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ABSTRACT 

Urbanization, a prominent phenomenon since the industrial revolution, has led to significant 

changes in land use and land cover (LULC), resulting in the Urban Heat Island (UHI) effect. This 

effect, characterized by higher temperatures in urban areas compared to their rural surroundings, 

is influenced by the use of heat-absorbing materials, human activities, and urban geometry. The 

resulting high temperature affects urban residents with implications for public health, greater 

energy consumption, and change in local climatology. Understanding the spatial variations in land 

surface temperature (LST) and the thermal effects of heterogeneous urban forms is essential for 

developing mitigation strategies to enhance the urban thermal environment. 

A modern method introduced in the past decade in urban climatology is the concept of the local 

climate zone (LCZ). This approach disaggregates the heterogeneity in urban settings and classifies 

surfaces into various built and natural land cover types, which in turn helps to interpret the patterns 

of LST in the local surrounding area. Previous studies have shown that different urban structures, 

such as residential areas, commercial zones, and industrial regions, exhibit varying surface 

temperature patterns. In developing countries, urban planning often results in heterogeneous urban 

landscapes with mixed land uses, further complicating the UHI dynamics. This study investigates 

the relationship between various LCZs and their LSTs in the cities of Ahmedabad and Surat in the 

state of Gujarat in India. The LCZ map used in this study was created from a fusion of two data 

sets: 1) a freely available 100m global LCZ map, and 2) a 30m land use land cover (LULC) map 

developed using Landsat-8 data. 

A few studies have explored the diurnal variations of LST over urban areas, mainly due to the 

revisit cycles of polar orbiting satellite (e.g., Landsat Series, Terra, Aqua). However, in this study, 

we leverage LST data from The National Aeronautics and Space Administration's (NASA) latest 

Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) that 

provides LST at 70m resolution at different diurnal periods. Then we studied how LST changes 

within different LCZs at various times of day to understand the thermal effects of urban landscapes. 

The results reveal distinct seasonal and diurnal variations in LST. During winter, Surat exhibited 

consistently higher temperatures than Ahmedabad, with differences averaging around 5°C. In 

summer, temperatures rise significantly in both cities, peaking at 40°C in Surat and 45°C in 
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Ahmedabad. Several LST hotspots were identified, particularly in industrial areas and densely 

built-up zones. For instance, an international airport in Ahmedabad showed temperatures up to 

52°C on summer afternoons, significantly higher than the surrounding areas. 

Distinct thermal patterns were observed across LCZs during different diurnal periods. Compact 

midrise areas were the hottest, while open lowrise areas were cooler during both seasons and across 

all diurnal cycles in both cities. Large lowrise areas were typically hotter than compact lowrise 

areas in the mornings and afternoons. However, large lowrise areas cooled faster, making them 

cooler than compact lowrise areas during the evenings and nights. In both cities, compact midrise 

and compact lowrise areas exhibited the highest temperatures in the evening and nighttime. 

The study also analyzed the diurnal variations in LST gradients from the center to the edges of the 

city, revealing that during summer mornings, there was a negative correlation between LST and 

distance from the city center. This correlation weakened in the afternoon but strengthened again in 

the evenings and nights, particularly in Ahmedabad. Both cities showed stronger negative 

correlations in the evenings and nights, indicating a pronounced UHI effect while in the afternoon 

there was no correlation as the solar radiation was heating the surface uniformly. 

This study emphasizes the value of using the new ECOSTRESS LST products for analyzing 

diurnal thermal variations with fine spatial resolution. These findings offer an understanding of the 

impact of various urban structures on local climate aiding city planners and developers in 

implementing informed heat mitigation strategies. However, the use of ECOSTRESS data comes 

with limitations, such as the day and night LST data not being from the same day, causing 

inaccuracies and uncertainties. Additionally, cloud cover can result in missing grid cells, and 

variations in viewing angles due to the ISS's orbit can affect the accuracy and consistency of LST 

measurements. 
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1. INTRODUCTION 

This chapter introduces the background and justification for ongoing research in the field of 

Urban Heat Island (UHI) phenomenon and its relationship with various land surface types that 

form localized climate zones. Here we identify the research problem and describe research 

objectives. 

1.1. Background and Rationale 

After the industrial revolution in the late 18th century, and by the mid-19th century, 

urbanization accelerated in Europe and North America. The trend continued into the 20th 

century, especially after World War II, when urbanization started spreading to other parts of 

the world, including Asia, Latin America and Africa (United Nations., 2019). A UN report 

(United Nations., 2016) estimates that currently, 50% of the world population lives in cities 

and it is projected to be 66% by 2050. The urban population growth rate averaged 

approximately 2.5% per year globally between 1950 and 2000. Some regions, particularly in 

developing countries, have experienced even higher rates. For example, the urban population 

in Africa grew at an average annual rate of 3.5% from 1950 to 2000 and continues to grow 

rapidly. Between 1980 and 2010, China's urban population grew at an average annual rate of 

approximately 3.9%. India has also experienced an increase in its urban population. Between 

1950 and 2000, India's urban population growth rate averaged around 3.1% per year (United 

Nations., 2019). 

Migration from rural areas to cities is driven by several key factors. Economic opportunities 

in urban areas, such as higher wages and diverse job prospects, attract individuals seeking 

better livelihoods. Urban centers typically offer improved access to education, healthcare, and 

social services, enhancing quality of life. Additionally, cities provide better infrastructure and 

amenities, including transportation, housing, and entertainment (United Nations., 2016). 

Even though urbanization may be associated with growth in the human development index1 

(UN-Habitat, 2011), it comes with its own challenges and complexities that may impact the 

environment and communities living in it. With more human population concentration there 

 
1 The Human Development Index (HDI) is a composite statistic used by the United Nations to measure and 
rank countries' levels of social and economic development. 
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is always an increase in infrastructure buildup leading to alteration in land use and land cover 

(LULC), where natural land surfaces are converted to impervious surfaces altering the 

physical properties of the surface (Argüeso et al., 2015). This urbanization and population 

growth, when combined with climate change impact, is a recipe to put cities’ social and 

ecological environments at substantial risk. For example, rapid urbanization is responsible for 

the degradation of ecosystems, increase in heat waves, irregular precipitation, urban flash 

floods, water scarcity, and degraded air quality (Malik et al., 2020).  

One significant impact of urbanization is an increase in surface temperature. According to the 

IPCC (Intergovernmental Panel on Climate Change) report, global surface temperatures will 

continue rising throughout the 21st century (AR5 Climate Change 2014, n.d.). This change 

will result in more heatwaves that increase potential risk to public health. Heatwaves can lead 

to heat-related illnesses such as heat exhaustion and heatstroke, and they can worsen 

preexisting health conditions, particularly in vulnerable populations like the elderly and 

children. Heatwaves also lead to an increase in energy consumption patterns by driving up the 

demand for air conditioning and cooling systems, resulting in higher electricity use. This surge 

in energy demand puts additional stress on power grids and can lead to higher greenhouse gas 

emissions if the energy is sourced from fossil fuels. Thus, as global temperatures rise, 

heatwaves become more common and severe, creating a feedback loop that further accelerates 

climate change (Clinton & Gong, 2013; L. Lu et al., 2020).  

In the study of various temperature patterns and heatwaves in cities, an important & 

widespread phenomenon is the urban heat island (UHI). This effect can be defined as 

anomalies in temperatures between urban areas and their rural surroundings, where 

temperatures within the urban areas are higher than in the surrounding rural and natural 

landscapes (Oke, 1982; Voogt & Oke, 2003).  

Several physical processes contribute to the UHI effect. Absorption and retention of heat from 

heat-absorbing materials such as concrete and asphalt over urban surfaces are some of the 

major factors contributing to the UHI effect. These materials retain heat absorbed from solar 

radiation during the day and slowly release it at night, causing urban spaces to be warmer than 

their rural counterparts (Rizwan et al., 2008). Additionally, human activities in urban areas, 

such as transportation, industrial processes, and energy consumption, release heat directly into 
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the environment. This anthropogenic heat adds to the overall temperature of the urban area. 

Further, urban surfaces and their physical features are often characterized by low albedo, 

which is the measure of how much sunlight is reflected by a surface (D. Zhou et al., 2019). 

Darker surfaces, like asphalt and buildings, have low albedo and absorb more solar radiation, 

contributing to higher temperatures. Additionally, there is little vegetation to cool these 

surfaces. Although vegetation has a low albedo, it cools surfaces by dissipating energy 

through the process of evapotranspiration (Zölch et al., 2016). Also, tall buildings and other 

tall urban structures disrupt the natural flow of air leading to lower ventilation and trapping 

hot air within the urban boundaries (Yow, 2007). 

Oke (Oke, T.R. et al., 1976, 1982) classified UHI into two categories: air and surface UHI. 

Air is considered the canopy urban heat island (CUHI), and the land surface is considered the 

surface urban heat island (SUHI). The canopy here represents the layer of air a few meters 

above ground (usually about 2m) therefore, CUHI relates to temperature differences in the 

canopy layer of urban areas compared to the canopy layer of rural surroundings. In contrast, 

SUHI refers to the temperature difference of the land surface temperature or skin temperature, 

between urban areas and the surrounding rural areas. CUHI is measured using in-situ 

temperature sensors typically mounted on a fixed platform or sometimes a moving vehicle 

that gives a reading of air temperature, whereas SUHI is measured by calculating the 

difference in radiant temperature captured by thermal remote sensors. The radiant temperature 

is sensitive to surface moisture and land surface conditions, exhibiting a high level of variation 

even across small spatial and temporal scales (Kustas & Anderson, 2009). Although the in-

situ data can provide accurate and high-temporal surface temperature information, these 

methods of observation are limited in numbers, making them inefficient for mapping UHI 

across a large area (Firozjaei et al., 2018; Han et al., 2020). Hence, it is necessary to utilize 

remote sensing data, which are spatially continuous and measured over large areas, to examine 

the detailed spatiotemporal patterns  of the SUHI (Weng et al., 2019; D. Zhou et al., 2019). 

This study we will exclusively focus on thermal remote sensing data and will not incorporate 

in-situ air temperature data. 

Remote sensing data are also extensively used for LULC mapping/change which allows the 

study of urban infrastructure, population growth, and other factors that have significant effects 
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on UHI characteristics. For instance, in a study by Bokaie (Bokaie et al., 2016), Landsat 

Thematic Mapper was employed to map the UHI of Tehran for the year 2010. They examined 

the connection between the LULC map and the Normalized Difference Vegetation Index 

(NDVI). Their findings revealed an association between LST and LULC classes. Additionally, 

they observed a negative correlation between LST and NDVI. If details about the urban 

structure types can be discriminated into various urban subclasses, such as densely built 

residential areas, sparse residential areas, industrial zones, roads, vegetation, and water 

bodies, it can enhance our understanding of UHIs and their effects. Hence, a better 

understanding of urban structure types, including their physical and functional characteristics, 

can help identify the factors contributing to variation in surface temperatures which in turn 

provides valuable insights into the UHI phenomenon. 

1.2. Research Problem and Significance of the Study 

Stewart and Oke (Stewart & Oke, 2012) introduced the novel concept called Local Climate 

Zone (LCZ) which serves several purposes in urban climatology and urban planning. For 

example, LCZs are used for urban climate classifications that help researchers and planners 

understand the unique climate conditions. LCZs also serve as input parameters for urban 

microclimate models, which simulate the complex interactions between urban form, land use, 

and meteorological conditions. In this study, we utilize LCZs to examine the temperature 

patterns within the urban areas by categorizing the surface form into various LCZs. Previous 

studies have mostly explored the sub-categorically classified urban structure types and their 

effect on LST distribution across cities from developed countries (X. Zhou et al., 2020; 

Středová et al., 2021; Wei & Sobrino, 2024). Unlike cities in developed countries, developing 

countries’ urban characteristics are quite different in terms of urban planning. For instance, 

urban planning in developing countries is usually heterogeneous with mixtures of 

ununiformly distributed commercial, residential, and industrial areas within the city boundary. 

This pattern results from rapid urbanization and loosely regulated land use policies, creating 

diverse and mixed-use urban environments (Sun et al., 2016). Therefore, it is equally 

significant to study the influence of such composition of land surface patterns in developing 

countries that impact local LST patterns. 
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SUHI has come into focus only in the last two to three decades with the use of satellite remote 

sensing and our knowledge of this phenomenon is still evolving. However, there are some 

limitations imposed by currently available data sources. The polar-orbiting satellite data on 

SUHI is limited by its repeat cycle, while geostationary satellites cannot offer a high spatial 

resolution. Therefore, this tradeoff restricts satellite observations, making it challenging to 

observe the diurnal UHI cycle at a finer spatial scale. Landsat is a common source of LST 

data for UHI observation and is a sun-synchronous satellite with observations at around 10:30 

am in the morning at a native resolution of 100m and a repeat cycle of 16 days. Another 

common source of remotely sensed LST data is MODIS, with its Terra and Aqua observations 

providing daily data at 10:30 a.m. and 10:30 p.m., and 1:30 a.m. and 1:30 p.m., respectively 

at 1km resolution with revisit time of 1-2 days. On the other hand, Geostationary Operational 

Environmental Satellites (GOES) provide thermal data at a spatial resolution of 2km with 

observations every 15 minutes. Numerous UHI studies have utilized single all-clear sky 

images from Landsat or coarse-resolution data from MODIS (Peres et al., 2018; Ferreira & 

Duarte, 2019; Gohain et al., 2021; Z. Zhao et al., 2021). However, these approaches often fall 

short in distinguishing the fine details of various surface types due to their limited spatial 

resolution (Hulley et al., 2019). Landsat's imagery, while clearer, captures less temporal 

variability, and MODIS data, despite frequent coverage, lacks the necessary granularity. 

Consequently, these methods are insufficient for accurately mapping the heterogeneous urban 

surfaces that contribute to UHI effects. On the other hand, GOES satellite's temporal 

resolution is 15 minutes, but its relatively low spatial resolution of 2 km limits the number of 

local-scale studies on SUHI (Chang et al., 2022). 

Studies conducted using Landsat overlook the diurnal pattern while those using MODIS fails 

to provide the required granular details of the UHI, resulting in a significant gap in 

understanding the fluctuations in UHI characteristics throughout the day, including morning, 

afternoon, evening, and night. It is essential to investigate these variations across all urban 

LCZ to recognize the underlying causes and effects of temperature fluctuations associated 

with different urban surface types. To better understand the dynamics of urban heat and its 

implications for urban environments, it is essential to recognize that SUHI effects exhibit 

distinct patterns during the day and night. Therefore, we need to analyze how LCZ effects 

vary at various times of the day to capture these variations comprehensively. 
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To the best of our knowledge, no detailed study has been conducted over the study area that 

focuses on LCZs in Ahmedabad and Surat. While there are numerous papers on UHI in Indian 

cities including Ahmedabad and Surat (Gohain et al., 2021; Siddiqui et al., 2021; Shahfahad 

et al., 2021, 2022), our research is novel in two key aspects: (1) analyzing urban classes based 

on LCZs scheme, and (2) leveraging ECOSTRESS data to obtain high-resolution LST 

measurements across four diurnal cycle over the LCZs. 

Here, we utilize the capabilities of a relatively new experimental sensor, ECOSTRESS, which 

was launched in 2018 and is stationed onboard the International Space Station (ISS) 

(discussed in Chapter 4, Data and Method). What sets ECOSTRESS apart is its distinctive 

orbital path, enabling it to revisit locations every three days. Moreover, its orbit permits image 

capture at any time of day or night, acquiring images across various time periods and allowing 

coverage of different temporal conditions. Another advantage of this dataset is its native 

resolution of 70 meters which is better than any freely available LST dataset (Hook et al., 

2020; Hulley et al., 2022). 

Given the preceding information, studies correlating urban surface type and LST in the 

context of developing countries with such a moderate resolution of 70m are still scarce. This 

study aims to enhance past studies and gain enhanced information about specific factors that 

contribute to higher surface temperature with spatiotemporal variability of UHI. The results 

from this study will contribute to the knowledge of LCZ in the study area, contributing 

towards obtaining practical knowledge on the cause and effect of increasing LST due to 

urbanization. Finally, this study is expected to offer valuable insights into land planning and 

urban design policies aimed at mitigating the UHI effect within the urban contexts of 

developing countries. 
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1.3. Research Objectives 

The primary objective of this study is to analyze the correlation between LST and urban 

structures using the LCZ concept. To achieve this objective and ensure accurate measurement 

and interpretation of results, the study aims to address the following four sub-objectives.  

• To map LCZs in the study area by fusing a global LCZ dataset with local land cover 

information. 

• Assess the characteristics of urban hot spots across various locations within the urban 

environment. 

• Analyze the relationship between LST and LCZs across four diurnal periods (morning, 

afternoon, evening, and night) and two seasons (winter and summer). 

• Explore the change in LST from the city center to the edge across the four diurnal 

periods and two seasons. 
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2. LITERATURE REVIEW 

Understanding the dynamics of urban LST and their associations with land cover surface class 

is essential for addressing the challenges of the UHI phenomenon. Numerous studies have 

explored the relationship between urbanization processes and the resulting changes in LST. 

Bokaie (Bokaie et al., 2016) mentions that urban LST patterns are significantly influenced by 

the type of land cover surface materials. A heterogeneous mixture of land cover materials and 

a complex biophysical process triggers a chained feedback loop that contributes to the UHI 

pattern (Clinton & Gong, 2013; L. Lu et al., 2020). This literature review aims to explore 

these dynamics, examining the several factors influencing urban heat patterns and the role of 

different urban surface classes. 

2.1. Urban heat islands and basic energy exchange concept 

UHIs are the result of replacing natural land surfaces with human-caused urban surfaces that 

result in differences in surface energy balance and eventually cause increases in urban 

temperature. According to Zhou (D. Zhou et al., 2019) urban surface energy balance can be 

represented as. 

 QI + QL + QF = QR + QL + QE + QH + QS (Graphical representation in Figure 2.1) 

Where QI = incident solar radiation, QL = incoming longwave radiation, QF = anthropogenic 

heat releases, QR = reflected solar radiation, Q L = outgoing longwave radiation, QE = latent 

heat, QH = sensible heat, QS = heat storage. In the case of thermal remote sensing, satellites 

measure the Q L to later convert it to surface temperature (Voogt & Oke, 2003). The increase 

in Q L  which represents the increase in UHI is an increase in longwave radiation influenced 

by various energy fluxes and differs between daytime and nighttime conditions. During the 

day, urban surfaces absorb solar radiation and release it as heat, contributing to elevated 

temperatures. At night, urban areas retain more heat due to the thermal properties of building 

materials and the reduced cooling effects of vegetation, resulting in higher nighttime surface 

temperatures compared to rural areas (Deilami et al., 2018). Therefore, understanding the 

dynamics of energy fluxes within urban environments is crucial for understanding the diurnal 

variations in the UHI effect and its implications for urban climate and heat management 

strategies.  
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2.2. Relationship between surface and air temperatures 

As mentioned by Nichol, (Nichol, 1994) LSTs are considered to represent a proxy indicator 

of the CUHI as there are often high correlations between LSTs and air temperature, especially 

during nighttime. However, due to the mixing of air in the above-ground atmosphere, the 

relation between them is not constantly linear. As illustrated in Figure 2.2 (US EPA, 2014), 

there is less spatial variation in air temperature compared to LST during the day, whereas a 

closer relationship between the two variables can be observed at nighttime. 

During the day, LST varies significantly across different urban and rural areas. Figure 2.2 

shows that surface temperatures are highest in downtown urban areas and industrial zones, 

where impervious surfaces like concrete and asphalt absorb and retain heat. In contrast, areas 

with water bodies, parks, and suburban regions exhibit lower surface temperatures due to 

higher albedo and cooling effects from vegetation and water. Air temperature, however, shows 

less spatial variation during the day. This is because air, unlike surfaces, mixes, and 

redistributes heat more evenly. As a result, while urban areas still experience higher air 

temperatures due to localized heating, the difference between urban and rural air temperatures 

is not as distinct as the difference in surface temperatures (US EPA, 2014). 

Figure 2.1: Energy Balance diagram for urban area, adapted from Zhou 
(D. Zhou et al. 2019). Red arrow represents energy input while blue 

represents energy departing from urban system 
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At night, the relationship between LST and air temperature becomes more aligned. The heat 

stored in urban materials during the day is gradually released, keeping higher temperatures 

for both surface and air temperatures over urban areas (W. Zhang et al., 2011). This nighttime 

heat release contributes significantly to the UHI effect. Figure 2.2 indicates that both surface 

and air temperatures in urban areas remain higher than in rural areas at night, reflecting the 

heat retention properties of urban materials (US EPA, 2014). 

 

  

Figure 2.2: Differences between surface and air temperature in an urban settlement 
(US EPA 2014) 
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2.3. Relationship between LST and Land cover/Land use 

After the introduction of remote sensing technology and the proliferation of freely available 

LST data, much research has been conducted to investigate SUHI patterns and their spatial 

variations and correlations with land surface type (Voogt & Oke, 2003). Guha (Guha et al., 

2018) used Landsat-8 data for mapping UHI in two cities in Italy where they found that about 

75% of UHI was concentrated within bare land and urban build-up areas. Chen (Y.-C. Chen 

et al., 2017), examined the diurnal variation of LST over the Taipei city in Taiwan using 

MODIS and SPOT multispectral images and found a linear increase in temperature with an 

increase in urbanization. They calculated urbanization using cell-average NDVIs & cell-based 

urbanization index with SPOT multispectral image. In another study by Peres (Peres et al., 

2018), they used a 30 year time series of SUHI data to compare it with LULC maps over Rio 

de Janeiro. They concluded that an increase of 2 degrees Celsius was associated with rapid 

urban expansion. A study conducted by Gohain (Gohain et al., 2021) in Pune, India suggested 

that the LST varied spatially over the city and underwent seasonal changes while buildup of 

urbanized land cover had higher LST. In another study in Beijing by Feng (Feng & Myint, 

2016), they analyzed the effect on LST due to neighboring land cover patterns around the 

building areas, which were categorized into low-rise, mid-rise, and high-rise buildings. They 

found that the composition of land cover features exerts a more pronounced influence on the 

LST of low-rise buildings compared to that of mid-rise and high-rise buildings. Additionally, 

the LST of low-rise buildings was significantly correlated with the types of neighboring land 

cover, particularly the presence of vegetation and pavement. The presence of nearby greenery 

led to lower LST, while extensive pavement coverage increased it. Similarly, Zhou (W. Zhou 

et al., 2011), studying the Gwynns Falls watershed in Baltimore, found that areas with a higher 

percentage of built-up structures tend to have higher LST, whereas regions with a higher 

percentage of natural vegetation mitigated the UHI effect by reducing the local temperature.  

Zhang (X. Zhang et al., 2009) investigated the influence of vegetation patch size on urban 

LST and found that larger areas with abundant green patches lowered the surface temperature. 

Well-vegetated areas can mitigate the SUHI effect through several mechanisms. Although 

they typically exhibit a low albedo, meaning they absorb a significant portion of incoming 

solar radiation, they still reduce heat absorption by the surface through processes like 
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evapotranspiration and shading. Evapotranspiration cools the air as water evaporates from the 

leaves (QE, latent heat loss in Figure 2.1), and shading reduces the amount of solar radiation 

that reaches the ground and built surfaces, thereby lowering overall temperatures (Zölch et 

al., 2016). 

2.4. Local Climate Zones (LCZs) and urban structure types 

As discussed in Section 1.2, LCZs were defined and developed by Stewart and Oke (Stewart 

& Oke, 2012) as a framework to serve multiple purposes in urban climatology and urban 

planning. In this study, we utilize the LCZ classification to categorize urban areas based on 

their physical characteristics and thermal properties. The LCZ system divides cities into 

various homogeneous urban zones, providing a localized land cover classification for urban 

climate modeling (Danylo et al., 2016). Specifically, LCZs classify urban areas into 17 distinct 

LCZs, each with unique characteristics, as illustrated and defined in Figure 2.3. There are two 

types of zones; the first one is called land use type which is basically the built-up area. They 

are sub divided into 10 different zones. The second one is classified as land cover type and 

contains 7 different zones as shown in Figure 2.3. 

Bechtel (Bechtel et al., 2015) focused on the global mapping of LCZs, providing a 

standardized method for characterizing urban structures based on their intrinsic physical and 

thermal properties, rather than local LCLU classifications such as built-up areas or natural 

vegetation. This distinction is important because LCZs offer a more detailed representation of 

urban environments, which is crucial for climate studies. Unlike traditional LCLU 

classifications that primarily categorize land based on surface cover types (e.g., residential, 

commercial, forest, water bodies), LCZs classify urban areas into specific zones based on 

structural characteristics, such as building height, density, surface cover, and materials. This 

approach results in 17 distinct LCZs (Figure 2.3), each with unique climate-relevant 

properties, allowing for a more precise analysis of urban climate dynamics. 
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Figure 2.3: Local climate zones classification scheme and 17 standard classes with brief definition 
(Stewart and Oke in 2009). © Copyright 2012 AMS. 

https://www.ametsoc.org/index.cfm/ams/publications/ethical-guidelines-and-ams-policies/ams-copyright-policy/
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Numerous researchers are using this LCZ method as their standard classification approach for 

the urban structure types for climate studies to describe the impact of urbanization on LST 

distribution. For example, Middel (Middel et al., 2014) examined LST of urban types during 

the mid-afternoon microclimate in Phoenix, Arizona applying the LCZ method. In another 

study Simanjuntak (Simanjuntak et al., 2019) created an LCZ map for Bandung, Indonesia, at 

a local level, using high resolution SPOT image using object based image analysis (OBIA) 

with an overall accuracy of 69% for the year 2016. Another study conducted in the greater 

Nancy Area of France (Leconte et al., 2015) used the LCZ schema for UHI measurement by 

investigating the thermal pattern in a homogeneous urban structure. The findings 

demonstrated that LCZs provided a detailed and standardized representation of urban 

structures. This approach enabled the researchers to identify significant temperature variations 

across different LCZs, highlighting the importance of considering urban structure in UHI 

studies. 

By utilizing LCZs, researchers and urban planners can add to their understanding of urban 

thermal dynamics, UHI effects more precisely, and develop targeted strategies to improve 

urban climate resilience (G. Chen et al., 2023). LCZs offer a detailed classification system 

that accounts for building height, density, surface cover, and thermal properties, which are 

crucial for accurately modeling and analyzing the UHI effect. This level of detail helps in 

identifying specific urban characteristics that contribute to increased heat retention and 

variability in urban areas. 

Mapping LCZs globally, however, presents significant challenges. While Bechtel (Bechtel et 

al., 2015) has made substantial progress in creating global LCZ maps, these maps often lack 

local accuracy due to the limitations of high-resolution data sources (Yang et al., 2020; Ma et 

al., 2021). Mapping building height, size, and density with such data can be particularly 

challenging, leading to potential inaccuracies in the classification of urban zones. High-

resolution datasets and local validation are essential to improve the accuracy of LCZ 

mapping(Simanjuntak et al., 2019; Yang et al., 2020). 

In recent years, the use of LCZs has increasingly focused on city scales for climate model 

simulations, analyzing the thermal behavior of various urban land features in connection with 

the UHI effect (Danylo et al., 2016; Han et al., 2020; Wei & Sobrino, 2024). 
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For our study, we selected two cities in India with different Köppen climate classifications 

and used LCZs to quantify LST results, allowing us to compare the thermal environments of 

cities of varied sizes. We have used a fusion strategy where we first generate regular LULC 

using Landsat-8 data (30m) then fused its impervious class with freely available global LCZ 

map (100m) to extract and remap only urban classes (built-type in Figure 2.3) based on global 

LCZ. The classification and re-mapping procedures are explained with details in the data and 

methods section. 
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3. STUDY AREA 

For this study, we selected two cities in the Indian state of Gujarat. Gujarat is located on the 

west coast of India, bordering the Arabian Sea. The two cities of interest are Ahmedabad and 

Surat city (Figure 3.1). 

 

 

Figure 3.1: Location map of the study area, Ahmedabad and Surat, zoom imagery taken from Esri, 
Maxar, World imagery 
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Gujarat has a rapidly growing population and significant urban growth. As per the 2011 

census, the population of Gujarat is approximately 60.5 million. The state has experienced a 

notable population growth rate of 19% over the past decade, with urbanization playing a 

significant role. Around 42.60% of Gujarat's population resides in urban areas, reflecting the 

state's increasing urbanization (Census 2011 India). The urban population growth in Gujarat 

was about 36% between 2001 and 2011 and is expected to continue rising (Census 2011 India)

. This urban expansion is evident in cities like Ahmedabad and Surat, which are among the 

largest urban centers in the state, making them major urban hubs with substantial contributions 

to the state's overall urbanization. 

These cities fall under different Köppen climate classifications, providing a unique 

opportunity to compare the impact of climate on LST and UHI. Ahmedabad has a hot semi-

arid climate, while Surat has a tropical savanna climate. Studying these variations helps in 

understanding how local climate influences urban thermal dynamics. 

3.1.  Ahmedabad City 

Ahmedabad is one of the largest urban agglomerations in India and the largest city in Gujarat 

situated along the banks of Sabarmati River. The city spans an area of around 525 square 

kilometers with a population of approximately 7.3 million people. It falls under the Köppen 

climate classification "BSh,", representing hot semi-arid climate (Peel et al., 2007). Its 

summer is extremely hot with temperatures exceeding 40°C in May-June (Figure 3.2), making 

it one of the hottest cities in India. Winters are mild to warm, with temperatures ranging from 

10°C to 25°C in January, which is the coldest month. Ahmedabad receives its rainfall during 

the monsoon season (June to September). During this season, the city receives heavy showers 

and thunderstorms with approximately an average monthly precipitation of 300mm during the 

months of July and August (Figure 3.3). Ahmedabad can be very humid during the monsoon 

season, making the weather feel hotter than the actual temperatures. On the other hand, during 

the dry season, the humidity is relatively low. 
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3.2. Surat City 

Another study area we selected is Surat in the Indian state of Gujarat. The city spans an area 

of around 330 square kilometers with a population of approximately 6.0 million people. It 

falls under the Köppen climate classification "Aw," which denotes a tropical wet and dry or 

savanna climate (Peel et al., 2007), and it borders the Arabian sea. The summers in Surat are 

hot, especially from March to June, with temperatures reaching around 35°C to 37°C, which 

is slightly less than in Ahmedabad (Figure 3.2). The hottest months are April and May, unlike 

Ahmedabad, where the hottest months are May to June. Winters in Surat are mild and pleasant, 

with temperatures ranging from 15°C to 30°C, which is generally warmer than in Ahmedabad, 

with January being the coldest month. Surat receives higher monsoon rainfall than 

Ahmedabad (Figure 3.3). 

Figure 3.2: Average minimum and maximum temperature in Ahmedabad and Surat cities, 
© Copyright 2022 weather-and-climate.com 

https://weather-and-climate.com/terms-and-conditions
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Figure 3.3: Average precipitation in Ahmedabad and Surat city, 
© Copyright 2022 weather-and-climate.com 

https://weather-and-climate.com/terms-and-conditions
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4. DATA AND METHODOLOGY 

This chapter explains the methods and data used to address the research objectives. It first 

outlines the general conceptual framework of the research methodology followed by the 

details of data used for this research. It also provides information about the analyses that were 

conducted to achieve the research objectives. 

4.1. General Framework 

As mentioned in the introduction section, it is important to discriminate heterogeneous urban 

surface patterns to identify localized effects on the SUHI. Here we generated a land cover 

map that has a single impervious surface class using Landsat data. Then we used a global LCZ 

dataset to replace our classified impervious surfaces with more detailed LCZ urban classes 

(classes 1 to 10 mentioned in Figure 2.3). Finally, this fused LCZ dataset was used to study 

relationships with LST (General research framework Figure 4.1). 

 
Figure 4.1: General framework of the research 
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4.2. LULC map production and Fusion with LCZ map 

Initially, the LULC maps of both study sites were produced using Landsat-8 (LS-8) data from 

2020. For this purpose, 452 training points for Ahmedabad and 382 training points for Surat 

were manually collected using Google Earth images from 2020. These points were used to 

classify each city into five base classes: Impervious, Bare soil, Trees, Herb/Crop, and Water 

using the Random Forest classification method in Google Earth Engine. 

The Landsat-8 data, filtered to include less than 5% cloud cover, produced a stack of 23 

images for Ahmedabad and 15 images for Surat. Several indices were generated using various 

bands of the LS-8 data, which served as additional input features for the classification model. 

Details of these bands and indices are listed in Table 1. 

Next, a reducer with the 75th percentile was applied to the combined stack of LS-8 images 

and the calculated indices for each study area, resulting in a composite multiband image for 

each city. These composite images were then used to train a Random Forest classifier, which 

subsequently generated the classification maps for each city. 

Table 4.1: List of Input features fed to random forest classifier. 
LS-8 bands / Indices used Band spectrum / Expression of Indices 
Band -1 to Band -7 Ultra Blue, Blue, Green, Red, Near-Infrared (NIR), 

Shortwave infrared 1 (SWIR_1), Shortwave infrared 2 
(SWIR_2) 

NDVI   Normalized Difference Vegetation Index 
(NIR – Red) / (NIR + Red) 

EVI  Enhanced Vegetation Index 
2.5 * ((NIR - Red) / (NIR + 6 * Red – 7.5 * Blue + 1)) 

LSWI  Land Surface Water Index  
(Green – NIR) / (Green + NIR) 

NDBI  Normalized Difference Built-up Index 
(SWIR_2 – NIR) / (SWIR_2 + NIR) 

NDWI  Normalized Difference Water Index 
(NIR-SWIR_1) - (NIR-SWIR_2) 

 

The validation process for both Ahmedabad and Surat involved comparing the classification 

results with a set of validation points collected for each city. For Ahmedabad, 113 validation 

points were used, resulting in a validation accuracy of 83% and a Kappa coefficient of 75%. 

For Surat, 100 validation points were used, resulting in a validation accuracy of 77% and a 
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Kappa coefficient of 64%. These metrics indicate the effectiveness of the classification 

method in each city. Detailed confusion matrices are presented in appendix 3 & 4. 

After generating the LULC map at a resolution of 30m (the same as Landsat-8), we applied a 

fusion strategy using an existing map based on the LCZ classification scheme. The scheme 

was initially proposed by Stewart and Oke (Stewart & Oke, 2012) and later Demuzere 

(Demuzere et al., 2022) produced a global LCZ map to support earth system modeling and 

urban-scale environmental science. This dataset was produced using multiple Earth 

observation (EO) datasets from 2018 (EO data set table in appendix 1), has a 100m pixel size 

and freely accessible through Google Earth Engine. The LCZ scheme includes 17 urban and 

natural landscape types, as shown in Figure 2.3. 

Based on visual inspection of the global LCZ dataset in our study area, we noted that the LCZ 

data were more focused on urban classes and did not capture all-natural land-cover classes 

such as trees, crops/herbs, and soil in detail. Also, it sometimes misclassified dense natural 

vegetation as urban if there were few human settlements nearby. In contrast, our LULC map 

clearly distinguished urban vegetation as trees or crop/herb land classes, ensuring an accurate 

representation of urban vegetation. With a 30m resolution and overall accuracy of over 75%, 

our map also precisely mapped impervious surfaces. 

To integrate both datasets effectively, we implemented a fusion strategy where the impervious 

class in our LULC map was reclassified based on the LCZ's urban built type classes (Figure 

2.3). We remapped each pixel of the impervious class to the corresponding LCZ built type 

class. If the corresponding LCZ was not a built type, it was considered a misclassification and 

replaced with the sparsely built class, assuming a mix of natural and urban features. This 

fusion and remapping concept is illustrated in Figure 4.2. This approach ensures that all 

natural classes (except impervious) remain intact while enhancing the urban classification 

with detailed LCZ types, providing a more comprehensive and accurate representation of the 

study areas. The output of each classification map and the fused map for Ahmedabad city is 

shown in Figure 4.4 for reference. 
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Finally, for analysis purposes, we selected six LCZ classes: 'Compact midrise', 'Compact low 

rise', 'Open low rise', 'Large low rise', 'Trees', and 'Crops/Herbs'. These classes were chosen 

because they cover significant areas and are hypothesized to have strong effects on LST in the 

study area. Overall classes obtained after fusion can be seen in Figure 4.3 where classes under 

analysis are marked with star signs.  

   

Figure 4.2: LULC remapped schema to fuse with LCZ urban built classes 

Figure 4.3: Classes obtained after fusion (remapping), and 
classes under analysis are marked with star 
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Figure 4.4: LULC remapped with LCZ map to produce a fused map for Ahmedabad city 
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4.3. ECOSTRESS data and processing 

Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is 

an experimental instrument onboard the International Space Station (ISS) on June 29th, 2018. 

Its native spatial resolution is 38 m × 68 m with a swath width of 402 km and a revisit time of 

about 3 to 5 days at different times of day depending on the latitude (Hulley et al., 2019). The 

observed LST data are then aggregated to 70m × 70m pixel resolution as higher-level products. 

The primary purpose of this satellite is to monitor plant water content and stress in the 

vegetation, with application to agriculture pertaining to water consumption use. However, its 

LST data are valuable for research on other thermal phenomena such as the SUHI. They are 

especially well suited for urban studies because of being freely available high-resolution data 

(70m), with LST observations across the entire diurnal cycle. Due to its five thermal bands, 

ECOSTRESS allows for the implementation of multispectral temperature/emissivity 

separation approaches for retrieving the most accurate LST over urban (Hulley et al., 2019). 

ECOSTRESS LST data can be obtained from the NASA Land Processes Distributed Active 

Archive Center (NASA-LPDAAC). We used Application for Extracting and Exploring 

Analysis Ready Samples (AρρEEARS), an interactive web-portal that allows to select a region 

of interest (ROI) and desired period of data to download, and later provides an email link to 

download the ordered data. For our study area, we downloaded data as mentioned in table 2 

for the period of September 2018 to March 2024. 

Table 4.2: Details of the downloaded ECOSTRESS data using AρρEEARS portal. 
ECOSTRESS data (Level -2) Data information and its use 
ECO2LSTE Version 1 
Land Surface Temperature (SDS_LST) 

Atmospherically corrected Land Surface 
temperature in Kelvin 

ECO2LSTE Version 1 
Quality Control for LST (SDS_QC) 

Quality Control for LST and emissivity 

ECO2CLD Version 1 
Cloud Mask (SDS_Cloud Mask) 

Provides cloud mask for ECO2LSTE data 

 

A detailed flow chart is presented in Figure 4.5 describing the overall processing steps. Most 

processing and analysis were conducted using R scripts. However, we also used ArcGIS for 
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data visualization and some manual geo-referencing. (Refer appendix 2 for detailed list of 

downloaded and used data for this study)  

 

Initially, ECOSTRESS LST data, along with cloud and quality control (QC) information, were 

collected. These datasets were sequentially resampled to ensure alignment on a common grid. 

Cloud and QC masking were then applied to filter out areas affected by clouds and quality 

issues, converting the LST data into degrees Celsius. The resulting masked LST stack, which 

included local time information, was saved for future processing steps.   

Figure 4.5: Flow chart representing the data processing using R on ECOSTRESS data to extract 
cloud free and of better quality. Orange box section was done manually using ArcGIS Pro 
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Following this, a quality assessment of the data was conducted visually. Each image within the 

masked LST stack was visually inspected to ensure high quality cloud-free images were 

selected. Some images exhibited spatial offsets of a few pixels and were subjected to geo-

referencing to correct their alignment. For this alignment manual control points were generated 

referencing misaligned spatial features with satellite image on ArcGIS. One of the misaligned 

images with control points is presented in Figure 4.6 for reference. 

 

Next, images were divided into four distinct time-of-day categories based on local time: 

Morning (6:00 - 11:59), Afternoon (12:00 - 17:59), Evening (18:00 - 23:59), and Night (00:00 

- 5:59). This segmentation allows for detailed temporal analysis of LST variations. Finally, all 

the LST data (2018-2024) were divided into two seasons to compare the seasonal variations 

among the classes. Seasons are namely Summer (Mar-Apr-May-Jun), and Winter (Oct-Nov-

Dec-Jan-Feb). Each season consists of 4 averaged diurnal periods. The monsoon period (July-

August-September) was excluded from the analysis due to insufficient data. During these 

Figure 4.6: Screen shot of ArcGIS Pro showing a misaligned ECOSTRESS data along with 
manually selected control points to guide the alignment process, while referencing the satellite 

image on the background 
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times, the study area was predominantly covered by clouds, which obstructed the collection of 

reliable LST data. (Please refer to Appendix 2 for data availability tables) 

4.4. Data Analysis 

4.4.1. Monthly LST trend analysis 

We generated a monthly stack of LST data from ECOSTRESS covering both cities and used 

them to study monthly LST trends for both cities. The monthly LST for each city was 

calculated as mean LST values from all cloud-free 70m pixels within the city limits, manually 

delineated using nighttime light data from the VIIRS Stray Light Corrected Nighttime 

Day/Night Band Composites in Google Earth Engine (Figure 4.7). These monthly LST values 

were used to calculate the monthly trend of LST from both cities and compare against each 

other to understand their monthly behavior and associations with the monthly air temperature.  

Figure 4.7: Ahmedabad city boundary ‘a’and Surat city boundary ‘b’ 
shown as blue polygons overlaid over Nighttime light data from VIIRS 

and Google Map 
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4.4.2. Descriptive analysis of LST spatial patterns 

We visually inspected hotspot zones during summer afternoons when temperatures are 

expected to peak. This analysis focuses on identifying areas with high LST and their 

corresponding land cover LCZ classes. Additionally, we compared temperature differences 

between well-vegetated and non-vegetated areas to assess the cooling effect of vegetation. This 

involved selecting representative vegetated and non-vegetated zones within the city and 

analyzing their respective LST values. The cooling effect was quantified by the temperature 

reduction observed in vegetated areas compared to their non-vegetated counterparts. This 

comparison highlighted the role of urban green spaces in mitigating high temperatures and 

reducing the UHI effect. 

4.4.3. Quantitative analysis of relationships between LST and LCZs 

Here we analyzed the relationships between LST and each LCZ-fused land cover class, 

quantifying variations across different seasons and diurnal periods, from morning to night. This 

analysis revealed temperature changes for each land cover type and their responses to seasonal 

and diurnal shifts. We presented these variations using box plots that displayed 25th and 75th 

percentiles, and median LST values for each land cover type. 

These box plots were created using the fused land cover map and LST data. The land cover 

map has a 30m resolution, while the LST data has a 70m resolution. To ensure consistent pixel 

size and count before generating the box plots, each LST data point was resampled using 

bilinear interpolation to a 30m resolution based on the land cover map. Then, grouped box 

plots were created for each land cover class, displaying the corresponding LST values for each 

diurnal period. 

4.4.4. Quantitative analysis of LST gradient from city core to edge 

In this analysis, we examined the temperature gradients from the city center to the outskirts. 

This involved assessing the relationship between temperature and distance from the centroid 

of the city boundary. We generated scatter plots and conducted linear regression analysis of 

LST versus distance for each season and diurnal period in both cities.  
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To achieve this, we selected 1000 random points within the study area and extracted LST 

values for each season and diurnal cycle. Then we created a Euclidean distance survey over 

the study area and extracted the distance value of each random point from the city center. The 

random points and city centroid for Ahmedabad are shown in Figure 4.8.   

To obtain accurate geographical distances, it was essential to use the correct projection and 

coordinate system. For this analysis, we utilized the WGS 84 ellipsoid with the Gujarat 

coordinate system (EPSG:7761). This system was applied to all LST and Euclidean distance 

raster images, ensuring precise distance measurements for the analysis. 

 

 

 

 

  

Figure 4.8: Displaying 1000 random points along with the centroid over Ahmedabad. 
Satellite image as background (left), Euclidean distance as background (right) 
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5. RESULTS 

5.1. Average monthly LST 

The monthly trends of LST over both cities are shown in Figure 5.1. Depending upon the 

month, the number of available satellite observation data varies (table in Appendix 2). 

The comparison of monthly LST for both the cities revealed different seasonal variations in 

the temperature profile. During the winter months (December and January), Surat was notably 

warmer than Ahmedabad, generally about 5o C higher. Both cities experienced a significant 

rise in LST during the spring (March, April, and May), but Surat reached a peak of 

approximately 40°C in April, higher than Ahmedabad's 35°C. In early summer, Ahmedabad 

continued to heat up, peaking at 45°C in June, while Surat's temperatures stabilized around 

38°C in June after reaching a peak LST in April and May. 

 

LST observations were not available between July and September because of high cloud cover 

during the monsoon. After the monsoon in October, both the cities showed a similar cooling 

pattern, with temperatures dropping to around 35°C. However, as late autumn transitioned to 

winter in November and December, Ahmedabad cooled more rapidly, with November 

temperatures around 25°C compared to Surat's 30°C.  

Figure 5.1: Monthly average LST trend of two cities, Ahmedabad and Surat 
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The LST observations, despite being collected from a limited number of scenes from the 

ECOSTRESS satellite, closely resemble the seasonal trends in monthly air temperatures 

(Figure 3.2, chapter 3 Study area). Notably, Surat's maximum air temperature peaked in April, 

earlier than Ahmedabad's peak in June. Additionally, the data showed that Surat was generally 

warmer than Ahmedabad during the winter and autumn seasons. 

5.2. Visual interpretation of LST hotspots and urban structures 

We visually interpreted the localized spatial patterns of LST hotspots in both cities and assessed 

their associations with urban structures or settlement types. Figures 5.2 (for Ahmedabad City) 

and 5.3 (for Surat City) illustrate multiple images of each hotspot with zoom images. The LST 

images used for this interpretation were calculated as the pixel-level means using data for all 

of the summer months in the afternoon (March, April, May, and June). For clarity in identifying 

hotspots, only temperatures over 42°C were displayed. 

In Figure 5.2, we assessed four hotspots over Ahmedabad City, each ranging from 48 to 52°C. 

Hotspot ‘a’ was identified as an international airport, clearly showing its runway and other 

airport buildings. These locations reached up to 52°C during the summer season, while its 

surroundings, classified as a ‘compact low rise’ urban area, were cooler by 5 to 8°C.  

The next hotspot, ‘b,’ was an industrial area identified by its roof size and structures. These 

roofs were mostly made of metal sheets or a combination of metal sheets and concrete, with 

heat retaining capacity. Additionally, many of these industries had exhaust chimneys that 

released more heat into the surroundings. Unfortunately, our LCZ map failed to accurately 

distinguish these industrial areas, classifying them as compact low rise to large low rise urban 

classes. These areas lacked any kind of vegetation, and the outskirts of these industrial zones 

were covered by compact and large low-rise residential areas. Consequently, the temperature 

did not vary much and remained between 48 to 51°C. 

The ‘c’ hotspot in Figure 5.2 was a huge landfill site forming a hill full of decomposing trash, 

just at the south-west edge of the city. This place has continual burning spots and was usually 

hotter than its surroundings, ranging from 48 to 50°C. The surrounding area of the landfill was 

an urban settlement of compact and large low rise, but the temperature in these areas was 4 to 

5°C less than the landfill site. 
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Figure 5.2: Ahmedabad city, Land cover map (top left), Summer (March-
June) average LST from ECOSTRESS (top right). 4 zoomed images of 

hotspot zone a, b, c, and d taken from Esri, Maxar, World imagery (bottom 4) 
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Figure 5.3: Surat city, Land cover map (top left), Summer afternoon 
(March-June) average LST from ECOSTRESS (top right). 4 zoomed images 
of hotspot zone a, b, c, d taken from Esri, Maxar, World imagery (bottom 4)  
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The ‘d’ hotspot was not within the city boundary and lay north-west of city area. It was loosely 

connected with the urban fabric by expanding small towns and residential complexes along the 

connecting roads. This was a large semi-paved area of bare land with exposed soil classified 

as ‘sparsely built,’ ‘Soil,’ and ‘Herb/Crop’ land cover classes. However, this area radiated 

significant heat ranging from 48 to 50°C.  

Similarly, in Surat City (Figure 5.3), we observed four hotspots ranging from 47 to 50°C. These 

hotspots were primarily small to large industrial areas spread across the center to the southern 

border of the city. Unfortunately, our LCZ map categorized these areas as ‘compact mid or low 

rise’ to ‘large low rise.’ However, these zones significantly dominated as hotspot areas. Zones 

‘a,’ ‘c,’ and ‘d’ were industrial areas with temperatures ranging from 47 to 50°C. These three 

hotspots were highlighted due to their larger area, but there were several other smaller 

industrial areas in Surat with similar LST ranges. Hotspot ‘b,’ in contrast, was a large, paved 

area in the center of the city featuring multi-lane roads to the west and train tracks to the east, 

along with a large train and bus station. This hotspot also exhibited LSTs ranging from 47 to 

50°C. 

In general, the visual inspection revealed some peculiar hotspots within the city boundary that 

are mostly dominated by industrial areas and large paved areas, and a landfill site in the case 

of Ahmedabad city. These areas during the afternoon of summer season exhibited LST between 

48 to 52°C. Apart from these peculiar high-LST hotspots, we also found residential areas 

reaching high temperatures. For example, the ‘compact midrise’ zones in the city centers of 

both Ahmedabad and Surat showed temperatures ranging from 45 to 48°C. However, 

residential areas with some amount of vegetation or forested areas within the city exhibited 

temperatures ranging from 40°C to 45°C. For example, Figure 5.4 shows a residential area in 

Surat City with dense vegetation, radiating a temperature of approximately 40°C. The 

surrounding areas were hotter by 4 to 8°C, particularly the open and dry bare ground, which 

exhibited an LST of about 48°C during a summer afternoon. 
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5.3. Diurnal LST relationship with LCZ classes 

Figures 5.5 and 5.6, respectively show grouped box plots of summer and winter LSTs for each 

LCZ class and across the four diurnal periods (morning, afternoon, evening, and night) in both 

cities. 

During the summer mornings in both cities, compact midrise exhibited the highest 

temperatures (~33°C), followed by large lowrise (~32.5°C). Compact lowrise and open lowrise 

were relatively cooler (~31 to 32°C), while trees and crops/herbs showed the lowest 

temperatures (~30 to 31°C). As the sun's heat intensified in the afternoon, temperatures in both 

cities for compact midrise and large lowrise reached approximately 46.5°C, closely followed 

by compact lowrise and open lowrise (~45 to 45.5°C). However, in the afternoon, trees and 

crops/herbs were hotter in Ahmedabad (~45°C) compared to Surat (~43°C). 

In the summer evenings, temperatures in Surat were generally higher across all classes 

compared to Ahmedabad, indicating a slower rate of heat dissipation in Surat. The trend of 

variation in temperature of classes in both the cities remained similar, however in contrast to 

morning or afternoon, compact lowrise were now equally warm as compact midrise (~27°C 

for Ahmedabad, ~30.5°C for Surat). These were followed by large lowrise (~26°C for 

Ahmedabad, ~30°C for Surat) and open lowrise (~25°C for Ahmedabad, ~29°C for Surat).

Figure 5.4: Semi-transparent LST image over highly vegetated residence and its urban 
surrounding (a). Very-high resolution imagery of the corresponding region (b). 
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Figure 5.5: Group box plot of LST comparing each city (Ahmedabad and Surat) for different LCZs at different times of the day in 
summer. Center line in the box represent median, edges of the box represent the first quartile (Q1) and third quartile (Q3), and 

whiskers represent the range within 1.5 times the interquartile range (IQR) from Q1 and Q3.  
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Figure 5.6: Group box plot of LST comparing each city (Ahmedabad and Surat) for different LCZs at different times of the day in 
winter. Center line in the box represent median, edges of the box represent the first quartile (Q1) and third quartile (Q3), and 

whiskers represent the range within 1.5 times the interquartile range (IQR) from Q1 and Q3. 
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Trees and crops/herbs were about ~24°C in Ahmedabad, while in Surat, they were about 

~28°C. 

During the summer nights, Surat still exhibited slightly higher temperatures compared to 

Ahmedabad across all classes. However, the temperature variations across different LCZ 

classes within the cities were similar, except for the compact lowrise class in Surat that 

exhibited lower LST (~0.5°C) than compact midrise. Compact midrise and compact lowrise 

had the highest temperatures, followed by large lowrise and then open lowrise, again differing 

from the patterns in morning and afternoon where large lowrise was higher second to compact 

midrise. At night, trees and crops/herbs showed a ~4°C temperature difference compared to 

other diurnal periods when compared with compact midrise, the hottest class, suggesting that 

UHI effects were stronger during the night.  

In winter, except in the morning, the urban classes in Surat were slightly warmer than those in 

Ahmedabad. Notably, in summer, Surat was warmer only during the evening and night, while 

the temperature variation remained similar across all classes throughout the diurnal cycle for 

each season. For both cities, compact midrise generally had the highest temperatures in both 

seasons. However, there were differences in temperature trends between large lowrise and 

compact lowrise classes within the diurnal cycle. During the morning and afternoon, large 

lowrise exhibited higher temperatures than compact lowrise, while in the evening and night, 

compact lowrise recorded higher temperatures. Among urban classes, open lowrise had the 

lowest temperatures across all diurnal cycles. Additionally, trees and crops/herbs were 

approximately ~2°C cooler than the urban classes throughout all diurnal cycles in winter. 

5.4. LST gradient analysis 

Figures 5.7 and 5.8 depict the relationship between LST and distance from the city center in 

Ahmedabad and Surat during various times of the day (Morning, Afternoon, Evening, and 

Night) and seasons (Summer and Winter). These scatter plots were generated from extracting 

LSTs from 1000 random points within each city with distances calculated using Euclidean 

distance as described in Chapter 4.4.1. Each plot includes a linear regression line to indicate 

the trend, along with R2 values and p-values to highlight the strength and significance of the 

correlation.  
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During summer mornings in both cities, there was a negative correlation between LST and 

distance from the city center. However, during the afternoon, there was almost no correlation 

between LST and distance in Ahmedabad, with an R² of zero and a negative correlation of 0.07 

in Surat. The evening and night exhibit a stronger negative correlation than morning for both 

cities. Ahmedabad in the evening and night during the summer had the strongest negative 

correlation among all diurnal periods, with R² of 0.61 and 0.62, respectively. For the winter 

months in Ahmedabad and Surat, there was a weak negative relationship in the afternoon with 

R² values of 0.07 and 0.06, respectively. During the evening and night, the negative correlations 

were strong for both cities. 

Generally, Ahmedabad showed stronger correlations between LST, and distance compared to 

Surat, especially during the evening and night in both summer and winter. This indicates that 

Ahmedabad experienced a more pronounced surface UHI effect, with temperatures decreasing 

more rapidly with distance from the city center. Regarding diurnal variations, both cities 

exhibited the weakest correlation in the afternoon during both seasons, implying that the 

afternoon heat was more uniformly distributed across distances with not as much SUHI effect. 

In contrast, mornings, evenings, and nights showed stronger correlations, with temperatures 

decreasing as the distance increased, demonstrating that the surface UHI effect was more 

evident during the evening and night compared to the afternoon. 
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Figure 5.7: Ahmedabad LST gradient from the center of city towards rural areas during 
different times of the day and seasons. 
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Figure 5.8: Surat LST gradient from the center of city towards rural areas during 
different times of the day and seasons 
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6. DISCUSSION AND CONCLUSION 

In this study we analyzed the diurnal variations of the urban thermal characteristics over 

summer and winter in two cities (Ahmedabad and Surat) using the ECOSTRESS LST product 

and LCZs. We used a fusion strategy to obtain the urban LCZ delineations, which helped to 

better represent the vegetated classes and maintain the native resolution of 30m of Landsat. 

This study has shown that various urban types characterized by LCZ are closely related to 

LSTs and strongly affect the pattern of UHI. Specifically, compact midrise was consistently 

the highest, followed by large lowrise and compact lowrise areas during morning and 

afternoon. In contrast, LST over compact lowrise during evening and night was generally 

higher than large low rise. Open lowrise classes generally exhibit the lowest LSTs among the 

urban classes. Trees and Crops/Herbs classes consistently had the lowest LSTs across all 

diurnal periods and seasons.  

Compact midrise areas were consistently hotter than compact lowrise because higher building 

volume and surface area and less vegetation in midrise zones lead to greater heat retention and 

reduced cooling from limited airflow. These taller buildings absorb and retain more heat during 

the day, releasing it slowly at night. Additionally, midrise buildings often use materials like 

concrete, brick, and tile, which have higher thermal inertia, storing and releasing more heat 

than those in lowrise areas (Stewart & Oke, 2012). The larger surface area exposed to solar 

radiation further enhances this effect. Also, compact midrise areas typically experience higher 

levels of human activity and energy use, such as air conditioning and vehicular traffic, 

contributing additional heat to the environment (Han et al., 2020). On the other hand, open 

lowrise areas were consistently the coolest as they usually have more green spaces and 

vegetation, which provide cooling through evapotranspiration, with trees and grass reducing 

the heat absorbed by buildings and pavements (Chang et al., 2021). Breaking the trend, 

compact lowrise were warmer in the evening and night, especially compared to large lowrise, 

because this type of zones often uses materials like concrete, brick and tiles forming dense 

urban fabric with tightly packed buildings that can retain a higher amount of incoming solar 

radiation. During the day, compact lowrise areas can absorb a significant amount of heat due 

to their dense urban fabric and limited green spaces. This heat is then released in the evening 
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and night, leading to higher temperatures relative to large lowrise areas, which might have 

more open spaces and vegetation, reducing overall heat absorption (Chang et al., 2021).   

A similar study by Ferreira (Ferreira & Duarte, 2019) in the São Paulo metropolitan region 

aligns with our findings on LST distribution and its relationship with the LCZ scheme, utilizing 

similar methodologies with Aqua MODIS LST 8-day composite day and night data. While 

their study included eight LCZ urban classes and compared day and night temperatures, they 

also found that LSTs are not consistent across all urban classes. Specifically, they observed 

that the open high-rise class (LCZ-4, which was not present in our study area) exhibited 

marginally higher temperatures during the night. Another study by Chang (Chang et al., 2021) 

reported that temperature variations over different LCZs differed between day and night. They 

used ECOSTRESS data over a LCZ map and found that compact buildings were hotter during 

the day compared to open spaces buildings (open highrise, lowrise and midrise). They also 

found lowrise zones generally had higher LST than high rise zones in both compact and open 

urban structures however, our results were not directly comparable to these results as our study 

area consisted of only one tall building zone that was midrise (there were no highrise LCZs). 

Chang’s results showed compact zones had higher nighttime LST than open zones, which is 

consistent with our findings.  

Our study findings support and extend the understanding from previous research on how 

heterogeneous urban landforms affect LST distribution over urban landscapes. Specifically, 

our study focused on cities in developing countries, which largely lack compact, open, or large 

high-rise zones (Jedwab et al., 2021). This study analyzed the LCZ and LST relationship 

during various diurnal periods and established that the UHI effect is more prominent during 

the evening and night rather than in the morning and afternoon, when heat is more uniformly 

distributed, weakening the UHI effect (Spronken-Smith & Oke, 1998; Chapman et al., 2018). 

A significant temperature gradient can be observed in both cities during evening and night, 

with urban areas being 5 to 6 degrees hotter compared to their non-urban surroundings and 

this implies for both the seasons of summer and winter. This phenomenon is largely attributed 

to urban structures storing radiated energy during the day and releasing the stored heat at night 

(L. Zhao et al., 2014). 
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Inverse relationships between LST and distance from the city center were observed in the two 

study areas. We analyzed the temperature gradient from the city centroid towards the outskirts, 

where more vegetation typically exists. In general, more vegetation is associated with 

enhanced evapotranspiration, which can cool surfaces by converting solar radiation into latent 

heat rather than sensible heat (Mackey et al., 2012). Generally, the gradient showed no 

significant correlation between LST and distance in the afternoon. This is due to continued 

solar radiation heating the surface uniformly, thereby not creating a strong SUHI (Chang et 

al., 2022; G. Chen et al., 2023). In the morning, there was a moderate correlation between 

LST and distance. At this time, solar radiation is not as intense as in the afternoon due to the 

lower solar angle, and impervious surfaces are not as hot, leading to a moderate correlation 

(Allen et al., 2017; Lai et al., 2018). In contrast, there was a strong correlation between LST 

and distance during the evening and night. This is because, at the end of the day, urban 

structures release stored heat, keeping the city area warmer, while natural or vegetated areas 

cool down faster, thereby depicting a more pronounced SUHI (Chang et al., 2021; L. Zhao et 

al., 2014). 

Based on visual inspection and manual interpretation of moderate resolution LST images, the 

study found that most of the hotspots during the summer season were located over multiple 

industrial areas classified as compact lowrise and large lowrise LCZs. It could be argued that 

actual residential classes might exhibit slightly lower overall LST if industrial zones were 

adequately classified in our classification map. A study by Carina (Portela et al., 2020) over 

São José dos Campos in the eastern portion of São Paulo State, Brazil also showed distinct 

hot spots over industrial and parking areas using Landsat data. Due to the alteration from 

natural landscapes to urban environments with heat-absorbing materials like asphalt and 

concrete, LST maps showed high temperatures in densely built industrial areas, where the 

combination of these materials and minimal vegetation creates the most extreme heat (Portela 

et al., 2020). Another case study by Lu (Y. Lu et al., 2021) in Wuhan, China using Landsat-8 

showed the proportion of industrial areas has a significant impact on LST, even when the 

combined influences of land cover and building-group morphology are considered. This 

indicates that the anthropogenic heat generated by industrial activities is a major factor 

contributing to higher LSTs in industrial regions. Extensive use of combustion facilities like 

furnaces generates substantial waste heat discharged via chimneys, radiators, and cooling 
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water contributing to an increase in surrounding temperature. Additionally, industrial 

buildings often utilize metal panels with high short-wave radiation absorption compared to 

masonry materials commonly used elsewhere. This further amplifies heat retention within 

industrial zones (Y. Lu et al., 2021). Therefore, future studies in cities with a significant 

mixture of industrial areas within the city limits should carefully classify these zones to obtain 

an accurate picture of LST variations among residential urban settlements. 

The findings of this study can be used by city planners and managers to help develop heat 

mitigation plans. Initially, the hotspots could be prioritized for heat mitigation strategies where 

temperatures reach 48 to 50°C in the summer afternoon. This could pose severe heat threats 

to the population living or working in these areas. Meanwhile effective methods should be 

implemented to reduce heat, one of which is increasing urban greenery through the planting 

of trees and the creation of green roofs and walls. Vegetation not only provides shade but also 

cools the air through the process of evapotranspiration (Mackey et al., 2012).  

Another strategy involves the use of light-colored, highly reflective materials in urban 

infrastructures, such as rooftops, buildings, and roads. These materials have higher albedo, 

meaning they reflect more sunlight and absorb less heat. This reduces the amount of heat 

transferred into buildings, thus lowering indoor temperatures and reducing the need for air 

conditioning, which in turn decreases urban heat (Akbari & Matthews, 2012). Additionally, 

permeable pavements are an effective measure. Unlike traditional concrete and asphalt, 

permeable materials allow water to percolate through, which not only helps in reducing runoff 

but also aids in cooling the surface through evaporative cooling (Li et al., 2013). 

Finally, public awareness and community involvement in implementing and maintaining 

green spaces, choosing reflective materials, and adopting energy-efficient practices are 

crucial. Education on the importance of reducing UHI and how individuals can contribute is 

essential for the long-term success of these strategies (Middel et al., 2020; Chang et al., 2021). 
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7. LIMITATIONS AND RECOMMENDATIONS 

This research faced some limitations related to using ECOSTRESS and LCZ data. Even 

though ECOSTRESS has a repeat cycle within 3-5 days, the day and night LST data are not 

of the same day, causing inaccuracies and uncertainties. Additionally, the revisit cycles of 

ECOSTRESS sensor may lead to incomplete coverage of heatwave events, affecting the 

comprehensiveness of diurnal LST and SUHI research. ECOSTRESS data can also have 

missing grid cells due to cloud cover, further complicating the analysis. Additionally, it is 

influenced by view angle issues. The ECOSTRESS instrument captures data at varying angles 

due to the ISS's orbit where average view angle is considers to be ~ ±26° (Anderson et al., 

2021). This variation in view angles can affect the accuracy and consistency of LST 

measurements, as different angles might capture different thermal emissions from the Earth's 

surface. Correction algorithms are applied to mitigate these effects, but some dependency on 

view angle variations remains.  

Although this study demonstrated that ECOSTRESS data could characterize diurnal LST 

variations and spatial heterogeneity at four diurnal periods, a more extended period of 

ECOSTRESS observation is necessary to better interpret these variations. Future efforts 

should include image fusion using high temporal and spatial resolution data to enhance the 

comprehensiveness of diurnal LST and SUHI research. Image fusion techniques, such as those 

combining ECOSTRESS with data from other satellites like Landsat, MODIS, Sentinel-3 or 

GOES, can provide better temporal temperature measurements (Wu et al., 2015; G. Zhao et 

al., 2020; Chang et al., 2022). This approach can address the limitations posed by 

ECOSTRESS's 3–5-day revisit cycle and improve the accuracy and resolution of thermal data. 

Expanding the framework to include more cities with diverse landforms and climates will 

provide a more generalized understanding of urban thermal patterns. Moreover, further 

investigations are needed to refine the adjustment of ECOSTRESS LST data for diurnal cycle 

studies, which will help in better understanding diurnal SUHI patterns. 

The LCZ data used in this research uses medium resolution remote sensing images like 

Landsat and Sentinel, with pixels resamples to a 100m resolution for classification. However, 

the accuracy of this LCZ remote-sensing mapping is low, with urban area mapping accuracy 

typically below 60% (Ma et al., 2021). This low classification accuracy is partly due to the 
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reliance on low resolution open-source data (EO input data table in Appendix 1), which does 

not provide detailed urban 3-D information relevant to LCZ types. Therefore, integrating 3-D 

urban form information is recommended to improve LCZ mapping accuracy by offering more 

detailed data. 

LST data plays a crucial role in urban heat planning by assessing heat exposure and guiding 

mitigation strategies such as increasing green spaces and using heat-resistant materials to 

combat the UHI effect and reduce health risks. However, LST has limitations: it measures 

skin temperature and does not directly account for human heat stress, unlike indices like Heat 

Index or Wet Bulb Globe Temperature (WBGT), which consider factors like humidity and 

wind speed (D. Zhou et al., 2019). Variations in surface materials and vegetation can also 

affect LST accuracy. Therefore, while LST offers valuable insights for urban heat planning, 

integrating meteorological data and human heat stress indices is essential for a comprehensive 

understanding and effective mitigation tailored to urban conditions and population 

vulnerabilities, promoting resilient cities, and enhancing residents' well-being. 
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APPENDICES 

 

Appendix 1. Earth observation (EO) input features for LCZ (Demuzere et al., 2021) 
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Appendix 2. Tables representing ECOSTRESS data download and processing statistics. 

 

Numbers representing data available from downloads to various processing steps. 

The average view angle of ECOSTRESS data is ~ ±26° 

  

 

Segregation of data availability for each season and time of day 
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Monthly data available after visually selecting and geo-referencing 

 

 

Appendix 3. Ahmedabad LULC map accuracy and confusion matrix 
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Appendix 4. Surat LULC map accuracy and confusion matrix 

 

Appendix 5. Ahmedabad Landsat-8 scenes used for LULC classification in Google Earth 
Engine. 

LANDSAT/LC08/C02/T1_L2/LC08_148044_20200123 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20200208 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20200224 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20200412 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20200428 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20200514 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20201005 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20201021 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20201122 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20201208 
LANDSAT/LC08/C02/T1_L2/LC08_148044_20201224 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200114 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200130 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200302 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200318 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200403 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200419 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200505 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20200521 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20201012 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20201028 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20201129 
LANDSAT/LC08/C02/T1_L2/LC08_149044_20201215 
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Appendix 6. Surat Landsat-8 scenes used for LULC classification in Google earth Engine. 

LANDSAT/LC08/C02/T1_L2/LC08_148045_20200123 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20200208 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20200224 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20200428 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20200514 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20201122 
LANDSAT/LC08/C02/T1_L2/LC08_148045_20201224 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200123 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200208 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200224 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200412 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200428 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20200514 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20201122 
LANDSAT/LC08/C02/T1_L2/LC08_148046_20201224 
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