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Abstract

The Warn-on-Forecast System (WoFS) is a rapidly updating convection-allowing en-

semble focused on providing numerical guidance at Watch-to-Warning lead times (0-6

hours). Previous studies (e.g., Flora et al. 2021; Clark and Loken 2022) have incor-

porated machine learning (ML) to take advantage of the unique benefits of the WoFS

and produce skillful guidance for severe weather hazards at lead times of 0-3 hours.

This study evaluates the use of multiple ML architectures to produce 2-6 hour severe

weather guidance using data from the WoFS. This represents the first use of machine

learning to produce WoFS-based guidance at these lead times and the first use of deep

learning to produce severe weather guidance using WoFS data.

Predictors are created using WoFS forecasts from the 2018-2023 Hazardous Weather

Testbed Spring Forecasting Experiments. Data from forecast hours 2 through 6 are

processed into predictors of multiple scales, incorporating both storm and environ-

mental fields. We utilize three ML architectures: logistic regression, histogram-based

gradient boosting trees, and U-nets. These models are trained to predict severe wind,

severe hail, tornadoes, or any-severe hazard during the 2-6 hour window. Target data

comes from the NOAA Storm Events database. The four-hour ML guidance is com-

pared to rigorous baselines consisting of optimized Neighborhood Maximum Ensemble

Probabilities for each hazard.

All ML methods evaluated outperform the NMEP baselines with tree-based meth-

ods achieving the highest performance of the traditional architectures. The largest

improvement occurs for severe wind, followed by severe hail, tornado, and any-severe.

Feature ablation shows that skill primarily comes from the intrastorm predictors and

that the inclusion of multi-scale features exhibits little effect on skill. Despite the inclu-

sion of additional features, the U-nets are unable to surpass the skill of the tree-based

architectures. Similar to prior studies, this work shows the benefits of using the WoFS

and ML to produce skillful guidance during the Watch-to-Warning period.

xiii



Chapter 1

Introduction

Research related to severe weather is often focused on lead times on the order of a

few minutes to a half hour (e.g., Brooks 2004; Simmons and Sutter 2006; Brotzge

et al. 2013) as this is the typical lead time provided for tornadoes (Brooks and Cor-

reia Jr 2018). Guidance issued during these lead times, such as tornado warnings, has

been shown to reduce the loss of life to severe weather hazards (Simmons and Sutter

2008). A substantial amount of research is also devoted to next-day severe weather

forecasting (e.g., Hill et al. 2023; Loken et al. 2022). However, the lead times between

these extremes are not as well understood or robustly researched. An even smaller

section of the literature is devoted to a subdivision of these middle lead times; the

watch-to-warning window. Watch-to-warning lead times are herein defined as hours

0-6 preceding a severe weather event (Heinselman et al. 2024b). While these lead times

are important, there are only a few types of information, such as observations or the

output of CAMs, available to forecasters during this period. As such, increasing the

quality and availability of guidance during the watch-to-warning period is paramount

to supporting decision-makers.

The Warn-on-Forecast System (WoFS) is a forecast system being developed by the

National Severe Storms Laboratory with a focus on watch-to-warning lead times (Sten-

srud et al. 2009, 2013). The WoFS is a regional system that produces six-hour forecasts

with an emphasis on rapid assimilation of various observation types (Heinselman et al.
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2024b). While still a developing system, the numerical guidance from the WoFS has

been shown to be a useful tool for forecasters (Gallo et al. 2022).

To supplement the numerical guidance provided by WoFS, multiple WoFS-based

post-processed machine learning (ML) products have previously been developed (e.g.,

Flora et al. 2021; Clark and Loken 2022; Heinselman et al. 2024a). These products

leverage WoFS forecasts and ML to produce skillful guidance for severe weather haz-

ards, such as wind, hail, and tornadoes. These types of products have been shown

to provide more skillful guidance than non-ML baselines derived from WoFS forecasts

(Flora et al. 2021). Additionally, evaluation of these products has shown that they

improve the skill of forecasts (Clark et al. 2023; Flora et al. 2024).

However, the current WoFS ML products generally focus on lead times of 0-3 hours.

As such, there is no currently available machine-learning-based supplement to the nu-

merical WoFS guidance at lead times greater than 3 hours. Additionally, there has

been no prior work with the WoFS to determine what skill (if any) ML guidance would

provide over non-ML products at these lead times.

The primary goal of this thesis is to assess the skill of ML-based severe weather

guidance produced from WoFS forecasts at lead times of 2-6 hours. This product

addresses the current gap in ML guidance produced for the WoFS. The end goal of

this study is to determine what advantage (if any) the ML guidance provides over

guidance produced by non-ML baselines.

The secondary objectives of this study are numerous. First, we aim to discern

which ML architecture produces the most skillful guidance for this task. Second,

we aim to determine which fields provide the highest skill benefit for the guidance.

Additionally, we evaluate multiple spatial scales of predictors to determine what benefit

is gained from including multi-scale features. Finally, we evaluate the performance of

deep learning models with respect to traditional machine learning architectures.
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Chapter 2

Literature Review

2.1 Watch-to-Warning Guidance

As no accepted definition exists within the broader literature, watch-to-warning lead

times are herein defined as the six hours preceding a severe weather event to maintain

consistency with Heinselman et al. (2024b). The mean lead time for a tornado warned

in advance is about 13 minutes, although the lead time of a warning can vary based on

convective mode and numerous other factors (Brooks and Correia Jr 2018; Brotzge et al.

2013). As such, a substantial amount of the watch-to-warning period favors watches

rather than warnings. However, many of the tools available to decision-makers during

this period favor short-term guidance and nowcasting (e.g., Zinner et al. 2008; Cintineo

et al. 2014; James et al. 2018). Given that the mean lead time for tornadoes warned

in advance has been between 15-20 minutes for much of the last 40 years (Brooks

and Correia Jr 2018), a substantial paradigm shift may be necessary to best utilize

longer-term guidance during this window.

This is a key concern within the Warn-on-Forecast program due to its focus on the

watch-to-warning window. Gallo et al. (2024) focuses on the use of WoFS by forecasters

during the 2021 Hazardous Weather Testbed Spring Forecasting Experiment (HWT

SFE). During this experiment, a multi-group study was conducted where one set of

forecasters had access to WoFS data and the other set did not. Both sets produced a

series of forecasts at lead times of 2-3 hours for severe wind, severe hail, and tornadoes.
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Access to WoFS data improved the skill of these forecasts. This supports the findings of

Gallo et al. (2022) which showed that forecasters could use WoFS guidance to produce

skillful forecasts at a variety of lead times. Flora et al. (2024) details an experiment

performed during the 2022 SFE. Two groups were given access to WoFS products.

However, only one of these groups was given access to the WoFS ML products. The

forecasts produced by both groups were then evaluated (Clark et al. 2023; Flora et al.

2024). The findings showed that access to the WoFS ML products resulted in more

skillful severe weather guidance. Thus, both WoFS and its ML products are beneficial

to forecasts during the watch-to-warning period. Discussion of these products is left

to the next section of the literature review.

While access to WoFS data has been shown to increase the quality of forecasts

during the watch-to-warning window, it is unclear how to best use information during

these lead times. Simmons and Sutter (2008) showed that tornado warnings reduced

fatalities when issued within 15 minutes of a tornado. However, lead times above 15

minutes were correlated with increased fatalities from tornadoes. The authors state

that the increase in fatalities beyond 15 minutes was primarily driven by a small, yet

dangerous, subset of strong tornadoes. In Hoekstra et al. (2011), a survey showed that

members of the public would prefer lead times on the order of a half hour. However,

the respondents also indicated that providing longer lead times may increase unsafe

behaviors, such as securing belongings or fleeing, rather than taking shelter. Addition-

ally, they reported that an increase in lead time would lead to a decrease in perceived

threat.

An alternative is to target products providing advance notice of severe weather

towards decision-makers, rather than the general public. Obermeier et al. (2023) pro-

vided probabilistic hazard information to broadcast meteorologists to assess how they

would use the data. Their results suggest that the information would be valuable for

4



decision-making, although it may not be explicitly communicated to the public due to

the risk of confusion. Additionally, more information was desired between the issuance

of watches and warnings. While the primary focus of Obermeier et al. (2023) was on

probabilistic information, products designed to provide extended lead times may re-

ceive similar feedback. Thus, while targeting decision-makers is possible, this approach

would require more interaction with prospective users to receive their feedback on the

product.

2.2 Machine Learning for Severe Weather

Machine learning (ML) is a multi-function tool that fills a multitude of roles within

meteorology. It is commonly used as a post-processing tool for the output of numerical

weather prediction (NWP) models. Recent advancements have led to the development

of fully AI-driven NWP systems (e.g., GraphCast; Lam et al. 2022). However, AI

NWP systems capable of competing with traditional NWP methods at convection-

allowing scales do not yet exist. As such, within this review, we focus on the use of

machine learning for post-processing NWP output to produce severe weather guidance.

Hill et al. (2020) investigated the use of machine learning for producing severe

weather guidance using data from the Global Ensemble Forecast System Reforecast

ensemble (GEFS/R). Guidance was produced by random forests for lead times of days

1-3 (i.e., 12-84 hours before an event) on a 55 km grid. Severe wind, severe hail, and

tornadoes are predicted separately for day 1, while days 2 and 3 consist of predictions

for any of these hazards (dubbed “any-severe” for the remainder of this work). The day

1 skill was highest for severe wind, followed by severe hail, and tornadoes. However,

the day 1 guidance produced by random forests was marginally less skillful than SPC

outlooks with some regional variation. This was remedied by producing a weighted
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blend of the random forest guidance and the SPC outlooks. Comparatively, the day 2

guidance and day 3 guidance produced by random forests were more skillful than the

corresponding SPC outlooks. As an extension of this work, Hill et al. (2023) showed

that random forests could provide skillful severe weather guidance out to days 4 and 5.

Hill and Schumacher (2021) utilized a similar framework to create predictions of day

1 excessive rainfall. However, the guidance produced by random forests was found to

be generally less skillful than the Excessive Rainfall Outlooks issued by the Weather

Prediction Center.

Loken et al. (2020) also focused on the use of random forests for producing day 1

severe weather guidance. Guidance was created on an 80 km grid using data from the

Storm-Scale Ensemble of Opportunity (Jirak et al. 2012, 2016). Random forests were

trained to produce any-severe guidance, as well as guidance for severe wind, severe hail,

and tornadoes. The random forests generally outperformed both an updraft helicity

baseline and SPC forecasts. However, the tornado guidance from random forests did

not outperform the SPC tornado predictions. Sobash et al. (2020) performed a related

study; any-severe guidance was once again produced on an 80 km grid for four-hour

windows. However, rather than random forests, a feed-forward neural network was the

architecture of choice. The guidance produced by this neural network outperformed an

updraft helicity surrogate severe forecast. However, the difference between the neural

network and baseline was reduced when evaluating on smaller target scales. The neural

networks also produced more skillful guidance than the updraft helicity baseline when

the convective regime was not supercellular. Sha et al. (2024) is an extension of this

work using data from the High-Resolution Rapid Refresh. In this study, a conditional

generative adversarial network was used to expand the deterministic HRRR forecast

into a synthetic ensemble. This was paired with a convolutional neural network (CNN)

to produce skillful four-hour guidance for any-severe hazards.
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While Gagne II et al. (2019) falls within the scope of using machine learning to

post-process NWP output and predict severe weather, the study took a slightly differ-

ent approach. Day 1 forecast data was gathered from the NCAR convection-allowing

ensemble using 96x96 km patches on a 3 km grid. A logistic regression model and CNN

were trained to predict the occurrence of severe hail. However, rather than using storm

reports, the severe hail was diagnosed using the maximum diameter of hail produced

by the Thompson microphysics scheme. Thus, the predictions were for simulated hail

rather than real. The CNN was the highest-performing method and was able to lever-

age spatial information to learn the storm modes. As such, Gagne II et al. (2019)

suggests that deep learning may be able to improve on traditional machine learning

methods when it comes to severe weather guidance. Finally, we consider the NOAA

ProbSevere products (Cintineo et al. 2014, 2018, 2020). ProbSevere uses data from the

Multi-Radar/Multi-Sensor (MRMS) suite, lightning data, satellites, and NWP output

to produce 0-1 hour severe weather guidance. ProbSevere makes use of näıve Bayesian

classifiers. While the initial version of ProbSevere only produced guidance for any-

severe hazard (Cintineo et al. 2014), the second iteration produces guidance for severe

wind, severe hail, tornadoes, and any-severe hazard. As these products are shown to

be skillful, this suggests that MRMS data may be a skillful predictor to incorporate

for other prediction tasks within the watch-to-warning window. Additionally, Cintineo

et al. (2022) showed that a CNN could make use of satellite data to provide skill-

ful, short-term guidance for lightning within the next hour. This reinforces that deep

learning can be used as a tool to create skillful predictions of short-term hazardous

weather. For a more comprehensive review of the recent usage of traditional ML and

deep learning for producing guidance for severe convective hazards, the readers are

encouraged to consult McGovern et al. (2023).

7



Given the studies discussed previously, both traditional ML and deep learning have

been shown to be useful for predicting severe weather at a variety of timescales. We

now consider the two most relevant works, as they are focused on the use of ML within

the WoFS framework. Flora et al. (2021) represents the first application of ML to the

Warn-on-Forecast System for producing severe weather guidance. Rather than a grid-

based approach, the study employed an object-based approach where predictions are

applied to ensemble storm tracks rather than for each grid point. The storm tracks are

derived from the WoFS ensemble forecasts of peak vertical velocity over a 30-minute

window. Logistic regression, random forests, and gradient-boosted trees were then

used to produce the probability that each storm track would overlap a storm report.

This guidance was produced for severe wind, severe hail, and tornadoes and was valid

over 30-minute windows out to a maximum lead time of 2.5 hours. The results of this

study showed that the ML guidance was capable of outperforming ensemble-probability

baselines for each hazard and all considered metrics. The improvements over the base-

line were largest for severe wind, followed by tornadoes and severe hail. Additionally,

when comparing within an individual hazard, the variation in skill between the differ-

ent ML architectures was fairly small (e.g., random forests and gradient-boosted trees

had similar levels of skill). The main limitation of the object-oriented method was

the restrictions it placed on the dataset. As predictions could only be evaluated for

the objects, the verification was restricted to the areas where the WoFS forecasts had

storms.

Rather than the object-oriented approach of Flora et al. (2021), Clark and Loken

(2022) focused on a grid-based approach to create products for the entire 0-3 hour

window. This guidance was produced by random forests trained to predict the occur-

rence of any-severe, rather than individual hazards. The random forests’ guidance was

capable of outperforming an updraft helicity-based baseline. Additionally, this study
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showed that the most important features for the skill of the ML model were intrastorm

predictors rather than environmental. Furthermore, the inclusion of smoothed updraft

helicity fields from the WoFS ensemble members increased the random forest’s skill.

Recent ML work with the WoFS has included a focus on probabilistic hazard infor-

mation (PHI). The resulting product, WoFS-PHI, uses WoFS forecasts and data from

ProbSevere to produce PHI for wind, hail, tornadoes, and lightning at lead times of

0.5-3 hours (Heinselman et al. 2024a; Calhoun et al. 2024).

It is notable that Clark and Loken (2022) only evaluated the performance of random

forests trained to produce guidance for any-severe hazards. As such, the work presented

in this thesis can be considered an extension of Clark and Loken (2022) to longer lead

times, additional hazards, and more ML architectures. This includes the use of deep

learning, which was not evaluated in either Clark and Loken (2022) or Flora et al.

(2021).
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Chapter 3

Data & Methods

The primary objective of this thesis is to produce severe weather guidance at lead times

of two-to-six hours using data from the Warn-on-Forecast system. This is established

as a binary classification task, where the guidance provides the probability of a severe

weather hazard occurring within 36 km of a given point during the two-to-six hour

guidance window. The following sections describe the data and methods used to achieve

this goal.

3.1 Warn-on-Forecast System

The Warn-on-Forecast System (WoFS) was initially proposed in 2009 as a flagship

model that could eventually lead a shift away from the warn-on-detection paradigm

(Stensrud et al. 2009). The novel warn-on-forecast framework envisioned a scenario

where model guidance was skillful enough that warnings could be issued largely based

on model forecasts. These warnings would extend lead times far beyond warnings

issued when severe storms became detectable with observations. As expected of such

a monumental undertaking, the development of the WoFS had to overcome numerous

challenges (Stensrud et al. 2013). While the Warn-on-Forecast paradigm has not yet

been fully realized, the current WoFS has proven capable of providing skillful, rapidly

updating guidance during the watch-to-warning period and is routinely used by the
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Weather Prediction Center, Storm Prediction Center, and various weather forecast

offices (Heinselman et al. 2024b; Wilson et al. 2024; Wilson 2023).

The current iteration of the WoFS is a convection-allowing ensemble with a 3 km

grid spacing. The ensemble domain covers a 900 x 900 km region and can be relocated

between every case. Additionally, the WoFS supports multiple domains per case when

requested. The WoFS is only run for specific cases, with the first and last forecasts

typically initializing at 1700 and 0300 UTC respectively. The exception to this is the

month of May; the WoFS is generally run daily during this period to support the

Hazardous Weather Testbed Spring Forecasting Experiments (Clark et al. 2023).

The ensemble component of the WoFS consists of 36 members. These members

utilize various physics schemes as outlined in Skinner et al. (2018). Satellite, radar,

and mesonet data assimilation occur every 15 minutes using a variation of the grid-

point statistical interpretation ensemble Kalman filter (Heinselman et al. 2024b). This

is augmented by hourly assimilation of conventional observation types. While the en-

semble consists of 36 members, only 18 are utilized for forecasts. New forecasts are

initialized every half hour while the WoFS is running. Forecasts launched at the top

(bottom) of the hour extend six (three) hours with output available every five minutes

(Heinselman et al. 2024b). As we are interested in 2-6-hour predictions, we only use

the six-hour forecasts that are initialized hourly.

3.2 Dataset

3.2.1 Warn-on-Forecast Datasets

The data used for this project consist primarily of ensemble forecasts from the Warn-on-

Forecast System. Due to the focus on severe convective weather, we only use forecasts

from May. These forecasts were produced as part of the annual Hazardous Weather
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Testbed Spring Forecasting Experiments from 2018 to 2023 and are split into two

datasets. As this project began in 2022, the first dataset only consists of forecasts

through 2021. When more recent data became available, it was incorporated into the

second dataset.

The first dataset, referred to as the initial dataset, consists of 644 forecasts across

83 cases ranging from 2018 - 2021. Much of the preliminary work was conducted on this

dataset, with these results being reviewed in Sections 4.1-4.3. The secondary dataset

includes 1154 forecasts from 111 cases ranging from 2019-2023. This represents the

most recent forecast data available. Additionally, the data from 2018 was dropped

from this dataset as the WoFS had a different configuration at that time. The results

of this dataset are reviewed in Sections 4.4 and 4.5. In both datasets, the initialization

times of the WoFS range from 1700-0300 for each case with forecasts extending six

hours after initialization.

Figure 3.1 shows heatmaps of the WoFS domains in these datasets. Both datasets

have a strong bias towards the south-central plains and limited data over the eastern

seaboard. Additionally, both datasets have extremely few cases covering the West

Coast and Southwestern regions of CONUS. However, this is expected given the lack

of severe weather in these regions during the warm season (Farney and Dixon 2015).

Both datasets were split into training and testing sets, with 70% of the cases being

used for the training process and the remaining being used for the evaluation of the

models’ performance. Cases were split into these sets based on the date of the forecast,

with all data from each case being isolated to either the training set or the testing

set. Combined with the near-daily relocation of the WoFS domain, this is a reasonable

safeguard against cross-contamination between the training and testing data. In total,

this results in approximately 4.2 million (2.1 million) training (testing) samples for
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the initial dataset, and 8 million (3.5 million) training (testing) samples for the final

dataset.

3.2.2 Feature Engineering

Multiple fields are extracted from the WoFS forecasts and processed to create predictors

(Table 3.1). While many of the fields rely implicitly on temperature (e.g., CAPE), it is

notable that temperature is not explicitly included as a predictor unlike in Clark and

Loken (2022). Following the precedent set by Flora et al. (2021) and Clark and Loken

(2022), the fields in Table 3.1 are categorized as either intrastorm fields (Fields 1-8) or

environmental (Fields 9-21).

While both types of field undergo a similar process of refinement into predictors,

the filters used to process a field vary based on the field’s category. Intrastorm fields

are processed using spatial and temporal maximum filters, as their distributions tend

to be highly skewed. Conversely, environmental fields are processed using spatial and

temporal mean filters as their distributions tend towards Gaussian.

The raw forecast fields are transformed into predictors via a multi-step process.

First, the 3 km forecasts from each ensemble member are coarsened to a 9 km grid using

a maximum (uniform) filter for the intrastorm (environmental fields). A k-dimensional

(KD) tree is used to remap the 3 km grid to a 9 km grid using a nearest neighbor

approach; the KD tree is preferred over other methods due to its efficiency. Next, the

time average (maximum) value is calculated for each environmental (intrastorm) field

at every grid point. This is performed separately for each ensemble member and uses

the forecast data over a window starting two hours after forecast initialization and

ending six hours after initialization. At each step, any missing values are replaced with

the mean value of the field for that ensemble member.
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Intrastorm Fields:

1) 2-5 km Updraft Helicity 2) 0-2 km Updraft Helicity

3) Composite Reflectivity 4) 80 m Wind Speed

5) 0-2 km Average Vertical Vorticity 6) HAILCAST

7) Column-maximum Updraft 8) Okubo-Weiss Number

Ensemble Statistics: mean, interquartile range, 2nd highest, 2nd lowest members.

Environmental Fields:

9) Mid-level Lapse Rate 10) Low-level Lapse Rate

11) 0-3 km Storm Relative Helicity 12-13) 0-1 km U and V shear

14-15) 0-6 km U and V Shear 16-17) 3-6 km U and V Shear

18) Significant Tornado Parameter 19) Mixed-layer CIN

20) Supercell Composite Parameter 21) Mixed-layer Cape

Ensemble Statistics: mean, standard deviation

Table 3.1: Fields extracted from WoFS ensemble forecasts and used to create features.
Fields 1-8 are intrastorm while the remaining fields are classed as environmental. The
ensemble statistics for each field type are also listed. Each statistic is calculated three
times per field due to the three different smoothing radii, resulting in 174 predictor
fields.

These time composites are then smoothed using a spatial maximum or spatial

mean filter with a radius of 9 km. Ensemble statistics are then calculated for each

field using the smoothed time composites. As seen in Table 3.1, the ensemble mean,

interquartile range, second highest ensemble member’s value, and second lowest ensem-

ble member’s value are calculated for each intrastorm field. The second highest and

second lowest member’s values roughly correspond to the 90th and 10th percentiles of

the ensemble. For environmental fields, only the ensemble mean and standard devia-

tion are calculated. Similarly to the choice of filter, the choice of ensemble statistics

is primarily motivated by the different distributions of intrastorm and environmental

fields. Hence, the environmental statistics describe Gaussian distributions while the
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intrastorm statistics better capture skewed distributions. Fewer statistics are calcu-

lated for the environmental fields as they are generally less skillful predictors than the

intrastorm fields (Flora et al. 2021; Clark and Loken 2022; Loken et al. 2022).

This process results in 58 fields that have been smoothed using a filter with a 9 km

radius. The smoothing and calculation of ensemble statistics is repeated twice more

using a radius of 27 km and then 45 km. The smoothing is performed in parallel,

rather than sequentially (e.g., the 9, 27, and 45 km smoothing are all performed on the

time composite fields and not fields that have been previously smoothed at a smaller

scale). This results in a final set of 174 predictors; 58 from each spatial scale. These

ensemble statistics are then used as predictors for the machine learning discussed in

later sections. The inclusion of predictors at multiple spatial scales attempts to address

some of the spatial uncertainty that occurs at 2-6 hour lead times. Additionally, the

inclusion of multi-scale predictors is meant to capture and separate larger meso-β scale

information from smaller scales of information.

3.2.3 Target Data

While the predictors discussed previously only include data from the WoFS forecasts,

target fields are produced using Storm Data reports from the National Centers for

Environmental Information. For a given forecast, all reports located within the WoFS

domain during forecast hours 2-6 are identified. To account for any temporal inaccu-

racies in the reports, we also include reports that occur within 15 minutes of the start

or end of the 2-6 hour forecast window. Only reports associated with severe weather

(i.e., wind ≥ 50 knots, hail ≥ 1 inch, or any tornado) are retained. The locations of

these reports are mapped to the nearest grid point on the native 3 km WoFS domain

using a K-dimensional tree. The reports are then mapped to the 9 km grid and a

maximum filter of radius 36 km is applied to account for spatial uncertainty. This is
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done to mitigate the effects of phase errors within the WoFS forecasts (i.e. allowing

some displacement of WoFS storms from the geographic location of the report), to

allow for some spatial uncertainty in the report’s location, and to account for errors in

storm location within the WoFS. The final target field is a boolean field with 9-km grid

spacing. We adopted this approach to roughly match the SPC’s probabilistic outlook

of severe weather within 26 miles (40 km) of a point.

16



Figure 3.1: Heatmaps showing the 900 x 900 km domain locations on a one-degree grid
for the a) initial dataset and b) final dataset. The initial dataset contains 83 SFE cases
from 2018 - 2021, while the final dataset contains 111 SFE cases from 2019 - 2023. In
both datasets, the majority of cases are located across the central plains.
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3.3 Baseline and Machine Learning

3.3.1 Baseline Models

To place the performance of the ML models into perspective, we create a set of rigor-

ous non-ML baselines to compare against. These consist of Neighborhood Maximum

Ensemble Probabilities (NMEP) produced from the WoFS forecasts. The ensemble

probability is calculated as:

EP =
1

N

N∑
n=1

fi ≥ t

where N is the number of ensemble members, fi is the value of a forecast field, and

t is some threshold. Thus, the EP represents the fraction of ensemble members with

a forecast value exceeding the threshold. To convert the EP to an NMEP, we apply

a spatial maximum filter to each ensemble member before calculating the EP. Similar

to the smoothing of the predictor fields, this is done to account for spatial uncertainty

in the forecasts. Both the size of the spatial filter and the threshold value are chosen

based on values that optimize the Brier Skill Score (BSS) of the BL models on the

training set using 5-fold cross-validation.

Figure 3.2 shows the various thresholds and neighborhoods considered for each haz-

ard during this process, as well as the optimal combination for each. A unique NMEP

BL is produced for each hazard, with each BL only using one forecast field. As seen

in Figure 3.2, both the any-severe and tornado BL use 2-5 km Updraft Helicity (UH)

while the severe wind and severe hail products use 80-m wind speed and HAILCAST

respectively. 2-5 km Updraft Helicity has been shown to be a skillful indicator of both

tornadoes and severe weather in similar work (Sobash et al. 2016, 2020), while 80-m

wind speed and HAILCAST have been shown as skillful for their respective hazards

(Flora et al. 2021). While the any-severe and tornado BLs are produced from the same
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field, the optimal any-severe BL uses both a lower threshold and a larger neighborhood

than the tornado BL.

While raw NMEP baselines have been utilized by prior work (e.g., Clark and Loken

2022), we also use isotonic regression to improve the calibration of our baselines com-

pared to the raw ensemble probabilities. This choice is motivated by previous studies

that also used isotonic regression to calibrate the output of machine learning models

(Burke et al. 2020; Lagerquist et al. 2017). Once the optimal NMEP parameters are

selected, the isotonic regression fits a non-decreasing function to the NMEP output.

This is done using the approach of Platt et al. (1999); the validation data from each

cross-validation fold is concatenated and used to learn the calibration function.

3.3.2 Logistic Regression

The first machine learning architecture that we implement is logistic regression (LR).

The LR architecture outputs a probability (ŷ) given by:

ŷ = σ(WTX)

where W is the weight vector, X is the predictor vector, and σ is the logistic (or

sigmoid) function (Géron 2022). Thus, the output probability is given by the logistic

function applied to the linear combination of each predictor’s weight and value with the

addition of a bias term. For large positive (negative) values of (WTX), ŷ will approach

1 (0). ŷ is then the probability of a sample being the positive class (i.e. severe weather

occurring within 36 km).

Each logistic regression instance is implemented using the scikit-learn Python pack-

age (Pedregosa et al. 2011). The weight vector is learned through gradient descent

during the training process by minimizing the log loss of the training dataset. During
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the training process, 5-fold cross-validation is used to ensure that the set of selected

hyperparameters is robust. We use the set of hyperparameters that achieves the high-

est mean critical success index (CSI) on the validation folds. CSI is defined in Section

3.5. Isotonic regression is once again implemented to improve the calibration of the

output probabilities. The implementation follows the same methods as discussed in

Section 3.3.1.

3.3.3 Tree-based Machine Learning

The foundation of tree-based machine learning is the decision tree. In essence, a deci-

sion tree is a series of optimized thresholds that act to split the dataset’s examples of

the positive class from the remaining samples (Breiman 2017). These splits are referred

to as nodes. At each node, the dataset can be split based on some criterion. This cri-

terion is usually the optimization of a quantity, such as impurity in the node’s samples

or the value of a loss function (Géron 2022). By finding a variable and threshold that

optimize this quantity, and then continuing this process with more nodes, a decision

tree begins to separate the positive class samples from other samples. Once another

criterion is met (e.g., too little data to split further or the maximum number of nodes

is met), a terminal node (known as a leaf node) is established. For any given leaf node,

the probability of the positive class is estimated as the ratio of positive class samples

in the node to total samples in the node.

When used in isolation, single decision trees are prone to overfitting the training

dataset (Géron 2022). Rather than using a single decision tree, many tree-based meth-

ods combine multiple trees to form an ensemble. While random forests have been

extensively used in meteorology (e.g., Clark and Loken 2022; Loken et al. 2020; Hill

et al. 2023), Flora et al. (2021) showed that gradient-boosted trees could achieve similar
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levels of skill to random forests. As such, we opt to use a variant of gradient-boosted

trees known as histogram-based gradient boosting trees.

The basis of the histogram-based gradient boosting trees (HGBT) architecture is

the process of gradient boosting. The goal of boosting methods is to combine multiple

weak learners sequentially into a strong learner (Géron 2022). Specifically, gradient

boosting entails adding additional trees to account for errors made by the previous

trees (Friedman 2001). Unlike random forests, the trees in a gradient-boosted ensemble

are in series. Thus, every tree after the initial is sensitive to the output from trees in

the sequence before it. The basic structure of the tree is unchanged. However, later

trees now attempt to fix the residual errors of prior trees rather than providing a pure

class probability. The output probability is then a sum of the contributions from all

trees, rather than the average (Géron 2022).

Gradient boosting trees (GBTs) are generally just as skillful as random forests for a

wide range of problems and are generally faster to train (Bentéjac et al. 2021). We opt

to use the scikit-learn implementation of histogram-based GBTs, as this is the same

library we use to implement LR. The histogram refers to how data is processed during

the training of a GBT. Rather than maintaining and sorting all unique values, the data

are separated into 256 bins. Instead of repeatedly sorting through every value of every

feature when creating nodes, these bins are referenced. This drastically expedites the

training process (Bentéjac et al. 2021).

The training process and implementation of the HGBT are identical to the LR

discussed in Section 3.3.2. While tree-based methods normally do not require data

scaling, we preprocess all predictors using standard scaling to maintain parity with

the data used by LR. We use 5-fold cross-validation during training to find the hyper-

parameter set that optimizes the critical success index (CSI; defined in Section 3.5).
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Additionally, we again include posterior isotonic regression to better calibrate the out-

put probabilities. All hyperparameter optimization is performed using the training

set.

3.3.4 Convolutional Neural Networks and U-nets

Following our discussion of traditional ML, such as LR and HGBT, we now consider

an ML architecture from the realm of deep learning: U-nets. To discuss U-nets, we

must first establish their foundation: convolutional neural networks (CNNs). CNNs

are a type of neural network used for processing images or other spatial fields through

the use of convolutional layers (LeCun et al. 1989, 1995). Rather than layers composed

of neurons connected to all neurons in the previous layer, as seen in a standard fully

connected neural network, convolutional layers only connect neurons to a subsection of

the previous layer. In a convolutional layer, the weights of neurons can be represented

as a series of convolutional filters. These filters can be specialized for specific tasks,

such as detecting edges (LeCun et al. 2015). The size of the filter is referred to as the

kernel size. By passing these filters across the input field, the convolutional layers can

detect features in various locations within the image (Géron 2022). These convolutional

layers are often followed by pooling layers. Pooling layers aggregate the input from

all neurons within the kernel. The most common form of aggregation is retaining the

maximum value within that kernel (Géron 2022). By varying the distance between

pooling kernels, CNNs progressively reduce the size of the image. Repeating the series

of convolutional and pooling layers then allows CNNs to learn progressively higher-level

features. While CNNs are often skillful for classification-based tasks (e.g., classifying

handwritten digits or predicting severe hail; LeCun et al. 1989; Gagne II et al. 2019,

respectively), they generally perform classification for an entire image. As we want to
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classify every pixel within an image (i.e. semantic segmentation), we employ U-nets

rather than a standard CNN.

U-nets are related to a subsection of CNNs referred to as autoencoders. Autoen-

coders retain the same basic ideas of convolutional layers and pooling layers from

CNNs. However, autoencoders are designed to perform image-to-image translation

rather than image-to-scalar. To do this, autoencoders make use of an encoder-decoder

pair (Kramer 1991). The encoder is similar to the CNN discussed previously; a series of

convolutional layers and pooling layers coarsen the input. To pass information through

this bottleneck, the network must construct a higher-level latent representation of the

input data. The decoder effectively mirrors this process by converting the latent rep-

resentation back to the original fields. Rather than coarsening the image, the decoder

repeatedly upscales the representation until it reaches the original image’s resolution.

Thus, the output of an autoencoder has identical spatial dimensions to the input.

As mentioned, U-nets are closely related to autoencoders. The distinction is nu-

anced, if somewhat pedantic. Both architectures can share the same shape. However,

autoencoders are generally intended to reproduce the input fields, while U-nets are in-

tended to create a new product with the same shape as the input fields. In fact, U-nets

were initially designed to perform semantic segmentation of biomedical images (Ron-

neberger et al. 2015). Additionally, U-nets generally feature skip connections while

pure autoencoders do not. These are alternative pathways that allow information to

bypass the central bottleneck imposed by autoencoders. In other words, skip connec-

tions provide routes for information to pass directly from one side of the network to

the other without being forced through the pooling layers.
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The final configuration of our U-net is discussed in the following and a simplified

representation of the architecture is displayed in Figure 3.3. While some of the param-

eters (e.g., network size, loss, and activation functions) are defined by our use case,

many of the hyperparameters (e.g., kernel size, filter number) are the result of hyper-

parameter optimization as discussed in Section 3.4. Our U-net is five layers deep and

uses binary cross-entropy as the loss function. We start with a normalization layer to

standardize all data using standard scaling. This is followed by an input layer for a

96x96 image. While it is common practice to use powers of 2, we opt for a patch size

of 96x96 to incorporate the largest amount of data. Restricting this to a power of 2,

the images would be 64x64 or smaller. Given the 36 km target radius, we elected to

break convention and use a larger patch size. Following the input layer, each step of

the network is composed of 2 convolutional layers followed by a max pooling (upsam-

pling) layer on the encoder (decoder) side. The pooling layers use 2x2 kernels and a

stride of 2 to reduce the patch dimensions (area) by a half (quarter). As such, the

encoder layers have shapes of 96x96, 48x48, 24x24, 12x12, 6x6, 3x3. These are then

reversed on the decoding side. The convolutional layers start with 64 convolutional

filters; the number of filters increases by a factor of 2 after every pooling layer up to

a maximum of 2048 filters. The convolutional kernel size alternates between 2 and 3,

again changing after every pooling layer. Each convolutional layer uses the rectified

linear unit (ReLU) as the activation function. Additionally, spatial dropout layers

with a dropout probability of 0.33 are incorporated after all convolutional layers. All

of these hyperparameter choices, with the exception of ReLU as the activation func-

tion, were determined through hyperparameter optimization performed using 5-fold

cross-validation on the training set. Skip connections are also utilized, but they pass

directly across the U-net between the pooling and concatenation layers. This is a no-

tably simpler approach than the skip connections used in the U-net++ and U-net 3+
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architectures which connect to multiple layers (Zhou et al. 2018; Huang et al. 2020).

The final convolutional layer uses one filter and a 1x1 kernel paired with a sigmoid

activation function to output the probability of the positive class at each pixel. Thus,

the interpretation of the U-net output is identical to those of the previous architectures.

In all, the final U-net has 40,502,849 parameters to learn.
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a)

c)

b)

d)

Figure 3.2: Heatmaps of the NMEP Brier Skill Score (BSS) for various neighborhoods
and thresholds for a) any-severe hazards, b) severe wind, c) severe hail, and d) torna-
does. The BSS is calculated as the mean BSS across all validation folds using 5-fold
cross-validation on the training set. The optimal combinations are outlined in blue.
These optimal combinations are used to produce the baseline NMEPs. The shading
indicates the range of BSS that the NMEPs achieve on each hazard.

26



Input: (96, 96, 63)

(48, 48, 128)

(24, 24, 256)

(12, 12, 512)

(6, 6, 1024)

(96, 96, 64) Output: (96, 96, 1)

(3, 3, 2048)

Figure 3.3: A simplified representation of the U-net architecture used within this study.
Convolutional layers are represented as blue boxes while pooling and upscaling layers
are represented as red boxes. The shape is given as (y,x, features) at each level of the
U-net. the leftmost (rightmost) black box represents the input (output) layer. Skip
connections are only connected across the U-net to the level with a similar spatial di-
mension, rather than the full-scale skip connections used by the U-net 3+ architecture.
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3.4 Deep Learning Methods

The general implementation of the u-net method is similar to the previous ML archi-

tectures. The data is identical to the final dataset (2019-2023) discussed in Section

3.2.1. Dates are split into the training and testing sets identically to that dataset.

However, there are some notable differences from the feature engineering discussed in

Section 3.2.2. The data is once again coarsened to a 9 km grid as discussed previ-

ously. However, rather than retaining the full domain, we drop data within 18 km of

the domain boundary. This changes the data from a 100x100 field to a 96x96 patch.

Following this, we again take the time composite of each field over forecast hours 2-6.

However, unlike the traditional ML predictors, we do not follow this step with smooth-

ing. Instead, we directly calculate the ensemble statistics at each grid point without

smoothing. As such, any smoothing or pooling is left for the convolutional filters. The

ensemble statistics for each field are identical to those discussed previously.

All features included in Table 3.1 are retained in the deep learning dataset, as

are the storm data targets. We add the WoFS forecasts of cloud top temperature as

an additional intrastorm field to the predictors discussed previously. Furthermore, two

additional types of data are used to supplement the predictors and targets. First, as an

additional predictor field, we include composite reflectivity from the multi-radar/multi-

sensor (MRMS) product suite (Smith et al. 2016). This reflectivity is valid at the

initialization time of the forecast, rather than forecast hours two through six. This is

meant to indicate convection that has already initiated and to reduce the impact of

spurious convection within the WoFS forecasts. The MRMS composite reflectivity is

regridded to the base 3 km grid of the WoFS. After this, the field is coarsened to 9 km.

As there is no ensemble component, the composite reflectivity field itself is used as a

predictor rather than ensemble statistics.
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Furthermore, we incorporate the maximum expected size of hail (MESH) as an

additional target field. MESH is a radar-based product shown to be useful as an indi-

cator of severe hail (Witt et al. 1998; Wendt and Jirak 2021). While MESH estimates

hail size, we translate this into a binary field by thresholding the values at 30 mm.

For U-nets trained to predict any-severe hazards, this serves as a supplement to the

storm data reports rather than a replacement (i.e. any-severe is now the union of

MESH, severe wind reports, severe hail reports, and tornado reports). We use the

same smoothing process described previously to extend both the MESH and storm

data targets into 36 km radii.

The training of the U-net is identical to that discussed previously. We use 5-fold

cross-validation on the training set for both training and hyperparameter tuning. The

any-severe U-net’s final structure and parameter choice are outlined in Section 3.3.4.

However, unlike the previous ML architectures, we do not use isotonic regression to

calibrate the probabilities.

3.5 Verification Metrics

This section introduces the general techniques and metrics used to verify and compare

the performance of the BL and ML architectures. Discussion of the metrics is heavily

inspired by Brooks et al. (2024), and as such, we adopt their notation when applica-

ble. Many of the verification metrics are derived from the 2x2 table of forecasts and

observations. Adopting the same style and notation as Brooks et al. (2024), the table

is given in Table 3.2.

While this table works for binary observations and forecasts, some alterations must

be made for probabilistic output. By setting some forecast threshold t, we can convert
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Observations

Forecasts Yes (y = 1) No (y = 0)

Yes a b

No c d

Table 3.2: The standard 2x2 contingency table, also known as a confusion matrix, for
binary forecasts and outcomes. The terminology for the table elements varies widely
across fields and are therefore left unnamed within this paper. Readers interested in
the history of the table and its associated metrics are encouraged to consult Brooks
et al. (2024).

the probabilistic forecasts into a binary outcome. Thus, for a given threshold t and

forecast probability x, the table becomes Table 3.3

While the threshold t can be fixed arbitrarily, we can allow t to vary to gather

information on how the skill of the models changes over their entire output range. For

our case, we evaluate the table at 11 thresholds ranging from [0,1] every 0.1. At the

limit of t = 0, all forecasts become a yes while (nearly) all forecasts become a no at

t = 1. Using the prior definition of the 2x2 table elements, we can define verification

metrics that we calculate at every threshold.

The probability of detection (POD) is the conditional probability that an event was

forecast given an event occurred and is defined as:

POD =
a

a+ c
(3.1)

Similarly, the success ratio (SR) is the conditional probability of an event occurring

given a yes forecast and is defined as:

SR =
a

a+ b
(3.2)
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Observations

Forecasts Yes (y = 1) No (y = 0)

Yes x ≥ t x ≥ t

No x < t x < t

Table 3.3: A 2x2 contingency table for the verification of probabilistic forecasts. The
forecasts (x) are categorized as yes or no depending on their relationship to the thresh-
old value (t). If only one value of t is utilized, this reduces to Table 3.2. However, by
using a series of values for t, multiple contingency tables are constructed detailing the
forecast performance across various probabilities.

The false alarm ratio (FAR) is given by 1− SR. The POD and SR can be related

to each other through the critical success index (CSI) which is given by:

CSI =
a

a+ b+ c
=

POD ∗ SR
POD + SR− POD ∗ SR

(3.3)

Given their relationship, POD, SR, and CSI are plotted together on performance

diagrams. To mitigate the effects of base rate on CSI and facilitate easier comparison

between datasets, Flora et al. (2021) proposed the normalized CSI (NCSI) which is

calculated as:

NCSI =
CSI − y

1− y
(3.4)

where y is the base rate of the dataset (e.g., the ratio of target grid points in the

testing data set to total grid points in the testing data set). For any-severe, severe

wind, severe hail, and tornadoes, the base rates (expressed here as a percentage) are

approximately 4.9%, 2.9%, 2.3%, and 0.8% respectively. An additional metric that

we use to summarize the curves on a performance diagram is the Area Under the

Performance Diagram Curve (AUPDC). This is calculated via the difference in POD

for bin k and k − 1 weighted by the SR of the kth bin.
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AUPDC =
K∑
k=1

(PODk − PODk−1) ∗ SRk (3.5)

Similarly to NCSI, we scale the AUPDC by the unobtainable area to the left of the

base rate to give the normalized AUPDC or NAUPDC (Flora et al. 2021; Miller et al.

2022).

NAUPDC =
AUPDC − y

1− y
(3.6)

We also calculate the Probability of False Detection, POFD, which is paired with

POD to create Receiver Operating Characteristic (ROC) curves:

POFD =
b

b+ d
(3.7)

While NCSI and NAUPDC are useful as summary metrics, the information con-

tained therein does not explicitly provide details on the skill of predictions at various

thresholds (i.e. various curves on a performance diagram can yield identical values of

NCSI and NAUPDC).

While not derived from the 2x2 table, we also consider the Brier Score as a metric.

The Brier Score is given by the sum of three terms:

BS =
1

N

K∑
k=1

nk(xk − yk)
2 − 1

N

k∑
k=1

nK(yk − y)2 + y(1− y) (3.8)

where the predictions (x) are sorted and broken into K bins. yk is the base rate of the

kth bin, while y is the base rate of the dataset. The first term is known as the reliability

term and is a weighted average of the squared error between the kth bin’s mean forecast

value xk and the bin’s base rate. The second term, resolution, is a weighted average of

the squared difference between the kth bin’s base rate and the dataset’s base rate. The
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final term (uncertainty) is only a function of the dataset’s base rate, and as such, is

identical for the BL and ML. Unlike the previous metrics, a perfect Brier Score holds a

value of zero. Thus, we generally prefer the Brier Skill Score (BSS) as it is a positively

oriented skill score. The BSS is given by the following as a function of the Brier Score

of a forecast system (BS) and the Brier Score of a reference forecast BSref :

BSS =
BS −BSref

0−BSref

=
resolution− reliability

uncertainty
(3.9)

As indicated, the BSS can also be written as a function of the resolution, reliability,

and uncertainty terms. The reference forecast’s Brier Score (BSref ) is the Brier Score

associated with forecasting the base rate (y) of the dataset. As such, BSref is identical

for the BL and ML of a specific hazard, but each hazard has a unique BSref .
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Chapter 4

Results

4.1 Performance of Traditional Machine Learning

Techniques

4.1.1 Objective Skill

To begin the evaluation of the products, we first consider the performance diagrams

displayed in Figure 4.1. These plot the SR and POD for three different products:

HGBT (red), LR (blue), and the baseline (black). Each panel corresponds to a different

hazard. Within each diagram, the probability threshold for a yes forecast increases from

top left to bottom right. The location of the maximum CSI is denoted by a marker on

each curve. A perfect model will have a curve in the upper right-hand corner of the

diagram.

The evaluation is rather straightforward; as indicated in Figure 4.1, the ML prod-

ucts outperform the baselines in every hazard and for all considered summary metrics.

Additionally, this holds true for both ML architectures across all probability thresh-

olds. The largest increase in performance compared to the baseline is seen for severe

wind; the ML products nearly double the baseline performance for this hazard. While

the HGBT outperforms the LR for any-severe and severe wind, the LR remains com-

petitive across all four hazard types (i.e. the 2σ confidence intervals overlap). Of the

34



hazards, the any-severe and severe wind products generally exhibit the highest success

ratios. The severe hail and tornado products generally exhibit a smaller increase in

success as the probability threshold increases.

Figure 4.2 plots the receiver operating characteristic (ROC) curves for each of the

hazard types. Similar to the performance diagram, the y-axis plots POD. However,

the x-axis is now the POFD. The AUC, or area under the ROC curve, is a summary

statistic that measures how well the products discriminate between event and non-

event samples. Given the context of severe weather, it is fairly easy to achieve a high

AUC by correctly ranking non-events. This is due to the high number of clear-air grid

points; e.g., predicting a probability of 1 at every grid point with reflectivity values

exceeding 40 dBZ achieves an AUC of 0.76 for any-severe hazards. However, these

diagrams still retain useful information.

Notably, the ML products generally exhibit higher PODs and lower POFDs than

the baseline. As such, the ML again provides more skillful guidance than the baseline.

The difference between HGBT and LR is marginal. Similar to the performance dia-

gram, the largest difference between HGBT and LR occurs in the any-severe product’s

performance metrics. The severe wind ML products show the largest improvement

in discriminative ability over the baseline (Fig. 4.2b). This is followed closely by

the ML’s improvement over the baseline for the tornado guidance (Fig. 4.2d). The

ML tornado guidance achieves the highest overall discrimination, as measured by the

AUC. However, as previously mentioned, this is primarily due to the correct ranking

of non-events.

The final verification diagram we utilize is Figure 4.3, known as the reliability

diagram. The guidance is sorted and broken into bins with a bin width of 0.1; the

number of samples in each bin is displayed as a histogram in the background. The

curves then plot the mean forecast probability of each bin against the conditional event

35



frequency of that bin. The one-to-one line is displayed in each panel as a dashed line. A

curve’s distance from this line is a measure of its reliability or calibration. Any system

along this line would be identified as having a perfect reliability component of the Brier

Score (e.g., 0). Systems above this line are identified as having an underprediction bias,

while systems below the line are overpredictive.

As seen in Figure 4.3, the ML guidance for each of the hazards is reasonably reliable

with a tendency to overpredict. Again, the results are nearly identical to those discussed

previously. Both ML architectures handily outperform the baselines across each hazard.

While the BL probabilities are well calibrated, they are also low amplitude. The largest

improvements are again seen for the severe wind and tornado products. However, unlike

the previous diagrams, the reliability diagrams reveal a fairly large distinction between

the HGBT and LR; the LR tends to output higher probabilities than the HGBT.

However, these high probabilities are over-predictive. As such, the LR is generally

a less reliable system than the HGBT. Some users may be willing to trade off the

decreased reliability for the increased amplitudes of the LR. The severe hail products

are an exception to the trend of the HGBT output having better reliability than the LR.

As seen in Figure 4.3c, the HGBT outputs poorly calibrated probabilities at the top

end. As such, the HGBT’s BSS is decreased compared to the LR. A major limitation

of the interpretation of these results is the small sample size in higher probability bins.

As a result, the true performance of the ML guidance at higher probabilities is fairly

nebulous given the high uncertainty. This is addressed in part in Section 4.4 through

the use of a substantially larger dataset.
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4.1.2 Case Study

As a case study, we consider the guidance created from the 2200 UTC WoFS forecast

on 23 May 2019. The SPC issued a moderate risk for this day with a primarily hail

and tornado-based risk (SPC 2019). The WoFS domain was located over the Texas

panhandle. The guidance is valid from 00-04 UTC on 24 May 2019; Figure 4.4 shows

the guidance created by the baselines for each hazard, while Figures 4.5 and 4.6 show

the guidance created by the LR and HGBT respectively. The case studies selected

within this work are not meant to highlight specific failure modes of the guidance.

Rather, they are intended to provide visualizations of how the guidance from each

architecture behaves on a typical case.

As shown in Figure 4.4a, the any-severe UH baseline correctly highlights the central

region of the domain where tornadoes were reported as the primary risk area. However,

there is little variation in the probabilities within that region. The any-severe baseline

also highlights the northeast and southwest clusters of reports, but incorrectly places

higher probabilities on the northeastern region where only a few hail reports were made.

Additionally, the any-severe baseline misses the northernmost cluster of reports within

the domain. The wind baseline has an extremely high FAR for this case; much of the

central to northeastern domain is highlighted, while only three reports are made during

this window. The baseline guidance suggests that the wind threat is farther northeast.

The hail baseline misses the same cluster of reports in the northern region of the domain

as the any-severe. While the hail baseline highlights the central corridor, it does not

feature a region of elevated probabilities for the southern cluster of hail reports. The

tornado baseline correctly captures the tornado events; however, it features similar

amplitude probabilities across a large portion of the domain.

Figure 4.5 displays the LR guidance for the aforementioned case. Once again, the

any-severe guidance captures the central region where tornadoes occurred. However,
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the LR also extends the probabilities to capture the hail reports in the northern region

of the domain. Additionally, probabilities are raised near the southwestern cluster

of reports. While the probabilities are fairly expansive across the central corridor,

the guidance correctly highlights the tornadoes with higher probabilities. The severe

wind guidance experiences a similar issue to the baseline. A substantial false alarm

is produced for the central and northeastern regions of the domain. While the LR

produces a hotter false alarm in the central region, it also produces slightly fewer false

alarms in the southwestern and northern regions of the domain when compared to

the baseline. The hail LR clearly produces two regions of interest associated with

the central and southwestern clusters of reports. Additionally, the LR expands the

probabilities to include the reports in the northern region that the baseline misses. The

tornado guidance features slivers of elevated probabilities along the central corridor;

this is more confident than the baseline, but not as confident as the HGBT guidance

shown in Figure 4.6d. The LR tornado guidance also experiences a higher FAR than

the baseline and HGBT in the northeastern region of the domain.

Finally, we consider the HGBT guidance in Figure 4.6. The any-severe guidance

captures both the central corridor where tornadoes occurred, as well as the northeastern

and southwestern regions. The probabilities in the northeastern and southwestern

regions specifically are elevated above the baseline and LR. Similar to the LR, the

any-severe guidance again captures the hail reports in the north of the domain that

the baseline misses. As discussed previously, the severe wind guidance experiences a

large false alarm over much of the domain. While the amplitude of the false alarm is

smaller than the LR, it occurs over a larger region. The hail guidance creates a region

of elevated probabilities along the main corridor and captures the southernmost reports

better than the LR. However, the HGBT also misses the hail reports in the central

northern region of the domain. The HGBT tornado guidance is the most skillful for
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this case; it features higher probabilities collocated with the tornado reports than the

LR and baseline. Additionally, it has a smaller false alarm in the northeastern region

of the domain. However, it produces a secondary erroneous maximum in the southwest

that neither the LR nor the baseline produces.
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a) b)

c) d)

Figure 4.1: Performance diagrams evaluating HGBT (red), LR (blue), and baselines
(black) on the initial testing set for a) any-severe, b) severe wind, c) severe hail, and
d) tornado. The threshold for a yes forecast increases from the top left to the bottom
right. Shading indicates the 2σ confidence interval. For all four hazards, HGBT is
generally the best-performing architecture. The largest improvement over the baseline
occurs for severe wind; HGBT is a 50% increase over the baseline for severe hail and
tornado.
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Figure 4.2: Receiver-Operating Characteristic (ROC) diagrams evaluating HGBT
(red), LR (blue), and baselines (black) on the initial testing set for a) any-severe,
b) severe wind, c) severe hail, and d) tornado. Shading indicates the 2σ confidence in-
terval. The severe wind and tornado ML products experience the largest improvement
in discrimination compared to their respective baselines.

41



a) b)

c) d)

Figure 4.3: Reliability diagrams evaluating HGBT (red), LR (blue), and baselines
(black) on the initial testing set for a) any-severe, b) severe wind, c) severe hail, and d)
tornado. Shading indicates the 2σ confidence interval. The baselines are reliable but
have limited amplitudes. LR and HGBT both tend to overpredict at higher probabil-
ities. With the exception of severe hail, the HGBT are susceptible to overprediction
than LR. As measured by the BSS, the HGBT again is generally the best-performing
architecture.
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Figure 4.4: Watch-to-warning guidance produced using the WoFS forecast initialized
at 2200 UTC on 23 May 2019. The panels correspond to the NMEP baselines for a)
any-severe, b) severe wind, c) severe hail, and d) tornado. The guidance is valid from
00-04 UTC on 24 May 2019. Reports from the guidance window are also plotted, with
the blue, green, and red points corresponding to wind, hail, and tornado reports. While
the any-severe product performs well, the wind guidance exhibits a large false alarm.

43



Figure 4.5: As in Fig. 4.4, but for logistic regression. While the severe hail and tornado
guidance correctly highlight regions of interest, the severe wind guidance exhibits a
substantial false alarm.
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Figure 4.6: As in Fig. 4.4, but for HGBT. For this case, the tree-based any-severe and
tornado products perform better than those produced by other methods.
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4.2 Stratified Verification

4.2.1 Skill by Initialization Time

As an additional measure of verification, we consider the performance of the ML and

BL guidance at various initialization times for each of the hazards. We again use the

testing dataset, but rather than a bulk verification over the entire dataset, we calculate

performance metrics as a function of initialization time. This provides insight into

diurnal variations in skill within the guidance. However, as the WoFS domain can

be relocated between cases (e.g., Figure 3.1), one initialization time may include data

from a range of local times. As an example, initialization times of 2200 UTC could

correspond to both 1900-2300 CDT and 2000-0000 EDT. Additionally, rather than

consulting verification diagrams for each of the initialization times, we consider only

the associated verification metrics. While this allows for a more succinct analysis,

it is not exhaustive as curves can have similar metrics while being associated with

substantially different characteristics.

Figure 4.7 shows the results of this process for the any-severe guidance. In gen-

eral, the skill of the guidance decreases as the initialization time increases. Both the

ML and BL guidance experience a large reduction in skill after 1800 UTC; however,

the amplitude of this skill reduction is substantially larger for the ML. This is likely

driven by a decrease in skill on severe wind, as the severe wind products mirror this

trend. The cause of this trend is currently unidentified. After 1900 UTC, the ML per-

formance generally exhibits a positive or constant trend until 0000 UTC. After 0000

UTC, the HGBT and BL guidance again experience a reduction in skill. However,

the LR NAUPDC and NCSI remain fairly stable after 1900 UTC. Despite the loss of

skill over time, the ML guidance outperforms the BL at each initialization time. The

HGBT typically outperforms the LR, although the LR obtains an advantage at the
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latest initialization times. The generally decreasing skill of the guidance with initial-

ization time is fairly unexpected. The expected performance would increase over time

as convection is initiated and becomes better assimilated within the forecast system.

Although not shown within this work, this behavior is observed when conducting a

similar verification on the final dataset.

The stratified verification of the severe wind products is shown in Figure 4.8. The

severe wind products experience a similar trend to the any-severe guidance; a large

reduction in skill occurs for initializations after 1800 UTC. In this case, the ML guid-

ance decreases in skill by nearly 40%. This is likely accentuated by the test dataset

having fewer total samples at the earliest initialization times as shown in Figure 4.8d.

Once again, the ML guidance outperforms the baseline at every initialization time.

The baseline NAUPDC and BSS remain fairly stable from 2000 UTC to 0100 UTC.

However, the baseline’s NCSI and BSS both decrease after 0100 UTC. Comparatively,

the ML guidance exhibits a general increase in skill from 2300 UTC onwards. The

HGBT once again outperforms the LR at most initialization times.

Figure 4.9 displays the stratified verification results for the severe hail guidance.

Unlike the any-severe and severe wind products, the severe hail products exhibit a

marked increase in skill for initialization after 1800 UTC. The severe hail ML guidance

outperforms the baseline at most times. The LR guidance generally increases in skill for

later initialization times and is typically more skillful than the baseline. The HGBT is

also typically more skillful than the baseline, but the BSS experiences a sharp decrease

at 0100 UTC resulting in the HGBT being less reliable than the baseline at that time.

Similar to the any-severe guidance, the LR outperforms the HGBT at later initialization

times. The baseline experiences a sharp dropoff in skill after 0000 UTC, resulting in a

generally parabolic trend. Conversely, the ML products have a positive trend.
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Finally, we consider the stratified verification of tornado guidance as shown in Fig-

ure 4.10. Due to the substantially lower base rate of tornadoes, these results generally

have a higher degree of variability than the previous hazards. Similar to the previous

hazards, the ML guidance outperforms the baseline for most initialization times. The

baseline exhibits a notable decrease in NAUPDC and NCSI after 2000 UTC when the

base rate begins to decline. Neither the LR nor the HGBT share this trend. While

the LR has a higher NAUPDC and NCSI than the HGBT at most initialization times,

the HGBT generally achieves a higher BSS. Both the ML and the baseline experience

a drastic reduction in skill after 0000 UTC. This is expected, as the base rate is so low

at these times that the performance is dictated by only a few positive target samples.

However, while the baseline eventually achieves a negative BSS, the HGBT guidance

retains a positive BSS.

4.2.2 Impact of Removing Cases

As additional insurance, we check to ensure that the testing set does not overly favor

the ML. This is done to verify that the ML guidance is a robust system and that its

improvements over the baselines are systematic and not the result of good performance

on a few, isolated cases. To that end, we perform two additional evaluations of the

any-severe product. The first removes the five cases where the ML achieved the highest

BSS and evaluates the remaining data. The second removes the five cases where the

BL achieved the lowest BSS and evaluates the remaining data.

Figure 4.11 shows the performance of the any-severe guidance on the initial testing

set after removing the five best cases for the ML products. Comparing against Figures
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4.1a, 4.2a, and 4.3a, all of the performance metrics are lowered. The discriminative

ability of the guidance (as measured by the AUC) experiences the least change across

both the ML and BL guidance. Comparatively, the NAUPDC and NCSI of all systems

decrease by about 28%; the baseline experiences the smallest reduction in magnitude,

while the HGBT experiences the largest. This is expected, as we specifically removed

cases where the ML performed well. While the magnitude of the reduction is smaller,

the BL experiences a similar percentage change in its performance metrics. Similarly,

all three systems experience a similar decrease in BSS. The removal of the cases en-

hances the overprediction bias that was already present. Again, this was expected as

cases were removed based on the BSS. The performance and reliability of all systems

degrading suggests that the BL and ML perform well in similar scenarios; these scenar-

ios are likely when the WoFS forecasts correspond well with the observations. However,

even removing these cases, the ML remains a more skillful system than the baselines.

Conversely, Figure 4.12 shows the performance of the any-severe guidance when the

dataset favors the BL. Here, we drop the five cases where the BL achieves the lowest

BSS. As seen in Figure 4.12a, dropping these cases slightly increases the performance

of all systems. The improvement for the BL is nearly 10%, while the ML guidance

experiences little change. The AUC of the ML guidance deteriorates slightly when

removing these cases. Two of the five removed cases had no associated reports within

the WoFS domain; as such, removing these cases removed many points that were easy

to correctly rank as non-events. This results in a slightly lower level of discrimination.

The reliability of the guidance remains unchanged from the full testing dataset. As

previously mentioned, two of the five cases had no associated reports and low proba-

bilities. Thus, removing these cases had a marginal effect on the BSS. Once again, the

ML outperforms the baselines even when the dataset favors the baseline. As such, we

ensure that the ML is providing a routine and robust improvement over the baselines.
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Figure 4.7: Panels a-c show the any-severe verification metrics calculated on the initial
testing set stratified by initialization time for HGBT (red), LR (blue), and BL (black).
The lower (upper) dashed lines indicate the lower (upper) bounds of the metric from
the unstratified verification. Error bars indicate the 2σ confidence interval. Panel d)
shows the base rate (y; see Section 3.5) of each initialization time (blue), as well as the
number of samples in the test set. A large drop in skill is observed after 1800 UTC,
likely a result of severe wind.
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Figure 4.8: As in Figure 4.7, but for severe wind. After 1800 UTC, the ML performance
remains fairly stable.

51



Figure 4.9: As in Figure 4.7, but for severe hail. The LR tends to outperform the
HGBT at later initializations, especially given the degradation of reliability in the
HGBT after 0000 UTC.
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Figure 4.10: As in Figure 4.7, but for tornadoes. All models exhibit a substantial
decrease in skill after 0000 UTC, likely due to the lower base rate of tornadic events.
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Figure 4.11: Performance diagrams (a), ROC curves (b), and reliability diagrams (c)
for the any-severe HGBT (red), LR (blue), and baseline (black). These evaluate the
performance of the guidance on the initial testing set after dropping five days where
the ML had the highest BSS. Shading indicates the 2σ confidence interval. All models
now show a larger bias towards overprediction and routinely lowered POD and SR.
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Figure 4.12: Performance diagrams (a), ROC curves (b), and reliability diagrams (c)
for the any-severe HGBT (red), LR (blue), and baseline (black). These evaluate the
performance of the guidance on the initial testing set after dropping five days where
the BL had the lowest BSS. Shading indicates the 2σ confidence interval. While the
discriminative ability of the ML guidance decreased, the performance and success ratio
are slightly higher than on the full testing dataset.
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4.3 Feature Ablation

To garner insight into which predictors are providing the largest benefit, we perform a

feature ablation test with groups of predictors. Rather than running a full permutation

of all 174 predictors, we categorize the predictors based on their field (intrastorm or

environmental) and their degree of spatial smoothing (9, 27, or 45 km). We then train

various instances of the ML architectures using combinations of these predictors.

The results of this are shown in Figures 4.13-4.16 with the figures corresponding to

any-severe, severe wind, severe hail, and tornado respectively. Due to the volume of

information, we show the results as scatter plots of the Brier Skill Score and AUPDC.

While this reduces the quantity of information when compared to the verification dia-

grams utilized previously, it allows for a more succinct analysis of the bulk performance

of these models. However, it no longer explicitly conveys information about how the

products perform at various probabilities.

Based on this test, the bulk of the predictive skill comes from intrastorm predictors.

Models incorporating these features, either alone or in combination with environmental

features, generally perform higher than the baselines. However, models using only

environmental features generally perform worse than the baseline. These results agree

with the findings of Clark and Loken (2022). The notable exception is for severe

wind; the HGBT environment-only severe wind guidance outperforms the baseline

while the environment-only LR does not. Additionally, severe wind guidance sees an

improvement in both reliability and AUPDC when both intrastorm and environmental

fields are used in combination (Fig. 4.14). A similar trend is observed when utilizing

both types of predictors for tornado guidance (Fig. 4.16); however, the inclusion of

environmental features mainly acts to improve the reliability of the tornado guidance.
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The inclusion of multi-scale features has a marginal impact on the skill of the guid-

ance. Among the highest-performing models, there is little distinction between the

various predictor scales. Additionally, there is no clear pattern in how the predictor

scales impact the skill of the guidance using intrastorm or both types of predictors.

However, multi-scale features do improve the skill of guidance produced with only en-

vironmental predictors. This is most apparent in the LR for any-severe (Fig. 4.13),

both ML architectures for severe wind, and the HGBT for severe hail (Fig. 4.15).

Regardless of the improved performance from multi-scale features, the guidance using

only environmental predictors remains less skillful than other configurations with in-

trastorm predictors. It is possible that the predictor scales evaluated herein are too

similar for substantial differences to appear; future work may consider incorporating

predictors from a substantially larger spatial scale.

Finally, the results show that the HGBT guidance tends to be more skillful than

the LR. Within each hazard, the top-performing guidance tends to come from the

HGBT. This is mostly invariant of the predictor types used; the HGBT generally has

the highest performance for intrastorm, environmental, and combined predictor sets.

The primary exception to this is the tornado guidance. Multiple LR configurations

exhibit an increase in BSS or AUPDC when compared to their HGBT counterparts.

However, as the HGBT outperforms the LR for most hazards, the HGBT was selected

as the primary architecture for continued evaluation on the final dataset.
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Storm & Env Storm Env

All Scales

45 km

27 km

9 km

Figure 4.13: Results of feature ablation for any-severe on the initial testing set. Sub-
plots represent various combinations of feature scales and types, with the feature scale
(type) varying across the rows (columns). The HGBT (LR) performance using only
these features is shown in red (blue). Baselines are retained in every panel as a point of
comparison. Error bars indicate the 2σ confidence interval of the ML performance. In-
trastorm features generally perform just as well as the configurations using intrastorm
and environmental features. No substantial differences exist between the skill of the
various scales of predictors.
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45 km

27 km

9 km

Figure 4.14: As in Fig. 4.13, but for severe wind. Marginal differences are observed
between the various predictor scales when intrastorm features are included. The best-
performing configuration utilizes both intrastorm and environmental features. The
environment-only HGBT beat the baseline while the LR do not. Furthermore, the
inclusion of multi-scale predictors does result in a skill increase for the environment-
only HGBT. However, this configuration is not as skillful as the configurations using
both intrastorm and environmental predictors.
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Figure 4.15: As in Fig. 4.13, but for severe hail. All environment-only configurations
perform worse than the BL, while all configurations including intrastorm features per-
form better than the BL. The environment-only HGBT outperforms the environment-
only LR. Conversely, the LR and HGBT are similar for most other configurations. The
models using multi-scale features generally perform as well as the best-performing,
single-scale configuration for a given predictor type.
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Figure 4.16: As in Fig. 4.13, but for tornadoes. The best-performing configurations
again use both intrastorm and environmental predictors. However, little difference is
observed between feature scales. The LR and HGBT are again fairly evenly matched,
with neither architecture being the most consistently skillful. All environment-only
configurations have lower AUPDC than the baseline, but some have a higher BSS.
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4.4 Performance of Models on Final Dataset

4.4.1 Objective Skill

We now consider the skill of traditional ML architectures trained on the final dataset

(2019-2023). All procedures follow the same process as those in Section 4.1.1. Given

the results of the initial dataset, we only evaluate HGBT and the baselines and no

longer consider LR.

Figure 4.17 displays the performance curves for HGBT and BL for each of the

four hazard sets. The ML predictions achieve both higher POD and higher SR than

the BL predictions. These results are not substantially different from those reviewed

in Section 4.1.1; the ML is again shown to be more skillful than the BL across all

considered hazards and probability thresholds with the largest improvement occurring

for severe wind (Figure 4.17b). The HGBT for severe wind and tornadoes achieve their

maximum CSI near PODs of 0.4 and 0.3 respectively. However, the any-severe and

severe hail ML products maximize CSI when POD is near 0.5. Comparing Figures

4.1b and 4.17b, the initial dataset appears to provide an overly optimistic assessment

of the BL performance for severe wind. Furthermore, both the ML and BL tornado

products achieved lower skill on the final dataset than they experienced in the initial

dataset. Conversely, both the BL and ML for severe hail achieve better performance

on the final dataset than the initial dataset.

ROC curves for the ML and BL products are displayed in Figure 4.18. Again, the

ranking of results has not changed much from the initial dataset. As measured by the

AUC, the HGBT is a better discriminator than the BL across all hazards. It is notable

that the discriminative ability of the BL is higher in the final dataset than the initial

dataset for all hazards except severe wind. Conversely, all ML products except severe

hail exhibit a lower discriminative ability on this dataset. As seen in Figure 4.18c,
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the severe hail HGBT generally has a slightly lower POD than the baseline. However,

the HGBT also achieves a lower POFD than the baseline. While the highest total

discriminative ability belongs to the tornado HGBT product, both the tornado HGBT

and BL products have substantially lower PODs than in the initial dataset. Consistent

with previous results, the largest improvements are seen for the severe wind and tornado

products. Comparing Figure 4.18d to Figure 4.17d, the HGBT’s improvement over the

baseline is much more apparent in ROC space than in performance space.

The reliability diagrams for the HGBT and BL predictions on the final testing

set are shown in Figure 4.19. Most of the ML and BL products exhibit a systemic

overprediction bias. As a result, the BSS is lower for all products except severe hail

when compared to the initial dataset. This is not unique to the ML products; each

of the baselines, except for the tornado baseline, also has an overprediction bias. The

severe hail HGBT has the lowest overprediction bias of all four hazard types. While the

initial severe hail HGBT learned to output much higher probabilities (4.3c), they were

poorly calibrated. Thus, the final severe hail HGBT product is a more reliable but less

confident system than the initial. Overall, the magnitude of overprediction remains

fairly small for all four hazards. While not plotted, the HGBT products generally

remain well above the no-skill line.

4.4.2 Case Study

As before, we now consider a case study. We utilize the guidance created from the

2200 UTC WoFS forecast produced on 10 May 2023. The SPC issued an enhanced

risk for this day near the borders of Colorado, Kansas, and Nebraska. Again, the main

risks were hail and tornadoes (SPC 2023). As we no longer consider the LR output,
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Figure 4.20 shows the baselines and HGBT output for the any-severe and severe wind

products while Figure 4.21 shows the baselines and HGBT output for severe hail and

tornado.

Beginning with the any-severe guidance, both the baseline and HGBT captured

that the hazards were split into two separate clusters. However, the any-severe HGBT

correctly identifies the westernmost cluster as having a higher probability than the

easternmost; comparatively, the baseline places equal importance on both clusters.

As the westernmost cluster was associated with a larger quantity of hail reports and

tornadoes, the former behavior is desired. While the baseline does not highlight the

threat as well as the HGBT, the baseline does exhibit considerably fewer false alarms

over the domain. Notably, the HGBT highlights a region in the southeast of the domain

with no associated reports. The baseline still highlights this region but with a lower

amplitude.

The severe wind guidance is again primarily dominated by a large false alarm signal.

The HGBT correctly highlights the regions where severe wind reports occurred but also

exhibits a considerable false alarm over nearly half of the domain. The wind baseline

outputs similar probabilities to the HGBT in regions where wind reports occurred

but also reduces the spurious signals towards the northern and southern edges of the

domain.

The severe hail products have fairly similar performance. Both products correctly

identify the clusters of hail reports but have substantial false alarms. While both

products capture the cluster of reports in the center of the domain, the HGBT has a

more focused maximum. The baseline also extends the elevated probabilities too far

north. While the HGBT exhibits a similar coverage of false alarms, the probabilities are

generally lower across the region. The HGBT guidance also features higher probabilities

near the eastern reports; however, they are disjoint from both clusters of reports. As
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such, the HGBT seems to represent the amplitude of the hazard well but is not able

to perfect the location.

While both the HGBT and baseline tornado guidance capture the tornadoes that

occur in northeast Colorado, the predictions have rather low confidence. The BL

has higher amplitude probabilities over the central region, at the cost of a slightly

higher false alarm rate. Comparatively, the HGBT guidance has a lower amplitude

but represents the central region of interest better. Both the HGBT and baseline have

similar false alarms near the eastern edge of the domain, but the HGBT erroneously

extends these probabilities farther south. As such, the performance of the tornado

guidance for this specific case favors the baseline.
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a) b)

c) d)

Figure 4.17: Performance diagrams evaluating HGBT (red) and baselines (black) on
the final testing set for a) any-severe, b) severe wind, c) severe hail, and d) tornado.
Shading indicates the 2σ confidence interval. HGBT again outperforms the BL for
every hazard.
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Figure 4.18: ROC diagrams evaluating HGBT (red) and baselines (black) on the final
testing set for a) any-severe, b) severe wind, c) severe hail, and d) tornado. Shading
indicates the 2σ confidence interval. The largest improvements in discrimination again
come from severe wind and tornado; however, the HGBT exhibits lower POD on the
final dataset than the initial.
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a) b)

c) d)

Figure 4.19: Reliability diagrams evaluating HGBT (red) and baselines (black) on
the final testing set for a) any-severe, b) severe wind, c) severe hail, and d) tornado.
Shading indicates the 2σ confidence interval. With the exception of tornado, both the
BL and HGBT have a bias toward overprediction. While the HGBT and BL have
similar levels of reliability, the HGBT learns to output higher probabilities. As such,
the HGBT BSS exceeds the BL for all hazards.
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Figure 4.20: Watch-to-warning guidance produced using the WoFS forecast initialized
at 2200 UTC on 10 May 2023. The panels correspond to the a) any-severe baseline, b)
any-severe HGBT, c) severe wind baseline, and d) severe wind HGBT. The guidance
is valid from 00-04 UTC on 11 May 2019. Reports are plotted as in previous figures.
While the any-severe HGBT has elevated probabilities near the reports, it also high-
lights a tertiary false alarm to the south. False alarms again plague both severe wind
products.

69



Figure 4.21: As in Fig. 4.20, but for a) severe hail baseline, b) severe hail HGBT,
c) tornado baseline, and d) tornado HGBT. While the hail HGBT correctly raises
probabilities, they are disjoint from the nearby reports. The tornado HGBT slightly
reduces the false alarm in the center of the domain, but increases the false alarm to
the south.
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4.5 Performance of Deep Learning Techniques

4.5.1 Objective Skill

We now consider the skill of deep learning methods trained on the final dataset. We

evaluate these products using two frameworks. Figure 4.22 shows the skill of two U-

nets as evaluated on targets consisting of storm data and MESH. Conversely, Figure

4.23 shows the U-nets evaluated on targets only consisting of storm data. The results

from Section 4.4 are most comparable to Figure 4.23 as the datasets have similar base

rates. The inclusion of MESH in the verification set for Figure 4.22 results in a higher

base rate of 6.3% compared to 5.1% when only using reports. The U-net systems share

the same architecture and hyperparameters. The first U-net, U-netr is denoted U-Net

(R) in figure captions and is trained to predict only storm data. The second U-net,

U-NetR+M is denoted U-Net (R+M) in captions and is trained to predict storm data

and MESH. U-nets were not trained for individual hazards; as such, we only discuss

the performance of any-severe U-nets.

As expected, U-NetR+M is more skillful than U-NetR when evaluated on MESH

and storm data. U-NetR+M achieves a higher POD and a marginally higher SR when

evaluated on MESH and reports (4.22a). However, U-NetR+M is less reliable and more

prone to overprediction; this is exacerbated when evaluated without MESH (4.23b).

This implies that the most confident predictions from U-NetR+M are based on the

MESH targets. This is supported by Figure 4.23a, which shows that U-NetR+M achieves

a lower success ratio than U-NetR at high probabilities when MESH is not included.

U-NetR has a similar performance to U-NetR+M , but with better reliability in both

frameworks. The predictions of U-NetR overlap with MESH at some points, resulting

in a higher NAUPDC and BSS when MESH is included. Overall, the U-net is not as

confident when trained only using reports. This is indicated by U-NetR+M outputting
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high probabilities more often than U-NetR as seen in Figure 4.23c. As these high

probabilities from U-NetR+M are mostly linked to MESH, U-NetR is not penalized as

heavily as U-NetR+M when MESH is removed.

In general, the U-nets are prone to overprediction similar to the traditional ML ar-

chitectures evaluated. The addition of MESH as a target field drastically increases this

tendency, likely due to the model being trained on a dataset with a higher base rate.

However, there are two important factors to keep in mind with regards to the U-nets.

First, they do not utilize isotonic regression like the other ML and BL products dis-

cussed within this work. If isotonic regression was applied in a similar manner to that

discussed previously, the reliability of the U-nets would likely improve substantially.

This is supported by the U-nets achieving high AUC values; they have the discrimi-

native ability, but the calibration could be improved. Second, U-NetR achieves similar

skill to the HGBT discussed previously in Section 4.4. However, the deep learning

framework was substantially faster to implement than the traditional ML framework.

This is primarily for two reasons: first, the deep learning dataset is substantially easier

to produce as only 63 predictors are created manually. This is a substantial reduction

from the 174 predictors of the traditional framework, mainly due to the removal of the

smoothing step. Second, the U-nets were substantially faster to train than the HGBT.

With access to a graphical processing unit (GPU), the U-nets take on the order of one

minute to train. Comparatively, the HGBT takes multiple hours.

4.5.2 Case Study

To assess the deep learning, we consider the same case study discussed previously in

Section 4.4.2. As discussed previously, this is intended to show how each architecture

performs on a typical case. Figure 4.24 displays the baseline and HGBT guidance
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discussed previously, as well as the output of U-netR and U-netR+M . U-netR correctly

reduces the probabilities in the northern region of the domain when compared to the

HGBT guidance. Additionally, the central maximum produced by U-netR is more

closely limited to the reports than the HGBT and BL guidance. However, the false

alarm in the southern central region of the domain is substantially amplified compared

to the baseline and HGBT.

Comparatively, the guidance from U-netR+M substantially raises the false alarm rate

in the south compared to the other products. As expected given the reliability shown

in Figure 4.23, U-netR+M exhibits a severe overprediction bias. Additionally, while U-

netR correctly lowered the probabilities in the north of the domain, U-netR+M has the

highest amplitude false alarm of all the guidance evaluated. Rather than two disparate

regions of elevated probabilities, U-netR+M joins the regions into a continuous stretch

of probabilities. Even with the inclusion of MESH targets in the evaluation (indicated

by the black contours in 4.24), the signal from U-netR+M still results in a substantial

false alarm in the central region.
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Figure 4.22: A performance diagram (a), reliability diagram (b), and ROC diagram (c)
showing the skill of U-nets trained to predict storm reports (purple) and storm reports
and MESH (yellow) evaluated using storm reports and MESH as targets. Shading
indicates the 2σ confidence interval. While the U-net trained with MESH and reports
exhibits a higher POD, it is substantially less reliable than the U-net trained only with
reports.
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Figure 4.23: A performance diagram (a), reliability diagram (b), and ROC diagram (c)
showing the skill of U-nets trained to predict storm reports (purple) and storm reports
and MESH (yellow) evaluated using only storm reports as targets. Shading indicates
the 2σ confidence interval. While the U-net trained with reports and MESH retains a
higher POD, it suffers from a lower success ratio and worse reliability.
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Figure 4.24: Watch-to-warning guidance produced using the WoFS forecast initialized
at 2200 UTC on 10 May 2023. The panels correspond to the any-severe baseline
(top left), any-severe HGBT (top right), U-NetR (bottom left), and U-NetR+M . The
guidance is valid from 00-04 UTC on 11 May 2019. Reports are plotted as in previous
figures. For this case, both U-nets substantially increase the false alarms in the southern
central region of the domain. U-NetR slightly reduces the false alarms in the northern
half of the domain.
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Chapter 5

Conclusions and Summary

5.1 Discussion

Following the results discussed previously, it is apparent that value is gained by utiliz-

ing machine learning to produce guidance during the watch-to-warning period. Each of

the machine learning systems discussed within were capable of providing some benefit

over the NMEP baselines. The logistic regression model is skillful and rather straight-

forward. The model is reasonably easy to interpret, as the feature weights give an

indication of feature importance. However, the training process slows down for large

datasets compared to the HGBT and deep learning architectures. The HGBT gen-

erally had the highest performance metrics and was second only to the deep learning

in speed. As such, we chose to implement the HGBT as the architecture of choice

in the real-time pipeline that runs alongside the WoFS. While the U-net had similar

performance, we chose the HGBT as the features are created manually rather than

implicitly.

The performance of the deep learning architectures is both inspiring and disheart-

ening. The U-net can achieve the same skill as the traditional ML architectures but

takes a fraction of the time to train when utilizing GPUs. Additionally, this system

was substantially easier to implement than the explicit multi-scale predictors utilized

by the traditional ML. As such, these types of networks could greatly expedite any

future work. However, despite having a much more complex architecture, leveraging
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explicit spatial information, and additional predictors, the U-nets did not surpass the

performance of the traditional ML architectures. This suggests one primary possibility.

Namely, the architectures evaluated within this work likely all exist within the context

of a larger Rashomon Set. A Rashomon Set is a collection of models that all complete

the same task at approximately equal levels of skill regardless of the various methods

employed (Fisher et al. 2019). While the performance of the various models evaluated

within this work asymptotically approaches a single level of skill, it remains unclear

whether this is a local predictability limit or the true predictability limit. If the limit is

local, it likely arises from imperfections in the dataset. Spurious convection and phase

errors within the forecasts, as well as any other underlying limitations of WoFS, limit

the machine learning’s ability to correlate severe storms within the forecast to reports.

Additionally, missing reports will limit the ability to discriminate which forecast storms

are likely to become severe. In the case of a local bottleneck, substantial future effort

may result in some level of increased skill. However, if this is the true predictability

limit, then the guidance will be unable to surpass this bottleneck.

One of the primary issues with all of the guidance types discussed within this work

is the false alarm rate. False alarms in severe weather guidance are correlated with

an increase in weather-based casualties (Simmons and Sutter 2009). Cases such as

the severe wind guidance on 23 May 2019 and 10 May 2023 depict the elevated false

alarm threat well (e.g., Figures 4.6 and 4.20 respectively). While some false alarms

are inevitable due to the nature of rare event predictions, it is not uncommon for

large regions of the domain to have slightly elevated probabilities that do not verify.

Additionally, if WoFS forecasts have spurious or displaced storms, the guidance will

erroneously provide high probabilities for these regions (as seen in the south of the

domain in Figure 4.20). These issues degrade the quality of the guidance, as well as

confidence in the product, and as such, future efforts should be made to reduce them.
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However, a decrease in false alarms should not be traded for a decrease in detection

(see Simmons and Sutter 2009). Additionally, changes to the guidance must be made

with caution as favoring one aspect of the predictions may degrade others (Murphy

1993).

Furthermore, it is currently unclear how many of the false alarms are correct (e.g.,

no severe weather occurred) versus incorrect (e.g., severe weather occurred but was

not observed). Section 4.5 shows how the verification of the models’ performance

can be volatile based on what data are included in the verification set. Systems that

learn meteorological signals may be penalized unfairly when verified against data that

contain implicit social signals (e.g., the observed decrease in reliability of U-netR+M

when MESH is not included in the evaluation). As such, any future work or verification

must carefully consider the potential flaws of any data used within the verification

process.

The current WoFS ML products operate at a shorter lead time and are shown

to have higher skill, as would be expected (Flora et al. 2021). As such, the 2-6 hour

guidance can serve as an initial first guess for regions where severe weather may develop.

As the event grows closer, users can transition to alternative shorter-range, higher-

skilled products available within the WoFS suite. Given the extra lead time of the

watch-to-warning products and the associated risk of false alarms, further consideration

of the end user is necessary. The impact of extended lead times on the general public’s

risk response is still unclear (Simmons and Sutter 2008; Hoekstra et al. 2011). Thus,

it may be preferable to target this product toward an audience of decision-makers

(e.g., Weather Forecast Offices) rather than the general public. Toward that end, the

HGBT guidance discussed within this work was included for evaluation within the

2024 Hazardous Weather Testbed Spring Forecasting Experiment. As the results of
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this experiment are not yet available, it remains to be seen what value users find in

the ML-based watch-to-warning guidance.

5.2 Summary and Future Work

While current WoFS ML products are focused on lead times of 0-3 hours, the work

discussed within this study represents the first WoFS ML product that targets lead

times later in the watch-to-warning period (2-6 hours). It is also the first WoFS ML

product that evaluates deep learning for producing severe weather guidance. Outside

of the scope of WoFS products, this study is likely the first ML-based 2-6 hour product

for severe weather guidance and is the first to be evaluated within the HWT SFE.

The data used to create predictors primarily come from WoFS ensemble forecasts

from the Hazardous Weather Testbed Spring Forecasting Experiments. Initial exper-

iments were conducted on a dataset consisting of forecasts from 2018-2021. However,

a transition was made to a larger dataset consisting of data from 2019-2023 when it

became available.

Predictors are created using both intrastorm and environmental fields from WoFS

forecasts regridded to 9 km. Data from forecast hours 2-6 are used to produce a

time composite of each field. Ensemble statistics are then calculated per field after

smoothing the time composite at various resolutions. Thus, the predictors incorporate

both spatial and ensemble information. The target field is binary, with all grid points

within 36 km of a storm data report being mapped to the positive class. We then

evaluate the skill of various architectures at predicting this class. Four categories of

guidance are considered: any-severe, severe wind, severe hail, and tornado.

Three different machine learning architectures are evaluated within this work: lo-

gistic regression (LR), histogram-based gradient-boosting trees (HGBT), and U-nets.
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The LR and HGBT make predictions in a tabular framework, while the U-net retains

the spatial structure of the original fields when making predictions. Additionally, data

from the MRMS suite is used to augment the WoFS data used by the U-nets. The skill

of ML-based guidance is evaluated against rigorous non-ML baselines tuned for each

hazard.

The findings of this work indicate that all ML architectures evaluated are capable

of outperforming the non-ML baselines. This holds for each of the hazards consid-

ered. The ML generally provides improved skill and reliability when compared to the

baseline. Of the traditional ML architectures evaluated, HGBT is both the highest-

performing and most efficient. For this reason, HGBT is selected as the primary

architecture of choice. While LR outperformed the baseline, it did not match the skill

of the HGBT or the U-nets. U-nets had similar levels of skill to the HGBT and were

substantially faster to train with access to a GPU. However, they also exhibited lower

reliability. Additionally, despite incorporating additional predictors and target fields

from the MRMS suite, U-nets were not capable of outperforming the HGBT when

evaluated on storm reports.

The any-severe guidance generally had the highest performance, followed by the

severe wind, severe hail, and tornado products. Consequently, the ML saw the largest

improvement over the baselines for severe wind, followed by severe hail, tornado, and

any-severe guidance. These improvements were robust to changes in the testing dataset

and resulted in the ML generally outperforming the baseline for all initialization times.

Feature ablation reveals that the inclusion of multi-scale predictors had little impact

on the skill of the best-performing models. Guidance created with access to only one

scale of information was often just as skillful as guidance created with access to all

considered scales. The largest factor in the skill of the models was the inclusion of

intrastorm fields as predictors. The primary exception to this is severe wind, where
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the most skillful guidance resulted from the use of both intrastorm and environmental

predictors. Analysis of the U-net’s performance shows that the evaluation process is

highly sensitive to the data used as verification of severe weather. Models that have

similar performance when MESH is included in the verification may have substantial

differences in performance metrics when MESH is removed from the verification. As

such, any future work should carefully consider the implications and innate biases of

the verification dataset.

The immediate future of this project will largely be driven by the results of the 2024

Hazardous Weather Testbed Spring Forecasting Experiment as the 2024 SFE was the

first exposure of these ML products to a broader user base. A long-term goal will likely

focus on reducing the false alarm ratio of the guidance. However, the most efficient

way to do that is currently unclear. Additionally, in the near future, the product must

undergo more rigorous peer review to help ensure the guidance is fit for availability to

the general public.

One alternative pathway is to shift away from predicting reports as a purely me-

teorological function and to instead predict reports as a function of both social and

meteorological information. The current WoFS ML watch-to-warning guidance uses

solely meteorological data. However, other systems, such as Nadocast, have shown

promising results by including both NWP forecast data and data related to the cli-

matology of reports (Hempel 2022). Adopting this approach would require further

discussion as to the purpose of the ML guidance; namely, whether it intends to pre-

dict reports as a proxy for severe weather, or as a proxy for the observance of severe

weather. Alternatively, future work may consider a complete redesign of the framework

discussed herein. Specifically, the deep learning approach was fairly rudimentary and

could likely be optimized better. However, given the results of this study, it is likely
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that a substantial undertaking would be required to pass the bottleneck of skill and

break out of the Rashomon set.

Finally, given the recent development of AI-based NWP systems, such as Google’s

GraphCast (Lam et al. 2022), it is unclear what role similar studies will have in the

future. While published AI NWP models are not yet run at a convection-permitting

scale, it is feasible that AI-based convection-allowing models will be developed in the

near future. This could potentially lead to a regime shift when it comes to products

created by post-processing NWP output, such as the inclusion of these products directly

within the forecast system.

In conclusion, recent developments within the field may yield substantial changes

in the near future. While other products may be developed to fill a similar niche,

the work within this study represents the first WoFS-based ML product that targets

extended lead times (2-6 hours). As such, only this product makes use of the unique

capabilities of the WoFS at those lead times. As the WoFS continues to evolve and

improve, the ML guidance will continue to advance alongside it.
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