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Abstract

Sensitive numbers play an unparalleled role in identification and authentication.

Recent research has revealed plenty of side-channel attacks to infer keystrokes.

The common idea is that pressing a key of a keyboard can cause a unique and

subtle environmental change, which can be captured and analyzed by the eaves-

dropper to learn the keystrokes. However, these attacks also require either a

training phase or a dictionary to build the relationship between an observed sig-

nal disturbance and a keystroke. As acquiring the training data about the victim

is often unpractical, this research develops a side-channel attack that does not

require training procedures.

This dissertation demonstrates that typing a number creates not only a num-

ber of observed disturbances in space (each corresponding to a digit), but also

a sequence of periods between each disturbance. Based upon existing work that

utilizes inter-keystroke timing to infer keystrokes, we build a novel technique that

combines the spatial and time domain information into a spatiotemporal feature

of keystroke-disturbed wireless signals. With this spatiotemporal feature, the

proposed attack can infer typed numbers without the aid of any training.

Experimental results on top of software-defined radio platforms show that this

attack vastly reduces the guesses required for breaking certain 6-digit PINs from

1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs
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with less than 100 attempts. This dissertation also discusses feasible counter-

measures that can resist the proposed attack and evaluates them in real-world

typing environments.
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Chapter 1

Introduction

In the digital era, identifying numbers permeate every aspect of our daily lives,

particularly social security numbers (SSNs) and personal identification numbers

(PINs). These numbers grant access to highly sensitive applications and services,

and their disclosure to unauthorized parties can lead to serious consequences.

A compromised SSN can enable identity theft in the form of fraudulent credit

card accounts [50], access to Medicaid or unemployment insurance benefits [90],

or fraudulent tax return filing and return claims [71]. Due to the large unem-

ployment benefit expansion during the COVID-19 pandemic, scammers have filed

huge numbers of fraudulent unemployment claims with stolen SSNs [8].

People inevitably type those important numbers into computer systems via a

keyboard for identification and authentication under many practical and some-

times public scenarios. For example, we must type in our SSNs to do a credit

check when filling out a mortgage/credit card/employment application, or to set

up/log into mobile banking accounts [35]. PINs are often required to unlock

smartphones or other systems enforcing access control, including smart doors,
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safe boxes, automated teller machines (ATMs), and point of sale (POS) devices.

These circumstances provide attacks with the best opportunity to eavesdrop on

these valuable numbers.

Traditional invasive keystroke eavesdropping attacks usually require deceiv-

ing the victim’s computer system to pre-install malware, e.g., a keylogger [47],

which intentionally records and sends everything the victim types to a remote site

for the adversary to read. However, such invasive attacks can be defended with

anti-malware techniques [73]. Recent research focuses on developing non-invasive

keystroke inference attacks [5,16,32,58,61,69,70,85,87,96], which are more surrep-

titious as they only require passive monitoring of corresponding physical distur-

bances (e.g., brainwave signals [70], vibrations [69], acoustic emanations [16,85],

motion [96], inter-keystroke timing [5,87] and wireless signals [3,4,32,58,61,108])

in the target’s vicinity. Specifically, those methods take advantage of the fact

that a keystroke creates a unique variation of the monitored physical distur-

bance. Such a mapping can be then pre-built and utilized later to infer newly

typed content.

Many existing side-channel keystroke inference techniques [16, 32, 96] mainly

focus on recovering meaningful English words, instead of numbers, which is sim-

pler because a sequence of keystrokes for a word has to follow the word’s structure

(i.e., alphabetical combinations defined in a dictionary). Also, multiple such se-

quences comprising a series of consecutive words must follow language-specific

syntax, which further narrows down candidate text. In contrast, inferring num-

bers is much more challenging, as there is no universal “dictionary” or linguistic

relationship for digit sequences. All previous work (e.g., [3,58,61,108]) targeting

digits rather than words require a supervised learning process, i.e., the inference

system must obtain a large amount of training data (keystrokes on different num-
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bers). Considering that the victim is normally in full control of the keyboard and

types in a limited number of digits (i.e., a 9-digit SSN or a 6-digit PIN) within a

short time, those training-based methods are clearly not suitable for numbers.

Due to the limitations of existing side-channel keystroke inference techniques,

the security risk associated with typing a digit sequence in public places has not

particularly been addressed. In this dissertation, we systematically investigate

the question: is a typed number really secure just because it is impractical to

collect training data? We discover a novel type of Wireless Inference attack

targeting Numerical Keystrokes without requiring training, called WINK. Our

idea comes from the following two observations.

First of all, we can easily obtain repetition information of each observed dis-

turbance, corresponding to an individual keystroke. We refer to this feature as

the spatial property. Different disturbances are caused by typing different keys, so

the repetition of digits in a digit sequence would be reflected in the repeated am-

bient disturbances. For example, for a typed 4-digit PIN – “2482”, the adversary

would observe three disturbances different from each other, and two that match.

Such structural information enables the adversary to shrink the candidates of the

typed PIN. In this example, the number of average guesses to compromise the

PIN decreases by almost 93% compared to traditional brute-force attacks, i.e.,

from 5,000 to 360. However, the spatial property on its own is far from achieving

an effective number inference attack, which requires the number of candidates for

the typed number to be small enough to avoid triggering a system lockout. This

motivates us to find other useful information disclosed during the typing process

to help further shrink the candidates for the typed number.

Second, identifying each physical disturbance also derives the temporal dif-

ference between two consecutive keystrokes, or “inter-keystroke timing”. Some
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existing work utilizes such inter-keystroke timing for keystroke inference [5, 87]

but requires a training process to collect an enormous amount of data for statis-

tical analysis, which as previously mentioned makes them unpractical. Instead

of giving a label (e.g., a key pair) for each inter-keystroke timing, we focus on

the inner structure of a sequence of inter-keystroke timings, i.e., the relative size

of different elements in the sequence. We refer to such a feature as the temporal

property of keystrokes, which discloses the relationship among inter-key distances

for different key pairs. Specifically, the inter-keystroke timing generally increases

with the distance between the typed key pair, which can be immediately obtained

based on the keyboard layout. For example, the inter-keystroke timing for typing

two same digits is usually smaller than typing two different digits.

By utilizing the spatiotemporal structure (i.e., spatial property in conjunction

with temporal property) of the observed side-channel information, we develop

our training-free and context-free technique to infer the typed number. The fore-

most challenge is then how to quantify the spatiotemporal structure for observed

disturbances and also the corresponding typed number. We customize a quantifi-

cation scheme that can divide all possible numbers into as many sets as possible

to achieve high distinguishability, so that each set has minimum elements on

average. As a result, given a quantification result for an observed disturbance

sequence, the average candidates for the corresponding typed number can be min-

imized. Also, with some public information of digits on certain positions (such

as the 3-digit area code of an SSN), the search space of possible candidates can

be further narrowed down.

As wireless signals are ubiquitous, invisible, and able to propagate under

non-line-of-sight (NLOS) conditions, we utilize wireless signals as the target dis-

turbance to capture keystrokes. Particularly, a pre-trained model is not suitable

4



Table 1.1: Comparison with some existing attacks.

Attack
Target∗

C1 C2 C3 C4
D T P

EyeTell [15] • • • ✓ ✗ ✓ ✗∗∗

MoLe [96] • ✗ ✗ ✗ ✗

Compagno et al. [16] • ✗ ✓ ✓ ✓

(sp)iPhone [69] • ✗ ✓ ✗ ✗

WiPOS [108] • ✗ ✓ ✓ ✗

Fang et al. [32] • ✓ ✓ ✓ ✗

WINK • ✓ ✓ ✓ ✓

* D: Digit, T: Text, P: Pattern

** A dictionary is required for text inference.

for wireless-based keystroke inference attacks, as the wireless channel is prone to

be influenced by environmental changes, making it impossible to collect generic

data and establish a universal model for all scenarios. Therefore, wireless-based

keystroke inference attacks [3, 14, 58, 108] all utilize frequent training to cope

with the environmental changes, instead of relying on a one-time pre-trained

model. Also, all these works require (1) performing user-specific training (i.e.,

pre-obtaining a large/desirable number of labeled data of the victim) and (2) that

each user maintains a consistent typing posture during the training and testing.

Both requirements are unlikely to be satisfied in reality, especially for typing sen-

sitive numbers. [108] also performs multi-user training (i.e., collecting the data

from many users to build a classifier and using it to predict the typing content of

another user whose samples are not included in the training data set) and shows

unsatisfactory inference results for victims whose typing habits are different from

the users whose data are used for training.

This dissertation further compares WINK with the existing keystroke infer-

ence attacks by considering the type of the exploited side-channel, target informa-

tion. Additionally, we consider the following properties. First, as aforementioned,
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techniques without training requirements (C1) are more practical, as they reduce

the burden of an attacker. Second, the attack schemes without line-of-sight con-

straints are more practical (C2) as the attacker has more freedom of positioning

herself or attack devices (e.g., sensors). Third, non-intrusive (C3) attacks that

do not need to compromise (e.g., install malware) the victim’s devices are more

practical, as they do not increase the burden on the attacker. Finally, the attacks

do not require long input or dictionary (C4) are more practical, as they can infer

target information with less information disclosed by the victim. The highlighted

differences are depicted in Table 1.1.

1.1 Summary of Contributions

The contributions of this dissertation are summarized below:

• Unlike previous extensive research in inferring keystrokes using labor-inten-

sive training or contextual information, this dissertation identifies a new

type of attack that can compromise numerical keystrokes with only the

instantaneous wireless data collected during those keystrokes.

• We develop an algorithm to map obtained time series of wireless measure-

ments into a digit sequence by modeling, extracting, and correlating their

self-contained spatiotemporal features.

• We carry out extensive real-world experiments, demonstrating that WINK

can consistently and significantly reduce the search space for each PIN or

SSN. Specifically, over half of the 6-digit PINs and 85% of the SSNs can be

inferred within less than 100 attempts in real-world settings.
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• We design a countermeasure to defend against the proposed attack, and

evaluate the effectiveness of the proposed defense technique. Experiment

results show that typing extra digits that are carefully chosen can improve

PIN entropy.

7



Chapter 2

Related Work

In this chapter, we review prior side-channel keystroke inference attacks can be

mainly divided into the following categories.

2.1 Video-based Attacks

An attacker can stealthily record the typing process of the victim. Though the

attacker may not directly observe the typed number in many cases, she can

still recover keystrokes through computer vision techniques, e.g., tracking hand

movement [84] or touching fingertip [103], and analyzing backside motion of input

devices [88]. Recent research even shows that keystrokes can be disclosed via a

video capturing the eye movement of the victim [15] or a video call [80]. However,

the accuracy of video-based techniques highly depends on the camera’s field of

view covering the victim, as well as the light condition in the environment.
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2.2 Sensor-based Attacks

An attacker may use diverse on-board sensors to infer keystrokes, mainly in-

cluding motion sensors (e.g., accelerometers and gyroscopes) and microphones.

Generally, pressing different keys on a keyboard may generate unique acoustic or

motion signals. Most of the existing work (e.g., [12, 16, 17, 64, 66, 67, 69, 92, 93])

require a supervised training process to build a correlation model between each

keystroke and corresponding sensing signal. By incorporating the statistical con-

straints of the English language, [110] utilizes an unsupervised training process.

With the model built during the training phase, the attacker can infer key-

strokes during the attack phase. For example, the accelerometer on a smartphone

can capture vibrations caused by keypresses on a nearby physical keyboard [69]

or onscreen keyboard [12], and such vibrational signals can be used for keystroke

inferences. Also, recent research efforts (e.g., [64,67,92,93,96]) reveal that when

a user wears a smartwatch on the wrist and types, the accelerometer or gyroscope

built within the smartwatch can track the user’s hand movement, which can be

further utilized to infer keystrokes. However, in order to get data from sensors

on a smartwatch or smartphone, the attacker has to first trick the victim into

installing malware onto the smartwatch or smartphone. [16] does not require

the attacker to pre-hack the user’s device, and it collects acoustic emanations

of pressed keystrokes through Voice-over-IP (VoIP, e.g., Skype) calls. However,

it only works when the following two conditions are satisfied: first, the attacker

and the victim join the same VoIP call; second, the victim types in sensitive

information during the call.

Meanwhile, [17] exploits the power consumption of smartphones to infer their

passcodes. When the victim types a passcode while the smartphone is connected
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to a charger, the corresponding voltage fluctuations can be observed on the power

line. Such a scenario is practical, as people often use public chargers that are

available in various places (e.g., an airport, or a cafe). However, this scheme also

requires a training phase to achieve the attack. With a trained CNN classifier, [17]

achieves 92.8% accuracy for inferring a 4-digit passcode on the first attempt.

Besides, an attacker may leverage Time Difference of Arrival (TDoA) val-

ues to localize keystrokes (e.g., [63, 109]). However, such techniques have three

disadvantages. First, they require multiple microphones and accurate time syn-

chronization for the microphones. Second, the victim needs to put her phone

very close to the target keyboard. Last, the adversary must also pre-infect the

victim’s phone with malware, so that the intercepted acoustic signals can be sent

back to her.

2.3 Inter-keystroke Timing Based Attacks

It has been widely acknowledged that inter-keystroke timing may leak information

about the key sequences being typed. In existing work [5,13,87], a training process

is necessary to preestablish the relationship with each key pair and corresponding

inter-keystroke timing. Our attack, though, also collects inter-keystroke timing,

it eliminates the training requirement and takes advantage of the self-contained

pattern of observed inter-keystroke timing sequence instead. Besides, our attack

deduces the inter-keystroke timing from the intercepted wireless signals. Such

a method of obtaining inter-keystroke timing is more flexible and practical than

existing work [5, 13, 87]. For example, [87] learns the inter-keystroke timings of

the user’s typing from the arrival times of SSH packets, and thus it needs to wait

until the victim launches an SSH session. [5] uses cameras to record the typing

10



process and extracts inter-keystroke timing from typing feedback on screens in

the form of characters (e.g., ∗ or •), making it difficult to attack keyboards that

provide no clear graphic feedback (e.g., a dim phone). [13] extracts inter-keystroke

timing from the feedback sound when users type, and thus like aforementioned

sensor-based attacks, it must pre-install malware on the victim’s device to record

the acoustic signals.

Besides, [65] proposes user-independent inter-keystroke timing based PIN in-

ference attacks. It requires a training procedure to build a human cognitive

model, which can be trained with data not coming from the victim. The cost of

this relaxation is that [65] only works for skilled typists who share the universal

typing behavioral phenomena.

2.4 Wireless-based Attacks

Recently, many studies have shown the success of leveraging wireless signals

to infer keystrokes (e.g., [3, 32, 53, 55, 58, 61, 108]). Compared with other side-

channel keystroke inference attacks, wireless-based techniques have three advan-

tages. First, wireless signals are ubiquitous and invisible, making wireless-based

attacks quite suspicious and easy to set up. Second, they are non-invasive as

there is no need to pre-install malware on the victim’s device. Third, unlike

video-based or sensor-based attacks, they do not require the victim to be in line-

of-sight or close proximity to the keystroke inference system. However, most

of those wireless-based keystroke inference techniques ( [3, 58, 61, 108]) still re-

quire a training process to pre-label the observed wireless signal sample with the

corresponding keystroke.

WiPOS [108] infers the typed digits by a victim by utilizing training data
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obtained from another user. However, it requires the attacker to collect lots of

data to build an effective classifier, and it does not provide consistent performance

if a target victim’s finger movement (i.e., typing style) is quite different from the

users who provide training datasets. Meanwhile, [32] removes the training process

by exploring the context correlation which is strictly constrained by the spelling

and grammar of the English language, and thus it cannot be used for inferring

numbers, in which digits are usually randomly combined.

BrokenStrokes [72] detects the presence of specific keywords in long keystroke

sequences by only eavesdropping on the keyboard-dongle communication links.

First, it converts the received signal strength (RSS) peaks to inter-keystroke tim-

ings, and then infers the typed keywords from the timing information. However,

this attack is not applicable to keyboards without wireless dongles (e.g., wired

keyboard, touch screen device), and requires a training phase to infer specific

English words or sentences.

Another work [59] leverages the liquid crystal nematic response effect under

mmWave sensing to infer on-screen contents. It requires training in two phases

(content-type recognition, and information retrieval), but the training data can

be obtained from any user. Also, many systems display nothing or asterisks

rather than the typed digits, leading [59] to fail in such scenarios.

ClickLeak [55] exploits wireless CSI with vibration and audio side-channel

information to infer the typed PINs. The key idea is exploiting vibration and

audio observations to identify the input window (i.e., typing period), and utilize

a trained k-Nearest Neighbor (kNN) classifier to infer which keys are pressed by

the victim.

One recent work [49] achieves a PIN inference attack using Beamforming

Feedback Information (BFI), which is a compressed form of CSI. BFI can be

12



obtained from specific WiFi hardware (higher than WiFi 5). [49] first determines

the victim’s keystroke with the prior knowledge of the victim (i.e., MAC ad-

dress), and performs keystroke inference with a trained classifier. Although [49]

achieves reliable attack performance, it still requires training data obtained from

the victims.
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Chapter 3

Wireless Inference of Numerical

Keystrokes via Spatiotemporal

Analysis

In this chapter, this dissertation proposes a novel numeric keystroke inference

attack, WINK [102], which utilizes both spatial and temporal features (i.e., spa-

tiotemporal feature) that can be obtained from the side-channel.

3.1 Preliminaries

This section introduces how existing wireless-based keystroke inference attacks

work, and presents a general workflow of them. As the proposed attack targets

inferring sensitive numbers, this section additionally presents basics about Social

Security Number (SSN) which can help us narrow down candidates for that type

of typed number.
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𝑋(𝑓, 𝑡) 𝑌(𝑓, 𝑡)
Public

Transmitter Receiver

Figure 3.1: General wireless-based keystroke inference setup.

3.1.1 Wireless-based Keystroke Inference

There are emerging research efforts in wireless-based keystroke inference [3, 4,

32, 58]. The common underlying principle is that hand movement during typing

changes multipath signals scattered from walls or surrounding objects and may

also create new multipath signals. The received signal, as the resultant of all those

multipath signals, will be altered accordingly. The impact of a wireless channel

on the transmitted signal can be quantified by the channel state information

(CSI) measurement, which can be in turn used to infer keystrokes.

Orthogonal frequency-division multiplexing (OFDM) encodes digital data on

multiple carrier frequencies, and has been widely employed in mainstream WiFi

systems such as 802.11 a/g/n/ac. The Channel Frequency Responses (CFRs)

obtained from the subcarriers compose the CSI of OFDM. The CFR for a sub-

carrier with frequency f at time t can be denoted with H(f, t), which can be

calculated by transmitting a publicly known preamble of OFDM symbols be-

tween the transmitter and the receiver [37]. Let X(f, t) and Y (f, t) represent the

transmitted preamble and correspondingly received signal, respectively, for the

subcarrier frequency f , as shown in Figure 3.1. An attacker can utilize a trans-

mitter and a receiver to create a radio environment. The transmitter transmits
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signals that are distorted by the typing activity, while the receiver can quantify

such distortion by launching channel estimation. With the received signal and

the publicly known preamble, the receiver can compute H(f, t)= Y (f,t)
X(f,t)

.

The received signal reflects the constructive and destructive interference of

multipath signals. Therefore, a certain human activity creates a unique multipath

environment and generates a unique pattern in the time series of CSI values, i.e.,

CSI is popularly utilized to achieve fine-grained activity recognition. For example,

CSI can be used for recognizing human identity (e.g., [2,48,82,104,105]), moving

humans (e.g., [77, 78]), human vital signs [62], and various human motions or

gestures [56, 89,91,95].

General Workflow: Existing keystroke inference methods using CSI [3, 4, 58]

usually rely on three phases, including signal pre-processing, training, and test-

ing. The first phase segments the collected CSI time series into a sequence of

waveforms, each corresponding to a keystroke, through three steps: (1) noise re-

moval, to make the estimated CSI more accurate; (2) dimension reduction, to find

subcarriers which show the strongest correlation with the typing activity; and (3)

waveform extraction, to detect the start and end points of CSI time series for a

keystroke. The second phase gathers data on CSI waveforms for all keystrokes

and trains a classification model, with which the third phase maps each observed

unlabelled CSI waveform into the corresponding keystroke.

3.1.2 SSN Basics

A nine-digit SSN is uniquely issued to an individual by the Social Security Admin-

istration (SSA) of the United States and usually follows a person over a lifetime.

It can be broken into three parts with a format “AAA-GG-SSSS”: (1) the first
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3 digits, known as the area number, indicate the applicant’s state of residence

before the SSA changed the SSN assignment process to SSN randomization in

June 2011 [86], and they no longer reflect the geographical region since then; (2)

the next 2 digits, called the group number, break the numbers into convenient

blocks (no group contains only zeros); and (3) the last 4 digits, referred to as the

serial number, are assigned sequentially from 0001 through 9999. The purpose

of an SSN has expanded from tracking earnings for Social Security entitlement

and benefit computation at its inception in 1936 [76] to ubiquitous identification

throughout government and the private sector nowadays. Consequently, an SSN

has become a “skeleton key”, which may swiftly open the door to identity theft

as mentioned previously.

3.2 Adversary Model

In general, an attacker can control a wireless transmitter (TX) and receiver (RX)

pair to launch the attack, as shown in Figure 3.1. The effective distance between

the attacker’s TX/RX and the victim is determined by the transmit power, an-

tenna gain at TX/RX, as well as the nearby environment. The transmitter can

constantly transmit the wireless signal or just whenever typing activity is detected

(e.g., via a WiFi packet analyzer [58]).

As this work focuses on inferring numeric keystrokes, we consider typing on

either a traditional physical numeric keyboard or an on-screen one. Specifically,

three typical layouts of digit keys are discussed, as shown in Figure 3.2: (a) a

physical palm-sized numeric keypad with the 7-8-9 keys at the top of other digit

keys, which is usually on the far right side of a standard computer keyboard; (b) a

physical POS keyboard with the 1-2-3 keys on top; (c) a smartphone’s touchscreen
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PIN pad with the 1-2-3 keys on top. We assume that the victim types with the

same finger of the same hand. In practice, those numeric keypads are operated

by one same finger in most cases, as the limited keypad size makes it inconvenient

for the keypad to hold two hands simultaneously, and also multi-finger typing is

prone to error [60].

3.3 Attack Design

3.3.1 Attack Overview

To launch WINK, the attacker first estimates CSI with received signals (as de-

scribed in Section 3.1.1) and then utilizes the general pre-processing phase to

divide the estimated CSI time series into individual waveforms. Each waveform

corresponds to the action of pressing a key, so we call it single-keystroke wave-

form. Meanwhile, WINK also records the start and end times of each extracted

keystroke to calculate the inter-keystroke flight interval, i.e., the time between

releasing the current key and pressing the next key.

In lieu of “train-then-test” paradigms used by existing methods, WINK uses

the single-keystroke waveforms and inter-keystroke flight intervals in the follow-

ing two phases: typing session segmentation and spatiotemporal correlation. The

first phase partitions the stream of single-keystroke waveforms into segments,

each corresponding to a “typing session” during which the user types continu-

ously without interruption. Occasionally, a user may stop for a while during

input to recall the following digits in the number, causing a longer than usual

inter-keystroke flight interval not indicative of an inter-key distance. This phase

identifies such abnormally long inter-keystroke flight intervals to separate neigh-

18



(a) Standard numeric pad (b) POS keyboard (c) Touch-screen PIN pad 

Figure 3.2: Sketches of typical typing scenarios.

boring typing sessions. The second phase extracts the spatiotemporal feature

for each typing session, and correlates it with a digit sequence. The correla-

tion results enable the attacker to derive the mapping between single-keystroke

waveforms and keystrokes as well as the mapping between inter-keystroke flight

intervals and digit pairs. Such mappings obtained through different typing ses-

sions can be combined to further shrink the candidates of the typed number.

3.3.2 Typing Session Segmentation

Typing session segmentation classifies single-keystroke waveforms and inter-key-

stroke flight intervals into different categories respectively, and also segments in-

termittent typing (if any) into multiple typing sessions. Specifically, the following

three steps are involved.

3.3.2.1 Spatiotemporal Classification

Different keystrokes usually lead to different key waveforms while the same key-

strokes generate highly similar ones. We thus perform spatial classification to

cluster different single-keystroke waveforms, and each cluster represents a differ-

ent keystroke. Meanwhile, when the user’s typing finger moves similar distances

between two consecutive digit keys during typing, the resultant flight intervals
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are similar. Temporal classification is then conducted to aggregate comparable

inter-keystroke flight intervals into a separate set. The above two classification

tasks together form the spatiotemporal classification.

Spatial Classification: To compare two single-keystroke waveforms, WINK

utilizes the technique of Dynamic Time Warping (DTW), which has been widely

utilized to quantify the similarity between two waveforms through dynamic pro-

gramming [3, 32, 58]. With two single-keystroke waveforms as input, DTW out-

puts the distance between them. A short distance indicates that the two wave-

forms are highly similar and originated from typing the same key, while a long

distance denotes that they exhibit different patterns and are caused by pressing

two different keys.

Temporal Classification: If two inter-keystroke flight intervals are close,

they will be classified as a group. Similar to the above spatial classification,

temporal classification computes the difference between a pair of inter-keystroke

flight intervals. A small difference shows that the two flight intervals are similar

and are placed in the same set, while a large difference makes the two flight

intervals classified into separate sets.

3.3.2.2 Abnormal Inter-keystroke Flight Interval Detection

Typing a pair of digit keys (ki, ki+1) consecutively generates four events: the press

of ki at time tsi , the release of ki at time tei , the press of ki+1 at time tsi+1, and the

release of ki+1 at time tei+1. Accordingly, two single-keystroke waveforms can be

observed along with their respective start and end times. The flight interval for

typing this key pair is thus Ii,i+1 = tsi+1 − tei .

During a consecutive typing period, the inter-keystroke flight interval is highly

correlated with the physical distance between the two keys (referred to as inter-
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Figure 3.3: Two typing sessions for inputting the number ‘452489’ with a long
delay after the first 3 digits.

key distance) on the keypad. On the other hand, as aforementioned, if the user

performs intermittent typing due to sudden interruption (e.g., pausing to recall or

check the typed numbers), the resultant inter-keystroke flight interval becomes

abnormally long and the corresponding interval-distance correlation is broken.

Therefore, if an obtained inter-keystroke flight interval is quite long (exceeding

the required time for the user to move the finger across the two keys farthest

apart on the keypad), it will be regarded as an abnormal flight interval.

The temporal classification outputs N sets, each consisting of similar inter-

keystroke flight intervals, which we sort by their mean interval length. We begin

by assuming that all flight intervals are normal and perform the remainder of

the number inference process. If this assumption is incorrect, we will ultimately

not recover any numbers when the process is complete. In that case, we know at

least one set of inter-keystroke flight intervals is abnormal, so we label the largest

Na sets as abnormal and try again. We try Na from 1 to N until we succeed in

obtaining candidates for the typed number or exhaust all sets.
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3.3.2.3 CSI Session Separation

The whole CSI time series would be divided into typing sessions with detected ab-

normal inter-keystroke flight intervals. Within each typing session, every single-

keystroke waveform and normal inter-keystroke flight interval are grouped to-

gether. We call such a group a CSI session. Those CSI sessions are then inputted

into the phase of spatiotemporal correlation, aiming to build the correlation be-

tween a sequence of single-keystroke waveforms and a digit sequence. Figure 3.3

is an example of two typing sessions when the user first types three digits, pauses

for a while, and continues to type another three digits. Wi (i∈{1, · · · , 6}) is the

ith single-keystroke waveform, and Ii,i+1 is the flight interval between the ith and

(i+1)th keystrokes.

3.3.3 Spatiotemporal Correlation

Spatiotemporal correlation is a function to convert the sequence of single-key-

stroke waveforms to the typed number. We begin by exploring a common feature

to build a correlation between a CSI session and a digit sequence. Next, we

consider recovering the digits typed within a period consisting of multiple CSI

sessions.

3.3.3.1 Qualifying Spatiotemporal Structure

We aim to find a feature to characterize the spatiotemporal structure of a CSI

session. Ideally, this feature can uniquely determine the corresponding sequence

of digits. For a sequence with up to n digits, there areKmax = 10+102+· · ·+10n =

10(10n−1)
9

possibilities in total. A perfect feature classifies theKmax candidates into

Kmax subsets, each having one element only, such that an input CSI session can
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find a unique match based on this feature.

We use the selected feature to divide all Kmax initial candidates into K sub-

sets. To quantify the distinguishability of this feature, we define a new met-

ric, called partition rate, denoted with η, as the ratio between K to Kmax, i.e.,

η = K/Kmax (η ∈ (0, 1] as K ≤ Kmax). When η is closer to 1, we can obtain

smaller subsets on average. Therefore, our goal becomes to develop a feature with

high distinguishability that is able to divide all possibilities into the maximum

amount of subsets, i.e., to maximize η.

Intuitively, with single-keystroke waveforms, we can determine the number of

constituent digits and whether or not any digits in the sequence are repeated.

These two pieces of information yield the spatial feature that can be used to par-

tition all candidates of the typed digit sequence. On the other hand, with inter-

keystroke flight intervals, we can determine whether or not any inter-keystroke

flight intervals appear again. Two inter-keystroke flight intervals belonging to

the same set indicate that the two corresponding key pairs have similar inter-key

distances. This piece of information yields the temporal feature that can also

be used to partition all number candidates. In the following, we evaluate the

partition rate when employing different features.

Structural Vector: Let x=[x1, x2,· · ·, xn] denote a sequence of n elements

which can be single-keystroke waveforms, inter-keystroke flight intervals, or digits.

We define its structural vector as

V : x = [x1, x2, · · · , xn] 7→ y = [y1, y2, · · · , yn]. (3.1)

To construct V , for a sequence of single-keystroke waveforms, we set the ele-

ments of the vector y1 = 1 and yi = yj (i > 1, j < i) if xi and xj are similar
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Algorithm 1 Structural Vector Generation

1: procedure S Vector Gen([x1, x2, · · · , xn])
2: y1 ← 1
3: ymax ← 1
4: for i in {2, 3, · · · , n} do
5: for j in {1, 2, · · · , i− 1} do
6: if IsSameSet(xj, xi) then
7: yi ← yj # belong to a same subset
8: else
9: if j = i− 1 then # belong to a new subset
10: yi ← ymax + 1
11: ymax ← ymax + 1
12: end if
13: end if
14: end for
15: end for
16: return [y1, y2, · · · , yn]
17: end procedure

waveforms as classified during spatial classification (Section 3.3.2.1); otherwise,

we set yi =max(y1, y2, · · · , yi−1) + 1, where max(·) is a function which returns

the maximum among a set of given values. By applying structural vectors to

both CSI sessions and digit sequences, we can then extract their spatial and tem-

poral features. Algorithm 1 shows the vector generation procedure, where the

pre-defined function IsSameSet(xj, xi) determines whether the two elements xj

and xi are similar (i.e., classified into a same subset), and it returns 1 if yes;

otherwise 0.

Spatial Feature Extraction: For a sequence of single-keystroke waveforms

w = [w1,w2,· · ·, wn] of a CSI session, we obtain its spatial feature s = V (w).

Similarly, for a digit sequence, we regard that the same digits are in the same

set. We thus obtain its spatial feature accordingly. For example, for an up to

6-digit sequence, there are in total of Kmax =
10(106−1)

9
= 1, 111, 110 possibilities

with brute-force guessing. While using this spatial feature, we can then divide
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Figure 3.4: Distances between digit ‘7’ and other keys.

all Kmax candidates into 277 subsets (i.e., 277 different structural vectors are

obtained), such that members of each subset share the same spatial feature.

On average, each set has Kmax/277 ≈ 4, 011 numbers, so an input CSI session

would be mapped to one of 4,011 candidates. The partition rate then equals

277/Kmax = 2.5× 10−4.

Temporal Feature Extraction: Empirically, the inter-keystroke flight in-

terval is generally proportional to the distance between the typed two keys, i.e.,

inter-key distance (IKD). For a sequence of inter-keystroke flight intervals, de-

noted with I = [I1,2, I2,3, · · · , In−1,n], we can obtain its temporal feature (i.e.,

structural vector) as t = V (I). We then introduce how to obtain the temporal

feature of a digit sequence. We take a standard number keypad as an example to

present the relationship between inter-keystroke flight intervals and digit pairs,

while such a relationship can be derived in a similar way for other keypad layouts.

Normally, the horizontal or vertical center-to-center key spacing (referred to as

unit) between adjacent keys is 19 mm ± 1 mm [51,75]. The movement distance of

the typist’s finger for typing two keys approximately equals the distance between

the centers of these two keys, i.e., IKD. Accordingly, all IKDs (units) form a set
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between digit ‘7’ and other keys. Considering that some IKDs are quite close and

the resultant inter-keystroke flight intervals may not show obvious difference, we

divide all IKDs into the following groups (g1-g4): if two IKDs belong to a same

group, the corresponding inter-keystroke flight intervals are categorized into a

same subset, and vice versa.

• g1: IKD ∈ {0};
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√
5
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2};

• g3: IKD ∈ {
√
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√
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}.

Based on the IKDs of a digit sequence, we can thus derive its temporal feature

by calculating the structural vector. Similarly, for an up to 6-digit secret number,

we can then obtain 513 subsets in total. Each subset has Kmax/513 ≈ 2, 145 digit

sequences. Correspondingly, the partition rate is 513/Kmax = 4.62× 10−4.

Inter-keystroke Latency VS. Flight Interval: Inter-keystroke (or press-

press) latency has been widely exploited for keystroke inference (e.g., [5, 79, 87,

106]), which equals the time difference between two key presses. One concern is

thus why we choose inter-keystroke flight interval to characterize the inter-key

distance (IKD), rather than inter-keystroke latency. Based on both theoretical

and empirical analysis, we find that inter-keystroke flight interval can reflect the

corresponding IKD more accurately compared with inter-keystroke latency.

We compute the squared Pearson correlation coefficient (SPCC, referred to

as ρ2) [7] to evaluate the degree of linear association between two zero-mean
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variables (v1 and v2), formalized as

ρ2 =
E2(v1 · v2)
σ2
v1
· σ2

v2

. (3.2)

We thus have ρ2 ∈ [0, 1]. The closer ρ2 is to 1, the stronger the linear correlation

between the two variables is. Lemma 3.1 demonstrates that inter-keystroke flight

interval has a more linear relationship with IKD.

Lemma 3.1. ρ2f,d ≥ ρ2l,d holds, where ρ2f,d represents the SPCC between inter-

keystroke flight interval f and IKD (denoted with d), and ρ2l,d denotes the SPCC

between inter-keystroke latency l and d, respectively.

Proof. The inter-keystroke latency is constituted of the duration δ of a single-

keystroke waveform and the following inter-keystroke flight interval (i.e., l =

f + δ).

With a sequence of n-sample inter-keystroke flight intervals, f1, · · · , fn, we

calculate the mean value f̄ = 1
n

∑n
i=1 fi, and subtract the corresponding mean

value to obtain fc = f − f̄ . Analogously, we have the mean values l̄, d̄, and δ̄.

After the centralization step, we get the processed values lc = l − l̄, dc = d − d̄,

and δc = δ − δ̄. We then have ρ2f,d =
E2(dc·fc)
σ2
dc

·σ2
fc

= E2(dc·fc)
E(d2c)·E(f2

c )
.

Note that δ (δc) normally relies on the key-press force and individual key

design. It is thus a variable independent of f or d (fc or dc). Accordingly, we

obtain E(dc · δc) = E(dc) · E(δc) = 0 and E(fc · δc) = E(fc) · E(δc) = 0. As a
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Figure 3.5: CDF of β for all users.

result, we have

ρ2l,d =
E2(dc · (fc + δc))

σ2
dc
· σ2

fc+δc

=
E2(dc · fc + dc · δc)
E(d2c) · E[(fc + δc)2]

=
E2(dc · fc)

E(d2c) · [E(f 2
c ) + ∆]

≤ E2(dc · fc)
E(d2c) · E(f 2

c )
= ρ2f,d,

(3.3)

where ∆=E[(fc+δc)
2)−f 2

c ]=E(δ2c )+2E(fc · δc)=E(δ2c ) ≥ 0.

We further perform real-world experiments to verify Lemma 3.1. We recruit

30 participants (13 self-identified as females and 17 as males) and ask each to

type 100 randomly selected 4-digit PINs separately on a standard number pad.

For every two successive keystrokes, we record the inter-key distance d and collect

corresponding key-press and key-release timestamps to calculate inter-keystroke

latency l and flight interval f . For each PIN input, we further compute the
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SPCCs ρ2f,d and ρ2l,d. We introduce a new metric, called correlation ratio, denoted

with β, to compare two SPCCs, i.e., β =
ρ2f,d
ρ2l,d

.

Figure 3.5 presents the CDFs of the correlation ratio β for all users. We

can see that β ranges from 0.98 to 1.26, and it exceeds 1.0 with a probability

of over 93%. Figure 3.6 demonstrates the ranges of β for 10 different users,

randomly selected from the pool of all participants. We observe that β ≥ 1 can

be achieved in most cases, and even in all cases for some users (i.e., U2, U5,

U7, and U9). We have similar observations for the rest 20 users. These results

convincingly demonstrate that f is more linearly correlated with d than l, and

such a phenomenon is consistent over different users.

Feature Fusion: Feature fusion is the process of combining spatial and

temporal features into a spatiotemporal one, which is more discriminative than

either input feature. With n keystrokes, we can compute its spatial feature
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s = [s1, s2, · · · , sn] and temporal feature t = [t1, t2, · · · , tn−1], enabling us to

obtain its spatiotemporal feature st = [s1, t1, s2, t2, · · · , tn−1, sn]. We utilize this

spatiotemporal feature to divide all possibilities for an up to 6-digit sequence, ob-

taining 4,652 subsets in total, which is 15.8 or 8.1 times more than that obtained

with the spatial or temporal feature. Thus, each subset has Kmax/4, 652 = 239

candidates for the typed digit sequence on average. The corresponding partition

rate becomes 4, 652/Kmax = 4.2×10−3, which is much larger/more discriminative

than either the spatial or temporal feature on their own.

Let Lmax denote the maximum length of the typed digit sequence. Figure 3.7

presents partition rates when we search candidates using traditional brute-force

guessing, spatial feature, temporal feature, and spatiotemporal feature, with Lmax

varying from 4 to 9. We see an interesting phenomenon: with Lmax increasing, the

partition rates for brute-force guessing, spatial feature and temporal feature all
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decrease, indicating that the numeric inference difficulty increases, while the par-

tition rate for spatiotemporal feature does not decrease but gradually increases.

This finding demonstrates that the spatiotemporal feature can consistently facili-

tate narrowing down the search space of the typed digit sequence, and meanwhile,

it performs even better for a longer digit sequence.

3.3.3.2 Iterative Joint Decoding

Consider the general case when observing N CSI sessions, denoted by [C1, · · · ,

CN ]. Let ni denote the number of single-keystroke waveforms within Ci (i ∈

{1, · · · , N}). Thus, the initial library for Ci is the set (denoted by Si) con-

sisting of all possible ni-digit sequences S1, S2, · · · , S10ni , excluding any Sk (k ∈

{1, · · · , 10ni}) that is not allowed according to the number composition rules.

Our goal is to find a stream of N digit sequences that correspond to the N CSI

sessions.

Toward the goal, we first decode each CSI session and then employ iterative

joint decoding of multiple CSI sessions. We compare the spatiotemporal feature

of Ci to that of each Sk ∈ Si, and mark Sk as a candidate if two features are

equal. The number of candidates for Ci obtained at this moment is denoted by

pCi
. With each candidate, we can build a mapping pair, one mapping between

single-keystroke waveforms and digits, and the other between inter-keystroke

flight intervals and digit pairs. Different CSI sessions provide extra informa-

tion (i.e., limitations) for each other, and thus help further shrink the search

space. Let Mi denote the concatenation of the first i CSI sessions, and we use

RMi
= {R1

Mi
, R2

Mi
, · · · , Rri

Mi
} to represent its ri candidates. Starting from the

second CSI session, we perform the following steps to decode concatenated CSI

sessions. Initially, we set i=2, M1=C1, r1=pC1 , and RM1 =S1.
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(1) We concatenate the current CSI session with all previous ones, i.e., Mi =

Mi−1||Ci. Thus, R
u
Mi−1
||Sv (u ∈ {1, · · · , ri−1}, v ∈ {1, · · · , pCi

}) could be a

potential candidate for the newly concatenated CSI session).

(2) For each Ru
Mi−1
||Sv, we compare mappings obtained from Ru

Mi−1
and Sv.

If their mapping sets have any contradictions (i.e., two single-keystroke

waveforms within the same subset map to different digits, or two different

digit pairs share the same subset of inter-keystroke flight intervals while

their IKDs do not belong to the same group), we then rule out this can-

didate; otherwise, we mark it as a candidate for Mi, and meanwhile merge

all single-keystroke waveform/digit and inter-keystroke flight interval/digit

pair mapping information as the new mapping set.

(3) We increment i and jump to step (1).

We take the inference of a 6-digit PIN (937357) as an example. A user types

this PIN on a standard number pad with two typing sessions. The user inputs the

first three digits (937) and the last three digits (357) in the first and second typing

sessions, respectively. We denote the spatiotemporal features corresponding to

the two typing sessions by f1 = [d1, t1,2, d2, t2,3, d3] and f2 = [d4, t4,5, d5, t5,6, d6],

where di denotes the i
th (i ∈ {1, · · · , 6}) observed single-keystroke waveform and

tj,j+1 is the calculated inter-keystroke flight interval between the jth and (j + 1)th

(j ∈ {1, · · · , 5}) keystrokes.

Due to the aforementioned consistency between spatial features for the same

digit, d2 and d4 are similar (so are d3 and d6). Also, considering the stability

between temporal features for close inter-key distances, t4,5 and t5,6 are close.

As a result, we have f1 = [1, 1, 2, 2, 3] and f2 = [1, 1, 2, 1, 3]. We pre-compute

the spatiotemporal feature for each possible 3-digit sequence. By comparing
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each with f1 and f2, we obtain 216 and 288 candidates for the first and second

typing sessions, respectively. Each candidate implies a mapping between single-

keystroke waveforms and digits, as well as a mapping between inter-keystroke

flight intervals and digit pairs. To consider both typing sessions simultaneously,

we concatenate each candidate for the first typing session and each for the second

one, generating 216 × 288 = 62, 208 combinations. For some combinations, the

mapping information for both typing sessions may contradict each other and we

rule out such combinations as candidates for the typed PIN. For example, one

combination “937354” is removed as a single-keystroke waveform (d3 or d6) maps

two different digits (7 and 4). Consequently, only 16 combinations (including the

correct PIN) survive as final candidates for the typed PIN. Such performance

corresponds to a 62,500-fold improvement compared with the traditional brute

force attack which provides 106 candidates.

3.3.4 Impact of Non-numeric Keystrokes

Usually, when a user inputs a number, there is no need to use any non-numeric

keys. A typical example is an iOS passcode. After typing a 4- or 6-digit PIN on

an iOS device (a passcode by default was 4 digits prior to iOS 9, and 6 there-

after [34]), the device would automatically initiate authentication. However, on

certain occasions, we may need to use non-numeric keys, including the OK/Enter

key, and Backspace/Delete key. For example, if a user customizes an iOS pass-

code whose length is neither 4 nor 6, after typing this passcode, the user has to

press the OK key to get authenticated. Also, to correct typed digits by mistake,

the Delete key comes in handy.

Handling OK Key: Since the OK key (if the typist uses it) is always the
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last key to be pressed, we can regard the last keystroke as it. Thus, we just launch

WINK by processing the CSI data stream corresponding to other keystrokes.

Handling Delete Key: We consider the most frequent cases when the typist

presses the Delete key once to correct one digit or successively for multiple digits.

Let L and L′ denote the length of the target secret number and the number of

observed single-keystroke waveforms, respectively. Accordingly, the Delete key is

pressed for σ=(L′−L)/2 times. We then search for single-keystroke waveforms

that appear σ times among all observed ones, excluding the first and the last

single-keystroke waveforms (as pressing the Delete key usually does not happen at

the beginning or end). Such single-keystroke waveforms are potential candidates

for the Delete key. We thus associate the Delete key with one potential candidate

in turn until exhausting all candidates. For each association, the Delete-key-

labelled single-keystroke waveforms, together with the ahead σ single-keystroke

waveforms (corresponding to deleted input), divide the original single-keystroke

waveform sequence into two parts. We perform WINK for both parts to infer

the typed number.

3.3.5 CSI Error Handling

Wireless noise may make pre-processed CSI inaccurate and cause spatiotemporal

classification errors, leading to no valid candidates for the typed number. Since

the accuracy of inter-keystroke flight interval depends on the detection accuracy

for the start and end points of corresponding single-keystroke waveforms, we thus

just discuss the cases when spatial classification error happens.

Due to such classification errors, we usually either obtain invalid results or

have no candidate at all. The latter case (i.e., failure of inference) is straightfor-
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ward, signaling the existence of errors; the first case, however, cannot determine

whether the CSI error happens or not until all candidates have been tested (i.e.,

if a candidate passes the authentication, the correct one is found, and thus no

error happens). However, empirically, we find that the first case rarely happens.

This is because CSI errors often bring exclusive spatial and temporal features,

causing the phase of spatiotemporal correlation to output no candidates.

To handle CSI errors, we develop a heuristic algorithm by guessing and re-

moving erroneous single-keystroke waveforms. Specifically, we assume there are

es erroneous single-keystroke waveforms among a total of L key waveforms. Thus

there are LCes different error cases. Each erroneous waveform would be marked as

undetermined (i.e., ranging from 0 to 9) together with neighboring inter-keystroke

flight intervals, and would not be used for calculating the spatiotemporal feature.

WINK is then performed based on the newly calculated spatiotemporal feature.

The returned candidates (if any) combine with possibilities for erroneous key

waveforms to form the final candidates for the typed number. We can start with

es = 1 and try each corresponding error case until the obtained candidates have

the correct typed number.

3.4 Experimental Evaluation

We implement WINK using Universal Software Radio Peripherals (USRPs). The

prototype system consists of a transmitter (Tx) and a receiver (Rx). Each node is

a USRP X300 equipped with a CBX daughterboard [22]. Tx and Rx are placed

at opposite positions relative to the keyboard. There is a 10 cm thick cubicle

divider between either of them and the keyboard, so that both are not within

the line-of-sight of the target user. The distance between Rx and the keyboard
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is 2 m, while that between Tx and the keyboard is 50 cm. Rx extracts CSI from

the received signals to infer numeric keystrokes. We investigate three different

types of numeric keyboards, i.e., a standard physical number pad, a typical POS

keypad, and a touchscreen one. We put the typing device on a flat table. In

this section, we let a single user perform experiments, while in Section 3.5, we

consider more typists in a real-world user study.

Metrics: We calculate entropy to measure the number strength against

brute-force attacks. Suppose there are m candidates for a number X and let

xi(i ∈ {1, 2, · · · ,m}) denote one of them. The X’s entropy can be then calcu-

lated as H(X) = −
∑m

i=1 P (xi) · log2 P (xi), where P (xi) is the probability that

X = xi holds.

To investigate the security inequality of a group of numbers with the same

length, we employ the Gini coefficient [20], which is most commonly used in

economics to measure the inequality among levels of income. We consider a

group of N numbers, each with l digits. The average of all N numbers’ entropies

is represented by Ē =
∑N

i=1 Ei

N
, where Ei denotes the entropy of the ith number.

We then derive the Gini coefficient Gl for those l-digit numbers as

Gl =

∑N
i=1

∑N
j=1 |Ei − Ej|
2N2Ē

. (3.4)

The value of Gl varies from 0 to 1, where 0 indicates perfect equality (when all

entropies are the same) and 1 depicts perfect inequality (when one number has a

positive entropy while the rest of entropies are 0, leading to Gl=
N−1
N
≈ 1, where

N ≫ 1).

36



      

        

    

    

   

    

    

 
 
 
   
 
 
 

       

      

        

    

    

   

    

    
 
 
 
   
 
 
 

            

0 6 0 7

𝐼1,2 𝐼3,4 𝐼4,5

𝑊1 𝑊2 𝑊4 𝑊5𝑊3

𝐼2,3

1

Figure 15

Figure 3.8: CSI for the PIN ‘06107’.

3.4.1 Case Study

We first demonstrate an example, in which the user types a PIN “06107” on an

iPhone 11 Pro Max passcode keypad. We use the same pre-processing methods

with existing techniques [3,32,58], including noise removal, dimension reduction,

and keystroke waveform extraction. To sanitize the CSI data, a weighted moving

average filter [57, 98] is applied. Next, we utilize Principal Component Analysis

(PCA) [83] to refine the most representative components influenced by keystrokes

from CSI collected at all subcarriers. Finally, we extract the corresponding wave-

form for every single keystroke.

Figure 3.8 presents the raw and filtered CSI time series. We observe five

single-keystroke waveforms (W1 to W5) and four inter-keystroke flight intervals

(I1,2 to I4,5). W1 is highly similar to W4. Meanwhile, either of them and the

rest three are different from each other. Accordingly, the spatial feature can be

denoted with [1, 2, 3, 1, 4]. Also, as I4,5<I1,2≈I2,3<I3,4, the temporal feature can

be denoted with [2, 2, 3, 1]. By fusing the spatial and temporal features, the phase
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Figure 3.9: Variation of the number of inferred candidates.

of spatiotemporal correlation outputs 12 candidates. Thus, WINK reduces the

maximum attempts required for breaking a 5-digit PIN to just 12, compared with

the brute-force attack which needs 105 times, i.e., the PIN entropy is decreased

from 5 log2 10=16.61 bits to −
∑12

i=1
1
12
log2

1
12
=3.59 bits.

Figure 3.9 presents the variation of the amount of inferred candidates as more

digits are typed in. We see initially, the number of candidates increases with more

key waveforms and flight intervals being processed. This is mainly because the

original search space for a longer digit sequence is larger. However, with a richer

spatiotemporal feature, the number of candidates dramatically decreases to 84

for 4 digits and 12 for 5 digits, i.e., the speed of shrinking the search space exceeds

that of original search space growth.

3.4.2 PIN Inference

To balance security and usability, most authentication systems allow PINs with

4 to 6 digits [52]. To approximate user choices of PINs, we extract leaked real-

world PINs with 4 to 6 digits from the RockYou database [18], which is widely

used in PIN security research (e.g., [9,94]). For every PIN length, we obtain 100

samples, asking the user to type each extracted PIN separately on the iPhone 11

Pro Max keypad. We launch WINK and compute PIN entropies. For each PIN
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Figure 3.10: Entropy distribution for PINs with different lengths.

length, we sort the PINs in ascending order of the entropies and index them from

1 to 100 in increments of 1. Figure 3.10 shows the PIN entropy distribution with

and without applying the proposed attack. We have three major observations.

First, with WINK, the search space of the typed PIN with different lengths

is significantly shrunk. The attacker decreases the entropy of a 6-digit PIN from

20.0 bits to as low as 4.0 bits, vastly reducing the maximum brute-force attempts

for breaking the PIN from 1 million to just 16. Overall, more than 10% of the

selected 6-digit PINs can be inferred with an average of fewer than 50 trials.

Second, entropies vary for PINs with the same length. For example, the

entropy of an extracted 6-digit PIN ranges from 4.0 to 12.3 bits, which means

the average amount of brute-force trials required to guess such a PIN varies from

8 to 2,521. We compute the Gini coefficients (G4, G5, and G6) for each PIN

length (4-6), and obtain G4 = 0.33, G5 = 0.47, and G6 = 0.57. To facilitate
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understanding the Gini coefficient values we get in this experiment, we note

that the Gini coefficient for income inequality in the United States in 2022 was

0.488 [11]. These results demonstrate there is notable security inequality among

PINs of the same length, and a longer PIN length may introduce more severe

security inequality.

Third, longer PINs provide a little increase and sometimes even decrease in

security, illustrated by the similar entropy distributions of PINs with different

lengths. Longer PINs provide the attacker with a richer spatiotemporal structure,

which shrinks the search space more quickly. Specifically, WINK lowers entropy

by an average of 6.8 bits for 4-digit PINs, 9.3 bits for 5-digit PINs, and 13.4 bits

for 6-digit PINs. On average, our attack makes breaking a 6-digit PIN become

easier than brute-forcing a 3-digit PIN, while inferring a 4- or 5-digit PIN is

reduced to brute-forcing a 2-digit PIN.

3.4.2.1 Impact of PIN Blocklist

Modern authentication systems usually implement a blocklist containing weak

PINs. When a user selects a blocklist PIN, the system prompts a warning to

suggest or enforce choosing a non-blocklist one. The study [68] reveals the iOS

blocklist of passcodes, including 274 4-digit and 2,910 6-digit PINs. We com-

pare these PINs with the most vulnerable 10% PINs against our attack obtained

above, and find no overlap. Thus, new weak PINs revealed by WINK should be

included in the blocklist to improve the minimum PIN security. Also, if the sys-

tem disallows blocklist PINs, WINK can use such information to further shrink

the search space by winnowing out candidates appearing in the blocklist. To min-

imize the negative impact of extending blocklists, for each extension, we should

then include all most vulnerable PINs sharing the same spatiotemporal feature
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Figure 3.11: Impact of blocklist size on minimum PIN entropy.

in the blocklist. As such inclusion has no additional impact on remaining PINs

(whose spatiotemporal features are different from those of the included PINs), the

maximum PIN entropy would not be affected while a higher minimum/average

PIN entropy can be achieved.

To identify the impact of blocklist size on the minimum and average PIN

strength, we conduct simulated attacks for 4-digit PINs as an example. We first

define WINK vulnerable PINs, where they can be inferred within 90 attempts (<

6.5 bits entropy). Thus, we include 1,426 4-digit PINs (14.26%) in our blocklists.

To quantify the impact of blocklist size on PIN security, we measure the minimum

and average PIN entropy before and after applying different sizes of blocklists. We

increase the size of the blocklist from 0 to 1,426. For each increment, we include

a group of PINs that share the same spatiotemporal property that presents the

least number of candidates (i.e., the lowest entropy).
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Figure 3.12: Impact of blocklist size on average PIN entropy.

Figure 3.11 demonstrates minimum PIN entropy for different blocklist sizes.

First, we can see that the minimum entropy is proportionally increased to the

size of the blocklist. As we gradually include more PINs with vulnerable spa-

tiotemporal properties in the blocklist, the minimum entropy is rapidly increased

for 0-106 blocklist sizes (3.32-5.81 bits), and then presents significantly reduced

increment for blocklist sizes greater than 106. This is because the most vulner-

able PINs that present significantly lower entropies than other PINs are already

included in the blocklist. The 106 PINs consist of two groups, where they present

3.32 bits and 4.0 bits of entropies. Thus, we can see that the minimum entropy

is increased to 5.81 bits after blocklisting the 106 PINs, and the effectiveness of

increasing blocklist size afterward is decreased.

Meanwhile, Figure 3.12 shows that the average PIN entropy is increased ac-

cording to the size of the blocklists. We note that including one group of vulner-
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able PINs in the blocklist does not affect the individual entropy of the remaining

PINs, as the spatiotemporal properties between the blocklisted PINs and the re-

maining PINs are independent. Based on the result, we recommend adding the

106 WINK vulnerable PINs to the existing blocklists. The cut-off point can be

adjusted depending on the size of the existing blocklists and usability.

3.4.2.2 Discussion on PIN Strength

Generally, a PIN whose spatiotemporal feature divides all PIN possibilities into

a maximum number of subsets would have the strongest strength against WINK.

Considering the spatial domain, such a PIN should have no digit repetition, as

the corresponding spatial feature discloses the least information. Considering the

temporal domain, the information disclosed via the temporal feature depends on

the IKD sequence of the digits constituting the typed PIN. The strongest PINs,

in this respect, would be in the largest temporal subset, i.e., be in the largest

group of digit sequences that share the same temporal feature.

3.4.3 SSN Inference

As aforementioned, SSNs issued before June 2011 (without SSN randomization)

follow a determined structure (e.g., the first three digits denote the area number

assigned by geographical region). Inferring SSNs issued after June 2011 is like

inferring a 9-digit PIN.

3.4.3.1 Without SSN Randomization

We select two states from each of the west, middle, and east of the United States,

and obtain California (CA), Oregon (OR), Iowa (IA), Texas (TX), New York
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Table 3.1: Degrees of security inequality for SSNs with the same area code and
SSNs issued within the same state.

State California Oregon

Area Code 546 550 559 561 573 540 541 542 543 544

Garea 0.61 0.59 0.52 0.44 0.57 0.52 0.50 0.57 0.55 0.49

Gstate 0.77 0.54

State Texas New York

Area Code 449 452 455 463 467 057 088 109 113 126

Garea 0.54 0.56 0.52 0.50 0.52 0.55 0.58 0.62 0.57 0.63

Gstate 0.58 0.60

State Iowa Michigan

Area Code 479 480 481 484 485 364 367 373 378 384

Garea 0.51 0.57 0.49 0.60 0.47 0.54 0.55 0.51 0.55 0.56

Gstate 0.52 0.59

(NY), and Michigan (MI). Different states have different 3-digit area codes and

a state may have one or multiple area codes. Such information is public [1]. For

example, Wyoming has only one area code 520 while area codes 362-386 (i.e.,

25 possibilities) are allocated for Michigan. Thus, knowing which state the user

comes from, the area code range of the target SSN can be queried.

3.4.3.2 Same-state SSNs

We take Michigan as an example, and randomly select five allocated area codes

(364, 367, 373, 378, and 384). With each, we construct 100 SSNs randomly.

We let the user type each SSN in a typing session on a standard number pad.

Figure 3.13 plots the empirical cumulative distribution functions (CDFs) of the

SSN entropies. We observe that SSNs with the same area code exhibit different

levels of security. For example, SSNs prefixed by 364 have entropies ranging from

1 to 7.6 bits. For the SSN “364-93-4632”, WINK outputs only two candidates

(i.e., the correct one and a wrong one “364-93-4635”). Specifically, 60% of SSNs

with area codes 364 and 367 have entropies below 4.9 and 4.7 bits, respectively,
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Figure 3.13: CDFs of SSN entropy in the same state (Michigan).

indicating the maximum brute-force attempts required for compromising them

are just 30 and 27. Also,WINK significantly reduces the search space consistently

for all area codes, and obtains entropies ranging from 1 to 9.3 bits. In contrast,

traditional brute-force attacks require guessing roughly 25×106 times for an SSN

assigned in Michigan. As neither the middle two digits nor the last four digits of

an SSN can be all zeros, the exact number is 25×(106−104−102+1)=25×989, 901,

equivalent to an entropy of 24.6 bits.

3.4.3.3 SSNs across Different States

We randomly generate 100 SSNs allocated for every state, and then let the user

type each SSN separately on a standard number pad. Figure 3.14 plots the CDFs

of corresponding SSN entropies. We see that our attack consistently decreases

SSN entropies, and different states have different entropy ranges. Specifically,
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Figure 3.14: CDFs of SSN entropy for different states.

85% of the chosen SSNs in Oregon have an entropy of less than 5.6 bits, indicating

that they can be inferred with an average of fewer than 25 attempts. However,

such a ratio equals just 27% for New York.

We calculate Gini coefficients (Garea) for SSNs with the same area code, and

also overall Gini coefficients (Gstate) for SSNs issued within the same state. Ta-

ble 3.1 presents the values of Garea and Gstate for different states. We see that no

matter from geographical region-wide or state-wide SSNs, they exhibit quite se-

rious security inequality (with Gini coefficients ranging from 0.44 to 0.77). Also,

for different area codes, “126” in NY and “561” in CA demonstrate the highest

and lowest Gini coefficients (i.e., 0.63 and 0.44).

With SSN Randomization: In this case, an SSN can have any first 3-

digit codes except 000, 666, and 900-999. With traditional brute-force attacks,

(109−102×106)/2 attempts are required on average, i.e., the SSN entropy equals

46



Table 3.2: PIN entropy under different environments.

Environment Antenna
Entropy (bits)

Minimum Maximum Mean

Quiet
Directional 2.0 10.3 8.1

Omni-directional 3.0 10.8 8.7

Noisy
Directional 5.1 10.6 9.0

Omni-directional 5.1 12.5 9.6

29.7 bits. Figure 3.14 also presents the CDF of entropies for SSNs assigned via

SSN randomization (RND) with the same experimental setting. We observe

that SSN randomization increases the SSN entropies overall compared with the

previous SSN assignment process, while our attack still greatly shrinks the search

space compared with traditional brute-force attacks. Over 7% of SSNs can be

inferred with an average of 50 attempts. The Gini coefficient for the selected

SSNs equals 0.57, again indicating the severe inequality of SSN security even

when SSN randomization is employed.

3.4.4 Robustness to Influential Factors

To evaluate the impact of each influential factor, we employ 100 randomly selected

6-digit PINs from the RockYou password dataset and ask the user to type them,

once per PIN, under each situation.

3.4.4.1 Impact of Environment

We test WINK to infer PINs inputted on an iPhone 11 Pro Max under two dif-

ferent environments: (a) quiet one where there is no movement of other users,

and (b) noisy one where other users walk around. Also, we compare the perfor-

mance of an omni-directional VERT2450 antenna [24] and a directional LP0965

antenna [23] focusing the energy towards the target of interest. For a quiet envi-
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ronment, omni-directional and directional antennas present 96.7% and 98.2% of

CSI fragmentation success rate (i.e., the ratio of successfully segmented single-

keystroke waveforms to the total number of keystrokes performed by the user),

respectively, and 92.2% and 97.2% for a noisy environment. Table 3.2 shows

the obtained PIN entropies in different environments. We can see that WINK

works under both environments regardless of the antenna type. It lowers PIN

entropy by at least 7.5 bits compared to traditional brute-force attacks (in which

a 6-digit PIN has 20.0 bits of entropy). In a quiet environment, both antennas

present similar entropy ranges due to low CSI interference, while in a noisy en-

vironment, the directional antenna presents a slightly lower mean entropy than

the omni-directional one, demonstrating the directional antenna effectively re-

duces the effects of the nearby human movement. Consequently, WINK employs

directional antennas for better inference performance.

3.4.4.2 Impact of Keyboard Layout

We test three popular layouts of numeric keypads with similar sizes, including

(1) iOS passcode keypad (77.8×158 mm displayed on iPhone 11 Pro Max), (2)

3×4 number pad (75×94 mm) on the far right of a standard keyboard (DELL

KB216T [19]), and (3) 3×4 POS keypad (53.5×80 mm for the model YD541),

which we refer to as “Phone”, “Standard”, and “POS”, respectively. Figure 3.15

presents the corresponding PIN entropies. We can observe that regardless of input

layout, our attack decreases the entropies of different PINs in varying degrees.

For iOS passcode and POS keypads, their PIN entropy ranges (i.e., 4.7-12.4 bits

and 4.1-12.3 bits) are quite close. This is due to the high similarity of their digit

arrangement on keypads (with the 7-8-9 keys two rows above the 1-2-3 keys). As

the number pad on a standard keyboard has a different key arrangement (with
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Figure 3.15: Impact of keypad layout.

the 1-2-3 keys on top and the 7-8-9 keys on the third row), its PIN entropy

range (i.e., 5.7-12.3 bits) is slightly different. Also, for “Phone”, “Standard”,

and “POS”, the Gini coefficients are 0.57, 0.58, and 0.57, respectively, implying

a small difference in security inequality brought by input layout.

3.4.4.3 Impact of Keypad Size

Even for the same input layout, the keypad size may differ. We test three iOS

devices with different keypad sizes, i.e., iPhone 11 Pro Max (6.5-inch display),

iPhone 12 Mini (5.4-inch display), and iPhone SE (4.7-inch display), which we

refer to as “Large”, “Medium”, and “Small”. Figure 3.16 shows the resultant

PIN entropies. We see that for all keypad sizes, our attack makes breaking PINs

much easier than traditional brute-force attacks. With the key size increasing,

the mean PIN entropy slightly decreases. This appears due to the fact that a
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Figure 3.16: Impact of keypad size.

larger keypad size makes CSI waveforms for pressing different digits and switching

between neighboring digits more distinguishable, thus yielding fewer spatiotem-

poral classification errors and richer spatiotemporal features. In terms of security

inequality, the corresponding Gini coefficients are 0.50, 0.50, and 0.48 in the order

of keypad size, implying that keypads with different sizes consistently have severe

security inequality.

3.4.4.4 Impact of Keyboard Type

With different keyboard types, the amplitudes of hand movement vary, which

may affect the accuracy of spatiotemporal classification. We choose three pop-

ular types of keyboards with the same keypad layout (3×4 number pad with

size 75×94 mm): mechanical (Gigabyte Force K83 [36]), rubber-dome membrane

(DELL KB216T), and touch-screen (on Lenovo Tab 4 10 Plus Tablet [54]). We
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Figure 3.17: Impact of keypad type.

denote them with “Mechanical”, “Membrane”, and “Touchscreen”. Figure 3.17

shows the obtained PIN entropies. We observe similar entropy ranges for differ-

ent keyboard types. The mechanical keyboard has the lowest mean entropy (8.8

bits) and the touch screen exhibits the highest one (9.0 bits). This is because

the mechanical keyboard has the longest key travel distance and the membrane

comes second. A longer key travel distance makes CSI waveforms associated with

different digits more distinguishable, leading to more accurate spatiotemporal

classification. Accordingly, the Gini coefficients for “Mechanical”, “Membrane”,

and “Touchscreen” are 0.59, 0.59, and 0.60, respectively, confirming the security

inequality for all different keyboards.
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Table 3.3: Impact of different interaction scenarios.

Typing
Hand

Scenario G
PIN Entropy (bits)

Minimum Maximum Mean

Left
One-hand 0.50 3.8 12.3 9.4
Same-hand 0.66 3.8 14.8 9.6
Two-hand 0.79 4.0 17.2 9.8

Right
One-hand 0.58 3.8 14.8 9.5
Same-hand 0.57 3.8 14.8 9.7
Two-hand 0.77 3.8 17.2 10.1

3.4.4.5 Impact of Typing Scenarios in Mobile Devices

Users may interact with mobile devices in different ways. According to a ques-

tionnaire of 1,022 subjects [10], the following two interaction scenarios are the

most popular: (1) same-hand: holding the device and typing with the thumb of

the same hand; (2) two-hand: holding the devices with one hand and typing with

a finger of the other hand. In another common case, referred to as a one-hand

scenario, a user operates a mobile device placed face-up on a flat surface (e.g.,

a table). We focus on these three scenarios when the user inputs PINs on an

iPhone 11 Pro Max. Additionally, a user may be left- or right-handed. Table 3.3

shows the PIN entropies and Gini coefficients for different scenarios. We have the

following observations. First, handedness does not have an obvious impact on

the attack performance, as corresponding PIN entropies and Gini coefficients are

quite similar for left-hand and right-hand typing. Second, the PIN entropies for

the three scenarios slightly vary. Overall, the one-hand scenario has the smallest

mean PIN entropy, the same-hand scenario takes second place, and the two-hand

scenario has the largest. This can be explained by the fact that the hand holding

the phone may introduce extra movement during typing and such interference is

most impactful in the two-hand scenario. Finally, all Gini coefficients are above

0.5, again demonstrating that our attack causes severe security inequality among
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Table 3.4: Impact of different keypad’s slope angles.

Slope Angle G
PIN Entropy (bits)

Minimum Maximum Average

0◦ 0.50 2.0 11.5 8.8

30◦ 0.76 4.5 17.2 9.5

60◦ 0.84 3.8 17.2 9.2

90◦ 0.69 2.0 14.8 8.9

different PINs.

3.4.4.6 Impact of Keypad’s Slope Angle

To reduce wrist extension and facilitate viewing of the keypad, some keypads

may have a built-in or tilt-adjustable slope angle θ, which is defined as the angle

between the keypad plane and the horizontal plane [6]. For example, keypads for

most POS, ATMs, and petrol pumps are often installed with a slope angle between

0 and 90 degrees, determined by the keypad height above ground level [25]. We

enable the user to type on a YD541 POS keypad and vary θ from 0◦ to 90◦,

with increments of 30◦, where 0◦ denotes that the keypad is placed flat and 90◦

represents that the keyboard is parallel to the vertical wall. Table 3.4 presents

the PIN entropies and Gini coefficients for different slope angles. We can see

our attack decreases the PIN entropy consistently for different θ (note that the

PIN entropy is 20.0 bits without our attack). Also, when θ equals 0◦ or 90◦, the

corresponding mean PIN entropy is slightly smaller than that for the case when

θ is 30◦ or 60◦. This appears as a tilted surface is more likely to introduce more

failure of spatiotemporal classification. Lastly, all Gini coefficients are larger

than 0.5, convincingly implying that different PINs may have different strengths

against our attack irrespective of θ.
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Figure 3.18: Impact of typing sessions.

3.4.4.7 Impact of Multiple Typing Sessions

As discussed in Section 3.3.2, users may perform intermittent typing and finish

PIN input with several typing sessions. We let the user type each PIN on a key-

board number pad (Gigabyte Force K83) with varying typing sessions (1 to 3).

Figure 3.18 presents the corresponding PIN entropies. We observe that WINK

consistently reduces PIN entropy for all cases. Overall, such reduction perfor-

mance is slightly decreased with more typing sessions. Specifically, the average

PIN entropies for 1 to 3 typing sessions are 8.9, 9.2, and 9.9 bits, respectively.

This is due to the fact that adding one typing session indicates that one inter-

keystroke flight interval would not be used to shrink the candidates for the typed

PIN. Besides, the Gini coefficients for 1 to 3 typing sessions are 0.59, 0.63, and

0.66, respectively, indicating the existence of security inequity among the PINs.
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Figure 3.19: Impact of Delete key presses.

3.4.4.8 Impact of Typing Non-numeric Keys

As aforementioned, users may occasionally need to type some non-numeric key-

strokes during inputting a number (e.g., for indicating the end of input or cor-

recting input). No matter whether the OK/Enter key is used or not in the end to

finish the typing session, WINK extracts the same spatiotemporal feature with

the same CSI time series. Thus, its performance would not be affected. In this

section, we focus on evaluating the impact of erasing mistyped digits with the

Delete key. For each PIN, we let the user type the Delete key once to correct

one digit, twice to correct two digits, and three times to correct three digits.

The number pad on a Gigabyte Force K83 keyboard is utilized. For comparison,

we also let the user type each PIN without using the Delete key. Figure 3.19

presents the PIN entropies for different numbers of Delete key presses. We see

that WINK decreases the PIN entries at a similar level regardless of the number
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Figure 3.20: Experimental scenarios for office environment.

of Delete key presses. The mean PIN entropies for 1 to 3 Delete key presses are

9.10, 9.16, and 9.25 bits. Compared to the case when no Delete key is used (with

the mean PIN entropy of 8.9 bits), Delete key usage brings slightly higher average

PIN entropies. This is because the Delete key essentially disrupts the PIN entry

into two typing sessions (before and after typing the Delete key). Furthermore,

the Gini coefficients for 0 to 3 Delete key presses are 0.59, 0.64, 0.64, and 0.63,

respectively, showing that typing Delete keys does not mitigate security inequity

for different PINs.

3.5 Real-world User Study

We recruited 20 volunteers (U1-U20; aged 21-36 years old; 8 self-identified as

females and 12 as males) to examine the practicality of WINK.1 We consider

two general typing scenarios, as shown in Figure 3.20: a private office room, and

1The study has been reviewed and approved by our institution’s IRB.
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Figure 3.21: Experimental scenarios for public cafeteria environment.

Figure 3.21: a public campus cafeteria. The office room offers a quiet environment

where there is no person walking around the user, while the cafeteria is noisy as

people walk around or move chairs from time to time. In both scenarios, the

target user sits at a table and types; the transmitter (Tx) and the receiver (Rx)

are placed at opposite positions relative to the table. Each of Tx and Rx is a

USRP X300 connected with a directional antenna – LP0965. Both Tx and Rx

are put behind a 6 cm-thick wooden partition panel and are thus within non-

line-of-sight (NLOS) of the target user. Their distances with the typing device

(iPhone 11 Pro Max) are both 1.5 m.

Each participant was instructed to do the following tasks:

• Unlocking with a 6-digit PIN : iOS PIN blocklist is enforced to guarantee

that no weak key is used.

• Typing an SSN : a valid SSN is formed by selecting a state, a corresponding

3-digit area code, and the rest 6 digits.
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Figure 3.22: Average top-k accuracy for PIN inference in an office environment

For ethical considerations, we reminded users not to select their own in-use PINs

for various applications or SSNs. Only after the user confirmed this, we started

to launch our attack. Meanwhile, we allow the participants enough time to mem-

orize/practice their selected numbers before testing. For every task, each partic-

ipant performed 100 attempts with different numbers. We present the inference

result to the participant, who determines whether the typed number is in the

inferred number list. When the typed number is in the list, we then calculate the

top-k accuracy α, defined as the probability that the top k guesses from the N

candidates returned by our attack contain the typed number. If k>N , we have

α=1; otherwise, α=
1C1·(N−1)C(k−1)

NCk
= k

N
, where NCk is the number of combinations

by choosing k from N numbers.
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Figure 3.23: Average top-k accuracy for PIN inference in a cafeteria environment

3.5.1 PIN Inference Results

Figure 3.22 and 3.23 present the PIN inference performance in the two different

environments. We observe that our attack consistently decreases the PIN strength

for all users in both test environments. The top-25 accuracy in the office ranges

from 13.0% to 29.6% while that value varies from 12.7% to 22.0% in the cafeteria.

The slight accuracy decrease comes from the higher interference in the cafeteria.

Also, the mean top-100 accuracy for all users equals above 50% (office: 52.3%;

cafeteria: 50.6%), implying that more than half of the selected 6-digit PINs can

be successfully inferred with up to 100 guesses. Besides, our attack achieves at

least 74.7% and 66.0% top-250 accuracy for all users in the office and cafeteria

environments, respectively.
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Figure 3.24: Average top-k accuracy for inferring SSNs in an office environment.

3.5.2 SSN Inference Results

Figure 3.24 and 3.25 present the SSN inference performance in the two different

environments. We observe regardless of k, the corresponding top-k accuracy for

9-digit SSNs is always higher than that for 6-digit PINs in each scenario. This is

because the knowledge of the 3-digit area code range provides extra information

for shrinking the candidates. In the office, the top-25 accuracy is in the range

of 46.7%-68.7%, implying that a substantial portion of typed SSNs is quite vul-

nerable to our attack; the average top-100 and top-250 accuracy across all users

achieve 85.6% and 95.5%. Also, for some users (e.g., U4 and U10), the top-250

accuracy can reach 100%. In the cafeteria, the users obtain a top-25 accuracy

in the range of 41.9% to 67.8%. Meanwhile, the average top-100 and top-250

accuracy across all users are 83.8% and 95.6%, respectively. Particularly, some

users (e.g., U15 and U19) can also obtain a top-250 accuracy of 100%.
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Figure 3.25: Average top-k accuracy for inferring SSNs in a cafeteria environment.

3.5.3 Security Inequity

Figure 3.26 shows the corresponding Gini coefficients. The result depicts all Gini

coefficients above 0.36, confirming conclusively that our attack leads to severe

security inequality among different PINs or SSNs. Also, in the same environment,

the Gini coefficients for the SSNs are slightly larger than that for the PINs for

most users. This is because the 3-digit area codes of some selected SSNs may

disclose enough information for breaking those SSNs easier than the others.
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Figure 3.26: Gini coefficients for chosen PINs and SSNs.
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Chapter 4

Countermeasures

In this chapter, we discuss possible countermeasures for resisting WINK. We also

expect that additional countermeasures can be implemented based on our survey

on wireless-based Human Profile Information (HPI) inference attacks [40].

4.1 Randomized Input Layouts

WINK exploits the spatiotemporal feature in CSI measurements to infer key-

strokes. Intuitively, to defend against such attacks, we can stop the attacker

from obtaining the correct spatiotemporal feature. Accordingly, one straight-

forward defense is to randomize the number pad every digit typing, such that

the disclosed spatiotemporal feature would be obfuscated (e.g., the repetition of

single-keystroke waveforms does not necessarily indicate the same keystrokes).

This randomization can be implemented for touch-screen number pads, while it

is not feasible for physical number pads. Meanwhile, it may be inconvenience for

many users who get used to typing with muscle memory and without any visual
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assistance.

4.2 Typing Extra Digits

A practical way to confuse the attacker is to type extra digits that are unknown

to attackers, as the attacker has to distinguish which part of the input corre-

sponds to the target number. However, typing extra digits may disclose more

information about the target number and thus cause a decrease in security, as

repeatedly demonstrated in our experiments, where a longer digit sequence is not

necessarily more secure than a relatively shorter one against our attack. To avoid

being counter-productive, the extra digits and their positions in the whole digit

sequence should be carefully designed.

LetN0 denote the number of candidates for the target number when no defense

is applied, and N represents the number of candidates for the typed whole digit

sequence. If typing the chosen extra digits can guarantee that N ≥ N0, such

extra digits can be then utilized to increase the security of the typed number.

Extra digits can be put at the beginning or end of the whole typing session to

make a user easily remember their positions. Note that the positions of these

extra digits are pre-shared between the user and the target computer system so

that the system can isolate the input of the target number from the extra digits.

Suppose there are L extra digits. There are (L+1) possibilities for the position of

the target number within each candidate of the typed whole digit sequence. Thus,

the attacker would obtain up to N · (L + 1) possibilities for the target number.

Though this method may increase the efforts of the attacker, it introduces an

extra typing burden for typists and slows down the number input efficiency.

64



Figure 4.1: User interface of the smartphone application for the countermeasure
experiments.

4.2.1 Experimental Results

To verify the effectiveness of the proposed countermeasure, we first implement a

prototype as a smartphone application. As presented in Figure 4.1, two randomly

selected digits are shown to the user before and after the actual PIN input,

respectively. We note that the number of additional digits can be adjusted. In

the quiet office environment, a user types 50 4-digit PINs separately, while an

attacker launches WINK. For each PIN, the user makes 50 attempts, where the

random digits are shown to the user for each attempt. For comparison, each
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Figure 4.2: Impact of countermeasure on average PIN entropy.

PIN’s entropy without the countermeasure, and average PIN entropy over 50

trials are measured.

Figure 4.2 demonstrates PIN entropy with and without countermeasure. For

most PINs, we can see that the entropy values are improved from 0.3 to 3.27-bit.

However, we can see that the entropy values for some PINs have decreased even

further, even with the countermeasure. This is because the additional digits are

randomly selected, where they do not guarantee improved PIN security. In other

words, the extra digits typed by the user disclose richer spatiotemporal infor-

mation. This observation also confirms the experiment results in Section 3.4.2,

where longer PINs do not always provide better security.

We further verify this with a specific case. When the victim types a 4-digit

PIN ‘0246’, the attacker gets 58 candidates after launching WINK. With the

proposed countermeasure, when the victim types 41024622, although the victim
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Figure 4.3: A reactive jamming device preventing an attacker from obtaining
valid CSI.

typed 4 more digits, the attacker gets only 4 candidates, where the countermea-

sure compromises the PIN security. To prevent such cases, the additional digits

need to be carefully selected. This can be achieved by simulating WINK, i.e.,

profiling the expected PIN entropy with possible additional digits, and utilizing

the digits that guarantee the improved PIN security. This profiling can be done

right after the user configures a new PIN. By excluding the additional digit com-

binations that compromise the PIN security, we expect the average PIN entropy

will be further improved, compared with the current result shown in Figure 4.2.

4.3 Selective Jamming

Alternatively, we can also directly stop the attacker from obtaining clear CSI

data streams leveraging selective jamming [27], so that no valid spatiotemporal
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feature can be extracted for inferring the typed number. The key idea of jamming

is that signals of the jammer and the sender collide at the receiver, and the signal

reception process is disrupted, due to the shared nature of the wireless medium.

We can set up a jammer that constantly transmits random signals over the

wireless channel to prevent the attacker from sensing the variation of the signal

transmitted by the transmitter. As a constant jammer that never stops is quite

inefficient, we can employ a reactive jammer instead, which initializes the jam-

ming once the typing is detected (e.g., [58,100]) and returns to the inactive mode

when the typing ends.

Specifically, a selective jammer in [100] keeps an eavesdropper from observ-

ing the keystroke waveform when the victim performs text input. As the same

technique can be applied to numerical keystrokes, we introduce it in this section.

4.3 depicts how the jammer works.

4.3.1 Determination of Starting and End Point of

Jamming

A reactive jammer (i.e., defender) needs to take a reactive time to detect the

typing and initialize the jamming. To detect the typing (i.e., the event of at least

one keystroke), the defender needs to collect the waveform of the first keystroke

in the typing session. Thus, the ending point of the first keystroke waveform

would trigger the jamming. Each keystroke normally corresponds to a sharp fall

and rise pattern in the CSI waveform, which in turn facilitates the detection of

each keystroke duration.

To obfuscate received signals at the attacker, the jammer transmits high-

power noise signals, which can become dominant at the attacker’s side. The
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jammer then needs to return to the inactive mode once it identifies the end of

the typing session. Due to the existence of the reaction time, the attacker is

still able to obtain the first keystroke waveform for each typing session when the

jammer is launched. However, with only one keystroke waveform, the attacker

can only guess the first typed character and is unable to infer the whole typing

content without knowing the inner structure of the typing content. Therefore, the

proposed attack fails. This approach presents hardware demands, however, the

jammer does not need to be a sophisticated high-end device, and it can be any

low-cost wireless device (e.g., BladeRF [74] or nRF24L01+ [21]) that can perform

basic wireless communication function (e.g., transmitting jamming signals).

4.3.2 Experimental Results

To evaluate the effectiveness of the active jamming technique, [100] utilizes a

third USRP X300 as the jammer, which starts to transmit noise signals when it

detects the type event, and stops when it detects that the typing session ends.

Figure 4.4 presents an example of the pre-processed CSI waveforms with and

without the jammer, where the user types a word “apple”. We can see that at the

time of 1.8 seconds, the jammer initiates, and the jamming signals successfully

obscure the keystroke associated patterns in the CSI waveform, demonstrating

the effectiveness of the reactive jamming technique.
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Figure 4.4: An example of observed CSI waveforms after pre-processing at the
eavesdropper with and without jamming.

4.4 Injecting Fake Channel Estimate

Information

As demonstrated above, deploying a jammer makes an attacker hard to obtain

valid CSI observations. However, as the attacker can identify the presence of a

jammer, it is also possible that she escalates the attack to another level (e.g.,

utilize a different side-channel) to infer the typed digit. In such a case, a smarter

countermeasure would be deceiving the attacker, where we make her believe that

the attacker is getting meaningful information from a side-channel by leaking

fake information. There has been research effort to deceive an eavesdropper on

wireless channels [33,38,39], and this idea has been implemented for wireless CSI

side-channel attacks [41].

The deception strategy varies in two ways: (1) Hiding the impact of the

keystroke while the victim is typing, or (2) Injecting fake keystroke impacts even if
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there are no keystroke events. In wireless channels, both strategies can be achiev-

able by manipulating the public preamble X(t) we discussed in Section 3.1.1.
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Chapter 5

Future Work

This chapter discusses possible improvements of the proposed attack, and also

directions of future work.

5.1 Improved Wireless-based Keystroke

Inference Attack

5.1.1 Utilizing Additional CSI Features

As shown in Section 3.3, WINK relies on the observed single-keystroke waveforms

and fight interval between the keystroke waveforms. We note that one possible

way to further improve the performance of WINK is utilizing the CSI waveforms

observed over flight intervals. During each flight interval, the corresponding CSI

waveform is resulted by the user’s hand movement. For example, on one hand,

when the user types the same key twice, we can expect a static CSI waveform

during the corresponding flight interval. On the other hand, when the user moves
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a hand from one key to a different key, the corresponding CSI waveform will not

remain static. We can get an initial observation in Figure 3.8 in Section 3.4.1.

We expect that extracting specific CSI patterns/features according to the vic-

tim’s hand movement will further reduce the search space for inferring the secret

numbers. To achieve this, additional feasibility experiments are required.

5.1.2 Typing with Two Hands or Multiple Fingers

Currently, WINK targets the most common scenario when the user types with

the same finger of a hand. Occasionally, people may use both hands to type or

change typing fingers while typing. In such cases, CSI waveforms associated with

typing the same key may differ, and the correlation between flight interval and

inter-key distance would be broken. As a result, our attack may no longer work

for such scenarios. To overcome this limitation, investigating the relationship

between human typing behaviors and keystroke inference is required.

5.1.3 Detecting Start and End of Number Entering

InWINK, the transmitter constantly emits signals while the receiver continuously

estimates CSI with received signals. As keystroke-associated CSI waveforms often

show distinguishable rising and falling trends, we use a sliding window method to

identify the start and end of number input. Specifically, we search for noteworthy

fluctuation (i.e., the difference between two neighboring local extrema) caused by

a keystroke in the window, which slides along the CSI time series every extremum.

This scheme is costly.

To detect the first keystroke event, we can first consider performing wireless

traffic analysis [58]. Although the sensitive data in the traffic are secured by
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HTTPS, the metadata in packet headers (e.g., IP address of the destination)

are not encrypted. Therefore, by monitoring whether the victim is transmitting

packets to a specific destination (e.g., online payment service), the attacker can

identify the first keystroke. Also, motion-induced wireless traffic bursts may also

help identify human activities (e.g., [42–44]), such as keystrokes. Lastly, external

triggers such as a video feed can be utilized for searching the first keystroke event.

Meanwhile, determining the end of typing is simple, as the user will stop typing

once the number input is done. Once the CSI becomes static for a certain period,

we identify the end of the last keystroke waveform as the end of the input.

5.1.4 Lowering Cost of Attack

As WINK utilizes CSI observations for inferring the keystrokes, we implemented

it using the Software-Defined Radio (SDR) platform. However, utilizing low-cost

wireless devices that are capable of collecting CSI can significantly reduce the

budget for launching the attack. For example, Nexmon [81] allows cellphones

and small single-board computers (SBCs) with specific WiFi chipsets to collect

CSI. Another way to collect CSI is utilizing ESP32 micro-controller with the

ESP32 CSI Toolkit [46]. ESP32 is a popularly utilized controller for various

Internet-over-Thing (IoT) applications.

5.2 Different Applications of Side-channel

This dissertation primarily discusses WINK, i.e., a wireless side-channel attack.

However, it is also an important fact that these side-channels can be utilized in

a defensive manner. Some devices (i.e., Bluetooth headsets) we carry nowadays

need to be paired with each other to establish a secure communication channel.
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Usually, this pairing process is completed with human interactions (i.e., pushing

a button, typing a PIN), which can be frustrating, especially with many devices.

To overcome this problem, context-based key-establishment schemes have

been proposed. Due to the broadcast nature of the wireless medium, and the fact

that the devices at the same location achieve highly similar wireless signal prop-

erties. However, [26,28,29] have shown that the wireless-based key-establishment

techniques present vulnerability. There has been extensive research effort to de-

velop improved wireless-based authentication schemes [30, 31]. However, these

schemes may not work when the wireless signal is not available, or when the

devices are co-located in the moving vehicle.

In [99] and [101], we propose context-based pairing schemes that utilize the

Global Navigation Satellite System (GNSS) as security infrastructure. The key

idea is the same as the one shared among the wireless signal-based authentication

schemes [97]: the GPS-equipped devices located in the same vehicle can observe

highly similar vehicle movement data, and we can utilize such data to establish

a secret key.

When a user drives a vehicle, the corresponding GPS data exhibit randomness

as the driver may alternatively step on the accelerator and brake pedals from time

to time with varying force in order to adapt to the road traffic during driving.

A vehicle provides a physically secure boundary as the devices co-located within

the vehicle can observe common GPS data, as opposed to devices that do not

experience the trip.

Meanwhile, a side-channel can be utilized as an input interface. In [45], we

propose a practical PIN entry scheme that allows a user to enter a PIN through

foot tapping on the ground. This scheme utilizes geophones to collect structural

vibration signals caused by foot tapping. When a user generates the activation
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signals by performing a predetermined sequence of foot taps within the target

area, the input sequence is initiated, and the user can use foot tapping to input a

PIN. The system then demodulates the corresponding structural vibration signals

into a PIN.

Furthermore, different types of side-channel can be exploited for implementing

the attack. [107] proposes a voice command injection attack against Automated

Speech Recognition (ASR) systems (e.g., Google Assistant). In this work, the

injected commands are still played as audible sounds. However, we exploit the

impact of fast speech to camouflage voice commands. This idea is based on the

fact that both humans and ASR systems often misinterpret fast speech, and such

misinterpretation can be exploited to launch hidden voice command attacks.
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Chapter 6

Conclusion

This dissertation proposes a novel and practical numerical keystroke inference

technique, with the following advantages over previous methods: (1) non-invasive,

there is no need to pre-infect the victim’s device with malware; (2) training-free,

no training is required; (3) context-free, it does not rely on contextual informa-

tion; and (4) non-line-of-sight (NLOS), the attacker’s devices can be hidden from

the target user. The novelty of WINK stems from identifying and constructing

the spatiotemporal correlation between consecutive CSI measurements and typed

digit sequences. Extensive evaluations show WINK significantly decreases the re-

quired attempts to infer numbers and such reduction for different numbers may

vary substantially, causing severe security inequality among different PINs with

the same length or SSNs. This dissertation also discusses possible countermea-

sures that can resist the proposed attack. Experimental results show that typing

extra digits that do not disclose more spatiotemporal features can improve the

security of the typed secret number.
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