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Abstract

This dissertation emphasizes the contribution of expert knowledge in the devel-

opment and assessment of machine learning (ML) models within the Earth sciences,

specifically Meteorology. Despite the common focus on achieving high skill scores,

conventional metrics may inadequately capture the nuanced patterns learned by these

models. This dissertation underscores the importance of incorporating end-user feed-

back, demonstrating that with this feedback, tailored yet flexible ML models can ef-

fectively learn specific meteorological patterns while remaining applicable to broader

contexts.

The first focus of ML development is in identification of above-anvil cirrus plumes

(plumes). In satellite imagery, plumes serve as critical indicators of impending severe

weather, often appearing 30 minutes before reported events. Their real-time identifi-

cation is particularly valuable in radar-deficient regions, where they offer insights into

the convective environment. However, manually labeling plumes is labor-intensive and

requires specialized expertise. To streamline this process, I develop a deep learning

(DL) model trained on expert-annotated data to create skillful pixel-level plume clas-

sifications using remote sensing data that is available globally. This approach was

tested on combinations of spectral data across the contiguous United States, showing

above-average object correspondence with human-derived labels.

Another focus of this dissertation is leveraging ML models for severe hail predic-

tion on localized scales. Existing ML models have demonstrated proficiency across the

United States during spring and summer but have struggled to capture the nuanced

spatio-temporal dynamics of thunderstorm development in local contexts. Addressing

this gap, I develop a novel localization technique that prioritizes storm object weight-

ing without imposing substantial additional burdens on model developers. Results

indicate that localized weighting of storm objects matches or outperforms existing ML
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approaches, while improving the physical relevance of the top predictors in the trained

ML model.

Lastly, leveraging the expansive archives of satellite data, this dissertation tackles

the challenge of creating training sets that are representative of large scale Earth sci-

ence datasets while maintaining efficiency. This work explores clustering approaches

to extract regional nuances amidst a vast dataset of remote sensing data for a straight-

forward use case with an established baseline - land cover classification. Employing

surface reflectance bands in a random forest (RF) model, I compare classification out-

comes between training with randomly sampled datasets of varying size and datasets

created using clustering. Using a clustering approach, a training sample was created

that was 200% smaller than the largest sample studied, yet it achieved a 77% increase in

F1 score. This suggests that clustering may offer an effective alternative (or addition)

to increasing computing power when modeling “Big Data”.
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Chapter 1

Background

Artificial intelligence (AI) and other data science methods have pioneered evaluating

vast datasets across diverse domains. In fact, over the past decade there has been

a widespread embrace of AI techniques by forecasters and researchers, owing to their

effectiveness in various applications such as post-processing calibration, decreasing cog-

nitive load, and uncovering novel insights (McGovern et al., 2017). More recently, the

expansion of computational resources and data availability (e.g., Haupt et al., 2018b,a)

resulted in a spread of ML applications to different meteorological domains.

This dissertation covers the application of ML to three domains: hail prediction

and land cover classification, which have years of development, and above anvil cirrus

plume identification, which is relatively new to ML. The expansion of computational

capabilities increases AI’s potential applications in the Earth sciences and beyond, a

topic further discussed in the representative sampling section (Chapter 4). However,

experts, defined by their accredited scientific training and comprehensive knowledge of

a particular field, remain essential for successful ML modeling strategies and deploy-

ment.

The concept of “success” will be explored in detail, particularly regarding severe

hail prediction, in Chapter 3. Using these powerful ML models is only part of the

challenge; another part involves developing solutions for tasks previously difficult or

impossible to study. The progress in ML methodologies and capabilities in processing

high-resolution data enable more detailed investigations into phenomena that influence

1



our climate, such as the transport of water vapor (WV) to the upper troposphere and

lower stratosphere (UTLS) via Above-Anvil Cirrus Plumes (AACPs). This is espe-

cially important as the world deals with the increasing impacts of climate change and

scientists seek to understand and address these issues. More detail on how ML meth-

ods and increasing data resolution have been crucial for successful model development,

important for both climate impacts and protecting life and property, will be provided

in Chapter 2 that discusses AACP identification.

1.1 Above Anvil Cirrus Plume Identification

In the realm of climate studies, accounting for stratospheric WV is critical as its a po-

tent greenhouse gas, impacting both stratospheric cooling and surface warming. Even

minor increases in stratospheric WV (≤ 10%) can exert substantial influence on the

Earth’s radiation budget and climate dynamics (de F. Forster and Shine, 1999; Dessler

and Sherwood, 2004; Solomon et al., 2010) as greenhouse effects can result in a positive

feedback loop of surface warming. Furthermore, the enhancement of stratospheric WV

may trigger the activation of organic chlorine compounds, leading to the depletion of

stratospheric ozone (Anderson et al., 2012, 2017). These different aspects are impor-

tant to understand as our climate warms and threatens livelihoods. AACPs contribute

to stratospheric WV enhancement by at least an order of magnitude (Homeyer et al.,

2017; O’Neill et al., 2021; Gordon and Homeyer, 2022) and were associated with the

most significant WV increase in the stratosphere during NASA’s SEAC4RS campaign

over the Midwest United States. (Herman et al., 2017; Smith et al., 2017). Despite

the clear importance of AACPs to stratospheric WV, and consequently the climate,

there are still uncertainties about the frequency of WV transport to the UTLS via con-

vection, particularly AACPs. One challenge in cataloging AACPs is that their warm
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temperatures can cause cloud-top height retrieval algorithms to mistakenly identify

them as tropospheric features, leading to a misrepresentation of plumes (Setvák et al.,

2010).

With the advent of high spatio-temporal resolution data from visible (VIS) and in-

frared (IR) imagery, researchers have identified specific AACP characteristics. Plume

temperatures can exceed those of the surrounding anvils by more than 20 K (Brunner

et al., 2006). The warm anomalies within the plumes often contrast sharply with the

much colder tropospheric anvil IR brightness temperatures (BTs), resulting in recog-

nizable signatures such as “Enhanced-V” (EV, Brunner et al., 2006) or “cold ring”

signatures (Setvák et al., 2010). Some plumes however are associated with the typical

shadowing and smooth characteristics in VIS data but showing as cold (or colder) IR

temperatures than the surrounding anvil. Based on the work in Murillo and Homeyer

(2022), AACPs with warmer IR signatures (warm plumes) reside in the stratosphere

and are associated with lower tropopause heights/warmer UTLS temperatures, whereas

AACPs with colder IR plume characteristics (cold plumes) reside in the upper tropo-

sphere and are related to environments with higher tropopause heights/colder UTLS

temperatures (Murillo and Homeyer, 2022). This distinction lends to the importance

of identification of especially warm plumes for context with stratospheric water vapor

increases. Additionally, the change in IR temperature values for a plume could prove

challenging for identification when IR alone is input to a ML model.

Over the past 35 years, AACPs have been the subject of extensive study and have

been identified as precursors to severe weather events, as observed in VIS and IR

imagery (Fujita, 1982; McCann, 1983; Brunner et al., 2006; Setvák et al., 2010, 2013;

Bedka et al., 2015; Homeyer et al., 2017; Kunz et al., 2017; Bedka et al., 2018; Liles

et al., 2020; Mecikalski et al., 2021). Severe weather outbreaks often feature numerous

long-lasting AACPs, with these phenomena commonly found above severe convection
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worldwide. Bedka et al. (2018), analyzed over 4500 storms using combinations of radar,

VIS/IR imagery, and lightning dataset to identify 405 storms that produced AACPs.

The storms that produced AACPs were 14 times more likely to be severe compared

to convection without AACPs, and resulted in 85% of the total 807 events of hail

with diameters of 2+ inches (5+ cm) and EF-2+ tornadoes analyzed. Lending to

the ability for AACP identification for severe weather prediction, AACPs appear on

average 30 minutes before the first severe weather report produced by a storm. Where

radar coverage is lacking, a purely satellite-based AACP detection product could offer

valuable insight into storms likely to produce significant severe weather, aiding in

warnings and protection of people and property. GOES satellites offer continuous IR

and visible imagery, with observations collected at intervals as short as 10 minutes,

and as frequently as every 30 seconds during field campaigns or particularly impactful

weather events. Early detection of AACPs can provide warning lead time comparable

to that of expert forecasters from the NOAA National Weather Service (Bedka et al.,

2018),

Humans can manually identify AACPs, but the process is time-consuming and re-

quires extensive training to accurately label them. Developers greatly desire an auto-

mated approach to reduce their workload. The GOES-R Aviation Algorithm Working

Group (AWG) developed OT and EV/AACP detection algorithms using fixed crite-

ria of temperature differences between OTs/AACPs and the surrounding anvil (Bedka

et al., 2010; Bedka, 2011). However, this approach led to missed AACP detections.

Moving from fixed thresholds to a to network-based deep learning (DL) approach opti-

mized for spatial pattern recognition, the NASA LaRC explored DL approaches for OT

and AACP detection using various satellite imagery sources, radar data, and human-

based AACP identifications for training (Bedka et al., 2018; Cooney et al., 2024). Using

convolutional neural networks (CNNs) and Unets trained with channels of 0.5 km VIS
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reflectance and 2 km IR BT, the DL approach resulted in a validation intersection over

union (IoU) of 0.3313. IoU relates how well a semantic segmentation model fits by

dividing true positives (“hits”) by the sum of the false positives (“false alarms”), true

positives (“hits”) , and false negatives (“misses”) (Liles et al., 2020). An IoU of 1.0

is considered perfect, while values below 0.5 indicate that a predicted object is falsely

identified.

Other approaches employing ML models on remote sensing data for convective pre-

diction include the research conducted by the NOAA/CIMSS ProbSevere team that

focused on identifying patterns atop convection indicative of severe weather (Cintineo

et al., 2020). Utilizing approximately 64x64 km subsets of geostationary (GEO) im-

agery, storms were categorized as either ”intense” or ”non-intense”, and a convolutional

neural network (CNN) was applied to derive a ”Probability of Intense Convection”.

While initial results were promising, this approach is less focused on storm cell-scale

physical processes and operates without radar data. Apart from the ProbSevere team,

Mecikalski et al. (2021) found that when using a random forest model to determine if

1-min satellite imagery is beneficial for severe weather warning detection, the presence

of an AACP was in the top three most important variables in distinguishing severe

convection from nonsevere convection. Kim et al. (2017) employed traditional machine

learning models to identify overshooting tops, achieving a Probability of Detection

(POD) of 77.06% and a False Alarm Rate (FAR) of 36.13%. Kanneganti (2020) used

a CNN for overshooting top detection, resulting in a method with a POD of 79.31%,

FAR of 90.94%, and critical success index of 0.088. Additionally, Lee et al. (2021)

used satellite data input to a neural network to detect regions of convection. Cintineo

et al. (2020) predicted convection using satellite and lightning data with a CNN. Fi-

nally, Wang et al. (2021) employed a random forest (RF, Breiman, 2001) algorithm to

predict cloud-top height for tropical overshooting convection. Notably, the previously
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mentioned algorithms do not evaluate data at the pixel scale and therefore cannot

mirror human analysts.

In this study, we combine multi-sensor, multi-spectral data processed through state-

of-the-art methods to offer a comprehensive understanding of the capabilities and lim-

itations of DL in analyzing and detecting severe and tropopause-penetrating convec-

tive patterns within geostationary (GEO) imagery. The establishment of open-source

methodologies for automated severe storm detection aims to support the Earth Science

research community, as well as increase opportunity for transition to operations. This

approach aims to identify AACP features at the individual pixel level, as this fine scale

resolution is crucial for discerning the processes generating AACPs. The objective is

to accurately map out the occurrence of these storms in terms of time and location

to support NASA’s research objectives and the severe weather, aviation weather, and

climate research communities.

1.2 Severe Hail Prediction

Staying within the convective meteorology domain, we pivot to an area with sev-

eral years of research and collaboration: severe hail prediction. According to Murphy

(1993), a well-rounded forecast comprises three essential components: quality, or align-

ment with observation; consistency, reflecting how well a prediction aligns with fore-

caster judgment; and value, measuring its utility to end users. DL models can alleviate

this spatio-temporal disparity through 2D convolutional methods, as applied to AACP

identification, however conventional machine learning (ML) models typically prioritize

quality by closely aligning with observations, sometimes neglecting consistency across

spatial and temporal domains.
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Despite the significant improvements demonstrated by AI/data science techniques

in various high-impact weather domains, their operational integration is not straightfor-

ward. Forecasters must trust the forecasts generated by such techniques, as highlighted

by experiences in projects like HWT/PHI (Karstens et al., 2018). Unlike previous years,

multiple different ML models were submitted to the 2020 Hazardous Weather Testbed

Spring Forecasting Experiment (HWT, Clark et al., 2021), underscoring the recent pop-

ularity of ML model development for predicting convective hazards (e.g., Burke et al.,

2020; Loken et al., 2020; Sobash et al., 2020). The growth of novel dataset predic-

tion with ML models underscores the importance of expert knowledge and empirical

methods in developing not only quality ML models but also consistent predictions.

One hazard that ML models have shown success at predicting, after expert tuning and

input, is severe hail.

Without accounting for physical differences in data across time or space, Gagne

et al. (2017) and Burke et al. (2020) demonstrated that an object-based RF method

can produce quality forecasts across the contiguous United States (CONUS). Although

skillful, under-representing the role of spatio-temporal variability of severe thunder-

storm development (e.g., Kelly et al., 1985; Johns and Doswell, 1992; Shafer et al.,

2010; Grams et al., 2012; Krocak and Brooks, 2018) on hail formation may result in

models unable to capture important local environmental patterns (Smith et al., 2012;

Allen et al., 2020). While emphasizing model proficiency is tempting, prior research

suggests a preference among forecasters and other scientific users for physics-based

models (McGovern et al., 2022). This makes sense as even if forecasts are accurate,

optimal performance can come at the cost of learning non-physical relationships as

most ML models do not generally model physical relationships between the inputs and

observations (McGovern et al., 2019a).
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In an effort to maintain optimal ML forecast quality and consistency, selecting

physically-relevant ML training data for a given problem not only increases forecast

interpretability without increasing model complexity but reduces computational load

on model developers during the tuning stage. One method for selecting training data

that considers thunderstorm development variability is through explicit bounding boxes

in time and space (Hill et al., 2020). However, Burke (2019) found that strictly limit-

ing the training dataset negatively impacts the RFs ability to learn useful prediction

patterns. Hill et al. (2020) similarly reported decreased hail forecast performance in

regions with low event frequencies. Additionally, hail forecasts calibrated on strict

domain-dependent environmental parameters may be suboptimal outside a specific

area and lack value (Brimelow et al., 2006; Jewell and Brimelow, 2009; Allen et al.,

2020).

In this dissertation we introduce a procedure for statistically choosing weights ap-

plied to severe hail predictors, where storm examples in the relevant time (space)

receive the highest weights. This method provides a flexible framework to “choose”

which training data a RF model deems as important without increasing developer load.

Thus, preserving the quality of the ML framework from Burke et al. (2020), while pro-

viding more information to forecasters and a potentially more consistent procedure

for processing ML training data for optimal severe hail prediction. In fact, applying

physics-based modeling techniques has shown promise at improving consistency while

maintaining or even further improving quality (e.g., Willard et al., 2020; Beucler et al.,

2021).

In addition, we demonstrate that the flexible method can be applied to multi-

ple different domain problems with little oversight and provide ML models that learn

environmental patterns consistent with previous literature detailing thunderstorm de-

velopment variability in time and space, rather than the data with the highest sampling
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frequency. As predictions derived from this ML method were submitted to the 2021

HWT, we were able to receive feedback on the algorithm. This provides a unique

opportunity to incorporate different aspects of how trust plays a major role in ML

predictions used by forecasters.

1.3 Representative Sampling of Global Data

The last part of this dissertation focuses on creating training datasets from extensive

remote sensing data, aiming to capture regional and global patterns with a minimal

number of samples. Abundant data resources, termed “Big Data”, are the standard

in today’s technological landscape, particularly in remote sensing. For example, the

Landsat satellite observes the globe every 16 days at a 30m spatial resolution, archiving

data back to 1972; MODIS data are available at sub-1km resolutions twice daily, back

to 2000; VIIRS, launched in 2011, is sending back daily global data at 375-5600m

resolution every day. Although a significant volume of global data is at the disposal of

the remote sensing community, quickly extracting valuable information from the data

deluge is a challenge.

Traditional ML techniques, optimized for various data types (i.e. RGB images,

audio, text, etc.), grapple with complexities in adapting to the nuances of remote

sensing data (Vali et al., 2020). Differing from standard images input to ML models,

different spectral signatures can indicate the same object while similar signatures can

be attributed to different objects, because signatures can change depending on the

materials, environmental conditions, seasonal variations, etc, within underlying images

(Bao et al., 2013; Chi et al., 2016). The complexity of globally classifying images is

heightened by the restricted range of spectral bands, leading to similarities in spectra
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among different classes due to the overlap in signatures from distinct features (Zhou

et al., 2020).

The effectiveness of utilizing RFs for remote sensing challenges relies heavily on the

characteristics of the training data. In the image classification case, RF classifiers are

sensitive to spatial autocorrelation of classes and the proportional representation of

various classes within training samples (Dalponte et al., 2013; Millard and Richardson,

2015). Complications arise when separating remotely sensed data, as spectral band

data are limited to broad wavelengths that can make distinguishing subtle changes

in the Earth’s surface challenging (Lu and Weng, 2007). Overlapping classes, and the

challenge in class separation, can lead to a strength of the RF algorithm, bootstrapping

to reduce the impact of outliers and mislabeled data, becoming a weakness. Where

without balanced classes, a bootstrapped sample likely will contain examples solely

from an individual class. This creates poor outcomes for classification accuracy with

the minority class (Chen and Breiman, 2004). Consequently, when employing RFs

with spectral data, the challenge lies in handling overlapping classes, with intentional

sampling choices being essential for a successful result.

The importance of inter-class balanced training data, meaning all classes are evenly

represented in a training dataset, is well documented. Implicit to training data sam-

pling, intra-class variations are just as important to account for. This importance is

seen in land cover products, where land classes can be separated into tree cover versus

barren areas (Zhou et al., 2020). In fact, Zhu et al. (2016) state that a robust ML

model that can classify at large (i.e., global) and small (i.e., regional) scales must cap-

ture the variation in each individual class. As mentioned previously, one strength of the

RF method is bootstrapping multiple trees, however balanced classes are not the only

pitfall that can weaken the ensemble-based method. Homogenous and heterogenous

samples of each class are necessary to represent not only the different predictor classes,
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but the intra-class variability (Stanimirova et al., 2023). Without this representation,

the stability and robustness of random forest model output can decrease.

Stanimirova et al. (2023) highlight intra-class variation as a crucial element in

representing individual regions within a global training dataset. By aggregating two

decades of global Landsat data for land cover classification, the researchers crafted a

high-quality dataset that captures homogeneous examples of land cover types through

image analysis. They complemented this process by incorporating heterogeneous land

cover signals, identified through unsupervised learning methods. The development of a

diverse training dataset necessitated the collaboration of multiple image analysts and

significant computational resources to ensure its representation at both regional and

global levels. Streamlining the human and computational resources involved would

enable more extensive exploration within the training dataset, shifting the emphasis

away from dataset creation itself. Ramezan et al. (2019) observes the difficulty of

selecting samples from high-resolution remote sensing maps, particularly within ex-

tensive regional datasets, a challenge further compounded on a global scale. An ideal

solution would involve an unsupervised automated sampling approach that is efficient,

reproducible, and capable of generating quality samples.

To assess the capability of an automated method to create a data sample rep-

resentative of balanced inter-class and intra-class variability, the authors perform a

straight-forward land cover classification task—land versus water. Large remotely

sensed datasets, both temporally and spatially, offer a clear avenue for assessing the

advantages and disadvantages of automating the sampling procedure, and the potential

for achieving high-quality image classifications from a training sample representative

of both regional and global data distributions.
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For completeness’ sake, we investigate multiple sampling strategies applied to a

global archive of Moderate Resolution Imaging Spectroradiometer (MODIS) data. The

main four strategies examined in this research are as follows:

• Simple random sampling:

– 5 million examples

– 800k examples, plus deliberate sampling

– 27k examples

• Automated stratified random sampling

– 27k examples

where an individual pixel of MODIS data is named an “example”. We compare the

above-mentioned sampling techniques against a long-standing water mask product,

MOD44W (Carroll et al., 2009, 2016). However, this sampling method is not restricted

to water masking, and can be applied with tree cover masking, and further beyond

remote sensing applications.

1.4 Goals

This dissertation explores identifying AACPs, crucial severe weather indicators, on a

pixel scale to emulate human analysts and paving the way for further research be-

yond the training dataset domain for plume identification. In addition, introduced is

a framework for severe hail prediction that adjusts the importance of individual data

points before input to an RF. Furthermore, this dissertation examines automatic train-

ing data selection from large datasets, focusing on remote sensing data to determine

the minimal training sample required to represent vast datasets on global and regional
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scales. Overall, the dissertation enhances the understanding of how ML can be applied

across various scientific domains, addressing specific challenges in each domain.
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Chapter 2

Real-Time Above Anvil Cirrus Plume Identification

In visible imagery, the intense updrafts associated with overshooting tops produce

distinct textures and cast shadows on the surrounding anvil cloud, especially when

the sun is near the horizon. Meanwhile, AACP temperatures can exceed those of the

surrounding anvils by more than 20 K (Brunner et al., 2006). The warm anomalies

within the plumes often contrast sharply with the much colder tropospheric anvil IR

brightness temperatures (BTs), resulting in recognizable signatures such as “Enhanced-

V” (EV, Brunner et al., 2006) or “cold ring” signatures (Setvák et al., 2010). In

this study, we use state-of-the-art deep learning methods to offer a comprehensive

understanding of the capabilities and limitations of deep learning in analyzing and

detecting severe and tropopause-overshooting convective patterns within geostationary

imagery

This dissertation integrates multiple satellite-derived datasets into a deep learning

model, complemented by expertly annotated hand-drawn labels. The predictor data

includes visible (VIS), infrared (IR), and the difference between multiple IR bands

(Figure 2.1). Visible data (band 0.64 µm) aids in discerning shadowing effects from

cirrus plumes and the bubbling associated with overshooting tops (OTs). IR data

focuses on the water vapor (WV) absorption band (6.2 µm), capturing temperatures

correlated with OTs and plumes, as brightness temperatures (BTs) are lowest at the

coldest temperatures (lowest WV). The IR Difference variable, derived from the dif-

ference between the 6.2 µm and 10.8 µm IR bands, typically yields negative values.
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However, under specific conditions like very cold cloud tops and temperature inversions,

such as those supporting AACPs, the IR Difference variable can show positive values

(Schmetz et al., 1997; Setvák et al., 2008). The hand labels consist of two classes, each

pixel either within an AACP or outside. Experts hand labeled plumes for 12 days in

2019 including 30 April, 1 May, 5-8 May, 17-18 May, 20-21 May, 26-27 May. The days

in 2019 are used for testing, with a separate day of hand drawn labels from 13 May

2020 used for validation.

2.1 Data Processing

Originally on a 2,000 by 2,000 grid of 1 km grid spacing, the input label data are

sliced into 128 x 128 grids (determined to be the best based on initial hyperparameter

tuning) with an overlap of 8 grid points. The overlap allows for stitching of tiles

together to create a whole image at the end of the testing process. The slices must

contain at least 10% pixels labeled as AACPs to be included in the training dataset.

Each slice is then matched with the corresponding predictor data at that timestep and

location. Multiple different percentages of pixels were tested but 10% provided not only

a larger dataset for training the deep learning model, but also allowed for sliced labels

Figure 2.1: Gridded and normalized visible (0.64 µm, left), infrared (6.2 µm, center),
and infrared difference (6.2-10.8 µm, right) data from 26 May 2019. Cyan contour is
the expert label of a plume for this scene.
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with large areas of the patches not containing plume labels. Training a model with

more ”negative” pixels provided a type of regularization that decreased probabilities in

areas where a plume was not labeled, based off the validation dataset. The predictor

data are normalized using the minimum and maximum of the data (each data point

has the minimum value subtracted and subsequently divided by the range of the full

dataset). This method was chosen because of the lack of outliers in the predictor data

and the choice between standardization and normalization did not affect the validation

results in substantial ways. The training minimum and maximum values are saved

and applied to the validation and testing data, following standard ML practices to

ensure the model generalizes well from training to validation/testing data. Further,

data augmentation is applied to the training dataset consisting of 3407 slices of 128 x

128 grids input to a deep learning architecture. Augmentation is performed using the

ImageDataGenerator class within keras, with a rotation range of 15 degrees for each

image, a width shift range of 0.2 and a height shift range also of 0.2. These parameters

were chosen given previous work on using the ImageDataGenerator class and ranges

that would be appropriate for learning about plumes without creating images that are

unrealistic.

2.2 Methods

The chosen machine learning model for this dataset is a Unet, given the ability of

the Unet to learn spatial properties using convolved weighting parameters but also

outputting predictions on the same scale as the input data due to the upsampling

layers. More sophisticated Unet models can learn more complex spatial relationships

using skip connections between the downsampling and upsampling layers. However, for

this study, the regular Unet is employed as a first try. Hyperparameters that create the
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most accurate model are chosen using a cross-validation approach, scored based off the

correspondence ratio, or the intersection of two datasets, images in this case, divided

by the union of both datasets (Stensrud and Wandishin, 2000). As the Unet outputs

values between 0 and 1, a thresholding technique is used on the validation data. Values

greater than a given threshold between 0 and 1 in steps of 0.05, are transformed to 1.

The parameter IOU is determined based off the predicted validation labels converted

to 1 and 0 using the thresholding and the best IOU and threshold parameter is saved.

One day out of the total twelve mentioned above is reserved for validation, with

each day cycled through until all days are used to validate the model that trains using

the other data. Although the data are close together in time (days apart) and space

(all taken from West Texas), AACPs do not occur longer than a few hours at most

and these events have little overlap, therefore there is little chance for autocorrelation

and overlap in conditions in time for the data chosen as validation. However this

does have implications to the robustness of the model to identify plumes in different

regions and at different times of the year. Nevertheless, the model with the highest

validation IOU is saved and compared togother models with different loss parameters

and input predictors. This process, also called hyperparameter search, is accomplished

over different combinations of hyperparameters to create the most skillful model.

To determine which combination of predictors is best for predicting AACPs, mul-

tiple models are created with varying predictors. One model contains all three input

variables (VIS, IR, IR difference), another excludes VIS data but retains the IR vari-

ables, and so on for all the combinations of input predictors. Both the best and worst

outputs (based on IOU score) are shown for certain models (for the sake of brevity).

The best and worst cases are examined to indicate where the strengths of the mod-

eling technique lie as well as potential challenges, both important information when

using AI models in a real-world scenario. In this study, multiple Unets are compared
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because of the different combination of input predictors and the resulting quality of

the predictions. Therefore, each Unet will be slightly different because they are tuned

for the given dataset. Details of each individual Unet are included in Appendix Table

5.1.

The best model with the various choices of predictors is examined with Class Activa-

tion Maps (CAMs, Zhou et al., 2016) to investigate what aspects of the input predictor

data the deep learning models highlight, as part of the analysis of this method applica-

tion in a new domain. For a given image, the CAM algorithm sums the weights learned

from the DL model corresponding to the class that is selected. Meaning, the weights

that correctly predict a class of 1, given that the class 1 is what the user is interested in,

are the only weights applied throughout the network and then summed at the end of

the process. This produces an average “heatmap” of where in an image the network is

highlighting for its prediction. Typically, CAMs are evaluating an entire image with a

single classification in the case of traditional CNNs, however Vinogradova et al. (2020)

extended this procedure to be able to use 2D output from Unets by using a “region

of interest” parameter. The region of interest in this study would be the areas that a

DL model classifies as “plume” labels, and these data alone are applied to the CAM

method and then regridded onto the total input predictor shape. While CAMs can be

used after the network has been trained and implemented as an evaluation step, the

algorithm is also useful in the debugging stage to determine if a DL model is relying

upon physically relevant areas within an image, or spurious image noise that may or

may not be relevant to a given problem domain.
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2.3 Results

The ML plume classifications are exclusively examined in real-time and apply to that

specific timestep, with the following time-step being one minute later according to the

input remote sensing data. Classifications occur in western Texas. To evaluate the

performance of the various Unet models based on their input data, both quantitative

and qualitative assessments are examined. Quantitatively, boxplots of ML plume clas-

sifications indicate the IOU values for all the different 128 x 128 grid scenes available on

13 May 2020. Qualitatively, two scenes from specific ML models are analyzed visually

to investigate further the reasoning behind an individual models classifications. These

scenes feature the input predictor variables overlaid with expert truth labels and Unet

model predictions, along with class activation maps indicating the basis of the Unet’s

predictions in each scene. Scene selection was based on the 128 x 128 grid with the

highest and lowest IOU. This combined quantitative analysis, covering all available

data for the test date, and qualitative investigation provides a more nuanced insight

into each selected model, shedding light on their learning processes for potential future

deployment or further exploration into model training.

2.3.1 Quantitative

Overall, any combination of variables on average outperforms the Unet models trained

with a single variable (Fig. 2.2). The IR-only ML model produces the highest IOU

score, yet the model displays the widest range of performance values spanning approxi-

mately 0.36 - 0.74 IOU with an average of 0.37. The Unet model trained with VIS-only

data outputs a similar average IOU at 0.35 with a smaller range in values (0.32 - 0.6)

but overall shows less skill than the IR-only model. The IRDiff-only Unet outperforms

the other two single-variable models in average IOU at 0.4, however displays a smaller
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range of output values from 0.37 - 0.45. This indicates that the IR-only and VIS-only

models can outperform the IRDiff-only trained Unet on individual scenes, however the

likelihood of outperformance is dependent on an individual case and not overall model

performance.

Of the different Unets trained with a combination of input variables, the IR/IRDiff

model outputs the lowest average IOU, 0.44, and skill scores ranging from 0.43 - 0.54.

The VIS/IR model produces an average IOU of 0.55, with overall values ranging be-

tween 0.48 - 0.66. Falling sligthly behind the VIS/IR trained Unet, the VIS/IRDiff

Unet showcases an IOU of 0.51, with a very small range of output values from 0.45

- 0.53. Finally, incorporating all three variables results in ML classifications with a

higher average IOU value (0.47) than the IR/IRDiff model (0.44) but performs worse

compared to the VIS/IR Unet (0.55) and VIS/IRDiff Unet (0.51). This suggests that

introducing the IRDiff parameter does not offer substantial advantage to plume classi-

fication when compared to the combinations of VIS/IR. This is potentially due to the

documented inconsistency in IRDiff providing distinct character within AACPs, where

some events exhibit strong features while others lack noticeable distinctions.

2.3.2 Qualitative

For the qualitative visualisation, it’s important to note that higher IR or IRDiff normal-

ized values relate to colder temperatures, while lower values are indicative of warmer

brightness temperatures. The darkest areas represent the coldest regions and are more

likely to be linked with an OT.

Of the different input feature combinations to investigate, the VIS/IR ML model

was selected to illustrate the qualitative performance of the Unet that produced the

highest average IOU for the test case. Both the patch with the highest IOU and the
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Figure 2.2: Boxplots showing the distribution of IOU values for all gridded data on
13 May 2020. Each boxplot represents the IOU value comparison between the expert
labels and the Unets trained using the labeled input features. The rec line on each plot
is the average IOU value, while the purple line is the median.
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one with the lowest IOU are displayed for a more rounded interpretation of how the

Unet processed specific input data. The patch with the highest IOU (Fig. 2.3a,b)

reveals a large area of ML plume classification, larger compared to the expert labels.

In this scene, the Unet particularly emphasizes AACP-related cloud structures in the

visible data regions. Areas with minimal AACP-related cloud shadowing collocated

with colder IR temperatures are also positively identified as plume regions.

The bottom row of Figure 2.3 illustrates the output of the segmented gradCAM

(2.3 c,d). Regions highlighted in red are considered most crucial in predicting plumes,

whereas those in blue are of lesser importance. The VIS/IR model focuses on colder

IR temperature especially evident at the top of the scene. The highest importance

covers the area nearest to the maximum in normalized IR values, indicating the likely

presence of an OT. Another area with high importance, although not highlighted by

the expert labels as being a plume, shows the ML model keying in on higher IR values

towards the bottom of the scene. This may signify a plume extending beyond the

gridded scene or could underscore the significance of AACP edges (and emergence of

the anvil IR emission) to the prediction process. The combination of VIS and IR data

to a Unet demonstrates how a ML model can highlight pertinent information for AACP

classification, leveraging potential OT locations alongside VIS imagery indicating the

presence of AACP-related cirrus clouds.

For the scene with the lowest IOU score produced by the VIS/IR Unet, expert

labels delineate a diagonal plume identification from the left to the right of the image

(Fig. 2.4 a,b). The ML model classifies most of the scene pixels as part of a plume.

However, areas devoid of the plume classification include the upper-left region and a

section in the middle of the image. Notably, for this patch of VIS/IR data, the majority

of the area classified as a plume seem associated with cirrus clouds alongside gradients
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Figure 2.3: Individual features used for prediction with a Unet, overlaid with label
(upper plots, cyan) and ML predictions (upper plots, pink). Also overlaid with the
input features are class activation maps (lower plots), showing heat maps of importance.
Individual case data is associated with the highest IOU score between the label and
ML prediction.
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of IR values compared to Figure 2.3. There isn’t as pronounced a presence of cirrus

clouds downstream of an overshooting top as in the scene with the lowest IOU score

as compared to the highest IOU scene. This suggests that a neighboring OT may not

be captured within the image patch. Given the reliance of the high-IOU prediction on

this aspect, the absence of an OT within the scene (although likely present outside the

patch) may have influenced this case.

When examining the importance values in the bottom row of Figure 2.4 it becomes

apparent that the region of cirrus clouds closest to higher normalized IR values holds

the highest importance, where the probability of upward motion and the presence of

an OT is heightened (Fig. 2.4c,d,). Another region of notable importance occurs in

the regions with high gradients in VIS shadowing, albeit with less prominent gradients

in IR temperatures. Based on the assessment of the Unet’s performance, this low-IOU

scene suggests the necessity for larger scenes to effectively capture extensive areas when

gradients lack distinctness. Moreover, employing a smaller sliding scale than 8 pixels

could generate more patches for training, enabling the capture of additional segments

of large-scale plume environments and ultimately refining plume classifications.

Next, the IR-only Unet is examined because of the large range in IOU values for

the test date and overall greatest skill of the Unet models of this study. Reviewing the

scene with the highest IOU, there is substantial areal agreement between the expert

labels and ML classifications (Figure 2.5 a). In contrast to the previous figure, the

segmented gradCAM output indicates the highest importance is in regions with the

warmest IR temperatures. Since warm plumes are often characterized by their elevated

temperatures resulting from gravity wave breaking and entrainment of downstream

warmer temperatures compared to the rest of the anvil, this suggests that the Unet

model has learned to associate warmer (lower) IR temperatures (values) with plumes.
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Figure 2.4: Individual features used for prediction with a Unet, overlaid with label
(upper plots, cyan) and ML predictions (upper plots, pink). Also overlaid with the
input features are class activation maps (lower plots), showing heat maps of importance.
Individual case data is associated with the lowest IOU score between the label and ML
prediction.
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This differs from the VIS/IR model, which emphasized the proximity of cirrus clouds

to the colder IR temperatures of the OT.

In the scene with the lowest IOU recorded for the IR-only ML model, the expert

labels delineate a plume diagonally spanning Figure 2.6a, while the Unet identifies a

smaller region to the right of the expert labels. Peak importances are nearly directly

collocated with the ML plume classifications, in an area with relatively warmer IR

temperatures. In contrast, the manually labeled AACP broadly encompasses lower

IR temperatures, suggesting that this likely also represents a cold plume case. Unlike

the VIS/IR model, the IR-only Unet appears to classify images based on the location

of lower (warmer) IR values (temperatures), particularly those surrounded by large

gradients of higher (colder) IR values (temperatures), as is the case for a warm spot

with a cold ring or enhanced U/V signature. One explanation for the disparity in IR-

only model outputs could be that the ML model more easily captures warm plumes,

a signature that aligns with the pattern observed in the high-IOU scene. This is a

potential bias within the expert labels that favor warm plumes, characterized by plume

regions with distinctly warmer IR temperatures compared to the surrounding anvil. In

contrast, cold plumes may exhibit IR temperatures equivalent to or colder than the

surrounding anvil, like the scene with the low-IOU. Since the training dataset does

not distinguish between cold and warm plumes, warm plumes may be more frequently

labeled due to their more ”distinct” IR signatures. It is also possible that these events

predominantly involve warm-plume-only occurrences. Murillo and Homeyer (2022)

undertook extensive efforts to identify a comparable number of cold and warm plumes

across seasons for analysis. Often, one plume type dominates an event.
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Figure 2.5: The same as Figure 2.3 with a Unet trained with only infrared data as an
input feature.
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Figure 2.6: The same as Figure 2.4 with a Unet trained with only infrared data as an
input feature.
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2.4 Discussion

Based on the results above, one input variable alone struggles to train a Unet for

consistently skillful plume classification with a limited dataset. For a single scene, the

IR-only model performs the best on the test data (IOU of 0.74) while the VIS/IR

model on average shows the greatest skill (IOU of 0.55). When warm plumes are

present, the IR-only model shows great skill in focusing predictions to smaller areas

than the VIS/IR model. A reason for the potentially higher performance ratings with

the VIS/IR model is the combination of data that effectively leverages cirrus plume

and overshooting top locations with warm plumes.

One caveat of this research centers around cold and warm plume presence, where

the type of plume is a strong determining factor of classification success or failure. The

lack of differentiation between cold and warm plumes in this study’s processed data

is an important limitation. A reason for the limitation between cold and warm plume

analysis is due to the prevalence of warm plumes over cold plumes, especially high-

lighted by Murillo and Homeyer (2022). A repository of thousands of cold and warm

plume cases could potentially help solve the issue of a ML model to distinguish in

plume features however within this research there was a very limited training dataset,

only ∼ 4000 training images and around 500 testing. One way to address this issue is

adjusting how data are pre-processed, such as further augmenting the training scenes

with larger ranges of a change in scene rotation. In addition, implementing a smaller

window of slicing and potentially a larger area of gridding could enhance training;

however, this approach restricts the number of available training scenes. The decision

to use a 128 by 128 grid was based on its ability to capture the largest extent of a

plume identifiable without excessively reducing the input dataset. Employing transfer
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learning to establish a larger repository in a semi-supervised manner is another pro-

posed option. A ML model can initially identify plumes, followed by expert validation

of their accuracy, thus expanding the dataset. These annotated examples can then be

used to train another model and update it with new labels.

Another caveat of this research pertains to potential errors in the labels generated by

experts, some of which were undergraduate students trained by experts for a summer

project. Human subjectivity means that one expert may label different regions as

containing a plume, compared to another expert. To address this issue, mitigation

strategies could involve incorporating a normalization factor to adjust predictions from

binary values (1 or 0) to probabilities.

This approach would assign higher probabilities (closer to 1) to pixels closer to

the labeled plume areas, gradually decreasing as distance increases but remaining non-

zero. Empirical testing is essential to determine the optimal extent and shape of this

probability decrease, taking into account factors such as storm motion. A probabil-

ity decrease that considers storm motion would be particularly beneficial for training

with a regression dataset rather than relying solely on binary classification. Further

empirical testing is necessary to establish a probability threshold for converting plume

probabilities back to binary classifications.
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Chapter 3

Day-Ahead Severe Hail Prediction

In this study, the High-Resolution Ensemble Forecast System version 2 (HREFv2)

serves as the dataset input for the machine learning models tasked with predicting

severe hail occurrences across the CONUS. The HREFv2, a convection allowing model

(CAM) ensemble, encompasses various microphysical schemes, four time-lagged mem-

bers, planetary boundary layer schemes, grid spacing, and other parameters to enhance

ensemble diversity (e.g., Jirak et al., 2018; Burke et al., 2020; Loken et al., 2017). Since

2021, 2 members have been omitted from the ML model’s training and prediction, as

they are set to be replaced in future HREF versions leading to only six of the eight

HREFv2 members used for training. As each ensemble member data are trained sep-

arately, minimal changes were needed to adjust the forecast algorithm.

3.1 Data Processing

For the mapping of input feature variables essential for severe hail prediction, the ML

models utilize the Maximum Expected Size of Hail (MESH, Witt et al., 1998), a product

derived from NOAA/NSSL Multi-Radar Multi-Sensor radar data (Zhang et al., 2011;

Smith et al., 2016). The dataset is partitioned into training, calibration, and testing

sets to ensure model independence and robustness. Training data comprise HREFv2

and MESH records from April 1 to July 31, 2017, May 1 to August 31, 2018, and May

1 to August 31, 2019, totaling approximately 660,000 storm instances. The calibration
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set spans May 1 to August 31, 2020, encompassing at least 226,000 storms. The testing

set contains 173,000 storms occurring between May 1 and July 31, 2021. Notably, the

2017 training period differs due to data availability during the initial operational phase

of HREFv2. Since adding weights doesn’t affect data preprocessing, both unweighted

and weighted ML models undergo training, calibration, and testing using the same

datasets.

As in Burke et al. (2020), this study uses the HREFv2 and MESH datasets as

input RFs for severe hail prediction. RFs are chosen for severe hail forecasts due to

their speed in training and forecasting, computational efficiency, and cost-effectiveness

when used in an operational setting. They excel in predicting rare events compared to

linear models (Gagne et al., 2017; Herman and Schumacher, 2018), reduce model bias

and variance (Breiman, 2001), and are easily interpretable (Herman and Schumacher,

2018), making them ideal for post-processing. Different pre-processing settings are

implemented to address challenges noted in previous ML studies using this model.

An object-based framework is applied to identify and track storm objects in both

predictor and observational datasets over time and space. Storm objects are initially

defined in regions where values exceed a user-defined threshold at a single time step.

An enhanced watershed algorithm (Gagne et al., 2017) expands the object until the

minimum threshold is met or the area exceeds 100 km2. Objects smaller than this

area threshold are excluded from the processed dataset. Storm objects within 240 km

of each other between time steps are merged to form storm tracks. Predictor storm

tracks are determined where Max Hourly Vertical Velocities (MAXUVV) exceed 8

ms−1, but additional predictors are necessary for accurate hail formation prediction.

Additional variables are extracted from the storm tracks, as detailed in Table 3.1.

Statistical ML models require one-dimensional input data, so the standard deviation,

skew, mean, max, and 10th and 90th percentiles of each predictor variable are extracted
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from the storm tracks. This creates a dataset with multiple values for each feature

predicting severe hail. Observations, or labels, are identified where MESH values exceed

12 mm (lowered from 19 mm in previous studies to prevent overfitting and the frequent

prediction of severe hail). These changes were made to ensure the ML framework finds

enough non-severe storm objects to avoid over-predicting severe hail.

Table 3.1: HREFv2 variables input to ML models (Burke et al., 2020). Geopotential
height, U wind, and V wind features are extracted at 500, 700, and 850 hPa. Tem-
perature and dew point temperature are additionally extracted at 1000 hPa. CAPE is
convective available potential energy and CIN is convective inhibition.

Variable Level (s) Type Variable Level (s) Type

Max Hourly Vertical Velocity - Storm Geopotential Height Multiple Env

Storm Relative Helicity 1 and 3 km Storm U Wind Multiple Env

Max Hourly Downward Velocity - Storm V Wind Multiple Env

Max Hourly Updraft Helicity 2-5 km Storm Max Hourly U Wind - Env

Precipitable Water - Env Max Hourly V Wind - Env

Temperature Multiple Env Surface Lifted Index - Env

Dew Point Temperature Multiple Env CAPE - Env

CIN - Env

In the final step, predictor storm tracks are matched with observational storm

tracks based on the distance criteria specified by Gagne et al. (2017). If an observed

MESH track is within a certain distance of a predictor storm track, it is classified as

hail-producing (binary). These classifications are used as input for an RF classification

model. Additionally, shape and scale parameters are extracted from the matched

MESH storm tracks using a gamma distribution. These parameters serve as labels to

train two separate RF regression models for predicting specific hail sizes, only for the

storm tracks identified as hail-producing by the previous RF classification model. For
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more detailed information on the pre-processing method, refer to Burke et al. (2020)

and Gagne et al. (2017).

3.2 Unweighted Method

The unweighted ML framework for predicting severe hail from high-resolution data

uses RF models, with an isotonic regression model for calibrating RF outputs. Each

member of the HREFv2 is trained individually in this framework. Initially, predictor

storm tracks and their binary hail-producing labels are inputs to a RF classification

model to predict if a storm track will produce hail. If classified as hail-producing,

the storm track is then input into two RF regression models. These regression models

predict the shape and scale parameters of a gamma distribution to describe the possible

distribution of hail sizes for the hail-producing track.

For each hail-producing storm track, MAXUVV pixel values within the storm track

are compared to a percentile distribution derived from all MAXUVV values in the

training dataset. The pixels in the storm track are then assigned the corresponding

percentile value for hail size from the predicted gamma MESH distribution, where the

distribution is based on the shape/scale parameters identified using the RF regressor.

For instance, if a pixel with a MAXUVV value of 22 m/s is in the 45th percentile of the

MAXUVV values in the training dataset, it will be matched with the 45th percentile

gamma MESH value. This assigns predicted hail sizes to each grid point, allowing the

ensemble to predict hail sizes for storm objects. Storm objects with hail sizes over 25

mm (severe hail) and 50 mm (significant severe hail) are assigned a binary label. The

combination of ensemble members predicting severe or significant severe hail for a given

pixel is converted into a probability. An isotonic regression model then calibrates these
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neighborhood maximum ensemble probabilities, resulting in more skillful and reliable

forecasts, with MESH values as the verification baseline.

3.3 Weighted Method

In the unweighted framework, each predictor storm track is assigned a uniform weight

of 1. This means that the statistical values extracted from each storm track are equally

likely to be classified as ”important” by the RF model. By introducing weights, the

likelihood that a specific storm track is deemed important increases, thereby influencing

the decision tree splitting process more substantially.

Specifically, weights affect the likelihood that a split will occur through the “mini-

mum impurity decrease” parameter. If the improvement in impurity (Equation 3.1) is

less than or equal to 0, then the node will split.

Nparent

Ntotal

∗ (impurityparent −
Nright

Nparent

∗ impurityright −
Nleft

Nparent

∗ impurityleft) (3.1)

Normally the N fields are example counts, however when weights are greater than

1 the counts become a weighted sum. With higher N values for the data points with

greater weights, this decreases the improvement in impurity score without needing to

add more examples, thus increasing the likelihood of a node splitting. Weighting the

input data localizes the ML predictions, potentially producing a more useful forecast,

while adding minimal computational expense since the RF hyperparameters and input

data remain unchanged. Each storm track can be weighted based on timing informa-

tion, distance from a specific location, or other priority criteria as needed.

35



In any of these weighting schemes, a ML model is trained to prioritize different

predictor values, enabling it to focus on specific user-defined environments relevant to

a particular problem domain. Though this approach is theoretically simple, deciding

which data to prioritize can be difficult. Weights ≤ 1 are less likely to be considered

important by the RFs. This study applies an exponential decay function to each input

value. In Equation 3.2, x denotes the ”distance” of a storm object from a reference

point. If the reference is temporal (spatial), x could be the number of days (degrees)

from a certain date (location).

f(x) = ex (3.2)

To increase flexibility, we introduce a parameter α, which controls the steepness of

the exponential decay. As shown in Figure 3.1, an α of -0.32 results in the exponential

weights dropping to 0 over a shorter distance in time (space). Conversely, an α of

-0.1 maintains non-zero weights over a larger time frame (area). The decay function

is multiplied by 5 (Equation 3.3) ensuring that prioritized data receive much higher

weights compared to data outside the specified time period (region). This multipli-

cation also requires the α/threshold value to approach 0 when the weights equal the

natural log of one-fifth. The multiplication factor of 5 was arbitrarily chosen for this

study as a means to test if this method can indeed impact training of a RF. Future

work empirically validating this parameter could offer even more localized predictions

using this method.

Storm Weights = 5eαx (3.3)
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Figure 3.1: Schematic of weighting storm objects in time (upper) and space (unitless,
lower) using various α parameters. Storm objects displaced from a given time period
or center point are weighted higher if the α value is larger (less negative).
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To calculate the α parameter (eq 3.4), we identify the point in time (or location)

where the variable used to detect storm objects no longer correlates with itself. This

is done by calculating the autocorrelation of the storm object variable over successive

time periods (or degrees), such as beginning on 1 May and incrementing one day at a

time. The number of days needed to achieve an autocorrelation of 0 is then used as

the threshold factor for α and input to equation 3.3

Threshold = Days/Distance when autocorrelation below 0

α = ln
1

5
(Threshold)−1 (3.4)

Following training, both the weighted and unweighted ML approaches predict whether

storm objects in the test set are labeled as hail-producing. Storm tracks with hail des-

ignations are transformed from the RF-predicted gamma distribution into hail sizes,

with the highest percentile storm object (MAXUVV) value linked to the highest MESH

distribution value. Using the predicted hail sizes from each ensemble member, the algo-

rithm generates 24-hour ensemble maximum size and neighborhood maximum ensemble

probability forecasts.

3.4 Results

In this study, the data examples provided to the RFs are weighted by time, applying

exponential decay to dates outside a single month, as well as spatially around a des-

ignated location. The ML predictions, weighted temporally and spatially, are subject

to both subjective and objective comparisons across distinct datasets to analyze their

performance across varied problem domains. Moreover, additional verification of hail

forecasts is conducted against both types of ML predictions, including comparisons
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with the SPC day 1 outlook at 1200 UTC and 2-5 km updraft helicity (UH) values

>75 m2s2, which have been related to severe hail prediction (e.g., Sobash et al., 2016;

Gagne et al., 2017). Temporally-weighted forecast evaluations are executed across the

entire CONUS from 1 July to 31 July 2021. Spatially weighted forecast evaluations

span from 1 May to 31 July 2021 across five states surrounding a reference point in

west-central South Carolina (Figure 3.2). This location was selected for its proximity

to the BMW US Manufacturing Plant in Greer, South Carolina. Car manufacturers

need precise, high-quality hail forecasts to move their products efficiently despite the

high costs involved. Improving forecast skill and reducing false alarms can save both

time and money for these large manufacturers.

Each modeling scheme is examined using a case study and objective statistical

measures pertinent to the aforementioned problem domain. Assessment metrics in-

clude reliability measures and a performance diagram, compared against MESH values.

The reliability diagram is complemented by the Brier Skill Score (BSS, Brier, 1950),

accompanied by a frequency diagram.

3.4.1 Case Study: 28 April 2021

On 28 April 2021, extensive hail struck parts of the southern plains, causing an esti-

mated $ 2.4 billion in damages (Smith, 2010). Strong instability coupled with elevated

deep-layer shear created a conducive environment for severe hail in Texas and Okla-

homa. The day 1 SPC outlook at 1200 UTC indicated severe hail probabilities of up

to 15 % over the southern plains, with a secondary maxima in the Great Lakes region

(Fig. 3.3a). Similar to the SPC outlook, a proxy for updraft helicity (Fig. 3.3b) also

predicted a swath of higher probabilities from southern Texas through Oklahoma and
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Figure 3.2: Map indicating the five states (highlighted in red) where the spatially
weighted model is evaluated between 1 May and 31 July 2021. The white dot is
the reference point of the weighted model, located approximately at the BMW US
Manufacturing Plant in Greer, South Carolina.
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northeastward. The updraft helicity proxy shows probabilities of severe hail surpass-

ing 45 % across substantial portions of the southern plains, with a few localized areas

reaching up to 60 %.

The temporally weighted and unweighted ML forecasts (Fig. 3.3c,d) demonstrate

similar magnitudes and non-zero probability coverage compared to the SPC outlook.

Both ML models indicate smaller areas with a 30 % probability, corresponding to the

locations of highest hail threat. While the unweighted ML model effectively identi-

fies regions with significant hail threat, thereby reducing false alarms from the SPC

outlook and UH proxy, it fails to capture some hail reports in western Texas and

Missouri. On the other hand, the temporally weighted ML model predicts similar

probabilities but emphasizes the orientation of hail formation in Texas and reduces

the area with 30% probabilities compared to the unweighted ML model. While the

weighted ML model misses a few additional hail reports, it effectively pinpoints areas

with the highest hail risk and reduces false alarms, particularly in regions where re-

ports are clustered together. This contrasts with the model’s less frequent highlighting

of sporadic hail events. Generally, the ML models diminish false alarm regions from

Missouri to New York compared to the SPC and UH forecasts, albeit at the expense of

missed reports. The weighted ML model produces probability magnitudes akin to the

unweighted model but highlights a smaller area of heightened hail threats, correctly

predicting large hail occurrences from Texas into Oklahoma.

3.4.2 Case Study: 14 June 2021

On June 14, 2021, a quasi-linear convective system developed over the Carolinas, re-

sulting in a few severe hail reports spanning from northern Georgia to western North

Carolina. The SPC day 1 outlook at 1200 UTC (Fig. 3.4a) did not extend the 5%
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Figure 3.3: Severe hail case study on 28 April 2021 showing (a) the day 1 SPC outlook
valid 1200 UTC, (b) updraft helicity (UH) proxy, (c) temporally weighted ML model
trained to prioritize storm examples in May, and (d) unweighted ML model output.
Black dots are severe storm reports.
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probability of hail to the Carolinas due to a lack of significant large-scale forcing, as

indicated in the SPC mesoscale discussion for the day. This particular day was selected

for a case study evaluation due to the forecast’s complexity, given the occurrence of

missed storm reports outside of the SPC outlook. Even in an unfavorable environment,

the UH proxy (Fig. 3.4b) yielded non-zero probabilities of hail over the Carolinas, ex-

tending across portions of the east coast. Since the UH proxy is derived from values

in the HREFv2, this suggests that the ensemble did indicate forcing for convective

storms, albeit to a limited extent.

The ML forecasts (Fig. 3.4c,d) use the forcing from the HREFv2 to forecast severe

hail probabilities of up to 15% in the vicinity of the reported hail events near the

Carolinas. The unweighted ML model outlines a broader area with 5% probabilities

covering central North Carolina and western South Carolina, along with a smaller zone

of heightened probabilities coinciding with regions of increased hail concentrations. In

contrast, the spatially weighted ML model narrows down the area of 5% probabilities to

only the locations of hail reports and centers the heightened probabilities directly over

the reported incidents in central North Carolina. In essence, the ML models capture

the subtle forcing and accurately predict non-zero probabilities of hail in areas where

severe hail was observed. Moreover, the weighted ML model prioritizes regions with

the highest hail threat, reducing the false alarm area in hail prediction while capturing

most of the reports near the reference point in South Carolina. This is likely due to the

enhanced emphasis on storms in the region within the RF training dataset, enabling

the ML model to discern minute atmospheric patterns that other models may miss,

resulting in hail formation.
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Figure 3.4: Severe hail case study on 14 June 2021, similar to Figure 3.3. The weighted
ML model prioritizes storm examples spatially relevant to the reference point in Figure
3.2 instead of temporal weights.
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3.4.3 Objective Evaluation: Temporal Weights

When using MESH values as observations, the temporally weighted ML model pro-

duces more reliable predictions within the 0 to 20% probability thresholds compared

to both the SPC day 1 outlook and unweighted ML forecasts (Fig. 3.5a). However, the

UH proxy forecasts demonstrate the highest reliability below 20%, yet tend to overesti-

mate the most among all models above 20%. Furthermore, beyond the 20% probability

threshold, the temporally and unweighted ML forecasts exhibit alternating levels of re-

liability, though they generally remain similar. Consistently, the day 1 SPC outlook

underestimates the MESH observations across all available probability thresholds. A

parallel trend is observed in the Brier Skill Score (BSS) analysis, where the SPC prob-

abilities display less skill (BSS at -0.039) compared to both ML models. Additionally,

the UH proxy exhibits a less skillful BSS (-0.002) compared to the temporally weighted

model (0.019) and the uniformly weighted model (0.01). Through bootstrapped BSS

analysis, it is revealed that although the difference in skill between the unweighted

and weighted ML models is minor, it holds importance. This reinforces the idea that

incorporating weights into a RF model maintains high-quality predictions. A detailed

evaluation of the value and consistency of weighted severe hail ML models requires

more research. However, previous studies indicate that forecasters are more likely to

find models incorporating physically relevant information to be more consistent, with

equal or better value (Willard et al., 2020; Beucler et al., 2021; McGovern et al., 2022).

Besides the ML forecasts surpassing the SPC outlook and UH proxy in terms of

Brier Skill Score (BSS), the ML models generate forecasts with higher Critical Success

Index (CSI) and Success Ratio values (Fig. 3.5b). While the UH proxy exhibits higher

Probability of Detection (POD) values for each probability threshold, this is mitigated

by low success ratio values. Both ML forecasts demonstrate a similar trend of POD

and success ratio values, with the temporally weighted model producing higher POD
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values and slightly higher success ratios for a given probability threshold, resulting

in larger CSI values, particularly between 15% and 25%. Overall, the ML forecasts

outperform the SPC probability outlook and UH proxy concerning MESH observations,

with the temporally weighted model yielding slightly more skillful forecasts, likely due

to reduced false alarms. While the statistical differences between the ML models are

slight, they are more pronounced in qualitative assessments

3.4.4 Objective Evaluation: Spatial Weights

In order to focus the results on the region with the highest spatially weighted storms

(Fig. 3.2), the ML forecasts, SPC probabilities, and UH proxy are assessed over a

smaller domain than the entire CONUS. Below 15%, a consistent pattern emerges be-

tween the two weighted ML models, wherein the spatially weighted ML model yields

more reliable forecasts compared to the unweighted model, while the UH proxy demon-

strates the most reliable forecast (Fig. 3.6a). However, unlike the assessment of the

temporally weighted model, the SPC probabilities produced over a smaller region near

the southeast offer more reliable forecasts than both ML models below 15%. Above

15%, the ML models exhibit oscillation in terms of which forecast is more reliable,

while the UH proxy consistently overestimates across all probabilities above 15%. De-

spite differences at lower probability thresholds, the Brier Skill Score (BSS) values of

the various modeling outputs exhibit very similar patterns compared to the temporally

weighted evaluation. The spatially weighted ML model achieves the highest skill score

(0.025), closely followed by the unweighted model (0.024), then the UH proxy (-0.001),

and finally the SPC probabilities (-0.026).
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Figure 3.5: Quantitative verification of ML forecasts, updraft helicity (UH) proxy, and
SPC outlooks using MESH as observations. Reliability (a) and performance diagrams
(b) are calculated over the CONUS in July 2021. Reliability diagram includes the Brier
Skill Score (BSS) in the legend, probabilities are labeled on the performance diagram.

The performance diagram (Fig. 3.6b) reveals a significant disparity between the

two weighting schemes, with both ML models surpassing the UH proxy and SPC fore-

casts. However, beyond the 10% probability threshold, the spatially weighted model

notably outperforms all other modeling types, including the unweighted model. Never-

theless, the UH proxy variable indicates higher Probability of Detection (POD) values

for each threshold compared to the ML forecasts. However, similar to the assessment

of the temporally weighted model, these values are counterbalanced by exceedingly

low success ratio values. This likely indicates that the UH proxy generates larger areas

of non-zero probabilities compared to both ML models, leading to a higher likelihood

(evidenced by the maps) of false alarms compared to the ML forecasts. Nonetheless,

smaller areas of non-zero probabilities result in more misses, penalizing the ML fore-

casts, albeit the spatially weighted ML model produces slightly higher POD values

above 5% than the unweighted ML forecast. In general, the ML forecasts generate

fewer false alarms than the UH proxy and SPC forecasts, with the spatially weighted
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model enhancing the success ratio and reducing false alarms more effectively than the

unweighted ML model.

3.4.5 Interpretation

For forecasters, trust hinges on two vital aspects: the model’s performance and the

ability to grasp its internal processes (McGovern et al., 2019a). In this research, we

use multi-pass permutation variable importance to pinpoint the most critical predic-

tor variables of a trained ML model (Lakshmanan et al., 2015), thereby enhancing

our understanding of the learned patterns. Unlike single-pass variable importance,

this method takes into account correlations between variables by permuting important

variables while sequentially selecting other significant variables. For further details on

this method, refer to McGovern et al. (2019b). In this study, the skill metric distin-

guishing the most important variables for a classification task is the area under the

curve (AUC), indicating how effectively a classifier distinguishes binary classifications.

Although regression RFs are part of the ML forecasting process, only the classification

models are evaluated for brevity. Thus, the variables displayed were most important

in classifying a storm as hail-producing. A total of 237 different predictor variables

are assessed for each HREFv2 member from data spanning 1 May to 31 July, 2021.

The number of predictors varies from the original 29 detailed in Section 3.1 because

each variable is derived using statistical approximations (mean, max, min, etc.). The

important variables of each member are averaged across the entire ensemble, resulting

in a total ensemble variable importance for each trained ML model (Fig. 3.7).

The top five important variables input to the May weighted model include 700 hPa

dewpoints, hourly maximum of upward vertical velocity from 100 to 1000 m above

ground level (AGL), and the hourly maximum 10m AGL V-component of the wind
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Figure 3.6: Similar to Figure 3.5 with spatial weights instead of temporal weights. Only
data points within the highlighted red states in Figure 3.2 are verified. Reliability (a)
and performance metrics (b) are calculated between 1 May to 31 July 2021.

(Fig. 3.7a). Notably, the May ML model is the only one that highlights dewpoints as

important for classifying hail-producing storms. Alongside other significant variables

like updraft velocities and surface north-south winds, this indicates that the ML mod-

els recognize the importance of moisture from the Gulf coast, as well as a minimum

threshold required for hail storms. Conversely, the July temporally weighted ML model

(Fig. 3.7b) emphasizes the hourly maximum wind’s 10m AGL U-component, 0-1 km

storm relative helicity (SRH), hourly maximum of downward vertical velocity from 100

to 1000m AGL, 700 hPa U-component of wind, and 0-3km SRH. Unlike the May ML

model, the July model finds the east-west winds at various levels and storm helicity

more crucial, indicating that shear is more significant for classifying hail storms in July

compared to those in May. The variations in important variables between the two tem-

porally weighted models suggest that the RFs have learned different patterns for hail

classification. The July-trained RF focuses on vertical motions, while the May-trained

RF highlights thermodynamic variables.
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Figure 3.7: Multipass permutation variable importance results for the (a) May
weighted, (b) July weighted, (c) spatially weighted, and (d) unweighted ML models
using Area under the curve as the skill metric. The original (unpermuted) skill is 0.67
for each model. Each variable is bootstraped 100 times over a third of the 2021 data,
with error bars indicating the 5th, 25th, 75th, and 95th percentiles of the bootstrap.
The variable names include one of 29 input HREFv2 variables and the statistic applied
to the storm objects found most important.
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The spatially weighted model (Fig. 3.7c) highlights the most important variables

as the hourly maximum of upward vertical velocity from 100 to 1000m above ground

level (AGL), surface convective inhibition (CIN), 10m AGL U-component of the hourly

maximum wind, 0-3 km storm relative helicity (SRH), and 10m AGL V-component of

the hourly maximum wind. Unlike the temporally weighted models, the spatial model

emphasizes the importance of both surface wind velocity components and mid-level

shear. Notably, a minimum threshold value proves crucial for classifying hail storms

in the South Carolina region (chosen for its proximity to a major car manufacturer,

see Figure 3.2), similar to the May ML model. However, the inclusion of surface

CIN highlights the importance of inhibiting factors to convection alongside convective

variables themselves. On the other hand, in the unweighted model (Fig. 3.7d), the top

variables include the hourly maximum of upward vertical velocity from 100 to 1000m

AGL, surface CIN, 850 hPa U-component of wind, 1000 hPa temperatures, and 0-1

km SRH. While factors inhibiting convection are significant in both the unweighted

and spatially weighted models, the unweighted model uniquely emphasizes low-level

temperatures as crucial. While a minimum threshold of updraft velocities is important

in classifying hail storms across all ML models, the unweighted model exhibits the most

overlap in error bars among different variables. This suggests that, among all trained

ML models, the top five variables in the unweighted model should be considered as a

group rather than individual variables, each with varying degrees of importance.

Generally, the unweighted model accentuates multiple environmental variables piv-

otal for convection initiation, whereas the May ML model prioritizes moisture return.

Conversely, the July model zeroes in on vertical motion, and the spatially weighted

model highlights wind directions significant for classifying storms as hail-producing.

Collectively, these models illuminate varying facets of the hail formation process con-

tingent upon the weighting scheme employed. This indicates that the ML models
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assimilate differing patterns contingent upon the weighting assigned to input exam-

ples.
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Chapter 4

Representative Sampling of Global Geospatial Data

Large remotely sensed datasets, both temporally and spatially, are advantageous for

assessing the capability of an automated method to create a data sample representative

of balanced inter-class and intra-class variability. The data used for this task are the

surface reflectance bands from MOD09GA/Q, with MOD09GA 500m data resampled

to match MOD09GQ at 250m. At the pixel level, MOD09GA bands 3, 4, 5, 6, 7 and

MOD09GQ bands 1, 2 were extracted with land or water labels based on MOD44W

(Carroll et al., 2009, 2016) collection 6 classifications. Using these two datasets in

conjunction it was possible to generate a training data set as large as desired (billions

to trillions of examples if needed) and with evenly balanced classes. The daily avail-

ability of MOD09GA/Q and global availability of MODIS data in general made this

an ideal dataset to derive a training sample that was both geographically and tempo-

rally diverse. From here, a “sample” is indicative of the examples from one of the four

sampling strategies mentioned previously.

4.1 Data Processing

Using random sampling we generated a Python parquet file with over 5 billion class-

balanced examples that was used as a base from which to select samples for each exper-

iment. Specifically, a sample was created that was randomly subset from the overall
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billion example dataset down to 1% of the data, resulting in a sample with 5 mil-

lion random examples (referred to as sample 5mR). Sample 5mR, also class-balanced,

comprises an even distribution of examples pulled from each highlighted tile in Figure

4.1. Another sample of the MODIS data contained ∼ 800 thousand class-balanced

examples (referred to as sample 800kRD), most chosen randomly but with additional

examples that were deliberately chosen by expert from regions (still within the high-

lighted tiles) that struggled with accurate water classifications in previous MOD44W

versions. These specific tiles were chosen for their global geographic dispersion and the

diverse array of land v water types (i.e., rivers, basins, small lakes, etc.)

Sample 5mR stands as the backbone of the clustering algorithm described in this

study. The relatively smaller sample, rather than the full 5 billion example dataset,

is used for the clustering analysis for more effective computing time. While clustering

algorithms can handle high dimensional data, past 4 dimensions the results of the

clustering analysis were difficult to investigate. Using expert knowledge and empirical

trials, the initial predictors chosen were MODIS spectral bands 1, 2, 7. These bands

verified as the most skillful prediction of land cover without losing accuracy, and most

relevant to the land cover classification domain per expert knowledge. An additional

variable, Normalized Difference Vegetation Index (NDVI), was also included due to

the information added in areas of dense vegetation where the other reflectance bands

struggled. Other MODIS bands were not included because of noisy data (bands 5,6),

redundancy in the need for additional visible data (band 3), and the advantage band 1

has when dealing with sediment laden water. We tried other indices but found them,

empirically, to not provide substantively more skill than the bands we were already

using. Specifics of the clustering algorithm applied to these bands can be found in the

next section.
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Figure 4.1: Tiles h09v05, h11v02, h11v10, h12v09, h18v03, h16v02, h17v02, h30v11,
h28v08, h27v03, h21v10, h22v01 with data extracted from 2001, 2006 and 2019

4.2 Methods

Two initial RF models were individually trained using the 5mR and 800kRD samples,

respectively. No data-processing went into the two samples and instead they were input

to a RF classification model as is and validated using 5-fold cross validation. Five

folds were chosen as they are a standard number for validation, with little difference

occurring when tuning the model with other variations in folds. Twenty-five trials of

tuning were accomplished, with the RF classifier having the highest validation f1 score

of the total 25 trials, along with the hyperparameters, saved and used for testing on

select tiles. This ML process of tuning and training is repeated for each individual RF

classifier trained with the different samples in this study, resulting in 4 different RF

classifiers. The hyperparameters of each RF classifier can be found in the appendix.

To examine ways of representing the variability and diversity of the 5mR sample,

the authors investigated multiple different clustering techniques. The initial test went
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the simplest route: apply a gridded approach, where examples within a certain range

for each variable are grouped together. This approach was difficult to account for

all different combinations for only two features, with the complexity not outweighing

the potential benefits with more features. The next iteration of the clustering process

involved pre-packaged algorithms.

Certain clustering methods were not efficient when applied to the size of the 5mR

sample, where trying to cluster a 4-dimensional sample with over a million examples was

not feasible with the Spectral (Jianbo and Malik, 2000) and Birch (Zhang et al., 1996)

algorithms (Fig. 4.2a).The gaussian mixture model (Blei and Jordan, 2006) algorithm

was able to handle the number of examples in the 5mR sample, however they did not

produce meaningful clusters as debated by experts (Fig. 4.2b). Although Taşdemir

et al. (2015) describe the k-means algorithm as having poor performance with remotely

sensed data, due to highly spherical outputs (Xu and Wunsch, 2005; Gonçalves et al.,

2008), in this work the authors discovered through empirical processes that k-means

provided the best clusters with efficiency, regardless of sample size (Fig. 4.2c).

Although k-means clustering proved to be beneficial for the 5mR sample, one down-

side that accompanies the algorithm is the user defined number of clusters. Through

empirical trials, 15 clusters were chosen to segment each label, land or water (Fig. 4.3)

Clusters between 5 and 30 were explored, however visual inspection indicated that less

than 15 clusters combined too much data while more than 15 clusters broke up the

existing clusters without more information retained within the smaller clusters.

After expert deliberation, water labeled clusters with outlier values > 10,000 in the

visible light spectrum, and the subsequent variables associated with such examples,

were dropped. This caused the entire cluster with visible reflectances ranging from

4,000 to > 10,000 to be excluded from the study. Removing outliers manually with
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Figure 4.2: Sample size versus clustering time elapsed, each applied to the 5mR sample
for 5 clusters (a). The two best clustering algorithms are applied to the whole 5mR
sample with 15 cluster. Those include the K-means (b) clusters and Gaussian Mixture
Model (c) clusters, where each color represents a different cluster group. All four
MODIS bands are clustered, but for visual representation only bands 1 (visible) and 2
(infrared) are displayed.
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Figure 4.3: Kmeans clusters applied to land (right) and water (left) classes, separately.
Different colors indicate different clusters.

the 10,000 threshold for the 5mR and 800kRD samples did not result in any changes

in classification output, unsurprisingly, as the RF classifiers trained with more data

are vastly more robust to outliers (Zhu et al., 2016). To maintain balance, one cluster

from each land and water label are removed. Removing one of the land clusters that

are well represented created a balanced sample, where empirical efforts indicate that

keeping all land clusters slightly reduced the skill of a RF classifier for this problem

domain.

Once clusters that represent the 5mR sample spectrum are established, the question

became how to use the clustered data. Including all examples within each cluster would

result in simply training another RF with the 5mR sample, but smaller and less robust

to outliers and mislabeled data. Instead, a stratified random sampling approach proved

the most appropriate for this data and problem domain. The smallest cluster size was

used to determine the threshold for choosing random examples within each cluster.

This created evenly balanced clusters and resulted in a much smaller training sample

as the smaller clusters could range from around 900 to 1000 examples. In this way, each

individual cluster of the labeled class was represented without higher weight towards
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any individual cluster (Figure 4.4). The clustered data, now referred to as sample

27kC, contained a total land cover training set of around 27k examples. A second

method was tested that maintained the proportional size of each cluster by randomly

choosing a percentage of the total number of examples within each cluster. Further

testing did not indicate any substantial difference in classification output with a change

in the percentage threshold, indicating that intraclass balancing is just as important

as interclass balancing for skillful classifications.

Finally, to determine if the advantage of the clustering method over simply subset-

ting the 5mR sample, a fourth sample was constructed with the same number of land

and water examples as the 27kC sample. Differing from the clustering approach, the

examples within the fourth sample were chosen from the 5mR sample at random. This

last sample is hereafter referred to as 27kR. Outliers in the visible data for the water

labels are included when selecting the random examples for the 27kR data, as empiri-

cal investigations indicated that removing the outliers decreases model skill. Both the

27kC and 27kR samples were input to separate RF classifiers and tuned/trained using

the same method as the RFs with the 5mR and 800kRD samples as input. In total, 4

different random forest outputs are evaluated for the differences pre-processing makes

on classification skill, specifically the representative-ness of each sample.

Table 4.1 includes the compute time for tuning and training the respective RFs,

showing that the training with the 5mR and 800kRD samples took approximately one

hour (5mR) and 20 minutes (800kRD), whereas the smaller samples took less than

5 minutes (27kC and 27kR). This large speed up showcases the efficiency of using

smaller samples, however the need for representative samples is at the forefront in

image classification when limiting data.
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Figure 4.4: Kmeans clusters applied to land (right) and water (left) classes, separately.
Different colors indicate different clusters.

Input Sample Name Num of Examples RF Tuning/Training Time

Master dataset 5,000,000,000 -

5mR 5,000,000 1:11 hour

800kRD 800,000 20 min

27kR 27,000 1:38 min

27kC 27,000 1:23 min

Table 4.1: Different samples explored in this study, with their respective size of exam-
ples and the time elapsed for tuning and training each individual RF. Accomplished
on Explore HPC https://www.nccs.nasa.gov/systems/ADAPT run on top of 40 Intel
Xeon Gold 6248 CPU @ 2.50GHz
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4.3 Results

Exploring the various samples provided as input to the individual RF’s reveal multiple

differences. Figure 4.5 illustrates each sample, combining values from both water and

land-labeled examples. Reflectance values from bands 1, 2, 7 span from -100 to ∼

16,000, and NDVI values range from -30,000 to 30,000 (or -1 to 1 then multiplied by a

factor of 30000). This analysis will primarily focus on the surface reflectance in bands

1, 2, 7 as NDVI is a combination of bands 1, 2 and for brevity the NDVI analysis will

be excluded. In the 5mR and 800kRD samples, examples show nonzero frequencies

for the majority range of values, whereas the smaller samples (27kR and 27kC) are

associated with nonzero frequencies up to ∼ 8000. In the 27kC sample, this reflects

part of the clustering process where outlier values > 4,000 for water examples in the

visible light spectrum are not kept. Although outliers are not explicitly dropped for

the 27kR sample, the majority of values still lean towards lower reflectance.

Distinct disparities emerge when comparing the 800kRD sample with the other

samples. The 800kRD sample not only comprises randomly selected examples from the

5mR sample but also includes additional examples chosen by experts. These expert-

selected examples are particularly noticeable with the secondary peak appearing in

bands 1 and 2 around 10,000 reflectance that is not seen in the other samples. Potential

variations in the performance of RFs with different input samples may be attributed

to each samples’ data spectra, however in cases where distinct differences in data are

not evident, the importance of very small variability in values becomes highlighted.

Finally, differences between the 27kR and 27kC samples are less noticeable until

∼ 6000, where the samples exhibit frequency differences ranging from hundreds to

thousands of examples. Despite the seemingly modest numerical discrepancies, these
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Figure 4.5: Frequency diagrams of the input predictors, Visible (upper left), Band 7
(upper right), Infrared (lower left), and NDVI (lower right). Different colored frequen-
cies indicate the data input for each different RF classification model, with the samples
5mR (black), 800kRD (gold), 27kC (pink), 27kR (purple). Both labeled classes shown.

frequencies are important given 27kC and 27kR samples are limited in examples. Fre-

quency differences are a mixed bag, some input predictors maintain higher frequencies

in 27kC data at values > 6000, while others suggest the higher frequency of 27kR sam-

ple (Figure 4.6). One interesting difference between the two samples are their range

of NDVI values, where the 27kR sample shows most examples logging around -10,000

to 10,000, and substantially dropping off in frequency outside of these values. Mean-

while, the 27kC sample shows higher frequencies between -10,000 – 10,000, but with

much higher incidence of examples outside this zone compared to the 27kR sample.

The NDVI examples are on the order of hundreds higher in frequency with the 27kC

sample.

62



Figure 4.6: Same as Figure 4.5 but only showcasing the 27kR and 27kC samples.

4.3.1 Quantitative

Statistical measurements were accomplished for annual land cover classifications in

tiles h12v09, h09v05, h22v01, and h21v10 (Fig. 4.7) for the years 2006 and 2019.

These classifications are more likely to identify long-term changes in water sources

compared to daily/weekly/monthly changes in rivers, lakes, etc. In addition although

years/tile overlap for the data used in training and testing, the shear size of MODIS

data removes worry of independence contamination. All of the RF models investigated

in this study produce classifications with accuracies, Matthew Correlation Coefficient

(MCC) values, and f1 scores at 1.0, the highest performance possible, indicating that

the MODIS dataset in general is a good fit, as well as the data originally sampled in

the 5mR sample, for this specific land cover classification.

Across the different tiles and years, the 27kC trained model outputs classifications

with skill scores between 0.9 - 1.0 for accuracy, MCC, and f1 (Fig. 4.8). The next

model with comparatively high skill is the 5mR trained model, with tile classifications
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Figure 4.7: Tiles h22v01, h21v10, h12v09, and h0905 examined for years 2006 and
2019.

ranging from 0.95 - 1.0 in accuracy, 0.6 - 1.0 MCC values, and f1 scores from 0.55 - 1.0.

The 27kR trained model produces classifications with accuracies in the range of 0.84

- 1.0, MCC values from 0.42 - 1.0, and f1 scores at 0.35 – 1.0. Finally, the 800kRD

trained model outputs classifications with accuracy measurements ranging from 0.82

- 1.0, MCC values ranging from 0.4 – 1.0, and f1 scores in ranges of 0.3 - 1.0. Every

model shows skill scores reaching 1.0 across the tested tiles and years, however unlike

the other models, the RF trained with the 27kC sample demonstrates scores with the

least variability, all very close to 1.0. The other models show greater variability in

MCC and f1 values depending on the tile and year. Accuracy is similar across the

different samples and may not be the best indicator in skill differences.

In deeper analysis of the classifications for each tile/year, it was discovered that

in general the number of true negatives either balanced or far exceeded the number

of true positives for each tile/year combination, inflating accuracy. Recall was very
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high for each RF model classifications in the year/tile combinations, however precision

was lower for the RFs trained with samples 800kRD, 5mR, and 27kR in both years

for tiles h12v09 and h09v05. This lower precision is reflected in the lower F1 scores of

the 800kRD, 5mR, and 27kR models, and is explored qualitatively in the next section.

Lower MCC values are also attributed to the h12v09 and h09v05 tiles, however the

classifications for the h12v09 tile are the least skillful for all the trained models besides

the 27kC trained model. Further analysis of the h12v09 tile, and a comparison to a

tile with higher skill scores, are detailed in the next sections.

4.3.2 Qualitative

As mentioned in the section covering the quantitative analysis, the classification output

for the h12v09 tile (Fig. 4.9 a) in 2019 showed high recall with low precision, as well

as lower MCC values. In a region that is potentially difficult to obtain cloud-free

images (Oliveira et al., 2016), which affects the MODIS data selection algorithm, the

RFs trained using the 5mR, 800kRD, and 27kR samples all show visually large false

positive areas (Fig. 4.9 b). The f1 score analysis very clearly lines up with the visual

inspection of the 2019 h12v09 tile, where the 800kRD model (yellow) outputs the lowest

f1 score (lowest precision), followed by the 27kR (purple), and finally the 5mR (black)

models, as compared to the MOD44W classifications (white). Diverging from the other

three RFs, the 27kC model (Fig. 4.9 c) outputs water classifications nearly identical

to the MOD44W output, with few pixel-wide false positives at the edges of spherical

shaped water bodies as well as peppering of incorrect water classifications throughout

the forested area of the Amazon.
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Figure 4.8: Box plots of Accuracy, Matthew Correlation Coefficient (MCC), and F1
score for RF trained with the different sampling strategies. Statistics computed over
testing tiles in years 2006/2019. Each RF trained with a different sample is evaluated.

Figure 4.9: Tile h12v09 from 2019. The baseline target, MOD44W, is indicated in
white. Also included are outputs from RF models trained with the 5mR (black),
800kRD (yellow), 27kR (purple), and 27kC (pink) samples.
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Similar to the tile in the Eastern Amazon, 2019 classifications for tile h22v01 (Fig.

4.10a) show more prevalent 800kRD model (yellow, Fig. 4.10b) water outputs com-

pared to the MOD44W output (white). The 27kC (pink, Fig. 4.10c) output is similar

to the MOD44W classifications, although there are more false negatives in the arctic

compared to the more southern tiles. The false negatives occur mostly on the edges of

larger lakes and very small lakes not being accounted for. Differing from the southern

tile in Eastern Amazonia, the 5mR and 27kR output show very few false positive wa-

ter classifications, although of all the models the 27kC model best captures the water

classifications that are part of the MOD44W product. The qualitative output lines up

well with the quantitative analysis for all tiles and years.

4.4 Discussion

In the data sampling process, researchers specifically choose certain regions, dates,

times, etc to implicitly select the most salient features and account for intra-class vari-

ability. This careful selection aims to capture the most salient features. Theoretically,

with a diverse range of examples representing each class, a sufficiently large sample

should cause machine learning algorithms to accurately capture both inter and intra-

class variabilities within a much larger dataset (e.g., Halevy et al., 2009; Fassnacht

et al., 2018). However, in this work, even though a larger class-balanced sample (5mR)

was created by deliberately choosing geographically diverse tiles and data examples to

encompass inter and intra-class variabilities between land and water classes, it struggles

in certain regions such as h12v09 and h09v05.

A second sample was created by deliberately adding examples while reducing the

overall sample size to reduce computational time, resulting in the 800kRD sample.
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Figure 4.10: Same as Figure 4.9 but with tile h22v01

Despite these efforts, the ML output trained with this sample also exhibits poor per-

formance in specific regions, notably h12v09 and h09v05, and tends to overclassify

examples as water when they should be classified as land. Both the 5mR and 800kRD

samples, crafted with a deep understanding of sampling representations, demonstrate

that larger training sample size does not necessarily indicate improved performance of

ML output.

It can be labor intensive to construct quality data samples that encompass both

inter and intra-variabilities requiring researchers to devote extensive time and resources

to generating their training data. The 800kRD sample was guided by domain exper-

tise and still struggled to capture the full dimensions of the data. Clustering offers

an automatable and efficient alternative, generating much smaller samples that still

encapsulate the crucial features of Big Data. The authors investigated the repro-

ducibility of this approach (not shown) by training multiple clustered samples using

K-means, achieving comparable results to those presented in the study. As noted by
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Chi et al. (2016), Big Data offers both challenges and important discoveries. Extract-

ing valuable insights from massive datasets is a complex task, requiring substantial

human and computational time investments. Given its speed and ability to produce

condensed representations of large datasets, clustering presents a fundamental shift

in the approach to handling Big Data, emphasizing exploration over time-consuming

data sampling. This not only reduces burdens on developers and researchers, but also

supports real-time global operational products like MOD44W, where rapid processing

is essential.

Apart from the speed increase of training a ML model with a clustered sample, the

results show that the effectiveness of such a model surpasses that of even a very large

sample, which theoretically should cover the entire data spectrum. A crucial aspect of

successful classification with clustered data involves the strategic elimination of entire

clusters, underscoring the importance of both clustering itself and the empirical process

of selecting which clusters to retain. In this study, the removal of a cluster associated

with spectral signatures of ice had a notable impact on the accuracy of ML model

classifications in Arctic regions, but otherwise provided increased global performance.

Given this study’s focus on land versus water classification, the examples representing

ice could be substituted using a post-processing algorithm. Further research into pre-

serving specific Arctic data presents an intriguing avenue for exploration, particularly

in assessing whether additional clustering of the removed data or explicit inclusion of

missed data, like the 800kRD sample approach, would yield benefits.

This study compares an operational land cover product with experimental machine

learning outputs, specifically examining how representative sampling influences per-

formance. The underlying distribution of this dataset is already well-understood, as

evidenced by the baseline provided in the operational product. In scenarios where

the underlying distribution is unknown or a baseline is absent, the clustering method
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introduced in this work could empower researchers to engage in data exploration confi-

dently, knowing that essential features are preserved through clustering. This approach

enables the creation, training, and deployment of multiple clustered samples within a

short timeframe, facilitating rapid exploration and offering quicker insights into poten-

tially unfamiliar datasets.

Lastly, this approach prioritizes inputting data to a RF model, offering explainabil-

ity inherent to the methodology compared to the black boxes of deep learning models.

With fewer parameters to tune and the ease of describing how a random forest works,

the ability to produce accurate land cover classifications resonates strongly with re-

searchers familiar with this methodology, thereby overcoming a hurdle in utilizing and

deploying machine learning methods (Maxwell et al., 2018).
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Chapter 5

Summary and Conclusions

Numerous studies over the past few decades have proven that machine learning (ML)

models can predict weather phenomena effectively (e.g., Krasnopolsky et al., 1995;

Marzban and Stumpf, 1996; Elio et al., 1987; Campbell and Olson, 1987; Mcarthur

et al., 1987; Gardner and Dorling, 1998; Hsieh and Tang, 1998). The research in

this work moves beyond standard ML applications for weather prediction, exploring

three different domains where ML is a tool for deeper exploration of meteorologically

relevant data. This research underscores the vital role of expert knowledge in creating,

evaluating, and deploying ML models in the earth sciences. Evaluating the success

of an ML model solely by metrics such as accuracy or IOU creates boundaries to

understanding the details underlying the patterns a ML model learns. The small,

empirically driven details are, in the author’s opinion, most crucial for meaningful

model development and deployment. The end user is a key component throughout the

ML model development process and should remain so, as illustrated by the knowledge

gained from these three distinct projects using ML modeling with similar or related

types of geophysical data across various spatial and temporal scales.

5.1 Above Anvil Cirrus Plume Identification

Detecting these plumes presents a challenge due to the time-intensive task of locat-

ing and accurately delineating their boundaries, resulting in a dataset that is limited
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in scope. To mimic trained human analysts, a pixel-scale classification approach is

essential. A binary classification of plumes across entire storm systems could prove

beneficial in operational environments where the presence of a plume itself is more

critical than its precise location. However, for studying plume extents and effects on

stratospheric WV, an ideal dataset would include pixel-scale or high-resolution classi-

fications. As noted by Ledesma Maldonado et al. (2022), when overshooting tops are

observed, stratospheric WV advects downstream while remaining aloft of the anvil.

Having fine-scale plume identification allows for tracking the occurrence, origins, and

potential trajectories of local deposits of stratospheric WV.

Based on the pixel-scale approach for plume identification, this dissertation inves-

tigates training a Unet model using satellite data inputs to generate real-time plume

classifications using a repository of approximately 4000 images. Out of various combi-

nations tested, the Unet trained with VIS and IR data demonstrated the best perfor-

mance. The study suggests that Unets excel in identifying warm plumes, particularly

when features like OT and cirrus cloud structures are discernible. However, the absence

of VIS data, especially during nighttime, limits applicability. This research highlights

the ability of a shallow Unet, trained with minimal samples, to grasp the features of

warm plumes while acknowledging the struggle in identifying cold plumes within this

dataset. It proposes important insights for future dataset creation to enhance Unet

performance in ML classification.

Apart from enhancing cold plume analysis, this method operates in real-time with-

out considering previous storm movement. The incorporation of time, particularly in

VIS data analysis, could be crucial. Currently, the classification is solely for real-time

assessment, overlooking temporal dynamics. Animated imagery reveals the dynamic

nature of plume analysis, capturing the ”bubbling” and ejection of warm AACP clouds

from an OT (Liles et al., 2020). The decision to exclude previous timesteps stems from
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the slicing of gridded data approach rather than storm-centering. While slicing offers

efficiency, it neglects storm motion, essential for training an ML model on AACP evo-

lution. Introducing time would augment the training dataset, enabling recording of

plumes at various stages, thereby facilitating the learning of incremental evolutionary

steps and expanding the dataset.

Even with augmentation, the selected plume data are closely grouped in time (days

apart) and space (all from West Texas), which could affect the model’s capability to

identify plumes across diverse regions and seasons. As pointed out by Hong et al.

(2023), OTs (and subsequent plumes) are more frequent over the Intertropical Conver-

gence Zone (ITCZ), central and southeastern North America, tropical and subtropical

South America, southeastern and southern Asia, tropical and subtropical Africa, and

northern middle to high latitudes. Seasonal variations are influenced by major climate

systems such as the ITCZ and local monsoons. Therefore, plume characteristics and

airflow patterns typical of the spring/summer in central United States may not ad-

equately represent plume dynamics in tropical or monsoonal regions. To develop a

robust dataset for training, further investigations into OTs and AACPs across diverse

geographical regions are necessary. Nonetheless, employing a small-scale model initially

to identify general plume areas and subsequently refining these data could enhance re-

gional datasets to achieve broader global representation. Furthermore, a comprehensive

repository of plumes could offer valuable insights into stratospheric water vapor levels

and essential metrics for the climate science community.

5.2 Severe Hail Prediction

Next, is CONUS-scale, day-ahead severe hail prediction. Through this work, we intro-

duce a flexible method for assigning weights to data that are physically or scientifically
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relevant to earth science developers. The results reveal interesting differences between

various weighting metrics and model evaluations. While there are qualitative and quan-

titative differences between the trained ML models, these differences are minimal and

likely noticeable only to those who analyze them in detail, like the method’s developer.

A cursory glance would suggest little difference between the weighted and unweighted

ML outputs.

Statistical testing was not performed in this dissertation, but it would be benefi-

cial in the future to investigate similarities between the weighted and unweighted ML

models. Nonetheless, though the physical relevance of the weighted models does not

substantially increase their skill, they may be considered more trustworthy in specific

situations. This raises interesting questions about the metrics that constitute a good AI

prediction. The temporally-weighted ML models concentrate probabilities in regions

of highest threat, as noted by participants of the 2020 Hazardous Weather Testbed

Spring Forecasting Experiment. For instance, the 2020 HWT SFE summary document

stated, ”ML Burke tended to give sharper probabilities over smaller regions, which

helped forecasters identify areas of greatest threat” (Clark et al., 2021), indicating

end-user trust in these forecasts as initial guidance.

Reliability and performance diagrams show that the weighted ML forecasts reduce

false alarms but maintain higher probabilities of detection (POD), similar to Brooks (01

Jun. 2004). While high POD values, like those in the UH proxy forecast, are desirable,

reducing false alarms is essential for valuable forecasts (Murphy, 1993). Focusing on the

highest hail threat increases skill in key regions but misses more storm reports. The

UH parameter, although high in POD, has very low success ratio values, indicating

that UH proxy outputs larger areas of non-zero probabilities compared to both ML

models, leading to more false alarms than ML forecasts. Depending on the needs of

individual forecasters or forecast offices, the different products, whether UH proxy or
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an ML model, weighted or not, may prove more useful. Changing the regional domain

for test case evaluations to either a larger or smaller area could affect these results,

potentially showing more skill with spatial weights.

Permutation importance results show that each trained ML model highlights dif-

ferent features of severe hail production. This differentiation is crucial as it provides

insights into the environments where each model performs best. For instance, the ML

model trained on July storms emphasizes vertical air motions rather than thermody-

namic variables as seen in the ML model trained for May storms. The unweighted ML

model tends to favor the highest sample frequency, which might not be relevant to the

entire CONUS throughout the year.

This method is highly flexible, capable of handling various functions and procedures

for weighting input examples, making it essential for localizing ML models for specific

problem domains. Implementing different weighting scenarios does not require new

data, simplifying future localized ML model deployment. We plan to explore differ-

ent weighting configurations for an optimal ML hail prediction model and apply this

method to other regions with low-frequency hail events.

5.3 Representative Sampling of Global Data

Finally, the last domain involves global scale land cover classification using remotely

sensed data. The prevalence of exceedingly large global datasets has become com-

monplace, accompanied by a rise in endeavors to refine their analytical methodolo-

gies. While ML modeling presents numerous advantages for efficiently processing vast

datasets, skillful ML model classifications depend on training data. Prior research
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(Halevy et al., 2009; Fassnacht et al., 2018, e.g.,) has indicated that by employing ad-

equately large training data subsets, ML models can capture the comprehensive popu-

lation spectra, encompassing the most crucial features. Nonetheless, this study found

that introducing very large training samples to a RF classifier resulted in inadequate

practical land cover classifications.

The primary objective of this investigation is to construct a highly representative

training sample from a very large dataset. The task to examine how sampling affects

classification skill when using MLmodels is simple land cover classification—differentiating

land from water. By utilizing the k-means algorithm, the authors explored the poten-

tial of clustering large samples to maintain essential features while minimizing sample

size. This approach facilitates the automated creation of ML training samples, thereby

streamlining model tuning computational time and alleviating the burden on develop-

ers, allowing them to focus on data exploration rather than manual data sampling.

The utilization of a baseline global water mask, MOD44W, facilitated the compar-

ison of clustering spectral data and other sampling methods with a widely recognized

and extensive dataset. Multiple different random sample sizes are investigated as input

to separate RFs to examine the effect of sampling on classification outputs. In general,

the accuracy of each classification output were similar and indicated good performance

as compared to the MOD44W mask, however practical applications and F1 scores de-

scribe a different story. Despite the similar test classification accuracy measurements

observed across various models, a qualitative assessment of the ML classification out-

puts delineates a notably different scenario. RF classifiers trained using very large

samples, alongside a random sample of similar size to the clustered sample data, show

more false water classifications, particularly evident in tiles h12v09 and h09v05.
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In addition to enhancements in classification performance and efficiency, this study

emphasizes the efficacy of the original sampling approach. The original sampling strat-

egy focuses on specific 12 tiles worldwide, a robust foundation for further analysis in

global land cover classification. While operational water masks like MOD44W already

exist, this research illuminates a methodology applicable across various problem do-

mains, particularly advantageous in scenarios where the underlying distribution of a

large dataset is uncertain. This straightforward approach proves remarkably effective,

as demonstrated by the automatic generation of clusters that represent an extensive

distribution of values with minimal effort besides applying the k-means algorithm. It

underscores the significance of training data quality over sample size, provided data

variability is adequately addressed. The clustering sample strategy not only outper-

formed other sampling methods both visually and objectively but also demonstrated

the effectiveness of clustering in handling “Big Data”. This method suggests that

clustering could be the next frontier in ’Big Data’ modeling, offering an alternative

to merely increasing computing power. Moreover, clustering reduces training time,

resulting in fewer computing hours and lower greenhouse gas emissions.

5.4 Conclusions

By moving beyond traditional machine learning (ML) applications for weather predic-

tion, such as out of the box RF models, this dissertation explores three distinct areas:

real-time plume identification, day-ahead severe hail prediction, and global land cover

classification. Firstly, this work addresses the challenges of identifying above anvil

cirrus plumes in real-time using satellite data, crucial for enhancing severe weather

alerts in radar-deficient regions. This research highlights the effectiveness of a Unet

model trained with VIS and IR data, emphasizing the need to incorporate temporal
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dynamics for improved accuracy in plume classification. Secondly, this dissertation

delves into CONUS-scale severe hail prediction, showcasing how weighted ML models

concentrate probabilities in high-threat areas, reducing false alarms while maintaining

high detection rates. This research underscores the flexibility of ML in adapting to

different weighting scenarios without requiring new data, facilitating localized model

deployment. Lastly, the dissertation tackles global land cover classification, demon-

strating that clustering techniques with the k-means algorithm can optimize training

sample efficiency. Underscored is the importance of data quality over quantity in ML

applications, offering a robust methodology applicable across diverse environmental

datasets.

Overall, this dissertation emphasizes the crucial role of expert knowledge in de-

veloping and evaluating ML models within the earth sciences, arguing that metrics

such as accuracy or IOU fall short of fully capturing the intricate patterns learned by

these models. This dissertation underscores the importance of incorporating end-user

feedback throughout the ML model development process, demonstrating that tailored

yet flexible ML models can effectively address specific meteorological challenges while

remaining applicable to broader contexts.

5.5 Contributions

In this dissertation, I have made contributions to the meteorological field by spearhead-

ing the creation and application of a ML weighted methodology designed for localized

severe hail prediction in varying temporal and spatial contexts. Additionally, I was

part of a collaborative effort that implemented this advanced modeling approach during

the 2020 HWT, yielding insightful feedback which further refined our methodologies.
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Moreover, I devised a novel framework for deep learning AACP plume prediction, fo-

cusing on plumes while another NASA group emphasized OT identification. Adopting

a sliding panel method over a storm-centered approach, my method improved compu-

tational efficiency but potentially reduced the available training data. I also provided

not only a statistical evaluation of the DL AACP identification method, but also a

two-dimensional XAI headmap of the DL outputs to understand the model’s nuances,

culminating in recommendations for future enhancements.

Separately, I analyzed a vast global repository of surface reflectance values and im-

plemented an automated algorithm for data pre-processing, reducing a training dataset

from roughly 5 million data points to 27 thousand, thereby substantially cutting com-

putational time for training a ML model. This adaptable method is useful across

multiple domains, not limited by the input dataset type, and is currently used in other

projects at NASA GSFC including a meteorological group focusing on cloud dynamics.

Overall, my work has led to the development of various methods for data handling in

meteorology and Earth sciences, specifically tailored yet flexible. These pre-processing

strategies for ML models are advantageous across numerous sectors and hold promise

for applications beyond convective meteorology and remote sensing.
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Appendix

Training Information Validation

Input

Features

Cases

(number)
Epochs

Final

IOU Loss

Duration

(min)
Date

VIS 4081 29 0.6871 92 8 May

VIS, IR 4081 31 0.6338 81 8 May

VIS, IRDIFF 4081 50 0.6439 145 8 May

VIS,IR,IRDIFF 4081 39 0.6154 123 8 May

IR 3907 27 0.685 60 7 May

IRDIFF 3954 50 0.6991 71 27 May

IR, IRDIFF 3632 29 0.6569 31 25 May

Table 5.1: Information about each Unet trained to identify plumes, where each row
indicates what features were used to train a Unet model. Training data are from 30
April, and 1,5,6,7,8,17,18,20,21,26,27 May 2019 excluding the validation date.
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