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Abstract 

This study investigates the dynamic interplay between environmental services (ES) and human 

systems across multiple spatial scales, examining the supply of ES by natural ecosystems, the 

impacts of human actions mediated by socio-political institutions, and their effects on 

environmental and social subsystems. Emphasizing the pivotal role of these interactions within 

landscape planning, the research highlights the absence of explicit boundary mapping for 

fundamental Social-Environmental System (SES) units. To address this gap, a unified, 

structured framework is introduced, integrating Geographic Information Systems (GIS), 

dimension reduction, and regionalization techniques to effectively delineate and characterize 

socio-environmental units. This framework uniquely combines raster and vector data across 

various scales and dimensions, utilizing spatial optimization techniques to control the spatial 

properties of the resulting SES units. Advanced dimension reduction algorithms are 

incorporated to accommodate the non-linear characteristics of SES, enhancing the precision of 

the delineation process. 

Utilizing the socio-environmental geodatabase of the Rio Grande/Bravo basin, the research 

demonstrates the practical application of the framework. This basin, encompassing diverse 

cultures, ecosystems, and economies, serves as an ideal case study for testing the methodology. 

The delineation process considers various factors, including administrative boundaries, 

estimated total quantities, compactness, spatial contiguity, and similarity in socio-

environmental characteristics. A key objective is to enhance the accessibility, reproducibility, 

and scalability of the methodology by employing open-source Python packages. Addressing 

computational demands, the study employs the Uniform Manifold Approximation and 

Projection (UMAP) algorithm for dimension reduction, facilitating efficient processing. 

This methodological framework advances the understanding of interactions between 

environmental and socio-economic subsystems, promoting sustainable resource governance. 

The proposed framework supports sustainable landscape planning and resource management 

through robust regionalization and interdisciplinary synthesis, making it transferable to other 

research contexts using diverse data formats and spatial scales. 
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Chapter 1: Introduction 

This chapter serves as the introductory segment of the thesis, providing a foundational 

overview of the Social-Environmental System (SES) and its critical role within the fields of 

environmental and social sciences. It delves into the complex interactions between human 

societies and their environmental contexts, which have positioned SES as a pivotal area of 

global scholarly discussions. This exploration includes examining the dynamics of these 

interactions and the challenges and methodologies involved in delineating the basic units of 

SES. Key concepts such as adaptability, resilience, and transformability are discussed to 

highlight the importance of understanding and managing these systems effectively. The chapter 

also addresses the significance of regionalization in capturing local interactions and concerns, 

which aids policymakers in implementing effective strategies and managing natural resources 

efficiently. Through this comprehensive introduction, the thesis sets the stage for a deeper 

investigation into the nuances of SES and the innovative approaches employed to sustain and 

enhance these integral systems. 

1.1 Social-Environmental System (SES) and Dynamics of its Interactions 

The concept of the SES has emerged as a significant area of inquiry within the environmental 

and social sciences. This framework, which articulates the intricate interactions between human 

societies and their environmental contexts, has become a central focus of global academic 

discourse (Berkes & Folke, 1998; Liu et al., 2007; Martín-López et al., 2017; Ostrom, 2009; 

Yang et al., 2023). Introduced by Berkes and Folke in 1998, the SES framework has undergone 

substantial evolution, reflecting theoretical and methodological advancements (Colding & 

Barthel, 2019; Herrero-Jáuregui et al., 2018). It is now viewed as a dynamic and adaptable 

construct that integrates diverse environmental elements—ranging from biophysical and 

ecological to geomorphological and climatic—with the structures of human societies (Martín-

López et al., 2017). This holistic approach extends the role of the environment beyond a mere 

service provider, highlighting the reciprocal and bidirectional interactions between human 

activities and both environmental and social spheres (Berkes & Folke, 1998; Díaz et al., 2018).  

The sustainability of SES is deeply influenced by human activities, manifesting in its spatio-

temporal complexities (Price et al., 2011; Wilkinson, 2005). This complexity prompts a focused 

effort by the research community to decode the intricate interplay and feedback mechanisms 

within SES, highlighting its critical significance (Griggs et al., 2013; Liu et al., 2007; Verburg 

et al., 2016). Recognizing that neither environmental nor socio-economic factors alone can 
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fully explain SES dynamics, scholars advocate for a comprehensive approach to grasp its 

subtleties fully (Ostrom, 2009).  

In response to these complexities, researchers have developed and applied a variety of 

innovative methodologies aimed at elucidating the intricate dynamics of SES. These 

methodologies include mapping SES through anthropogenic biomes (Ellis & Ramankutty, 

2008), identifying land system archetypes (Václavík et al., 2013), delineating ecoregions 

(Castellarini et al., 2014). Additionally, studies have explored bundles of ecosystem service use 

(Hamann et al., 2015), and integrated both social and environmental components to 

characterize the evolving dynamics of social-ecological systems. These diverse methodologies 

not only deepen our understanding of SES but also enhance our capacity to manage and sustain 

these systems effectively. 

1.2 SES in the Lens of Regionalization 

The challenges of sustainable development present intricate social-environmental dynamics 

that defy solitary disciplinary or subsystem solutions (Liu et al., 2007; Wu, 1991; Yalcin, 2017). 

Understanding the nexus between environmental and social subsystems, crucial for addressing 

issues like global climate change and ecological footprints, underscores the need for integrated 

approaches (Cetin, 2020; Cetin et al., 2021; Osman & Sevinc, 2019). Likewise, domains such 

as landscape, tourism, and urban planning demand comprehensive decision-making 

frameworks that merge environmental and social perspectives to tackle multifaceted challenges 

effectively (Cetin, 2016; Kilicoglu et al., 2021). To navigate these complex social-

environmental issues, a unified framework is imperative (Cetin, 2015; Wang et al., 2011; Xue-

Sen & Jing-Yuan, 1990). The SES research framework provides such a holistic approach, 

facilitating deeper insights into the dynamic interactions between human and natural systems 

(Cetin, 2015; Cumming et al., 2006; Wang et al., 2011), thereby enhancing our capacity to 

manage these interconnections (Aminpour et al., 2020; Kilicoglu et al., 2020; Li et al., 2018). 

The concept of a SES unit presents a distinct classification, setting it apart from other 

commonly used categories such as 'land-use' (Gregorio, 2005), 'service providing unit' 

(Andersson et al., 2015; Luck et al., 2009), 'social-ecological hotspots' (Alessa et al., 2008), 

and 'social-environmental patches' (Sinare et al., 2016). Studying SES dynamics often involves 

looking at nested scales, particularly focusing on regional levels capable of capturing local 

interactions and concerns. This regional focus is crucial for enabling policymakers to enact 

impactful measures (Brunckhorst et al., 2006; Fischer et al., 2015; Wu, 2013). Organizing large 
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spatial data sets into smaller, more manageable, and geographically cohesive groups is a key 

strategy in this process (AssunÇão et al., 2006). Regions can be delineated by grouping areas 

with similar socio-economic, cultural characteristics, and types of land use. This process, 

known as regionalization, aims to define socio-economic units that exhibit consistency in their 

socio-economic and cultural traits as well as their land use patterns (Castillo-Eguskitza et al., 

2018). Regionalization methods support this by consolidating numerous smaller areas into 

fewer larger regions based on criteria such as internal homogeneity, attribute equality, and 

geographical continuity (Shortt, 2009; Wei et al., 2021). These methods are particularly 

effective in managing large data sets by minimizing fine-scale variations and maintaining 

important patterns, thereby improving the utility of the data for discovering spatial patterns 

(Alvanides & Openshaw, 1999).  

Regionalization offers flexible, multipurpose spatial framework suitable for a variety of 

applications including inventory management, assessment, monitoring, and management, 

fostering the integration of ideas across consistent geographic units. The primary goal of most 

regionalization methods, from a mathematical point of view, is to solve a constrained 

optimization problem. These methods strive to enhance the uniformity within regions and 

increase the diversity between them, while adhering to spatial constraints like contiguity and 

compactness (Duque et al., 2011; Feng & Koch, 2024; Li et al., 2014; Wei et al., 2021). This 

approach enhances analytical and management consistency and has proven essential in 

optimizing resource allocation across sectors such as healthcare, eco-efficiency, and 

sustainable economic development (Li et al., 2023; Ramos et al., 2020; Song et al., 2023). 

Moreover, regionalization can be scaled to accommodate environmental phenomena.  

Delineating ecoregions, for instance, provide a relevant geographic framework for ecosystem 

management by representing ecosystem patterns across different scales and offering a 

mechanism for extrapolating site-specific knowledge about ecosystem behavior to broader 

areas (Omernik & Bailey, 1997).  
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Chapter 2: Literature Review 

This chapter provides an in-depth literature review on SES, focusing on the delineation and 

mapping of SES boundaries. It examines the integration of environmental and social data 

within traditional and advanced methodologies, such as machine learning techniques. The 

chapter critiques these traditional approaches and proposes a new integrative framework that 

utilizes spatial optimization and dimension reduction algorithms.  

2.1 Background and Research Gaps 

The SES consists of two primary subsystems: the environmental system (ES) and the 

social/human system (SS). Efforts to model the ES are prioritized to support the conservation 

of ES services, leveraging global-scale satellite data to map the spatio-temporal dynamics of 

these services (Di Minin et al., 2017; Duarte et al., 2016; Egoh et al., 2011; Izquierdo & Clark, 

2012; Liu et al., 2013; Naidoo et al., 2008; Qu & Lu, 2018; Reid et al., 2005). Significant 

resources have been invested in employing remotely sensed data to effectively capture these 

dynamics (Choudhary et al., 2018; Junge et al., 2010; Martínez-Harms et al., 2016; Nizeyimana, 

2012), underscoring that the benefits of ecosystem services extend beyond local administrative 

boundaries and often have transregional impacts across both time and space (Pascual et al., 

2017).  

Conversely, vector data are utilized to develop detailed models that interpret human behavior 

by aggregating and categorizing social and economic functions at various scales (Niu & Silva 

Elisabete, 2020). However, data concerning the social system are often outlined at different 

administrative levels, such as county, state, or national. Information related to human 

subsystems is not consistently available in vector formats; for instance, population density is 

commonly represented as raster data, whereas environmental data might be captured in vector 

formats, such as droughts or soil conditions (Elsawah et al., 2020).    

The delineation of basic unit boundaries is crucial in defining SES. Given the integrative nature 

of SES, analysis and modeling typically involve a diverse array of data, influenced by various 

factors including spatiotemporal environmental data (e.g., land use/cover, elevation, and 

climate) and components of the social system (e.g., population, household) (Feng & Koch, 

2024). Initial efforts in this area often involved comparing human-perceived values with 

measurable environmental factors (Alessa et al., 2008). Traditional SES delineation 

frameworks have relied heavily on subjective human judgment or complex, lasagna-style 
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spatial superposition analysis. These methods, however, often fall short in effectively managing 

the intricate interrelations among social and environmental services, frequently resulting in 

suboptimal resource allocation. Ideally, frameworks for delineating unit boundaries should 

strive to minimize trade-offs while maximizing the overall functionality of the SES as much as 

possible (Song et al., 2023).  

Numerous scholars worldwide have proposed various methodologies for identifying the basic 

units of SES. These methodologies include delineating areas where human-perceived 

landscape values coincide with physically measured ecological values (Alessa et al., 2008), 

defining social-ecological patches that correspond to landscape units referred to by local 

terminology (Sinare et al., 2016), and distinguishing social-ecological units that categorize 

different village types by their unique species diversity patterns (Hanspach et al., 2016).  

SES can also be analyzed through case studies that illustrate the impact of regional attributes 

on local dynamics, emphasizing the need for customized management strategies. These studies 

identify enduring characteristics such as aridity, topography, and a unique political economy of 

land that consistently define the SES region (Jones et al., 2019). An alternative method for 

analyzing SES involves examining the social perception and valuation of a broad array of 

ecosystem services and disservices in peri-urban communal forests, differentiating between the 

viewpoints of landowners and various types of visitors. It was proposed that a socio-cultural 

approach incorporating semi-quantitative surveys be integrated into a basic Public Participation 

Geographic Information System. Communal forests were conceptualized as social-ecological 

units (SEU) and recognized as complex adaptive systems where social and biophysical 

components interact at a local scale (Rodríguez-Morales et al., 2020). Advancements in the 

environmental and social sciences have also propelled the delineation of the SES framework, 

emphasizing attributes like adaptability, resilience, and transformability (Leslie et al., 2015; 

Ostrom, 2009; Walker et al., 2004). 

The frameworks proposed for delineating SES generally adopt a systematic approach to data 

pre-processing and post-processing. These methods initially treat the two subsystems (ES and 

SS) independently, categorizing them as distinct regions. Subsequently, SES is defined by 

overlapping the regions of ES and SS. For the environmental subsystem, predefined 

environmental districts or hydro-systems are utilized to identify and delineate ES boundaries 

(Castro et al., 2014; Klijn & de Haes, 1994; Martín-López et al., 2011). In contrast, the 

delineation of social system regions embraces a variety of scholarly approaches. Multivariate 

analysis (Zhang et al., 2011), combined qualitative and quantitative analysis (Kušová et al., 
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2008), and the use of semi-structured social surveys (Alessa et al., 2008; Brunckhorst et al., 

2006) are prevalent. Additionally, statistical tests such as ANOVA and Kruskal-Wallis, 

followed by post hoc analyses like Bonferroni and Dunn’s pairwise comparisons, are employed 

to identify socio-economic units (Martín-López et al., 2017).  

In addressing the multifaceted nature of SES, a variety of machine learning techniques—

including Principal Component Analysis (PCA) (Martín-López et al., 2017; Rattan & Hsieh, 

2005; Zhang et al., 2011), Random Forest (RF) (Ellis et al., 2012; Grossmann et al., 2010), and 

K-means (Deng & Cao, 2023; Ropero et al., 2021; Yang et al., 2021)—are employed. These 

methods facilitate the quantification of similarities among different SES and the categorization 

of geographic units that exhibit high levels of similarity into appropriate clusters (Yang et al., 

2021). Such techniques have been broadly recognized as effective in managing multiple SES 

concurrently. Nevertheless, numerous studies have demonstrated that the spatial distribution 

and temporal dynamics of SES are influenced by a multitude of factors, rendering SES 

inherently nonlinear with data distributions that are typically non-spherical (Li et al., 2022; 

Mandal & Pal, 2022). Techniques like K-means, PCA, and RF may not be optimally suited for 

the efficient classification of SES. In contrast, Self-Organizing Maps (SOM) leverage the 

adaptive properties of neural networks to identify nonlinear, non-spherical clustering structures, 

offering superior capabilities in spatial pattern recognition (Kim et al., 2023; Song et al., 2023). 

However, delineation of the basic unit boundaries based on SOM often encounters issues with 

heterogeneity and fragmentation of clustering units (Gao et al., 2014; Song et al., 2023), which 

complicates the establishment of precise boundary definitions. Traditional approaches relying 

on watersheds or administrative districts often fall short in effectively guiding the development 

and enhancement of SES within regions due to significant heterogeneity in geographic and 

anthropogenic features (Edwards et al., 2010; Prato, 2009; Song et al., 2023), and the 

challenges in maintaining consistency in SES interrelationships across dividing areas (Peng et 

al., 2019; Song et al., 2023). Moreover, the integration of expert knowledge in delineation of 

the basic unit boundaries can introduce a high degree of subjectivity. In contrast, Support Vector 

Machine (SVM) employs linear classifiers to delineate hyperplanes that meet classification 

criteria effectively, emerging over time as a robust method due to its generalization capabilities, 

optimal solution finding, and discriminative abilities (Cervantes et al., 2020).  

Current research on SES structures identifies six primary types: "balanced," "collaborative," 

"hierarchical," "open space," "comprehensive interactive," and "point-axis network" and each 

type places emphasis on different characteristics. Notably, these structures are recognized for 
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their cyclical mutual feedback mechanisms, yet the analysis of these cycles and the interactions 

among system elements remains incomplete (An et al., 2014; Barnes et al., 2019). This reveals 

a significant scientific challenge: to determine which structural system effectively integrates 

these cyclical feedbacks between and within elements to maintain ongoing cyclical processes, 

a question that warrants deeper investigation (Arnaiz-Schmitz et al., 2018; Morzillo et al., 

2014). Again, despite the development of these methods, issues remain, especially in extending 

local insights to address broader socio-economic and environmental changes, thereby enriching 

the global knowledge base (Thorn et al., 2021). Precisely identifying and mapping SES 

boundaries remains critical for effective natural resource management and policy 

implementation, posing ongoing challenges for researchers. 

While many researchers have proposed general frameworks for delineating SES boundaries 

that integrate environmental conditions, socioeconomic indicators, and land-use patterns 

(Kumar et al., 2021), as well as biodiversity considerations (Lazzari et al., 2019) or separate 

treatments of ES and SS (Martín-López et al., 2017), there is limited research integrating both 

vector and raster data on a single platform for preprocessing and boundary delineation, with 

only one known exception (Feng & Koch, 2024). Furthermore, there is a noticeable absence of 

evidence supporting the reproducibility of these frameworks across different regions. 

Additionally, there is a lack of user control over the selection of regions or the ability to adjust 

the dimensions of data to influence the weighting of factors considered in delineating regions. 

Moreover, the operational and computing costs associated with delineating SES units have not 

been thoroughly explored in the literature (Alessa et al., 2008; Hanspach et al., 2016; Sinare et 

al., 2016). This oversight highlights a gap in addressing the practical challenges of 

implementing these frameworks efficiently and effectively. 

2.2 Objective 

Addressing the research gaps identified in the literature review, this research proposes a generic 

framework designed to delineate the basic units of SES boundaries effectively. This framework 

aims to integrate vector and raster data across various scales and dimensions, utilizing spatial 

optimization techniques to control the spatial properties of the resulting SES units. It will also 

incorporate advanced dimension reduction algorithms to accommodate the non-linear 

characteristics of SES. Furthermore, the study seeks to enhance the accessibility and 

reproducibility of the methodology across different regions by employing open-source Python 
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packages. Additionally, it aims to optimize computational resource requirements to ensure the 

framework's feasibility within the constraints of available resources. 
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Chapter 3: Methodology 

This chapter discusses the methodology developed to delineate the basic units of SES. The 

methodology follows a structured four-phase approach. The initial phases focus on data 

preparation, involving the extraction and conversion of raster data into vector format, followed 

by the integration and cleaning of the vector data. The subsequent phase applies dimension 

reduction to streamline the dataset for further analysis. Finally, spatial optimization techniques 

are used to accurately delineate the basic units of SES, ensuring the methodology is efficient 

and effective for environmental analysis. 

3.1 Method 

To develop a generic approach for delineating the basic units of SES, this research integrates 

Geographic Information Systems (GIS), advanced dimension reduction algorithms, and spatial 

optimization techniques. GIS provides a comprehensive suite of tools for acquiring, storing, 

managing, and visualizing spatio-temporal data, making it an indispensable resource for spatial 

modeling and the analysis of geospatial data across various dimensions (Feng & Koch, 2024). 

 

Figure 3.1: Methodology of the Study 
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Figure 3.1 outlines the methodological framework proposed by this research. This 

methodology is structured into a four-phase approach aimed at effectively delineating the basic 

units of SES. The initial two phases focus on data preparation necessary for the delineation 

process, beginning with the extraction of information from raster data and its conversion into 

vector format. Following this, the second phase involves overlaying all vector data and 

subjecting it to data cleaning processes. In the third phase, the cleaned data is processed through 

a dimension reduction algorithm to prepare it for regionalization algorithms. The final phase 

applies spatial optimization techniques to precisely delineate the basic units of SES, ensuring 

that the methodology is both efficient and effective in managing and utilizing spatial data for 

environmental analysis. 

3.1.1 Phase 1: Extracting Information from Raster Data 

Environmental data typically incorporates raster structures characterized by regularly 

tessellated grids, each grid-cell endowed with distinct attributes and clear relational dynamics 

with adjacent cells (DeMers, 2002; Pike et al., 2009). This structure often incorporates varied 

tessellations that showcase unique geometric properties (DeMers, 2002; Pike et al., 2009). 

Moreover, homogenous grids employing vector data structures facilitate precise sampling and 

offer greater flexibility in modeling the altitude field between data points, allowing for a 

detailed and accurate representation of geographic features (Tachikawa et al., 1994; Wilson, 

2012). The process of modeling the land surface, regardless of the conceptual model or form 

of representation, involves the transformation and interpolation of sampled topographic data to 

match a specific reference frame and resolution that aligns with research objectives (Cavazzi 

et al., 2013; Hengl & Evans, 2009; Li et al., 2005).  

Phase 1 of the methodology adopts a method akin to the fishnet technique (Xu et al., 2017) and 

involves the tessellation of raster data (Bishop et al., 2018). This phase meticulously overlays 

a grid to analyze the spatial characteristics of raster data, followed by comprehensive statistical 

computations within each grid cell. Initially, a structured grid is created, tailored to the 

dimensions and coordinate system of the raster dataset. Each cell within this grid serves as a 

distinct unit of analysis, enabling the localized examination of the raster’s pixel values, as 

detailed in the pseudocode provided in Figure 3.2. 

Upon establishing the grid, the raster data undergoes a systematic analysis where the 

composition of pixels within each grid cell is examined. Various statistics are computed, such 

as the count of different pixel values, the total area these values occupy within each cell, and 
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their proportional coverage relative to the cell's total area. This quantitative analysis is pivotal 

for deciphering spatial patterns and variability within the raster data, facilitating the 

identification of regions characterized by high or low concentrations of specific values, which 

denote geographical or environmental attributes. 

Figure 3.2: Raster Data Extraction with Grid Overlay 

3.1.2 Phase 2: Integrating Vector and Raster Data 

GIS offers a variety of data integration tools that facilitate the combination of raster and vector 

data. Among these, GIS overlay techniques are extensively utilized across various modeling 

approaches due to their effectiveness in handling multi-criteria applications that involve 

specific environmental thresholds (Faisal & Shaker, 2017; Weng, 2002). In this study, the GIS 

overlay integration method is employed to merge environmental data collected in Phase 1 with 
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socio-economic data, creating a unified dataset for delineating the boundaries of Social-

Environmental Systems (SES). 

The methodology in Phase 2 follows a structured processing flow, beginning with the 

resolution of duplicated column names within GeoDataFrames. This process involves 

identifying duplicates and appending a sequence number to the first seven characters of each 

name to ensure their uniqueness. To achieve spatial consistency, the algorithm standardizes the 

coordinate reference systems (CRS) across all GeoDataFrames, aligning them with the CRS of 

the initial frame in the series. The spatial analysis is then enhanced through the intersection of 

these GeoDataFrames, which helps determine common geographic areas across the datasets. 

Figure 3.3: Integrating Vector and Raster Data 

Following the intersection, column names are truncated to the first ten characters for improved 

clarity, and any remaining duplications are systematically addressed. The final stages of this 

phase involve the geometric processing of the data, where MultiPolygon geometries are 

simplified into individual polygonal components. In instances where MultiPolygons remain, 

the polygon with the largest area is selected for detailed analysis. This methodical approach 

not only streamlines the data preparation process but also ensures that the datasets are optimally 
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configured for comprehensive geographic analysis, as detailed in the pseudocode illustrated in 

Figure 3.3. 

3.1.3 Phase 3: Dimension Reduction  

Dimension reduction techniques are extensively employed in GIS to streamline complex data 

and enhance processing efficiency. These techniques not only simplify data but also improve 

the accuracy and speed of data extraction and processing (Song et al., 2019; Wang et al., 2022). 

Among the various dimension reduction methods used in GIS,, PCA (Martín-López et al., 

2017), Stochastic Neighbor Embedding (SNE), t-distributed Stochastic Neighbor Embedding 

(t-SNE) (Liu et al., 2021; Shi et al., 2023), Multidimensional Scaling (MDS) (Mueller, 2004), 

Isomap (Kanishka & Eldho, 2017) are the most prevalent.  

Figure 3.4: Performance Testing by Dataset Size. From "UMAP: Uniform Manifold 
Approximation and Projection for Dimension Reduction" by McInnes, L, Healy, J, 2018, 

ArXiv e-prints. Copyright 2018 by ArXiv e-prints. 

Figure 3.4 compares the processing times of these algorithms for large datasets, highlighting 

that most dimension reduction techniques are relatively slow except for PCA, which is faster 

but limited by its reliance on linear data transformation (McInnes & Healy, 2018). Given the 

non-linear relationships inherent in the fractal characteristics of SES, there is a need for a 

dimension reduction algorithm that can handle such complexities more efficiently. 
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Uniform Manifold Approximation and Projection (UMAP) is proposed for this purpose, as it 

aims to preserve both local and global data structures, making it well-suited to the non-linear 

nature of SES. This method offers a balance between computational efficiency and the ability 

to capture intricate data relationships, thereby enhancing the overall analysis and interpretation 

of SES datasets. 

UMAP is constructed from a theoretical framework based in Riemannian geometry and 

algebraic topology. The result is a practical scalable algorithm that is applicable to real world 

data. The UMAP algorithm preserves more of the global structure with superior run time 

performance. Furthermore, UMAP has no computational restrictions on embedding dimensions, 

making it viable as a general-purpose dimension reduction technique for machine learning 

(McInnes & Healy, 2018). 

The UMAP algorithm operates in two main phases: graph construction in the high-dimensional 

space and optimization of the graph layout in the low-dimensional space. The first phase 

involves identifying the k nearest neighbors for each observation based on a distance metric, 

typically Euclidean (McInnes & Healy, 2018; Wang; et al., 2021). A minimal positive distance 

(equation 1), 𝜌𝑖 , and a scaling parameter (equation 2), 𝛿𝑖 , are then computed for each 

observation to normalize distances and preserve relative proximities. In the second phase, the 

algorithm initializes the low-dimensional representation using spectral embedding (equation 5) 

and iteratively applies attractive and repulsive forces (equation 6) to adjust the positions of 

observations. The attractive force pulls observations closer together based on their high-

dimensional relationships, while the repulsive force pushes non-neighboring observations apart 

(McInnes & Healy, 2018; Wang; et al., 2021). The UMAP dimension reduction considers the 

following notations:  𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝜒 =  {𝑥1, 𝑥2, 𝑥3, … … … … , 𝑥𝑁} 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝒹: 𝜒 × 𝜒 ⟶ ℝ≥0 𝜅 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝜖 = 𝑠𝑚𝑎𝑙𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜌𝑖 = min {𝒹 (𝑥𝑖, 𝑥𝑖𝑗 ) 1 ≤ 𝑗 ≤ 𝜅, 𝒹 (𝑥𝑖, 𝑥𝑖𝑗 ) > 0}      (1) 

∑ exp (− max(0,𝒹(𝑥𝑖,𝑥𝑖𝑗 )−𝜌𝑖)𝛿𝑖 )𝜅𝑗=1 = log2(𝜅)       (2) 

𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒𝑠, 𝐸 =  {(𝑥𝑖, 𝑥𝑖𝑗 ) | ≤ 𝑗 ≤ 𝜅, 1 ≤ 𝑖 ≤ 𝑁} 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝜔 ((𝑥𝑖, 𝑥𝑖𝑗 )) = exp (− max(0,(𝑥𝑖,𝑥𝑖𝑗 )−𝜌𝑖 )𝛿𝑖 )     (3) 
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𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑖, 𝑗), 𝜛𝑖,𝑗 =  𝜔(𝑥𝑖, 𝑥𝑗) + 𝜔(𝑥𝑗 , 𝑥𝑖) − 𝜔(𝑥𝑖 , 𝑥𝑗). 𝜔(𝑥𝑗, 𝑥𝑖) (4) 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑦𝑖 = 𝑦𝑖 +  𝛼. −2𝑎𝑏‖𝑦𝑖−𝑦𝑗‖22(𝑏−1)
1+𝑎(‖𝑦𝑖−𝑦𝑗‖22)𝑏 𝜛𝑖,𝑗(𝑦𝑖−𝑦𝑗) (5) 

𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒, 𝑦𝑖 = 𝑦𝑖 +  𝛼. 𝑏(𝜖+ ‖𝑦𝑖−𝑦𝑘‖22)(1+𝑎(‖𝑦𝑖−𝑦𝑘‖22)𝑏) (1 − 𝜛𝑖,𝑘)(𝑦𝑖−𝑦𝑘)    (6) 

Figure 3.5: Dimension Reduction Pseudocode 

Phase 3 of the methodology focuses on preparing the dataset for dimensionality reduction, 

ensuring it is clean and ready for advanced analysis. The process began with the categorization 
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of the data into categorical and quantitative columns using a function to determine whether a 

column's data type is object or if it has a limited number of unique values. Categorical columns 

have been identified, and quantitative columns have been filtered out, with the 'geometry' 

column excluded to focus on relevant numerical data. 

Handling missing values in the quantitative columns is also crucial. If any column contained 

NaN or Inf values, these have been replaced with the column's median value to maintain data 

integrity. The quantitative variables have then been scaled using standard scaling techniques to 

ensure uniformity across the dataset. For categorical data, dummy variables have been created 

to represent categorical values numerically. These dummy variables have been combined with 

the scaled quantitative variables to form a comprehensive dataset. Any remaining missing 

values have been imputed using a K-Nearest Neighbors (KNN) imputer to ensure no gaps in 

the data. 

The final step involved application of an open-source python package called UMAP for 

dimensionality reduction. UMAP has been initialized with specific parameters and applied to 

the imputed data, reducing its dimensions while preserving its essential structure. The resulting 

UMAP embeddings have been organized into a new DataFrame, ready for further analysis and 

interpretation. This methodical approach has ensured that the data is accurately processed and 

optimized for subsequent analytical phases. 

3.1.4 Delineating SES Boundaries through Regionalization 

Regionalization can be approached through three primary methodologies. The first method 

employs a two-step algorithm, starting with clustering non-spatial attributes and subsequently 

dividing non-contiguous objects into separate regions. Although this approach facilitates a 

quick evaluation of spatial dependence, it does not directly account for spatial adjacency. 

Consequently, it is limited in its capacity to capture spatial patterns effectively. This often 

results in more regions than desirable, particularly in datasets with low spatial autocorrelation 

(Haining et al., 2000). The second approach integrates both geographical positions and non-

spatial features, using centroid coordinates as additional attributes. Similarity is measured as a 

weighted mean of feature space and geographical proximity. This method, employed by the 

SAGE system, uses iterative processes to achieve connected clusters, balancing homogeneity, 

compactness, and equality to produce comparable regions, typically based on population data 

(Haining et al., 2000; Martin, 1998). However, some critics argue that homogeneity should be 

the sole objective function, with compactness and equality treated as constraints (Openshaw et 
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al., 1998). The third approach employs adjacency constraints in clustering. The AZP 

(Automatic Zoning Procedure) algorithm begins with a random partition and reallocates objects 

to minimize an objective function while maintaining adjacency. Although improvements like 

the ZDES system address the computational expense of AZP, more efficient methods utilizing 

adjacency relations are discussed in subsequent sections (Alvanides  et al., 2002). In the final 

phase of the framework, spatial optimization techniques are implemented to delineate the basic 

units of SES. One such technique is the Spatial 'K'luster Analysis by Tree Edge Removal 

(SKATER) algorithm. SKATER is an efficient method for regionalizing socio-environmental 

units represented as spatial objects, combining the use of a minimum spanning tree with 

combinational optimization techniques  (AssunÇão et al., 2006). SKATER is highly flexible, 

enabling users to specify their criteria and identify an optimal regionalization scheme. 

Consequently, this algorithm has significant potential for widespread application in defining 

basic spatial units across various use cases. 

The SKATER algorithm transforms the regionalization problem into a graph partitioning 

problem. It is a constrained spatial regionalization algorithm based on spanning tree pruning, 

where a pre-specified number of edges are cut in a continuous tree to group spatial units into 

contiguous regions. The first step involves creating a connectivity graph that captures the 

neighborhood relationships between spatial objects, with the cost of each edge inversely 

proportional to the similarity between the regions it connects. This neighborhood structure is 

organized by a minimum spanning tree (MST), a connected tree without circuits. The 

subsequent step is partitioning the MST by successively removing edges that link dissimilar 

regions, resulting in connected regions with maximum internal homogeneity (AssunÇão et al., 

2006; Feng et al., 2022). Following are the notations of SKATER algorithm: 𝑖 = 𝑇ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑙𝑒𝑏𝑒𝑙 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, 𝑧𝑖  𝜖 {1, 2, 3, … , 𝑘}  𝑧 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑎𝑏𝑙𝑒𝑠 𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑋 𝜀 ℝ𝑁×𝑃
 𝑊 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑏𝑖𝑛𝑎𝑟𝑦 𝑎𝑛𝑑 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠) 𝐿𝑘 = 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 𝜆𝑖 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑑(𝑖, 𝑗) =  ‖𝑥𝑖 − 𝑥𝑗‖2

      (7) 
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Given a set of dissimilarities {𝑑𝑖} within a cluster, the reduction function 𝑅 can be generally formulated 

as: 𝑅 ({𝑑𝑖}) = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ({𝑑𝑖})        (8) 

Given a set of attribute vectors {𝑥𝑖}  within a cluster 𝑅𝑘, the center function 𝐶  can be generally 

formulated as: 𝐶(𝑅𝑘) = 𝐶𝑒𝑛𝑡𝑒𝑟({𝑥𝑖 | 𝑖 𝜖 𝑅𝑘})        (9) 

The SKATER model is formulated as follows: 𝑚𝑖𝑛𝑧 ∑ 𝑅 (∑ 𝑑 (𝑥𝑖, 𝐶(𝑅𝑘))𝑖 𝜖 𝑅𝑘 )𝐾𝑘=1         (10) 

Subject to:  

∑ 1 {𝑧𝑖 = 𝑘} = 1     ∀𝑖𝐾𝑘=1                 𝑤ℎ𝑒𝑟𝑒 {   1 {𝑧𝑖 = 𝑘} = 1 𝑖𝑓 𝑧𝑖 = 𝑘0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (11) |𝑅𝑘|  ≥ 𝑞𝑢𝑜𝑟𝑢𝑚      ∀𝑘          (12) 𝜆1(𝐿𝑘) = 0 𝑎𝑛𝑑 𝜆𝑖(𝐿𝑘) > 0 𝑓𝑜𝑟 𝑖 = 2, … , |𝑅𝑘|       (13) 

The primary objective (10) of the SKATER algorithm is to enhance the optimization of spatial 

clustering, specifically the delineation of the basic units of Social-Ecological Systems (SES), 

by minimizing the total intra-cluster dissimilarity. The objective function is meticulously 

crafted to accumulate the dissimilarities between individual observations and their respective 

cluster centers. Constraint (11) guarantees that each observation is exclusively allocated to one 

cluster. To avoid the formation of unduly small clusters and to maintain statistical significance, 

each cluster is required to encompass a minimum number of observations, as dictated by a 

predetermined quorum. Thus, constraint (12) imposes a lower limit on cluster size to ensure 

adequacy in terms of statistical representation. A pivotal feature of the SKATER algorithm is 

the necessity for each cluster to constitute a connected subgraph within the spatial weights 

graph, as determined by the adjacency matrix. Constraint (13) ensures that each cluster forms 

a single, contiguous entity within the spatial graph, reinforcing the spatial coherence of the 

clustering process. 

An open-source Python package, ‘spopt,’ developed by Feng et al. (2022), has been utilized to 

delineate the basic units of Social-Ecological Systems (SES) through regionalization. The 

algorithm detailed in the pseudocode (Figure 3.6) employs the SKATER method, which is 

specifically designed to discern and visualize patterns in geographic data. The process 

commences by setting up the computational environment, suppressing warnings to streamline 
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output, and recording the start time to evaluate the efficiency of the analysis. A critical element 

of this procedure involves constructing a spatial weights matrix using Queen contiguity, which 

defines the adjacency relationships between geographic units and fundamentally influences the 

clustering dynamics. These weights are essential for identifying spatial connections that are 

crucial for subsequent clustering phases. The clustering operation is governed by parameters 

tailored to measure dissimilarities among geographic units using the SKATER algorithm, 

ensuring the analysis accurately reflects the unique spatial attributes of the dataset.  

The algorithm iteratively clusters the geographic units into varying numbers of groups, ranging 

from two to ten, allowing for a comprehensive exploration of potential spatial organizations. 

Post-clustering, the results for each configuration of cluster sizes are visualized through a series 

of plots, providing a clear visual representation of the spatial distribution of clusters. This 

visualization is integral to the analysis, facilitating an intuitive understanding of how 

geographic units group together under different scenarios. Finally, the algorithm concludes by 

calculating the elapsed time from the start to the end of the process. This measurement provides 

valuable insights into the computational efficiency of the clustering operation, highlighting the 

performance of the algorithm under the given data and parameter settings. 

Figure 3.6: Delineating SES Boundaries through Regionalization 
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Chapter 4: Application 

4.1 Study Area 

To implement the proposed framework in a practical scenario, the Rio Grande/Bravo Basin 

(RGB) area (figure 4.1) has been selected as the case study. The socio-environmental 

geodatabase of RGB, curated by Plassin et al. in 2020, provides an ideal dataset to test this 

methodology. The RGB is a transboundary region spanning the United States and Mexico, 

offering diverse environmental and socio-economic characteristics, making it suitable for 

large-scale, spatially explicit mapping of Social-Ecological Systems (SES). 

Figure 4.1: The Rio Grande Basin 
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The Rio Grande River, partially forming the border between the U.S. and Mexico, is the fifth-

longest river in North America. The basin covers an area of 552,382 km² and supports a 

population of approximately 10.4 million people. Key economic sectors include agriculture 

and oil and gas production, both of which heavily depend on hydrological resources. Due to 

the limited availability of surface water, these sectors increasingly rely on groundwater. The 

RGB encompasses varied landscapes, agricultural systems, and political and administrative 

units, presenting a complex SES with the common issue of limited water availability (Koch et 

al., 2021).  

The basin is also a critical source of irrigation water for the southwestern U.S. Historical 

records indicate a 25% decline in source waters between 1958 and 2015 (Chavarria & Gutzler, 

2018). Future projections suggest an 18% or greater reduction in runoff by the end of the 21st 

century (Elias et al., 2015), with climate change expected to have a significant impact, 

particularly in the upper RGB  (Dettinger et al., 2015).  The RGB is over-appropriated, meaning 

that water availability frequently fails to meet the demands of all water rights holders. The 

downstream segment of the river, from El Paso to Ojinaga, often runs dry due to drought and 

misuse, earning the moniker "The Forgotten River" to highlight its dire condition (CNN, 2001). 

4.2 Input Data 

Geospatial data for the Rio Grande/Bravo Basin (RGB) application has been sourced from a 

socio-environmental geodatabase developed by Plassin et al. (2020). Accessible via the Open 

Science Framework, this comprehensive geodatabase includes 145 datasets (125 vector and 20 

raster) covering the transboundary basin. Categorized into themes such as Water and Land 

Governance, Hydrology, Water Use and Hydraulic Infrastructures, Socioeconomics, and the 

Biophysical Environment, the total size of the geodatabase is 1.40 gigabytes (GB). 

To demonstrate the efficacy and potential of the newly developed approach, seven 

representative datasets have been selected. These include two raster datasets: land use/land 

cover data (figure 4.2a) and elevation data (figure 4.2b). The land use categories encompass 

temperate or sub-polar needleleaf forest, tropical or sub-tropical broadleaf evergreen forest, 

tropical or sub-tropical broadleaf deciduous forest, temperate or sub-polar broadleaf deciduous 

forest, mixed forest, tropical or sub-tropical shrubland, temperate or sub-polar shrubland, 

tropical or sub-tropical grassland, temperate or sub-polar grassland, wetland, cropland, barren 

lands, urban and built-up, and water. Additionally, four vector datasets have been chosen: 

composite land management zones (figure 4.2c), eco-regions (figure 4.2d), administrative 
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boundaries consisting of 68 U.S. counties and 135 Mexican municípios (figure 4.2e), 

hydrological sub-basin boundaries (figure 4.2f), These selections provide diverse data models 

(raster and vector), data types (categorical and numerical), and key determinants for 

hydrological resource management and governance. The study area contains between 106 to 

109 pixels per raster layer and 102 to 105 polygons per vector layer, depending on the resolution. 

By employing these datasets, the practical application and robustness of this approach in 

analyzing and managing socio-environmental systems within the RGB are effectively 

demonstrated. 

Figure 4.2: Selected Geospatial Dataset from Plassin et al. (2020) 

 

 

 

(a) (b) (c) 

(d) (e) (f) 



Page | 23  
 

Table 4.1 and 4.2 gives a brief description of the vector dataset selected for the analysis. 

Table 4.1: Brief Description of the Selected Vector Datasets 

Name of the dataset Data Type No of Variables 

Administrative Boundaries Nominal and Ratio 224 

Eco-regions Nominal 18 

Land Management Nominal 9 

Sub-basin Nominal and Ratio 11 

 

Table 4.2: Brief Description of the Selected Raster Datasets 

Name of the dataset Spatial Resolution No of classes 

Land Use Land Cover 30 meters 17 

Elevation 916 meters NA 

 

4.3 Data Processing and SES Delineation 

 The objective of this application is to delineate SES regions based on user preferences, while 

adhering to strict constraints that prevent these regions from crossing county and sub-basin 

boundaries. The generation of SES units is governed by criteria such as estimated total quantity, 

compactness, spatial contiguity, and similarity in socio-environmental characteristics. These 

constraints enable policymakers to implement targeted policies and distribute resources 

efficiently based on regional needs. 

The proposed framework begins by extracting raster data information using the fishnet 

technique. LULC and elevation data are integrated into the fishnet vector data, followed by 

overlaying additional vector datasets to create a comprehensive base dataset for SES 

delineation. To maintain the critical constraint of preserving county and sub-basin boundaries, 

the next step involves partitioning the entire RGB area into distinct, non-overlapping polygons. 

Each polygon uniquely combines information from sub-basins, counties/municípios, LULC, 

and other vector datasets with various boundaries beyond administrative lines. 

To illustrate and visualize the framework effectively, two distinct polygons have been selected 

(Figure 4.3). One polygon is located in Mexico, following the Bravo/Sosa sub-basin boundary 

and covering approximately 62,656 km², while the other is in New Mexico, USA, following 

the Eddy County boundary and covering approximately 10,873 km². These polygons have been 
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chosen for their diverse LULC types, with Eddy County containing 13 of the original 17 LULC 

categories, and Bravo/Sosa sub-basin containing 11. This selection process ensures the 

preservation of most environmental data, despite segmenting the study area into smaller units. 

Figure 4.3: Land Use Land Cover Classes of Eddy County and Bravo/Sosa Sub-basin   

Figures 4.4, 4.5, and 4.6 respectively show the elevation, land management types, and 

ecoregions of Eddy County and Bravo/Sosa Sub-basin. The elevation of both polygons has 

been categorized into five classes using the Jenks Natural Breaks Method (North, 2009) to 

enhance data visualization and understanding. The ranges indicate that Bravo/Sosa sub-basin 

has greater elevation variance, ranging from 83 meters to 2860 meters. Conversely, Eddy 

County has an elevation range from 866 to 2225 meters, indicating a flatter terrain. 

In terms of land management, both polygons are managed by either public or private entities, 

reflecting a symmetry in the data. Regarding ecoregions, Bravo/Sosa sub-basin is nearly 

divided between two ecoregions, whereas Eddy County spans four different ecoregions, 

predominantly the Chihuahuan Desert Ecoregion. Despite these differences, both polygons 
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share a similar profile in terms of input data, demonstrating the robustness of the proposed 

framework in analyzing and managing socio-environmental systems within the RGB. 

Figure 4.4: Elevation Data of Eddy County and Bravo/Sosa Sub-basin  

Figure 4.5:  Land Management Data of Eddy County and Bravo/Sosa Sub-basin   
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Figure 4.6: Eco-regions of Eddy County and Bravo/Sosa Sub-basin   

All datasets for each sample polygon have been integrated according to the second phase of 

the methodology. After integration, the number of variables for Eddy County expanded to 136 

with 251 features, while for the Bravo/Sosa sub-basin, the number of variables increased to 

102 with 1115 features. Given the high-dimensional nature of these datasets, the SKATER 

algorithm—renowned for its constrained spatial regionalization capabilities—requires 

significant computational power and time to process and provide accurate solutions. 

To mitigate these computational demands, the dimension reduction algorithm has been 

employed. UMAP is particularly well-suited for this task due to its ability to handle complex 

and non-linear relationships within the data, effectively preserving essential patterns and 

structures. This algorithm not only reduces the computational load but also maintains the 

integrity of the dataset's inherent characteristics. By implementing UMAP, the complexity of 

the high-dimensional data is distilled into a more manageable form, ensuring efficient 

processing without sacrificing the quality of the analysis. 

UMAP offers flexibility by allowing users to specify the number of output dimensions. For this 

demonstration, the variable size for both Eddy County (originally 136 variables) and the 

Bravo/Sosa Sub-basin (originally 102 variables) has been reduced to 10 new variables using 

the UMAP process, minimizing data distortion. Greater emphasis has been placed on sub-

basin-related variables for Eddy County and municípios-related variables for the Bravo/Sosa 
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sub-basin to ensure that the final SES units prioritize existing sub-basin boundaries for Eddy 

County and municípios administrative boundaries for the Bravo/Sosa sub-basin. This 

significant reduction streamlines the data, making it more manageable for subsequent analysis 

while retaining the critical information necessary for accurate SES delineation. 

In the next step, the SKATER algorithm has been implemented using the 10 variables derived 

from the UMAP dimension reduction. The SKATER algorithm, known for its ability to manage 

spatial regionalization with constraints, enables the regulation of regional divisions and ensures 

a specified minimum number of spatial entities within each designated region. The algorithm 

environment has been configured to allocate a minimum of 50 and 10 features to each region 

within Eddy County and Bravo/Sosa Sub-basin  polygons respectively. This configuration 

ensures that each SES region has enough spatial entities to maintain statistical and practical 

significance. 

To explore different regional configurations, the SKATER algorithm has been run to generate 

2, 4, 6, 8, and 10 regions for each of the sample polygons. This iterative approach allows for a 

comprehensive examination of how varying the number of SES units affects the overall 

delineation and spatial distribution. Both the minimum number of features per region and the 

number of regions (i.e., SES units) can be adjusted through user input, providing a high degree 

of control over the final spatially explicit units. This flexibility is crucial for tailoring the 

analysis to specific user needs and policy objectives. 

Additionally, the time required to delineate these SES boundaries has been meticulously 

recorded to provide insights into the computational efficiency of the process (Tables 4.3 and 

4.4). By documenting the computational time, the performance of the algorithm under various 

configurations can be rigorously assessed, enabling the optimization and refinement of the 

methodology. This comprehensive approach ensures that the framework not only generates 

accurate and meaningful SES regions but also operates efficiently within practical time 

constraints. It is important to note, however, that the recorded times for delineating SES units 

do not include data processing time. The recorded time specifically represents the duration 

required by the SKATER algorithm after all data preprocessing has been completed and 

dimensions have been reduced using the UMAP algorithm. 
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Table 4.3: Delineation of SES units of Eddy County, NM, USA  

Table 4.4: Delineation of SES units of Bravo/Sosa Sub-basin   

Number of 

SES Units 
Number of Features in each SES 

Time Required to 

Solve 

2 (505, 610) 1.12 seconds 

4 (198, 307, 345, 265) 2.20 seconds 

6 (198, 195, 51, 345, 61, 265) 3.48 seconds 

8 (85, 113, 195, 51, 243, 102, 61, 265) 4.62 seconds 

10 (85, 113, 195, 51, 188, 102, 55, 61, 53, 212) 5.75 seconds 

Identifying SES units necessitates the aggregation of smaller polygons into larger, contiguous 

regions to minimize internal dissimilarity across five key attributes within each region. Each 

region is uniformly color-coded to ensure geographic continuity. Although some regions may 

initially appear fragmented, closer inspection—upon magnification—reveals that they are 

interconnected through vertices or narrow lines, thereby maintaining their integrity as single 

entities. (figure 4.7 and 4.8). 

Figure 4.7: Different SES Units of Eddy County  

Number of 

SES Units 
Number of Features in each SES 

Time Required to 

Solve 

2 (160, 91) 0.29 seconds 

4 (27, 195, 18, 11) 0.58 seconds 

6 (27, 149, 26, 20, 18, 11) 1.01 seconds 

8 (27, 122, 26, 11, 20, 18, 11, 16) 1.20 seconds 

10 (27, 84, 28, 26, 11, 20, 18, 10, 11, 16) 1.51 seconds 
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Figure 4.8: Different SES Units of Bravo/Sosa Sub-basin  

A detailed examination of the SES unit delineation within the sample polygon of Mexico 

reveals that municipios attributes predominantly influence the delineation when a greater 

number of SES units are derived. Conversely, with fewer SES units, topography and LULC 

data become the primary factors guiding the delineation process. This indicates a shift in the 

driving factors of delineation depending on the granularity of the segmentation. 

For the Eddy County, the delineation process exhibits a different pattern. When fewer SES 

units are delineated, the dominance of ecoregions is more apparent. However, as the number 

of SES units increases, LULC types and ecoregions become more significant in determining 

the boundaries. This demonstrates how the delineation criteria can vary significantly based on 

the number of regions being considered. Eddy County, which lacks a major city or significant 

population density, predominantly sees its SES delineation driven by ecological attributes. This 

observation underscores the variability in dominant factors influencing SES delineation, 

depending on the number of units and the specific regional characteristics.  

4.4 Discussion 

The delineation of SES unit boundaries is influenced by several critical factors, including the 

raster data extraction process, the choice of regionalization methods, and the fine-tuning of 

parameters within these selected methods. Each of these factors plays a pivotal role in ensuring 

that the delineation of SES units is both accurate and meaningful. 

The raster data extraction process lays the groundwork for segmentation and subsequent 

analysis. This involves selecting appropriate raster datasets, such as elevation and LULC, and 

configuring parameters like resolution and grid size. These initial choices significantly impact 

the granularity and precision of the delineated units, as they determine the level of detail 

captured in the spatial data. 
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Following the extraction, the choice of dimension reduction and regionalization methods 

further shapes the delineation outcome. Both dimension reduction and regionalization methods 

necessitate meticulous parameter tuning to control the process effectively. Dimension reduction 

methods, such as UMAP, employ parameters like the number of nearest neighbors, minimum 

distance, and the number of output dimensions to manage complexity while preserving 

important data structures. These parameters aid in reducing high-dimensional data into a lower-

dimensional space, retaining essential patterns necessary for accurate regionalization. 

Regionalization methods involve various parameters to further refine the delineation process. 

The number of minimum features ensures each SES unit contains a sufficient number of data 

points to be statistically significant. Distance measures for quantifying pixel similarity are 

crucial for forming coherent regions by assessing the similarity between pixels. Edge 

smoothness helps create continuous boundaries, preventing jagged edges that could complicate 

analysis. Convergence criteria determine when the algorithm should stop iterating, ensuring 

computational efficiency and preventing overfitting. Various algorithms and techniques, such 

as the SKATER algorithm or the use of superpixels in image segmentation, offer different 

approaches to grouping spatial entities. Each method possesses inherent strengths and 

weaknesses, and the selection must align with the study's specific objectives and constraints. 

For example, some methods may prioritize geographic contiguity and compactness, which are 

crucial for creating cohesive and manageable units, while others focus on minimizing attribute 

dissimilarity within regions to ensure that SES units are as homogeneous as possible in terms 

of socio-environmental characteristics. 

Careful adjustment of these parameters optimizes the delineation process, producing SES units 

that are both accurate and aligned with the study’s specific goals and contextual requirements. 

The interplay between these factors underscores the complexity and necessity of a tailored 

approach in the effective delineation of socio-environmental units. This detailed and context-

specific optimization ensures that the resulting SES units are robust, reliable, and useful for 

subsequent environmental and policy analyses. 
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Chapter 5: Conclusion 

The exploration and analysis of complex SES necessitates the integration of diverse datasets 

and multiple modeling approaches. Ensuring the congruence of spatial scales across different 

data sources is crucial for accurate geospatial analyses. This thesis introduces a structured and 

reproducible methodology that integrates GIS, dimensionality reduction, and spatial 

optimization techniques to effectively delineate geospatial units, demonstrating its application 

through an expansive study area utilizing high-resolution datasets and diverse data models. 

Spatial optimization emerges as a robust tool for delineating regions by accommodating diverse 

application requirements while managing large volumes of detailed input data. Preprocessing 

steps, including data extraction from raster datasets and vector-based overlays, ensure that the 

polygons aggregated in the regionalization model remain manageable. This process preserves 

the intrinsic properties and natural distributions of the data, facilitating the identification and 

characterization of socio-environmental units within a feasible timeframe. 

The methodology relies exclusively on open-source Python modules and a publicly accessible 

geodatabase for the Rio Grande/Bravo Basin, promoting transparency and encouraging 

widespread adoption in SES analysis and modeling. This openness invites further refinement 

and expansion by the research community. Each application must customize the processing 

steps to align with specific research objectives. 

Future research should refine parameter settings for segmentation and regionalization 

processes to enhance the accuracy and efficiency of SES delineation. Additionally, expanding 

the framework to incorporate a wider array of datasets and applying it to different regions will 

help validate its robustness and adaptability.
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