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Abstract

Machine learning (ML) provides a set of tools for learning approximate system

models from data. It has the potential to improve classic radar signal processing

(RSP) algorithms by allowing them to maintain performance when the environmen-

tal assumptions used to derive them are violated. This could mitigate performance

degradation experienced in more challenging scenarios, like those commonly found

in airborne and maritime radar. However, the integration of ML into RSP algorithms

presents a unique challenge due to the strict performance requirements of radar sys-

tems and often unpredictable nature of ML.

This work examines an architectural approach to explainable ML that allows for

the seamless integration of ML with more traditional algorithmic methods. This ap-

proach is then paired with causal ML concepts to develop a method for mitigating

measurement drift in tracking and navigation. Next, an integrated system of low-cost

ML systems are developed to enable adaptive detection algorithms to maintain CFAR-

like performance across a range of interference distributions. Finally, generative ML

techniques are used to reduce sample support requirements for adaptive detectors by

directly constructing whitening filters from a small set of interference samples. This

dissertation presents a framework for the successful integration of ML into RSP algo-

rithms using a targeted approach based on a clear understanding of the first principles

physics at play in a given application.

xxi



Chapter 1

Introduction

Since its inception in the early 1900s, radar has rapidly become one of primary

sensing methods for observing our surroundings. It is broadly used for detecting and

tracking objects moving through a space, mapping and imaging environments, and dis-

tance determinations in navigation. This is enabled by radar signal processing (RSP)

techniques that are used to extract information from radar signal returns. Such meth-

ods are commonly used to detect targets of interest, determine range-Doppler infor-

mation of entities, generate images from radar returns, and use multiple radar pulses

to reduce power requirements and increase the observable range.

RSP algorithms are typically derived from the first principles equations used to

model energy travelling through space and its interactions with objects in that space.

Due to the highly complex nature of these interactions, many aspects must be mod-

eled probabilisticly under a number of key assumptions. This is particularly true when

modeling measurement noise and interference. Noise in radar systems is assumed to

follow an uncorrelated Gaussian distribution and is caused by ambient energy in the

environment and inside the system itself. Clutter is caused by reflections of the radar

signal from the environment. Perfectly modeling clutter returns would be shockingly
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difficult, given that any environment will have vast numbers of scatterers and many

environmental factors (wind, temperature, etc.) may cause significant variation in the

reflection characteristics of any particular scatterer between measurements. However,

by assuming that the environment contains an effectively infinite number of point scat-

terers whose reflections are independent and identically distributed, it is commonly

approximated using a correlated Gaussian distribution.

The assumptions used to derive existing RSP algorithms hold true in many situ-

ations, and the algorithms themselves have proven to be highly effective under those

conditions. However, modern advances in radar have led to its use in increasingly chal-

lenging scenarios such as air- and ship-borne sensing. This has led to many RSP algo-

rithms being used under conditions that severely degrade their performance. Adaptive

detection algorithms used in radar are prime examples of this. These algorithms are

derived to maximize detection performance while maintaining a constant rate of false

alarms under a clutter model that is assumed to be known and consistent. When the

clutter changes rapidly or no longer fits the expected distribution, as happens regularly

on airborne systems, either the radar’s ability to detect targets is reduced or the rate

of false alarms is increased. Either case can interfere with radar tracking and resource

management. Considerable work has been done to improve RSP algorithms and re-

duce their constraints [1]. One of the key focus areas of this research in recent years

has been the use of machine learning (ML) in RSP [2, 3, 4].

ML refers to a broad set of tools and techniques that allow models of complex

systems to be approximated based on examples. This is accomplished by first defin-

ing a parameterized transformation structure to convert some input to a target output

(such as a decision tree or neural network). The transformation structure is referred to

as a model. A set of example inputs are then provided and the model produces out-
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puts. For each output, some statistical measure of correctness is calculated and used

to update the parameters of the model. That process is repeated until some stopping

criterion is reached. These methods have been shown to be highly effective at pro-

viding functional models of systems for which closed form expressions don’t exist.

The use of ML in radar systems has seen mixed results. Techniques like reinforce-

ment learning (RL) have been used to great effect in radar task management [5] and

scheduling frequency hopping [6]. On the other hand, ML has seen limited adoption

in radar detection algorithms [7, 8]. There are a number of factors that contribute to

this, chief among them are computational overhead, data limitations, and the strict er-

ror tolerance required to achieve useful false alarm rates.

Much of the challenge associated with trying to broadly utilize ML-based algo-

rithms in radar is rooted in the design philosophy that is applied. Most exploration of

ML application to the radar domain has focused on replacing existing RSP methods

with ML models. There are many issue with that approach. Since traditional RSP

algorithms are derived from the first principles equations used to describe the radar

scenario, their behaviors are consistent, provable, and repeatable under the appropriate

conditions. Each of these properties is essential to the design process when building

actual radar platforms. Conversely, the learned and more approximate nature of ML

models makes them less predictable and precludes any sort of mathematically provable

characteristic (like the false alarm rate in detectors). Worse, the more complex the task

or system being learned, the worse the approximation errors become. Unexpected or

undesirable behaviors in ML systems are also difficult to replicate or troubleshoot. In

spite of this, ML has significant potential to improve the field of RSP. This is because

ML is highly versatile and does not rely on the same sorts of assumptions that are used

to derive traditional RSP algorithms. By changing our design approach, it is possible
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to achieve both the flexibility afforded by ML and the consistency of traditional RSP.

In this dissertation, I explore methods for effectively integrating ML techniques

into adaptive radar detection, tracking, and navigation. This integration is achieved

by using a three-stage design approach. I begin by conducting analysis on a radar

problem space (such as detection in variable clutter backgrounds) using a first princi-

ples understanding to break it down into component pieces. As a part of this analysis,

it is crucial to identify the assumptions and constraints of existing RSP methods and

identify any that could be mitigated or removed through the use of ML. I then design

and implement a combination of efficient, reliable ML models and well-known RSP

algorithms to solve each component of the problem space. Finally, I assemble the ML

and RSP elements into a fully orchestrated system. The effectiveness of the proposed

design approach for ML-enhanced RSP is demonstrated through its application to cre-

ate a drift correction method for tracking and navigation systems, the development of

an adaptive detection algorithm, and the use of generative ML for adaptive filtering.

1.1 Summary of Contributions

In order to showcase the potential of RSP enhanced with first principles ML, a

number of tools and techniques have been designed, implemented, and tested for a

range of radar applications. The work presented in this dissertation can be broadly

separated in four areas, each with its own set of contributions.

1.1.1 The Self-Explaining Decision Architecture

The first major research focus area explored here was ML explainability. ML

systems approximate functions through iterative learning processes and often contain
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vast numbers of parameters. That combination makes it extremely difficult to identify

why ML systems arrive at particular outputs and to troubleshoot issues that arise with

model performance. To address these limitations, I developed an architecture for ML

that combines ML attention mechanisms with hierarchical decision structures to allow

ML systems to simultaneously make decisions and provide text-based explanations

of those decisions. This framework, titled the self-explaining decision architecture

(SEDA), broke down complex decisions into increasingly simpler components and

generated explanations modeled after human descriptions containing both attention

information and decision reasoning. It was designed in a modular fashion to allow for

the easy integration of different ML and non-ML components. While the development

of SEDA is very much a ML contribution, the methods defined within it for breaking

down complex problems, orchestrating systems of ML models, and integrating ML

and non-ML components have served as the basis for my subsequent work in detec-

tion, tracking, and navigation.

SEDA was initially published in the proceedings of the 2021 IEEE/AIAA 40th

Digital Avionics Systems Conference [9] and a provisional patent application was sub-

sequently submitted for the architecture in 2022. That provisional patent was awarded,

and as of the time of writing it is now in the process of being converted to a non-

provisional US patent. I then worked with several colleagues to successfully adapt

SEDA for use in a ML-based data fusion and tracking algorithm developed under the

Air Force Research Laboratory Contract FA8750-21-C-0105 and for use in computer

vision applications in 2023 [10].

5



1.1.2 Counterfactual Drift Correction

Next, a method was developed to mitigate drift errors in navigation and track-

ing systems caused by compounding measurement errors. This was achieved us-

ing a combination of causality-aware ML techniques, a multi-objective genetic algo-

rithm (MOGA), and extended Kalman filtering (EKF). This approach framed the issue

of drift correction as a counterfactual evaluation problem where multiple alternative

paths were proposed and evaluated by the MOGA, whose objective functions were

designed around historic motion data and the first principles equations used to model

object motion. Testing of the proposed method was conducted on data simulated in

Matlab using a constant acceleration model with additive white Gaussian noise and

drift. Its performance was evaluated and compared with the EKF and spline interpo-

lation methods.

An early implementation of this method was published in the proceedings of the

2022 IEEE/AIAA 41st Digital Avionics Systems Conference [11]. A considerable

expansion of that work was then presented at a special session of the 2023 IEEE/ION

Position, Location and Navigation Symposium and published in it proceedings [12].

A continuation of this research areas has also been funded by the Air Force Office of

Scientific Research (AFOSR) under award number F4FGA03158J001.

1.1.3 Meta-Cognitive Radar Detection

A meta-cognitive method was then developed for adaptive radar detection across

different clutter distributions. It uses an established adaptive detection algorithm de-

rived for Gaussian distributed clutter augmented with a ML system trained to identify

the distribution of clutter in a sample under test (SUT) and dynamically adjust the
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detection threshold to maintain a constant rate of false alarms. That method begins

by analyzing the target clutter distributions and identifying the statistically distinct re-

gions within them. This novel framing of the problem space minimizes confusion in

the ML learning process while still providing sufficient information for key features

to be identified by the model. A multi-layer ML system is then designed and trained.

It consists of multiple lower-level regression neural networks each trained to set the

threshold for a Gaussian generalized likelihood ratio test (GLRT) detector [13] in a

given clutter distribution region. They are orchestrated by a higher-level classification

model trained to recognize the distribution of clutter from support samples and select

the appropriate threshold setting model.

The proposed meta-cognitive architecture, coupled with the process of identify-

ing distribution regions with unique behaviors simplifies the solution space that each

ML model needs to learn. This minimizes the confusion in each individual model

and ensures that the integrated system is still able to maintain state-of-the-art receiver

operating characteristics. It also enables the use of smaller, faster ML models, min-

imizing the computational overhead associated with integrating ML and simplifying

the troubleshooting and retraining processes.

This work was published in 2024 in the IEEE Transactions on Aerospace and

Electronic Systems as part of the Special Section on Deep Learning for Radar Appli-

cations [14]. The continuation of this work has also been funded by AFOSR under

award number F4FGA03158J001.
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1.1.4 Covariance Estimation

Finally, an approach for using generative ML to approximate inverse clutter co-

variance matrices was developed for use in adaptive detection where limited sample

support is available. Modern ML image-to-image generation concepts use an encoder-

decoder structure. In this structure the encoder identifies underlying feature informa-

tion contained within the input image and the decoder uses those features to construct

an image related to those features. Drawing from this concept, K support samples of

length N are simulated in a radar scenario and arranged into a K × N matrix. They

are then provided as an input to a U-Net structure trained to extract covariance in-

formation as features and construct an inverse covariance matrix that could be used

to decorrelate the data. The use of a symmetric U-Net structure allows for variable

input data sizes. The model is trained both as part of a GAN system and in a super-

vised manner with two custom loss functions designed to teach the model to produce

accurate and invertible inverse covariance matrices. The proposed method has been

integrated with a Gaussian GLRT and demonstrated improved performance over tra-

ditional estimation methods while using half as much support data.

The work on the GAN structure and initial integration and testing with the GLRT

were presented at the 2024 IEEE Radar Conference and published as part of its pro-

ceedings [15]. Another publication on the custom loss functions and testing on high-

fidelity simulation data generated with RFView is currently in work.
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Chapter 2

Machine Learning Concepts

2.1 Introduction

The focus of this dissertation is to explore ways of leveraging ML concepts de-

signed with a first principles understanding of the problem space to enhance radar

system capabilities. ML is a broad term that encompasses a wide range of tools. Ul-

timately, it refers to any computer system that can update its own performance by

ingesting data, taking some action, and receiving feedback. While it has existed for

roughly 70 years, the field of ML has seen a huge surge in both research investment and

applications within the last decade. Its current popularity is largely due to advances

in computing hardware that compensate for the high computational costs associated

with most ML approaches. ML uses probability theory to enable the creation of ap-

proximated models for systems based on sets of input data paired with some method

for evaluating the quality of the model’s output. Given an infinite amount of training

data and infinite training time, a perfect model would theoretically be achieved. Since

neither is possible, ML models are approximations with imperfect behavior. How-

ever, these models can be trained to approximate the target system closely enough to
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predict the outcome for a given input with a high probability. As a result, ML can

be extremely useful for modeling highly complex or poorly understood systems for

which developing a closed form expression is impractical. This makes ML extremely

useful for predicting or controlling the way that complex systems behave. That use-

fulness comes at the cost of high complexity, difficult design, and high costs for both

computation and data. The potential ML provides, paired with the associated costs,

makes it very important to understand when and where to apply ML as opposed to

simply developing a mathematical expression.

ML takes many different forms, each of which may have drastically different levels

of complexity. At a base level, ML systems can be grouped into four broad categories

based on how they are trained: supervised, semi-supervised, unsupervised, and rein-

forcement. Supervised learning is the most basic form and uses only known input data

paired with know output data for training the model. For the remainder of this dis-

sertation, the known input data used for training models will be referred to as training

data, and the paired output data used in training will be referred to as either label data

or simply labels. During training, supervised algorithms take training data as an input,

produce an output, compare that output with the label data, and update their parame-

ters based on how close their output was to the label. This form of ML can arguably

produce the most accurate or useful models given sufficient training and label data.

However, model quality is highly dependent on the quantity and quality of available

training data, making it infeasible for many applications.

Semi-supervised learners train using a combination of labeled training data and

unlabeled training data. These models are first trained using a relatively small set of

labeled training data. The trained models are then used to produce training labels for

the unlabeled dataset. The labels produced by the model with high confidence are
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added into the labeled training data and used to retrain the initial model. This process

is performed iteratively until a sufficiently large portion of the originally unlabeled

training data has been labeled with high confidence. This form of ML essentially

functions in much the same way as supervised learning but reduces the amount of

training data required. The fidelity of the trained models will also be lower than those

produced by supervised learning.

Unsupervised learning uses exclusively unlabeled data for training. These algo-

rithms evaluate unlabeled datasets to identify underlying patterns or features within

them. This process generally involves finding ways of grouping the unlabeled data

and using some set of metrics to evaluate the quality of the groups that are formed.

These metrics include things like the size of each grouping, the distance between group

members within the solution space, the distance or overlap between groups within the

solution space, etc. Unsupervised learning is generally used to identify patterns within

data that are highly complex or not well understood. It is rarely applied on its own and

is generally used to inform data analysis or the design of another model.

Similar to unsupervised learning, reinforcement learning (RL) generally doesn’t

rely on labeled training data. Rather, RL systems are designed to take direct actions

in an environment and are trained iteratively within that environment. The training

process consists of providing the RL agent with an observation of its environment,

allowing it to perform an action, taking another observation of the environment, and

rewarding or penalizing the agent based on how its action impacted the environment.

This form of ML is effective for complex problem spaces where it may not be possible

to develop specific labels for training data. However, it can be very difficult to design

effective reward/penalty functions.
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For the remainder of this chapter, I will provide an overview of the key ML tech-

niques relevant to the work conducted in this dissertation. Only supervised learning is

used in this work, so the discussion will be limited to that form of ML.

2.2 Supervised Learning

Supervised learning in ML refers to a form of learning in which models are trained

using curated datasets in which each entry possesses a corresponding label containing

the desired model output. Many forms of ML fall into the category of supervised

learning models. Simpler forms of supervised ML, like the random forest, are easy

to train and require less computational resources, but are unable to learn the kinds of

challenging patterns that more complex and data hungry methods, like deep neural

networks, can handle. Here I will provide an overview of supervised ML techniques.

2.2.1 Decision Trees and Random Forests

One of the oldest and most basic supervised learning algorithms is the decision

tree. Decision trees are designed to produce a prediction for a variable (either classifi-

cation or regression) based on a set of simple decision rules. They are hierarchically

structured, often taking a from similar to the one depicted in Figure 2.1. This structure

consists of tiered nodes that split the possible decision space into branches. A branch

coming out of a node from one layer will feed into a node in the next layer of the

tree. These nodes are typically divided into three categories: root, intermediate, and

leaf. Root nodes divide the decision space but have no incoming branches. They can

therefore be thought of as origin nodes. Intermediate nodes have incoming branches

and split the decision space. Leaf nodes have incoming branches but do not split the
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decision space. They are terminal nodes that result in an output decision from the tree.

Decision trees are formed during training by recursively splitting an input training

dataset based on class attributes. Splitting continues until some predefined stopping

criteria is met.

Figure 2.1: Depiction of a simple decision tree structure.

The primary method of determining the optimal split point for a decision tree is

rooted in information theory, using the concept of information gain (or entropy reduc-

tion). In information theory, entropy is defined as the level of uncertainty or random-

ness in a system or set of data. It is quantified using the following equation:

H(S) =
∑
c∈C

p(c) log2

(
1

p(c)

)
(2.1)

where H denotes the entropy, S is a set of data points, C denotes all classes in S, c

denotes one class in C, and p(c) is the probability of a data point in S belonging to
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class c. The values of entropy in Equation (2.1) can lie between 0 and 1. An entropy

value of 1 occurs when every data point in S has an equal chance of belonging to each

class in C, while an entropy of 0 occurs when each data point in S can fall into exactly

1 class in C.

When data is being classified, the best way to determine how to split the data is to

try and minimize the entropy in the resulting system. A reduction of entropy like this

is referred to as entropy gain and can be calculated as:

I(S, a) = H(S)−
∑

v∈V (a)

|SV |
|S|

H(SV ) (2.2)

where I is the level of information gain, a is the class attribute used to split S, v

denotes a possible value in S satisfying a, V denotes all possible values in S that

satisfy a, and SV is the subset of S satisfying a. Splits in the decision tree occur where

the class values maximize the information gain.

Alternatively, information gain in decision tree training algorithms may be for-

mulated in terms of minimizing its Gini index. The Gini index refers to the level of

impurity in a given node. In information theory, impurity refers to the likelihood that

a randomly selected entry from the input dataset will result in an incorrect output at a

given node. The Gini index is calculated as:

GI(S) = 1−
k∑

i=1

p2i (2.3)

where GI denotes the Gini index of set S, i is an index referring to a particular pos-

sible node output, k denotes the total number of possible node outputs, and pi is the

probability of a random entry in S resulting in node output i. A perfectly “pure” node
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is one with a Gini index of 0, meaning that all data points in S belong to a single

class, while an “impure” node has a uniformly distributed probability of each possible

output.

Figure 2.2: Depiction of a simple random forest.

Random forest algorithms consist of multiple decision trees, each of which is pro-

vided the same input data entry, and whose outputs are then aggregated. When forming

the random forest, each decision tree is trained independently on a randomly selected

subset of the training data. The trees are then combined, and their outputs are com-

bined using averaging for regression or voting for classification. An example of this

can be seen in Figure 2.2. Random forests are more computationally costly than deci-

sion trees, but they also tend to generalize better on complex datasets.
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2.2.2 Neural Networks

In more recent years, neural networks have become one of the most widely used

forms of ML algorithms. While they have existed in some form for nearly 70 years,

they are one of the more complicated forms of learning algorithms and have recently

seen some significant advancements. The basic building block of the earliest neural

networks was the perceptron. Perceptrons are loosely inspired by neurons in the brain

and are used to make predictions based on a weighted sum of a set of input features.

They take as an input the set of features x = 1, x1, x2, ..., xn of length n. The input

features are then modified by a set of weights w = w0, w1, w2, ..., wn and summed.

Finally, an activation function (which will be denoted fa(•) is applied to the weighted

sum of the input features to generate an output prediction:

y = fa

(∑
(w0 + x1w1 + x2w2 + ...++xnwn)

)
(2.4)

Activation functions can take many forms, and in neural networks they are commonly

used to introduce non-linearity. I will discuss different activation functions in more

detail shortly, but for the original perceptron structure fa was a simple step function.

The structure of the perceptron is shown in Figure 2.3.

It is clear from Figure 2.3 and Equation (2.4) that perceptrons were structured as

linear equations. The key element of the perceptron that made it revolutionary was

that the values of w used to weight the inputs were trained, rather than being defined

mathematically. While this may not initially sound impressive, it is important to note

that this allowed the perceptron to approximate a multivariate mathematical model for

systems that didn’t necessarily have closed form expressions. This was an incredibly
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Figure 2.3: The basic structure of the perceptron.

powerful capability that was unique in the world of computing at the time. They were

trained iteratively using training data and labels using what is known as a loss function.

Loss functions in neural networks now take many forms and have become a major area

of research. I will discuss them in more detail shortly, but I will note here that they are

used to calculate some distance measure between the output of a learning system and

some target output. That distance is then used to update the weights of the learning

system.

In the early days of ML, the perceptron proved to be a powerful tool for au-

tonomously splitting solution spaces. However, a single perceptron could not be ap-

plied to non-linear problems. This was found by Minsky and Papert in [16] when they

found that the single-layer perceptron could not be used to implement the XOR gate.

Fortunately, this limitation is easily overcome by stacking multiple layers of percep-

trons together [17] to establish non-linear relationships between the input and output.

This results in the multi-layer perceptron (MLP) network structure shown in Figure

2.4.
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Figure 2.4: The basic structure of the multi-layer perceptron.

The MLP structure consists of an input layer, some number of intermediate “hid-

den” layers containing a number of stacked perceptrons (or neurons), and an output

layer. Each hidden layer consists of a set of weights, a summation, and an activation

function. The output of each neuron of a given hidden layer is passed as an input to

each neuron of the next layer. Due to the fact that each neuron in one layer is con-

nected to every neuron in the previous and subsequent layer, these hidden layers are

commonly referred to as fully connected layers.

As with the single layer perceptron, the MLP learns iteratively by taking example

inputs, producing outputs, using data labels to calculate the loss, and then updating

the weights. However, due to the increased complexity weight updates in the MLP are

made using a process known as backpropagation [17]. Back-propagation is a method

of updating parameters in a network that tries to map the contribution of each pa-

rameter to the network’s final prediction error and update them accordingly. This is

accomplished by calculating the loss gradients at each neuron and then updating the
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weights to minimize that loss according to:

wi,j = wi,j − ϵ
δLj

δwi,j

(2.5)

where wi,j is the weight for input i to network layer j, ϵ is the learning rate, and Lj is

the loss at layer j. That process starts at the output layer, and the portion of the loss

gradient associated with each input to that layer is propagated back to the neuron from

which it originated. That loss is then used in that neuron’s loss gradient calculation,

continuing until all weights have been updated (hence the name backpropagation).

The MLP is arguably one of the most common neural network architectures used even

today, and it serves as the basis for what are now known as the family of feed-forward

neural networks (FFNN). They can have either singular outputs, as shown in Figure

2.4 or multiple outputs as in Figure 2.5.

Figure 2.5: The basic structure of a multi-output fully connected ANN.

FFNNs and MLPs are extremely useful in many applications, as they are simple,

fast, and allow for the approximation of complex relationships. However, there are

a number of limitations with these types of neural networks, two that I will focus on
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now. The first is that they struggle to learn sequential or temporal patterns, and the

second is that they struggle to learn spatial patterns in higher dimensional data. The

source of the first limitation is simple, FFNNs have no memory or mechanism for

carrying information between inputs. Since these models must evaluate each input

independently of any other input, they cannot learn patterns that span them. However,

there are many applications for which such patterns are essential. A good example

of this is modeling motion patterns of an object based on its position when trying to

track that object and predict where it will move next. This has led to the development

of another category of neural network architectures referred to as recurrent neural

networks (RNNs).

Figure 2.6: The basic structure of the LSTM node.

RNNs are so named because they have a feedback connection from the output

back to the input, enabling them to retain information between inputs. This, of course,
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allows them to learn sequential patterns. Today, the most widely used RNN structure

is called the long short-term memory (LSTM) network. The LSTM structure, which

is shown in Figure 2.6, was designed to allow it to learn both long and short term

patterns in data [18]. This is achieved through the use of two feedback connections;

the hidden state and the cell state. The purpose of the hidden state is to maintain short

term dependencies and ultimately produces the layer output. The cell state maintains

long term dependencies. For each input to the LSTM, it identifies patterns in the

data and then uses two specialized structures called gates to modify the cell state by

adding and removing information. This allows the LSTM to “remember” important

new information and “forget” information that may no longer be relevant. As shown

in Figure 2.6, the Forget Gate is responsible for removing information from the cell

state:

fn = σ(Wf [yn−1,xn] + bf ) (2.6)

where σ(•) is the sigmoid function, W is a learnable weight matrix, b is a learnable

bias vector, y is the hidden state, and x is the input. The Memory Gate is responsible

for adding new information to the cell state:

mn = in ⊗ c̃n (2.7)

where:

in = σ(Wi[yn−1,xn] + bi) (2.8)

c̃n = tanh(Wc[yn−1,xn] + bc) (2.9)

where tanh(•) is the hyperbolic tangent function. Combining Equations (2.6) and
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(2.7), the cell state is updated according to:

cn = fn ⊗ cn−1 +mn (2.10)

A final gate is used to produce the output, which consists of a modified version of the

cell state, filtered by the current input and previous hidden state:

yn = σ(Wo[yn−1,xn] + bo)⊗ tanh(ct) (2.11)

The LSTM features prominently in the work presented in Chapters 4 and 5.

Figure 2.7: The basic structure of the Convolutional layer.

Both MLPs and RNNs struggle to learn spatial patterns in higher dimensional

data. This is due in part to the fact that neither has a structure for learning such pat-

ters. Additionally, the fully connected nature of the MLP generally interferes with
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learning spatial patterns. However, there are many applications for ML that rely on

learning spatial patterns in higher-dimensional data, like recognizing or predicting ac-

tions from image and video data [19]. This has led to the creation of the convolutional

neural network (CNN). The CNN structure generally consists of some combination

(a) Initial position of the convolutional kernel.

(b) Second position of the convolutional kernel.

Figure 2.8: Function of the convolutional layer.

of convolutional layers, pooling layers, and fully connected layers. The convolutional

layer is based on classical image processing techniques that involved convolving a fil-

ter across an image to suppress or accentuate spatial features of the image. Whereas

the filters in classical image processing are fixed, the filters (or kernels) in a convo-
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lutional layer are learnable weights. These layers are designed to identify important

spatial features in the data. The structure of the convolutional layer is shown in Figure

2.7.

(a) Convolutional layer with kernel size of 2x2.

(b) Convolutional layer with kernel size of 4x4.

Figure 2.9: Impact of kernel size on convolutional layer.

The convolutional layer of a CNN takes as an input an array of some dimension-

ality. For the purposes of this discussion, I will focus on two dimensional arrays.

The output of these layers would then be another two dimensional array whose size

is dependent on three parameters: 1) kernel size, 2) kernel stride, and 3) padding.

Each value in the output matrix is defined as the weighted sum of a corresponding

sub-region of the input. Using Figure 2.7 as an example, the kernel W would first be
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applied to the top left sub-region of the input matrix X to produce the first value of the

output matrix Y:

y11 = w11x11 + w12x12 + ...+ w32x32 + w33x33 (2.12)

The kernel is then shifted to a new sub-region to calculate the next value of Y, as

shown in Figure 2.8.

(a) Kernel movement with stride of 1.

(b) Kernel movement with stride of 2.

Figure 2.10: Impact of kernel stride on convolutional layer.

The kernel size, stride, and padding can each be tuned to alter the behaviors of a

CNN. Using a larger kernel causes the layer to learn broader patterns, while smaller
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kernels learn more localized patterns. Additionally, increasing the kernel size reduces

the size of the layer output and can reduce the likelihood of the model over-fitting on

particular patterns. The effect of kernel size is depicted in Figure 2.9.

(a) Kernel movement with one-sided padding of 1.

(b) Kernel movement with full padding of 1.

Figure 2.11: Impact of padding on convolutional layer.

Kernel stride refers to the number of positions the kernel is shifted across the input

matrix for computing the next output matrix value. Increasing the kernel size reduces

the overlap between features in the output and reduces the size of the output array.

This reduces the computation cost of the network and can help reduce over-fitting, but
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it also throws away considerable amounts of data and may interfere with the learning

process. The effects of kernel stride are depicted in Figure 2.10.

Padding refers to increasing the size of the input matrix prior to convolving the

kernel across it. It is used to increase the size of the output matrix and reduce the loss

of information that occurs during convolution. This can help to improve the accuracy

of a trained CNN, but it also increases the computational cost of the network and can

increase the odds of the model over-fitting. Several examples of padding are shown in

Figure 2.11.

Convolutional layers excel at identifying spatial features in data. However, they

are known to be very sensitive to rotational and translational variations in those spatial

patterns, which can severely limit their ability to generalize. Pooling layers were

developed to address that limitation. They consist of a N×N kernel with a stride of N .

Unlike convolutional layers, pooling layer kernels do not have learnable weights, but

rather apply a constant function to extract some piece of information from a sub-region

of the input array and discard all the rest. Intentionally discarding information in this

way allows CNNs to generalize and reduces the computational cost of the model,

but can risk discarding critical information. There are three commonly used types

of pooling layers: 1) maximum (max) pooling, 2) minimum (min) pooling, and 3)

average pooling.

MaxPool(X̄) = Max(X̄) (2.13)

MinPool(X̄) = Min(X̄) (2.14)

AvePool(X̄) = Mean(X̄) (2.15)

where Max(•) is a function returning the maximum value of an array, Min(•) is a
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function returning the minimum value of an array, Mean(•) is a function returning

the mean value of an array, and X̄ is the sub-array of X under evaluation. An example

of the pooling process is depicted in Figure 2.12.

(a) Initial position of a maxpooling layer.

(b) Second position of a maxpooling layer.

Figure 2.12: Basic function of the maxpooling layer.

As noted before, CNNs generally consist of a combination of convolutional lay-

ers used to extract features from data, pooling layers to improve generalizability and

speed, and fully-connected layers to produce a useful output from the features iden-

tified by the convolutional layers. An example of the full CNN structure is shown in
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Figure 2.13. Considerable design work must be done when developing CNNs archi-

tectures to balance the layer structure and the various parameters in each layer. CNNs

are used considerably in the work presented in Chapters 4 and 7.

Figure 2.13: Structure of a simple CNN.

The neural network structures that have been discussed up to this point can be

used to process a variety of different input data types. However, they each effectively

perform the same operations; extract features from the input data and produce an

output of fixed size (either classification or regression) from those features. This has

historically proved to be both useful and powerful. However, as people began trying to

apply neural networks to increasingly complex problems, it quickly became apparent

that it was too restrictive for many applications. One of the key areas where this proved

to be the case was natural language processing (NLP) [20]. In order to train a network

to translate or produce human speech, a new structure needed to be developed that

allowed for the generation of variable length output sequences from variable length

input sequences.

In 2014, Sutskever et al. developed the first sequence-to-sequence learning struc-

ture to support NLP. The structure that they introduced consisted of two models work-

ing in tandem. The first model is referred to as the encoder model. It processes an

input sequence to extract latent features and encode them into a context vector. The

second model, called the decoder, is trained to interpret the context vectors produced
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by the encoder and produce an output sequence based on them. Since the context

vectors are encoded with latent features which are shared between the encoder and

decoder, it effectively defines a shared latent space between the encoder and decoder

models. This structure is depicted in Figure 2.14.

Figure 2.14: Structure of a simple Encoder-Decoder network.

The encoder-decoder structure and the concept of the latent space has served as

the basis for a major advancement in ML: generative models. While this structure

was originally developed for NLP [20], it has now been broadly applied to other types

of input-output pairings. Notably, this structure is used for image and audio signal

generation [21, 22]. I will discuss generative ML in more detail later in this chapter

and use these concepts for generating adaptive filters in Chapter 7.

While this discussion has only touched on a portion of the available types of neu-

ral networks structures, it is clear that they can be highly complex and that develop-

ing a functional architecture requires significant design work. Considerations must

be made for the types of input data to the model, the desired output, as well as the

number, type, and configuration of the layers used. When attempting to integrate neu-

ral networks into complex systems or use them to augment existing algorithms, it is

crucial to understand your problem space and allow that understanding to drive your
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design decisions. Well designed neural networks can add considerable flexibility to

systems, while poorly designed ones will destroy performance and drive up computa-

tional costs. I will now focus on two additional design elements of neural networks:

activation functions and loss functions. Bear in mind, however, that there are a large

number of additional neural network design and training parameters that will not be

discussed in this dissertation.

2.2.3 Activation Functions

Activation functions, sometimes referred to as transfer functions, are a key compo-

nent of neural networks that drive behavior and performance. Table 2.1 lists some of

the most commonly used activation functions. The activation function produces the

output signal for a given neuron based on its input. They also allow for the modeling

of non-linear relationships. There are two types of activation functions in most neural

networks: hidden layer activation and final activation. The final activation function

produces the output for the network itself, and it must be selected based on the kind

of output we expect from the model (binary vs. continuous, single- vs multi-output,

etc.). Hidden layer activation functions drive the types of relationships each hidden

layer can learn.

Activation functions can vary considerably, and custom functions can also be de-

signed and used. However, there are generally two practical restrictions placed on

activation functions. The first is that they are monotonic to allow for disambiguous

mappings between inputs and outputs. The second is that they are differentiable to

allow for the calculation of error gradients during backpropagation. The nature of the

mapping between input and output at each neuron/layer of a network will drive the

kinds of relationships that it can learn to model, making the selection of activation
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Activation Function Equation Conditions

Linear fa(x) = x N/A

Sigmoid fa(x) =
1

1+e−x N/A

Hyperbolic Tangent (tanh) fa(x) = tanh(x) = ex−e−x

ex+e−x N/A

Softplus fa(x) = ln(1 + ex) N/A

Softmax fa(x) =
ex∑N

i=1 e
xi

N/A

Binary Step fa(x) =

{
1, x ≥ 0

0, otherwise
N/A

Rectified Linear Unit (ReLU) fa(x) =

{
x, x ≥ 0

0, otherwise
N/A

Leaky ReLU (LeLU) fa(x) =

{
x, x ≥ 0

αx, otherwise
0 < α < 1

Exp. Linear Unit (ELU) fa(x) =

{
x, x ≥ 0

α(ex − 1), otherwise
0 < α < 1

Table 2.1: Commonly Used Neural Network Activation Functions

functions a critical design decision.

2.2.4 Loss Functions

Loss functions, sometimes referred to as error functions, are used during model

training to calculate the distance between the outputs from the model and the label set.

Put another way, they are used to determine the quality of guesses being produced by

the model. The loss value produced by this function is then used to update each of

the trainable parameters. While they are only used during the training process, these

functions drive the quality and speed of model training, making their selection one of
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the most critical design decisions for any neural network. Table 2.2 lists some of the

most widely used loss functions. Two notes on the variety of loss functions should

be made, however. The first is that there are many additional commonly used loss

functions. The second is that it is extremely common to design custom loss functions.

Loss Function Equation

Mean Absolute L(x) = 1
N

∑N
i=1 |xi − x̂i|

Mean Bias L(x) = 1
N

∑N
i=1(xi − x̂i)

Mean Squared L(x) = 1
N

∑N
i=1(xi − x̂i)

2

Relative Absolute L(x) = 1
N

∑N
i=1

|xi−x̂i|
|xi−x̄| , x̄ = 1

N

∑N
i=1 xi

Relative Squared L(x) = 1
N

∑N
i=1

(xi−x̂i)
2

(xi−x̄)2
, x̄ = 1

N

∑N
i=1 xi

Root Mean Squared L(x) =
√

1
N

∑N
i=1(xi − x̂i)2

Mean Squared Log L(x) = 1
N

∑N
i=1(log(xi + 1)− log(x̂i + 1))2

Root MSLE L(x) =
√

1
N

∑N
i=1(log(xi + 1)− log(x̂i + 1))2

Log Cosh L(x) =
∑N

i=1 log(cosh(x̂i − xi))

Huber L(x) =

{
α(x− x̂)− α2

2
, |x− x̂| ≥ α

1
2
(x− x̂)2, otherwise

Quantile L(x) =

{
α(x− x̂), |x− x̂| ≤ α

(1− α)(x̂− x), otherwise

Table 2.2: Commonly Used Neural Network Loss Functions

The purpose of a loss function seems simple on the surface, which may lead one

to wonder why there would be such a variety of them. After all, the loss function is

designed to measure the error between an estimation and a known value. However,
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neural networks are regularly trained to approximate complex systems, and the accu-

racy with which they do so determines their usability. These systems can often have

highly variable behaviors within different regions of their solution space, and an ideal

model or system should learn to approximate all of it. Poorly designed or selected loss

functions can cause sub-regions of the solution space to dominate training, preventing

models from generalizing. They can also cause large error values to occur that result

in updates to the learnable parameters that throw the model into an unstable training

region, preventing the model convergence. Additionally, knowledge of the problem

space for which a model is being trained can be integrated into the loss function to en-

courage different behaviors for different sub-regions. Ultimately, the loss function is

one of the primary drivers behind both what and how well a model learns to perform.

I use custom loss functions in Chapter 7 to train a model to generate adaptive filters.

2.3 Machine Learning Attention and the Transformer

The ability of large scale neural networks to learn highly complex patterns makes

them powerful tools in automation. However, it has also given rise to a limitation

colloquially known as the “black box” problem. This term refers to the fact that tra-

ditional neural networks receive an input and produce an output without the model’s

users or designers having a full understanding of how it arrives at said output. While

it is technically possible to fully map out the behaviors of a deep neural network, the

fact that model behavior is learned instead of designed, the high number of trainable

parameters in large models, and the abstractness of the patterns that can be learned

make this infeasible. For most uses of ML, the black box nature of the model is irrel-

evant as long as it has high accuracy. However, it restricts the ability for a system or

user to identify why models behave the way they do. It also makes it extremely diffi-
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cult to troubleshoot abnormal behaviors or encourage a model to engage in particular

behaviors. In the early 2000’s to mid 2010’s, a growing number of ML applications

required additional insights into model behaviors, and researchers began attempting to

develop mechanisms for providing contextual information to adjust model behaviors

for specific scenarios. In particular, researchers were making strides in natural lan-

guage processing (NLP) for language translation. Additionally, the computer vision

community was beginning to explore using deep convolutional models in critical sys-

tems and needed to provide visual visual explanations for model behaviors. This gave

rise to the notion of attention in ML systems.

(a) Attention applied to natural language
processing [23].

(b) Attention applied to computer
vision explainability [24].

Figure 2.15: Examples of attention mechanism outputs.

The concept of modern ML attention is often attributed to Bahdanau, Cho, and

Bengio in [24]. This work provides a method for quantifying the impact of particular

portions of input information, and/or hidden state information in the case of RNNs, on

the output of a model or layer. In [24], the authors developed an attention mechanism

for use in an RNN-based Encoder-Decoder framework for sequence to sequence trans-
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lation in NLP. One of the key limitations in NLP at the time was the inability for ML

models to understand non-sequential contextual variations in the meaning of words

in language. In this basic RNN Encoder-Decoder framework, an input sequence x is

provided to an encoder to produce an encoder hidden state, ht and an encoded vector,

c:

ht = f(xt, ht−1) (2.16)

c = q(h) (2.17)

where f(•) and q(•) are nonlinear functions. The context vector is then passed to a

decoder that uses this context vector and its previous predictions to predict the next

value in the output sequence:

p(y) =
T∏
t=1

g(y(t− 1), st, c) (2.18)

where g(•) is a nonlinear function and st is the encoder hidden state.

The authors of [24] proposed changing Equation (2.18) so that the probability of

each output is set by a unique context vector:

p(y) =
T∏
t=1

g(y(t− 1), st, ct) (2.19)

where

st = f(st−1, yt−1, ct) (2.20)

and each ct is calculated as a weighted sum of the encoder hidden states:

ct =
T∑

j=1

αtjhj (2.21)
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Note that t is used to denote the output sequence position, and j is used to denote the

input sequence position. The value of αtj then reflects the impact of the encoder input

at position j on the decoder output at position t. Put another way, it quantifies how

much attention the model pays to input xj when producing output yt. In [24], this

attention value was computed as:

αtj = softmax(etj) =
exp (etj)∑T
k=1 exp (etk)

(2.22)

The value etj is referred to as the alignment score between input xj and output yt,

and it is computed based on the encoder hidden state hj and the decoder hidden state

st−1. An alignment score can be calculated in various ways, but the two most common

are the additive score (proposed by Bahdanau, Cho, and Bengio in [24]) and the dot

product score (proposed by Luong, Pham, and Manning in [25]). The additive scoring

method is calculated as:

etj = VT
a tanh(Wast−1 +Uahj) (2.23)

where Va, Wa, and Ua are weight matrices. The dot product scoring is calculated as:

etj = sTt−1hj (2.24)

These concepts were then adapted in the field of NLP to map the interactions

between words on an input sequence within a single RNN structure [26, 27] (rather

than mapping between an encoder and decoder structure). This is now commonly

referred to as self-attention (or intra-attention) and is accomplished by replacing st−1
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with hi in Equations (2.23) and (2.24):

etj = VT
a tanh(Wahi +Uahj) (2.25)

etj = hT
i hj (2.26)

where hj now represents the hidden state of the current input position, and hi repre-

sents the hidden state(s) of some subset of previous input positions.

In 2017, Vaswani et al. proposed two advances to self-attention in [28], which

have ultimately shaped the entire field of generative ML and driven much of the ML

research conducted since. The first update they proposed was a generalized form of

self attention that is computationally efficient and readily adaptable to new application

spaces. This approach consists of using three linear layers with learnable parameters

to transform inputs to the attention block into a query vector, Q, a key vector, K, and a

value vector, V . These vectors are then used to calculate a scaled dot-product attention

similar to the one obtained by plugging Equation (2.26) into Equation (2.22):

Attention(Q,K, V ) = softmax

(
qKT

√
dk

)
V (2.27)

where dk is the length of Q and V . Figure 2.16 depicts the structure of this generalized

self-attention module. The query and key vectors are used to compute attention scores

which are then weighted by the value vector before being summed. The structure is

easily parallelizable and allows the linear layers used to generate Q, K, and V to learn

complex and nuanced relationships between elements of the input sequence that are

not dependent on the application space. The trainable parameters in those layers can

also be readily extended to increase the module’s degrees of freedom.

38



Figure 2.16: Structure of generalized self-attention.

The other key update to attention proposed in [28] was the idea of multi-head

attention. This concept builds on the attention function defined in Equation (2.27)

by setting up multiple parallel attention structures to simultaneously process multiple

sets of queries, keys, and values. First, it is important to define what constitutes an

attention head:

head = Attention(QWQ, KWK , V W V ) (2.28)

where WQ, WK , W V are learned weight matrices that project Q, K, and V into a

lower dimensional space. The structure of a single attention head is depicted in Figure

2.17. We can then say that for some number of parallel attention heads, h, the multi-

head attention is defined as:

MultiheadHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
O (2.29)

where Concat(•) refers to matrix concatenation, WO is an output transformation
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weight matrix, and:

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.30)

The full structure of multi-head attention is shown in Figure 2.18.

Figure 2.17: Structure of the self-attention head.

Multi-head attention has been shown to learn highly nuanced relationships be-

tween portions of an input sequence. Subdividing the input into regions and computing

attention scores for each region gives the multi-head attention block greater capacity to

identify a broader range of contextual relationships within input data. The parallelized

structure of multi-head attention also means that the computational cost of doing so is

minimal. It should also be noted that self-attention and multi-head attention mecha-

nisms can learn non-sequential relationships, which standard RNN structures can’t.

This concept of multi-head attention has led to a major revolution within the

AI/ML community: the transformer model. This architecture, which was also pro-
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Figure 2.18: Structure of multi-head attention.

posed by Vaswani et al. in [28], uses an encoder-decoder structure with three sets

of multi-head attention: 1) encoder self-attention, 2) decoder self-attention, and 3)

encoder-decoder attention. It was originally designed for sequence to sequence trans-

lation. Here, the encoder self-attention is used to learn positional inter-dependencies

between elements on the input sequence, the decoder self-attention is used to learn the

inter-dependencies between the current output sequence position and all previous out-

put positions, and the encoder-decoder attention is used to create a mapping between

the two. This application of stacked, multi-head attention not only allows the trans-

former to learn non-sequential patterns, but also long-term dependencies in data that

both RNNs and CNNs are typically unable to learn. The structure also allows a latent
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space mapping between concepts that can be easily scaled to provide a large number

of degrees of freedom. The original structure of the transformer proposed in [28] is

shown in Figure 2.19.

Figure 2.19: Structure of the transformer model [28].

2.4 Generative Machine Learning

Generative ML is a relatively new sub-field of ML that has grown rapidly in popu-

larity over the last few years. This sudden rise in prominence can be largely attributed

to the explosion of AI generated art (like Stable Diffusion), text generators (like Chat-

GPT), and video generators (like SORA). These tools, all of which are built on gener-
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ative models, have provided a set of powerful tools that are easily accessible and have

served to capture the imagination of the public. In the scientific community, generative

AI models have also been used for audio and electromagnetic signal generation and

modification. The broad enthusiasm for generative models, paired with huge leaps in

computing hardware, has resulted in a massive research push and rapid advances in

the domain.

There are numerous varieties of generative models, but they are all based on a

similar approach that uses the encoder-decoder architecture. The encoder is trained

to map input data or prompts into a probabilistic latent space representation and the

decoder is trained to generate an output based on the distance between an input’s

latent space representation and the features contained within the latent space. When

any point in the latent space is sampled (either randomly or through an input/prompt),

it will then generate an output corresponding to that point in the latent space. For

generative models to be effective, it is critical that their latent spaces contain two

properties: 1) any point in the latent space should produce a meaningful output from

the decoder and 2) points with low distance values between them in the latent space

should produce similar outputs from the decoder. Otherwise the generated output may

be completely nonsensical or not related to the input/prompt provided to the model.

Among the earliest generative neural network architectures was the variational

auto-encoder (VAE). Traditional auto-encoders used a standard encoder-decoder struc-

ture and were trained to reproduce the input data provided to it. For example, such an

auto-encoder might take in pictures as inputs. Its encoder would then translate those

images to a latent space representation, and its decoder would use that latent space rep-

resentation to reproduce the original input as closely as possible. They use a relatively

simple loss function (called reconstruction loss) to calculate the distance between the
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(a) Basic auto-encoder architecture.

(b) Basic VAE architecture.

Figure 2.20: Comparison of the structures for Auto-Encoder and VAE.

model output and the target label. Auto-encoders provided an interesting tool for cre-

ating lower-dimensional latent space representations and identifying critical features

in data. However, the latent spaces developed in training were generally observed to

be inconsistent and irregular, limiting their utility to generative processes.

The VAE, proposed in [29], uses the concept of stochastic variational inference to

instead map inputs to latent distributions (rather than discrete latent variables). That

distribution is then sampled to provide a noise vector to the decoder, which is trained

to find the output that most closely maps to the distribution produced by the encoder.

VAE loss is calculated in two parts. The first is the standard reconstruction loss used

for auto-encoders and the second is a statistical distance metric (usually Kullback-
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Leibler divergence). This provides a much more consistent and efficient mapping for

a latent space and allows the decoder to be used independently of the encoder. It also

provides a solid statistical foundation for the configuration of the model’s latent space.

VAEs have been commonly used for usable signal generation and modification. This

was somewhat unique within the generative ML field and established a precedent and

methods for applying such models to signal processing problems.

Another form of generative ML that is particularly applicable to signal process-

ing is the generative adversarial network (GAN). GANs, which were first proposed

in [30], use a similar encoder-decoder structure to the auto-encoder. However, the

encoder-decoder is trained using an adversarial framework. These models operate by

training two models in tandem; a generator model and a discriminator model [31].

The generator is trained to create images (or some equivalent output), and the discrim-

inator is trained to distinguish between real images and generated ones. These models

are trained together, with the discriminator weights updating after each iteration and

the generator only updating when its generated output is successfully identified by the

discriminator. When properly designed and tuned, each pushes the other to improve.

In this dissertation, an application of convolutional GANs [32] is explored for fil-

ter approximation. Originally, convolutional GANs for image generation were trained

to take purely random noise inputs and generate “realistic” images, while the discrim-

inator was simply trained to distinguish between “realistic” or “unrealistic” images.

More modern GANs encode specific information into the noise input to the GAN that

restrict the types of outputs it will generate. This is equivalent to providing a prompt to

a transformer or VAE. These are referred to as conditional GANs [33, 34], and allow

the GAN to learn more targeted input-output relationships.
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2.5 Machine Learning Interpretability and Explainability

One of the key limiting factors to the broad incorporation of ML in avionics is

interpretability, which is the degree to which the workings of the system are inher-

ently understandable by people [35]. ML is a powerful tool, but the sheer number

of calculations performed by ML systems and the often non-intuitive nature of those

calculations can make their outputs difficult to understand or verify in real time. Al-

though a well-trained ML system can often perform an analysis much more quickly

and accurately than a person, the lack of transparency into how the solution was de-

rived often limits the trust placed in these systems. In addition, the inability to readily

identify or mitigate issues within ML systems in real time limits their use in many

areas.

The need for ethical decision-making that follows legal and safety requirements

in applications such as these, where a machine may be making decisions that affect

the health or well-being of humans, has begun to give rise to government regulation.

Many of these require that explanations of the machine’s decisions be made available

upon request to those that are substantially affected by them [36, 37, 38]. This leads

to a number of challenges to be addressed in the coming years. In particular, what

constitutes a sufficient explanation and on what time frame those explanations need to

be provided must be determined.

In an effort to address these issues, interpretability in autonomous systems has

become a major focus area for ML researchers in recent years. Research has gener-

ally focused on either using simpler ML techniques that are inherently interpretable or

generating explanations for the determinations made by more complex systems [39].

The former approach is the most straightforward and has the least overhead. However,
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ML techniques that are inherently interpretable may not be appropriate for applica-

tions that require complex analysis of large feature sets, requiring the use of complex,

opaque ML approaches like deep neural networks (DNNs). To address the issue of

explaining DNN determinations, significant research has been done into the use of at-

tention mechanisms for providing explanations [40]. These mechanisms have proven

to be highly effective at increasing the level of transparency in DNNs. However, at-

tention may not provide sufficient information for explaining complex decisions in

critical systems (like an autonomous driving system). In recent years, there has been a

drive to expand the scope of explanations in decision-making DNNs to include a rea-

soning component [41, 42]. The most promising avenue of achieving this is integrating

hierarchical decision elements, like decision trees with other ML and algorithmic ele-

ments, and tracking the progression through these hierarchical structures.

The concepts of explainability and interpretability require an ML designer to con-

sider core elements of their target application space. They must then design their sys-

tems so that they are either more structured and consistent or so that critical decision-

making elements of their models can be accessed and interpreted. In Chapter 4, I

present my work developing a structured architecture to enable ML systems to simul-

taneously make decisions and generate text-based explanations for them. I then use

these explainability concepts and design principles extensively throughout the rest of

my work to intelligently break down problem spaces and orchestrate systems with ML

components.

2.5.1 Convolutional Batch Attention Module

The Convolutional Batch Attention Module (CBAM) proposed in [23] is an at-

tention mechanism developed by Woo et al. to provide feature importance maps (see
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Figure 2.15b) for convolutional layers in neural networks. Its architecture is shown

in Figure 2.21. The CBAM was developed to both improve the training process and

provide explainability for CNNs. They can be placed immediately after any convolu-

tional layer of a network and take a feature map F as an input.

(a) Architecture of the CBAM.

(b) Channel attention block.

(c) Spatial attention block.

Figure 2.21: The CBAM architecture from [23].

In the CBAM, attention is generated by calculating and applying two masks to

the input feature map. The first mask is called the channel attention mask, Mc, and

identifies which channels of F were more heavily activated:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F))) (2.31)

where MLP (•) denotes the use of a MLP, AvgPool(•) is the average pooling func-

tion, and MaxPool(•) is the maximum pooling function. The second is the spatial
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attention mask, Ms, which identifies the pixel regions of F were more heavily acti-

vated:

Ms(F) = σ(ConvN,M([AvgPool(F);MaxPool(F)])) (2.32)

where ConvN,M(•) denotes convolution with a filter of size N ×M . The final output

of the CBAM then takes the form:

Fint = Mc(F)⊗ F (2.33)

Fout = Ms(Fint)⊗ Fint (2.34)

I use this mechanism extensively in Chapter 4 to provide insight into why a ML system

was arriving at a given output.

2.6 Causality and ML

Another important concept used in ML and explainability is causality. In general,

causality awareness refers to an understanding of the relationships between causal

events and their resultant effects [43]. Knowledge of these cause-effect relationships

plays an important role in many areas, particularly those in which analysis or optimiza-

tion are required. It is also necessary to effectively evaluate alternative approaches to

achieve a different outcome in a given scenario. Today, people perform most non-

trivial tasks that require an understanding of causality. These problems are generally

too complex or not well enough defined to be performed using traditional automation

methods. Historically, machine learning systems have learned to perform tasks based

on correlations between variables (a directionless relationship), and they tend to strug-

gle with the inherent directionality of causality [44]. Figure 2.22 shows the difference
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between correlation and causal relationships.

xx

yy

zz

(a) x and z correlate to y.

xx

yy

zz

(b) x and z cause y.

xx

yy

zz

(c) x causes y causes z.

Figure 2.22: Representing Causal vs Correlation Relationships.

Statisticians have spent several decades developing mathematical representations

for causality. At a base level, cause-effect relationships are represented graphically (as

in Figure 2.22) and determined through the evaluation of interventions [45]. Here, an

intervention refers to fixing some given input(s) and evaluating the probability of an

outcome when varying each other input. Interventions are evaluated with do-calculus,

an approach to determining causality in non-parametric models, using [45]

P (y| do(X = x)) =
∑
z

P (y|x, z)P (z) (2.35)

where do(.) is the do-operator that specifies the intervention being taken, y is the out-
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put of a system, x is the input being intervened upon, and z is another input not being

intervened upon. Intervention allows one to quantify the effect one variable has on

other elements within a system. That concept has been taken a step further to eval-

uate how altering certain aspects of an observed scenario might impact its outcome.

By observing the output of a system and then intervening on some aspect(s) of the

system and observing how the outcome changes, it is possible to identify the causal

impact different elements of the system have on its output. This process is referred to

as counterfactual evaluation, and is represented mathematically as [45]

E(YX=1|X = 0, Y = Y0) (2.36)

where E(·) is the expectation, YX=1 is the hypothetical condition being evaluated

which is predicated on an event that did not happen X = 1 that is counter to the

observed event X = 0 as indicated by the condition realized in actuality Y = Y0.

In recent years, researchers have begun exploring how to use the concepts of inter-

vention and counterfactual evaluation to enable ML agents to discover and understand

causal relationships [44]. While causal discovery has received more focus from the

ML research community, causality awareness is rapidly gaining attention due to its

potential to improve performance and flexibility in autonomous agents. It has also be-

come a major consideration in ML explainability [46]. In Chapter 5, I use counterfac-

tual evaluation in the context of target tracking and navigation to correct measurement

drift errors by examining alternative paths an entity could have followed that are more

consistent with high fidelity observations.
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2.7 Genetic Algorithms

Genetic algorithms (GAs) are a family of optimization techniques inspired by bi-

ological evolution that fall within the umbrella of ML. They function by first gener-

ating a set of potential solutions to a problem space, referred to as the population.

Each member of the population is then evaluated according to an objective function to

determine its “fitness” as a solution to the target problem space. Some portion of the

lower scoring population is removed, and a new population is created using the surviv-

ing members of the previous generation. This population consists of a combination of

those surviving members, and others are generated using processes called cross-over,

in which the properties of some number of population members are combined to cre-

ate a new member, and mutation, in which some or all parameters of one member are

altered. This new population is then evaluated and the process repeats until some stop-

ping criteria is reached. When applied to a problem, GAs are able to rapidly explore

a potential input space and identify the regions within it that produce results which

are near optimal for some defined objective(s). They excel in scenarios in which the

mapping between the input and output spaces are highly complex but there are clear

ways to define the objective(s) by which a solution’s fitness is measured.

2.7.1 Multi-Objective Genetic Algorithms

There are many applications that appear to be ideal to approach using GAs but

in which the complexity of the problem makes it unlikely that a singular objective

function would be sufficient to determine the fitness of a potential solution. This has

led to the formulation of multi-objective genetic algorithms (MOGAs). Similar to

genetic algorithms, MOGAs function by producing a population of potential solutions
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and then evaluating their fitness. However, as their name suggests, this family of GAs

uses multiple objective functions. That approach drastically increases the complexity

of the algorithm, as the need to balance multiple objective functions to arrive at a

singular fitness rating is challenging. The non-dominated sorting genetic algorithm II

(NSGA-II) [47] is a well-known and widely-used MOGA.

NSGA-II is an elitist algorithm that consists primarily of two sorting algorithms:

fast non-dominated sorting and crowding distance sorting. First, a population P is

generated and each member pi is evaluated based on each of the defined objective

functions. For each pi, the number of other solutions (pj ̸=i) that dominate it are com-

puted to find its domination count, and the solutions are sorted from lowest to highest

domination count. The population member pj ̸=i dominates pi if it is strictly better ac-

cording to all objective functions used to evaluate the solutions, and a non-dominated

solution is one whose domination count is zero. Next, the solutions are grouped ac-

cording to their non-dominated front (domination count), and each front is sorted from

highest to lowest according to crowding distance. The crowding distance for each pi

is computed as the average distance to the nearest solution on either side of it (pi−1

and pi+1) within the same non-dominated front for each objective function. In effect,

this is a measure of how similarly pi performs compared to other solutions currently

under evaluation. Once the solutions are sorted, all those falling below some threshold

are rejected and a new population is generated from those that remain. This process is

depicted in Figure 2.23 [47].

In Chapter 5, I use the NSGA-II as a component of a counterfactual system for cor-

recting measurement drift errors. It serves to identify and evaluate alternative paths

for an entity based on a set of objective functions derived from motion characteris-

tics. NSGA-II is a well documented and effective method for performing optimization
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Figure 2.23: Depiction of the NSGA-II from Deb et al. [47]

based on multiple objectives simultaneously, but it does have some limitations [48].

As with all GAs, the identification and formulation of the objective functions is crit-

ical to the performance of the algorithm. Significant work was done on this effort

to identify and optimize the objective functions used for track repair. Additionally,

NSGA-II has a practical limitation on the number of objective functions for which it

can optimize, as its performance degrades drastically for large numbers of objective

functions. Alternatives have been developed (notably the NSGA-III algorithm [49])

that allow for more objectives to be used, but NSGA-II is still widely used.
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Chapter 3

Radar Background

This dissertation focuses on the development of ML-enhanced algorithms for use

in common radar applications that include detection, tracking, and navigation. These

algorithms are designed based on a first principles understanding of the radar domain

and seek to intelligently integrate ML with existing signal processing techniques in a

way that takes advantage of the strengths of each field while mitigating their weak-

nesses. Before diving into a discussion of these algorithms, it is important to first

discuss the key radar concepts that are used in each. In this chapter, I will discuss the

basics of radar detection theory, adaptive filtering, and the Kalman filter.

3.1 Hypothesis Testing and Neyman-Pearson Lemma

Detection theory is rooted in a concept called hypothesis testing [50], and most

modern detectors are derived from some formulation of a hypothesis test. Hypothesis

testing for any scenario requires one to establish two or more possible cases, or hy-

potheses, for that scenario and then define a statistical representation of the likelihood

of each hypothesis. As a rule, that process involves assigning a likelihood function to

each hypothesis under evaluation and then deriving a test statistic to select between
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the hypotheses.

The simplest form of hypothesis testing is known as the binary hypothesis test. As

the name suggests, it is formulated as a simple choice between a null hypothesis and a

non-null hypothesis, referred to as H0 and H1, respectively. For the binary hypothesis

test, there are four possible configurations, or modes, of the test output:

1. Type I Success: H0 is selected when H0 is true.

2. Type I Failure: H0 is selected when H1 is true.

3. Type II Success: H1 is selected when H1 is true.

4. Type II Failure: H1 is selected when H0 is true.

The binary hypothesis test is the most widely used form of hypothesis testing in radar

detection problems, where a given radar return signal, z, is the subject of the test.

In this domain, H0 is defined as the case where the signal contains only interference

signals and H1 is defined as the case where the signal contains a combination of in-

terference returns and a reflection from a target of interest. The probability of each

hypothesis given the observed signal return are then defined as P (y|H0) and P (y|H1).

How those probabilities are modeled is a major focus of research in radar detection

and will be discussed in more detail later in this dissertation. In a given detection

algorithm, they are used to calculate the test statistic which is compared against some

threshold to determine whether a detection is recorded.

With this formulation of the binary hypothesis test, there are three metrics used to

define the performance of the hypothesis test: 1) The probability of detection (Pd), 2)

the probability of false alarm (Pfa), and 3) the probability of a missed detection (Pm).

The Pfa and Pm are the two failure modes for this hypothesis test. Pfa is defined as the

Type I failure mode and the Pm is defined as the Type II failure mode. Maximizing the

Pd is the ultimate goal of any detection algorithm. When we consider the way in which
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a hypothesis test is conducted (i.e. comparing a test statistic against a threshold), it

is clear that the Pd is closely tied to the threshold value. Lowering the threshold

necessarily increases a detector’s ability to detect targets. However, this will also

naturally increase the rate of false alarms. A high Pfa can be extremely problematic,

as it can impede effective radar resource allocation and drive up tracking times. As

a result, Pd and Pfa must be carefully balanced. This has led to the formulation of

the Neyman-Pearson criterion as a special case of the Bayes criterion. It states that

a detector is considered optimal if it maximizes the Pd without raising the Pfa above

some predefined threshold.

3.2 The Radar Detection Problem Space

In order to frame the rest of the discussion on detection, it is important to first

establish the problem space used to derive and test detectors. Consider the scenario in

which a pulsed-Doppler radar transmits m pulses over the course of a coherent pro-

cessing interval. The return signal is received, processed, and sampled appropriately.

For a given range bin, this results in the complex signal z, where:

z = [z1, z2, ..., zm]
T (3.1)

The function of a detection system is to determine whether or not z contains a

signal return from a target of interest. In the event that it does, then z is comprised of

an additive combination of the signal of interest and interference (here we will limit

this to noise and clutter). Otherwise, z consists entirely of interference. What has just

been described is a binary hypothesis test. The two hypotheses can be represented as:
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H0 : z = n

H1 : z = s+ n

(3.2)

In (3.2), n is the m-dimensional complex interference vector and s is the m-

dimensional target return vector. Throughout the literature, the interference is modeled

as n =
√
τx, where τ is referred to as the texture and x is the speckle. x is typically

modeled as an m-dimensional correlated Gaussian random vector with zero mean and

normalized Hermitian covariance matrix E[nnH ] = M.

The target return signal is modeled as s = αp. α is an unknown positive random

value representing the amplitude of the signal return. This is meant to capture the

effects of channel propagation. p = [e−j2πfDTs , ..., e−j2πmfDTs ] is the m-dimensional,

known temporal steering vector, where fD is the Doppler frequency and Ts is the pulse

repetition interval. We can now rewrite the previous hypotheses as:


H0 : z =

√
τx

H1 : z = αp+
√
τx

(3.3)

There are a number of approaches to formulating detection algorithms, each of

which make different assumptions about the nature of the interference present in

the operational scenario for which they are designed. The most fundamental is the

matched filter, which is known to produce optimal detection performance when the

only interference present is white, Gaussian noise [1]. However, when interference is

correlated, the matched filter ceases to maintain optimal performance, and some form

of additional processing is required to distinguish between interference and target re-

turns [51]. For the work presented in this dissertation, I focus on a family of detection
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algorithms known as adaptive detectors. These detection algorithms apply a whiten-

ing filter to decorrelate interference. They are referred to as adaptive because they

approximate the covariance structure of the interference in order to define that whiten-

ing filter. This approximation is typically accomplished using samples from the area

surrounding the sample under test. As a result, it is assumed that there are a number,

K, of additional samples containing only interference in addition to the sample under

test. These are typically referred to as training or secondary data in the literature, and

here they are represented as zk = nk where E[nkn
H
k ] = E[nnH ] = M.

3.3 Interference Models for Adaptive Detection

Detection relies on the ability to distinguish between signal returns with targets

present from those with targets absent. When the target signal and interference signal

models are perfectly known, then the Neyman-Pearson Criterion can be used to max-

imize the probability of detection (Pd) while maintaining a constant false alarm rate

(CFAR). In practice, the exact nature of these models is not known and must either be

assumed or inferred. The most basic detectors assume that only uncorrelated Gaussian

noise is present in the target absent hypothesis. Under this assumption, the matched

filter is the optimal detector, since it maximizes the signal to noise ratio [1]. However,

real world interference often consists of a combination of uncorrelated Gaussian noise

and correlated clutter [51]. When correlated interference is present, the matched filter

may no longer be optimal unless the signal can be effectively whitened. In order to do

this, the covariance matrix of the interference model (M) must be known [52].

In practice, M will never be perfectly known. To mitigate this limitation, adaptive

detectors have been developed as a family of algorithms that attempt to dynamically
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infer the correlation characteristics of interference and whiten the signal under test

[13]. Test statistics and thresholds are then derived according to the assumed inter-

ference model in order to perform the binary hypothesis test described in 3.2. As

discussed in the previous section, interference is generally modeled as a combination

of texture (τ ) and speckle (x), where x is a correlated Gaussian vector and τ modu-

lates x. This allows clutter to be modeled as a set of compound Gaussian distributions

based on the texture distribution:

fn(n) =
1

(π)N ||M||

∫
1

(τ)N
e−

nHM−1n
τ fτ (τ)dτ (3.4)

The well understood nature of Gaussian and compound Gaussian distributions makes

such a formulation of the interference model desirable because it simplifies the deriva-

tion of detector test statistics, thresholds, and Pfa characteristics.

In much of the literature, fτ (τ) is assumed to be the Dirac delta function, δ(τ −1),

resulting in fn(n) being a purely homogeneous, correlated complex Gaussian inter-

ference signal:

fn(n) =
1

(π)N ||M||
e−nHM−1n (3.5)

The assumption that clutter can be modeled as a complex Gaussian distribution holds

in many situations due to the Central Limit Theorem [1], as environments often ap-

proximate an infinitely large number of uniformly distributed point scatterers. How-

ever, this assumption does not hold in more complex scenarios, such as in urban and

aquatic environments, on fast moving aerial platforms, or in the presence of active

interference [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. Instead, the interference

signals may have heavy spikes that more closely resemble target returns. Various

works have been published demonstrating that non-Gausian, heavy tailed clutter in
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various complex scenarios can be modeled with distributions that fall into the cate-

gory of Spherically Invariant Random Processes (SIRP), including the K, Pareto, and

Weibull distributions [65]. The ability to model clutter as a SIRP is desirable for a key

practical reason: it is relatively easy to simulate a broad range of SIRP distributions

with known correlation characteristics. The reasons for this are due to several key

properties of SIRPs, which are discussed in [66]. In that work, Rangaswamy et al.

present four key theorems regarding SIRPs and spherically invariant random vectors

(SIRV).

The first of these theorems is [66]:

Theorem 1. For each complex SIRV, Y = [y1 y2 ... yN ], there exists a non-negative

random variable S with pdf fS(s) that can be used to condition Y to produce a com-

plex Gaussian random vector, X = [x1x2...xN ] with covariance M and zero mean.

From Theorem 1 we get that Y = SX and can represent the pdf of Y as:

fY(y) =
1

(π)N ||M||

∫
1

(s)2N
exp (−yHM−1y

s2
)fS(s)dS (3.6)

where fS(s) is known as the characteristic pdf of the SIRV. This allows a SIRV to be

entirely defined by its covariance, mean, and characteristic function. It is important to

note that by setting S =
√
τ , (3.6) becomes (3.4).

The second theorem allows us to extend this further:

Theorem 2. When a SIRV, Y = [y1 y2 ... yN ], with characteristic function fS(s)

undergoes a linear transform of the form:

Z = YA+ µ (3.7)
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Z is also a SIRV with characteristic function fS(s), mean µ, and covariance M =

AAT.

The combination of Theorems 1 and 2 allows one to generate a complex white

Gaussian random variable, use a characteristic pdf to generate a new SIRV, and apply

a simple linear transform to set the mean and covariance characteristics. Given that

most simulation software has built in functions for generating Gaussian distributed

data, this is a powerful combination which enables the straightforward generation of

any correlated SIRV whose characteristic pdf can be simulated.

The final two Theorems presented in [66] are related to the spherical and quadratic

forms of SIRVs, respectively.

Theorem 3. A vector, Y = [y1 y2 ... yN ], is a SIRV if and only if when its components

are expressed in generalized spherical coordinates:

y1 = r × cosϕ1

yk = r × cosϕk

k−1∏
i=1

sinϕ (1 < k ≤ N − 2)

yN−1 = r × cos θ
N−2∏
i=1

sinϕ

yN = r × cos θ
N−2∏
i=1

sinϕ

(3.8)
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then r, ϕ, and θ are all mutually and statistically independent with pdfs of the form:

fR(r) =
rN−1

2
N
2
−1Γ(N

2
)

∫
1

(s)2N
exp (− r2

2s2
)fS(s)dS

fΦk
(ϕk) =

Γ
(
N−k+1

2

)
√
πΓ
(
N−k
2

) sinN−k−1 (ϕk)× [(u(ϕk)− u(ϕk − π)]

fΘ(θ) =
1

2π
[(u(θ)− u(θ − 2π)]

(3.9)

where Γ(•) is the Eulero Gamma function and u(•) is the unit step function.

Theorem 3 allows SIRVs to be represented in a generalized spherical form that

allows SIRVs with zero mean and identity covariance matrix to be fully characterized

even without a closed form expression for its characteristic function.

Theorem 4. The quadratic form of the characteristic pdf remains unchanged whether

or not the SIRV is white and takes the form:

fP (p) =
1

2
N
2 Γ
(
N
2

)p(N
2 )−1

∫
1

(s)2N
exp (− p

2s2
)fS(s)dS (3.10)

These theorems provide a powerful set of tools for generating a broad range of

interference distribution models. Additionally, these distributions can be readily sim-

ulated with known mean and correlation properties by transforming a Gaussian vector

with zero mean and unit covariance. This is incredibly important for evaluating the

performance of adaptive detectors in a meaningful way across distributions and with

different correlation characteristics. In [66], Rangaswamy et al. detail two methods

for simulating SIRVs. The first assumes a known, closed form characteristic function,

while the second does not. They also provide a list of known characteristic functions

for generating common SIRVs used to model clutter with the first simulation method.
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The process for generating SIRV data from a known characteristic function is rela-

tively straightforward. First, a Gaussian random vector, X with zero mean and identity

covariance matrix is generated. Next, a random variable, S, defined by the character-

istic function is generated and normalized so that its mean square value is 1. A SIRV

with zero mean and identity covariance matrix can then be obtained from the product

Y = XS. Finally, Equation (3.7) can be used to transform Y into a SIRV with some

target mean and covariance structure.

This simulation method was used for my work on ML-enhanced adaptive detection

presented in Chapters 6 and 7. Three SIRV distributions were used for designing

and characterizing those detection algorithms: 1) the Gaussian distribution, 2) the K-

distribution, and 3) the Pareto distribution. The model for the Gaussian distribution

was given by Equation (3.5).

In order to generate the K-distributed clutter model, τ from Equation (3.4) is sam-

pled from a Gamma distribution with shape parameter a and scale parameter b:

fτ (τ) =
1

(b)aΓ(a)
(τ)a−1e

−τ
b (3.11)

Where Γ(•) is the Gamma function. The amplitude PDF of the clutter can then be

represented as a K-distribution [65]:

f|n|(|n|) =
2|n|
bΓ(a)

(
|n|
√

1

2b

)a−1

Ka−1

(
|n|
√

2

b

)
(3.12)

Where K(•) is the modified Bessel function of the second kind.

Pareto distributed clutter can be modeled by using an inverse gamma texture with
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shape parameter a and scale parameter b: [67],[60]:

fτ (τ) =
1

(b)aΓ(a)
(τ)−(a+1)e

1
−bτ (3.13)

3.4 Adaptive Detectors

In this section, a survey of some common adaptive detection algorithms will be

discussed. This will include the GLRT, adaptive matched filter (AMF), the adaptive

Rao detector, adaptive covariance estimator (ACE), adaptive beamformer orthogonal

rejection test (ABORT) [68], and a number of two-stage algorithms. For this discus-

sion, they will be evaluated on the following performance metrics ([69], [70], [71],

[72], [73]): matched target return signal detection, clutter cancellation properties and

sensitivity to model/data mismatches, sample support requirements, computational

complexity, and constant false alarm rate (CFAR) properties.

3.4.1 Generalized Likelihood Ratio Test

In what would prove to be a pivotal work [13], Kelly proposed the GLRT as a new

adaptive radar detector for use in the presence of unknown homogeneous Gaussian

noise. This detector has been thoroughly investigated and expanded upon in subse-

quent works: [74], [75], [76], [77], [78], [79]. As its name suggests, it is based on the

development of a likelihood ratio test. In order to set up this likelihood test, two joint

probability density functions (PDFs) are first defined for the input signals, one for H0

and one for H1 [13]:

fi[z, z1, ..., zK ] = f [z|Hi
]

K∏
k=1

f [zk], where i = 0, 1 (3.14)
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For the null hypothesis, the signal consists only of interference that is assumed to be

zero mean Gaussian and identically distributed to the training signals, so the joint PDF

becomes:

f0[z, z1, ..., zK ] =

(
1

πN ||M||
e−trace(M−1T0)

)K+1

, (3.15)

T0 =

(
1

K + 1

)(
zzH +

K∑
k=1

zkz
H
k

)
(3.16)

In this case, only the interference covariance matrix M is unknown.

For H1, where z contains both a target return and interference, the PDF becomes:

f1[z, z1, ..., zK ] =

(
1

πN ||M||
e−trace(M−1T1)

)K+1

, (3.17)

T1 =

(
1

K + 1

)(
(z− αp)(z− αp)H +

K∑
k=1

zkz
H
k

)
(3.18)

Here, both the interference covariance matrix M and the target return signal amplitude

α are unknown.

Maximum likelihood estimation is used to independently maximise each of these

PDFs over all unknown parameters. The ratio of the two, referred to as the test statistic,

is then compared with a threshold to determine target detection. This takes the form:

λ =
maxM,α fz|H1 [z, z1, ..., zK ]

maxM fz|H0 [z, z1, ..., zK ]
≷H1

H0
λ0 (3.19)

Plugging (3.15) and (3.17) into (3.19) and performing the maximization yields the test

statistic:

λ =
1 +

(
zH(
∑K

k=1 zkz
H
k )

−1z
)

1 +
(
zH(
∑K

k=1 zkz
H
k )

−1z
)
− |pH(

∑K
k=1 zkz

H
k )−1z|2

pH(
∑K

k=1 zkz
H
k )−1p

(3.20)
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The true interference covariance matrix is generally not known and is estimated as:

S =
K∑
k=1

zkz
H
k (3.21)

Substituting (3.21) and η = λ−1
λ

into (3.20) yields the more well known form of the

GLRT test statistic:

η =
|pHS−1z|2

(pHS−1p)[1 + (zHS−1z)]
(3.22)

Thresholds are selected in order to maintain some desired probability of false alarm

(Pfa), which is defined as:

Pfa = P (λ > λ0|H0) (3.23)

In [74], the (Pfa) for the GLRT detector is derived as:

Pfa =
1

λK−N+1
0

(3.24)

Note that this is only a function of K, N , and λ0, which proves that the GLRT detector

is CFAR with respect to the clutter covariance.

The GLRT detector broadly serves as the benchmark against which other adaptive

detectors are judged. For the case of matched target signal returns in homogeneous

interference, it typically displays the best probability of detection with a relatively low

false alarm rate. On the other hand, the GLRT is more complex and computationally

costly than the AMF algorithm that will be discussed shortly. It also has relatively poor

rejection of mismatched target signal returns. The GLRT detector is designed assum-

ing that the interference is zero mean Gaussian with an unknown covariance matrix.

This results in CFAR behavior with respect to the interference covariance but not to
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the interference power level [80]. So long as the noise is homogeneous and Gaussian,

this isn’t an issue. However, it degrades clutter rejection in the presence of partially

homogeneous or non-Gaussian interference. Variations of the GLRT have been de-

rived for alternative distributions, but same problems hold for those (i.e. performance

degrades when not faced with the expected interference distribution). Identifying the

distribution of interference present in data is a non-trivial problem that will be ex-

plored in more detail later.

3.4.2 Adaptive Matched Filter

The AMF detector ([81], [82], [83], [84]) is based on a similar ratio test to that of

Kelly’s GLRT with one key difference: the interference covariance matrix is assumed

to be known. What this means is that when we set up the ratio test and take the MLE

of each input PDF, one need only maximize for α [81]:

λ =
maxα fz|H1 [z, z1, ..., zK ]

fz|H0 [z, z1, ..., zK ]
≷H1

H0
λ0 (3.25)

Plugging in (3.15) and (3.17) and performing the likelihood estimation results in

the ideal test statistic based on the true interference covariance matrix:

λ =
|pH(M)−1z|2

(pH(M)−1p)
(3.26)

In practice, the true covariance matrix is unknown, so the interference covariance

matrix S is derived from the training samples as in (3.21) and substituted for M to
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arrive at the final test statistic:

λ =
|pH(S)−1z|2

(pH(S)−1p)
(3.27)

The Pfa for the AMF detector can be expressed as [81],[84]:

Pfa =

∫ 1

0

(1 + rλ0)
−(K−N+1)f(r)dr (3.28)

Where r is a Beta-distributed loss term caused by using an estimated covariance matrix

to calculate the test statistic:

f(r) =
K!

(N − 2)!(K −N + 1)!
(1− r)N−2(r)K−N+1 (3.29)

This Pfa is independent of the true clutter covariance, proving that the AMF detector

is a CFAR detector in the presence of homogeneous Gaussian interference.

It is apparent that (3.27) is simply computing the squared magnitude of the quasi-

whitened signal zw = wHz. Since the steering vector is known and the interference

is assumed to be homogeneous, zero-mean, and Gaussian, the quasi-whitening filter

w can be computed in advance. For each new signal under test, one then only needs

to multiply w and z and find the squared magnitude of the result. This drastically

simplifies that calculation and reduces the computational cost of the adaptive detector

when compared with the GLRT. However, this comes at a performance cost. In the

case of perfectly matched target signal returns in homogeneous interference, the AFM

has roughly equivalent detection performance to the GLRT, but it has poor rejection

of sidelobe target returns and interference that is not perfectly homogeneous. It is also

highly sensitive to model mismatches, meaning that it will experience more severe
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performance degradation than the GLRT as the actual interference data stops resem-

bling a perfectly homogeneous Gaussian distribution.

3.4.3 Rao

Most of the detectors evaluated here make the assumption that the interference

covariance matrix can be estimated solely using a set of training samples that are

assumed to contain only interference. The adaptive Rao detector presented in [85], on

the other hand, is developed by making the assumption that both the signal under test

and the training samples should be used to estimate the interference covariance matrix.

It is so named due to its original derivation using the Rao test ([86], [87]). However,

for this discussion, we will focus on the alternative derivation of the test statistic [85]

which follows closely the derivation of the AMF. For this detector, the interference

covariance matrix is assumed to be known, and the PDFs and likelihood ratio test

are each set up to match those of the AMF exactly (i.e. (3.15), (3.17), and (3.25),

respectively). Unsurprisingly, after maximizing for the unknown signal amplitude α,

the ideal test statistic derived with perfect a priori knowledge of M is identical to that

of the AMF, (3.22).

At this stage, the AMF substitutes (3.21) into (3.26) to arrive at the final AMF test

statistic (3.27). For the Rao detector, the test sample is used along with the training

samples to estimate the interference covariance:

Srao = zzH +
K∑
k=1

zkz
H
k = zzH + S (3.30)

Substituting (3.30) into (3.26) results in:
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λ =
|pH(zzH + S)−1z|2

(pH(zzH + S)−1p)
≷H1

H0
λ0 (3.31)

The Pfa for the adaptive Rao detector is derived in [85] and can be expressed as:

Pfa = (1− λ0)
K (3.32)

It is a function of only the detector threshold and the training sample support, which

both proves that the Rao detector is a CFAR detector with respect to the interference

covariance and demonstrates its dependence on using a large number of training sam-

ples.

The inclusion of test signal data along with the training samples to approximate

the interference covariance matrix has an interesting effect. It gives the Rao detec-

tor substantially improved mismatched target rejection capabilities compared to the

GLRT and AMF detectors. In addition, this makes the detector less sensitive to model

mismatches than the AMF. It also has similar detection performance characteristics

to the aforementioned detectors in the matched case when a large number of training

samples is available, and it displays the GLRT’s and AMF’s property of being CFAR

with respect to the interference covariance. However, it lacks the computational ef-

ficiency of the AFM. Also, the Rao detector has a heavy reliance on large training

sample support, and its detection performance degrades substantially if a large num-

ber of the samples is not available. This is due to the impact of the test signal on the

estimation of M, as it will dominate the estimation if a sufficiently large number of

training samples is not used to offset it.
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3.4.4 Adaptive Coherence Estimator

The ACE detection algorithm (discussed in [53], [80], [88], [89], [90], [91], and

[92]) makes a fundamentally different assumption about the nature of the interference

in the signal model: that it is not necessarily homogeneous. More specifically, it main-

tains the assumption of the GLRT and AMF detectors that a set of training samples

contains only interference xk ∼ CN[0,M]. However, it assumes that the interference

present in the signal under test has covariance that matches that of the training sam-

ples up to an unknown scaling factor σ2 (i.e. x ∼ CN[0, σ2M]). The PDFs for each

hypothesis now become:

f0[z, z1, ..., zK ] =

(
1

(σ2)
N

K+1πN ||M||
e−trace(M−1T0)

)K+1

, (3.33)

T0 =

(
1

K + 1

)(
zzH

σ2
+

K∑
k=1

zkz
H
k

)
(3.34)

f1[z, z1, ..., zK ] =

(
1

(σ2)
N

K+1πN ||M||
e−trace(M−1T1)

)K+1

, (3.35)

T1 =

(
1

K + 1

)(
(z− αp)(z− αp)H

σ2
+

K∑
k=1

zkz
H
k

)
(3.36)

As with the AMF described above, the form of the covariance matrix (M) is as-

sumed to be known when setting up the likelihood ratio test for the ACE detector. This

leaves the target return signal amplitude α and the covariance matrix scaling factor σ2

to be maximized for the MLE of the PDF for H1. Only the covariance matrix scaling
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factor σ2 needs to be maximized for the MLE of the null hypothesis:

λ =
maxσ2,α fz|H1 [z, z1, ..., zK ]

maxσ2 fz|H0 [z, z1, ..., zK ]
≷H1

H0
λ0 (3.37)

Evaluating each MLE and replacing the true covariance matrix M with (3.21) results

in the ACE test statistic:

λ =
|pHS−1z|2

(pHS−1p)(zHS−1z)
(3.38)

Interestingly, this test statistic has an important geometric property. It makes use of

the inner product of the quasi-whitened signal and the quasi-whitened steering vector,

meaning that it is a representation of the cosine squared of the angle between the return

signal and the steering vector [88]:

cos2 ϕ =
|pHS−1z|2

(pHS−1p) (zHS−1z)
(3.39)

The Pfa for the ACE detector can be expressed as [91], [84]:

Pfa =

∫ 1

0

(
1− λ0

1− rλ0

)(K−N+1)f(r)dr (3.40)

Where r is a Beta-distributed loss term and f(r) is given by (3.29). Clearly, the Pfa

is independent of both M and σ2, proving that the ACE detector is a CFAR detector

with respect to both the interference covariance and the interference power level.

The ACE detector generally has poorer detection performance for matched targets

in homogeneous interference environments than either the GLRT or the AMF, and it

lacks the computational simplicity of the AMF algorithm. However, it has much better

interference rejection capabilities, and its geometric properties mean that it excels at
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rejecting sidelobe target returns. In addition, the ACE test statistic has the property of

being CFAR with respect to the interference power level, making it far less sensitive

to heterogeneity in the interference patterns.

3.4.5 Adaptive Beamformer Orthogonal Rejection Test

The ABORT algorithm proposed in [68] was created to attempt to solve the issue

of unmatched target signal returns [93]. This issue arises commonly in radar target de-

tection, typically as the result of sidelobe returns. As with the other adaptive detection

algorithms discussed here, ABORT sets up the detection problem as a binary hypoth-

esis test based on likelihood ratios. However, the authors redefined the hypotheses for

this algorithm: 
H0 : z = αp⊥ +

√
τx

H1 : z = αp+
√
τx

(3.41)

where p⊥ is an unknown steering vector orthogonal to p. The decision now becomes

whether a signal under test is comprised of interference plus target signal returns par-

allel to the steering vector or if it consists of interference plus target signal returns

orthogonal to the steering vector.

As with the GLRT algorithm, the PDFs of each of these hypotheses are defined

and used to set up the likelihood ratio test:

f0[z, z1, ..., zK ] =

(
1

πN ||M||
e−trace(M−1T0)

)K+1

, (3.42)

T0 =

(
1

K + 1

)(
(z− αp⊥)(z− αp⊥)

H +
K∑
k=1

zkz
H
k

)
(3.43)
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f1[z, z1, ..., zK ] =

(
1

πN ||M||
e−trace(M−1T1)

)K+1

, (3.44)

T1 =

(
1

K + 1

)(
(z− αp)(z− αp)H +

K∑
k=1

zkz
H
k

)
(3.45)

After setting up this test and maximizing the likelihood of each PDF for the unknown

parameters (M and α for H1 and M, α, and p⊥ for H0), the following test statistic is

derived [68]:

λ =
maxM,α,p⊥ fz|H1 [z, z1, ..., zK ]

maxM,α fz|H0 [z, z1, ..., zK ]
≷H1

H0
λ0 (3.46)

λ =
1 + |pHS−1z|2

pHS−1p

1 + zHS−1z− |pHS−1z|2
pHS−1p

(3.47)

Pulsone and Rader then use the relationship in (3.39) to write the test statistic in terms

of ϕ, the angle between the target return signal and steering vector:

λ =
1 + zHS−1z cos2 ϕ

1 + zHS−1z sin2 ϕ
(3.48)

Equation 3.48 intuitively demonstrates the goal of the ABORT test statistic: to com-

pare the portion of the test signal energy aligned with the steering vector to that which

is orthogonal to the steering vector.

The Pfa for the ABORT detector is derived in [68] and can be expressed as:

Pfa =

∫ 1

0

(1 + λ0 − r)−(K−N+1)f(r)dr (3.49)

Where r is a Beta-distributed loss term and f(r) is given by (3.29). The ABORT

detector’s Pfa is independent of the interference covariance, proving that it is a CFAR

detector with respect to the interference covariance.
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By assuming the possible presence of a misaligned target return in the adaptive

detection test, ABORT manages to have substantially improved rejection character-

istics when compared to simpler adaptive detectors like the GLRT and AMF. It does

so while maintaining equivalent matched target detection performance. It does so at

the cost of substantially increased computational complexity. To offset this cost, the

authors of [68] proposed using ABORT as the second stage of a two-stage adaptive

detector, with the far simpler AMF as the first stage. This effectively limits the use of

ABORT to only those scenarios where the lower fidelity AMF threshold is passed.

3.4.6 Two-Stage Detectors

In addition to the common detectors described above, a number of two stage de-

tectors have also been proposed ([94], [95], [68], [85], and [96]). These detectors all

follow the same general process:

1. Apply one of the adaptive detectors listed above with a given threshold.

2. If the first test statistic falls below the threshold, the signal is deemed to not

contain a target return.

3. If the first test statistic surpasses the threshold for the first detector, apply a

second detector with another threshold.

4. If the second test statistic falls below the threshold, the signal is deemed to not

contain a matched target return.

5. If the second test statistic surpasses the threshold for the second detector, a target

detection is registered.

Additionally, these detectors typically follow a common trend: the first stage detector
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is a computationally efficient, less performant detector while the second stage detector

is a more computationally expensive algorithm with better performance in terms of

interference rejection. In all of those mentioned here, the AMF serves as the the first

stage detector.

In [95], a two stage AFM-GLRT detector is proposed, with the goal of reducing the

computational burden of Kelly’s GLRT detector while also offsetting the poor inter-

ference rejection properties of the AMF. [94] describes the Adaptive Sidelobe Blanker

(ASB), which is a two stage AMF-ACE detector. The ASB maintains the rejection

benefits of the ACE algorithm while mitigating its high computational complexity.

Additionally, the two detector thresholds can be tailored to help offset the relatively

poor matched target detection performance of the ACE detector. In [85], De Maio

describes a two stage approach to improve the efficiency of the adaptive Rao detector

(although this does not effectively mitigate its reliance of sample support for detec-

tion). Finally, the authors who proposed ABORT in [68] also proposed using it as the

second stage of a two stage detector with the AMF, using AMF as the primary detector

and the ABORT algorithm to reject mismatched target returns.

3.5 Covariance Modeling and Estimation

Adaptive detection algorithms are designed to maintain CFAR behavior regardless

of the clutter covariance. When deriving any such algorithm, it is generally required to

prove that CFAR behavior mathematically, as was done with each algorithm presented

in Chapter 3.4. However, demonstrating the CFAR nature of a detector experimentally

and mapping out its detection probability over a range of parameters are essential be-

fore using such algorithms in any real-world systems. Doing so requires conducting
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extensive testing. It is generally preferable (and necessary) to conduct most of the

detector characterization on simulated data. This is due in part to the expense and dif-

ficulty of obtaining the massive quantities of data needed to verify performance across

the broad range of environments in which detectors may be used. Additionally, simu-

lation allows the statistical properties of the signal to be directly generated, allowing

for much more robust characterization.

Part of that characterization needs to be evaluation of the detector’s performance

for different clutter covariance matrix (CCM) structures. This will give key insights

into the detector’s clutter rejection characteristics. Additionally, since adaptive detec-

tion algorithms rely on covariance matrix estimation to decorrelate interference data,

simulated CCM structures are needed to determine the effectiveness of the selected es-

timation method. I will now take some time to describe several common CCM models

and estimation methods. In Chapters 6 and 7, I use these methods to characterize both

a ML-enhanced adaptive detection algorithm and a technique for using generative ML

to produce whitening filters with limited sample support.

Before discussing specific CCM models, I will note several general properties of

covariance matrices [97, 66]. First, covariance matrices are always positive and semi-

definite. The diagonal is always equal to the variance of the data. Additionally, they

are always either symmetric (for a real matrix) or Hermitian (for a complex matrix).
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This results in structures that follow the form:

C =



σ w1,2 − jc1,2 w1,3 − jc1,3 . . . w1,N − jc1,N

w1,2 + jc1,2 σ w2,3 − jc2,3 . . . w2,N − jc2,N

w1,3 + jc1,3 w2,3 + jc2,3 σ . . . w3,N − jc3,N

. .

. .

. .

w1,N + jc1,N w2,N + jc2,N w3,N + jc3,N . . . σ



(3.50)

During initial derivation and characterization, many of the adaptive detection al-

gorithms presented in the literature are tested on relatively simple covariance models

[13, 81]. This is done to simplify the simulation process and allow for rapid testing

of the proposed algorithms. Specifically, they assume that the CCM is Toeplitz in

addition to its other properties. Teoplitz matrices have constant values along each de-

scending diagonal, and the combination of Hermetian and Toeplitz results in highly
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structured CCMs of the form:

C =



σ w1,2 − jc1,2 w1,3 − jc1,3 w1,4 − jc1,4 w1,5 − jc1,5 . . .

w1,2 + jc1,2 σ w1,2 − jc1,2 w1,3 − jc1,3 w1,4 − jc1,4

w1,3 + jc1,3 w1,2 + jc1,2 σ w1,2 − jc1,2 w1,3 − jc1,3

w1,4 + jc1,4 w1,3 + jc1,3 w1,2 + jc1,2 σ w1,2 − jc1,2

w1,5 + jc1,5 w1,4 + jc1,4 w1,3 + jc1,3 w1,2 + jc1,2 σ

.

.

.


(3.51)

Using this structure makes sense when one considers the nature of the CCM in radar

systems. For a given clutter patch, the covariance of the clutter returns reflect the level

of joint variability between discrete points sampled from a continuous return signal at

different times. For simple correlated clutter, it is reasonable to assume that any given

sample will be perfectly correlated with itself, and it will then have reduced correlation

with other samples more removed in time. As a result, the family of Toeplitz CCM

models are generally defined by a correlation coefficient and a decay rate. The simplest

Toeplitz model uses a linear decay:

Mij = 1− |i− j|
N

(3.52)

where i is the row index, j is the column index, Mij refers to the value of covariance

matrix entry at position (i, j), and N = max(i) = max(j) is the length of the radar

return signal. A more common model assumes an exponential decay in correlation
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[98]:

Mij = ρ|i−j| (3.53)

where ρ is the one-lag correlation coefficient. Note that both models in Equations

(3.52) and (3.53) produce real-valued CCMs.

These CCM structures are effective for modeling simple clutter scenarios, but fail

to capture the complex structures and phase information caused by Doppler compo-

nents in the clutter frequently encountered in STAP radar. Various more realistic mod-

els have been developed, with the Ward model proposed in [51] being the most broadly

used. When developing this model, Ward assumes that one is looking at a set of clutter

rings, each at a constant distance from the radar platform, which are then subdivided

into discrete clutter patches. Each clutter patch can then be represented by an eleva-

tion and azimuth, denoted θk and ϕl, relative to the platform. Looking at a particular

clutter patch, which will be referred to as the kl-th clutter patch, Ward then defines a

representation of the spatial frequency. The spatial frequency of the kl-th clutter patch

is:

νkl =
d

λ
cos θk sinϕl (3.54)

where d is the spacing between antenna elements in the array and λ is the signal

wavelength. Assuming then that the clutter is a combination of range ambiguous

returns and a large number of evenly distributed clutter sources, the clutter component

of a space-time snapshot can then be defined as:

χc =
Nr∑
k=1

Nc∑
l=1

αklv(νkl, ω̄kl) =
Nr∑
k=1

Nc∑
l=1

αklvkl (3.55)

where αkl is the amplitude of the returns from the kl-th clutter patch (defined as a
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random variable), vkl = v(νkl, ω̄kl) is the space-time steering vector of the kl-th clutter

patch, ω̄kl is the normalized Doppler frequency of the kl-th clutter patch, Nr is the

number of range ambiguities, and Nc is the number of clutter sources.

Ward assumes a constant Gamma model for clutter and defines the clutter-to-noise

ration, ξkl such that:

E[|αkl|2] = σ2ξkl (3.56)

where σ2 is the noise power. Finally, this allows the clutter covariance to be modeled

in terms of the noise power, clutter power, and clutter space-time steering vector as:

M = E[χcχ
H
c ] = σ2

Nr∑
k=1

Nc∑
l=1

ξklvklv
H
kl (3.57)

For testing an adaptive detection algorithm, once the CCM and clutter models

have been chosen and implemented, a CCM estimation method must be selected. As

previously noted, K secondary samples (denoted zk) containing only interference are

used in these approximation techniques. The most straightforward and widely used

method is derived from the definition of the second moment and assumes that all

support samples are independent and identically distributed (i.i.d) [99]. Recall that the

second moment of a random variable z is defined as:

Σ = E[(z− µ)(z− µ)H ] (3.58)

and that the definition of the expected value is:

E[z] =
∞∑
i=1

zipi (3.59)
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where zi represents a possible value of z and pi is the probability of zi. If the distri-

bution of z is not known, but a number, K, of i.i.d. samples of z are available, then

the probability of each zi can be assumed to be approximately pi =
1
K

. The expected

value of z can then be approximated as:

E[z] = µ ≈ 1

K

K∑
i=1

zi (3.60)

Extending this approximation to the second moment of z we get:

M ≈ 1

K

K∑
k=1

(zk − µ)(zk − µ)H (3.61)

This approach will perfectly reconstruct the CCM as K → ∞. This is not practical,

however, as the more support samples are required the more time and computation are

required for processing each radar return. Minimizing the amount of support data re-

quired for adaptive detection is a major research focus area. The approach in Equation

(3.61) degrades quickly as K becomes small and requires at least K = 2N to achieve

a useful reconstruction [51].

Significant work has been done in the field to develop alternative estimation meth-

ods that either improve the fidelity of the estimation or that reduce the sample support

requirements. Many attempt to do so by exploiting structural properties of covariance

matrices. The Toeplitz and Hermetian assumptions have been used extensively in the

literature with low-rank matrix approximations [100, 101, 102] and iterative meth-

ods [103]. A number of adaptive detection algorithms have also been derived under

the assumption that CCMs will be persymmetric [104, 105, 106]. The low-rank and

sparse properties of clutter covariance have also been exploited to solve this problem
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[107, 108, 109, 110].

Recursive CCM estimation methods are also used extensively in the literature. In

2002, Conte et al. proposed a recursion method that alternatively locked the texture

values and the CCM estimate and solved for the other. [111]. The fixed-point es-

timator is used to iteratively estimate the CCM in [112, 113]. There are multi-step

estimators like the work of Ali et al. [114], which estimates the number of clusters,

parameter values (angle of arrival, angle spread, and power contribution of clusters),

and then uses this information to estimate a CCM for other frequency ranges. Finally,

a cognitive radar system in [115] uses cosine similarity of CCMs as part of an adaptive

detection system.

3.6 The Kalman Filter

I will close out this chapter with a brief discussion of the Kalman filter. This signal

processing technique was first proposed by Kalman in [116], and variations of it have

become some of the most widely used state estimation tools for tracking and naviga-

tion around the world. The original derivation of the KF assumed the system it was

modeling was linear. This was a powerful tool, but it doesn’t accurately reflect many

real world systems [117, 118]. Various modifications have been proposed to allow the

KF to extend to nonlinear systems, most notably the EKF and the Unscented Kalman

Filter (UKF) [119, 120]. I specifically used the EKF in Chapter 5 when developing

and testing an ML-based tool for correcting drift errors in tracking and navigation sys-

tems.

In its original formulation, the KF attempts to approximate a simple state model

and use that model to predict the next state of the system under observation. This is
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accomplished iteratively through a cycle of predicting the next state, observing that

state, and then updating the KF based on the error between its prediction and observa-

tion. Two models are initially defined: 1) a state model and 2) a measurement model

[119]. As its name suggests, the state model is meant to approximate the state of the

system being observed. It is assumed that this model can be represented as a proba-

bility distribution (usually Gaussian) that can be fully characterized by a mean µ and

covariance R. This model can be represented as:

x(k + 1) = f(x(k),u(k),b(k), k) (3.62)

In Equation (3.62), x(k) is the state at timestep k, u(k) is an input vector, and b(k) is

the modelling error. The prediction step of the KF simply consists of propagating this

model to the next timestep and calculating the mean and covariance as:

µ(k + 1|k) = E[f(x(k),u(k),b(k), k)] (3.63)

R(k + 1|k) = E[{x(k + 1)− µ(k + 1|k)} × {x(k + 1)− µ(k + 1|k)}] (3.64)

where µ(k + 1|k) is the state mean at timestep k + 1 given the state model at time k,

R(k + 1|k) is the state covariance at timestep k + 1 given the state model at time k,

and E(•) is the expected value function.

Next and observation of the system is made:

z(k + 1) = g(x(k),u(k), k) +w(k) (3.65)

where z(k) is the observation at timestep k and w(k) is the observation error. In

85



detection and tracking, this would take the form of receiving an update from a sensor

system like a radar or GPS unit.

This observation is then used to update the state model using a linear, minimum,

mean-squared error estimator:

ẑ(k + 1) = E[g(µ(k + 1|k),u(k + 1), k + 1)] (3.66)

v(k + 1) = z(k + 1)− ẑ(k + 1|k) (3.67)

µ(k + 1|k + 1) = µ(k + 1|k) +GK(k + 1)v(k + 1) (3.68)

R(k + 1|k + 1) = R(k + 1|k)−GK(k + 1)P(k + 1)GT
K(k + 1) (3.69)

In these equations, P(k) refers to the covariance of vk at timestep k and GK is known

as the Kalman gain. The Kalman gain weights the model update and is designed to

quantify how closely the state model matches the real system based on its prediction

and observations. High Kalman gains reflect poor matching between the model and

the system, and they result in larger updates to the state model. This gain is calculated

at each update step as:

GK(k + 1) = Rµẑ(k + 1)P−1(k + 1) (3.70)

where Rµẑ is the cross covariance between µ and ẑ.

The EKF is a simple extension of the KF that allows it to be applied to non-linear

systems. It applies a common technique known as linearization. If we assume that f is

a non-linear function, then we can expand the error in the state model prediction using

a Taylor series expansion. It is then assumed that all second order and higher terms in
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the expansion have a negligible contribution to the error, resulting in an approximation

of the state prediction error:

x(k + 1)− µ(k + 1|k) ≈ Fx[x(k)− µ(k|k)] + Fbb(k) (3.71)

where Fx is the Jacobian of f(•) with respect to x(k) and Fb is the Jacobian of f(•)

with respect to b(k). That approximation allows us to reformulate the state predictions

as:

µ(k + 1|k) = f(µ(k|k),u(k), 0, k) (3.72)

R(k + 1|k) = FxR(k|k)FT
x + FbQ(k + 1)FT

b (3.73)

where Q(k) is the covariance of b(k).

The use of linearization has proven to be highly effective while not adding signifi-

cant computational overhead to the EKF. This has led the EKF to be the gold standard

for state estimation in many fields like tracking and navigation. However, it has sig-

nificant limitations due to the truncation of higher order terms in the Taylor series

expansion. That truncation leads to substantially degraded performance of the EKF

when the system being modeled is significantly non-linear.
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Chapter 4

The Self-Explaining Decision Architecture

4.1 Introduction

In this chapter, I will describe my ideation, development, and proof of concept test-

ing for a novel decision-making architecture designed to allow autonomous systems

to provide human-readable explanations for their outputs in real time. This architec-

ture was built to use the concepts of ML interpretability, explainability, attention, and

hierarchical decision-making to try and create an extensible system capable of break-

ing down complex actions into sets of decisions and replicate human explanations

for those decisions. I will first describe the architecture itself. Then I will detail its

initial implementation before discussing how this design was tested. This work was

published in [9] and a provisional patent was filed for the architecture in 2022 (the

process to convert to non-provisional US patent is currently underway at the time of

writing). Additionally, I have worked with several colleagues on two separate efforts

to implement this architecture for applications to data fusion in computer vision [10]

and Command and Control (C2) as part of the Air Force Research Laboratory Con-

tract FA8750-21-C-0105.
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My earliest forays into the realm of ML had me developing basic neural network

architectures and employing supervised training to teach them to solve various classi-

fication and regression problems. After that, I looked for ways to apply these concepts

and models to my work with the Air Force’s C2 community. In particular, my team

was exploring how to use ML to augment sensing, data fusion, and decision-making

processes. However, I kept getting the same two concerns from each operational group

I talked to about using ML in the C2 domain: 1) ML is not consistent enough to make

decisions in mission or safety critical systems, and 2) decisions made by black box

methods like neural networks can’t be trusted. This led me to begin investigating

ways to overcome these two challenges.

The concerns expressed by operators towards consistency of ML behavior were all

rooted in the probabilistic nature of ML systems. More traditional algorithms either

have a set of strictly defined states established by their developers or are defined by

a set of deterministic equations that allow for easy mapping between inputs and out-

puts. ML algorithms, on the other hand, are trained using input-label pairs and their

behavior cannot be readily mapped unless the model is trivially small. This can result

in unexpected behaviors manifesting that can be difficult to troubleshoot. Even if a

ML system has a much higher performance record than a deterministic algorithm, the

inability to point to a simple calculation to explain why seemingly anomalous behav-

iors occur cause them to be perceived as a liability in many applications.

Similarly, concerns over the trustworthiness of ML models and their black box

nature are rooted in their probabilistic behavior and complex structure. Rather than

defining a full mathematical model for complex systems, ML systems attempt to learn

models that approximate those systems as closely as possible. Again, this can result

in behaviors that are anomalous, or at least seem anomalous to people. Human deci-
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sion makers and deterministic algorithms often behave erroneously, but they can be

questioned or evaluated in real time to mitigate the effect of such errors. However, the

massive size of many ML systems, along with the abstract nature of the relationships

they can learn, often make it infeasible to diagnose why ML systems arrive at the out-

puts they do in real time. In fact, it can even make it extremely difficult to diagnose

model issues post hoc. The inability to question model outputs or quickly and con-

sistently diagnose issues limits user trust in the ability of ML system to make critical

decisions.

In exploring how to overcome these issues, I discovered the notions of ML in-

terpretability and explainability. Each concept seeks to mitigate the issues associated

with the ML black box. Interpretability does this by providing insights into the inner

workings of the model itself so that users can understand mathematically why systems

arrive at their outputs. This is commonly done by either intensive mapping of the

internal structures of the model or by simplifying the model to make it intrinsically

easier to comprehend. Simplifying models can also result in more consistent model

behavior. Explainability, on the other hand, seeks to shed light on a model’s behavior

by translating its abstract decision-making process into a format that is readily under-

stood by human observers. This can take the form of things like attention masks for

images or text explanations output by a model. This is a more abstract concept than

interpretability, but also has considerably more potential for improving operator trust.

This was a critical point in my early dissertation research that has helped to shape

my work since. The idea of simplifying models to improve consistency led me to

develop a structured approach to break down data processing and decision-making

into component elements that can be performed by a combination of specialized ML

models or deterministic systems. This set me on the path of designing ML systems
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based on first principles: pairing ML with traditional signal processing, augmenting

existing techniques wherever possible, and replacing proven methods with ML only

when it makes sense to do so.

The notion of translating ML decision processes into human terms caused me to

research how humans make decisions and to find a combination of ML attention and

architectural methods to replicate those. I found that human explanations can effec-

tively be reduced to two elements: 1) attention (what someone was paying attention

to) and 2) reasoning (how someone’s observation translated into a given decision).

The idea of ML attention has been well defined through attention mechanisms (as

discussed in Chapter 2.3). Additional work has been done to integrate reasoning com-

ponents into decision-making neural networks for generating post-hoc explanations

[41, 42]. Ultimately, I was able to build on these concepts and design an architecture

to enable ML systems to explain their own decisions in real time: the Self-Explaining

Decision Architecture (SEDA). SEDA provides a framework for ML explainability

and seeks to emulate the way people explain their decisions, enabling users to rapidly

understand the system’s outputs.

SEDA is designed to be a general architecture, capable of supporting a wide range

of applications. Each element of it can be implemented with different ML or deter-

ministic structures. In this chapter I will describe both the general SEDA framework

and an initial implementation of it that makes use of a combined CNN and LSTM deep

neural network (DNN) with attention mechanisms to fuse both spatial and temporal

data. The DNN is followed by a decision hierarchy that recommends actions based on

the output from the CNN-LSTM DNN. Finally, both the system attention and the path

through the decision hierarchy are used to output a text-based explanation of the sys-

tem’s decisions. Using these two elements to create decision explanations is intended

91



to provide information on the data elements the system focused on when making a

decision as well as the reasoning that was used to select the recommended course of

action. While I personally designed SEDA and developed its initial implementation, I

worked closely with a colleague, Brian Sun, to test the system’s performance. I will

take care to note which portions of the testing were designed and run by each of us.

4.2 Self-Explaining Decision Architecture

The goal of my work on SEDA was not to create a specific tool. Rather, as its

name might suggest, I sought to establish an architectural approach to streamline ML

integration into critical decision-making systems by allowing them to be questioned

by users in real time. This approach required me to break down the elements of sens-

ing, decision-making, and explanations into component elements and then orchestrate

them to form a cohesive system. I will now describe the SEDA framework, depicted

in Figure 4.1. Note that the architecture is designed to be generalized, with multiple

ways to implement each component. This was done to allow it to be as broadly and

easily applicable as possible. SEDA consists of five primary subsystems: data encod-

ing, feature extraction, sequence interpretation, decision generation, and explanation

generation.

The feature extraction and sequence interpretation subsystems together form a

compound module for detecting patterns in spatiotemporal data. SEDA was originally

designed for processing spatiotemporal data due to that data format’s broad applica-

bility in the C2 domain. However, SEDA is readily adaptable to other application

spaces and data formats. For instance, the sequence interpretation component could

be readily implemented with a transformer to accommodate non-sequential patterns.
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Figure 4.1: High-level diagram of the Self-Explaining Decision Architecture
(SEDA).

Additionally, the attention mechanisms used to generate explanations can be readily

substituted or adapted to work with most ML models.

4.2.1 Data-Encoding Subsystem

The data-encoding subsystem performs any preprocessing needed to ensure that

the data is ready to be passed into the feature extraction component of SEDA. It in-

cludes operations like data cleaning and encoding non-numeric information. The exact

preprocessing performed by the data-encoding subsystem will vary significantly de-

pending on the application.

4.2.2 Feature Extraction Subsystem

The feature extraction subsystem serves to identify important features in the data

that should be used in the decision-making process. These features are then passed

on to the sequence interpretation subsystem. It is also responsible for keeping track

of and storing information about what the subsystem was attending to when it was
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extracting features (via the use of attention mechanisms). This attention information

is used to help generate decision explanations, and may also be used directly by the

decision-generation subsystem in the decision-making process.

4.2.3 Sequence Interpretation Subsystem

The sequence interpretation subsystem serves to allow SEDA to identify patterns

in sequential data, such as time-series data. It enables more complex datasets to be

used and more complex decisions to be made. The observed patterns are provided

to the decision-generation subsystem to initiate the decision-making process. This

subsystem is also responsible for tracking and storing the impact of each sequence

entry on the patterns it identifies. As with the feature extraction subsystem, this is ac-

complished using attention mechanisms. That information is used by the explanation-

generation subsystem to help explain the decisions that are made. It is also made

available to the decision-generation subsystem for possible use in the decision-making

process. Note that SEDA is still applicable when sequential data is not used by simply

assuming a sequence length of one.

4.2.4 Decision-Generation Subsystem

Together, the data encoding, feature extraction, and sequence interpretation sub-

systems seek to emulate the way in which people make observations by taking in

information, processing it, and detecting patterns. They are followed by the decision-

generation subsystem, which seeks to emulate the way in which people make decisions

based on their observations. It achieves this by breaking down complex decisions into

a collection of simpler ones, which it selects between based on the specific patterns

that have been observed in the data as well as contextual information garnered from
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what the previous subsystems deemed to be important. This subsystem is designed

to have some underlying reasoning behind its decision-making process. It does this

using the output from the sequence interpretation subsystem along with the combined

system attention collected by the feature extraction and sequence interpretation sub-

systems. The decision-generation subsystem must also record the reasoning behind

its decisions and provide that information to the explanation-generation subsystem.

The subsystem’s decision can then either be output as a recommendation or directly

executed, depending on the application and level of autonomy desired.

4.2.5 Explanation-Generation Subsystem

Finally, the combination of system attention (aggregated from the attention stored

by the feature extraction and sequence interpretation subsystems) and system rea-

soning (from the decision-generation subsystem) are provided to the explanation-

generation subsystem. The structure and complexity of this subsystem will vary signif-

icantly depending on the application and implementation. However, a design might in-

volve generating decision reasoning to explain why a particular decision was reached.

For example, an autonomous vehicle might explain avoiding an obstacle: “HAZARD

DETECTED IN PATH → ALTERING PATH TO AVOID → CHANGING LANES AND RE-

DUCING SPEED.” If the user required additional information, attention may be used

to provide details of what the system was focusing on when it made a given decision.

Building on the previous example: “A TIRE HAS BEEN IDENTIFIED IN THE ROAD

200 FEET AHEAD OF US; GIVEN OUR CURRENT TRAJECTORY AND SPEED, ALONG

WITH THE SIZE OF THE OBSTACLE, IT IS EXPECTED THAT SEVERE DAMAGE WILL

BE DONE TO THIS VEHICLE UNLESS WE ALTER COURSE TO DRIVE AROUND THE

OBSTACLE.”.
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4.3 Preliminary SEDA Implementation

I will now describe a preliminary implementation of SEDA intended to serve as a

proof of concept. This preliminary implementation makes use of all components of

SEDA from end to end, but was designed and implemented for simple, representative

test cases. The prototype system was developed using Python and Tensorflow. It

has been tested both with the openly available and widely used Modified National

Institute of Standards and Technology (MNIST) image dataset [121] and with a simple

simulation time-series image dataset developed in Matlab by Brian Sun. The MNIST

dataset contains images of hand written digits and is widely used in proof of concept

testing for CNN-based architectures. Each of these datasets uses only a single channel

(grayscale). Due to the nature of the architecture and the simplicity of the data used

for proof of concept, little to no modification of the prototype system was required for

each set of tests.

4.3.1 Data Encoding Implementation

The prototype data-encoding subsystem performs minimal preprocessing. In the

case of the MNIST images, this subsystem divides each image into four sub-images

then arranges the sub-images into a sequence because images inherently contain spa-

tial data but not sequential data. In the case of the simulated time-series data, no

encoding is necessary as this data was custom generated for testing this prototype.

4.3.2 Feature Extraction Implementation

The prototype feature extraction subsystem is implemented as an attention-based

CNN. This CNN consisted of three convolutional layers, with attention modules af-
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ter the first and third, a maxpooling layer after the second convolutional layer, and a

flattenting layer. The specific model parameters (such as the number of nodes in each

layer) varies somewhat between the MNIST and custom time-series datasets, so de-

tails for the model configuration will be provided shortly in Section 4.3.6 as part of the

experimental setup. In this implementation, the CNN is used to learn relevant spatial

relationships in the data, which are then passed to the sequence interpretation subsys-

tem as features. It utilizes multi-layer attention in the CNN, as depicted in Figure 4.2.
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Figure 4.2: Prototype SEDA feature extraction subsystem.

Convolutional block attention modules (CBAMs) [23] are placed after various con-

volutional layers in the CNN to gather attention information from the network. Each

CBAM layer generates two attention masks, one that reflects the overall importance

of each kernel in the preceding convolutional layer (channel attention) and one that

reflects the importance of each pixel (spatial attention). These masks are multiplied

together to generate a D×W×H attention matrix, where D is equal to the number

of kernels in the preceding convolutional layer, and W and H are, respectively, the

number of pixels in the height and width dimensions of the image at that point in the

network. The CBAM was described in more detail in Chapter 2.5.1.

Each time a sequence is passed through the system the spatial attention matrix is
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saved as part of the system attention. Early layers in a convolutional network learn

to recognize straightforward spatial relationships in images. The kernels in these lay-

ers will often learn to perform standard image processing like edge detection or color

identification. Deeper convolutional layers impact wider regions of an image and will

tend to learn more abstract patterns. While only one attention layer is necessary to sat-

isfy the requirements of SEDA, utilizing attention layers at multiple points throughout

the network enables more thorough explanations to be generated by analyzing some

combination of simpler and more complex forms of attention.

4.3.3 Sequence Interpretation Implementation

The prototype sequence interpretation subsystem consists of an LSTM network

with Luong attention [25], as shown in Figure 4.3. It is comprised of a single LSTM

layer with attention followed by two fully connected layers. As with the feature ex-

traction subsystem, the specific model parameters vary for the two test cases that were

used for proof of concept, so details of the model configuration are provided in Chap-

ter 4.3.6 as part of the experimental setup. Note that Luong attention is commonly

referred to as dot product attention and was described in Chapter 2.3. The LSTM

ingests feature maps, learns temporal (or sequential) relationships, and makes classi-

fications based on those relationships. The attention mechanism enables the LSTM to

learn sequential relationships that may include gaps and serves as another element in

the generation of explanations.

4.3.4 Decision Generation Implementation

The prototype decision-generation subsystem uses a decision hierarchy. Decision

hierarchies allow systems a certain degree of freedom to decide between multiple pos-
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Figure 4.3: Prototype SEDA sequence interpretation subsystem.

sible actions in a given situation, rather than enforcing a strict decision path. Their

hierarchical nature also makes the underlying reasoning behind decisions straightfor-

ward to develop and verify by referring to the path(s) traversed through the decision

hierarchy. These structure have historically been used to to break down complex be-

haviors into simpler, directly executable ones, as described in [122]. An example of

this is depicted in Figure 4.4. I believe this structure lends itself well to modeling

human decision-making and served as the inspiration for the decision generation sub-

system developed for this work. The implementation used in this work is depicted in

Figure 4.5.

The prototype consists of a three-layer hierarchy. There are three decision options

in the first decision layer, five in the second, and seven in the third. Each layer uti-

lizes a simple feedforward, fully connected DNN with two hidden layers to arrive at

its decisions. The DNNs are trained to interpret attention information to recognize

key contextual details in the data, produce a human-readable message explaining its

interpretation of the provided attention information, and arrive at a decision based on

the combination of those contextual details and the output of the previous layer of

the hierarchy. This emulates the way people make decisions based on observations

of the world around them by breaking down complex or abstract decisions into a se-
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Figure 4.4: Example decision hierarchy from [122].

ries of increasingly simple ones and selecting a course of action from amongst their

perceived options based on the current context. In this prototype, each decision layer

was provided with the output from the previous layer (or the output of the sequence

interpretation LSTM in the case of the first layer) and one set of attention information:

CBAM attention from the first feature extraction convolutional layer was used by the

top layer of the decision hierarchy, CBAM attention from the last feature extraction

convolutional layer was used by the second layer of the decision hierarchy, and Luong

attention from the sequence interpretation LSTM was used by the final layer of the

decision hierarchy.

4.3.5 Explanation Generation Implementation

This subsystem uses the combination of attention and reasoning to provide real-

time, human-readable explanations of system decisions. A high level view is shown in
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Figure 4.5: Prototype SEDA decision-hierarchy subsystem.

Figure 4.6. The decision reasoning, based on the path traversed through the decision

hierarchy, is used to explain why a particular decision was reached. In this proto-

type explanation generation subsystem, decisions are text-based and written to a .txt

file. Each decision level in the hierarchy is explained with one sentence. A secondary

statement for the second and third decision layers are used to provide attention infor-

mation. The format of the explanations is:

1. Decision number:

(a) Top-level decision
i. Contextualized spatial attention

(b) Mid-level decision
i. Contextualized sequence attention

(c) Low-level decision

The goal for this explanation structure was to provide an easily readable structure

and provide enough information to the user without overwhelming them. This may

not have been necessary for the simple problems used to evaluate the prototype, but

will be essential to any fully operational version of SEDA, particularly if it were used

in the C2 domain as intended.
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Figure 4.6: Prototype SEDA explanation-generation subsystem.

4.3.6 Experimental Setup

As previously mentioned, two datasets were used to the evaluate the prototype im-

plementation of SEDA: 1) the MNIST dataset and 2) a custom time-series simulation

developed by Brian Sun. For both datasets, the inputs to the system are structured as

sequences of images. This was done to ensure that all elements of the SEDA frame-

work could be tested. In the case of MNIST, the data-encoding subsystem divides

each 1×28×28 grayscale image of a handwritten numeral into four 1×14×14 sub-

images as shown in Figure 4.7 for a numeral ’9’, and each group of four sub-images

is treated as a single sequence. Note that this provides a sequential component to the

data, but not a temporal one. MNIST was selected at the time because it was a large,

well-groomed, and thoroughly analyzed dataset that was widely used in the literature

to characterize state-of-the-art convolutional networks, making it ideal for testing the

feature extraction subsystem. Choosing such a dataset allowed us to isolate variables

for more targeted testing of the architecture since MNIST does not have many com-

mon data issues (corruption/missing data, unbalanced classes, etc.) that can interfere

with training ML systems.
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(a) Original MNIST Image (b) Processed Image Sequence

Figure 4.7: Example MNIST input data item showing original (a), and divided into
sequence of sub-images (b).

The custom time-series dataset was generated as a sequence of images in which a

target gradually appears over time. Each image is 1×28×28 and somewhere within

that image a 10×10 sub-image for one of two target patterns appears: 1) a cross pattern

or 2) a chevron pattern. At each time step, a 1×28×28 snapshot of the scene is taken

and a target progressively appears from top to bottom, with more target information

being provided to the prototype SEDA system over time. Note that this provides both

a sequential and temporal component to the data. Using a simple temporal dataset

allowed for more robust testing of the SEDA prototype’s sequence interpretation sub-

system. An example of the custom dataset is depicted in Figure 4.8. Note that the

custom time series dataset was not used on the full SEDA system. It was purely used

to train the CNN-LSTM network and analyze the attention information produced by

that network. The simulator for this dataset was developed by my colleague Brian

Sun, who also used it to generate the full set of custom time-series data.
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(a) Complete Image (b) Input Image Sequence

Figure 4.8: Example custom input data item showing complete (a), and sequence (b)
images.

For each dataset, 60,000 images were used for training and 10,000 images were

used for validation. Five sets of labels were generated for each MNIST image se-

quence to be used in training. Only one label set was generated for the custom time

series dataset. The first set of labels were classification labels for the original images

used to train the neural network that comprises the combined feature extraction and se-

quence interpretation subsystems. Note that these two subsystems were implemented

as an integrated CNN-LSTM network and were trained together. The first set of train-

ing labels were pulled directly from the datasets. In the case of the MNIST dataset,

these were just the numbers 0–9.

Four additional sets of labels were created to train the layers of the decision hi-

erarchy for the MNIST dataset. As previously discussed, each layer of the decision

hierarchy was implemented with a fully connected neural network, each of which

needed to be trained. I defined and generated these labels based on a combination of
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(a) Chevron Away Image (b) Chevron Toward Image

Figure 4.9: Time series of chevron “away” (a) and “toward” (b).

properties in each image or sequence and the desired output of the previous layer of

the decision hierarchy (or the output of the LSTM in the case of the first layer of the

decision hierarchy). These four label sets are used to both train the system how to

navigate the decision hierarchy and to interpret specific contextual information from

the image sequence. In essence, these labels are used to teach the system to interpret

its attention information and to establish its method of reasoning through decisions.

That makes the selection of these labels and subsequent testing with them crucial to

verifying the ability of the proposed architecture to provide explanations of its deci-

sions in an intuitively understandable way. As a result, the properties selected for the

generation of each label were chosen because they were readily observable by peo-

ple, easily tested, statistically relevant, and represent either unique spatial or sequence

properties of each grouping. Note that these labels were generated programatically

using sets of rules that assumed ideal outputs from the LSTM and each layer of the

decision hierarchy.
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(a) Cross Away Image (b) Cross Toward Image

Figure 4.10: Time series of cross “away” (a) and “toward” (b).

The label sets used to train the decision hierarchy layers for the MNIST dataset

were generated based on specific properties of the images that were readily measur-

able. The label set for the top layer of the decision hierarchy was defined solely based

on the output of the sequence interpretation LSTM. Two sets of labels were generated

and tested for the middle decision layer. The results of each label set on the full sys-

tem performance were then compared. The first was based on the presence or absence

of open and closed loops in the input image. For instance, a ‘0’ contains one closed

loop, a ‘3’ contains two open loops, and a ‘7’ contains no loops. This label set was de-

fined to test the ability of the prototype SEDA implementation to detect and interpret

simpler positional structures and relationships within an image or higher dimensional

dataset. The second label set for the middle layer was generated based on the average

pixel intensity of the input images. This label set was designed to examine the pro-

totype system’s ability to identify and interpret more abstract spacial properties and
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relationships. The label set used to train the lowest level of the decision hierarchy was

generated based on which of the sub-images in the sequence (corresponding to the

quadrants of the image) had the highest average pixel intensity. This was designed to

test whether the prototype system could be taught to interpret sequence-specific prop-

erties of the data. These labels are detailed in Table 4.1.

For the custom time-series data, the labels were generated directly by the simulator

based on the type of target and its orientation. Four classes were defined in the label

set: 1) chevron toward, 2) chevron away, 3) cross toward, 4) and cross away. The

system was trained to identify chevron target patters as hostile and cross target patterns

as friendly. The notion of “toward” versus “away” in this case refers to whether the

observed target is determined to be moving toward or away from a location of interest

(in this case the upper left corner of the simulated scene). It was arbitrarily defined for

the simulation based on the orientation of the target sub-image. Specifically, a chevron

target with the central point facing up or to the left is identified as moving toward the

location of interest and a chevron target pointed down or to the right is identified as

moving away. Equivalently, a cross target aligned with the x-y axes is determined to

be traveling toward the region of interest and a cross target offset from the x-y axes by

45o is determined to be traveling away from it. These labels for the custom dataset are

shown in Table 4.2. Figure 4.9 and Figure 4.10 depict examples of the chevron and

cross target data sequences, respectively.

After the data and labels were generated and the input data was preprocessed into

image sequences, it was passed into the feature extraction subsystem. For the pro-

totype SEDA implementation, the feature extraction subsystem consisted of a CNN

containing three convolutional layers, with a CBAM attention layer using rectified

linear (ReLU) activation after each convolutional layer, and a maxpooling layer after
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Table 4.1: Decision Hierarchy Label Conditions for MNIST

Condition Decision Value

LSTM out = 0,1,2 Friendly L1 label = 0
LSTM out = 3,6,7 Hostile L1 label = 1

LSTM out = 4,5,8,9 Neutral L1 label = 2

L1 label = 0 and closed loop Assist L2 label = 0
L1 label = 0 and no loop Contact L2 label = 1

L1 label = 0 and open loop Assist L2 label = 0
L1 label = 1 and closed loop Evade L2 label = 3

L1 label = 1 and no loop Engage L2 label = 2
L1 label = 1 and open loop Engage L2 label = 2

L1 label = 2 Ignore L2 label = 4

L1 label = 0 and higher average Assist L2 label alt = 0
L1 label = 0 and lower average Contact L2 label alt = 1
L1 label = 1 and higher average Evade L2 label alt = 3
L1 label = 1 and lower average Engage L2 label alt = 2

L1 label = 2 Ignore L2 label alt = 4

L2 label = 0 and top left Defend L3 label = 1
L2 label = 0 and bottom left Defend L3 label = 1
L2 label = 0 and top right Escort L3 label = 0
L2 label = 0 and top right Escort L3 label = 0
L2 label = 1 and top left CloseDistance L3 label = 3

L2 label = 1 and bottom left CloseDistance L3 label = 3
L2 label = 1 and top right Transmit L3 label = 2

L2 label = 1 and bottom right Transmit L3 label = 2
L2 label = 2 and top left CloseDistance L3 label = 3

L2 label = 2 and bottom left Strike L3 label = 5
L2 label = 2 and top right CloseDistance L3 label = 3

L2 label = 2 and bottom right Strike L3 label = 5
L2 label = 3 IncreaseDistance L3 label = 4
L2 label = 4 Ignore L3 label = 5

the second CBAM layer. After the last CBAM layer, the feature data is flattened and

a 0.25 dropout is applied.

The flattened feature map output by the CNN is fed into the sequence interpre-

tation subsystem, which consists of a LSTM with four cells, and uses the sigmoid

activation function. The LSTM is followed by a Luong attention layer that calcu-

lates the correlation between the output and each step in the input sequence. After

the sequence attention values are determined, the output of the final LSTM layer is
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Table 4.2: Custom Data Set Labels

Shape Orientation Label

Chevron away 0 (Hostile-away)
Chevron toward 1 (Hostile-toward)

Cross away 2 (Friendly-away)
Cross toward 3 (Friendly-toward)

Table 4.3: Implemented CNN-LSTM Feature Extraction and Sequence Interpretation
Subsystems by Layer L

L Type Input Shape Kernel Shape Output Shape
MNIST Custom MNIST Custom MNIST Custom

1 Convol. 14×14×1 28×28×1 2×2×8 3×3×8 12×12×8 26×26×8
2 CBAM 12×12×8 26×26×8 N/A 12×12×8 26×26×8
3 Convol. 12×12×8 26×26×8 2×2×8 3×3×8 10×10×8 24×24×8
4 CBAM 10×10×8 24×24×8 N/A 10×10×8 24×24×8
5 Maxpool 10×10×8 24×24×8 2×2×8 3×3×8 5×5×8 12×12×8
6 Convol. 5×5×8 12×12×8 2×2×32 3×3×32 3×3×32 10×10×32
7 CBAM 3×3×32 10×10×32 N/A 3×3×32 10×10×32
8 Flatten 3×3×32 10×10×32 N/A 288 3200
9 LSTM 4×288 4×3200 N/A 10

10 Dense 10 N/A 50
11 Dense 50 N/A 10 4

passed through two dense layers and a final softmax activation function to produce a

single classification for the input sequence. Once each sequence is passed through se-

quence interpretation, the sequence attention matrix is saved as part of the full system

attention. As previously noted, the feature extraction and sequence interpretation sub-

systems are implemented and trained as a single CNN-LSTM network. The general

structure for the CNN-LSTM network remained constant for each dataset, but the size

of the convolution kernels and layers differed. The architecture of this CNN-LSTM

are given in Table 4.3. The network was trained over ten epochs using categorical

cross entropy as the loss function with an Adam optimizer and learning rate of 0.01.

Both the output of the sequence interpretation subsystem and the spatial and se-

quence attention values are passed to the decision-generation subsystem. The output
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Table 4.4: Decision Hierarchy Decisions and Messages

Layer Decision Message

1
Friendly Entity is friendly.
Hostile Entity is hostile.

Neutral/Unknown Entity is neutral or unknown.

2

Assist Assist entity.
Contact Contact entity.
Engage Engage entity.
Evade Evade entity.
Ignore Ignore entity.

3

Escort Escort entity.
Defend Defend entity.

Transmit Transmit information to entity.
Close Distance Close distance to entity.

Increase Distance Increase distance to entity.
Strike Strike entity.
Ignore Ignore entity.

of the LSTM is fed into the top layer of the decision hierarchy, which then reaches

one of three high-level decisions. The determination from the top-level is concate-

nated with the spatial attention matrix and then passed into the second layer to make

one of five mid-level decisions. Finally, the sequence attention matrix and output of

the second layer are concatenated and passed into the final layer of the decision hi-

erarchy to reach one of seven low-level decisions. The final decision is output as the

recommended course of action for the system. The potential decisions that can be

made at each level of the prototype were designed to simulate a subset of those that

might be encountered in real command and control applications. The decision path

followed by the hierarchy is stored as the system’s decision reasoning. Each possi-

ble decision at each layer was associated with a human readable text-based message.

These messages were used by the explanation generation subsystem to explain the

prototype system’s reasoning. The list of possible decisions and associated messages

are shown in Table 4.4.
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Finally, the SEDA prototype generates a decision explanation based on the com-

bination of system attention and decision reasoning. The explanation-generation sub-

system read in the spatial and sequence attention matrices and the messages generated

by each layer of the decision hierarchy to produce its explanations. These explanations

consisted of both the messages generated by the decision hierarchy and a set of mes-

sages interpreting the system’s attention. The interpretation of the system’s attention

was generated using the outputs of the decision hierarchy’s fully connected networks.

Each network was trained to prioritize decisions based on key features in the input

sequence. The system determines the presence of these features by analyzing the out-

puts of the network at each layer and generates interpretation messages based on their

perceived presence or absence. An example of these human readable explanations can

be found in Figure 4.11. To aid with analysis, the prototype explanation generation

subsystem also output the raw attention matrices from the feature extraction and se-

quence interpretation subsystems.

Decision 1:
Entity is neutral or unknown.
Identified closed loop on entity.
→ Ignore entity.
Entity features concentrated in southwest quadrant.
→ Ignore entity.

Decision 2:
Entity is hostile.
Identified no loop on entity.
→ Engage entity.
Entity features concentrated in northeast quadrant.
→ Close distance to entity.

Figure 4.11: Example explanation generated by SEDA prototype.
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4.3.7 Results and Discussion

As I have noted before, relatively simple datasets were used to test and evaluate

the prototype implementation of SEDA. There were a number of reasons why the

prototype was characterized in this way. While the use of simple, curated datasets

leaves many open questions with respect to particular applications of the architecture,

it allows for more fundamental and robust testing of the architecture itself. It removes

the need to struggle with common data issues while examining how the subsystems

interact to output decisions and explanations. Such isolation of variables was essential

for the proposed architecture, which was quite a novel approach to self-explaining

ML at the time of its development. It also allowed for tight control of the expected

outputs of each component, enabling me to perform higher fidelity analysis of both

component and system level performance. I will now present the results of testing and

my analysis of those results. Note that as much quantitative analysis was performed

as possible, but certain elements of the explanation generation still do not have well-

defined metrics today and required more qualitative evaluation.

4.3.7.1 MNIST-Based Dataset

The first round of testing conducted on the prototype SEDA implementation was

done with the MNIST dataset. This testing was used to evaluate the performance

of a full SEDA implementation and examine the behavior of the attention mecha-

nisms on data with both spatial and sequential (though non-temporal) elements. The

CNN-LSTM network was trained first for ten epochs and achieved a validation accu-

racy of 94.5%. This process was repeated an additional ten times to ensure that the

model trained consistently. In each case, the validation accuracy was between 93%
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and 95%. For reference, the MNIST dataset has ten possible classes, so a system

guessing randomly would achieve 10% accuracy. The consistently high classification

accuracy demonstrated by the joint feature extraction and sequence interpretation net-

work demonstrated that it was able to successfully identify consistent patterns within

the data and use them to classify the observed digit. It also proves that separating each

image into quadrants and forming an image sequence did not significantly impede the

learning process.

Once the CNN-LSTM network was trained, attention information was collected

and analyzed at each layer of the system. This was accomplished by running the

full MNIST dataset through the trained CNN-LSTM model and saving the output of

each attention layer, along with the input sequence used to generate it, into a text file.

Full system attention consisted of three sets of spatial attention, each generated by

one of the CBAMs in the CNN, and the sequence attention generated by the Luong

attention module from the LSTM. Each set of spatial attention takes the form of a

three dimensional matrix Aspatial = R[D×H×W ], where D is the number of kernels

in the convolutional layer that immediately precedes the CBAM and H and W are

the dimensions of the input images to that same layer. What each CBAM outputs is

essentially a set of D masks that show the degree to which each input pixel contributed

to the corresponding kernel output. Put another way, it shows the level of attention

each kernel paid to each input pixel. The sequence attention produced by the Luong

attention module was a vector, asequential = R[1×N ], where N is the sequence length.

It maps the correlation between the final output of the network and each input sequence

step, indicating the extent to which the network attends to each sequence step.

Examples of the attention information collected at each point in the systems is

shown in Figure 4.12. Note that in this example, each set of spatial attention is summed
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along the channel dimension to produce a single H ×W image for the sake of read-

ability. Additionally, for this implementation of SEDA the attention from the first

CBAM had dimensions 8× 12× 12, the second 8× 10× 10, and the third 32× 3× 3.

The dimensions of the sequence attention were 1 × 4. The attention information was

used in two critical ways: 1) it was used as input information to the decision hierarchy

and 2) it was output as part of the system explanation. Considerable time was spent

reviewing and analyzing the attention information. The content of the system atten-

tion had a considerable impact on the structure of the decision hierarchy and the labels

used to train it.

At this stage, testing was performed on the collected attention data to verify that

it could be used in a MLP to classify data according to only the human observable

features described in Section 4.3. Spatial attention was used to train the MLP to detect

the presence of loops in the image and the average pixel intensity of each sub-image,

and sequence attention to train it to identify the image quadrant with the highest aver-

age pixel intensity.

Additionally, tests were conducted to see if a MLP using only the spatial attention

data could be trained to correctly classify the numeral present on the original image.

For tests using spatial attention, the performance of the MLP was examined using

attention from each CBAM individually, as well as the combination of attention from

all three CBAMs in the system. This allowed for the examination of how well the

system could be taught to interpret each level of attention to identify different types

of features. In all cases, the system could be trained to recognize the desired features

and correctly classify the image sequences based on those observations. For each test

case, a two-layer MLP was used with Adam optimization and softmax final activation.

These were trained for ten epochs with a learning rate of 0.01.
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(a) First CBAM Attention (b) Second CBAM Attention

(c) Third CBAM Attention (d) LSTM Luong Attention

Figure 4.12: Example MNIST-based image sequence attention showing heat map of
CBAM attention from first convolutional layer (a), second convolutional layer (b),

and third convolutional layer (c); and Luong attention for LSTM (d).
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The representative set of simple test cases allowed for the verification that the sys-

tem could be trained to interpret both spatial and sequence attention to detect readily

observable (and verifiable) features in the original images. It also demonstrated that

it could perform reliable classification based solely on those features. The success of

this early implementation of SEDA on well-defined data provides a strong indication

of its potential for use in more complex systems. In particular, it should be explored

for object detection in image and sensor data, data fusion, patterns of behavior analy-

sis, and control system for autonomous platforms.

Through inspection of the spatial attention from each CBAM, various observations

can be made about the object properties the feature extraction subsystem focused on

at each convolutional layer. It is clear from Figures 4.12a and 4.12b that earlier layers

focus on simpler, more immediately observable properties, such as detecting object

edges and distinguishing entities of interest from the background. This makes these

layers well suited for training the decision-generation subsystem to identify the pres-

ence of objects in a scene and identifying their characteristics. This observation is

consistent with the literature and supported by testing, which indicates that the atten-

tion from the first CBAM is highly effective at distinguishing between digits based on

loop features.

Deeper layers of spatial attention appear to focus on specific points of interest with

more abstract object properties. Figure 4.12c shows that the third convolutional layer

of the CNN focused on the end of the tail of digit 9, as well as the two points at which

a sharp curve appears in the loop of the 9. This kind of attention is well suited for

teaching the system to interpret the presence of specific object characteristics. This

is again supported by both the literature and experiments, which show that the MLP

trained with only attention information from the third CBAM performs better than the
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others at identifying the average pixel intensity in the image and in determining which

of the ten digits is present in the image.

These results verified that the system can be trained to interpret various forms of

attention and map that data to specific, human-interpretable concepts. It also demon-

strates that the proposed architecture generates both consistent predictions and human

readable explanations of attention features. However, it also highlighted a key chal-

lenge: useful implementations of self-explaining AI require significant domain exper-

tise and design work. While some work should be done to explore ways to reduce the

level of expertise needed, it should be noted that such design is essential to making

ML systems that can be used in most real-world applications.

Finally, the full system described in Chapter 4.3 was tested. For that testing two

configurations of the decision hierarchy were examined. They differed only in the

labels and spatial attention values used to train the second layer of the hierarchy. In

the first, the hierarchy was trained using the attention values from the first CBAM and

the L2 labels. For the other configuration the hierarchy was trained using the attention

values from the third CBAM and the L2 alternate labels (see Table 4.1). In both

cases, the final decision accuracy was greater than 90%, and the network accurately

generated explanations like those shown in Figure 4.11.

4.3.7.2 Custom Time-Series Dataset

After evaluating the SEDA implementation’s performance on the MNIST dataset,

a second round of testing was conducted with Brian Sun’s custom time series dataset.

This second round of testing was only used for targeted analysis of the CNN-LSTM’s

performance when presented with temporal data and additional examination of the

attention information produced by the model. This implementation had to classify in-
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puts into one of four categories based on the appearance of a target shape over time and

the orientation of that shape. This simple, but highly representative test case shows the

ability of the attention-based CNN-LSTM network to solve common computer vision

problems (differentiation of objects based on shape/orientation). It also showcased the

behavior of sequence attention when presented with an initially limited information

scenario in which additional information is discovered over time. The similarity in

spatial features between the target shapes (cross versus chevron) encouraged the sys-

tem to attend to specific physical features that were needed to differentiate between

them, which provided very useful and intuitive attention masks for evaluation. To ac-

commodate the new data, the size of many layers in the network had to be modified

(see Table 5.1). The network was again trained for ten epochs eleven times to ensure

that it converged consistently. Each time the model was able to achieve a classifica-

tion accuracy in excess of 96%. Given the consistency of the features and the strong

temporal component, it is unsurprising that the model trained to a higher classification

accuracy on this dataset. Unlike MNIST, which contains handwritten digits whose

features may vary due to handwriting styles, this dataset was generated by Matlab

with no noise added to the images. As a result, the features for each class were always

rendered identically with only their location and orientation changing. Additionally,

the temporal pattern had little variation with the first two timesteps containing rela-

tively little information and the last two adding in all features necessary to distinguish

between classes.

The full training dataset was then run through the best performing trained model

and each set of attention information was collected for evaluation. An example of the

system attention for this dataset is presented in Figure 4.13. From this set of example

attention data, a few observations can be highlighted. First of all, as with the MNIST
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(a) First CBAM Attention (b) Second CBAM Attention

(c) Third CBAM Attention (d) LSTM Luong Attention

Figure 4.13: Example time-series image sequence attention showing heat map of
CBAM attention from first convolutional layer (a), second convolutional layer (b),

and third convolutional layer (c), and Luong attention for LSTM (d).

testing, the deeper layers of the model clearly learned more abstract features. How-

ever, unlike the implementation trained on MNIST, very consistent patterns can be

identified in the spatial attention maps. In particular, the model consistently attended

to features in the upper left quadrant of the observed target and largely ignored the

rest. This is almost certainly due to the aggregation of three factors: 1) the targets are
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rendered over time starting at the top, 2) the kernels at each layer are applied from left

to right, and 3) there is generally enough information in any one quadrant of the target

to successfully classify it. Put another way, only one quarter of the target is needed

to successfully distinguish between most classes and the top left quadrant of the tar-

get is observed by the system first. So, it unsurprisingly learned to weight features in

that region more heavily. The sequential attention similarly showed very consistent

behavior that aligned with the strong temporal patterns in the data. Of the four time

steps, the first contains almost no information, the second adds a small amount of in-

formation (but not enough to make reliable classifications), the third adds a great deal

(and in fact adds enough for the system to make a successful classification) and after

the fourth time step the SEDA prototype has access to full information about the sce-

nario. This is reflected in the sequence attention collected, which consistently showed

low correlation values between the output and the first two time steps and very high

correlation between the output the last two time steps. This clearly demonstrated that

the model was able to learn targeted spatial and temporal relationships. It also clearly

demonstrated the validity of my hypothesis that these attention mechanism could be

used to identify the features used by a SEDA implementation and could be translated

into human readable context.

4.4 Conclusion

In this chapter, I presented my work developing the SEDA framework for self-

explaining autonomous systems. The goal of this work was to develop a method for

streamlining the deployment of ML into critical systems by integrating autonomous

decision-making and explainability to create systems whose decision can be ques-

tioned in real time. This was accomplished by modeling human explanations as a
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combination attention (what the person was paying attention to) and reasoning (why

they selected a given course of action). I then proposed using a combination of ML at-

tention and hierarchical decision structures to replicate these in an autonomous system.

This information would be contextualized and used to generate text-based statements

explaining system decisions. The architecture was designed to be highly flexible and

broadly adaptable. I presented the full architecture along with a prototype imple-

mentation that I developed and tested to prove out the concept. This prototype was

evaluated on two simple datasets that allowed me to directly characterize it without

having to consider the impacts of imperfect data.

While significant additional testing needs to be conducted to determine how read-

ily SEDA can be adapted to highly complex systems, the targeted testing presented

here was ideal for demonstrating the validity of the approach and developing methods

for translating highly abstract ML attention data into human language. The prototype

implementation proved to be well designed for testing each component of the architec-

ture. However, the attention mechanisms used in it were configured so that they only

provided observational data and did not contribute to the overall performance of the

network. Having learned more about attention structures in subsequent years, for fu-

ture implementations I would integrate attention more fully into the system in order to

better utilize the strong contextualization and non-sequential pattern recognition they

provide. I would also explore using multi-head attention to replace the fully connected

layers used in the decision hierarchy.

One publication was generated directly [9] and a provisional patent was submitted

for the framework. Additionally, I worked with colleagues to adapt the framework for

use in computer vision and in data fusion for target tracking. Working on adapting the

framework for use in data fusion and tracking was particularly interesting. Many of the
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issues that we ran into during that adaptation had to do with how to effectively mitigate

the impacts of noise and error on long term tracking. Common tracking algorithms at

the time either ignored historic error or developed filters based on assumptions about

the object motion to mitigate error. This led me to investigate how to develop a ML

system capable of capturing the causal relationships existing in object motion through

physical space and proposing alternative paths to remove historic error. That, in turn,

led me to research the topic of causal ML and counterfactual evaluation. I will describe

this research in detail in Chapter 5.

The work presented in this chapter was more abstract and theoretical than much of

the rest of the work presented in this dissertation. However, I believe it is important to

begin the discussion of my research here. Not only because it was it my earliest work

in ML, but also because it proved to be pivotal to the overall direction of my research

since. In creating SEDA, I was introduced to two of the most critical issues in ML:

1) a lack of general trust in ML decisions and 2) a lack of first principles design in

ML model development. The first issue limits the deployment of ML in most safety

or mission critical systems. The second limits the effectiveness and consistency of

ML models, as well as drastically driving up the data requirements for training those

models. Much of the ML community has focused on the issue of trust over the last

five years. SEDA has shown itself to be a highly effective architectural approach to

solving both of these issues.

The lack of trust in ML has been the subject of considerable research mostly cen-

tering on methods for providing model interpretability and/or explainability, as well

as developing metrics to quantify user trust. Conversely, the lack of system design in

ML has largely been dismissed by the ML community. Most ML researchers and pro-

fessionals view design and architecture as at best secondary elements of ML model
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development. It has broadly been believed that larger models and more data are all

we need to solve any problem with ML. While I understand where this view comes

from, I would argue that it is a short-sighted and unsustainable view that has limited

the development of ML algorithms in most applications and contributed to the broad

mistrust of ML. This has been showcased in recent years by high-profile failures of

many state-of-the-art models trained on vast quantities of data [123, 124].

This view has been popularized in more straightforward ML domains like com-

puter vision or language-to-language translation, where the data is highly structured,

easily obtainable, and readily understood by human observers. Applications in these

domains also have relatively high error tolerance, with 99% model accuracy typically

considered acceptable, and low error impact. More complex applications of ML, like

strategic decision-making, data fusion, resource management, and radar have seen lit-

tle success due to the lack of representative data, more complex or probabilistic nature

of the application, dependency on multi-modal data, and tight error tolerances. These

domains typically rely on human input or on algorithmic solutions that make certain

assumptions about the underlying nature of the problem space that often do not hold

true. ML models, on the other hand, do not make those assumptions, and instead learn

an approximate representation from the data presented to it. Understanding these chal-

lenges and working on system level ML design with SEDA led me to conclude that

ML had considerable potential to augment, rather than replace, existing algorithmic

solutions. By using a first principles understanding of complex problem spaces, as-

sumptions and edge cases that interfere with existing algorithms can be identified and

ML models trained using targeted (preferably synthetic) datasets to remove assump-

tions and mitigate challenging edge cases. This intelligent integration of ML and first

principles algorithms creates more generalized and robust tools, provides theoretical
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basis for explaining system behaviors, and reduces data requirements.

In the field of radar in particular, ML is rarely used in practice and is viewed with

extreme skepticism by the research community. This is unfortunate, as ML has a great

deal of potential to improve radar systems. The field has a robust set of signal process-

ing methods based on the first principles transmission and reflection characteristics of

energy. These have a strong theoretical background and have been thoroughly tested

and characterized. However, due to the extremely complex interactions between en-

ergy traveling through free space and the environment, certain assumptions must gen-

erally be made in order to derive radar algorithms. In most scenarios, the assumptions

hold and the derived algorithms achieved the desired performance. However, modern

radar systems are increasingly pushing the limitations of existing algorithms and the

assumptions they are founded on. ML models designed with an understanding of these

assumptions and the underlying properties of the data in a given radar application can

be used to create a general model that helps radar systems maintain performance in

traditionally complex or difficult scenarios. Integration of traditional radar signal pro-

cessing techniques with ML can be used to develop systems with the benefits of both.

The subsequent chapters of this dissertation will describe my research towards inte-

grating ML into radar applications related to navigation/tracking and detection.
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Chapter 5

Applying Causal ML to Predictive Navigation

5.1 Introduction

In this chapter, I will describe the creation and characterization of a method for

removing sensor drift errors in navigation and tracking. This method was based on

causality-aware ML and uses the concept of counterfactual evaluation to examine mul-

tiple possible paths an entity could have traversed and selecting the most probable one.

I will first described the problem space and how data was simulated for training and

testing. I will then discuss the ideation and initial proof of concept design for an im-

plementation of the proposed method. Finally, I will detail expansions made to the

system based on the results of early testing and the full characterization testing of the

final system. Initial proof of concept work was published in [11] and the final design

was published in [12].

Single target tracking and navigation both involve using sensor information to

identify the historic path and expected trajectory of a mobile entity traversing a space.

For navigation, we are generally interested in our own path and trajectory, while track-

ing focuses on those of an external entity. In simulating these types of scenarios, one
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can generally use similar motion models. The primary differences to consider are the

types of sensors used, methods for associating data with tracks, and the types of er-

ror/interference to be injected. In this work, I proposed a new method for correcting

historic path/track errors after data has been collected and associated. As such, I do

not focus on modeling sensor systems or data association algorithms.

Drift is the primary form of error injected into both simulations. This is a com-

mon form of error in both navigation and tracking problems caused by compounding

measurement or prediction errors. Drift can be particularly problematic for existing

correction methods as it results in incorrect but realistic paths and trajectories. In

tracking applications, drift might be the result of prediction errors after losing sight of

a target for some period of time or incorrectly associated tracks after multiple targets

path near to one another. For navigation, drift most commonly occurs when enti-

ties lose communication with the Global Navigation Satellite System (GNSS) and are

forced to rely on localized inertial navigation system (INS) sensors.

Today, when a platform receives some indication that drift has occurred, typically

in the form of a higher fidelity or correction measurement, the path/track is updated

and historic measurements containing drift are either ignored or corrected using an

approach like the Kalman Filter (KF). Ignoring historic error is not viable in most

modern systems, as doing so creates unstable trajectories for the predictive models

that are broadly used to augment tracking and navigation capabilities today. The KF

has seen widespread use in correcting historic drift errors and is considered the state-

of-the-art in this field. However, it can struggle to correctly model more complex

motion patterns containing drift [125].
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5.2 Related Work

In recent years, the use of ML to improve and automate navigation tasks has be-

come an active field of research. One of the key focus areas within that field is the use

of ML methods to mitigate errors in INS measurements [126, 127, 125, 128, 129, 130].

Navigation relying on INS is known to struggle with drift errors due to the localized

frame of reference [125]. Drift error can be difficult for traditional signal processing

methods like the Kalman and partical filters to model, leading to the exploration of

ML as an avenue for mitigating drift. Al Bitar et al. [127] presented a method using

a non-linear autoregressive neural network with external inputs (NARX) paired with

the UKF to improve position and velocity INS measurements. In [128], Semeniu et

al. used DNNs to augment the KF. Others have explored using fuzzy logic structures

with supervised DNNs [126] and unsupervised C-means clustering [130].

The use of deep neural networks paired with GNSS positioning for adaptive track-

ing is another major focus area [131, 132, 133, 134, 135, 136]. DNNs have proven

to be a powerful tool for GNSS position correction. In [136], Siemuri et al. present

a survey exploring the various uses of ML techniques to improve the integration of

GNSS and INU measurements. Exploration into the use of RNNs to compensate for

INS error have been conducted in [135] and [133]. In [133], the authors combine tech-

nique for empirical mode decomposition threshold filtering (EMDTF) with an LSTM

to reduce the noise of an INS and the predict track locations in a GNSS denied region.

DNNs have also been used to mitigate multi-path and non-line-of-sight errors in mea-

surements [131]. ML methods have also been used for localization and positioning

based on the relationships between the line-of-sight and multiplath signal conditions

of an environment [132, 134, 131].
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The mitigation of drift error is also used heavily in SAR imaging and SAR target

tracking [137, 138, 139, 140, 141]. SAR data processing can be extremely sensi-

tive to phase instabilities caused by positioning errors in the measurement platform

[139, 140]. To mitigate this, parametric techniques can compensate for slow phase

errors though the use of low-order polynomial modeling. Fast phase errors are cor-

rected using non-parametric techniques such as the Phase Gradient Auto-focus (PGA)

algorithm [137, 138, 141].

Additionally, the use of GAs for optimizing parameters within the KF and its vari-

ants has also been explored [142, 132]. This notion of pairing GAs with existing signal

processing methods is central to the work presented in this chapter. However, the ap-

proach presented here frames the problem very differently, using a GA to mitigate

drift with an EKF to mitigate noise.

5.3 Problem Space and Motion Models

To prove out the concept of my path correction system, an initial implementation

was developed and tested with a relatively simple model that could be readily adapted

to either tracking or navigation. Considerable work was then done to improve the sys-

tem and develop a more realistic navigation simulation. Here I will discuss the relevant

tracking and navigation problem spaces and describe the development of each simu-

lation. Both data models were developed in Matlab using the Phased Array Toolkit.

When both the objective functions and hyper-parameters are designed effectively,

the genetic algorithm is able to narrow down large and highly-complex solution spaces

to a near-optimal solution. The problem presented here is a similar solution space.

There are effectively an infinite number of paths that can be used to travel from one
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point to another. However, many of these potential paths are either highly unlikely or

impossible given an entity’s current state and the constraints of travelling through a

physical space. The authors here propose that by designing objective functions based

on a combination of past observations and first principles physics, it is possible to

have the NSGA-II identify position sequences that are consistent with the entity’s real

motion. This approaches the path correction problem in a manner similar to a human

mind. The proposed tool uses past observations with suspect elements to evaluate

each possible alternative path. This intuition is based on past motion characteristics

and an understanding of the causal relationships between past motion, environmental

characteristics, and future positions. It then selects the path most likely taken. This

process falls squarely into the domain of counterfactual evaluation.

5.3.1 Initial Simulation Model

The initial simulation used to test the proposed path correction model consisted

of a single entity travelling through a two dimensional space. The platform object

from the Phased Array Toolkit was used to generate entities with positions in meters,

velocities in meters per second, and accelerations in meters per second squared and

to update their motion through an x-y plane over time. A constant acceleration model

was used with the initial position, velocity, and acceleration being randomly set at the

start of each scenario. The initial position consisted of x and y coordinates ranging

from ±13, the initial x and y velocity values each ranged from ±5, and the initial x

and y acceleration values ranged from ±1. The scenario would then advance through

40 time steps (2 seconds each) and a track of 15 sequential positions was pulled from

the generated data beginning at a random sample number between 20 and 25. Then

each track was shifted so that it began at the origin. These 15 ideal measurements
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were recorded at this stage as the “true path”.

The true path was then used to generate an “erroneous track” by injecting drift.

Here the erroneous track also consisted of 15 positions, with the first 7 positions being

treated as high-fidelity measurements containing no error, followed by 3 positions

deemed to be suspect that may or may not contain drift, and finally 5 future positions

generated by some prediction model using the first 10 positions. The drift injected at

time steps 8, 9, and 10 was modeled as constant velocity drift and was randomly set to

between ±5 meters per second. Figure 5.1 depicts this early simulation, with the true

path plotted in green and the erroneous track in red.
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Figure 5.1: Plot of true entity position and erroneous track.

The inputs to the initial implementation of the path correction tool were each se-
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quences of 11(x, y) coordinates constructed from the first 10 positions in the erroneous

track and position 11 of the ideal track to serve as a correction measurement (similar

to receiving GPS updates to correct inertial navigation). I refer to these inputs as sus-

pect tracks, and they take the following form. A suspect track of length k consists of

a sequence of locations some of which have been deemed to be suspect. We will refer

to this suspect track segment as T , where

T = [(x1, y1), ..., (xk, yk)] = [H1:i, Si+1:j, Lj+1:k] (5.1)

From the notation introduced in (5.1), track T consists of three segments: 1) an initial

segment of high-fidelity locations that the system assumes to be true (H); 2) a segment

of suspect locations that may or may not be erroneous (S); and 3) a final segment of

one or more high fidelity measurements (L). Note that no measurement noise was

injected into the simulation (aside from drift) for this early simulation used in initial

development and proof of concept testing.

5.3.2 Expanded Simulation Model

After demonstrating the initial viability of the proposed counterfactual approach to

path correction, the simulation was expanded to generate far more complex and real-

istic scenarios targeted towards navigation. These scenarios were defined as follows:

an entity traveling through a 2-D space receives regular GPS updates for 15 time steps

before entering a GPS-denied environment. It then traverses the environment for 5

time steps relying solely on INS updates for navigation before exiting and receiving a

final GPS update that is used to correct the path. This results in a sequence of posi-
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(b) Plot of entity positions with noise and sensor drift.

Figure 5.2: Plots demonstrating one scenario used to evaluate the proposed system.
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tions, P , used as the input to the path correction scenario defined as:

P = [pgps,1, ..., pgps,15, pinu,1, ..., pinu,5, pcor,1] (5.2)

In (5.2), pi,j are each positions in a Cartesian space such that:

pi,j = [xi,j, yi,j] (5.3)

where i refers to the type of sensor update, j refers to the time step, xi,j is the x-

position produced by update i after j time steps and yi,j is the y-position produced by

update i after j time steps.

Entity motion was simulated using a constant acceleration model. For each ex-

periment, entity position, velocity, and acceleration were randomly initialized. The

initialization range was between ±13 meters for position, ±25 meters per second for

velocity, and ±4 meters per second squared for acceleration. Position information was

updated every 0.5 seconds. A total of 25 positions were recorded for each test. Noise

was then added to the first 20 simulated positions. This noise was i.i.d. Gaussian with

0 mean and a standard deviation of 3 meters and was used to model GPS sensor noise.

Finally, a constant velocity offset was added to positions 16− 20, resulting in a noisy

drift representative of compounding INS errors. The last 5 simulated positions are

left error free and used for performance analysis of the system. Figure 5.2 shows an

example of these simulated paths.
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5.4 Initial Approach and Testing

As with the simulations models, implementation of the proposed counterfactual

evaluation method path correction was performed in two stages. I will now describe

the initial implementation, reasoning used for design decisions, testing, and analy-

sis. Expansions to the design and testing are described in Section 5.5. The first stage

of development was used to define the overarching structure of ingesting positional

information, establishing a method for generating counterfactual paths, and creating

tools for evaluating the quality of those paths. This initial system broadly consisted of

preprocessing to prepare data for the system, a multi-objective GA to generate alter-

native paths, and a RNN used both in path generation and in performance evaluation.

Moving into the second stage of implementation, the high-level structure of the system

remained unchanged but each element was expanded and changed to improve system

performance and overcome challenges observed in the first stage.

5.4.1 Initial Approach

The proof of concept system architecture for the proposed path correction method

is depicted in Fig. 5.3. It is comprised of a combination of a RNN and an implementa-

tion of the NSGA-II with four objective functions. It outputs a new track of the same

size and structure as the input track, with updated locations in the suspect segment of

the input. Data for testing and training were generated in Matlab and the path correc-

tion tool was implemented in Python.

In developing the proposed track repair tool, an RNN was first implemented and

trained to predict a target’s next position based on a list of its M previous locations.

RNNs are relatively lightweight neural networks that are used to learn sequential pat-
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Figure 5.3: System architecture for the proposed path correction tool.

terns and predict future states of the sequence. Motion patterns in both tracking and

navigation are inherently sequential, making RNNs ideal for predicting future posi-

tion states in these domains. Given a sequence of past locations for an entity at known

time intervals, it is possible to infer that entity’s motion characteristics and thereby

make an accurate prediction of its current or future location. Here, I used the RNN

in two ways. First, it was integrated directly into one of the objective functions for

the NSGA-II which compared its output to the correction samples. RNN outputs are

highly dependent on the input data provided to them, which helped force the system to

consider the stability of trajectories produced by the generated paths. Second, I used

the RNN as a predictive model when evaluating the performance of the path repair

method. At this stage, the RNN was implemented using a LSTM network, whose

structure is detailed in Table 5.1. This network used linear activation for the final ac-

tivation function and was trained on simulated track data using mean squared error

(MSE) as the loss function for 100 epochs. It should be noted that this LSTM was

not trained on noisy path data, so its predictions were heavily impacted by relatively

minor path errors. This will be discussed further in Section 5.4.2.
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Table 5.1: Implemented LSTM for Target Location Prediction

Layer Type Input Shape Output Shape

1 Input 2×10 2×10
2 LSTM 2×10 2×100
3 Dense 2×10 2×100
4 Dense 2×100 2×1
5 Linear Activation 2×1 2×1

Next, NSGA-II and its objective functions were implemented. NSGA-II is a

widely used multi-objective GA. GAs excel at exploring complex solution spaces and

identifying solutions that optimize a defined objective (or fitness) function. The power

of multi-objective GAs is that they allow us to define the fitness of a solution by bal-

ancing multiple objectives. In the context of tracking or navigation, this can be framed

as establishing a set of objectives based on well-known motion characteristics for ob-

jects travelling through a space and defining the most likely path taken as the one that

minimizes a weighted average of this set. It also makes it so that the system can be

readily extended to incorporate additional types of data without major alteration. For

this work, the GA was used to propose and evaluate counterfactual scenarios. We

define our counterfactual scenarios as alternative paths that an observed target might

have followed to move from one position to another. The observed (suspect) track is

used to generate the first population of possible solutions, then each solution in the

population is evaluated using the objective functions, and the population is sorted and

pruned. The surviving members of the population are used to produce the next gener-

ation through crossover and mutation. For this work, the population size was set to 20

and the maximum number of generations was set to 100. While there are technically

an infinite number of possible paths that could be traversed to move between positions,

careful design of the objective functions was used to rapidly narrow down the solution

space.
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Four objective functions were used to evaluate the fitness of the proposed paths:

o1 =
∑
n

|f(x′
n)− yn| (5.4)

o2 =
1

N

∑
n

||x′
n − xn|| (5.5)

o3 =
∑
n

g(x′, x), g(x′) =


1, if x′

n ̸= xn

0, otherwise
(5.6)

o4 =
N∑

n=2

∣∣||x′
n − x′

n−1|| −max(||∆xH ||)
∣∣ (5.7)

In Equations (5.4)-(5.7) above, n is the track index, N is the length of the track

under evaluation, x is the observed track, x′ is the proposed counterfactual track, ∆xH

is the magnitude of the distance traveled between time steps (i.e., |xi − xi−1|) in the

high-fidelity portion of the input track, f(x′) is the LSTM’s output given the proposed

counterfactual, and yn is the user’s desired output.

The first objective function (Equation (5.4)) was used to evaluate both the stability

and effectiveness of the proposed counterfactual tracks. This was determined by com-

puting the Manhattan distance between the desired output vector and the output vector

generated by the LSTM network when the counterfactual under evaluation is used as

the input. It encouraged the algorithm to select tracks that cause the LSTM to arrive

as close as possible to the expected destination.

The second and third objective functions (Equations (5.5) and (5.6)) were used to

restrict how much the proposed counterfactual differed from the original observation.

Equation (5.5) accomplished this by computing the Gower distance between original

137



path and the counterfactual one. Equation (5.6) instead calculates the discrete number

of vector elements that were altered. The combination of these two objectives encour-

ages the algorithm to focus on results that are as similar as possible to the original

observation. This both served to immediately encourage the GA to focus its explo-

ration of the solution space to the region near the original observation and allowed it

to effectively consider suspect track segments that may have been partially or entirely

correct without introducing massive error to them.

The final objective function (Equation (5.7)) was based on motion limitations of

entities travelling through a physical environment. Object motion is constrained by its

current location and motion characteristics (like velocity, acceleration, heading, etc.).

For instance, an aircraft cannot instantaneously jump 200 miles to another location, but

must instead follow its current trajectory or apply forces to gradually alter course. An

understanding of these motion constraints can be used to develop objective functions

that effectively limit the solution space explored by a GA and encourage it to produce

solutions consistent with realistic trajectories. With that in mind, the final objective

function measured the difference between the maximum change in position observed

in the most recent high-fidelity track measurements and the change in position between

each subsequent point in the proposed counterfactual track. In effect, it identifies

the highest observed velocity when it was last confident in the track and seeks to

minimize the degree to which the velocity at each point of the proposed track exceeds

it. This objective served a critical role in generating realistic counterfactual paths by

discouraging large instantaneous jumps in position.

By seeking to minimize these four objective functions, this early design success-

fully demonstrated the ability of the proposed approach to generate consistent, realistic

path corrections for an entity travelling through space.
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5.4.2 Initial System Testing

Proof of concepts testing for the proposed track repair system was conducted using

data simulated in Matlab. To demonstrate both its performance and utility, I evaluated

both how closely corrected tracks matched the entity’s true path and how closely future

track predictions made by the LSTM using corrected tracks at the input matched the

true future path of the entity. Note that the simulation model described in Section 5.3.1

was used to generate all data for this testing. Track positions 1− 11 were used by the

track repair tool to generate a “corrected” track. This corrected track was then used

by the LSTM to predict the next 5 locations of the entity, which were compared with

track positions 11− 15.

The simulator was run 11, 000 times to generate pairs of true paths and erroneous

tracks. 7, 000 of these were used to train the path prediction LSTM, 3, 000 were used to

validate it, and the last 1, 000 were used to test the path correction system and perform

the analysis presented here. Once the LSTM was trained, the erroneous tracks used for

testing of the system were also passed to it to predict the next 5 locations of the entity,

providing a full set of erroneous tracks with the same number of locations (15) as the

true paths. Figure 5.4a shows an example scenario with overlaid plots of the true path

and the erroneous track. As discussed previously, when one of these erroneous tracks

is passed to the track repair system, it generates a corrected track of the same length as

the true path (7 true locations, 3 counterfactual locations, and 5 predicted locations).

Figure 5.4b shows an example scenario with overlaid plots of the true path and the

corrected track, and Figure 5.4c shows an example scenario with overlaid plots of

the true path, the erroneous track, and the corrected track. It is clear from the plots

in Fig.5.4 that the track repair tool substantially reduces the track error in the chosen
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(a) Plot of true entity position and erroneous
track.
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(b) Plot of true entity position and corrected
track.
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(c) Plot of true entity position, erroneous
track, and corrected track.

Figure 5.4: Plots demonstrating one scenario used to evaluate the proposed system.

example.

To demonstrate that the proposed track repair system is robust enough to handle

the broad range of entity behaviors and drift that may be encountered in real-world

applications, the scenarios used to test the track repair tool were designed to be diverse,

with very different motion and error profiles. Figure 5.5 depicts several examples of
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(a) Scenario with low error in erroneous
track.
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(b) Scenario with moderate overshoot in
erroneous track.
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(c) Scenario with extremely high error in
erroneous track.
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(d) Scenario with turning entity and high
error.

Figure 5.5: Example plots of several differing scenario types.

these scenarios. Of particular interest are those scenarios in which: 1) the suspect

track has little error (Figure 5.5a), 2) the suspect track follows a similar trajectory as

the true path but overshoots it (Figure 5.5b), 3) massive error exists in the suspect

track (Figure 5.5c), and 4) the entity is slow moving or changing direction (Figure

5.5d). Each of these categories of scenario present unique challenges for a track repair

method, and observing the behavior of the proposed method was critical at the proof
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of concept stage. When little error is present in the initial data, there is a risk of track

repair introducing substantial additional error. Conversely, since multiple objectives

in the system’s GA encourage it to minimize deviations from the original track, there

was a risk that the system would fail to correct for scenarios with large drift errors.

Slow moving targets and those that are changing direction are more complex types of

motion for correction and overshoot scenarios represent a challenging form of drift

(due to its inherent similarity to the actual path). In each plot it can be seen that

the corrected portion of the tracks (positions 8, 9, and 10) align with the true path

almost perfectly, as do the first two predicted positions (11 and 12). While the error

in the final three predicted locations is far less than is present in the erroneous tracks,

it is clear that the error grows considerably the farther the system predicts into the

future. This is due in large part to the compounding of minor prediction errors in the

LSTM. As previously noted, the LSTM was not trained on noisy data, so its output

was heavily affected by errors at the input. When used in testing, this LSTM statically

used 10 input positions when making predictions, meaning that each subsequent future

prediction replaced a true position in the input vector used to predict the location after

it. As we will see in the discussion of the expanded implementation, this was largely

mitigated by developing a more robust RNN for predicting future locations.

These observations of specific scenarios provide a good indication that the pro-

posed counterfactual correction method successfully generalizes and mitigates drift

error in a wide range of scenarios. However, examining individual scenarios is insuffi-

cient for determining performance characteristics of such a system. To better quantify

this performance, all 1, 000 randomly generated test scenarios were run through the

track repair tool and the normalized average error at each track position was calculated.

Figure 5.6 depicts this error, broken down between error in the x- and y-dimensions.
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The error at each location in both the erroneous and corrected tracks were computed

for every test scenario by finding their distances from the corresponding locations in

the truth path. Each is then normalized with respect to the truth location and the aver-

age of these normalized errors is calculated. For example, if the entity is located at 35

meters from the origin and the track reports the location at 42 meters from the origin,

then the normalized error would be (42− 35)/35 = 0.2. This normalization was per-

formed in order to allow for the fair analysis of the system’s performance when both

very long and very short tracks are being corrected. Otherwise, the long distance sce-

narios dominate the analysis and could artificially exaggerate the performance of the

proposed approach against the baseline erroneous data. Figure 5.6a and Figure 5.6b

show the average normalized error in the x- and y-dimensions for each position in the

sequence, respectively. From these figures, it is clear that the counterfactual routes

proposed by the track repair tool consistently reduced the error in tracks to below 2%

and reduced the error present in future predictions made using those paths by an order

of magnitude. This clearly demonstrated the potential of the proposed system.

Additional analysis was performed to determine the distribution of the normalized

cumulative error across all 1, 000 scenarios. This was done to both examine the spread

of the system’s error and to determine if any bias was present in either the system or

the simulation. Figure 5.7a shows the distribution of the total normalized error across

the entire run. Figure 5.7b shows the distribution of the total positional error, while

Figures 5.7b and 5.7c show the distribution in the x- and y−dimensions, respectively.

It is clear from these distributions that the error is not dominated by either the x- or

y-dimension, and that the cumulative error of the corrected tracks is both low and

tightly distributed. This provides a very strong indication that the system performed

consistently across all of the test scenarios. In an unbiased system, we would expect
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(a) Plot of the average normalized error in the
x-dimension at each time step.
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(b) Plot of the average normalized error in the
x-dimension at each time step.

Figure 5.6: Average normalized error at each time step for 1,000 independent
experiments.

each of the three distributions to be approximately Gaussian. However, this is only

true of the x-dimension’s distribution. The distribution for both the total error and the
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y-dimension error are closer to log-normal. This was indicative of some bias in the

trained LSTM model, which was subsequently mitigated in the system expansion.
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(a) Plot of the total error distribution.
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(b) Plot of the error distribution in x.
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(c) Plot of the error distribution in y.

Figure 5.7: Plots of the average normalized error at each time step for 1,000
independent experiments.

As well as examining the system’s performance on disparate scenarios, testing

was performed to determine the consistency of the counterfactual tracks generated

with the proposed method. Such analysis was necessary due to the use of a GA. Using

the NSGA-II to propose and evaluate the corrected tracks through a continuous space

145



meant that each time the tool was run, a different counterfactual path would almost

certainly be selected. This behavior is acceptable so long as these tracks are consistent

with one another and closely match the true path. To test this, a random test case was

selected and the path correction tool was applied to it independently 100 times. The

true path, erroneous track, and each corrected track were stored and used for analysis.

Figure 5.8 depicts the selected scenario, including the true path, erroneous track, and

a subset of the generated corrected tracks containing the highest and lowest error.
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Figure 5.8: Plot of a single scenario run through the path correction tool repeatedly.
The true path, erroneous track, and a subset of the corrected tracks with the highest

and lowest errors are depicted.

In addition, Figure 5.9 depicts the mean error in each track position normalized

with respect to the entity’s true location. From this, it can be seen that the corrected
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tracks were highly accurate, with mean values (µ) sitting at under 2% error for not only

the corrected portion of the track but also the first three future locations predicted using

these corrected tracks. Further analysis of the data revealed that the standard deviation

at each point never exceeded 0.035µ, indicating that the corrected tracks were tightly

distributed. Based on both the calculated distribution information and the data plotted

in Figure 5.8 it is clear that the tracks generated by multiple independent runs of

the proof of concept track repair tool on identical input data were both accurate and

highly consistent. It is clear that predictions made using these corrected tracks were

also highly consistent and accurate, further demonstrating the validity of my proposed

method.
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Figure 5.9: Plot of the average normalized error at each time step for 100 repeated
runs of a single scenario.
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5.5 Expanded Design and Testing

Initial implementation and testing of my counterfactual path correction method

provided a solid proof of concept that could consistently mitigate the impacts of drift

over a range of simple motion scenarios. It also highlighted some design issues that

would need to be explored and overcome. In particular, the LSTM would have to

be made more robust, additional physics-based objective functions for the NSGA-II

should to be explored, and more expansive testing and characterization would need

to be performed with comparison to state-of-the-art methods and more realistic simu-

lation scenarios containing measurement noise. These expansions and extra analysis

have been implemented and will now be discussed. I will note here that I worked with

two colleagues, Geoffrey Dolinger and Timothy Sharp, on these updates. Specifically,

Geoffrey Dolinger made the updates to my original LSTM model and Timothy Sharp

created one of the new objective functions used in the NSGA-II. As I discuss the up-

dates in more detail, I will highlight their specific contributions.

While the initial implementation of the counterfactual path repair method was dis-

cussed in terms of general spatio-temporal motion (due to its broad applicability to

both tracking and navigation), expansion of the system was targeted more specifically

towards correcting historic errors in navigational position. This means that all redesign

work was done assuming input path data was to be associated with an “ego” entity.

Put another way, it is now assumed that the sensor is located on the platform whose

position is being observed. Specifically, the updated system is designed to remove

errors related to drift in lower-fidelity sensor measurements when receiving an update

from a high-fidelity sensor. A very common example of this is a navigation system

that relies on a combination of GPS and INS sensors for positioning. The GPS updates
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rely on interactions with positioning satellites that provide an absolute frame of refer-

ence for measurements. This means that while error exists in these measurements, the

error in each measurement is independent of the error in every other measurement and

can be modeled as i.i.d. zero-mean Gaussian noise. For this reason, these measure-

ments are considered high-fidelity, but the reliance on interactions with the positioning

satellites means that updates come less frequently and may be intermittent. The INS,

on the other hand, is typically an onboard sensor that updates quickly and regularly.

However, it has a localized frame of reference, so INS errors compound over time,

resulting in position drift. The data simulation model used for design updates, testing,

and analysis is discussed in Section 5.3.1.

In many navigation systems, INSs are used for real-time navigation with periodic

GPS updates to correct for drift. While this works well for correcting the error present

at the time of GPS update, the historic error present in past measurements (e.g. be-

tween GPS updates) can be non-trivial to remove. Simpler state-of-the-art approaches

like the various flavors of Kalman filter assume relatively simple motion models that

struggle with more complex motions (like sharp turns or curving paths). The longer

between GPS correction, the more drift may occur and the more complex the motion

paths that may have been traversed. This is a common problem in the navigation do-

main, particularly when operating in areas where GPS updates may be intermittent or

unavailable.

5.5.1 Expanded Approach

The updated design deviated from the original in three ways. First, an EKF was

implemented for data preprocessing and system performance was evaluated both with

and without the EKF. Second, new objective functions for the NSGA-II were imple-
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mented and tested. These new objective functions were largely inspired by the first

principles physics behind entity motion. Finally, the LSTM was redesigned to help

improve model robustness. Multiple configurations of these changes were examined,

but ultimately a combination of the EKF, NSGA-II with five objective functions, and

a multi-output LSTM trained on noisy data produced the best results. The final system

architecture is depicted in Figure 5.10.

5.5.1.1 Extended Kalman Filter

The EKF was implemented in Matlab using a constant acceleration state update

model and backwards recursion for state smoothing. This EKF was used in two ways.

First, it was used as a pre-processing step to smooth out the noisy position data, which

is consistent with modern navigation systems. In this case the EKF was used to predict

the state at each of the first 15 positions, and after each prediction a correction was

applied using the noisy measurement. Following the last correction the backwards

recursion was applied.

The second use of the EKF was as an alternative path correction tool, in which it

served as the current state-of-the-art for a baseline comparison. The EKF was again

used to predict the state for each of the first 15 positions and was corrected by the noisy

measurements. It was then used for state prediction without correction for positions

16− 20 (e.g. the drift region). Correction was not applied through this region to avoid

contaminating the EKF’s state estimation with low-fidelity data. Finally, it predicted

the state at position 21, a correction was performed using the final high-fidelity update,

and backwards recursion was applied. An example of both the EKF smoothing and

EKF path correction are depicted in Figures 5.11 and 5.12. It should be noted that for

the work presented here position measurements with sensor drift were never used to
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Figure 5.10: System architecture for the proposed path correction tool.

correct the state estimation of the EKF.

5.5.1.2 Counterfactual Path Generation

As with the original implementation, the NSGA-II serves to perform the actual

path correction. Since it is a multi-objective genetic algorithm, it is designed to gener-

ate multiple sequences of positions and then evaluate the fitness of each based on some

number of objective functions. Sequences with a higher fitness are used to generate

a new population of possible solutions through crossover and mutation. This iterative

process continues until a predefined number of generations has been evaluated. Two

major modifications have been made to this version of the NSGA-II. First, the length

of the output was increased from 3 to 5 positions to match the longer drift region de-

fined in 5.2. This exponentially increases the overall complexity of the solution space

that the GA has to explore, making it a critical test of the proposed method’s exten-

sibility. The other major modification was the creation of new objective functions.

Seven objective functions were developed and evaluated. Ultimately, five of them
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Figure 5.11: Example of noisy position with and without EKF smoothing.

were selected for use in the final system:

o1 = w1|xcor − xpred| (5.8)

o2 = w2

N∑
n=1

|xn − x′
n|dn

rn
N∑

n=1

dn

(5.9)

o3 = w3

N∑
n=1

|v − v′n|dn
N∑

n=1

dn

(5.10)
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o4 = w4

N∑
n=1

|a− a′n|dn
N∑

n=1

dn

(5.11)

o5 = w5

N∑
n=1

|a′n − a′n−1|dn
N∑

n=1

dn

(5.12)

where w1, ..., w5 are weighting terms, xcor is the final high-fidelity data-point being

used for correction, xpred is the first output of the path prediction LSTM using the

proposed counterfactual path, xn are the observed error data, x′
n are the proposed
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counterfactual points, dn is a time-based decay term defined as dn = 0.9n, rn is the

range of possible locations for the proposed counterfactual, v is the last observed

velocity calculated using the two most recent high-fidelity measurements before drift,

v′n is the velocity of the counterfactual data calculated using the current data-point

and one previous one, a is the last observed acceleration calculated using the three

most recent high-fidelity measurements before drift and a′n is the acceleration of the

counterfactual data calculated using the current data-point and two previous ones.

The first objective function, o1, calls an LSTM trained to predict future positions

of an entity based on a sequence of 20 past positions. For this objective, the first 15

high-fidelity measurements are paired with the 5 proposed counterfactual positions to

form an input to the LSTM. The Manhattan distance between first output of the LSTM

and the final correction measurement is calculated. The smaller this distance is, the

higher the fitness of the solution. This objective is identical to the first objective in the

original design and again ensures that the counterfactual paths have a trajectory that is

consistent with the final GPS update that initiated the correction.

The second objective, o2, calculates the Manhattan distance between the original

observed track and the proposed counterfactual. Once again, this objective is drawn

directly from the original system. However, this objective has one notable difference

from its predecessor: a decay factor is applied that causes points later in the sequence

to have a lower impact than earlier ones. It encourages the algorithm to generate so-

lutions that are similar to the original observation containing drift, but grants more

latitude to deviate from the original observation over time. This reflects the way that

drift errors compound over time, where earlier points in the drift region likely contain

less error than later points. Objective o2 was designed based on the knowledge that

although compounding errors resulted in drift, the original observations still contain

154



information useful to the algorithm concerning the entity’s position and motion char-

acteristics.

The last three objectives use first principles physics concepts to encourage the

generation of realistic motion paths. Objective function o3 seeks to minimize the dif-

ference between velocity at each point of the counterfactual path and the velocity at

the last high-fidelity update (before entering the drift region). Similarly, o4 tries to

minimize the difference between acceleration at each point of the counterfactual path

and the acceleration at the last high-fidelity update. A decay factor was applied to o3

and o4 to reflect the increasing likelihood of changes in the motion characteristics the

longer the system goes without GPS update. Objective o5, the last incorporated into

the final system, was designed by my colleague Timothy Sharp based on objective o4.

It attempts to minimize the change in acceleration from one time step to the next, again

with the same time based decay as Objectives o2 − o4. This encouraged the algorithm

to produce smoother, more realistic paths. Each of these objectives are predicated on

the understanding that motion characteristics don’t change instantaneously, and so can

be used to intelligently restrict the solutions space explored by the GA.

Two additional objective functions were developed and used in early testing of the

system. However, each had negative impacts on the performance of the system and

were ultimately not used. They are:

o6 =
N∑

n=1

gndn, gn =


1, if |x′

n − xn| ≥ 0.1xn

0, otherwise
(5.13)

o7 = w · avg(|xpred[1,...,5] − xninu
|)dn (5.14)

155



Objective o6 was based on 5.6 from the original implementation and was designed

to limit the number of discrete counterfactual positions that deviated from the original

observation by more than 10%. However, its inclusion in the updated system caused

the generated tracks to follow the original observations with drift too closely, substan-

tially increasing the error. It was evaluated both as a supplement and as an alternative

to objective o2, but negatively impacted performance in both cases. The objective

in o7 tried to make more substantial use of the LSTM than o1 and was designed by

Geoffrey Dolinger. It used the original 15 high-fidelity measurements as inputs to

the updated LSTM model which used those to generate 5 predicted positions for the

drift region and sought to minimize the distance between this predicted path and the

generated counterfactual. It was thought that the inclusion of the LSTM in this way

might encourage the system to produce smoother, more consistent counterfactual path.

However, this objective function did not make use of either the correction information

or the inferred velocity and acceleration characteristics of the entity’s motion. This

meant that it was not able to effectively identify more complex motions, such as sharp

turns during the drift region, resulting in a sharp increase in the system’s error. As a

result, o7 was ultimately removed from the system. It is likely, however, that such a

method would work well if modified to incorporate some additional state and correc-

tion data.

Hyper-Parameter Sweep Ranges Optimal Value
Population Size 5− 50 20

Generations 20− 100 50
Mutation 10− 50 30
Crossover 1− 5 5

Tournament Prob. 0.1− 0.99 0.9
Tournament Part. 2− 10 5

Table 5.2: Hyper-Parameters for the NSGA-II
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After identifying appropriate objective functions for the target application space,

hyper-parameter sweeps were performed on the various NSGA-II parameters to iden-

tify the optimal configuration in terms of the MAE present in the final counterfac-

tual track generated. Table 5.2 shows the hyper-parameters sweep, the ranges of the

sweeps, and the values selected for final system testing. It should be noted here that

increasing the population size and generation hyper-parameters above the selected val-

ues did provide some minor decrease to the output MAE, but at the cost of a drastically

increased run time.

5.5.1.3 Path Prediction

Layer Type Input Shape Output Shape
1 Input d=[1,2]×n=[10,15,20] d×n
2 LSTM d×n d×n×[32,64,100]

3[opt] LSTM d×n×[32,64,100] d×[32,64,100]
4 Dense d×[32,64,100] d×[50,100]

5[opt] Dense d×[50,100] d×[25,50]
6 Output d×[25,50] d×m = [1,5]

Table 5.3: LSTM Parameter Experimentation

As with the original system, this update made use of an LSTM to predict future

states of the entity’s path, both for use in the first objective function and for perfor-

mance analysis. However, the original implementation of the LSTM was trained on

noiseless data and produced a single output. This meant that the original LSTM was

heavily impacted by errors in the input data. Additionally, being trained to match a

single output did not encourage the LSTM to generate predictions with consistent tra-

jectories, increasing prediction errors over time. It also meant that it could be used to

predict path sequences, but needed to be run iteratively to do so.

To improve my original path prediction LSTM, my colleague Geoffrey Dolinger

took the simulation data with Gaussian distributed noise N(0, 1) I provided to him and
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trained and evaluated 18 different model architectures by exploring configurations of

the parameters in Table 5.3. This involved varying the number and size of layers

within the LSTM architecture. Each trained model was evaluated based on the MSE

of its predicted paths.

Layer Type Input Shape Output Shape
1 Input 1×15 1×15
2 LSTM 1×15 1×15×64
3 LSTM 1×15×64 1×15×64
4 Dense 1×15×64 1×100
5 Output 1×100 1×m=5

Table 5.4: Updated LSTM Architecture

Ultimately, Geoffrey Dolinger identified the LSTM architecture in Table 5.4 as

the optimal configuration for the updated system. This model used exponential linear

unit (ELU) activation functions for all layers except the final, linear output layer. The

dense layer included a dropout of 10% to prevent overfitting. Training was conducted

with a learning rate of 10−4, mean squared error (MSE) as the loss function, and a

patience value of 30. Note that the LSTM was trained on noise with lower variance

than that that was used to evaluate the performance of the full system. Additionally,

training on noisy data made the updated LSTM much more resilient and training it to

output a sequence of length 5 significantly reduced the MSE of the model and caused

it to produce much smoother outputs.

Figure 5.13a shows the training MSE of the final LSTM model. The model con-

verged quickly and had a low, stable validation curve. Figure 5.13b shows and ex-

ample path containing both noisy input data in green and the LSTM path prediction

in blue. It is clear from this example that the model successfully learned to produce

highly accurate path predictions with consistent, realistic trajectories in spite of the

noise present at the input.
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Figure 5.13: Plots Representing LSTM Training and Testing.

5.5.2 Expanded Testing

Testing of the final updated system was conducted in two parts. For the first,

3, 000 scenarios were generated (as described in Section 5.3.2). Path correction was
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performed on the drift region of each scenario using four methods: 1) the updated

counterfactual method with EKF pre-processing, 2) the updated counterfactual method

without EKF pre-processing, 3) EKF correction with backward recursion, and 4) EKF

pre-processing coupled with spline interpolation. 1)-3) were described previously in

Section 5.5.1. For 4), EKF smoothing was performed on the initial segment of 15

high-fidelity measurements to reduce the impact of the Gaussian noise and then cubic

spline interpolation was performed between those and the final correction measure-

ment. The interpolation was performed using Matlab’s built in spline interpolation

method. Results for each correction method were compared in terms of the MAE

present at each position.

Figure 5.14 shows four examples of path correction for a given scenario. Each

one of these scenarios demonstrates different unique motion characteristics that serve

to display the utility of the updated method. In 5.14a, the entity immediately per-

forms a tight turn with high relative noise present in the early measurements. Figures

5.14b and 5.14c demonstrate examples where the measurement drift occurs early in

a turn, with the former having drift that resembles straight line motion and the latter

appearing as a much tighter turn than was actually traversed. Figure 5.14d shows a

simpler simulation with more linear motion and low relative measurement noise. As

these examples demonstrate, the simpler EKF and spline approaches tend to perform

very well in simpler scenarios, but struggle with more complex motion patterns or

when the noise present in the non-drift measurement region is relatively high. For

those scenarios where the entity motion is more linear, the repaired paths generated

by the EKF and the spline interpolation have equivalent or slightly less deviation from

the ideal path than the updated counterfactual track repair (CTR) method. However,

the CTR method produces tracks far more consistent with the entity’s true motions
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Figure 5.14: Plots demonstrating the different correction path correction methods.

than either the EKF or spline methods whenever the motion is significantly nonlinear.

This is particularly true when it is used in conjunction with EKF smoothing to reduce

noise in the non-drift measurement region. Coupled with the fact that this approach

has nearly equivalent performance to the EKF when applied to more linear motion

scenarios, this indicates that the proposed approach is much more flexible than more

traditional, non-ML approaches.

In addition, it is apparent from examining the paths generated by each method

that the updated CTR approach produces paths whose trajectories match those of the
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entity’s real motion more closely than either the EKF or spline approaches. This is

further demonstrated by examining the last five positions of each path (the prediction

region). In each example, the CTR approach produces path predictions with trajec-

tories matching those of the true motion, while both the EKF and spline predictions

tend to rapidly deviate from reality. Figure 5.15 further demonstrates this. This figure

shows the average MAE at each point in the sequence over the 3, 000 test simulations.

Only minor error can be seen in the first 15 positions resulting from the Gaussian

noise. In positions 16 − 20, the drift error can be seen to increase linearly over time.

In this region, both MAE for the EKF and spline approaches is parabolic, increasing

initially before falling to almost 0 at position 21 (the correction point). The MAE for

each of these approaches then begins to increase rapidly for the predicted positions

(22− 25).

The average MAE for the updated CTR approach, on the other hand, is roughly

constant throughout both the repaired and predicted regions. This is significant be-

cause it indicates that the proposed method produces repaired paths whose motion

characteristics are more consistent with the true motion of the entity. In the repaired

region of the path (samples 16− 20), the CTR approach has equivalent average MAE

to the EKF, but has much lower average MAE than the EKF in the predicted path re-

gion (samples 21 − 25). This is most likely due to the ability of the CTR approach

to better recreate the true motion characteristics of the entity through the drift region,

resulting in more realistic predictions of the entity’s future locations. Figures 5.16a

and 5.16b break out the average MAE at each time step into the x- and y-components,

respectively. It should be noted that there is no significant deviation between the MAE

present in the x- and y-dimensions, indicating no dimension bias, and that the trends in

each dimension are consistent with the full MAE depicted in Figure 5.15. The MAE
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Figure 5.15: Total MAE at each path position, averaged over 3, 000 scenarios.

histograms for the full 3, 000 scenarios are shown for both the CTR with and without

EKF pre-processing in Figure 5.17. These histograms serve to highlight that although

the CTR will generate unique paths the error is low and tightly distributed. This con-

sistency is desirable and builds confidence that example plots are representative of the

tool’s performance. Additionally, the mean MAE for all scenarios shows the the EKF

smoothing reduces error in the CTR from 4.253 to 3.313 and using the CTR with EKF

preprocessing is the optimal method.

The second round of performance testing consisted of running repeated tests on the

same scenarios. Four scenarios were selected for this repeat testing. Each was chosen

due to either being a challenging scenario (such as those with drift occurring at the
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(b) MAE in y at each path position.

Figure 5.16: MAE in x and y at each path position, averaged over 3, 000 scenarios.

beginning of a turn) or because the proposed approach was observed to have high

error during the series testing. This provided an interesting set of test cases to observe

the repeatability of the updated path correction tool. With these tests, it is of particular
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Figure 5.17: MAE Histogram over 3, 000 scenarios.

importance to observe the average MAE that arises from repeatedly running the same

sample through the tool to verify that it does not vary drastically. Additionally, it is

important to observe the maximum and minimum error that may be produced by the

CTR approach to determine how repeatable the results are and how the tool’s output
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might vary.

Each of the four scenarios was run through the tool 100 times, both with and

without EKF smoothing. The average corrected paths generated by each run were

saved and used to compute the average MAE of these tracks. Then, the corrected

paths with the highest and lowest MAE for each scenario were identified and recorded.

Figures 5.18-5.20 show the results of the repeat testing. Figure 5.18 demonstrates

the difference between the results produced by the CTR tool with and without EKF

pre-processing. Figure 5.18b demonstrates the impact of the pre-processing on the

average MAE. Without being paired with the EKF, the updated CTR tool produces

low error paths with average MAE that ranges between 5 − 8 meters. With the EKF

pre-processing, the MAE behavior is similar, but the average MAE is reduced by

1− 2 meters at each position. Figure 5.18b shows the scenario along with the highest

and lowest error paths produced by the CTR tool both with and without EKF pre-

processing. From this, it is clear that the highest error tracks in each case have slightly

higher error than the pure EKF correction. However, each of those maximum error

paths are smooth and have trajectories that are more consistent with the true path than

the pure EKF correction, resulting in MAE that grows at a slower rate with recurrent

predictions of future locations. It is also worth noting that the EKF pre-processing

causes the CTR tool to produce smoother tracks. This makes sense, given that EKF

smoothing of the input reduces the sporadic velocities and accelerations produced

by the Gaussian noise present in the initial path measurements. Since several of the

CTR’s objective functions seek to minimize changes in velocity and acceleration of

the corrected path based on those earlier observations, improving the fidelity of that

data helps to remove oddities in the corrected paths this approach produces.

Arguably, the key limitation of the proposed path correction approach is in the
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Figure 5.18: Plots demonstrating the output of the proposed path correction method
with and without EKF pre-processing.

potential variance of the paths produced by the GA. Figure 5.19 shows an example of

this variance. Figure 5.19a show the maximum and minimum error paths produced by

the CTR tool with EKF pre-processing, along with the path produced by the pure EKF

correction, and Figure 5.19b shows the MAE for each. Clearly, there is substantial
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Figure 5.19: Plots demonstrating the highest and lowest error outputs of the proposed
path correction method.

MAE variation in this scenario, with the error in the two paths differing by as much

as 15 meters in the correction regions and by as much as 20 meters for the prediction

region. However, it is also clear that both the highest and lowest error paths follow

roughly the same trajectory, both of which are consistent with the true future path of
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the entity. This is evident from the sharp increase in the MAE of the EKF corrected

path seen in the prediction region, which rapidly exceeds the error present in even the

highest error path generated by the CTR approach.
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(a) Repeat Sample 28 - Average MAE.
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(c) Repeat Sample 614 - Average MAE.
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(d) Repeat Sample 1970 - Average MAE.

Figure 5.20: Plots demonstrating the average MAE of 100 repeated runs of the
proposed approach on the same sample.

The average MAE for each of the four repeat runs is shown in Figure 5.20. Each

plot displays the MAE for the original data and the EKF corrected path, as well as the

average MAE for the CTR corrected paths with EKF pre-processing. In each scenario,

the average MAE for the CTR-based correction is nearly constant throughout both the
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correction and prediction regions, as was observed in the series testing. It should

again be noted that in each case observed here, the MAE present in the EKF begins

to rapidly increase immediately after the correction point, consistently overtaking the

error in the CTR tracks within 3 timesteps. Further, the average MAE of the CTR

correction in each of the four scenarios is approximately the same, with a mean value

of approximately 6 meters and values ranging between 4 − 8 meters. This is in stark

contrast to the comparatively wide range of MAE produced by the EKF correction and

in spite of the differences between each of the four scenarios tested.

5.6 Conclusions

In this chapter, I described the development of a new approach to removing drift

errors in navigation and tracking scenarios. This method was based on causality aware

ML and framed drift correction as a counterfactual evaluation problem. A simpler,

proof of concept implementation was developed first using a four objective NSGA-II

and an LSTM to propose and evaluate counterfactual paths with reduced drift error.

This initial system was trained and tested on simulated data containing only drift error

(i.e. no added measurement noise). Initial testing was performed to determine the

viability of the proposed method, as well as to characterize its drift reduction and

repeatability. An expanded version of the system was then developed that integrated

the proposed method with an EKF, added additional objective functions to the NSGA-

II, and a new LSTM model trained on more realistic data containing both drift and

measurement noise. Testing of the expanded system was conducted to characterize its

performance and compare it to that of the EKF and spline interpolation methods.

Testing of the initial implementation demonstrated that the proposed method could
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be used to substantially reduce drift error present in data over short intervals. It also

showcased that the system output consistent tracks. Both findings were crucial to de-

termining the validity of the proposed method. The first because it proved out the

baseline required function of the system. The second was important due to the proba-

bilistic nature of the system. The use of a GA was effective for developing a ML sys-

tem that could propose and evaluate counterfactual scenarios. However, it also posed

a general risk due to a lack of repeatability. Each time a GA is run, it will produce a

different output, in this case resulting in a different set of tracks being proposed and

evaluated each time the system is run. This had the potential to significantly hamper

the effectiveness of the proposed method, as small measurement errors could com-

pound over time. The consistency in track outputs when the same input was provided

to the system demonstrated that the use of first principles objective functions forced

the NSGA-II to restrict its exploration of the solution space such that the deviations

between output track was negligible. Additionally, the system design ensures that its

behaviors can be trivially explained and its outputs are inherently causal.

However, the trajectories produced in by this prototype were only stable enough to

project tracks a few time-steps into the future before heavy degradation was observed.

This was almost certainly caused by limitations with the initial objective functions

paired with the lack of noise present in the data used to train the system. The original

set of objective functions focused heavily on using position information for generating

alternative tracks, with only one objective dealing with observed velocity character-

istics and none on acceleration. This encouraged the desired reduction in drift error,

but did almost nothing to encourage stable trajectories in the proposed tracks. That

stability is essential for practical application of a drift correction tool in real applica-

tions and was a major focus of the follow up work. Additionally, since the LSTM was
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trained on ideal data, small errors in the track produced by the GA caused heavy error

in the LSTM predictions.

The work to expand the system focused on three major areas. First, a more robust

set of objective functions were developed for the GA targeted toward improving the

stability of track trajectories. Specifically, objective functions related to minimizing

sudden jumps in velocity and acceleration were added. Second, the the system was

trained on data containing Gaussian measurement noise to make the LSTM more ro-

bust to small track errors. Third, the EKF was implemented both for comparison and

for direct integration with the proposed system. Testing of the expansion demonstrated

a huge performance increase over the prototype. Drift error was consistently mitigated

and projecting tracks generated by the proposed system into the future resulted in low,

almost constant error. This meant that not only was this implementation highly effec-

tive at removing drift, but that it was able to produce stable trajectories. In fact, the

trajectories produced by the updated system were far more stable than those produced

by the EKF. That impressive behavior demonstrates the effectiveness of both adding

velocity and acceleration based objective functions and of training the LSTM on more

representative data. It was also observed that using the EKF to preprocess the noisy

input data and then applying the proposed drift correction method produced substan-

tially better results than using either the EKF or the drift correction tool individually.

Finally, the expanded testing confirmed that the proposed approach continued to pro-

duce consistent tracks for the same set of input data, despite the use of the GA.

It should be noted that while the proposed method demonstrated impressive results,

considerable work would need to be done to integrate it into most practical systems.

The current iteration is computationally costly and slow compared with existing algo-

rithmic techniques. Additionally, alternatives to the NSGA-II should be investigated.
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The objective functions designed for the GA were highly effective at minimizing track

variation for the same input data, but the output of the GA is inherently not repeatable.

That could heavily restrict the applications to which this method could be applied. I

would like to investigate alternative approaches to generating counterfactual tracks, in-

cluding algorithmic methods with parameter search and other ML methods like neural

networks. It is worth noting here that while all ML models have probabilistic be-

haviors, many of them (including neural networks) do produce perfectly repeatable

results when fully trained. Additionally, most of the computational cost and compute

time for the current implementation are driven by the GA’s search through the possible

solution space. Using either an algorithmic or alternative ML method would almost

certainly mitigate both issues. Such a substitution will take considerable design work,

particularly to maintain equivalent performance and causal awareness.

The work presented in this chapter built directly on my previous research into ML

explainability and causality. It also helped me to further develop the idea of creating

ML augmented systems by breaking down complex problems into their component

elements based on an understanding of the core physical interactions at work in a sys-

tem. Specifically, the creation of the MOGA and definition of its objective functions

allowed me to explore developing learning algorithms that made use of fundamental

characteristics of motion. Additionally, the ultimately successful integration of the

MOGA, LSTM, and the EKF and the superior performance of this integrated system

provided strong supporting evidence for my claims that ML should be used to aug-

ment, rather than replace, existing radar detection and tracking algorithms.
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Chapter 6

Using Meta-Cognition in Adaptive Detection

6.1 Introduction

In this chapter, I describe my ideation, development, and characterization of a

novel ML-based adaptive detection algorithm. Based on a first principles understand-

ing of the challenges that exist in the radar detection domain, I identified that the

distribution assumption used to derive most existing adaptive detectors was a critical

performance limiter. More specifically, it restrics the ability of radar systems to oper-

ate in scenarios containing challenging interference patterns and/or low SNR targets.

I was then able to design a detection algorithm that could dynamically adapt in real

time to changing clutter distributions based on a two-stage, meta-cognitive approach.

The proposed algorithm utilized multiple low-cost, well-orchestrated neural networks

to both identify the distribution of clutter and then dynamically set thresholds for ex-

isting test statistics. This design was successfully developed and characterized, which

was initially published in [14].

Much of my early research into possible applications of ML to the radar domain

focused on detection. It quickly became apparent to me that the overwhelming ma-
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jority of existing detection algorithms relied on the assumptions that the distribution

of interference was known and remained relatively consistent (as discussed in Chapter

3). Those adaptive detection algorithms that attempted to operate over a broader range

of distributions largely did so by defining a number of test statistics or thresholds that

were stored in a lookup table. They would then select from that lookup table by heuris-

tically approximating the distribution. While these methods did provide considerable

adaptability, they are ultimately inefficient and scale poorly as the complexity of the

clutter scenario increases.

Given the nature of neural networks as universal function approximators, I the-

orized that integrating these ML techniques directly into existing adaptive detection

algorithms could provide a much more general solution for maintaining the crucial

CFAR property over a range of interference distributions with minimal loss of detec-

tion performance. An initial survey of the literature at that time revealed that a number

of researchers had attempted to use ML to replace various detection algorithms and

perform detection directly. Others had attempted to use NNs to classify distributions

in the aforementioned lookup table detectors [143], and some tried to use NNs to dy-

namically set the threshold for a given detector and interference distributions [144].

Ultimately, both the attempts to replace existing detection algorithms with ML and

to use NNs to effectively classify the distribution of interference in the literature had

largely proven unsuccessful. This was due primarily to the fact that in each case the

ML model was unable to converge to a high fidelity solution that generalized across

distributions. The approaches to dynamic thresholding with NNs had proven some-

what more successful, but was not widely considered a viable technique. These made

many of the same assumptions as existing detection algorithms and the CFAR property

could not be mathematically proven when using these thresholds (even if CFAR-like
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behavior could be demonstrated experimentally).

Each of the attempts to use ML for adaptive detection mentioned above made one

of several common mistakes when designing the ML models. First, many attempted to

use singular models to perform these various tasks. Second, each approach involving

interference classification relied on feeding large amounts of data from various inter-

ference distributions into the ML model, expecting it to accurately learn to identify

the target distribution. Finally, many of these approaches attempted to train the model

on real world data, limiting their ability to generalize.

Developing a generalized adaptive detector that can maintain both detection per-

formance and CFAR-like behavior across a broad range of interference distributions

is a highly complex problem space that also contains substantial regions of ambiguity.

As a result, a singular model, however advanced, will be unlikely to learn a solution

that generalizes well. Much of the ambiguity in this problem space is related to the be-

haviors of the various interference distributions themselves. Take SIRVs as an exam-

ple: SIRVs such as the K, Pareto, and Weibull distributions have considerably different

characteristics depending on the shape and scale parameters used. There are various

shape parameter values that can be selected within these SIRVs at which the distribu-

tions are indistinguishable. For instance, as the shape parameters become very large

each distribution tends towards Gaussian. Attempting to train a NN to broadly distin-

guish between the Gaussian, K, Pareto, and Weibull distributions is untenable given

this degree of ambiguity between them. Additionally, models trained on real world

data will be unlikely to generalize well given the limited availability of labeled, high

fidelity data containing a broad range of interference distributions. A large amount of

work has been done in the literature [66] to fit clutter signals of interest to well-defined

distributions and simulate them. Given that such simulation models exist and the need
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for models to generalize, it is arguably a much better approach to design, train, and

characterize ML detection algorithms on simulated data and then test on real world

data to demonstrate how well they generalize.

Based on my observations of this existing literature, I have proposed a novel meta-

cognitive approach to adaptive detection that leverages a system of ML models to both

classify clutter distributions and dynamically set thresholds for an existing adaptive de-

tection algorithm. Rather than attempting to broadly distinguish between distributions,

this approach instead identifies regions within distributions with distinct statistical be-

haviors and trains a classification model to distinguish between them. Additionally,

one regression model is trained for each distribution region to set the detector thresh-

old. In the next sections, I will describe the system architecture, its implementation,

and the testing used to prove the concept and characterize its performance. It should

be noted here that I worked directly with a colleague, Geoffrey Dolinger, to refine,

implement, and test this design. I will be careful to distinguish between our respective

contributions to this work.

6.2 Related Work

Detection is one of the fundamental functions of any detection systems and is at the

core of how autonomous system perceive the world. As a result, it has been the subject

of considerable research, particularly in the radar domain. As I discussed in Chapter

3, detection is most commonly framed as a binary hypothesis test. For simple cases

where the distribution of each hypothesis is perfectly known, the Neyman-Pearsons

criterion can be directly applied. In general, however, the statistical properties of

interference are not known and must instead be approximated. Adaptive detection
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algorithms such as the Reed, Mallet, and Brennan (RMB) detector [52] are derived to

allow for improved detection performance by making use of a sample matrix inversion

(SMI) technique to estimate a threshold for the rejection of correlated interference.

The RMB utilizes a set of training data that is assumed to contain only Gaussian noise

to estimate the covariance matrix of the noise and create a matched filter to apply to

the signal being evaluated for detection. The output of the matched filter would then

be compared against some threshold value based on the probability density function

(PDF) of the signal to interference ratio (SIR).

The use of sample data that is assumed to contain only interference when esti-

mating the interference covariance matrix has served as the basis for adaptive radar

detection algorithms since. The family of space-time adaptive processing (STAP)

methods have leveraged and expanded on the SMI technique to overcome the chal-

lenges presented by clutter[145, 146]. STAP dynamically adjusts filtering properties

in both space and time [147] to improve the differentiation between target returns and

clutter.

Much of the work done in developing adaptive detection algorithms since has been

focused on defining the test statistic used to evaluate whether the return signal under

evaluation is caused purely by noise/interference or by a combination of interference

with a target of interest. Early algorithms focused on the case of homogeneous Gaus-

sian noise with unknown covariance, while more recently work has been done to ex-

pand these implementations for use in the partially homogeneous and non-Gaussian

cases [53, 54, 55, 56, 57, 58, 59, 60, 61]. This type of non-Gaussian interference has

also been observed in additive interference from communications users in a congested

spectrum [62, 63, 64].
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The key issue with existing adaptive radar detection algorithms that is explored in

this work is their sensitivity to the distribution of the interference they encounter. If

that interference deviates from assumptions made during derivation of the algorithm,

detector properties like false alarm rate may be significantly impacted. While some

algorithms, like the ACE, are more resilient to these effects, they still experience this

degradation [53, 80, 88, 89, 68, 90, 85, 93, 91, 92]. That resilience also usually comes

at a general performance cost. In real world settings, it is not realistic to expect mo-

bile radar systems to encounter consistent interference distributions. This issue is well

documented in the literature, and much of modern adaptive detection research is fo-

cused on finding ways to overcome this limitation.

The use of ML techniques to augment adaptive detection algorithms is a current

research area with significant potential [7, 8]. It is also the focus of the work presented

in this dissertation. ML approaches excel at identifying patterns within complex data

and classifying it based on those patterns. Previous work in this domain has explored

methods for robust threshold selection across a known set of potential interference

distributions [7, 8]. A number of other deep learning (DL) approaches to adaptive

radar detection have been proposed in recent years. A review of recent DL-based

detection algorithms is provided in [148].

Some use neural networks to attempt to replicate or replace existing detection ap-

proaches. In [149], Nuhoglu et al. propose using an autoencoder with bidirectional

LSTM network to de-noise return signals and perform detection. [150] presents a

method using a K-nearest neighbors (KNN) approach to combine the AMF and GLRT

test statistics for detection in Gaussian noise. The authors of [151] develop a KNN-

based detection statistic for use in K-distributed clutter. Both [152] and [153] perform

detection using a deep neural network that is trained to replicate the behavior of a
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cell-averaging CFAR (CA-CFAR) detector on range processed data with Gaussian in-

terference, and [154] uses a neural network trained to perform peak detection in the

frequency domain. Mata-Moya et al. [144] use a deep neural network (DNN)-based

approach for adaptive thresholding in range-Doppler processed data. Both random

decision forests and recurrent neural networks (RNNs) for detection based on I/Q data

are explored in [155].

Others have used DL to augment existing detection algorithms. In [156], a DNN

is prepended to a GLRT detector to identify and remove non-linearities in received

signals. The authors in [157] present a multi-headed DL system to estimate the shape

and scale parameters of Pareto distributed clutter. Xiang et al. [158] propose a method

of clutter classification based on the combination of kernel density estimation and a

batch orthogonal matching pursuit algorithm. An adaptive detection framework for

changing clutter backgrounds is proposed in [143] that uses a cumulative sum algo-

rithm to identify areas where the clutter distribution changes, kernel density estimation

to classify the new distribution, and a predefined look-up table of detection thresholds.

Much of the research in the last few years has centered on using DL on range-

Doppler (RD) ([159, 160, 161, 162, 163, 164]) or synthetic aperture radar (SAR) pro-

cessed data ([165, 166, 167, 168, 169]). Many of these use CNN-based architectures,

like VGG-16 and U-Nets, to perform target detection and identification ([166, 167,

161, 168, 162, 163, 169, 164]). Others focus on using these architectures for clutter

classification [160]. CNNs are so broadly used in this space due to how well they

perform at identifying patterns in higher-dimensional data.

Each of the approaches above demonstrate the potential of using DL for detection.

However, a number of challenges exist with each. Those that utilize RD processing
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struggle with detection of slower moving objects that fall near or within the clutter

ridge. SAR processing is a specialized technique with high computational cost that is

not broadly used for real-time radar detection. Larger DL models like CNNs, RNNs,

and autoencoders are computationally costly and can be difficult to train on relatively

simple datasets (such as I/Q data) without overfitting. Deep ANNs are interesting for

use in detection, due to their speed and ability to generalize well. However, the relative

simplicity of these models makes it challenging to train them to perform detection over

a broad range of clutter distributions without a high level of model confusion.

Existing techniques using deep neural networks display the same core limitations

present in non-DL detectors; either an interference distribution is assumed and used

with a single threshold setting network, or a network is used purely for clutter clas-

sification and then a look-up table of detectors/thresholds is used. Setting thresholds

over a wide range of distributions is too complex a problem for a single neural net-

work to learn, particularly given the overlap in certain distribution regions. But if a

distribution is assumed, then the model will not generalize well when presented with

other clutter distributions. Look-up tables of detectors/thresholds limit coverage to

the distributions and parameters contained within them, and grow rapidly to increase

coverage or resolution.

6.3 Proposed Approach

Here I will describe in detail the design and implementation of the proposed meta-

cognitive detection algorithm. Figure 6.1 depicts the architecture of the meta-cognitive

detector. In this design, raw I/Q data was passed through some simple, heuristic pre-

processing to prepare it to both be ingested by the ML models and used in the deriva-
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tion of the test statistic. The outputs of this preprocessing, which will be described in

more detail shortly, consisted of a cell under test, an estimated interference covariance

matrix, and a set of down-sampled magnitude ordered statistics (DSMOS) from the

background interference. The DSMOS were then passed to both a discriminator and a

threshold selector. The discriminator consists of a simple, feed-forward classification

network that classifies the interference into one of a set of discrete distribution regions

(this concept of distribution regions will be described shortly). Each discrete distribu-

tion region that the discriminator has been trained to recognize has a unique threshold

setting agent associated with it. These agents consist of feed forward regression net-

works that have been trained to identify which point within their associated region best

fits the data and outputs a threshold for the detector. Finally, the estimated covariance

matrix and cell under test are used to calculate the test statistic, which is compared

with the threshold in a binary hypothesis to determine whether or not a detection is

recorded. The meta-cognitive detector itself was implemented in Python, while the

data generation was performed using Matlab. All ML elements of this system were

initially developed using Tensorflow and have since been translated into Pytorch.

The data preprocessing block of Figure 6.1 consists of two sets of calculations and

has three distinct outputs. The first set of calculations is used to estimate the interfer-

ence covariance matrix of the cell under test. Since the true interference covariance

matrix will never be known in practice, it is estimated from support samples using the

method provided in (3.21). For the development of this adaptive detection method,

it is assumed that the support samples contain only interference drawn from the same

distribution as that present in the cell under test. This assumption is consistent with the

existing literature on adaptive detection [13], and it is therefore considered reasonable.

The estimated covariance matrix, along with the raw I/Q values for the cell under test,
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Figure 6.1: System architecture for the proposed meta-cognitive detector.

are output from the preprocessing block and used in the calculation of the detector’s

test statistic.

The second set of preprocessing calculations is used to take the raw sample sup-

port data and convert it into a format that can be ingested by the ML elements of the

detector. The type and format of the data provided to an ML model will generally have

a strong impact on its performance characteristics and ability to generalize. With that

in mind, we initially explored several data formats for the inputs to the discriminator

183



and threshold setting models. Each data format was used to train the various mod-

els and were evaluated in terms of model performance, computational overhead, and

extensibility to different sample lengths and numbers of support samples. I will note

here that the threshold setting agents were implemented and trained by me, while the

discriminator agent was implemented and trained by my colleague Geoffrey Dolinger.

As a result, we developed, tested, and evaluated these preprocessing calculations col-

laboratively. Note also that the feed-forward neural networks used in this work require

inputs that are real-valued vectors of a fixed length, driving certain commonalities be-

tween these preprocessing approaches. We first examined the format requiring the

most minimal preprocessing, in which the raw data samples were simply separated

into their real and imaginary components, concatenated, and flattened to form a single

vector of values:

zin = vec([Re(zk), Im(zk)]) (6.1)

= [Re(zk,(1)), Im(zk,(1)), . . . ,Re(zk,(N∗K)), Im(zk,(N∗K))]
T

where vec (•) refers to vectorization, Re (•) is the real component of a complex value

or vector, and Im (•) is the imaginary component of a complex value or vector. This

approach was considered first due to the low computational overhead during prepro-

cessing and the lack of information loss accrued by inputting the raw support data.

However, neither the discriminator model nor the threshold setting models consistently

converged when training on data in this format. This is likely due to the stochastic na-

ture of the data, which makes it nearly impossible for the NNs to identify consistent

features during the learning process.
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Next, we considered using a full set of magnitude ordered statistics:

zin = Or(vec(zk)) (6.2)

= [|zk,(1)|, |zk,(2)|, . . . , |zk,(N∗K)|]T

where Or (•) is the order function. This approach was considered for several reasons.

First, the nature of clutter models as a combination of texture and speckle (as described

in Chapter 3) means that the distribution of the clutter is generally characterized by

its magnitude distribution. As a result, it was theorized that the magnitude of the sup-

port samples would contain sufficient information about the underlying interference

distribution for the ML models to learn. Second, the use of ordered statistics is com-

mon practice in the adaptive detection literature ([170]) and provides some additional

structure to the model input data, increasing the consistency of the features seen by

each model. This structure/consistency in the input data should make it more likely

that the models converge to consistent solutions. Additionally, the use of magnitude

information removes the need to separate out real and imaginary elements of the input

data, reducing its size and the dimensionality of the networks. Both the discriminator

and threshold setting models were successfully trained on this input data format.

Finally, a down-sampled set of magnitude ordered statistics was considered:

zos = Or(vec(zk)) (6.3)

= [|zk,(1)|, . . . , |zk,(512)|]T

zds =↓64 zos

zin = [zds,(1), zds,(2), . . . , zds,(n)]
T
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where ↓64 (•) denotes down-sampling to 64 evenly distributed values. This approach

again has all of the benefits of using magnitude ordered statistics, but with several

additional advantages. Most importantly, this approach makes the ML components

of the meta-cognitive detector largely agnostic with respect to the sample length and

number of support samples (so long as N ∗K ≥ 64). The further reduction of input di-

mensionality also reduced the size of the NN models and the computational overhead

of the meta-cognitive detector. Using an evenly distributed subset of the magnitude

ordered statistics during model training also reduces the likelihood of the NNs over-

fitting, which improves generalization. This data format was ultimately selected for

the final system implementation both due to these benefits and the success of using it

to train both the classification and regression models. These DSMOS, derived from

the support data, the raw sample from the cell under test, and the estimated covariance

matrix are the three outputs from the data preprocessing block.

After preprocessing the input data, the DSMOS are passed to the machine learn-

ing elements of the meta-cognitive detector. Rather than attempting to train a singu-

lar monolithic model, my proposed design consists of two levels of specialized ML

models: 1) a set of regression models (here called thresholds selectors) specialized

to operate in specific clutter distribution regions and 2) a higher level classification

model (here called the discriminator) that identifies the distribution region of the clut-

ter and selects the appropriate regression model. I would now like to draw attention to

the concept of a clutter (or interference) distribution region. When discussing random

processes, they are often described as broadly characterized by a probability distribu-

tion (Gaussian, exponential, lognormal, etc.). However, for more complex distribu-

tions, such as those commonly used to model clutter, the distributions have additional

parameters that significantly impact their form and behavior. Good examples are the
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K, Pareto, and Weibull distributions, which are each defined by a shape and a scale pa-

rameter. As its name suggests, the shape parameter alters the shape of the distribution

while the scale parameter affects the spread of the distribution. These distributions

will change drastically for different values of the shape and scale parameters. This

is illustrated in Figure 6.2, which shows plots of the Gaussian distribution and the

Weibull distribution with different shape parameters. In this dissertation, I use the

term distribution region to refer to a range of shape/scale parameters within a particu-

lar distribution. For instance, one such region might be the Weibull distribution with

scale a = 0.5 to 1 and shape b = 1. Note that these distributions often have regions

of behavioral overlap, where they become extremely difficult to distinguish from one

another. This can be readily seen in Figure 6.2 with the near perfect overlap between

the Gaussian distribution and the Weibull distribution with a = 3.

Figure 6.2: Example distribution plots based on Gaussian and Weibull distributions.
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Previous attempts to use ML to either classify or operate within a distribution

have attempted to broadly train agents to distinguish between distributions such as the

Weibull, K, and Gaussian distributions. However, the level of ambiguity across these

distributions means that attempting to train a NN on real or simulated data sampled

from them will often either fail to converge or have significant confusion between the

classification categories. One of the key innovations I have made in this field lies in

my proposal to train models based on the notion of statistically unique distribution

regions. I define statistically unique distribution regions as parameter ranges within

a distribution whose behaviors are significantly different from one another. For in-

stance, the K-distribution can be broadly divided into low shape parameter regions

(a < 1), where it approximates an exponential distribution, middle shape parameter

values (1 ≤ a ≤ 3.5, where it approximates a lognormal distribution, and high shape

parameter regions (a > 3.5), where it approaches the Gaussian distribution. My core

claim is that if one can identify regions of sufficiently unique behavior within the dis-

tributions, it is possible to consistently train ML models that will converge with low

confusion between the operational regions.

Now one must define how to determine what constitutes “sufficiently unique” re-

gions. Since the goal of this work was to develop an ML enhanced adaptive detection

algorithm, in this case the GLRT, I initially used the threshold behavior of the GLRT

to define these regions. These threshold values are set to maintain a desired Pfa for the

detection algorithm and are directly related to the statistical properties of the interfer-

ence distribution, making it a good metric to use for this application. Figures 6.3 and

6.4 show the GLRT threshold curves at a Pfa = 10−4 for the K- and Pareto distribu-

tions, respectively. These threshold values were determined experimentally and show

the strong, monotonically decreasing relationships between the threshold values and
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each distribution’s shape parameter. Note also that each of these curves approaches

the same static value ( 0.45) as the shape parameter gets large and the distributions

approach Gaussian behavior. This supports my claim that the threshold behavior of

the GLRT across each distribution is a sufficiently good metric for this application.
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Figure 6.3: GLRT threshold curve for the K-distribution at Pfa = 10−4.

Using the threshold behavior to determine the unique distribution regions that the

classification and regression models are trained to operate over also has key design

benefits for the NNs. It is clear from Figures 6.3 and 6.4 that the K- and Pareto distri-

bution curves can be divided into three regions (signified by the vertical dashed lines)

with very different slope characteristics. Regression NNs essentially learn mapping

functions between input data and continuous output values. They are inherently more

difficult to train and are generally less stable than classification networks. The more

consistent the desired feature-output relationship (in this case reflected by the slope
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of the threshold to shape parameter curve), the smaller the network size required to

learn it and the more accurate the outputs are. Both of these are critical elements in

the design of regression models used to set thresholds in detection algorithms, which

must both operate in real time and whose Pd and Pfa characteristics are extremely

sensitive to threshold error. Additionally, the more similar the distribution regions, the

more similar their threshold values, and the lower the impact of an incorrect classi-

fication become. It should be noted here that my colleague, Geoffrey Dolinger, was

able to verify this claim using the Jensen-Shannon (JS) divergence. He also used the

JS divergence to create a more generalized test for distribution uniqueness that we

subsequently used for this line of research.
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Figure 6.4: GLRT threshold curve for the Pareto distribution at Pfa = 10−4.

After establishing the concept of statistically unique distribution regions, seven

interference regions drawn from three distributions were selected for designing and
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characterizing a proof of concept implementation of the meta-cognitive detector. The

Gaussian distribution was selected as a baseline, given that its behaviors are well un-

derstood, and the performance of the baseline GLRT is optimal in the presence of

correlated Gaussian clutter. Three regions were then identified in each of the K- and

Pareto distributions. As discussed in Chapter 3, the K- and Pareto distributions were

selected because they are often used to model complex radar interference scenarios,

like ocean clutter. The three regions within each distribution correspond to the regions

displayed in Figures 6.3 and 6.4. These regions are listed in Table 6.1.

Classes Gaussian K-Dist K-Dist K-Dist
a Regions - 0.1 to 1 1.25 to 3.5 3.75 to 10

a Training label 0 1 2 3
Classes - Pareto Pareto Pareto

a Regions - .5 to 2.5 3 to 6.5 7 to 10.5
a Training label 0 4 5 6

Table 6.1: Clutter Ranges and Labels

Input

1x64
Ordered
Statistics

Hidden
Layer (2)

50 nuerons 
Dropout=10% 
elu activation

Output

7 classes
SoftMax

Hidden
Layer (1)

200 nuerons 
Dropout=10% 
elu activation

SCCE Loss
LR = 0.0001

Figure 6.5: Discriminator Model

I will now describe the implementation and training of each level of the ML sys-

tem. I would like to note, however, that while I personally implemented, trained, and

characterized each of the threshold selection models, my colleague Geoffrey Dolinger
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implemented, trained, and characterized the discriminator model. I then performed

the full system integration and oversaw its characterization. Dolinger’s discrimina-

tor model consists of a classification DNN designed to distinguish between the seven

clutter distribution regions described above. It takes as an input the support sample

DSMOS and outputs a set of seven probabilities (that will sum to 1) based on its de-

termination of how likely it is that the input data came from each of the seven regions.

This is a DNN with two hidden layers, each of which uses the exponential linear unit

(ELU) activation function. The final activation layer is a softmax, and the loss function

is sparse categorical cross-entropy (SCCE). Figure 6.5 [14] depicts the architecture of

Dolinger’s discriminator.
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Figure 6.6: Discriminator Training Accuracy

To train the discriminator model, 20, 000 data samples consisting of the length

64 DSMOS (zin) were generated for each of the 7 distribution regions. For each

region other than Gaussian, these samples were generated using the shape parameter
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at the center of the region. Data labels for each region are listed in Table 6.1. The

training data set was divided into 75% for training and 12.5% each for validation and

testing. Training was conducted with a learning rate of 10−4 and a patience value

of 30. This discriminator trained to a classification accuracy of 98% and displayed

very little confusion between classes. These performance characteristics are critical

for the meta-cognitive system, as misclassifications made by the discriminator will

quickly drive up the false alarm rate. The training curve for Dolinger’s discriminator

is depicted in Figure 6.6, and its confusion matrix is shown in Figure 6.7

As was discussed above, the distribution space was subdivided into seven regions

in order to develop a system that could detect targets in diverse clutter distributions

while also maintaining CFAR-like performance. Each had a threshold selector imple-

mented and trained to perform within that region with the Gaussian GLRT detector.
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The first region was the simple Gaussian case for which the GLRT was designed. In

this region, the threshold was selected using the closed form expression given by:

λGLRT
0 =

1

(Pfa)
1

K−N+1

(6.4)

The other six regions were pulled from the K- and Pareto distribution models as listed

in Table 6.1. Regression DNNs were used to set the thresholds for the GLRT operating

in each region. Each of these DNNs had an identical model structure but were uniquely

trained only on clutter data pulled from their target distribution region. They each

take as an input the same length 64 DSMOS as the discriminator model and output a

single continuous threshold value. These models contained three hidden layers, each

of which used the ELU activation function. ELU was also used as the final activation

function with Mean Absolute Error (MAE) as the loss function. This model structure

is depicted in Figure 6.8.

Input

1x64
Ordered
Statistics

Hidden
Layer (1)

1000 nuerons 
Dropout=10% 
elu activation

Hidden
Layer (3)

50 nuerons 
Dropout=10% 
elu activation

Output

1 threshold
value 

elu activation

Hidden
Layer (2)

200 nuerons 
Dropout=10% 
elu activation

MAE Loss 
LR = 0.0001

Figure 6.8: Threshold Selector Model

Each of the threshold setting models was trained on data samples generated from

the distribution/shape parameter pairs listed in Table 6.2. Since regression models

learn to approximate continuous transfer functions, I was able to train these models at
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discrete points distributed throughout each target region with the expectation that the

final transfer function would allow it to operate over the full region. This was verified

during characterization, which will be discussed later. Training labels for the threshold

setting models were drawn from the ideal threshold values shown in Figures 6.3 and

6.4 which were generated for a target Pfa = 10−4. Again, these ideal threshold values

were found experimentally using Monte Carlo analysis. This is commonly done in the

literature on covariance inversion detectors due to the lack of closed form expressions

for calculating thresholds in non-Gaussian clutter.

Filter Shape Parameter (a) for Threshold Labels
K1 [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00]
K2 [1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50]
K3 [3.75, 4.00, 4.25, 4.50, 5.00, 5.50, 6.00, 7.00, 8.00, 9.00, 10.00]
P1 [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50]
P2 [3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50]
P3 [7.00, 7.50, 8.00, 8.50, 9.00, 9.50, 10.00, 10.50]

Table 6.2: Shape Parameter (a) for Threshold Labels

For each of the six threshold selection models, the training data set consisted of

20, 000 DSMOS (zin) and associated labels generated at each of the shape parameter

values listed in Table 6.2. 75% of the data was used for training, with 12.5% used for

both validation and testing. These models were trained with a learning rate of 10−4

and a patience value of 30. The training loss curves for the Threshold Selectors can be

found in Figures 6.9 and 6.10.

While these training curves do provide a good indication of whether or not the

regression models converged to low error solutions, they give no direct indication of

how well the models will perform when integrated with the GLRT. Given the tight

performance requirements for detectors and the need to maintain CFAR-like behavior

without substantially reducing detections, it was essential to characterize the Pfa and
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Figure 6.9: K-Distribution Training Loss

Pd performance of the GLRT when its threshold was being set by the trained regression

models. This was done prior to full system integration to isolate potential sources of

error. After being trained, each threshold selector was integrated with the GLRT,

and its performance was verified using 100, 000 pairs of H0 and H1 test samples and

associated support samples at each distribution/shape parameter listed in table 6.2.

This data was generated with N = 16 and K = 32. Figures 6.11 and 6.12 depict

the Pfa performance, and Figures 6.13 and 6.14 show the detection performance. In

each figure the transition from one threshold selector model to another is denoted by

a vertical, dashed black line. The region to the left of the vertical, dashed red line in

Figures 6.11 and 6.13 is an extremely heavy-tailed region of the K-distribution that

proved to be particularly challenging. Significant analysis of the behaviors of both the

proposed meta-cognitive detector and various classical covariance inversion detectors

has been done and will be discussed later in Section 6.4.
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Figure 6.10: Pareto Training Loss

Based on the Pfa plots in Figures 6.11 and 6.12, the most important observa-

tion is that curves are almost perfectly flat at the desired 10−4. The key exception

to this observation is the extremely heavy-tailed portion of the low shape parameter

K-distribution. However, even in this area, the Pfa drops closer to 10−5 rather than

jumping higher, which is a preferable failure mode. Additionally, when examining

the ideal threshold curve for the K-distribution (Figure 6.3), it is clear that the target

threshold displays some asymptotic behavior in this region and approaches 1, which

is the maximum bound on the GLRT threshold. The asymptotic behavior likely makes

it difficult for the regression network to learn a consistent transfer function across the

full region. Breaking the region into two and training an additional threshold selec-

tor would likely mitigate this issue. That asymptotic behavior coupled with the fact

that the ideal threshold values approach 1 at the bottom of the low shape parameter

K-distribution region also explains the severe drop in the Pd observed in this region.

197



0 2 4 6 8 10
Shape Parameter (a)

8

7

6

5

4

3

2

1

0
lo

g(
PF

A)
False Alarm Rate vs Shape Parameter for K-Distribution

Figure 6.11: False Alarm Rate for K-Distribution Threshold Agents.

6.4 Testing and Analysis

Characterization of the full system was conducted in several stages. Each stage

was designed to determine the system’s performance characteristics, limitations, and

benefits. First, its performance was verified over the full range of clutter distribution-

s/shape parameters. Then it was characterized on a new clutter distribution on which

no portion of the meta-cognitive detector was trained. Next, the system was reimple-

mented with 9 distribution regions (rather than the original 7) that include variations in

the scale parameter b, and the expanded system was characterized. Finally, testing was

conducted to evaluate how the meta-cognitive detector performs with different sample

lengths, sample support values, and one-lag clutter correlation coefficients. To per-

form a comprehensive analysis of this approach’s fidelity in each distribution region,
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Figure 6.12: False Alarm Rate for Pareto Distribution Threshold Agents.

all clutter data used for training and characterization were generated directly with the

desired distributions. Unless otherwise stated, all testing was conducted with clutter

data generated using a sample length of N = 16, sample support of K = 2N , a one-

lag clutter correlation coefficient of ρ = 0.9, and shape parameter b = 1. Any static

Pfa testing was performed with Pfa = 10−4, and Pfa sweeps were conducted over

Pfa = 10−4 to 10−1. The results of the testing were captured in terms of the observed

Pd, Pfa, and Receiver Operating Characteristic (ROC) curve. The ROC curve typi-

cally consists of a plot of the Pd (y-axis) versus the Pfa (x-axis), and it is commonly

used in the literature on adaptive detection algorithms to compare the performance of

different detectors. In this work, I use two minor variants of the ROC curve; 1) Pfa

versus Target Pfa and 2) Pd versus Target Pfa. I use these variants because the pro-

posed meta-cognitive approach to adaptive detection was designed to allow existing
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Figure 6.13: Detection Probability for K-Distribution Threshold Agents at SIR =
35dB.

detection algorithms to operate over an arbitrarily broad range of distributions, and

one of its key characteristics is the ability to maintain CFAR-like behavior when other

detectors fail to do so.

Four additional detection algorithms are used at various stages of the character-

ization testing for comparison with the proposed approach. These are the standard

Gaussian GLRT (3.22), the Gaussian AMF (3.26), the DL-based detector described in

both [152] and [153], and the Gaussian GLRT with threshold selector trained on low

shape parameter (0.1−1.0), K-distributed clutter (K1 filter). The Gaussian GLRT and

AMF serve as a comparison with the state-of-the-art in non-ML-based adaptive detec-

tion. The alternative DL detector is used as a comparison with modern DL detection

approaches. This approach uses range processed (i.e., matched filtered) return signals
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Figure 6.14: Detection Probability for Pareto Distribution Threshold Agents at SIR =
35dB.

as the input to a single neural network trained to perform detection directly. It was se-

lected for comparison due to the similarity in the data model and level of processing,

allowing for a more direct performance comparison. This also provides an interest-

ing comparison against a purely ML-based detection system. The implementation and

training of this alternative DL approach were performed exactly as detailed in [153].

The low shape parameter K-distribution is the most non-Gaussian distribution region

considered here, and the threshold selector trained in this region consistently has the

highest threshold values, making it a natural choice for comparison with the ensem-

ble system. The Gaussian GLRT paired with the heavy-tailed K threshold setting ML

model is referred to as the K1 GLRT for the rest of this section.
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6.4.1 System Characterization in Gaussian, K, and Pareto Clutter
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Figure 6.15: ROC Curve - PFA vs Target PFA - Gaussian Clutter.

The first set of large scale system testing was conducted to characterize the per-

formance of the meta-cognitive detector over the full set of clutter distribution regions

for which it was designed. As was alluded to in Section 6.3, the K-distribution clut-

ter region where a = 0.1 to 0.5 was an especially difficult region and was analyzed

separately. I will first present the results of the broader region testing, and then I

will discuss the results of the testing targeted at the extremely low shape parameter

K-distribution region. The full system was first tested using 500, 000 test samples

(with associated sample support) spread across the full region of distributions and
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Figure 6.16: ROC Curve - PFA vs Target PFA - Clutter Sweep.

shape parameters of interest. 200, 000 of these samples were generated using the K-

distribution clutter model, 200, 000 were generated using the Pareto model, and the

remaining 100, 000 were generated with the Gaussian model. For each of the K- and

Pareto distributed clutter data, 100 shape parameters were randomly selected (between

0.5 and 10 for K- and between 0.5 and 10.5 for Pareto), and each shape parameter was

used to generate 2, 000 samples. It should be noted here that while the shape parame-

ters generated for this testing fell within the regions for which the threshold selectors

were trained, virtually none matched the training values exactly. This observation was

important because it served to demonstrate how effectively the system generalizes to

203



Detector Simulation False Detections Pfa Pd

Number Alarms
Gaussian

Meta-Cog. Det. 100, 000 9 98, 615 0.000090 0.986150
Gaussian GLRT 100, 000 10 98, 692 0.000100 0.986920

AMF 100, 000 7 98, 645 0.000070 0.986450
K1 GLRT 100, 000 0 72, 236 0.000000 0.722360

DL Detector 100, 000 10 99, 759 0.000100 0.997590
K(0.5− 10)

Meta-Cog. Det. 200, 000 21 186, 996 0.000105 0.934980
Gaussian GLRT 200, 000 162 194, 636 0.000810 0.973180

AMF 200, 000 841 197, 664 0.004205 0.988220
K1 GLRT 200, 000 3 127, 548 0.000015 0.637740

DL Detector 200, 000 280 198, 975 0.001200 0.994875
Pareto(0.5− 10.5)

Meta-Cog. Det. 200, 000 23 187, 825 0.000115 0.939125
Gaussian GLRT 200, 000 132 194, 355 0.000660 0.971775

AMF 200, 000 1756 198, 013 0.008780 0.990065
K1 GLRT 200, 000 1 112, 982 0.000005 0.564910

DL Detector 200, 000 1, 004 198, 027 0.005020 0.990135
Full Test - Gaussian+K(0.5− 10) + Pareto(0.5− 10.5)

Meta-Cog. Det. 500, 000 53 473, 436 0.000106 0.946872
Gaussian GLRT 500, 000 304 487, 683 0.000608 0.975366

AMF 500, 000 2604 494, 292 0.005208 0.988584
K1 GLRT 500, 000 4 312, 766 0.000008 0.625532

DL Detector 500, 000 1, 294 496, 761 0.002588 0.993522
Lognormal

Meta-Cog. Det. 100, 000 52 91, 693 0.000520 0.916930
Gaussian GLRT 100, 000 378 95, 890 0.003780 0.958900

AMF 100, 000 4398 99, 640 0.043980 0.996400
K1 GLRT 100, 000 14 87, 914 0.000140 0.879140

DL Detector 100, 000 1, 390 98, 765 0.013900 0.987650

Table 6.3: Verification Test Results - Full Range of Clutter Distributions and
Additional Lognormal Case

the distribution regions.

These 500, 000 samples were first generated as clutter only (H0) samples and were

used to evaluate the false alarm rate of the detection algorithm. Those same samples
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were then used to generate (H1) samples by adding a target as in Equation (3.3) to

determine the Pd for the detector over different distributions and shape parameters.

Both the Pfa and Pd were tested at a target Pfa = 10−4. A static steering vector was

used for all H1 test samples with pi = exp−j2π(i−1)0.2. H1 testing was conducted at an

SIR value of 35dB. α was set to ensure the desired SIR for the SUT using [94]:

SIR = α2 × pHM−1p (6.5)

This baseline performance comparison was conducted using the Gaussian GLRT,

AMF, Carretero et al.’s DL detector, and the K1 GLRT. For the remainder of this

chapter, I will refer to Carretero et al.’s DL detector as simply the DL detector.

Table 6.3 shows the results for the meta-cognitive detector, Gaussian GLRT, AMF,

K1 GLRT, and the DL detector from the full region of clutter distributions. This table

shows the Pfa and Pd results for each distribution individually as well as the aggregate

across all three distributions. Several impressive outcomes can be observed. First, the

proposed meta-cognitive detector matched the performance of the Gaussian GLRT

for Gaussian interference. Second, it successfully maintained the target Pfa of 10−4

across the full sweep of K- and Pareto distributed data while also achieving a very

high probability of detection. Across all of the distributions the K1 GLRT, which was

the most restrictive filter, maintained a very low Pfa, but it did not display CFAR-like

behavior and had substantially degraded Pd. Both the AMF and DL detector utterly

failed to maintain CFAR-like behavior in both the K- and Pareto distributed clutter

with Pfas at least an order of magnitude higher than the target. The full data set

results show the optimal performance of the meta-cognitive detector as it maintains

a Pfa ≈ Pfa,Target and had an over all Pd ≈ 94.5%. By comparison the Gaussian
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GLRT, AMF, and DL detector each had much worse Pfa (Pfa,GLRT ≈ 6 × 10−4,

Pfa,AMF ≈ 5× 10−3, Pfa,DL ≈ 2.5× 10−3). On the other extreme, the restrictive K1

GLRT was below the Pfa target, but it had much worse Pd ≈ 72.2%
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Figure 6.17: ROC Curve - Pd vs Target Pfa - Gaussian Clutter.

Additional testing was conducted to generate ROC curves for each detector. The

Gaussian-only and Gaussian/K/Pareto sweep data sets were each run through the de-

tectors over a range of target Pfas from 10−4 to 10−1. The Pd and Pfa for each detector

were recorded and plotted against the target Pfa in Figures 6.15-6.20. H1 testing was

conducted at two distinct SIR values: 35 dB and 10 dB. For both the meta-cognitive

detector and DL detector, this required retraining of the ML elements of each system
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Figure 6.18: ROC Curve - Pd vs Target Pfa - Clutter Sweep.

for each target Pfa. In each ROC plot, the meta-cognitive detector is labeled as CD

and the DL detector as Alt.

The ROC curves generated by this testing further demonstrate the superiority of

the meta-cognitive approach to adaptive detection. Figure 6.15 depicts the Pfa versus

target Pfa curve in purely Gaussian clutter. Clearly, all detectors except for the K1

GLRT maintained the target Pfa throughout. Conversely, the K1 GLRT consistently

had drastically lower Pfa than the target. Figure 6.16 shows the Pfa versus target Pfa

curve for the full distribution sweep. Only the meta-cognitive detector continues to

maintain the target Pfa with no observable change in behavior. Every other detector
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displayed a drastic increase in the number of false alarms.
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Figure 6.19: ROC Curve - PD vs Target PFA - Gaussian Clutter.

Figures 6.17 and 6.18 show the Pd vs target Pfa curves when the SIR is 10 dB. The

Gaussian-only case is shown in Figure 6.17, and the case where all distributions are

included is contained in Figure 6.18. When only Gaussian clutter is present, the meta-

cognitive detector and AMF both have approximately identical detection performance

when compared to the GLRT. The K1 GLRT has relatively poor performance, while

the DL detector actually has better performance than the GLRT. Examining the full

sweep curve, an important observation can be made: the detection performance of

the meta-cognitive detector remains almost perfectly unchanged. Each of the other
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Figure 6.20: ROC Curve - Pd vs Target Pfa - Clutter Sweep.

detectors evaluated displays a jump in Pd corresponding to the previously observed

jumps in Pfa. When the SIR is increased to 35 dB, as shown in Figures 6.19 and

6.20, all approaches other than the K1 GLRT have excellent detection performance

(as would be expected).

As the the K1 GLRT expects extremely heavy tailed clutter, it was designed to set

high threshold values, resulting in the lower Pfa than the target. However, this loss of

sensitivity resulted in a corresponding low Pd. Conversely, the GLRT, AMF, and DL

detectors do not adapt their thresholds to the K- and Pareto distributions, and there-

fore they use high thresholds in heavy-tailed clutter that result in both higher Pfa and
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Pd than expected. It is extremely important that the proposed detector demonstrates

no variation in either the Pd or Pfa between the Gaussian-only and full distribution

sweeps for both the low SIR and high SIR cases. That level of consistency demon-

strates that this novel form of meta-cognition enables the proposed system to main-

tain the desired performance characteristics across all of the various clutter types on

which it was trained. There is also no performance penalty observed for using this

meta-cognitive technique over an ideal detector in the presence of purely correlated

Gaussian clutter.

Targeted system testing was performed in the most heavy-tailed clutter region con-

sidered here: the aforementioned, low shape parameter K-distribution. 500, 000 sam-

ples were used in this evaluation, 100, 000 generated from each of the following five

shape parameters: 0.1, 0.2, 0.3, 0.4, and 0.5. The same clutter data was again used to

generate both H0 and H1 test samples for determining the Pfa and Pd (respectively)

of the algorithm at a target Pfa = 10−4 and SIR of 35 dB. This more targeted perfor-

mance comparison was conducted using only the Gaussian GLRT and the K1 GLRT.

The results for the heavy-tailed clutter region of the K-distribution with extremely

low shape parameter values (a = 0.1 to 0.5) are shown in Table 6.4. Clearly, as the

shape parameters drop below 0.5 the meta-cognitive detector loses its CFAR-like be-

havior. However, it does still outperform the Gaussian GLRT. Interestingly, the tar-

geted K1 GLRT detector is able to maintain the desired Pfa. Given that the K1 GLRT

uses the same threshold selector designed for the low shape parameter K-distribution

region as the main meta-cognitive system, this clearly indicates that the discriminator

model fails to correctly classify the clutter in this sub-region. Looking at the ideal

threshold curve in Figrue 6.3, I will again point out the asymptotic behavior of the

curve as the shape parameter drops below 1.0. This behavior likely indicates that
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Detector Simulation False Detections Pfa Pd

Number Alarms
K(0.1− 10)

Meta-Cog. Det. 200, 000 220 185, 276 0.001100 0.926380
Gaussian GLRT 200, 000 782 194, 478 0.003910 0.972390

K1 GLRT 200, 000 1 126, 488 0.000005 0.632440
K(0.5)

Meta-Cog. Det. 100, 000 10 75, 520 0.000100 0.755200
Gaussian GLRT 100, 000 1, 277 95, 054 0.012770 0.950540

K1 GLRT 100, 000 10 75, 504 0.000100 0.755040
K(0.4)

Meta-Cog. Det. 100, 000 12 72, 840 0.000120 0.728400
Gaussian GLRT 100, 000 2, 040 94, 896 0.020400 0.948960

K1 GLRT 100, 000 9 72, 807 0.000090 0.728070
K(0.3)

Meta-Cog. Det. 100, 000 43 69, 407 0.000430 0.694070
Gaussian GLRT 100, 000 3, 502 94, 837 0.035020 0.948370

K1 GLRT 100, 000 10 69, 031 0.000100 0.690310
K(0.2)

Meta-Cog. Det. 100, 000 981 68, 772 0.009810 0.687720
Gaussian GLRT 100, 000 7, 358 95, 110 0.073580 0.951100

K1 GLRT 100, 000 8 64, 859 0.000080 0.648590
K(0.1)

Meta-Cog. Det. 100, 000 13, 995 83, 488 0.139950 0.834880
Gaussian GLRT 100, 000 19, 290 96, 204 0.192900 0.962040

K1 GLRT 100, 000 4 54, 825 0.000040 0.548250

Table 6.4: Verification Test Results - Extremely Heavy-Tailed K-Distributed Clutter

the statistical properties of the K-distribution change too rapidly in this region for the

discriminator model to effectively generalize across it, resulting in instability in the

trained model. It is very likely that the loss of CFAR-like performance in the mega-

cognitive detector could be mitigated by training a new discriminator model with this

region further subdivided.
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Figure 6.21: Distribution PDF vs Data Histogram - Lognormal Clutter.

6.4.2 System Characterization in Lognormal Clutter

The second set of large scale testing was conducted to determine how well the

proposed meta-cognitive detector performs on unknown distributions. This consisted

of repeating the full characterization at the target Pfa = 10−4 on clutter with a log-

normal distribution as well as generating equivalent ROC curves. The meta-cognitive

detector was not trained on lognormal data prior to running these tests, making this a

good test of how well the approach generalizes across new distributions. The clutter

was generated as a set of correlated, complex lognormal random variables. Figure
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Figure 6.22: ROC Curve - Pfa vs Target Pfa for Lognormal clutter.

6.21 shows the histogram of the magnitude of the generated lognormal clutter coupled

with the PDF of the distribution. This distribution does not fall within the category

of SIRVs, but it does closely resemble a heavy-tailed distribution similar to the low

shape parameter K-distribution.

A test set of 100, 000 lognormal samples and associated sample support was gener-

ated for these tests. Once again, both H0 and H1 SUTs were generated and run through

the meta-cognitive, GLRT, AMF, K1 GLRT, and DL detectors. The Pfa and Pd were

measured with a target Pfa = 10−4 and SIR of 35 dB. These results are recorded in

Table 6.3. This process was then repeated over a range of Pfa values ranging from
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10−4 to 10−1 to generate ROC curves at SIR values of 35 dB and 10 dB. The ROC

curves for this testing are shown in Figures 6.22 - 6.24.
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Figure 6.23: ROC Curve - Pd vs Target Pfa for Lognormal clutter with 10 dB SIR.

Clearly, the Pfa performance of the proposed detector degrades when presented

with lognormal data. However, the full meta-cognitive detector substantially outper-

forms the GLRT, AMF, and DL detectors. Only the K1 GLRT is able to maintain the

target Pfa when presented with the lognormal clutter. Interestingly, the K1 GLRT is

simply the GLRT with the dynamic thresholding agent trained on low shape parameter

K-distribution data. This makes sense given the previously noted similarity between

the lognormal distribution and heavy-tailed K. Given that the K1 threshold selector
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Figure 6.24: ROC Curve - Pd vs Target Pfa for Lognormal clutter with 35 dB SIR.

was part of the full meta-cognitive system, along with the demonstrated instability of

the discriminator model in the heavy-tailed K-distribution region, this provides strong

evidence of the generalizability of the proposed meta-cognitive approach. A more

robust discriminator agent would almost certainly have allowed the meta-cognitive

detector to maintain its CFAR-like behavior in the lognormal clutter. Additionally, it

lends credence to two of my core claims: 1) the idea that distributions can be grouped

into statistically unique regions for training ML systems, and 2) a fully adaptive ML-

based detector can be designed using multiple, coordinated ML agents specifically

trained to operate in statistically unique distribution regions. Note that in Figures 6.23
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and 6.24 the performance is plotted against the target PFA, not the actual PFA. There-

fore, while the AMF, GLRT, and alternative DL method will have better sensitivity for

a desired probability of false alarm, their actual probability of false alarm will be the

much higher value shown in Figure 6.22.

6.4.3 Distribution Scale Parameter Testing

After establishing a baseline performance of the proposed meta-cognitive detec-

tion algorithm, I conducted some additional testing to characterize its behavior fur-

ther. Broadly speaking, the additional testing can be separated into two categories:

1) testing the detector response to changes in the clutter parameters and 2) testing the

detector response to changes in the radar parameters. Clearly, much of the previous

testing I have described for this detector evaluated its behavior as the clutter distribu-

tion changed, but there were two notable parameters that were held constant.

The first parameter was the correlation coefficient used to define the clutter co-

variance. I initially made the decision not to explore this parameter due to the fact

that I was still using the GLRT, which approximates the CCM and uses it to whiten

the clutter during detection. Due to this behavior, I felt it was fair to assume that the

correlation coefficient would not impact overall behavior of the new detection algo-

rithm. However, after proving out the concept I felt it would be worthwhile to prove

that assumption experimentally.

The second parameter that I did not evaluate during initial testing was the scale pa-

rameter for the K- and Pareto distributions. This was largely due to my determination

that testing over the scale parameter would be redundant. Like the shape parameter,

the scale parameter alters the baseline behavior of the distributions parameterized by
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Figure 6.25: Example K-distribution plots for different scale parameter values.

it. As a result, it was reasonable to assume that the distributions could be further sub-

divided into statistically unique regions according to both the shape and scale parame-

ters. In which case, the meta-cognitive detector can trivially be trained to compensate

for those new regions. In fact, for SIRV distributions like the ones tested here, those

parameters are often combined into a single parameter used to define the distributions.

The impact of the scale parameter can be observed in Figures 6.25 and 6.26. It is

worth noting again that the K- and Pareto distributions used for testing in this work

were generated as a compound Gaussian function according to the process outlined in

Chapter 3.3, with the K-distribution consisting of a Gaussian modified by a Gamma

distribution and the Pareto consisting of a Gaussian modified by an inverse Gamma
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Figure 6.26: Example Pareto distribution plots for different scale parameter values.

distribution. In each case, I talk about the shape and scale parameters of the Gamma

distribution used to modify the correlated Gaussian distribution. It can be observed in

Figures 6.25 and 6.26 that varying the scale parameter discussed here with a constant

shape parameter does impact how heavy-tailed the clutter distribution is, which should

have a noticeable impact on the false alarm rate of a detector.

On the other hand, the scale parameter for a given shape parameter has a signifi-

cantly lower impact on the behavior of the distribution than varying the shape param-

eter for a given scale parameter value. As a result, I expected that the meta-cognitive

detector would be effective for those scale parameter values that produced distribution

regions similar to those the system was trained for (i.e. when b = 1). However, it was
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also expected that most scale parameter values would produce distribution regions that

were statistically distinct from those for which the system was designed. In those re-

gions, the detector would naturally produce degraded performance as the distribution

characteristics stopped resembling those for which the threshold setting and discrimi-

nator models were trained.

To test the response of the meta-cognitive detector over different values of the cor-

relation coefficient and scale parameter, two sets of large scale testing were performed.

In each case, tests were run to determine the false alarm rate of the meta-cognitive de-

tector with a target Pfa = 10−4 over a range of parameter values. For the correlation

coefficient, values of ρ = 0.9, 0.5, 0.1 were used. This testing was performed on the

original detector used in all previous testing without modification or retraining. Values

of b = 0.5, 1, 2, 5 were used for the scale parameter with a fixed shape parameter of

a = 2. 500, 000 tests were run for each parameter value being examined, with 100, 000

from the Gaussian distribution, 200, 000 from the K-distribution and 200, 000 from the

Pareto distribution. For this testing, the sample length was held fixed at N = 16 with

sample support of K = 2N . The results of this testing are presented in Table 6.5.

Several observations can be made from the results in Table 6.5. The first is that

the proposed meta-cognitive detector did indeed maintain the desired Pfa regardless

of the value of the correlation coefficient. This was to be expected, as the proposed

detector uses the classic GLRT as its core detection algorithm. As I have discussed

previously, adaptive detectors like the GLRT use the estimated clutter covariance ma-

trix to whiten the sample under test, which make them largely agnostic to different

covariance structures. At a minimum, it can be argued that my proposed approach to

meta-cognitive detection generalizes as well as the core adaptive detection algorithm

to different covariance structures. That fact coupled with the meta-cognitive detector’s
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Distribution Parameter Value Simulation False Pfa

Number Alarms
CorrelationTesting

Gaussian ρ 0.9 100, 000 9 0.000090
K ρ 0.9 200, 000 21 0.000105

Pareto ρ 0.9 200, 000 23 0.000115
Total ρ 0.9 500, 000 53 0.000106

Gaussian ρ 0.5 100, 000 7 0.000070
K ρ 0.5 200, 000 21 0.000105

Pareto ρ 0.5 200, 000 27 0.000135
Total ρ 0.5 500, 000 55 0.000110

Gaussian ρ 0.1 100, 000 11 0.000110
K ρ 0.1 200, 000 26 0.000130

Pareto ρ 0.1 200, 000 28 0.000140
Total ρ 0.1 500, 000 65 0.000130

ScaleParameterTesting
Gaussian b 0.5 100, 000 11 0.000110

K b 0.5 200, 000 18 0.000090
Pareto b 0.5 200, 000 44 0.000220
Total b 0.5 500, 000 73 0.000146

Gaussian b 1 100, 000 9 0.000090
K b 1 200, 000 21 0.000105

Pareto b 1 200, 000 23 0.000115
Total b 1 500, 000 53 0.000106

Gaussian b 2 100, 000 10 0.000100
K b 2 200, 000 26 0.000130

Pareto b 2 200, 000 36 0.000180
Total b 2 500, 000 72 0.000144

Gaussian b 5 100, 000 12 0.000120
K b 5 200, 000 55 0.000275

Pareto b 5 200, 000 49 0.000245
Total b 5 500, 000 116 0.000232

Table 6.5: Verification Test Results - Varying Correlation Coefficient and Scale
Parameter

observed behavior provides further evidence of my assertion that by intelligently inte-

grating ML techniques with classical signal processing it is possible to net the benefits

of both approaches. However, to fully evaluate how the proposed approach general-
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izes, it will be critical to test it with more realistic clutter models, particularly those

with complex-valued covariance matrices. Additionally, this method should be tested

on real-world data.

The other observations I will make are related to the shape parameter. For the

K-distributed clutter tests, the meta-cognitive detector maintains its target false alarm

rate for low shape parameter values and only shows a significant increase in the ob-

served Pfa as b becomes very large. On the other hand, the detector behavior is quite

different as the shape parameter of the Pareto distributed clutter changes. For those

tests, degraded performance could be observed for both very small and very large val-

ues of b. To explain this disparity, I will refer back to the threshold curves found in

Figures 6.3 and 6.4. Recall that for this testing the shape parameter value of both the

K- and Pareto distributions was held constant at a = 2. However, that parameter value

corresponds to very different behavioral regions for the K- and Pareto distributions.

For the K-distribution, the threshold behavior of the GLRT is stable and linear

for the distribution region near a = 2 when b = 1. That region corresponds to the

“medium shape parameter” threshold selector. Referring to Figure 6.25, as the value

of b decreases, the distribution becomes more heavy-tailed and more closely resembles

the low shape parameter K-distribution region the detector was initially trained on.

That region’s threshold setting agent sets higher thresholds, helping to maintain the

target Pfa. Then, as the value of the scale parameter becomes large, the distribution

flattens out but does not begin to closely resemble a Gaussian distribution. In effect,

it stops resembling any distribution regions for which the meta-cognitive detector was

trained. That causes the classifier to improperly select the threshold setting agents

associated with the high shape parameter K and Gaussian distribution regions. Those

set lower thresholds, which drives up false alarms due to the skewed nature of this new
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distribution region.

The Pareto distribution, on the other hand, is still in a more volatile, heavy-tailed

region when a = 2 and b = 1. This corresponds to the distribution region that the

meta-cognitive detector was trained to recognize as the low shape parameter Pareto

region. Referring to Figure 6.26, for small values of b the Pareto distribution flattens

out while continuing to be skewed. As noted previously for the K-distribution, this be-

havior is unlike anything the meta-cognitive detector was trained to handle. This again

caused the discriminator model to select thresholding agents that set lower thresholds,

driving up the false alarm rate due to the skewed nature of the distribution. Low val-

ues of the scale parameter caused the distribution to become extremely heavy-tailed.

The classifier selected the correct thresholding agent for this region, but that model

was not trained to set thresholds high enough to maintain the target Pfa with this new

behavior.

Classes K-Dist K-Dist K-Dist K-Dist K-Dist
a Regions 0.1 to 1 1.25 to 3.5 1.25 to 3.5 1.25 to 3.5 3.75 to 10
b Value 1 0.5 1 2 1

Training label 1 2 3 4 5
Classes Gaussian Pareto Pareto Pareto

a Regions - .5 to 2.5 3 to 6.5 7 to 10.5
b Value - 1 1 1

Training label 0 6 7 8

Table 6.6: Clutter Ranges and Labels

These observations align with my assertion that the scale parameter simply alters

the statistical properties of the distribution in much the same way that the shape pa-

rameter does. That in turn provides strong evidence that the proposed meta-cognitive

approach to adaptive detection can be trivially extended to this additional parameter.

To prove this further, I designed a nine region implementation of the detector (as op-
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posed to the original seven region implementation) and trained and tested it. This new

version of the detector had regions as defined in Table 6.6. Note that only two addi-

tional regions were defined and trained to prove out the concept. Both of these regions

were in the K-distribution and defined for the medium shape parameter value region.

This new implementation of discriminator and threshold setting models was trained

according to the process outlined in Chapter 6.3. After training the new system, a new

batch of Pfa testing was run to evaluate the performance impact. The results of that

testing are presented in Table 6.7. Note that since the number of models was increased

and the discriminator was now being required to classify across a larger number of

regions, it was important to test the performance of the updated system across all re-

gions, not just the newly added ones.

Distribution Parameter Value Simulation False Pfa

Number Alarms
Gaussian b 1 100, 000 10 0.000100

K b 0.5, 1, 2 200, 000 21 0.000105
Pareto b 1 200, 000 17 0.000085

Table 6.7: Verification Test Results - Varying Correlation Coefficient and Scale
Parameter

In Table 6.7, it can clearly be seen that the newly trained meta-cognitive detec-

tor does indeed match the target false alarm rate with the inclusion of the new scale

parameter regions. These results demonstrate several important performance charac-

teristics of the proposed method. First, it proves the earlier assertion that the system

extends well to cover scale parameter regions. In addition, it demonstrates that larger

systems can be trained without observable degradation to the performance of the sys-

tem. This is important, as I designed this meta-cognitive detection algorithm to be

readily customizable and extensible. This testing demonstrated that such modification

was indeed possible. However, a much more detailed analysis needs to be performed
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to determine the limits of the discriminator model and the computational costs asso-

ciated with increasing the number of threshold setting models. Classification models

today can be designed to distinguish between vast numbers of categories, so in theory,

the discriminator model should be able to extend far beyond its current state with some

minor redesign and optimization. Since the threshold setting models are kept in paral-

lel and only one model is ever selected by the discriminator model, there shouldn’t be

a significant increase in the algorithm’s runtime or computational requirements. On

the other hand, each additional model increases the storage requirements of the detec-

tor. Additionally, it took considerable expert input to redesign and retrain this system.

However, much of the analysis used to identify statistically unique regions, model

design, data generation, and model training could be readily automated. Such au-

tomation would make the generation of custom meta-cognitive detectors much faster

and allow for easy production-level usage of the proposed method in real radar sys-

tems. My colleague Geoffrey Dolinger has been working on expanding this work to

implement such an automatic configuration tool.

6.4.4 Variable Data Size and Sample Support Testing

Finally, I characterized the impact of changing the sample size and the level of

sample support provided to the detector. Real radar systems are often configurable,

and both of these parameters are likely to change significantly depending on the par-

ticular application and domain. This testing was important to demonstrate how read-

ily the proposed method could be applied to real-world systems. I did not initially

test these parameters because I determined them to be of secondary importance. The

core challenge I wanted to explore was the creation of a ML-aided detector that could

operate and maintain CFAR across distributions. Additionally, I anticipated that only
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minor modifications would be required to make the proposed meta-cognitive detec-

tor. In theory, the fact that the system was designed to take in down-sampled ordered

statistics for the ML components means that the system as a whole should continue

to function regardless of sample length, with the GLRT itself serving as the primary

limiter as the sample length increases. For the same reason, the level of sample sup-

port should have a minimal impact on the ML models’ performance, but it should

heavily impact the GLRT. While the ML components of the meta-cognitive detector

should continue to function regardless of sample length and sample support, it should

be noted that the threshold used to maintain a target Pfa with the GLRT is affected by

both parameters. This means that I did not expect the meta-cognitive detector to be

able to maintain optimal behavior as these parameters changed without modification.

To test my hypothesis and characterize the detector’s response, two sets of tests

were conducted. Once again, the detector was run on clutter only samples and the false

alarm rate was measured for different values of each parameter with a target Pfa =

10−4. For the sample length, values of N = 16, 32 were evaluated. Sample support

values of K = 2N, 4N were tested. In each case, the shape parameter was swept

across the full set of regions defined in Table 6.1 and the scale parameter was held

constant at b = 1. 500, 000 tests were run for each parameter value being examined,

with 100, 000 from the Gaussian distribution, 200, 000 from the K-distribution and

200, 000 from the Pareto distribution. The results of this testing are presented in Table

6.8.

I observed that increasing either the sample length or the level of sample support

causes the detectors false alarm rate to decrease significantly. While it can be tempting

to view this as a positive, recall that maintaining a constant, known Pfa is desirable

because the Pd and Pfa have a trade-off relationship. So, when the Pfa falls below
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Distribution Parameter Value Simulation False Pfa

Number Alarms
SampleSupportTesting

Gaussian K 32 100, 000 9 0.000090
K K 32 200, 000 21 0.000105

Pareto K 32 200, 000 23 0.000115
Total K 32 500, 000 53 0.000106

Gaussian K 64 100, 000 10 0.000100
K K 64 200, 000 0 0.000000

Pareto K 64 200, 000 23 0.000115
Total K 64 500, 000 33 0.000066

SampleLengthTesting
Gaussian N 16 100, 000 9 0.000090

K N 16 200, 000 21 0.000105
Pareto N 16 200, 000 23 0.000115
Total N 16 500, 000 53 0.000106

Gaussian N 24 100, 000 10 0.000100
K N 24 200, 000 0 0.000000

Pareto N 24 200, 000 13 0.000065
Total N 24 500, 000 23 0.000046

Table 6.8: Verification Test Results - Varying Sample Length and Sample Support

the target value, the detection performance of the detector is negatively impacted. The

observed behavior makes sense when we consider how adaptive detection algorithms

work. They are designed to approximate the covariance matrix of the interference

present in a region and then derive a whitening filter to decorrelate the interference in

the sample under test. Increasing the level of sample support used improves the ap-

proximation of the covariance matrix. Increasing the sample length while maintaining

the same relative amount of sample support (i.e. K = 2N ) increases the granularity

of the approximation, producing a more realistic approximation of the matrix. This

behavior is consistent with the Gaussian threshold calculation derived by Kelley in

[13]. I will note, however, that increasing the sample length also increases the num-

ber of sample support required to accurately approximate the covariance matrix. This
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significantly increases the time required to collect support data and the computational

requirements to run the adaptive detection algorithm.

As anticipated, changing the values of N and K had a significant impact on the

false alarm rate of the detector. This makes sense when we consider Equation (3.20)

that was derived by Kelly to set the ideal threshold for correlated Gaussian clutter.

That threshold is impacted by both the sample length and the level of sample support.

Since the threshold setting agents are trained on data with fixed values of N and K,

it is unsurprising that the threshold values they set do not extend well to other sample

length/sample support values. There are two relatively simple approaches that can be

applied to resolve this issue. The sample models can be retrained on variable length

data. As I noted before, the data preprocessing used in this system that orders and

down-samples the data allows the models to continue functioning regardless of the

input data size (so long as there are at least 64 values). By adding additional inputs

telling the threshold setting models what sample length and level of sample support

were used, these models could be trained to approximate threshold functions that take

these parameters into account. Alternatively, the behavior of the system for different

values of N and K can be characterized, and a simple fitting function can be derived

that adjusts the output threshold provided to the GLRT. The first approach is likely

more robust, but requires significantly more data generation and training. Addition-

ally, it requires some level of redesign of the models. The second approach is relatively

fast and easy to implement and does not require significant redesign of the ML com-

ponents of the system.

To prove that the proposed system could be easily modified to support different

sample sizes and sample support levels, I ran a halving algorithm in Matlab to generate

GLRT threshold curves (like those in Figures 6.3 and 6.4) for values of sample length
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in the range N = 8 to 64 and sample support in the range K = 2N to 6N . I then used

those curves to generate a three dimensional surface with N and K serving as the x-

and y-dimensions, and the threshold value serving as the z-dimension. Finally, I used

Matlab’s built-in “fit” function to derive a fitting function to translate between points

along the surface. I coded that function into Python and then modified the original

system implementation to call it immediately after the threshold setting agent to adjust

the threshold passed to the GLRT. This allowed me to take the existing system, which

was trained to produce thresholds for a particular x/y point on the surface and adjust

the thresholds produced for any given values of N and K on the surface. This should

allow the system to maintain the desired Pfa across a large range of sample sizes and

sample support. The derived fitting function was:

λi = 0.3475 + 2.139λ− 0.05194N − 1.357λ2 − 0.04715λN + 0.002065N2

+0.0811λ2N − 0.001269λN2 − 0.00001438N3

λnew = 0.8509 + 0.8281λi − 0.03626K + 0.09224λ2
i − 0.005008λiK

+0.0004824K2 + 0.007174λ2
iK − 0.00007838λiK

2 − 0.000001889K3

(6.6)

where λ is the threshold output by the ML models, λi is an intermediate threshold

value, λnew is the adjusted threshold, N is the sample length, and K is the number

of support samples. Some initial testing was then performed to evaluate this system

modification. The results of that testing are presented in Table 6.9.

The application of the fitting function had the desired effect, causing the meta-

cognitive detector to maintain the target Pfa across a large range of sample lengths

and sample support values. The consistent behavior of the modified detector provides

a strong indication that the threshold setting agents learned to effectively approxi-
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Distribution Parameter Value Simulation False Pfa

Number Alarms
SampleSupportTesting

Gaussian K 32 100, 000 9 0.000090
K K 32 200, 000 21 0.000105

Pareto K 32 200, 000 23 0.000115
Total K 32 500, 000 53 0.000106

Gaussian K 48 100, 000 10 0.000100
K K 48 200, 000 24 0.000120

Pareto K 48 200, 000 23 0.000115
Total K 48 500, 000 57 0.000114

Gaussian K 64 100, 000 10 0.000100
K K 64 200, 000 19 0.000095

Pareto K 64 200, 000 20 0.000100
Total K 64 500, 000 49 0.000098

SampleLengthTesting
Gaussian N 16 100, 000 9 0.000090

K N 16 200, 000 21 0.000105
Pareto N 16 200, 000 23 0.000115
Total N 16 500, 000 53 0.000106

Gaussian N 24 100, 000 9 0.000090
K N 24 200, 000 21 0.000105

Pareto N 24 200, 000 21 0.000105
Total N 24 500, 000 51 0.000102

Gaussian N 36 100, 000 11 0.000110
K N 36 200, 000 22 0.000110

Pareto N 36 200, 000 20 0.000100
Total N 36 500, 000 53 0.000106

Table 6.9: Modified System Test Results - Varying Sample Length and Sample
Support

mate the desired threshold curves without significant gaps or anomalous behaviors. It

further indicates that both the discriminator models and threshold setting models are

largely agnostic to the size of the input data. If the discriminator model’s performance

were impacted, then there would have been a significant increase in misclassifcations.

If the thresholding agents were impacted, then they would have set threshold values
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that did not closely align with the threshold curves on which they were trained. In

either case, applying the threshold adjustment, which was based on experimentally

derived ideal threshold curves for the GLRT, would not have helped the system to

maintain the target false alarm rate. This adjustment provided direct mappings be-

tween threshold curves for different values of N and K, so reduced performance of the

models would not have been improved by such a mapping. Additionally, the simplic-

ity of this solution demonstrates the flexibility of the proposed ML-enhanced method.

While this initial testing provides a strong indication that my meta-cognitive ap-

proach to adaptive detection can be readily applied in real-world scenarios, consider-

able additional testing needs to be performed to fully characterize it. In particular, I

have not conducted Pd testing to determine the full ROC performance over N and K.

Additionally, I was not able to explore training the ML models on multiple data sizes.

Finally, thorough analysis needs to be performed to determine the impact to the com-

putational cost of this method as the sample support and sample length are increased.

Since the ML models are largely agnostic to these parameters, the covariance matrix

approximation should be the primary driver of the algorithms computational require-

ments, meaning we can expect roughly equivalent performance to existing state-of-

the-art. However, the preprocessing required to acquire the down-sampled ordered

statistics will have some modest impact that will increase with both the sample size

and level of sample support provided.

6.5 Conclusions

In this chapter, I have described the ideation, development, and characterization

of a novel meta-cognitive adaptive detection algorithm. Traditional adaptive detection
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algorithms perform a binary hypothesis test comparing a test statistic with a threshold

value. The test statistics are derived from likelihood ratios between the H1 (target

present) and H0 (target absent) cases. They make assumptions about the statistical

distribution of the interference present in a sample under test, and they are designed

to maximise the probability of detection while maintaining a constant rate of false

alarms when those assumptions hold true. Unsurprisingly, these algorithms perform

extremely well when the statistical characteristics of the interference closely match

the distribution used to derive the test statistic, but they quickly deteriorate as they

diverge. The method presented in this chapter combined ML models used to interpret

the statistical characteristics of input clutter and dynamically set thresholds with an

existing adaptive detection algorithm derived to maintain a consistent Pfa for a known

distribution.

My initial design concept for the meta-cognitive detector consisted of two tiers of

ML models followed by Kelley’s GLRT. The first tier of models consisted of a set of

specialized regression models trained to set the threshold for the GLRT for different

distribution regions identified to be statistically unique. The second tier was a single

classification model designed to identify the distribution region of input interference

data and select the appropriate regression model for that distribution. I use the term

“meta-cognitive” to refer to this tiered structure of a higher-level ML agent orches-

trating a set of lower-level, more specialized ML agents. I based this design on a first

principles understanding of the problem space and knowledge of the limitations of

neural networks. This work served as an ambitious test case for the core premise of

my dissertation: the intelligent integration of first principles-based ML with traditional

signal processing algorithms can be used to substantially improve the performance of

radar systems. Adaptive detection was an especially challenging sub-domain within
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radar due to the tight error tolerances needed to maintain CFAR-like behavior and the

broad array of well known and thoroughly characterized signal processing algorithms.

At a base level, the goal of any detector is to determine whether or not a target is

present in a given sample under test. To do so, the detector needs to both calculate a

test statistic and produce a reliable threshold. The GLRT produces a well understood

test statistic that is designed to be correlation agnostic. The threshold that must be used

to maintain a target Pfa will change significantly depending on the statistical proper-

ties of the interference. To set an appropriate threshold for the GLRT across a range of

clutter distributions, the algorithm needs to be able to both identify the distribution of

the interference and set a threshold for it. However, the behaviors of distributions for

different parameter values (like shape and scale) vary wildly, and the threshold needed

to maintain a target Pfa varies with them. Such varied behavior makes it difficult for

a single regression neural network to approximate the threshold function across an

entire distribution accurately enough to maintain Pfa values on the order of 10−4. Ad-

ditionally, there is considerable overlap in the statistical characteristics of different

distributions with certain parameter values. This can make two distributions with par-

ticular parameter values virtually indistinguishable from one another. That confusion

makes it difficult for a classification neural network to broadly distinguish between

distributions like the K and Pareto distributions.

I was able to overcome these challenges for the Gaussian, K, and Pareto distribu-

tions by dividing the distributions into statistically unique regions in which the thresh-

old behaviors are relatively consistent and training one specialized regression model

for each region. This allowed the regression models to closely approximate the thresh-

old function for their given regions and the classification model to reliably distinguish

between the regions. In addition, it minimized the impact of errors in the ML models
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by simplifying the problem space they were tasked with solving. For instance, when

the discriminator misclassified, it would generally select a region that neighbored the

ideal region and used a regression model that often produced a threshold similar to the

target threshold. Additionally, this design allowed for the use of low-cost ANNs, min-

imizing the computational overhead of the ML portion of the system. The resulting

detector was one that maintained CFAR-like behavior across a range of distributions

for which the core adaptive detection algorithm was not derived.

The meta-cognitive detector was first implemented with three main elements: 1)

data preprocessing to produce a set of 64 DSMOS from the raw support samples, 2)

ML models to identify the distribution region of the interference and set the detection

threshold, and 3) the GLRT to compute the test statistic and determine whether a

detection was made. The ML portions of the detector were trained on clutter data

from the K- and Pareto distributions over a wide range of shape parameter values,

while the GLRT selected was derived assuming correlated Gaussian clutter. Large

scale testing was conducted to characterize both the false alarm rate and the ROC of

this detector when presented with Gaussian, K-, and Pareto clutter. Its behavior was

compared with the Gaussian GLRT, Gaussian AMF, and an alternative ML detector

presented in [152, 153].

Importantly, the fully trained meta-cognitive detector was able to match the perfor-

mance of the Gaussian GLRT when presented with only Gaussian interference, and it

was the only detector that successfully maintained the target Pfa across all three inter-

ference distributions. That testing demonstrated that the inclusion of the ML models to

set the threshold for the GLRT allowed the detection algorithm to remain performant

when the assumptions used to derive it were violated. This was achieved without neg-

atively impacting its performance when presented with the ideal case for which it was
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designed. This was an extremely important finding, as it provides evidence that this

approach to integrating ML into traditional detection algorithms produces a detector

with improved performance without any significant trade-off. However, considerable

additional testing would be required to determine how robust the approach is and how

well it could be applied to real-world data.

Further testing was conducted to determine how well the proposed detector could

generalize in different scenarios. First, it was tested on clutter data generated from a

lognormal distribution that it had never seen before. While the detector did experi-

ence degraded performance in the lognormal interference, it had considerably better

Pfa and ROC characteristics than the comparison detectors. Next, the model’s Pfa

performance was evaluated when four data parameters were changed: 1) the correla-

tion coefficient used to model the clutter covariance, 2) the clutter distribution scale

parameter, 3) the sample length, and 4) the number of support samples used. The pro-

posed method displayed no change to the Pfa when the clutter correlation coefficient

was changed, indicating that this parameter had little to no effect on the ML models

used in the system. The GLRT was originally designed to be agnostic of the clutter

correlation, so it was expected that this testing would not impact that algorithm. In

fact, it is necessary for the Pfa of adaptive detection algorithms to not be dependent

on clutter correlation in order for them to be proven to have the CFAR property. This

testing was crucial, as it demonstrated that the integration of the ML elements of the

detector did not violate this core assumption of the GLRT.

Varying the scale parameter, on the other hand, had a substantial impact on the

Pfa. This was to be expected, given that the scale parameter alters the behavior of

the distribution similar to the way the shape parameter does. The Gaussian GLRT

itself cannot operate as desired in different distributions and must rely entirely on the
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adaptive thresholding provided by the ML models to maintain performance. In order

to maintain target Pfa over this parameter, it would need to be included in the identi-

fication of statistically unique regions, and the ML components of the detector would

need to be trained to account for it. I was able to demonstrate this on a new implemen-

tation of the detector trained with two additional regions which were targeted towards

a range of scale parameter values for the K-distribution. The retrained system was

able to maintain the desired Pfa, demonstrating both that the meta-cognitive approach

could be readily expanded to include new distribution regions and that these regions

could be easily defined by a combination of shape and scale parameters.

Finally, it was found that altering either the sample length or the level of sample

support impacted the false alarm rate of the meta-cognitive detector. I was able to

identify that this behavior was caused by an aspect of the GLRT (and adaptive detec-

tion algorithms in general). Altering either of these parameters impacts the quality

of the quasi-whitening filter used by the adaptive algorithm, which in turn changes

the threshold value needed to maintain a target Pfa. Thanks to the design of the ML

system and the preprocessing used, the models were not impacted by the size of the

input data. However, the ML models used to generate thresholds were trained on

values that assumed a specific sample length and number of support samples. As a

result, they would need to either be retrained or have their outputs modified to allow

the system to achieve the desired performance. To demonstrate, I was able to derive

a simple fitting function from the ideal threshold curves for different parameter val-

ues. It mapped the outputs of the thresholding agents to target thresholds based on the

values of the sample length and sample support. Applying this function allowed the

meta-cognitive detector to maintain the target Pfa when these parameters were varied

without retraining or redesigning any of the ML models. Demonstrating that this de-
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tector could be generalized to different sample lengths and levels of sample support

without prohibitive levels of redesign or retraining was critical to proving that my pro-

posed method could feasibly be applied to real-world detection systems.

The work presented here was a critical step for my research into the first principles

design of ML-enhanced systems for radar. Detection is an extremely well-researched

topic whose community is understandably skeptical of ML. It presents a unique chal-

lenge due to the need to maintain extremely low rates of false alarm and tight per-

formance requirements. I was able to prove the core claim of this dissertation by

identifying a deficiency in existing detection algorithms and designing low-cost, tar-

get ML models to add flexibility to existing algorithms without negatively impacting

their base performance.
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Chapter 7

Augmenting Adaptive Filtering with ML

7.1 Introduction

In this chapter, I describe my ideation, development, and characterization of a

method for using generative ML to approximate adaptive filtering in detection algo-

rithms with low sample support. By evaluating the underlying issues at play with

adaptive detection algorithms and their reliance on support data, I was able to draw a

parallel with techniques used in image generation models. I was first able to demon-

strate that by using U-Net and conditional GAN structures it was possible to train a

generator model to approximate CCMs that closely matched the ideal matrices. These

same models were then trained to instead directly approximate the inverted CCMs

used for adaptive filtering, reducing computational requirements and processing time.

In addition, the generator was integrated with simple GLRT detection algorithm, and

its impact on the performance of the algorithm was tested against an existing approxi-

mation technique. Finally, I was able to evaluate how this generative ICM approxima-

tion method performed with lower sample support. The proposed method significantly

outperformed the comparison approximation method with less than half of the theoret-
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ical minimum amount of sample support required by the current state-of-the-art. This

work was initially published in [15].

With the creation of the meta-cognitive detection algorithm, I was able to demon-

strate that ML could be used effectively to overcome the Gaussian assumption of stan-

dard radar detection algorithms without significantly impacting performance. This

proved the core thesis of my research: ML carefully designed with first principles in

mind can be integrated with existing methods to improve their performance in chal-

lenging domains like radar. That work demonstrated that ML could be effectively used

to augment, rather than replace, algorithmic techniques, and that it could be used in

applications with tight error tolerances. I then looked into other ways in which ML

could be used to improve the performance of radar detection algorithms.

My investigation began with a review of major limitations and pain points in the

field of adaptive radar detection. Two limitations in particular caught my attention as

promising areas for the application of ML. The first was the issue of mixed clutter

backgrounds and the second was the burden of sample support. Mixed clutter back-

grounds refer to those scenarios in which the background is inconsistent, and different

regions of the clutter fit different distribution models. They are challenging due to

the reliance on clutter covariance approximation in adaptive detection and the need

to assume a clutter distribution when deriving test statistics. Sample support require-

ments for clutter covariance approximation and inversion drives much of the compute

requirement and processing time for adaptive detection algorithms. The large num-

ber of support samples required can also severely restrict a detector’s ability to adapt

to variable clutter backgrounds. Corrupt returns in the support sample set can cause

a degradation in detector performance or even cause the approximated CCM to no

longer be inevitable.
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While both of these issues are open challenges in radar detection, the sample sup-

port issue is where I chose to focus my work. There were two main reasons for this.

First, I consider it to be a more fundamental problem. Reducing sample support re-

quirements improves the overall performance of the algorithms, and the speed with

which they can update the whitening filter used to decorrelate background clutter.

That speed would help to mitigate the effects of mixed clutter backgrounds. The sec-

ond reason is that there are numerous methods for approximating the distribution of

clutter and dynamically adjusting detection thresholds that could be applied to over-

come a mixed clutter background. In fact, there is a strong theoretical argument to

be made that the meta-cognitive detector described in Chapter 6 is one such approach

if it were trained on a robust set of distributions. As such, I wanted to examine the

application of ML to a slightly different problem space in radar detection.

When evaluating how best to approach using ML to reduce sample support require-

ments in adaptive detection, it was important to consider how this problem is normally

formulated. In traditional adaptive filtering, the CCM is approximated from a set of

radar return signals that are assumed to contain only correlated interference. Put an-

other way, this problem can be considered as taking a set of randomly distributed

samples encoded with correlation information and using it to generate a structured

CCM. Further, the structures within the CCM are defined by the correlation informa-

tion encoded into the interference data. This is virtually indistinguishable from the

function of image generator models, which are typically trained to take in a matrix of

randomly distributed noise encoded with target feature information and generate an

image whose structures are defined by the encoded feature information.

With this similarity in mind, I began work on designing a generative model that

could generate CCM approximations from raw interference samples. My earlier at-
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tempts were using variational autoencoders (VAEs), which are commonly used to syn-

thesize signal information and reproduce images. However, the VAE models either

failed to converge well or did not generalize well once trained. This was likely due

to some issues with the mapping of the correlation information in the interference

samples to the VAE latent distribution, potentially rooted in the structure of my loss

functions. Further investigation into the use of VAEs may be worthwhile, but I ulti-

mately decided to move away from the VAE and attempt to use convolutional GANs.

GANs rely on an adversarial training method to ensure that the generator model’s

latent space is complete and continuous. This means that once a GAN converges, its

generator is generally robust and generalizes well. However, the training process itself

is delicate and introduces substantial risk. Convolutional GANs were selected due to

the nature of the spatial relationships to be learned. In particular, a U-Net style gener-

ator was selected with a classical CNN for the discriminator. The U-Net generator was

chosen for two reasons. First, the structure follows an encoder-decoder style with skip

connections, ensuring that the latent features are learned without a substantial loss of

structural information. Second, the U-Net can be designed with a level of input-output

dimensional symmetry that should allow the same model to work with inputs of vari-

able size.

During this iteration, I was able to consistently train a GAN generator to produce

covariance matrices that appeared realistic, but they did not correctly contain the cor-

relation information in the input data. This was due to a well known issue with classic

GAN architectures: the discriminator is only provided with an image and tasked with

identifying it as “real” or “generated”. This encourages the generator to create outputs

that look like they could be a real matrix, but has no mechanism for forcing it to learn

strict associations with the underlying features encoded in the input noise. To resolve
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this issue, I turned to a variant of the classical GAN architecture: the conditional GAN.

Conditional GANs differ from classical GANs only in the information that is provided

to the discriminator model. Whereas a traditional GAN’s discriminator sees only an

image (or other target output) either from a training set or produced by the genera-

tor and is trained to classify them, the conditional GAN also provides some form of

limiting information to the discriminator that contextualizes the image that it sees. In

many cases, the input to the generator is used as this limiting information. In effect,

the input that would provided to a generator for a given output would be concatenated

onto the image provided to the discriminator (both for real and generated images).

This allows GANs to be designed such that the generator is forced to learn targeted

feature associations.

For my purposes, this meant that I could provide the discriminator model with the

support samples that would be used to approximate a given CCM as well as the CCM

itself, allowing it to learn what a realistic CCM looked like for a given set of data

with particular correlation characteristics. The conditional GAN paired with a U-Net

generator model was very successful at training to produce high quality facsimiles of

real CCMs that contained the appropriate structures associated with the data’s corre-

lation information. I then took this design one step further and developed a method

for training the conditional GAN to directly generate the ICM. Directly generating he

ICM was an important modification, as it removed the need to invert the generated

matrix for filtering. Removing that step made the approach more robust, since there

would be no inversion errors, and it also removed the considerable computational bur-

den associated with inverting large CCMs. Testing was then performed to determine

the impact of reducing the amount support data used to train and test the generator

model. I found that using this method I could reduce the amount of support data used
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for ICM approximation could be reduced by roughly half of the theoretical minimum

used in classical methods. The reduction in support data requirements coupled with

the removal of the need to invert the covariance matrix when producing the adaptive

filter offset the computational burden associated with use an ML generator.

Early testing used to prove out the concept was performed using a simple clutter

model with a real-valued covariance matrices containing simple structures. To demon-

strate the validity of the approach to more challenging data, a Nitzberg [171] model

with complex-valued covariance structures was used to generate data and train the

generator. The GAN structure struggled with the higher complexity, largely due to the

limitations associated with the training loop and its dependence on the discriminator

model. It is likely that a discriminator model could be designed to function effectively

in this scenario. However, I theorized that the GAN structure itself was unnecessary

and that it was the U-Net generator that provided most of the value in the ICM ap-

proximation. This led me to remove the generator model from the GAN, modify it to

produce complex-valued outputs, and implement a supervised training method with

custom loss functions to generate ICMs for adaptive filtering. This approach proved

to be highly effective. It will be crucial to conduct additional testing of the method

presented here, particularly on real-world data, but the initial results are extremely

promising and demonstrate the potential of ML to enhance adaptive detection algo-

rithms and reduce data and computational burden associated with it.

7.2 Related Work

The development of methods enabling adaptive detection with limited sample sup-

port has been a major focus of the detection research community for several decades.

242



This is largely driven by two problems. First, the time it takes to collect and process

the quantities of support data needed can be prohibitive [172]. Second, in airborne and

maritime radar systems it is challenging to gain consistent access to large quantities of

support data that is homogeneous with a given sample under test [172, 173].

In [174], Aboutanios and Mulgrew propose a variation of traditional adaptive de-

tection algorithms that relies only on the SUT and steering vectors to suppress in-

terference. This single data set (SDS) approach was based on the adaptive filter-

ing techniques presented in [175, 176]. More recently, several hybrid methods that

combine the SDS method with traditional support data methods have been developed

[177, 178, 179].

The multi-stage Wiener filter (MWF) proposed by Goldstein et al. in [180] has also

been adapted for use in STAP detection [172]. This method is considered relatively

robust and computationally efficient. However, it requires that the number of filtering

stages be selected based on the rank of the clutter being filtered [181]. This generally

requires either the use of rank estimation methods [181] or data augmentation [182,

183]. In [184, 185], a hybrid detector combining the SDS and MWF methods was

proposed.

Various recursive methods have also been proposed to reduce sample support re-

quirements. [111, 186] present recursive methods for covariance approximation that

assumes the clutter can be modeled as a SIRVs. [112] builds on these works and

proves several important statistical properties of the recursive methods in [111, 186].

In [187], Conte and De Maio derive a recursive estimation method assuming persym-

metric CCMs.

Other methods have been developed under various assumptions about the nature of
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the interference signals and the CCM. These include low-rank assumptions [188, 189],

the spiked covariance model [190, 191, 192], and applying a unit circle roots property

to detection algorithms [193, 194].

7.3 Data Model

As with almost all signal processing and ML problems, the first thing to consider

when developing a new technique is the data that will be used to evaluate it. Similar to

the adaptive detection problem presented in Chapter 6, adaptive filtering has tight error

tolerances and has a number of existing methods derived from the assumed distribution

of the clutter. When developing new adaptive filters or detection algorithms, authors in

the literature consistently begin by characterizing their performance on simulated data

whose statistical properties are perfectly known, rather than on real-world data. This

removes any potential impact of the data and is crucial to provide a realistic analysis

of the behaviors demonstrated by the proposed method or algorithm. Several common

models are used for generating correlated clutter signals in the literature. I used two

of them at different stages of this research. The first is a simple model widely used

in the adaptive detection literature when newly derived detection algorithms are being

characterized [13]. This model assumes the clutter can be modeled as a correlated,

Gaussian-distributed signal such that:

c = CN (0,M) (7.1)

where M is the clutter covariance matrix defined as:

M ∼ RN,N s.t. Mi,j = ρ|i−j| (7.2)
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where N is the length of a sampled interference signal generated by the clutter, ρ is a

real-valued correlation coefficient, and i, j are matrix indices in the range 1 ≤ i, j ≤

N .

While this model appears simplistic, it provides a strong basis for the development

and characterization of adaptive detection and filtering methods. For my research, I

selected it for two of these reasons. First, the correlation information in the CCM can

be tightly controlled. That enabled me to examine how different CCM configurations

impacted the resulting ICM used for adaptive filtering. Additionally, it allowed for

thorough evaluation of the performance of the generative ML. That analysis was im-

portant at this stage, given that generative ML has not, to my knowledge, previously

been used for directly approximating adaptive whitening filters. It further allowed for

thorough evaluation of the impacts of reducing sample support on both the proposed

method and the comparison method. The second reason for this model’s selection

was that it is also easy to implement and allows for rapid generation of large quanti-

ties of statistically relevant data. This meant that the approach could be implemented,

trained, and evaluated rapidly to determine its validity.

After proving that a generative model could be trained to produce high quality

ICM approximations with limited sample support, I then needed to test how well the

approach generalized to more complex clutter models. For that evaluation, I selected

the Nitzberg model from [171]. This model again assumes that the clutter can be

modeled as a complex-valued, correlated Gaussian distribution, as in Equation (7.1).

However, the CCM is now defined according to a combination of the clutter correlation

and a velocity-based Doppler shift:

M = ARAH ∼ CN,N (7.3)
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R ∼ CN,N s.t. Ri,j = (σ2
cl)(ρ

|i−j|
l )(ej2π(i−j)fd) (7.4)

A = I(N) (7.5)

where N is the length of the length of a sampled interference signal generated by the

clutter, σcl is the internal variance of the clutter, ρl is the clutter correlation coefficient,

fd is the Doppler frequency shift, I(•) is the identify matrix of the given dimension,

and i, j are matrix indices in the range 1 ≤ i, j ≤ N .

The Nitzberg clutter model, like the Ward model [145], is popular in the radar liter-

ature [195, 177] due to the ability to model more realistic CCM structures that include

correlation information related to velocity elements in the background. Such informa-

tion is important in more challenging clutter scenarios like those encountered in space-

time adaptive processing (STAP) or with ocean backgrounds. Clutter with a Doppler

component is far more challenging to filter out and to disambiguate from a legitimate

target whose relative velocity is similar to that of the clutter. The CCMs produced by

this model are higher fidelity that the model found in [13] and are complex-valued.

However, the CCM was still defined directly and used to generate clutter samples,

meaning that the CCM was perfectly known in each test case and could be used for

system analysis during testing. It served as a strong intermediate step before attempt-

ing to test the system on high-fidelity simulations or on real-world data, where the true

CCM is generally not available and must be approximated for a given scenario.
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Table 7.1: GAN Network

Type Kernel Kernel Kernel Input Output Batch
Num. Shape Stride Shape Shape Norm.

Generator
1 Conv. 16 3× 3 1 16×16×2 14×14×16 N/A
2 Conv. 32 3× 3 1 14×14×16 12×12×32 0.8
3 Conv. 64 3× 3 1 12×12×32 10×10×64 0.8
4 Conv. 128 3× 3 1 10×10×64 8×8×128 0.8
5 Tr. Conv. 32 3× 3 1 8×8×128 10×10×64 0.8
6 Tr. Conv. 32 3× 3 1 10×10×64 12×12×32 0.8
7 Skip N/A N/A N/A 12×12×32 12×12×64 N/A
8 Tr. Conv. 32 3× 3 1 12×12×64 14×14×32 0.8
9 Tr. Conv. 32 2× 2 1 14×14×32 14×14×16 0.8

10 Skip N/A N/A N/A 14×14×16 14×14×32 N/A
11 Tr. Conv. 32 5× 5 1 14×14×32 18×18×32 0.8
12 Conv. 1 3× 3 1 18×18×32 16×16×1 0.8

Discriminator
1 Conv. 16 3× 3 1 16×16×3 14×14×16 N/A
2 Conv. 16 3× 3 2 14×14×16 6×6×16 0.8
3 Conv. 32 3× 3 2 6×6×16 2×2×32 0.8
4 Flatten N/A N/A N/A 2×2×32 1×128 N/A
5 Linear N/A N/A N/A 1×128 1×256 N/A
6 Linear N/A N/A N/A 1×256 1×1 N/A

7.4 Proof of Concept Design

7.4.1 Model Architecture

For this work, I wanted to explore using generative ML models to directly infer

correlation information from a set of clutter samples and construct a corresponding

ICM for use in adaptive radar detection. In adaptive detection, support samples are

generally used to approximate an ICM that is then used in a quasi-whitening filter (this

is what makes them adaptive). To maximize efficiency and minimize information loss,

raw IQ data is used for both the ICM generation and the adaptive detection algorithm.
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To prove out the method, training and testing IQ data was simulated in Matlab with the

known covariance structures defined in Equations (7.1) and (7.2). As I have described

previously in Chapter 3.5, most modern covariance estimation techniques require that

the number of support samples (K) used to approximate the ICM be greater than twice

the sample length (i.e. K > 2N ). For the generative ML approach presented here,

the sample support was set to K = N for all training and testing. However, I will

note here that the earliest design iterations of the ML generator used K = 2N and I

subsequently reduced the sample support prior to final implementation and testing.

Currently, standard ML layers in Python are not designed to process complex-

valued data. This is largely due to the activation and loss functions that are used,

almost all of which were derived assuming real-valued inputs and outputs. At the

time of writing this dissertation, Pytorch had been updated to allow the propagation

of complex-valued tensors through its layers, but did not have support activation or

loss functions. Various custom loss functions had been developed by the open source

community, but each simply split the complex tensors into its real and imaginary com-

ponents, performed calculations on each component separately, and then recombined

them later. For convolutional networks like the ones I used here, this is not sub-

stantively different than simply splitting the input data to the model into its real and

imaginary components and then concatenating them together along the channel di-

mension before sending them through the model. As a result, the real and imaginary

components of the complex IQ samples used for ICM generation were separated into

distinct channels. The resulting input matrix Zin to the generative model had the form:

(N ×N × 2)

Zin = [Re(Zk), Im(Zk)] (7.6)
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where Re(•) refers to the real component of a complex matrix, Im(•) is the the imag-

inary component of a complex matrix, and Zk is the set of K support samples. For

this work, it was assumed that the CCM was real valued and hermitian and the model

output is the associated ICM, Yout, which is also real-valued and hermitian with di-

mensions (N ×N × 1).

The prototype generative model developed for this research consisted of a GAN

created in Pytorch. GANs are neural networks whose architectures consist of both a

generator model and a discriminator model that must train in tandem. The architecture

of the GAN presented here is depicted in Figure 7.1 and specific layer parameters are

provided in Table 7.1. A U-Net implementation was used for the generator model.

This model consists of an encoder-decoder structure with a series of convolutional

layers in the encoder to identify key features in the input data and a series of transpose

convolutional layers in the decoder to construct the output. Skip connections from the

encoder to the decoder are also used to prevent the loss of key structural (or positional)

information when constructing the output. Leaky Rectified Linear Unit (Leaky ReLU)

activation layers with negative slope factors of 0.2 were used after each convolutional

and transpose convolutional layer and Tanh was used as the final activation layer of the

model. Additionally, batch normalization with momentum of 0.8 was applied during

model training after each Leaky ReLU other than the first.

U-Nets are desirable for this application for several reasons. First, ICMs for cor-

related clutter are highly structured and those structures are dependent on positional

information in the clutter samples. The use of convolutional layers in both the en-

coder and decoder are ideal for inferring such relationships, making it an architecture

that will likely generalize to a broad range of ICM structures. The encoder-decoder

structure of the U-Net also aids with the ability to generalize. Encoder structures in
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neural networks are designed to learn characteristic features of input data while the

decoder takes those features and constructs the appropriate output. The added skip

connections in U-Nets help minimize the loss of positional information caused by the

encoding process. This allows them to perform consistently even on large or relatively

sparse data sets. Additionally, U-Nets can be designed with inherent symmetry that

allows for paired input/output dimensions regardless of the size of the input data. This

means that a single generator model can be designed and trained to output ICMs for a

broad range of sample length values. Note also that convolutional layers train filters

that are each applied across every channel of the input data. So, while the dimensions

of the input data used to characterize this prototype were kept static at (N ×N × 2),

by increasing the number of channels at the model input and using data trimming/-

padding the model can trivially be trained to support almost any amount of sample

support without structural modification to the model.

The discriminator model was designed as a convolutional neural network (CNN)

classifier with a binary output. The model receives as an input an ICM (either real or

generated) concatenated with the input matrix to the generator (Zin), which is an (N×

N×3) matrix. The input is passed through three convolutional layers, each with Leaky

ReLU activation with negative slope factors of 0.2. The second and third convolutional

layers have batch normalization with momentum of 0.8 applied during training. The

output of the third convolutional layer is flattened and passed through two linear layers

with ReLU activation. The final activation function for the discriminator was sigmoid

and binary cross entropy was used for the loss function. The two output states for

the discriminator model correspond to “real” or “generated” classifications for the

observed ICM.
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(a) GAN Generator Architecture.
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(b) GAN Discriminator Architecture.

Figure 7.1: GAN architecture used for ICM generation.

7.4.2 GAN Training

The generative model used in this work was trained on 8×105 randomly generated

sets of correlated Gaussian modeled using Equations (7.1) and (7.2). After training

data was loaded, it was shuffled and divided in 80% training samples, 10% validation

samples, and 10% testing samples. Each noise set consisted of K = 16 samples, each

of length N = 16. The training noise samples were generated with covariance matri-
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ces of the form in (7.2). 2× 105 samples were generated with correlation coefficients

at ρ = 0.1, 0.5, 0.7, 0.9. The ideal ICM was calculated for each noise sample set and

scaled down by a constant so that the values in any given matrix ranged between −1

and 1 to align with the output of the generator’s final Tanh activation. Note that the

same scaling factor was used for every training set, and the ICMs output by the gen-

erator were scaled up by the same value.

The generator and discriminator models were trained in parallel using Pytorch

Lightning. Training was conducted for 100 epochs with a batch size of 32, Adam op-

timization, and learning rate of 10−4 for both the generator and discriminator models.

At each training step, the generator was presented with a single set of noise samples

and output a generated ICM. Next, two inputs were provided to the discriminator, one

constructed from the noise samples concatenated with the ideal ICM and the other

from the noise samples concatenated with the generated ICM. For each of the two

inputs, the discriminator identifies if the observed ICM is ideal or generated. The av-

erage loss for the two classifications is calculated and used to update the discriminator

weights. If the discriminator successfully classifies the output of the generator model,

the generator loss function is calculated and its weights are updated. Otherwise no

update is made to the generator model.

I want to again highlight that much of the difficulty with successfully training

a GAN rests in the need to maintain approximate parity in the performance of the

two models. If either model trains significantly faster than the other, the training

process breaks down and typically does not recover. This requires substantial tuning

of the model hyper-parameters and architectures to ensure mutual convergence. For

the prototype system presented here, mutual convergence was achieved in roughly

two out of three training runs. In each case where training failed, it was due to the
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discriminator learning too quickly to distinguish between the real and generated ICMs.

This was almost certainly due to the comparatively high complexity of the generator’s

task.

Traditionally, GAN discriminators are trained using only the output of the gener-

ator or the real data the generator was being trained to emulate. However, this only

trains the discriminator to broadly classify the data it observes as “realistic” or “un-

realistic”. Such a generic classification is insufficient for applications like this one,

where the validity of the generator output is tied to the characteristics of the specific

input clutter. This issue caused early iterations of my design, in which I only provided

the ideal and generated ICMs as the inputs to the discriminator, to produce ICMs that

had the correct general structure of an ideal ICM but did not properly reflect the cor-

relation information of the input data. While researching ways to mitigate this issue, I

discovered the conditional GAN architecture. The conditional GAN variant provides

additional information to the discriminator that provides extra context so that it learns

what a realistic input looks like for a given scenario. I was able to update my design

such that the noise samples used by the generator are also passed to the discriminator.

Passing both the support samples and the observed ICM to the discriminator allowed

it to learn the noise characteristics that lead to specific ICM structures, as opposed to

just learning whether an ICM looks generally realistic. This in turn forced the genera-

tor to learn to recognize the noise characteristics of a set of support data and generate

the appropriate ICM structures for that noise data.
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7.5 Testing and Results

My ultimate goal with this research was to determine whether ML could be used

to reduce sample support requirements for the process of approximating ICMs used in

adaptive radar detection algorithms. This required that I demonstrate that the model

could consistently generate close approximations of CCMs and that those approxi-

mations were sufficiently high-fidelity to not significantly impact the performance of

an adaptive detection algorithm. Two major forms of testing were conducted on the

prototype system to both prove out the concept and determine its applicability to the

detection domain. First, the quality of the generated ICMs were evaluated against both

the ideal matrices found by inverting the true covariance matrix and against estimated

matrices found by inverting covariance matrices approximated using the method of

Equation (3.61) (described in Chapter 3.5). Second, preliminary testing was done to

integrate the prototype ICM generator into the well known GLRT detection algorithm

and characterize its impact on detection and false alarm rates. Unless otherwise stated,

all generated ICMs were generated using K = N support samples and all estimated

ICMs used K = 2N . This is an important distinction, as it means that the comparison

method was given twice the data as the generative model. Further, the number of sup-

port samples used by the generative model to approximate ICMs was not sufficient for

existing alternatives to consistently approximate an invertible CCM.

The conditional GAN was trained multiple time for 100 epochs. All told, roughly

200 models were trained and evaluated. During training, both the generator and dis-

criminator loss were monitored. Model checkpoints were saved periodically based on

the generator loss. Each trained model produced ten checkpoints that corresponded

to the ten epochs with the lowest generator model validation loss. This was evaluated
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(a) Generator training curve for an unconverged model.

(b) Generator training curve for a converged model.

(c) Generator validation curve for a converged model.

Figure 7.2: Example GAN generator model training curves.

after each epoch, so initially the first ten epochs were saved by default and then if

any subsequent epochs produced a lower validation loss, it would replace the worst

performing existing checkpoint. Example training curves for the GAN are shown in

Figures 7.2 and 7.3. Note that Figures 7.3a and 7.2a show curves for the discriminator
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(a) Discriminator training curve for an unconverged model.

(b) Discriminator training curve for a converged model.

(c) Discriminator validation curve for a converged model.

Figure 7.3: Example GAN discriminator model training curves.

and generator loss, respectively, for a GAN whose generator failed to converge. Fig-

ures 7.2b, 7.2c, 7.3b, and 7.3c, conversely show those loss curves for a model whose

generator did converge. There is some interesting behavior that can be observed in the

training curves for each case. In particular, it should be observed that for the GAN
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that failed to converge, the generator loss continued to grow steadily with several re-

gions of unstable training (marked by large spikes in loss) until the generator reached

a point of instability in training from which it did not recover. The discriminator, on

the other hand, maintained relatively low loss that dropped to zero once the genera-

tor failed. This demonstrates clearly what happens when the discriminator learns too

quickly and the generator cannot reach a convergence point. For the GAN that did

converge, the generator loss initially rose as the discriminator learned to differentiate

between real and generated images. However, both the generator and discriminator

loss curved quickly reached a stability point after which their loss curves displayed

periodic, inverse cycles of increase and decrease. This behavior is indicative of a sta-

ble adversarial training process in which each model improves and then pushes the

other model to improve in response.

Models whose generator loss successfully converged were pulled and examined

using a tool called Tensorboard. This tool allows the training of a model to be ob-

served using log files both in real time and after the fact. In my Python code, I set

up training logs to monitor the discriminator loss, generator loss, epoch number, step

number, and to save example model outputs from the testing data set. Any models

whose training curves maintained parity, whose generator loss converged to low val-

ues, and whose output images appeared to contain the expected structures for an ICM

were chosen as candidates for the final generator. Ten models were chosen as candi-

dates and three checkpoints for each of those candidate models were pulled down for

further evaluation. Figure 7.4 shows examples of the logged generator outputs from

different stages of GAN training. Note that the generator output initially produces

low-valued, almost perfectly random outputs, as shown in Figure 7.4a. In Figure 7.4b,

one can see the early stages of a generator beginning to learn the structures of the
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(a) Example generator outputs at the beginning of training.

(b) Example generator outputs in early training epochs.

(c) Example generator outputs of converging model.

(d) Example generator outputs when model fails to converge.

Figure 7.4: Example generator outputs at different stages of GAN training.

ICMs. Figure 7.4c shows the outputs produced by a model a model that successfully

converged and produced realistic ICMs approximations. For comparison, Figure 7.4d

shows example outputs from later epochs of a GAN whose generator failed to con-

verge. Unsurprisingly, the model did not continue to output random noise, but instead

experimented with different structures to see if it could fool the discriminator. Since

the discriminator trained to effectively too quickly, the generator experimented with

increasingly pronounced, though unfocused, structures.
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(a) Ideal ICM for Mij = ρ|i−j| and
ρ = 0.9.

(b) GAN generated ICM for
Mij = ρ|i−j| and ρ = 0.9.

(c) ICM estimated from K = N
support samples for Mij = ρ|i−j|

and ρ = 0.9.

(d) ICM estimated from
K = 2×N support samples for

Mij = ρ|i−j| and ρ = 0.9.

(e) ICM estimated from
K = 10×N support samples for

Mij = ρ|i−j| and ρ = 0.9.

(f) ICM estimated from
K = 500×N support samples for

Mij = ρ|i−j| and ρ = 0.9.

Figure 7.5: Heat maps of inverse covariance matrix for Mij = ρ|i−j| and ρ = 0.9.

In general, convergence of a neural network to low loss values during training

is a good indication that it identified consistent patterns within the training data and
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produced some kind of meaningful output. However, loss/reward values are not suf-

ficient metrics for determining the success of a model, particularly when the output

is complex and high-dimensional. To evaluate the quality of the trained models used

in this research, the Frobenius distance between generated and ideal ICMs was used.

Each candidate checkpoint of the trained GAN was evaluated in this way. Figure

7.5 shows an example of the ideal ICM, generated ICM, and ICMs estimated from

increasing levels of sample support. For each of the covariance structures evaluated

here, the ideal ICM peak was always located along the primary diagonal, the trough

was always located along the first off-diagonals, and the rest of the ICM elements were

comparatively near to zero.

Metric ρ - 0.9 ρ - 0.7 ρ - 0.5 ρ - 0.1
GAN FD Full 0.8699 0.9057 0.7190 0.5663

GAN FD Diag. 0.0542 0.1608 0.1355 0.0891
GAN FD Off Diag. 0.6216 0.1968 0.1213 0.0655

GAN FD Res. 0.6058 0.8674 0.6937 0.5552
Est. FD Full - 2N 25.8287 8.6238 1.7248 0.3498

Est. FD Diag. - 2N 9.8307 3.3759 0.7008 0.1932
Est. FD Off Diag. - 2N 8.1024 3.3646 0.6755 0.1021

Est FD Res. - 2N 22.3421 7.1605 1.4172 0.2717
Est. FD Full - 10N 1.0046 0.3533 0.1900 0.1013

Est. FD Diag. - 10N 0.3932 0.1303 0.0714 0.0448
Est. FD Off Diag. - 10N 0.3909 0.1256 0.0672 0.0336

Est FD Res. - 10N 0.8319 0.3017 0.1619 0.0840

Table 7.2: Fdist Against Ideal ICM for Gen. and Est. ICMs

Based on those consistent structural patterns in the matrices, four Frobenius dis-

tances were calculated and used to select the final model. Each one targeted a different

region within the ICMs and were found by applying masks to the matrices before cal-

culating the distance. First, the distance between the full generated and ideal matrices

were calculated. Second, the generated and ideal matrices were multiplied by an iden-

tity matrix mask and the distance between the diagonals was found. Then, each value
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in the matrices other than the first off-diagonals were set to zero, and the distance was

calculated. Finally, the primary diagonal and first off-diagonals were masked to zero

for each matrix and the distance was calculated. These four distances allowed me to

examine the similarity of each key region within the ICMs as well as for the full ma-

trices. Each model was evaluated using these four metrics at four distinct correlation

coefficient values and the model with the lowest overall distances was selected for full

testing. The distances for this model, along with the distances between the standard

approximation method with K = 2N and K = 10N sample support and the ideal ma-

trices are shown in Table 7.2. It should be highlighted here that the generative model

only ever sees interference samples drawn from a distribution with given covariance

structure, and it was only characterized on new data samples. This means that the

GAN would have been unable to overfit to particular interference data and the quality

of its outputs were entirely determined by its ability to recognize the covariance infor-

mation in each sample and apply well trained filters to construct the desired ICM.

Note that the distance values for the estimated matrices are high for low sample

support and more correlated clutter, and reduce as both the correlation drops and sam-

ple support increases. This is to be expected, as less correlated noise produces ICMs

with simpler structures that are easier to estimate, approaching a scalar matrix as the

correlation coeffiecient approaches zero, and it is well established that the estimation

method used here is dependent on the number of support samples. Conversely, the the

generative approach maintains much more consistent distance values, indicating that it

learned the structures associated with particular interference sets well and consistently

generated ICMs that closely matched the ideal. Additionally, Figure 7.6 depicts an ex-

ample of the distribution of the total Frobenius distance over 2× 104 test sets. Figures

7.6a and 7.6b show the distance distributions for the estimated ICMs with K = 10N
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and the generated ICMs, respectively. Clearly, both distributions are roughly Gaussian

and tightly distributed, further indicating the consistency of the proposed approach.

I performed some additional testing at this stage with variable sizes of input data

to the generator. Specifically, I wanted to verify my initial hypothesis that a U-Net

generator could be designed with sufficient symmetry between the encoder and de-

coder that it would be able to produce ICMs from data of almost any size without

alteration. This is enable because these models consist entirely of convolutional, pool-

ing, and transpose convolutional layers whose only trainable parameters are filter of

fixed dimensions. So, as long as the input data matrix is sufficiently large such that the

dimensionality reduction through the encoder side of the network doesn’t reduce the

dimensions of the data tensors below the dimensions of any of the model’s filters, the

generator model I designed should successfully produce an output of the same spatial

dimensions (matrix height and width) as the input. To test this, I ran datasets with

dimensions ranging from 12 × 12 to 36 × 36 through a generator model trained on

16× 16 data and evaluated the results. For each of these datasets, the model success-

fully produced an output of the expected dimensions. Additionally, for most of these

datasets the basic structure of the ICM could be observed in the output matrices.

However, most contained some combination of large gaps or artifacts in the gener-

ated matrices and had significantly degraded Frobenius distance values. For datasets

of similar dimensions to those used to train the model (14 × 14 to 18 × 18), the gaps

and artifacts in the ICM structures were minor, but they grew rapidly after that. This

is almost certainly due to a combination of a lack of latent features related to variable

sized inputs and a decoder not trained to produce variable sized outputs. From this,

two important observations can be made. First, the generator structures can support al-

most any size input data and produce a symmetric output. Second, in order to produce
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consistent, meaningful results for different dimension of input, the networks needs to

be trained on variable sized data. I explored doing variable data size training and ran

into an issue with the GAN. While the generator model was dimension agnostic, the

discriminator was not. It contains linear layers, whose parameter numbers must be

defined and are not compatible with variable sized inputs. So, to train the generator

on dataset of various size, I needed to create a discriminator for each data size. This

is not a viable long-term solution, which limits the current design significantly. For-

tunately, this testing also provided a reasonable indication that the U-Net used in the

generator could be trained for a range of input sizes if it was removed from the GAN

structure and provided a sufficiently large and general training dataset with variable

dimensions.

It must again be highlighted here that the generative model was evaluated under

a far more stringent set of conditions than the traditional estimation method. The

traditional estimation method was only ever evaluated with K ≥ 2N . This level of

sample support is necessary for the approximated CCMs to be consistently invertible

and achieve reasonable performance. The trained generator model, by contrast, only

ever saw K = N support samples. Despite only having access to half the level of sam-

ple support, the generative model was able to produce ICMs that were of equivalent or

better quality than those produced using the comparison method. That demonstrates

that there is sufficient information in a small sample set for the model encoder to iden-

tify the underlying correlation information of the interference signals such that the

model decoder can reconstruct a close facsimile of the true ICM. With such low sam-

ple support, this is not possible with existing covariance approximation techniques.

Reducing sample support requirements to half of the current minimum would provide

a massive increase to levels of flexibility and agility in radar detection systems (par-

263



ticularly those on mobile platforms). If this method can be shown to generalize well

on real world, it will provide a major step forward in the field of adaptive detection.
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ICM with K = 10N .
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Figure 7.6: Fdist distribution over 2× 104 tests of ICM approximation for
Mij = ρ|i−j| and ρ = 0.9.
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After evaluating the quality and consistency of the generated ICMs and selecting

the best performing model, I integrated that model with an adaptive detection algo-

rithm to determine whether the generated ICMs could be used effectively for adaptive

filtering. This was done by replacing S−1 in Equation (3.22) of the GLRT with the gen-

erated matrices and evaluating the impact to the detector’s performance. This testing

was conducting following the same process outlined in Chapter 6.4.1 for characteriz-

ing detector performance with ROC curves. Correlated complex Gaussian interference

data was generated with covariance defined by (7.2). 1× 105 sets of support samples

were generated for each covariance structure tested, and both H0 and H1 SUT were

generated for each. For the H1 SUTs, a steering vector of pi = exp−j2π(i−1)0.2 was

used. The SIR used in each H1 test was set using (6.5). The Pfa and Pd characteristics

of the GLRT were measured with an SIR of 3dB using the ideal ICMs (ρ = 0.9), esti-

mated ICMs (K = 2N , ρ = 0.9), and the generated ICMs (K = N , ρ = 0.9, 0.7, 0.5)

and used to generated receiver operating characteristic (ROC) curves for each. Figure

7.7 shows these curves. Note that, at this stage, for the generative case the thresholds

used to achieve each target Pfa were determined experimentally. It is clear that the

ROC curves for the GLRT augmented with the GAN display improvements consistent

with what could be achieved by other approximation methods using higher sample

support. This clearly demonstrates that the model successfully generates ICMs con-

sistent enough with reality to be used in adaptive filtering. It also provides further in-

dication that the proposed method substantially reduces sample support requirements

for adaptive filtering.

Next, the target’s normalized Doppler frequency, Fd, was swept from 0.05 to 0.35

while the detector steering vector was held constant with Fd = 0.2. The Pd for the

GLRT using both the estimated and generated ICMs was recorded with ρ = 0.5 and
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Figure 7.7: ROC curves showing the PD vs PFA.

SIR of 10dB. Figure 7.8 shows the plot of the Pd versus Fd for each. It is clear that the

performance of the detector using generated ICMs is consistent with that of the esti-

mated ICMs, with some improvement to both Pd of targets aligned with the steering

vector and rejection of targets outside of the steering vector. These results are particu-

larly exciting, as they demonstrate that the filter performance with the generated ICMs

is consistent with that of an estimated ICM using the widely used comparison method

with higher sample support. This provides strong evidence that the ICM generation

method functions as desired. Substantially degraded detector performance would indi-

cate that the method was not viable for the application. Conversely, ideal performance

of the filter would be suspect and likely indicate that the generator had overfit on data

and would not generalize well. The observed performance, coupled with previous ob-

servations of the Frobenius distances, supports my hypothesis that a generative model
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can be used to replace traditional CCM estimation methods in adaptive detection al-

gorithms.
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Figure 7.8: PD vs normalized fd at SIR = 10dB and steering vector fd = 0.2.

Up to this point, testing had been conducted to determine the accuracy and con-

sistency of the prototype system’s generated ICMs. However, it was also important to

verify that the model could generalize to different covariance structures. I will note

here that there is a strong theoretical basis for expecting that the U-Net generator could

be trained to generalize to a broad range of CCMs. This is due to the fact that CCMs

are highly structured, those structures are defined by correlation information which

is reflected in positional relationships in the clutter data used as inputs to the model,

and U-Nets are specifically designed to identify such positional features in input data

and construct highly structured outputs corresponding to those features. That basis,

paired with the initial demonstration that the clutter samples contained sufficient in-
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formation to train the generator model, gave me high confidence in the ability of this

method to be broadly generalizable. However, the prototype was also trained on a

tightly controlled and relatively simple subset of CCMs. To be fully generalizable it

would require training on a much larger set of data with far more varied correlation

parameters. To verify that this method had the potential to generalize, additional test-

ing was performed to determine how well it could adapt to more complex covariance

structures that it had never encountered.

For this testing, an initial covariance matrix was generated using (7.2) with ρ =

0.5. Then, certain values within the covariance matrix were set to higher values,

adding higher covariance perturbations into the correlated interference. Two forms

of perturbation were added: 1) fixed and 2) variable. For the fixed perturbations, the

higher covariance values were set to static locations in the covariance matrix. These

locations were [i1, j1] = [7, 13] and [i2, j2] = [j1, i1] and the value of the covariance

at this position was randomly set to be between 0.1 − 0.4 for each sample set (in-

creased from 0.0156 without perturbation). In the variable case, perturbations were

placed randomly with i1 ranging between 13 − 15 and j1 between 5 − 7. Again

[i2, j2] = [j1, i1] and the value of the covariance at this position was randomly set to

be between 0.1−0.4. Note that in each case, care was taken to maintain the Hermitian

nature of the matrix. Data generated with these interference covariance matrices were

then run through the GLRT with SIR of 3dB and ROC curves were generated and plot-

ted in Figure 7.9. In both cases, the GLRT showed modest performance increase when

using the generated covariance structures. This provided evidence supporting my ex-

pectation that the model could be trained to effectively generalize to a wide range of

CCM structures.

This prototype implementation of my proposed generative ML-enhanced ICM ap-
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proximation method demonstrated a number of key findings. First, it proved that there

is sufficient information in a set of raw clutter samples for a ML encoder to identify

and learn a set of latent features corresponding to clutter correlation patterns. Fur-

ther, it demonstrated that this could be accomplished with as little as K = N support

samples. Second, this testing proved that a ML decoder could be trained to gener-

ate high fidelity approximations of the ideal ICMs from the latent features learned by

the encoder. Third, I was able to demonstrate that the behavior of the ICM genera-

tor model was consistent enough to be directly integrated with the well-known GLRT

adaptive detection algorithm without negatively impacting its performance. Finally, I

was able to determine that the the generative model was flexible enough to adapt to

new CCM structures it had never seen before, providing a strong indication of its gen-

eralizability. However, it also highlighted several weaknesses with the initial design,

and considerable work needs to be done to refine this method and determine how gen-

erally applicable it is to the adaptive filtering domain. In particular, while the U-Net

appears to be ideal for use in this application, the basic GAN structure is fragile and

will likely interfere with training the generator on larger, more general datasets. Ad-

ditionally, the current implementation does not include any loss function incentives to

encourage the model to produce invertible matrices, potentially impacting the quality

of any filter that uses its generated ICMs. Finally, considerable work still needed to be

done to verify that the proposed method could generalize enough for use on real data.

In an attempt to improve this method and perform a more robust characterization of it,

I made several major modifications to the prototype system design and continued this

line of research. I will now present those updates and some expanded testing used to

evaluate them.
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(a) GLRT ROC curves.
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Figure 7.9: ROC curves for Mij = ρ|i−j| and ρ = 0.5 with perturbations.
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7.6 Updated Implementation

After successfully proving out the initial concept on simple, real-valued covariance

structures, I redesigned the system for use in more realistic scenarios with complex-

valued CCMs. There were three primary modifications: 1) the data model used to

simulate training and testing data was updated, 2) the GAN structure was replaced with

a generative U-Net, and 3) custom loss functions were developed for model training.

Updates to the data generation models allowed me to simulate clutter backgrounds

that were complex-valued and contained more challenging CCM structures associated

with Doppler components in the background. The GAN structure proved to work well

for the simple scenarios initially considered, but didn’t generalize well. This is largely

because it limited my ability to control the learning process and encourage the model

to learn more complex ICM structures. The custom loss functions were developed

to ensure that the model could both generalize well and to encourage it to learn to

generate ICMs that could be inverted stably. I will now describe each update in detail

before analyzing the performance impacts.

7.6.1 System Updates

7.6.1.1 Clutter Model

As previously noted, the clutter model was updated to a more challenging and real-

istic one. Specifically, the model for the CCM was updated so that it was complex and

modeled Doppler components in clutter. This was accomplished using the Nitzberg

CCM model [171]. All training and testing data for this phase of development was

simulated in Matlab assuming a correlated Gaussian distribution with zero mean and

covariance defined by Equations (7.3)-(7.5).
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7.6.1.2 ML Architecture

Figure 7.10: U-Net architecture used for ICM generation.

One of the key observations I made when testing the initial implementation of

the ICM generator was that the GAN structure inhibited the ability of the network to

generalize effectively in more complex clutter scenarios. The key reason for this is

related to the structure of the loss functions in a GAN, specifically that the loss used

to train the generator depends heavily on the ability of the discriminator to distinguish

between real and generated ICMs. This dependency required that the two structures be

trained in tandem and that they maintain approximate parity with one another. If either

one trained too quickly, the training process would break down in an unrecoverable

way and learning would cease. This meant that the discriminator was a critical failure

point during training, which had a substantial impact as the complexity of the possible

solution space increased. Also, it restricted the ability to consistently apply custom
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loss functions to encourage specific behaviors.

Table 7.3: U-Net Architecture

Type Kernel Kernel Kernel Input Output Batch
Num. Shape Stride Shape Shape Norm.

1 Conv. 16 3× 3 1 16×16×2 14×14×16 N/A
2 Conv. 32 3× 3 1 14×14×16 12×12×32 0.8
3 Conv. 64 3× 3 1 12×12×32 10×10×64 0.8
4 Conv. 128 3× 3 1 10×10×64 8×8×128 0.8
5 Tr. Conv. 32 3× 3 1 8×8×128 10×10×64 0.8
6 Tr. Conv. 32 3× 3 1 10×10×64 12×12×32 0.8
7 Skip N/A N/A N/A 12×12×32 12×12×64 N/A
8 Tr. Conv. 32 3× 3 1 12×12×64 14×14×32 0.8
9 Tr. Conv. 32 2× 2 1 14×14×32 14×14×16 0.8

10 Skip N/A N/A N/A 14×14×16 14×14×32 N/A
11 Tr. Conv. 32 5× 5 1 14×14×32 18×18×32 0.8
12 Conv. 1 3× 3 1 18×18×32 16×16×2 0.8

Fortunately, the core benefits of the original design for the ICM generator were

due to the use of a U-net for the generator design, rather than the GAN structure itself.

As such, it was a relatively simple matter to remove the discriminator and implement a

supervised training method with custom loss functions. Minor modifications were also

made to the generator network itself in order to allow for the generation of complex-

valued ICMs. The updated ICM generator design is detailed in Table 7.3 and shown

in Figure 7.10.

7.6.1.3 Loss Functions

Two custom loss functions were designed and used to train the U-net architec-

ture. Both of these loss functions were based on the Frobenius distances between the

generated matrices and the ideal ones. For the first loss function, the average of the

Frobenius distances for three sub-regions was used. These three sub-regions were the

primary diagonal, each of the first off-diagonals, and the residual regions of the ma-

273



trix. The sub-regions were selected due to their unique characteristics within the ICM

structure. I theorized that this would help teach the model to generate more consistent

and realistic models. I will refer to this loss function as the one-stage loss function. It

can be represented as:

L1 =
Fdiag + Foff + Fres

3
(7.7)

where L1 is the one-stage loss value, Fdiag is the Frobenius distance along the

primary diagonal, Foff is the Frobenius distance along the first off-diagonals, and

Fres is the Frobenius distance in the residual regions. The distances for each sub-

region was found by first masking the matrix to set every entry outside of the target

region to zero and then calculating the distance value.

The second custom loss function that I developed is a two-stage loss function. In

the first stage, this loss is calculated identically to Equation 7.7. Then, after T1 training

steps, a secondary loss component is introduced. To calculate the secondary loss, the

output matrix from the U-net is first inverted. Then the same set of Frobenius distances

used in L1 are calculated for the inverted matrix and averaged. The average distance

is clipped to ensure that poor matrix inversions do not trigger errors or push the model

weights out of a stable training region. Once the second loss term is introduced, it is

multiplied by an inverse scaling factor that decays over time. This results in that term

having a suppressed impact on loss early in training that gradually grows over time.

Note that after T2 training steps, the inverse scale factor is set to a constant value. The

first stage of this loss function is intended to allow the U-net to learn how to generate

realistic ICM structures with the second stage intended to improve the generator’s

outputs by making them more stable. The two-stage loss function can be represented
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as:

L2 =


L1, t ≤ T1

L1 +Min
[
a, b
(

F inv
diag+F inv

off+F inv
res

3

)]
, t > T1

(7.8)

b = Min

(
1

β
,

t

βT2

)
(7.9)

where L2 is the two-stage loss value, Min[•] is a function that returns the mini-

mum of a set of values, t refers to the training step, T1 is the training step at which the

secondary loss component is added, T2 is the training step at which the inverse scaling

factor for the secondary loss component is minimized, β is a scaling factor, F inv
diag is

the Frobenius distance along the primary diagonal for the inverted matrix, F inv
off is the

Frobenius distance along the first off-diagonals for the inverted matrix, and F inv
res is

the Frobenius distance in the residual regions for the inverted matrix. For this loss

function, the values of a, β, T1 and T2 that optimize training will be heavily dependent

on the size of the output matrices being generated and the model’s hyper-parameters.

They can be treated as additional hyper-parameters that can be tuned during the train-

ing process. In the work presented here, they were set to ensure that the secondary

loss term ranged between 0 to 0.5. I will note here that the use of T1 and T2 for deter-

mining when to introduce secondary loss term and when to stop suppressing its effects

are not optimal. These terms should be replaced with performance-based thresholds,

rather than time based ones. This will make the loss function for effective and more

generalizable.

275



7.6.2 Testing and Results

As with the initial ICM generator, the goal of testing this updated implementation

was to demonstrate that it could learn to produce ICMs from limited support samples

accurately enough that they could be used within adaptive detection algorithms with

minimal performance degradation. Full testing is still underway at the time writing

this dissertation, but my initial findings are extremely promising and will presented

here. At this stage, I have successfully made the system updates described in Chapter

7.6.1 and trained the U-Net structure on correlated Gaussian data with complex co-

variance structures using each of the two new custom loss functions. I have also tested

models trained with each loss function to determine the quality of the ICMs they gen-

erate. However, I have not yet directly integrated the updated generator models with

an adaptive detector to determine their impact on detection performance.

The training of the updated models was conducted similarly to the initial imple-

mentation. Each U-Net was trained to produce N × N × 2 ICMs based on K = N

input interference samples of length N = 16. Note that the number of output channels

for the generator model was increased from one to two in this implementation. One

channel is now trained to produce the real component of the ICM, while the other is

trained to produce the imaginary component. Training data was generated in Matlab

as described in Chapter 7.6.1 with σcl = 1, four distinct values of ρl ranging from

0.1 to 0.9, and eleven values of fd ranging from 0 to 0.5. This resulted in 44 distinct

scenarios used to train the generators. Multiple models were trained on each of the

two loss functions over 100 epochs. Model convergence was achieved consistently af-

ter some slight hyper-parameter turning, largely thanks to the shift toward supervised

training.
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Examples of the training and validation curves for the U-Net are shown in Figures

7.11 and 7.12. Figures 7.11a and 7.12a show these curves for a model that failed to

converge, Figures 7.11b and 7.12b show them for a model that successfully converged

using the one-stage loss function, and Figures 7.11c and 7.12c show them for a model

that successfully converged using the two-stage loss function. Note that the average

loss remains largely constant for the model that failed to converge, while for the others

the loss steadily decreases before reaching a stable convergence near 0.5. Observe that

the training curves for each loss function are initially indistinguishable but the curves

for the model trained with the two-stage loss function eventually display much larger

loss spikes than those observed in the one-stage loss model. This is indicative of the

introduction and subsequently growing impact of the secondary loss term. It should

also be noted that the validation and training curves ultimately converge to roughly the

same value. This indicates that the models trained successfully without over-fitting on

the training data. Avoiding over-fitting is necessary to train a model that can generalize

and be used in real systems. Two models (one trained with each loss function) were

selected for further testing based on a combination of their loss values and observation

of their outputs. Figure 7.13 depicts example model outputs for both loss functions

generated during training.

The quality of the ICMs generated by the trained models has been evaluated using

the same method used for the initial GAN implementation (as presented in Chapter

7.5). To perform this analysis, 88, 000 test samples were generated with 88 unique

test cases. This was done using the method described in Chapter 7.6.1 with σcl = 1,

eight distinct values of ρl ranging from 0.1 to 0.9, and eleven values of fd ranging from

0 to 0.5. The test cases used for analysis include a broad range of CCM configurations,

half of which the generator model never saw during training. This was done to evaluate
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(a) Example training curve for an unconverged model.

(b) Example training curve for a converged model with the 1-stage loss
function.

(c) Example training curve for a converged model with the 2-stage loss
function.

Figure 7.11: Example U-Net training curves.

how well the generator models could generalize. Each of the 88, 000 test samples were

run through the two generator models and the output ICMs were collected for analysis.

In addition, the generated ICMs were each inverted and analyzed to determine the

stability and quality of the generator outputs. At the same time, the classic CCM
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(a) Example validation curve for an unconverged model.

(b) Example validation curve for a converged model with the 1-stage loss
function.

(c) Example validation curve for a converged model with the 2-stage loss
function.

Figure 7.12: Example U-Net validation curves.

estimation method provided by Equation (3.61) (described in Chapter 3.5) was used

to generate approximations of the ICMs and CCMs for comparison.

The same four Frobenius distance calculations described in Chapter 7.5 were used

to evaluate the quality of the generated ICMs and their inversions. These included the
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(a) Example U-Net real outputs for converged model with 1-stage loss function.

(b) Example U-Net imaginary outputs for converged model with 1-stage loss
function.

(c) Example U-Net real outputs for converged model with 2-stage loss function.

(d) Example U-Net imaginary outputs for converged model with 2-stage loss
function.

Figure 7.13: Example U-Net outputs for each loss function.

Frobenius distances for the full matrices and three targeted sub-regions. Each distance

was calculated with respect to the ideal CCM/ICM. Table 7.4 shows the average of

these values for each model and the comparison estimation method. Additionally,

Figure 7.14 shows the distribution of the Frobenius distances for the full matrices. As
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with the testing described in Chapter 7.5, each generative model was given K = N

support samples while the comparison CCM estimation method was given K = 2N .

There are several key observations to be made here. First, the ICM Frobenius

distance values were extremely low for both of the generative models evaluated here.

They were each lower than the equivalent distances for both the ICM and CCM from

the comparison method. More impressively, the generated matrices were all invertible

and the Frobenius distances for the inversions were lower than those of the compari-

son method’s ICM. This indicates that the error resulting from inverting the generated

matrices is less than that of the classic estimation method. Additionally, the distri-

bution of the distances for the generated matrices is tightly grouped at low values.

Together, these observation provides a strong indication that this updated generative

method consistently produces high quality approximations of the ICM that capture

the phase information needed to decorrelate samples. This is further demonstrated in

Figures 7.15-7.26. These figures show side-by-side heatmaps comparing the ideal and

generated ICMs and their inversions from six test cases with different CCM structures.

It is clear from these images that the proposed method is capable of producing a broad

range of ICMs associated with complex CCM structures and that those complex struc-

tures are accurately reproduced by inverting the generated ICMs.

It should also be observed that there was very little performance difference be-

tween the generative model trained with the one-stage loss function and the one trained

with the two-stage loss. In fact, the model trained with the one-stage loss function per-

formed slightly better. This was surprising, as I expected the inclusion of the inversion

loss to improve the overall quality of the generated ICMs. However, it appears that

the one-stage loss was sufficient to learn the necessary features, at least for the se-

lected clutter covariance model. In the future I would like to compare the two against
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real-world data to see how well they each generalize in that scenario. Additionally, I

would like to explore whether tuning the parameters of the two-stage loss function can

further improve the model’s performance.

Metric Unet - K = N Unet - K = N Est. - K = 2N
One Stage Loss Two Stage Loss

ICM FD Full 0.3241 0.3260 28.2474
ICM FD Diag. 0.2004 0.1998 13.7057

ICM FD Off Diag. 0.2353 0.2384 11.5019
ICM FD Res. 0.0144 0.0137 21.7815
CCM FD Full 13.2781 17.1628 2.7966

CCM FD Diag. 4.3218 5.5523 0.6878
CCM FD Off Diag. 6.5119 8.2996 0.9474

CCM FD Res. 2.7900 13.5087 2.5319

Table 7.4: Fdist comparison - Unet versus Estimation

The initial results presented here are extremely positive. It appears as though the

U-Net structure learned the correlation information well and was successfully adapted

to generate complex ICMs with very little sample support. It will be crucial to inte-

grate this variation of the proposed generative ICM estimation method with an adap-

tive detection algorithm and fully characterize its performance. However, given the

success of the initial implementation when integrated with the GLRT and the superior

performance demonstrated by the updated generator, it is reasonable to expect that this

modification with provide considerable performance improvements to adaptive detec-

tors reliant on matrix approximation and inversion techniques. Further testing will

also need to be conducted on high-fidelity simulations and real-world data.
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(a) ICM - One-Stage Loss. (b) CCM - One-Stage Loss.
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(c) ICM - Two-Stage Loss. (d) CCM - Two-Stage Loss.
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(e) ICM - Estimated.
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(f) CCM - Estimated.

Figure 7.14: Fdist distribution - generated with K=N versus estimated with K=2N.
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(a) Real component of generated ICM.
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Figure 7.15: Test Case 1 - Generated versus True ICM.
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Figure 7.16: Test Case 1 - Generated versus True CCM.
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Figure 7.17: Test Case 2 - Generated versus True ICM.

286



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Real component of generated CCM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Imaginary component of generated CCM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Real component of true CCM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(d) Imaginary component of true CCM.

Figure 7.18: Test Case 2 - Generated versus True CCM.
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Figure 7.19: Test Case 3 - Generated versus True ICM.
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Figure 7.20: Test Case 3 - Generated versus True CCM.
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Figure 7.21: Test Case 4 - Generated versus True ICM.
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Figure 7.22: Test Case 4 - Generated versus True CCM.
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Figure 7.23: Test Case 5 - Generated versus True ICM.
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Figure 7.24: Test Case 5 - Generated versus True CCM.

293



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Real component of generated ICM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
-0.3

-0.2

-0.1

0

0.1

0.2

(b) Imaginary component of generated ICM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Real component of true ICM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
-0.3

-0.2

-0.1

0

0.1

0.2

(d) Imaginary component of true ICM.

Figure 7.25: Test Case 6 - Generated versus True ICM.
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Figure 7.26: Test Case 6 - Generated versus True CCM.
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7.7 Conclusion

In this chapter, I have presented an approach to directly creating adaptive whiten-

ing filters for use in detection algorithms based on generative ML. Adaptive detection

algorithms rely heavily on covariance matrix approximation and inversion techniques

to decorrelate interference signals in a SUT before applying a hypothesis test. Exist-

ing methods for approximating CCMs either rely on large quantities of support data

or use assumptions about CCMs structures to reduce their rank. The latter risks dis-

carding useful covariance information, while the former requires long sampling times

and assumes clutter homogeneity. Estimated CCM must then be inverted to effectively

decorrelate the interference present in a return signal. That inversion can be computa-

tionally costly, Additionally, poorly approximated CCMs may not be invertible. This

dependence on sample support and CCM estimation is a major limitation for adaptive

detection algorithms. The method presented here frames the problem as an image-to-

image generation task and applies modern ML approaches to accomplish it.

In generative ML, image-to-image generation is performed using encoder-decoder

style neural networks. The encoder can be used to identify the underlying statistical

characteristics of an input image and map them to an intermediate vector space called

a latent space. The decoder can then be trained to generate output images with spe-

cific structural elements associates with particular latent features. In the context of

radar detection, I have argued that a matrix of support samples containing interference

can be equated to an image whose underlying statistical characteristics include the

covariance information of the clutter. Under this assumption, a generative model can

be trained to identify covariance features in interference data and directly produce an

approximation of the inverse clutter covariance matrix. Such a model could be trained
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to approximate these matrices with relatively little sample support and would remove

the need for matrix inversion, drastically improving the performance of adaptive de-

tection algorithms.

I initially explored neural network architectures including the VAE, transformer,

and conditional GAN for generating adaptive filters from interference data. Of these,

the conditional GAN showed the most promise. This architecture uses two networks

trained together in an adversarial process. The first network, known as the genera-

tor, is trained to produce an output image from an input. The second model, called

the discriminator, is presented with both real and generated images and tasked with

identifying to which category a given image belongs. For a conditional GAN, the

discriminator is given additional contextual information along with the images that

allows it to determine if an image is realistic for the current scenario. This quickly

forces the generator to learn to use context features (like covariance characteristics)

when generating images.

My GAN design consisted of a U-Net for the generator and a CNN for the dis-

criminator. The U-Net was selected because it performs well at the image-to-image

translation task and is inherently symmetrical, allowing for different sizes of input

and output matrices. A CNN was used for the discriminator because it is one of the

most commonly used ML architectures for image classification problems. The sup-

port samples used as the input to the generator were also passed to the discriminator

so that it could learn to identify if a generated ICM was consistent with the dataset’s

covariance features. I was able to successfully implement and train the GAN generator

model to produce real-valued ICMs for a set of correlated, Gaussian distributed clut-

ter samples. To evaluate the quality of the generator’s outputs, 20, 000 test scenarios

were run through the model with K = N support samples. Frobenius distances were
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then calculated between the ideal ICM and the output of the generator. These were

compared to a commonly used CCM estimation and inversion method using sample

support values of K = 2N and K = 10n. It was found that the average distance for

the generated ICMs was equivalent to that of the comparison estimation method using

K = 10N support samples. This was an impressive performance give the low level of

sample support provided to the generator.

In order to verify that the proposed ICM generator could be used in adaptive de-

tection systems, the generator model was directly integrated with both the Gaussian

GLRT and Gaussian AMF. These integrated systems were then tested to characterize

the impact of the generator on each detector’s performance. The ROC and clutter re-

jection performance of the detectors was evaluated both when using the proposed ICM

generator with K = N support samples and when using the comparison estimation

method with K = 2N support samples. In each test case, the ICM generator provided

modest performance improvements over the classic estimation method while using

half as many support samples.

These results were extremely promising and proved both that generative models

could learn latent covariance features from limited support samples and that they could

consistently produce ICM approximations accurate enough to be used in adaptive de-

tection algorithms. However, the clutter covariance model used to generate the training

and testing data was simplistic and did not model the phase information found in more

realistic detection scenarios. Additionally, the adversarial training of the conditional

GAN was found to be inconsistent and sensitive. As a result, it was unclear how well

the proposed method would generalize.

To address this limitation, several modifications were made to the prototype de-
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sign. First, the clutter covariance model was updated to include complex values and

phase shifts resulting from localized clutter velocity components. The GAN structure

was then discarded in favor of supervised training of the U-Net generator, which was

modified slightly to produce complex-valued outputs. Finally, two custom loss func-

tions were developed and used to train the generator. The first used only the Frobenius

distances the model output and ideal ICM for three sub-regions within the matrices.

The second loss function gradually introduced a secondary loss term over time that

was based on Frobenius distances between the inversion of the model output and the

ideal CCM.

I have successfully implemented these updates and conducted initial testing to

evaluated the quality of the ICMs generated by models trained using each of the

custom loss functions. Currently, testing has been limited to running test scenarios

through the ICM generators with K = N support samples and measuring the Frobe-

nius distances between the generated and ideal ICMs. The test scenarios used for this

testing included 88 different clutter ICM configurations, 44 of which the model had

not encountered during training. These results were again evaluated against those of

the comparison estimation method using K = 2N support samples.

It was found that each of these generator models was able to consistently produce

ICM approximations for every test case with lower average error than the compari-

son method. It was also found that the generated ICMs were universally invertible.

Further, the Frobenius distances between the inversions and the ideal CCMs were

low. The combination of these results provides strong evidence that the proposed ICM

generation method generalizes well and can learn to identify and reproduce critical

phase information with limited support samples. However, the new generator models

have not yet been integrated and tested with an adaptive detection algorithm. That
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evaluation will be a critical step in determining the effectiveness of this method. Ad-

ditionally, there was little to no performance difference between the generator models

trained on each custom loss function.

The ICM generation method presented in this chapter showcases the power of us-

ing a first principles design approach to integrate ML with existing signal processing

algorithms. It has the potential to significantly reduce sample support requirements for

adaptive detection algorithms. It also directly produces the ICM from data rather then

approximating and inverting the CCM. This would make adaptive detection algorithms

significantly faster and more reliable. Early testing has demonstrated that the gener-

ative ML model can learn the underlying features associated with clutter covariance

and use relatively few support samples to generate highly accurate approximations of

the ICMs used in adaptive filtering. It also proved that this method can be effectively

integrated into existing adaptive detection algorithms, allowing operation in low sam-

ple support scenarios without negatively impacting performance. Considerable work

still need to be done to fully characterize this method. Testing needs to be performed

using higher-fidelity simulations and real-world radar data. Testing should also be

conducted to evaluate how well this approach can be trained to distinguish between

different clutter distributions (K, Pareto, Weibull, etc.). Additionally, the run-time and

computational requirements need to be examined for different sizes of input and out-

put matrices. Finally, performance comparisons should be conducted with a broader

range of state-of-the-art CCM estimation methods.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Work

This dissertation explores a challenging problem in modern radar: how can ML

best be utilized to improve system performance? RSP has strict performance require-

ments that are commonly viewed as antithetical to the approximate and sometimes

unpredictable nature of ML models. However, when properly designed and imple-

mented, ML methods offer flexibility that may allow radar systems to maintain per-

formance in traditionally challenging scenarios.

In Chapter 1, the problem of integrating ML with RSP was introduced. Issues re-

lated to historic ML approaches in radar were discussed. Additionally, the proposed

first principles design approach and integration of ML with RSP algorithms was pre-

sented. A summary of the contributions in this work was also presented.

Chapter 2 provided an overview of ML concepts used in this work. This began

with a discussion of the different types of learning, with particular attention paid to

supervised learning concepts. Neural networks were introduced, followed by discus-

sions of attention mechanisms and generative models. Finally, this chapter provided
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an overview of ML interpretability, explainability, causality, and genetic algorithms.

Radar concepts relevant to the research presented in this dissertation are introduced

in Chapter 3. This chapter focused heavily on adaptive detection, starting with a dis-

cussion of hypothesis testing and the Neyman-Pearson lemma. This was followed by

an overview of the radar detection problem space including definitions of target signal

returns and interference. Common interference models were then described, focusing

on the family of distributions called SIRVs. A survey of adaptive detectors and co-

variance estimation methods was discussed. Finally, an overview of the Kalman filter

used in navigation and tracking was given.

Chapter 4 presented the design and early implementation of SEDA. This architec-

ture provided a framework for the development of explainable ML systems through the

integration of ML models, non-ML algorithms, and attention elements. Verification

testing and early characterization of SEDA were performed using simple, well-defined

datasets including MNIST.

A ML-based method for removing sensor measurement drift in navigation and

tracking systems was described in Chapter 5. This discussion began by describing the

issue of sensor drift and the motion models used for simulating training and testing

data in this work. A reframing of the problem as counterfactual evaluation then pro-

vided. An initial design of the proposed method using a combination of the NSGA-II

and an LSTM was discussed next, along the testing used to characterized it. Finally, an

updated design and charaterization testing were provided. This updated design used

the EKF in conjunction with the ML elements to improve performance.

In Chapter 6, a meta-cognitive adaptive detection algorithm was presented. It in-

tegrated an orchestrated, multi-layered ML system with Kelly’s Gaussian GLRT. This
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produced a ML-enhanced detector that could maintain CFAR-like across interference

distributions and could be easily retrained for additional interference models. The

proposed design was presented, along with the clutter models used in simulation for

training and testing, the data analysis used in the design of the detector, and an initial

implementation. Testing and ROC analysis of the implemented detector on a range of

clutter distributions was then described. Further testing was presented characterizing

the performance of the ML-enhanced detection algorithm as a number of system and

clutter distribution parameters were varied to evaluate how well the proposed method

generalizes.

Finally, Chapter 7 described a ML method for reducing sample support require-

ments in covariance inversion-based adaptive detectors. This method used genera-

tive models trained to directly generate inverse clutter covariance matrices based on

a limited set of support samples. This chapter began with a discussion of the clutter

covariance models used for training and testing the system. An initial design using a

GAN structure was then described. This initial design was integrated with the GLRT

to evaluate its impact on the detector’s performance. Tesing of that design on Gaus-

sian clutter was described next. Lastly, an updated design was presented that used a

generative Unet architecture trained on two custom loss functions developed for this

work.

8.2 Conclusions

This dissertation presents a design approach to developing ML-enhanced RSP al-

gorithms that are more robust and adaptable to changing scenarios. It also provides a

set of these algorithms for use in adaptive detection, tracking, and navigation. Es-
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tablished radar signal processing algorithms used today, like the GLRT and EKF,

have been derived under key assumptions about the environment and targets being

observed. They maintain near optimal performance when these assumption hold, but

experience severe performance degradation when they are violated.

ML models can be used to mitigate that performance degradation. However, much

of the historic research into applications of ML to radar has focused on using large,

singular models with lots of data to replace existing algorithms. This has led to strong

push-back the radar community due to the poorly understood and often unrepeatable

behaviors present in large scale ML models. The design approach presented here

addresses this issue by using a combination of domain expertise, an understanding of

the first principles physics at play in radar, and basic engineering design principles

to integrate ML elements directly into existing RSP algorithms. The resulting ML-

enhanced algorithms can maintain performance across a wider range of scenarios with

minimal loss of performance.

A ML architecture for explainability was presented. This architecture allowed for

the simultaneous generation of actions and corresponding explanations in a human

readable format. This architecture also allowed for the seamless integration of ML

models with non-ML algorithms. It was initially demonstrated on several simple, well

understood datasets and has since been applied to data fusion for tracking and com-

puter vision problems. Its development provides a methodology for logically breaking

down complex problems and orchestrating ML-enhanced systems to solve them.

A method for reducing measurement drift errors in navigation and tracking sys-

tems using counterfactual evaluation was presented. It was demonstrated that this

method not only reduced the drift error, but that it produced more stable trajectories
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when doing so than the EKF. Importantly, the best performance was achieved when

the EKF was directly integrated as a preprocessing step for the proposed counterfac-

tual method. This provided supporting evidence for the claim that well designed ML

techniques can be used in conjunction with existing methods to improve overall per-

formance. It also provided clear methods for evaluating the performance impacts of

the ML components by using the unmodified exiting methods as a baseline for com-

parison. However, the nature of the genetic algorithm meant that the results were not

perfectly repeatable, with a slightly different track being produced each time the same

data was run though the system. Additionally, the MOGA added significant computa-

tional overhead compared with the EKF.

A meta-cognitive adaptive detection algorithm was presented. This algorithm used

two stages of ML to dynamically set thresholds for existing adaptive detectors (like the

GLRT) based on the distribution of interference present in the scenario. The lower-

level ML consisted of multiple models trained to set thresholds within a particular

distribution category. The higher-level model was trained to classify distribution cat-

egories from support samples and select the corresponding thresholding agent. The

distribution categories were defined by the detector threshold characteristics. Testing

and characterization of this method was done using the Gaussian GLRT. It was found

that this method allowed the adaptive detector to maintain CFAR-like behavior across

a wide range of distributions with minimal impact to the probability of detection. It

was also found that there was no observable performance impact to the GLRT when

the clutter was Gaussian. The primary limitation of the proposed method was in its

intensive design and training process.

Finally, this work provided a method for reducing the sample support requirements

of covariance inversion-based adaptive detectors using generative ML. A generative
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model was trained on a limited set of support samples to identify the correlation infor-

mation of the interference and directly produce ICMs to be used in whitening filters.

Both GANs and generative Unets were examined, and two custom loss functions were

developed for training the generative model. The generative model was directly in-

tegrated with adaptive detection algorithms to evaluate its performance impact. It

was found that this method could reduce support sample requirements by at least half

while providing modest performance improvements to both clutter rejection and ROC

behavior. Additionally, it removed the need for CCM inversion, which is a computa-

tionally costly operation.

Using the design approach presented here allows one to take advantage of the

benefits of both traditional signal processing techniques and ML. It also serves as

an excellent intermediate step to begin integrating ML capabilities into new fields.

Breaking down challenging problems and identifying areas where ML can be applied

in a targeted fashion alongside established methods helps to provide theoretical basis

for its use. It also limits the potential for undesirable behaviors and improves user trust

in the ML elements. If the integration is successful, and if it makes sense to do so, the

ML elements can be expanded to take on more operations. Such an iterative approach

minimizes the potential risk of deploying ML and serves to improve the overall design

of any tools using it.

8.3 Future Work

RSP and ML are both vast topics, and there are various open areas of research into

how they might be better integrated. Considerable work remains to be done to develop

more quantifiable metrics for measuring the quality and consistency of ML models
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applied to the radar domain. Measures of user trust in ML-enhanced algorithms should

also be defined and evaluated. These are both key enablers to the development of ML-

enhanced radar systems.

The development of a MOGA-based algorithms for measurement drift mitigation

highlighted that many ML methods lack repeatability, which may introduce consider-

able risk to radar systems. Future work in this field should focus on the development

of methods to characterize the potential variation in outputs from ML-enhanced radar

systems when repeatedly presented with identical input data. This approach also took

considerably longer to run than the EKF it was compared against, largely due to the

use of the genetic algorithm. Work should be done to explore alternative methods to

the MOGA for generating and evaluating tracks. Of particular interest is the genera-

tive transformer, whose latent space can be trained to recognize latent features from

multiple modalities and along many dimensions. This could allow them to be trained

to achieve similar performance without the computational overhead and lack of re-

peatability present in the current system. Additionally, new objective functions should

be developed using alternative data types.

The design, development, and modification of a meta-cognitive detector like the

one presented in this work requires considerable expertise in both detection and ML.

It also requires considerable time to evaluate and identify which regions within a set

of distributions are statistically unique. Work should be done to automate this process

so that custom detection algorithms can be implemented rapidly. Considerable work

should also be done to characterize performance of the proposed method on a broader

range of clutter distributions. Further, work should be done to explore how well the

method generalizes to different radar systems and parameter configurations.
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In the future, the proposed U-Net generator should be integrated with various adap-

tive detection algorithms in order to fully characterize its performance impacts. Ad-

ditionally, this method should be evaluated with different interference distributions to

see how well it identifies covariance properties across distributions. It should also

be evaluated with variably-sized input-output pairings to see how well it generalizes

across data sizes. Both the meta-cognitive detection algorithm and the ICM generation

method should be evaluated on high-fidelity simulations and using real-world data. It

is also worth characterizing the computational requirements of these approaches for

different input data sizes.
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tion of channel covariance in vehicular millimeter wave systems,” in 2018 52nd
Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 1572–
1576.

[33] P. Isola, J. Zhu, T. Zhou, and A. Efros, “Image-to-image translation with con-
ditional adversarial networks,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer
Society, jul 2017, pp. 5967–5976.

[34] T. Miyato and M. Koyama, “cgans with projection discriminator,” 2018.

[35] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “San-
ity checks for saliency maps,” in Advances in Neural Information Processing
Systems, vol. 31. Curran Associates, Inc., 2018.

311



[36] B. Goodman and S. Flaxman, “European union regulations on algorithmic
decision-making and a “right to explanation”,” AI Magazine, vol. 38, no. 3,
pp. 50–57, Oct. 2017.

[37] M. Fisher, V. Mascardi, K. Y. Rozier, B.-H. Schlingloff, M. Winikoff, and
N. Yorke-Smith, “Towards a framework for certification of reliable autonomous
systems,” Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, 2020.

[38] S. Mohseni, M. Pitale, V. Singh, and Z. Wang, “Practical solutions for machine
learning safety in autonomous vehicles,” 2019.

[39] J.-X. Mi, A.-D. Li, and L.-F. Zhou, “Review study of interpretation methods
for future interpretable machine learning,” IEEE Access, vol. 8, pp. 191 969–
191 985, 2020.

[40] H. Zhang, Q. Zhang, S. Shao, T. Niu, and X. Yang, “Attention-based LSTM
network for rotatory machine remaining useful life prediction,” IEEE Access,
vol. 8, pp. 132 188–132 199, 2020.

[41] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres, “Practi-
cal verification of decision-making in agent-based autonomous systems,” Auto-
mated Software Engineering, vol. 23, no. 3, pp. 305–359, 2016.

[42] P. Bremner, L. A. Dennis, M. Fisher, and A. F. Winfield, “On proactive, trans-
parent, and verifiable ethical reasoning for robots,” Proceedings of the IEEE,
vol. 107, no. 3, pp. 541–561, 2019.

[43] J. Pearl, “An introduction to causal inference,” The International Journal of
Biostatistics, vol. 6(2), no. 7, 2010.

[44] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and
Y. Bengio, “Toward causal representation learning,” Proceedings of the IEEE,
vol. 109, no. 5, pp. 612–634, 2021.

[45] J. Pearl, M. Glymour, and N. Jewell, Causal Inference in Statistics: A Primer.
Wiley, 2016.

[46] J. H. Brenas and A. Shaban-Nejad, “Health intervention evaluation using se-
mantic explainability and causal reasoning,” IEEE Access, vol. 8, pp. 9942–
9952, 2020.

[47] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Compu-
tation, vol. 6, no. 2, pp. 182–197, 2002.

[48] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance comparison

312



of NSGA-II and NSGA-III on various many-objective test problems,” in 2016
IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 3045–3052.

[49] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: Solving
problems with box constraints,” IEEE Transactions on Evolutionary Compu-
tation, vol. 18, no. 4, pp. 577–601, 2014.

[50] M. A. Richards, Fundamentals of radar signal processing. Tata McGraw-Hill
Education, 2005.

[51] J. Ward, “Space time adaptive processing for airborne radar,” Massachusetts
Institute of Technology - Lincoln Laboratory, Tech. Rep., 1994.

[52] I. Reed, J. Mallett, and L. Brennan, “Rapid convergence rate in adaptive arrays,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 6,
pp. 853–863, 1974.

[53] E. Conte, M. Lops, and G. Ricci, “Asymptotically optimum radar detection in
compound-gaussian clutter,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 31, no. 2, pp. 617–625, 1995.

[54] F. Gini and M. Greco, “Suboptimum approach to adaptive coherent radar de-
tection in compound-gaussian clutter,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 35, no. 3, pp. 1095–1104, 1999.

[55] P. Lombardo, D. Pastina, and T. Bucciarelli, “Adaptive polarimetric target de-
tection with coherent radar. ii. detection against non-gaussian background,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp.
1207–1220, 2001.

[56] D. Pastina, P. Lombardo, and T. Bucciarelli, “Adaptive polarimetric target de-
tection with coherent radar. i. detection against gaussian background,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1194–
1206, 2001.

[57] F. Gini and A. Farina, “Vector subspace detection in compound-gaussian clutter.
part i: survey and new results,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 4, pp. 1295–1311, 2002.

[58] F. Gini, A. Farina, and M. Montanari, “Vector subspace detection in compound-
gaussian clutter. part ii: performance analysis,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 38, no. 4, pp. 1312–1323, 2002.

[59] P. Wang, K. J. Sohn, H. Li, and B. Himed, “Performance evaluation of paramet-
ric rao and glrt detectors with kassper and bistatic data,” in 2008 IEEE Radar
Conference, 2008, pp. 1–6.

313



[60] K. J. Sangston, F. Gini, and M. S. Greco, “Coherent radar target detection in
heavy-tailed compound-gaussian clutter,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 48, no. 1, pp. 64–77, 2012.

[61] D. Ciuonzo, A. De Maio, and D. Orlando, “On the statistical invariance for
adaptive radar detection in partially homogeneous disturbance plus structured
interference,” IEEE Transactions on Signal Processing, vol. 65, no. 5, pp.
1222–1234, 2017.

[62] D. P. Zilz and M. R. Bell, “Statistical modeling of wireless communications
interference and its effects on adaptive-threshold radar detection,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 890–911, Apr.
2018.

[63] N. Nartasilpa, S. Shahi, A. Salim, D. Tuninetti, N. Devroye, D. Erricolo, D. P.
Zilz, and M. R. Bell, “Let’s share commrad: Co-existing communications and
radar systems,” in Proc. IEEE Radar Conf. (RadarConf18), Apr. 2018, pp.
1278–1283.

[64] J. G. Metcalf and S. Flandermeyer, “On spectrum sharing for pulse-doppler
radar and ofdm communications,” in 2020 IEEE Radar Conference (Radar-
Conf20), 2020, pp. 1–6.

[65] K. Sangston and K. Gerlach, “Coherent detection of radar targets in a non-
gaussian background,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 30, no. 2, pp. 330–340, 1994.

[66] M. Rangaswamy, D. Weiner, and A. Ozturk, “Computer generation of corre-
lated non-gaussian radar clutter,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 31, no. 1, pp. 106–116, 1995.

[67] A. Balleri, A. Nehorai, and J. Wang, “Maximum likelihood estimation for
compound-gaussian clutter with inverse gamma texture,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 43, no. 2, pp. 775–779, 2007.

[68] N. Pulsone and C. Rader, “Adaptive beamformer orthogonal rejection test,”
IEEE Transactions on Signal Processing, vol. 49, no. 3, pp. 521–529, 2001.

[69] J. Liu, Z.-J. Zhang, P.-L. Shui, and H. Liu, “Exact performance analysis of an
adaptive subspace detector,” IEEE Transactions on Signal Processing, vol. 60,
no. 9, pp. 4945–4950, 2012.

[70] C. H. Gierul, “On the receiver operating characteristics of adaptive radar detec-
tors,” University of Zurich, Department of Informatics, Tech. Rep., 2013.

[71] D. Ciuonzo, A. De Maio, and D. Orlando, “A unifying framework for adaptive
radar detection in homogeneous plus structured interference— part i: On the

314



maximal invariant statistic,” IEEE Transactions on Signal Processing, vol. 64,
no. 11, pp. 2894–2906, 2016.

[72] D. Ciuonzo, A. De Maio, and D. Orlando, “A unifying framework for adaptive
radar detection in homogeneous plus structured interference— part ii: Detectors
design,” IEEE Transactions on Signal Processing, vol. 64, no. 11, pp. 2907–
2919, 2016.

[73] W. Liu, Y.-L. Wang, J. Liu, L. Huang, and C. Hao, “Performance analysis of
adaptive detectors for point targets in subspace interference and gaussian noise,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 1, pp.
429–441, 2018.

[74] E. Kelly, “Performance of an adaptive detection algorithm; rejection of un-
wanted signals,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 25, no. 2, pp. 122–133, 1989.

[75] E. Conte and G. Ricci, “Sensitivity study of glrt detection in compound-
gaussian clutter,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 34, no. 1, pp. 308–316, 1998.

[76] P.-J. Chung and K. M. Wong, “A full generalized likelihood ratio test for source
detection,” in 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2012, pp. 2445–2448.

[77] P. Wang, H. Li, and B. Himed, “A simplified parametric glrt for stap detection,”
in 2009 IEEE Radar Conference, 2009, pp. 1–5.

[78] D. P. Bruyere and N. A. Goodman, “Adaptive detection and diversity order in
multistatic radar,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 44, no. 4, pp. 1615–1623, 2008.

[79] K. J. Sohn, H. Li, and B. Himed, “Parametric glrt for multichannel adaptive
signal detection,” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp.
5351–5360, 2007.

[80] L. Scharf and L. McWhorter, “Adaptive matched subspace detectors and adap-
tive coherence estimators,” in Conference Record of The Thirtieth Asilomar
Conference on Signals, Systems and Computers, 1996, pp. 1114–1117 vol.2.

[81] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A cfar adaptive matched fil-
ter detector,” IEEE Transactions on Aerospace and Electronic Systems, vol. 28,
no. 1, pp. 208–216, 1992.

[82] J. Roman, M. Rangaswamy, D. Davis, Q. Zhang, B. Himed, and J. Michels,
“Parametric adaptive matched filter for airborne radar applications,” IEEE

315



Transactions on Aerospace and Electronic Systems, vol. 36, no. 2, pp. 677–
692, 2000.

[83] A. De Maio, “A new derivation of the adaptive matched filter,” IEEE Signal
Processing Letters, vol. 11, no. 10, pp. 792–793, 2004.

[84] J. Liu, H. Li, and B. Himed, “Threshold setting for adaptive matched filter and
adaptive coherence estimator,” IEEE Signal Processing Letters, vol. 22, no. 1,
pp. 11–15, 2015.

[85] A. De Maio, “Rao test for adaptive detection in gaussian interference with un-
known covariance matrix,” IEEE Transactions on Signal Processing, vol. 55,
no. 7, pp. 3577–3584, 2007.

[86] K. J. Sohn, H. Li, and B. Himed, “Parametric rao test for multichannel adap-
tive signal detection,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 921–933, 2007.

[87] A. De Maio and S. Iommelli, “Coincidence of the rao test, wald test, and glrt in
partially homogeneous environment,” IEEE Signal Processing Letters, vol. 15,
pp. 385–388, 2008.

[88] S. Kraut and L. Scharf, “The cfar adaptive subspace detector is a scale-invariant
glrt,” IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2538–2541,
1999.

[89] S. Kraut and J. Krolik, “Application of maximal invariance to the ace detection
problem,” in Conference Record of the Thirty-Fourth Asilomar Conference on
Signals, Systems and Computers (Cat. No.00CH37154), vol. 1, 2000, pp. 417–
420 vol.1.

[90] S. Kraut, L. Scharf, and R. Butler, “The adaptive coherence estimator: a uni-
formly most-powerful-invariant adaptive detection statistic,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 2, pp. 427–438, 2005.

[91] J. Liu, Z.-J. Zhang, Y. Yang, and H. Liu, “A cfar adaptive subspace detector
for first-order or second-order gaussian signals based on a single observation,”
IEEE Transactions on Signal Processing, vol. 59, no. 11, pp. 5126–5140, 2011.

[92] Y. Gao, G. Liao, S. Zhu, X. Zhang, and D. Yang, “Persymmetric adaptive detec-
tors in homogeneous and partially homogeneous environments,” IEEE Trans-
actions on Signal Processing, vol. 62, no. 2, pp. 331–342, 2014.

[93] F. Bandiera, O. Besson, and G. Ricci, “An abort-like detector with improved
mismatched signals rejection capabilities,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 1, pp. 14–25, 2008.

316



[94] C. Richmond, “Performance of a class of adaptive detection algorithms in non-
homogeneous environments,” IEEE Transactions on Signal Processing, vol. 48,
no. 5, pp. 1248–1262, 2000.

[95] N. Pulsone and M. Zatman, “A computationally efficient two-step implemen-
tation of the glrt,” IEEE Transactions on Signal Processing, vol. 48, no. 3, pp.
609–616, 2000.

[96] F. Bandiera, O. Besson, D. Orlando, and G. Ricci, “An improved adaptive side-
lobe blanker,” IEEE Transactions on Signal Processing, vol. 56, no. 9, pp.
4152–4161, 2008.

[97] M. Rangaswamy, P. Chakravarthi, D. Weiner, L. Cai, and H. Wang, “Signal
detection in correlated gaussian and non-gaussian radar clutter,” KAMAN SCI-
ENCES CORP UTICA NY, Tech. Rep., 1993.

[98] A. Wiesel, “Unified framework to regularized covariance estimation in scaled
gaussian models,” IEEE Transactions on Signal Processing, vol. 60, no. 1, pp.
29–38, 2012.

[99] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp.
67–94, 1996.
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