subset represents the participants in the tournament. 

2. Fitness Evaluation: The fitness score is used to evaluate the quality of each ticket 

package combination in the tournament.  

3. Selection of the Fittest: The fittest individual from the tournament is identified. This 

individual is considered the winner of the tournament.  

4. Mating Pool Inclusion: The winning individual is added to the mating pool, which 

will eventually contain the selected parents for breeding. 

   3.3.4 Breeding 

Creating offspring in the generic algorithm is a key operation, allowing the exchange 

of genetic information between parent chromosomes to create offspring. With the given 

population, the selection of breeding pairs is inherent in each member. Each member will 

then produce one new offspring.  

   3.3.4.1 Crossover 

The crossover function takes the parent chromosomes in the member of the 

population and a crossover rate as input. If the parent chromosomes have the same length, 

a regular crossover is performed by randomly selecting games and exchanging genetic 

material between the parents. If the parent chromosomes have different lengths, the 

crossover is performed based on the shorter length to ensure compatibility. Then, the 

following steps will ensue for each scenario:  
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1. Determine Crossover Amount: Based on the predetermined cross over rate and the 

length of the chromosomes, the function calculates the number of crossover points. 

2. Select Crossover Indices: The function then randomly selects the number of  indices 

found in the previous step from the range of chromosome lengths.  

3. Perform Crossover: The selected indices in the previous step are then swapped with 

each other, creating a new combination of the ticket packages.  

The crossover operation allows for the exchange of genetic information between 

parent chromosomes, creating new combinations of solutions that may potentially lead to 

better fitness scores. 

   3.3.4.2 Mutation 

The mutate function introduces random variations in the offspring chromosomes by 

swapping elements at randomly selected indices. The function takes in the newly created 

off spring from crossover with a mutation rate parameter that determines the probability 

of mutation occurring. Then, the following steps are taken:  

1. Determine Number of Swaps: Based on the mutation rate and the length of the 

offspring chromosomes, the function calculates the number of swaps to be 

performed. 

2. Perform Swaps: For each swap, the function randomly selects two indices, one 

from each ticket package, and swaps the elements at those indices between the two 

offspring chromosomes. 

The mutation operation introduces random variations in the offspring chromosomes, 

helping to explore new regions of the solution space and potentially escape local optima. 
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 3.3.5 Insertion  
 

After breeding, the offspring chromosomes are evaluated using the fitness score 

function to calculate the similarity scores of the new packages produced. Now, the insertion 

process involves integrating the offspring into the existing population. In this function, the 

goal is to create a new population by combining the fittest individuals from both the parent 

and offspring populations.  

The way this function preserves the fittest members of the population by selecting elite 

solutions, in a process call elitism. First, the function preserves the top individuals from the 

parent population. This ensures that the best solutions are not lost during the selection 

process and move on to the successive generation. Then, the function removes the same 

number of solutions from children with the lowest fitness scores. This step ensures that the 

new population maintains its size by replacing the least fit individuals with the offspring. 

The two groups are then put together to create the newest generation of ticket schedule 

combinations. This new list, now containing a combination of offspring and elite solutions, 

is sorted in descending order based on the fitness scores. This sorting ensures that the 

fittest individuals are prioritized for selection and easy retrieval.  

Insertion aims to create a new generation of solutions that combines the fittest 

individuals from both the parent and offspring populations. This approach helps maintain 

diversity while preserving the best ticket packages, ultimately driving the genetic 

algorithm towards optimal solutions. 
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Chapter 4: Results 

4.1 Game Tiering 

   4.1.1 GAP stat Analysis 

One of the primary goals in this research was to determine the ideal number of tiers 

that exist in the event dataset. To achieve this objective, several techniques were employed 

in order to evaluate their performance across a range from 2 to 10 clusters (denoted as k).  

The results of this clustering analysis are portrayed within the three plots presented below, 

each offering a perspective on the data's structure. 

 

 

Figure 5: Number of Clusters 𝑘 with Sum of Squares 𝑊𝑘 

Figure 3 shows the within-sum of squares (WSS) plotted against the number of 

clusters (𝑘). However, in Figure 3, it is not very clear where this elbow point might be. The 

graph shows a steady and gradual decrease in the WSS as the number of clusters increases 

from 2 to 10, without a distinct inflection point or elbow. 
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This lack of a clear elbow in the WSS plot makes it challenging to determine the 

optimal number of clusters based solely on this visualization. The WSS continues to 

decrease with each additional cluster, and there is no obvious point where the rate of 

decrease slows down significantly, which could indicate the appropriate number of 

clusters. When this happens, it becomes necessary to consider other cluster metrics or 

techniques to help determine the optimal number of clusters. 

 

Figure 6: Number of Clusters 𝑘 with Observed vs. Expected  log (𝑊𝑘) 

Figure 4 displays the relationship between the number of clusters (𝑘) and the 

observed vs. expected log(𝑊𝑘) values in a clustering analysis. The plot contains two curves: 

one represented by the letter "E" for the expected log(𝑊𝑘) values, and another represented 

by the letter "O" for the observed log (𝑊𝑘)values. The x-axis represents the number of 

clusters ranging from 2 to 10, while the y-axis shows the corresponding log(Wk) values. 

As the number of clusters increases from 2 to 10, there are several patterns that 

emerge. The expected log(𝑊𝑘) curve decreases consistently and appears to level off or 

flatten out as 𝑘 increases. In contrast, the observed log(𝑊𝑘) curve decreases more rapidly. 
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The gap between the observed and expected curves grows as 𝑘 goes from 2 to around 5 to 

7 clusters, suggesting that the observed clustering structure becomes more distinct from 

the expected null distribution. However, after k equals 7, the gap between the curves starts 

to decrease slightly, indicating that the observed clustering may not be as pronounced 

compared to the expected values for higher 𝑘. Hence, according to figure 4, the optimal 

number of clusters is potentially in the range of 5 to 7, where the gap between the observed 

and expected log(𝑊𝑘) values is maximized. It is crucial to consider this with further cluster 

validation metrics to make a more informed decision on the optimal number of clusters. 

 

Figure 7: Number of Clusters 𝑘 with GAP Score 

Figure 5 depicts the relationship between the number of clusters (𝑘) and the 

corresponding GAP statistic values, a metric used to determine an optimal number of 

clusters. As we scrutinize the plot, a few salient observations emerge. 

The GAP statistic graph shows a steady increase as the number of clusters increases 

from 2 to 10. This upward trend suggests that increasing the number of clusters generally 
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improves the clustering solution's quality. However, the rate of increase is not uniform – 

it's steeper from 2 to 4 clusters, indicating a significant improvement in the clustering 

solution when moving from 2 to 4 clusters. 

Beyond 4 clusters, the GAP statistic continues to rise, but at a more gradual pace. 

This flattening of the curve implies that the benefit of adding more clusters shrinks after a 

certain point. The elbow, or the point where the curve starts to level off or drop, signifies 

the optimal number of clusters for the event data set. In the graph, the first and only drop 

point is after 7 clusters, indicating that there is not much improvement after 𝑘 is 7.  

 When the results of figure 5 are paired with an automated analysis of the gap 

statistic provided in the code from John Maloney (2019), the optimal number of clusters 

was determined to be 7. Meaning that there are 7 buckets for classifying the games into.  
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4.1.2 Cluster Visualization 

 Taking the results of the GAP statistic, the k-medoids method was then run using 7 

clusters. In figure 6 below, a the UMAP method is used to reduce the high dimensional 

space of the clusters to better visualize the data.  

 

Figure 8: UMAP Visualization of K-Medoids Clusters  

At first glance, the clusters appear as distinct groups, each occupying its own well-

defined territory within the three-dimensional space. This visual separation is due to the 

algorithm's ability to identify and group data points based on their similarities. By looking 

closer, the distinctiveness of each cluster becomes even more apparent. The games within a 

single cluster are close knit communities that are clearly distinguishable from their 

neighboring clusters. This level of separation indicated effective clustering, where the 

algorithm has successfully identified the patterns and structures between the games. 
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Figure 6 also shows in the differences between the clusters themselves. While some 

clusters are densely populated, others are more sparsely distributed, creating a visual 

contrast. This variation adds a layer depth and complexity to the overall representation, 

reflecting the nuances of differing perceived value of events.  

Overall, the Figure 6 presents an informative representation of the data's structure. 

The visual separation and distinctiveness of the clusters shows the effectiveness of the K-

medoids algorithm in grouping the games into distinct categories. Due to these results, an 

analysis of the medoids cluster centers will ensue to better understand the distinct 

properties of these clusters.  

   4.1.3 Cluster Characterization 

The characteristics of the medoid cluster centers reveals an inside look on the 

properties of the clusters. Table 3 and 4 below will show the numeric and categorical 

descriptions of each of the clusters.  

 

Table 3: Numeric Observations of Cluster Centers (Standard Deviations from Mean) 
 
 
 

Cluster 
Total 

Revenue 
Comp 

Individual 
Member 

Group 
Group 

Secondary 
Market 

Sales 
Show Rate 

0 0 -0.23 0.21 0.58 -0.01 0.17 

1 1 0.09 -0.85 -0.25 0.31 0.58 

2 2 -0.06 2.43 -1.11 -1.29 -1.2 

3 3 -0.29 -1.01 -0.6 1.01 -0.5 

4 4 -0.11 -0.78 -0.19 1.07 0.95 

5 5 0.61 -0.64 -1.11 1.29 -0.5 

6 6 -0.92 1.12 0.49 -1.35 0.14 
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Cluster 
NFL 

Sunday 

College 
Football 
Saturday 

Rank in 
Conference 

Number 
of All-
Stars 

Guardians 
Game 

After 
All-
Star 

Late 
Night 
Game 

Weekend LeBron 

0 0 0 8 1 0 0 1 0 0 

1 1 0 8 0 0 0 1 1 0 

2 0 0 3 1 0 0 1 0 0 

3 0 0 12 1 0 0 1 0 0 

4 0 0 13 0 0 1 1 0 0 

5 0 0 3 1 0 1 1 0 0 

6 0 0 12 0 0 1 1 1 0 

Table 4: Categorical Observations of Cluster Centers 

Cluster 0 – Mid-tier games with moderate individual and group ticket sales, 

average attendance, and involving playoff teams with an All-Star(s) before the all-star 

break. 

Cluster 1 – Games with higher group and member ticket sales, low comp tickets, 

involving playoff teams without All-Stars on weekends before the all-star break, 

and average revenue and attendance. 

Cluster 2 – Games with high comp tickets, low individual, member, and group ticket sales, 

involving elite teams with an All-Star(s) before the all-star break, but low attendance. 

Cluster 3 – Games with high member ticket sales, low comp, individual, and group ticket 

sales, involving low-tier teams with All-Star(s) before the all-star break, and above-average 

attendance. 

Cluster 4 – Games with high member and group ticket sales, high secondary market sales, 

involving the lowest-tier teams without All-Stars after the all-star break, and above-

average attendance. 
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Cluster 5 – High-revenue games with high member ticket sales, low individual and group 

ticket sales, involving elite teams with at least All-Star after the all-star break, and high 

attendance. 

Cluster 6 –  Low-revenue games with high comp and individual ticket sales, low member 

and secondary market sales, involving low-tier teams without All-Stars on weekends after 

the all star break, and below-average attendance. 

      4.1.4 Cluster Tiering 

 Additional contextual analysis is conducted on these clusters to form them into tiers 

using domain expertise. By consulting with Quinn Spangler, the Quantitative Data Analyst 

that oversees the current tiering process at the Cleveland Cavaliers, the tiers shown in table 

5 were then determined.   

  
 
 
 
 
 
 
 
 
 
 

Table 5: The Organizing of Clusters into Hierarchical Tiers 
 

By organizing the games into hierarchical tiers, we can better understand which 

types of games are more appealing to be able to better group them into rankings based on 

their group’s attributes. This vastly reduces the complexity of the cluster attributes into a 

more consumable format after domain specific logic was applied. Now, this will allow the 

genetic algorithm to better understand the perceived value of the games and be able to 

conduct the chi square distribution test for part of the evaluation function.  

Tier Cluster 

A 5 

B 0 

C 1 

D 4 

F 3 

G 2 

H 6 
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A comparison analysis between each tier and the tier below it was then conducted. 

(Quinn Spangler, personal communication, June 12, 2024) 

     4.1.4.1 A Tier (Cluster 5) vs. B Tier (Cluster 0) 
 

Cluster 5 has a much higher level of performance compared to Cluster 0 across 

multiple metrics. It demonstrates above-average total revenue (0.61), while Cluster 0 has 

below-average total revenue (-0.65). Also, Cluster 5 experiences well above-average 

member ticket sales (1.29), significantly outperforming Cluster 0's member ticket sales (-

0.01). This suggests a stronger demand from members for events in Cluster 5 and signifies 

that more members have these events included in their selected packages. Furthermore, 

events in Cluster 5 have a higher show rate (0.53) compared to those in Cluster 0 (0.37), 

implying a greater attendance and demand. Both clusters involve elite or playoff teams, but 

Cluster 5's elite team (rank 3) is more attractive than Cluster 0's playoff team (rank 8), 

potentially contributing to the observed differences in revenue and ticket sales. Overall, the 

large interest and high quality of the opponents in Cluster 5 show why it is the top tier of 

games.  

      4.1.4.2 B Tier (Cluster 0) vs. C Tier (Cluster 1) 

Cluster 0 has below-average total revenue (-0.65), while Cluster 1 demonstrates 

average total revenue (0.09), suggesting that events in Cluster 1 generate higher overall 

sales. However, Cluster 0 has above-average individual ticket sales (0.58), outperforming 

Cluster 1's below-average individual ticket sales (-0.25). This indicates a stronger demand 

for individual tickets for events in Cluster 0, which is a great pulse of fan demand overall as 

this represents fans who are selecting this game in particular. Conversely, Cluster 1 

experiences higher group ticket sales (0.58) compared to Cluster 0 (0.17), suggesting a 
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greater appeal for group attendance at events in Cluster 1. Group ticketed events are 

generally stronger for lower tier games as a cost-effective way for companies or 

organizations to provide a perk for their employees since these games would be priced 

lower. Events in Cluster 0 have a higher show rate (0.37) compared to those in Cluster 1 

(0.01), implying a greater attendance and demand for events in the former cluster. Both 

clusters involve playoff teams, but Cluster 0 has one All-Star, making it slightly more 

attractive in terms of team performance. The addition of the star power is what gives 

Cluster 0 the edge as the higher tier game.  

      4.1.4.3 C Tier (Cluster 1) vs. D Tier (Cluster 4) 

Cluster 1 produced about average total revenue (0.09), while Cluster 4 

demonstrates slightly below-average total revenue (-0.11), suggesting a marginal 

difference in overall sales between the two clusters. Cluster 4 experiences higher member 

ticket sales (1.07) compared to Cluster 1 (0.31), indicating a stronger demand from 

members for events in Cluster 4. However, as the tiers get lower, member demand begins 

to be less of a separator between tiers since these games are often paired with high tiers 

games to balance out the packages for evenness of value. Additionally, Cluster 4 has higher 

group ticket sales (0.95) compared to Cluster 1 (0.58), suggesting a greater appeal for 

group attendance at events in Cluster 4. Events in Cluster 4 also see higher secondary 

market sales (0.90) compared to those in Cluster 1 (-0.14), implying a greater demand and 

resale activity for tickets in the former cluster. The higher sales indicate that the original 

ticket buyers are not looking to attend the game. Furthermore, Cluster 4 has a higher show 

rate (0.34) compared to Cluster 1 (0.01), indicating a greater attendance and demand for 

events in the former cluster. However, Cluster 1 involves playoff teams on the weekend, 
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while Cluster 4 involves the lowest-tier teams on weekdays, making Cluster 1 more 

attractive on face value despite lower ticket sales. 

      4.1.4.4 D Tier (Cluster 3) vs. F Tier (Cluster 4) 

Cluster 3 has below-average total revenue (-0.29), while Cluster 4 has more average 

total revenue (-0.11). Cluster 3 has well below-average complimentary tickets (-1.01) 

compared to Cluster 4's below-average complimentary tickets (-0.78). Additionally, Cluster 

3 has below-average individual ticket sales (-0.60) compared to Cluster 4's below-average 

sales (-0.19). Both clusters have high member ticket sales, but Cluster 4 (1.07) is slightly 

higher than Cluster 3 (1.01). Cluster 4 experiences higher group ticket sales (0.95) 

compared to Cluster 3 (-0.50). Furthermore, Cluster 4 exhibits higher secondary market 

sales (0.90) compared to Cluster 3 (-0.07). Cluster 3 involves low-tier teams (rank 12), 

while Cluster 4 involves the lowest-tier teams (rank 13). Cluster 3 has one All-Star, while 

Cluster 4 has none. Events in Cluster 3 have a higher show rate (0.38) compared to those in 

Cluster 4 (0.34). Given the better marquee matchup that cluster 3 has with the all-star, this 

what ultimately provides the separation needed to rank Cluster 3 above Cluster 4.  

      4.1.4.5 F Tier (Cluster 4) vs. G Tier (Cluster 2) 

Cluster 4 exhibits average total revenue (-0.11), while Cluster 2 demonstrates 

average total revenue (-0.06). However, Cluster 2 has well above-average complimentary 

tickets (2.43) compared to Cluster 4's below-average complimentary tickets (-0.78). 

Cluster 2 also has well below-average individual ticket sales (-1.11) compared to Cluster 

4's below-average sales (-0.19). Conversely, Cluster 4 experiences higher member ticket 

sales (1.07) compared to Cluster 2's well below-average sales (-1.29). Additionally, Cluster 

4 has higher group ticket sales (0.95) compared to Cluster 2's well below-average sales (-
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1.20). Furthermore, Cluster 4 has higher secondary market sales (0.90) compared to 

Cluster 2 (-0.09). Cluster 2 involves elite teams (rank 3), while Cluster 4 involves the 

lowest-tier teams (rank 13). Events in Cluster 4 have a higher show rate (0.34) compared 

to those in Cluster 2 (-0.71). Even though the events in Cluster 2 have all stars and elite 

teams, the sales and show rate results show that these games are not in high demand for 

purchasing or attending the games. With sales and attendance being the primary driver of 

the creation of tiers, this is what sets Cluster 4 ahead of Cluster 2.  

   4.1.4.5 G Tier (Cluster 2) vs. H Tier (Cluster 6) 

Cluster 2 has about average total revenue (-0.06), while Cluster 6 underperforms 

with well below-average total revenue (-0.92). Additionally, Cluster 6 experiences above-

average individual ticket sales (0.49) compared to Cluster 2's well below-average sales (-

1.11). Both clusters have well below-average member ticket sales, but Cluster 6 (-1.35) is 

slightly lower than Cluster 2 (-1.29). Cluster 6 also has slightly above-average group ticket 

sales (0.14) compared to Cluster 2's well below-average sales (-1.20). Both clusters involve 

low-tier teams, but Cluster 6 (rank 12) is far worse than Cluster 2 (rank 3). Cluster 2 has 

one All-Star, while Cluster 6 has none. Events in Cluster 6 have a below-average show rate 

(-0.08) compared to Cluster 2's well below-average show rate (-0.71). The decision to rank 

Cluster 2 above Cluster 6 comes down to the revenue numbers. With the revenue of Cluster 

2 far outperforming Cluster 6, this ultimately drives the decision along with the better 

quality of the opponent in comparison.  
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  4.1.5 Pairwise Determination of 2023-24 Schedule 

By using the pairwise distance of each game’s pre-season statistics outlined in 

Section 3.2.4, the games of this past season can be categorized into the tiers described 

above. The following table outlines the schedule in order of home game with the respective 

tier assigned to it.  
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Tier Date Team 
A 10/31/23 New York Knicks 

A 11/5/23 Golden State Warriors 

A 11/19/23 Denver Nuggets 
A 12/29/23 Milwaukee Bucks 
A 1/17/24 Milwaukee Bucks 

A 1/29/24 Los Angeles Clippers 
A 2/5/24 Sacramento Kings 

A 2/12/24 Philadelphia 76ers 
A 3/3/24 New York Knicks 

A 3/5/24 Boston Celtics 
A 3/10/24 Brooklyn Nets 
A 3/11/24 Phoenix Suns 

A 3/20/24 Miami Heat 
A 3/29/24 Philadelphia 76ers 
A 4/10/24 Memphis Grizzlies 
B 11/22/23 Miami Heat 

B 1/15/24 Chicago Bulls 

B 2/14/24 Chicago Bulls 
C 11/25/23 Los Angeles Lakers 
C 11/26/23 Toronto Raptors 

C 11/28/23 Atlanta Hawks 
C 12/16/23 Atlanta Hawks 
C 12/21/23 New Orleans Pelicans 

C 1/5/24 Washington Wizards 
C 3/8/24 Minnesota Timberwolves 
D 10/27/23 Oklahoma City Thunder 
D 10/28/23 Indiana Pacers 

D 11/30/23 Portland Trail Blazers 

D 12/6/23 Orlando Magic 
D 12/18/23 Houston Rockets 
D 12/20/23 Utah Jazz 

D 1/3/24 Washington Wizards 
D 2/27/24 Dallas Mavericks 

F 11/17/23 Detroit Pistons 

F 1/7/24 San Antonio Spurs 
F 1/31/24 Detroit Pistons 
F 2/22/24 Orlando Magic 
F 3/25/24 Charlotte Hornets 

F 4/12/24 Indiana Pacers 
F 4/14/24 Charlotte Hornets 

Table 6: 2023-24 Cleveland Cavaliers Game Tiers 
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 Looking closer at the distribution of games between tiers in the below figure 9, there 

are interesting patterns that emerge,  

 

Figure 9: Distribution of Games into Tiers (Games) 

 First, notice the exclusion of the G and H tiers. No games in the 2023-24 season are 

identified in these tiers. Since these games are regarded as having lower stature, this is 

allowable as the business teams at the Cavaliers would still have a logical model to go off. 

This can be attributed to the variation in both the schedule and opponents year over year. 

Additionally, the games are heavily favoring the top tier. This can be attributed to off-

season moves of some of the top teams in the league. Teams that had an elite ranking the 
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previous year have acquired new talent putting them in a higher tier with a higher 

expected perceived value. Moves like Kevin Love to the Miami heat, Kristaps Porzingis  to 

the Boston Celtics, and Damion Lillard to the Milwaukee Bucks also, the emergence of All-

Star talent like Tyrese Maxey of the 76ers and Jalen Brunson of the New York Knicks can 

contribute to teams belonging in the higher tier of games based on their composition. We 

also notice some bias from the Cluster Centers favoring better rankings for the games in the 

second half of the season for the imbalance of the A versus B tier. Overall, having a logical 

breakdown of the quality of games creates a logical breakdown of the schedule to not only 

better inform ticket package creation, but to inform pricing of tickets for individual and 

group pricing structures.  

Through consulting with the domain experts at the Cavaliers, the tiers produced 

above have their advantages and disadvantages. Increased depth of knowledge about 

games in each tier through the analysis of the medoids allows each tier to tell a story. Since 

the analysis was conducted subjectively with expert input, it allows for the proposal to be 

flushed out with not just a score based on monetary value, but additional reasoning and 

context to business stakeholders. However, they did add that having the weighted model 

did help facilitate conversations and boil down the algorithm’s decision-making process 

into a more interpretable measure (Quinn Spangler, personal communication, June 1, 

2024). An area of improvement on this method could look to do away with the arbitrary 

approach to create this value. Additionally, they noted this continues to allow games and 

packages to be marketed given the tier’s medoid values. By analyzing fan behavior, these 

tiers can be used to market games effectively and determine relative price points between 

the tiers.   
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One game was found to be out of place in the result was surrounding the Los 

Angeles Lakers falling into tier C. This is generally the highest demand game on the 

schedule each year due to Lebron James being an NBA Champion with the Cleveland 

Cavaliers. Although the Lebron input variable tried to account for this, the model decided it 

was not significant enough. Further work to refine this should be conducted. In further 

talks with Quinn Spangler, he said this is a common occurrence with model outputs and 

that working out the movement of games between tiers is a yearly occurrence with 

business stakeholders. The important part, he noted, is that the algorithm gets the decision 

close to the finish line, only leaving a couple adjustments to be made (Quinn Spangler, 

personal communication, June 2, 2024).  

   4.2 Genetic Algorithm Evaluation 

 By consulting the Cavalier’s resident expert on ticket packages and Director of 

Business Intelligence, Canaan Campo, he provided the weights for the evaluation function 

based on his prior experience in building these packages. After deliberation with Quinn 

Spangler, he decided that perceived value would be assigned the value of 1, weekend would 

be assigned 3, conference would be assigned 1, and date score would be assigned 5. His 

thought process behind this is that he wants the algorithm to put more importance on the 

areas of difficulty when creating the half season packages (Canaan Campo, personal 

communication, June 14, 2024). These weights mean that perceived value, weekend, 

conference, and date score account for 10%, 30%, 10%, and 50% of the evaluation metric 

respectively. The advantage of the weights allows for domain experts to have a level of 

influence on the decision making of the algorithm and can fine tune the process by applying 

their expertise.  
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   4.2.1 Sensitivity Analysis 

 Tuning the hyperparameters of the genetic algorithm helps gain insights into how 

quickly and robust the algorithm is. By performing a sensitivity analysis, the best 

combinations to find global maxima can be determined. For this process, the algorithm will 

be tested in 108 combinations, including 4 population sizes, 3 generation amounts, 3 

crossover rates, and 3 mutation rates. The population sizes selected were 250, 500, 750, 

and 1000. The generation amounts selected were 200, 400, and 600. The crossover rates 

selected were 20%, 40%, and 60%. Finally, the mutation rates selected were 5%, 10%, and 

15%.  

 

Figure 10: Sensitivity Analysis: Generations, Population Size, and Crossover Rate 
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 In figure 10, first notice the y-axis is separated by 3 thousandths. This demonstrates 

the stability and consistency of the genetic algorithm's results under different parameter 

settings. This means the algorithm is rather stable under changing conditions at finding 

near optimal solutions that vary slightly from each other. The derived hyperparameters 

from this visual that will be used for the remainder of this study are from the peak in the 

center at 400 generations where the population is 750 and the crossover rate is 20%. This 

set of parameters shows the best performance of all combinations ran. Now, the final 

hyperparameter to derive from this analysis is the mutation rate.  

 

Figure 11: Mutation Rate vs. Standard Deviation of Population Solutions 

In figure 11, it is demonstrated that by raising the mutation rate, it increases the 

diversity of packages present in the population. This graph shows an expected behavior 

from the mutation rate and demonstrates that it is useful in escaping local maxima as the 

algorithm searches through the solution space. This diversity is an advantage of the 
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algorithm as it add a variability to the population. The mutation rate of the optimal solution 

from the previous section is 0.05, so the remainder of this study will utilize this rate as it 

was used to find the best solution from the sensitivity analysis. Table 7 below details the 

optimal hyperparameters that will be used:  

Population Size 750 

Generations 400 

Crossover Rate 0.2 

Mutation Rate  0.05 

Elite Solutions 75 

Tournament Size 75 

Mating Pool Size 750 
Table 7: Optimal Hyperparameters 

4.2.2 Comparison to Internal 23-24 Season Packages 
 
 The below table shows the differences in the ticket packages when the new tiers are 

inserted into the genetic algorithm for optimization versus the original ticket splits. It is 

important to note that the  
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Date Opponent Tier 
Original 
Package  

New 
Package 

10/27/23 Oklahoma City D A B 

10/28/23 Indiana D B A 

10/31/23 New York A A B 

11/5/23 Golden State A A A 

11/17/23 Detroit F B B 

11/19/23 Denver A B A 

11/22/23 Miami B A A 

11/25/23 L.A. Lakers C B B 

11/26/23 Toronto C A A 

11/28/23 Atlanta C B A 

11/30/23 Portland D A B 

12/8/23 TBD D B A 

12/16/23 Atlanta C A A 

12/18/23 Houston D A B 

12/20/23 Utah D B B 

12/21/23 New Orleans C A A 

12/29/23 Milwaukee A B B 

1/3/24 Washington D A A 

1/5/24 Washington C B B 

1/7/24 San Antonio F A A 

1/15/24 Chicago B B B 

1/17/24 Milwaukee A A A 

1/29/24 LA Clippers A B A 

1/31/24 Detroit F A B 

2/5/24 Sacramento A B A 

2/12/24 Philadelphia A A B 

2/14/24 Chicago B A A 

2/22/24 Orlando F B B 

2/27/24 Dallas D A A 

3/3/24 New York A B B 

3/5/24 Boston A B A 

3/8/24 Minnesota C A B 

3/10/24 Brooklyn A B A 

3/11/24 Phoenix A A B 

3/20/24 Miami A B B 

3/25/24 Charlotte F A A 

3/29/24 Philadelphia A B B 

4/10/24 Memphis A B B 

4/12/24 Indiana F A A 

4/14/24 Charlotte F B A 

Table 8: New Tier Optimization vs Original Ticket Package 
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By looking at the two packages above, there exists very little difference in the date 

spread of the two packages. By consulting the Cavalier’s resident expert on ticket packages 

and Director of Business Intelligence, Canaan Campo, this spread is attractive since it does 

not include 3 games in a row for any one package (Canaan Campo, personal 

communication, June 14, 2024). He added that the advantage of the algorithm taking into 

the account of the range of dates is beneficial since usually business leaders will ask for 10 

games in each half of the season, which is present in the new packages as well. Based on the 

evaluation function’s date score metric, the new packages (0.75) narrowly improve on the 

original’s score (0.70). Given slight improvement equitable comparison along the date 

spread, the two package combinations are then compared on the weekend level.  

Original Package   New Package 

Day of Week A B   Day of Week A B 

Weekend 7 10   Weekend 9 8 

Weekday 13 10   Weekday 11 12 
Table 9 & 10: Original Packages vs New Packages on Weekend 

 As previously stated in section 4.2, this is one of the pain points in the process and 

therefore it was given the second highest weight in the evaluation function (Canaan Campo, 

personal communication, June 14, 2024). In the original package, there exists an imbalance 

that is greater than the new package. This shows the improvement of the algorithms ability 

to strike this balance between the packages on weekend over human decision making. This 

is also evident in the Chi-Squared tests where the original package has a p-value of 0.61 and 

the new package has a p-value of 0.82 compared to the total schedule’s distribution. This 

means that the distribution of weekday to weekend games in the new packages is closer to 

the overall schedule’s distribution than that of the original package. The next part of the 

evaluation function of the algorithm is the comparison on the distribution of conferences.  
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Original Package   New Package 

Conference A B   Conference A B 

East 14 11   East 11 14 

West 6 9   West 9 6 
Tables 11 & 12: Original Packages vs New Packages on Conference 

 Based on the above distributions, both package combinations are equivalent on 

their distribution of conferences. This can be attributed to the weights of the algorithm not 

prioritizing the conferences as much as the other variables, which were deemed more 

important by the subject matter experts at the Cleveland Cavaliers. (Quinn Spangler, 

personal communication, June 14, 2024) 

 Now, since the two package combinations were determined using different tiering 

structures, it is not equitable to compare performance on tiers. While the new tiering 

method laid out in this research provides value to the organization, in order to conduct a 

proper analysis of the algorithm compared to the original ticket package, the tiers used for 

the original packages are plugged into the algorithm. This also showcases the flexibility of 

the evaluation function since it can act as a “bring your own tier” system, allowing for 

flexibility depending on how an organization determines its tiers. Table 9 showcases the 

usage of the original tiers in the genetic algorithm versus the original packages.  
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Date Opponent Tier 
New 

Packages 
Original  

Packages 

10/27/23 Oklahoma City C A A 

10/28/23 Indiana C B B 

10/31/23 New York B A A 

11/5/23 Golden State A B A 

11/17/23 Detroit C A B 

11/19/23 Denver B B B 

11/22/23 Miami B B A 

11/25/23 L.A. Lakers A A B 

11/26/23 Toronto D B A 

11/28/23 Atlanta D B B 

11/30/23 Portland D A A 

12/8/23 TBD D B B 

12/16/23 Atlanta B B A 

12/18/23 Houston D A A 

12/20/23 Utah D B B 

12/21/23 New Orleans C A A 

12/29/23 Milwaukee A A B 

1/3/24 Washington D B A 

1/5/24 Washington C B B 

1/7/24 San Antonio B A A 

1/15/24 Chicago C B B 

1/17/24 Milwaukee B A A 

1/29/24 LA Clippers B B B 

1/31/24 Detroit D A A 

2/5/24 Sacramento D A B 

2/12/24 Philadelphia B B A 

2/14/24 Chicago C A A 

2/22/24 Orlando D A B 

2/27/24 Dallas B B A 

3/3/24 New York B A B 

3/5/24 Boston B B B 

3/8/24 Minnesota B B A 

3/10/24 Brooklyn B A B 

3/11/24 Phoenix A B A 

3/20/24 Miami B A B 

3/25/24 Charlotte D B A 

3/29/24 Philadelphia B A B 

4/10/24 Memphis B A B 

4/12/24 Indiana C B A 

4/14/24 Charlotte D A B 

Table 13: Original Tier Optimization vs Original Ticket Packages Schedule 
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 Now since each package has been wholly generated using the same foundation, the 

comparison between the two becomes clearer cut since each uses an identical data set for 

the evaluation function and the overall similarity scores given by both combinations. The 

genetic algorithm ticket package scored 0.8, while the original ticket package scored 0.715, 

which is about a 12% improvement in performance accuracy wise overall. In Table 10, the 

differences along each of the metrics are presented.  

 Optimized 
Package 

Original 
Package  

Perceived Value  1 1 
Weekend 0.82 0.61 

Conference 0.82 0.49 
Date Score 0.74 0.70 

Table 14: Original Tier Optimized Packages vs Original Packages Evaluation Score 

 Both packages are balanced along the tiers perfectly with the distribution. 

According to Canaan Campo, this is a must have in any half season ticket package since 

balance of tiers is key to the business. The improvement over the original solution in the 

other 3 categories is substantial, given the struggles each year to strike this multivariable 

balance manually. Overall, along these evaluation metrics, it has been shown that the usage 

of a genetic algorithm for half season ticket package optimization for the NBA schedule 

improves both the quality and speed of producing said packages.     
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Chapter 5: Conclusion 

Through the case study of the Cleveland Cavaliers' 2023-24 half season ticket 

packages, this research has demonstrated the effectiveness of applying a genetic algorithm, 

coupled with machine learning-based game tiering, in optimizing ticket package 

combinations within the event and entertainment industry. The approach presented offers 

significant potential for enhancing operational efficiencies and product quality, as 

evidenced by the results of this study. The successful implementation of this methodology 

highlights the value of leveraging advanced computational techniques to address complex 

challenges in the ticketing industry.  

Being able to tier games based on demand is an effective use of machine learning, 

specifically K-medoids, increases the depth of knowledge about games. By understanding 

games in detail, the model output aides the decision-making process by providing 

additional context that drive decisions through data. Then, applying domain knowledge to 

the clusters, a relative demand value of each game can be reduced into a more consumable 

ranking. The benefits of this span outside of just the ticket packaging aspect of sports 

business, but to ticketing in general. In providing the relative value of a game, it can help 

price different types of inventories, like individual and group ticket sales. Through the use 

of machine learning in this application, it allows for high dimensional decisions to be 

broken down into consumable and actionable outputs for the business to apply strategy 

towards. 

The genetic algorithm proposed in this study mimics the process of the business 

intelligence teams of the NBA by making swaps of games in the schedule until the optimal 

solution emerges that aligns with the business logic. By embedding domain expertise from 
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business intelligence professionals from the Cavaliers into a weighted evaluation function, 

this allows the algorithm to judge the quality of the solutions just as they would. Unlike the 

manual process, however, the genetic algorithm cuts down the process to just under 10 

minutes compared to the week or two that it currently takes most teams.  

The speed and accuracy that this solution uses has several advantages. The business 

can now leverage the momentum of the schedule release in August to go to market with 

ticket packages sooner. By doing so, a team can capitalize on the excitement of the schedule 

release with their members that are more to buy the half season packages. Given the timing 

of this release lining up right before the start of the NFL schedule, it is advantageous for 

teams that share a home city with NFL teams to go to market before a sports fans gaze 

turns to the NFL regular season. 

Additionally, the teams can benefit from the quality of the product. By creating 

equitable demand for each of the half season packages, it creates an overall higher 

combined product offering. The implications of this could lead to higher sales of packages 

since inventory is limited for each. If there exists an imbalance, fans may favor one package 

over another, leaving inventory sold out for one half and unsold for other half of the games 

in the schedule. The impact on revenue for a team could be substantial in being able to 

more easily sell through both forms of inventory, therefore increasing sales. Another 

implication of undersold games is the impact on revenue of a fan showing up to a game. 

There are more ways that fans contribute to revenue rather than just by buying a ticket. 

When a fan enters the arena, they are presented with options to better their experience by 

purchasing team apparel or concessions. By getting more consistent and higher attendance 

for all games, multiple fan-generated revenue streams can be boosted in the process.  
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 With the application of different business logic into the evaluation function, the 

impact of this approach stretches beyond the sports industry. Any event driven business 

could optimize their events into different packages making for interesting and appealing 

products and newly available inventory. For instance, a concert venue could place their 

events into this algorithm to create new season long ticket packages that could appeal to 

consumers. The advantage of this sales method would be to pair the big ticket shows with 

shows that usually don’t sell through based on the perceived value of past performances 

for similar acts. By using this method to aide in the creation of this inventory, the venue can 

put out higher quality or new inventory. This also helps the consumer not having to deal 

with the secondary market prices for each show that has plagued the concert industry. 

Opening solutions like this up to drive revenue and customer satisfaction in industries 

outside of the NBA and sports is why this algorithm is much more than a one-off use, but 

rather a new method for the entirety of the event industry to benefit from.  

 While there are benefits from the development of this methodology, there exist 

limitations that must be addressed. The data restriction in running inference in the 

clustering method could use improvement. While the results were serviceable and 

provided insights on the type of games in the schedule, the inference dataset was limited. 

One way to improve this is to run predictive algorithms to impute the numerical variables 

of an event, such as total revenue and show rate. Given a high enough level of accuracy 

from these models, the results could help solidify the inference for the tiers. Furthermore, 

to improve tier determination, a weight could be assigned to each of the variables. In a 

similar lane as imputing values for machine learning, an analysis on an individual variable 

level on the effect on demand should be conducted. Then, by creating coefficients for each 
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variable in the medoid centers, an overarching metric for the medoids can be ranked to 

form a hierarchical tier list. With these improvements, the tiering methodology could be 

greatly improved.   

Additionally, a future improvement to the genetic algorithm is to add in a constraint 

to not allow a team to be in the same package twice. This could be done during the creation 

of the population by only selecting individuals that fit this criterion. Additionally, this 

constraint would need to be enforced in the breeding process, either by only allowing 

offspring post crossover that fit the criterion to live on, or by retrying the crossover until a 

valid offspring is created.  

The next logical application of this method would be the analyze quarter season and 

eighth season packages. The methodology used in this approach to half season packages 

directly applies to smaller packages as well. The algorithm was built to accommodate any 

specified number of splits less than or equal to half the number of events, allowing for the 

optimization of a multitude of  splits. This higher quantity of packages poses a new 

challenge for the robustness of the algorithm  

Additionally, using fan behavior to determine the perceived value tiers as well as the 

weights for the evaluation function could create an avenue for personalization of packages. 

For instance, we can study the behavior of different segments of the fan base that attend 

several games a year to determine which games they value as well as their behavior around 

the number of games they go to, weekends, conferences, and the date spread of the games 

they go to. Curating packages can help aide the migration of non-members to members 

based on their preferences and needs according to the parameters of the algorithm, 

ultimately providing a broader reach of packages for fans.  
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The adoption of innovative solutions, such as machine learning and genetic 

algorithms presented in this study, is crucial for sports organizations seeking to remain 

competitive and deliver exceptional fan experiences. As demonstrated through the 

successful application of these techniques in optimizing ticket package combinations for 

the Cleveland Cavaliers, the potential benefits can help with both speed and quality of 

decision making. By embracing data-driven approaches, sports organizations can improve 

operational efficiency, increase revenue generation, and provide more value to their fans. 

As the sports industry continues to evolve, the integration of cutting-edge 

technologies and analytical techniques will become increasingly vital. The insights gained 

from advanced analytics can help businesses better understand their fans' preferences and 

tailor their offerings to meet those needs. The success of the genetic algorithm and machine 

learning game tiering in optimizing ticket packages for the Cleveland Cavaliers serves as a 

testament to the immense potential of these approaches. By staying at the forefront of 

these developments and embracing data-driven decision-making, sports organizations can 

position themselves for long-term success, fostering stronger connections with their fans 

and driving the industry forward in exciting new directions. The work presented in this 

thesis serves as a steppingstone towards a future where advanced analytics and cutting-

edge technologies are seamlessly integrated into every aspect of sports business decision 

making, driving unparalleled growth, fan engagement, and competitive advantage as the 

sports industry continues to embrace innovation and harness the power of data. 

  



 83 

 

 

Appendix A: Tiering Data Sample 
 

There are 4 anonymized data samples provided, each row represents a game. This dataset 
is derived from the tiering dataset before features were removed from the dataset 
following the correlation heatmap analysis.  
 

 

total_revenue med_paid_amount comp individual member group 

-0.11 0.20 -1.27 0.67 1.47 1.93 

0.72 0.67 -0.88 0.96 1.34 0.56 

-0.85 -0.78 0.75 0.78 -0.81 -0.25 

-0.98 -0.88 0.40 0.06 -1.23 -1.14 
 

secondary_market_sales nfl_sunday college_football_saturday 

2.17 FALSE FALSE 

0.62 FALSE FALSE 

-0.83 FALSE FALSE 

-1.34 FALSE FALSE 
 

win_perc rank_in_conference num_all_stars guardians_game 

0.45 10.00 0.00 TRUE 

0.62 2.00 1.00 FALSE 

0.29 13.00 1.00 FALSE 

0.32 13.00 0.00 FALSE 
 

after_all_star late_night_game is_weekend lebron show_rate 

TRUE TRUE TRUE FALSE 1.30 

TRUE TRUE FALSE FALSE 1.30 

TRUE TRUE FALSE FALSE -0.58 

TRUE TRUE FALSE FALSE -0.66 
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Appendix B: List of Included Attributes for K-medoids Algorithm 

total_revenue 
(Numeric)  

 The total revenue of a game is the culmulative 
ticket generated revenue produced by an 
event. This encompasses all ticket sales of all 
types of product. This is a key performance 
indicator (KPI) of the success of a game on the 
aggregate level 

Comp 
(Numeric) 

 Complimentary tickets are the tickets that are 
given away at no charge. These are often given 
out to employees and family members of the 
players.  

Individual 
(Numeric) 

 Individual tickets are tickets that are bought 
for a single game. These can range in quantity 
for any particular game. Typically, these are 
purchased through the team’s ticketing 
provider and are bought online directly from 
the team.  

Member 
(Numeric) 

 Member tickets are those who have bought full 
season, half season, or quarter season packages 
with multiple games included in the package.  

Group 
(Numeric) 

 Group tickets are bought through a sales rep in 
larger quantities defined by the business.  

secondary_market_sales 
(Numeric) 

 These are a type of individual ticket that is not 
being bought directly from the business, but 
from a person who has already purchased a 
ticket and has chosen not to attend the event  

nfl_Sunday 
(Binary) 

 This is true for every Sunday from September 
through January, when the NFL regular season 
and post season is taking place.  

college_football_Saturday 
(Binary) 

 This is true for every Saturday from August 
through December, when the College football 
regular season is taking place. 

rank_in_conference 
(Integer)  

 The respective ranking based on win 
percentage of the team from the previous 
season, with 1 being the best, and 15 being the 
worst in the respective conference. The Wast 
and West Conferences of the NBA are 
separated for interpretability of the variable to 
also indicate playoff participation.  

num_all_stars 
(Integer) 

 This is the number of all stars on the team 
from the previous year at the point of schedule 
release. For example, when a team acquires an 
all-star player from the previous year that was 
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not on their roster, they would be accounted 
for in this variable.  

guardians_game 
(Binary) 

 This is true if there is an with the Cleveland 
Guardians game scheduled on the same day as 
a Cavs game.   

after_all_star 
(Binary) 

 This is true if the game occurred before or 
after the NBA All-Star break that typically 
occurs in the middle of February.  

late_night_game 
(Binary) 

 This is true if the tip-off of the game was at 
7:00PM ET or later 

is_weekend 
(Binary) 

 This is true if the game occurred on a Friday, 
Saturday, or Sunday 

Lebron 
(Binary) 

 This is true if the former Cleveland Cavalier, 
Lebron James, is on the opposing team 
(currently on the Los Angelos Lakers)  

show_rate 
(Numeric) 

 This represents the percentage of ticket 
purchasers who show up to a game. Also 
referred to as scans.  
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Appendix C: List of Included Attributes for Genetic Algorithm 

Perceived Value 
(Factor)  

This is the relative group the event falls in 
according to business logic for determining the 
demand and quality of matchup for fan appeal.  

Weekend 
(Binary) 

This is true if the game is on a weekend or not. 
Defined as Friday, Saturday, or Sunday.  

day number 
(Integer) 

 This is how many days past the opening night the 
game occurs, ranging from opening night until the 
final home game.  

In Conference 
(Binary 

 This is true if the game occurred on a Friday, 
Saturday, or Sunday 
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