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Abstract 

NASA’s Multi-Angle Imager for Aerosols (MAIA) is a satellite-borne multi-angle polarimeter 

(MAP)  instrument that aims to investigate the human health effects caused by exposures to various 

types of particulate matter (PM) and is anticipated to launch in 2025. The Step-1 aerosol retrieval 

algorithm deployed by MAIA is refined and tested by applying the algorithm to the data acquired 

by the satellite-borne instrument—POLarization and Directionality of the Earth's Reflectances 

(POLDER), and the results are compared with the ground-based Aerosol Robotic Network 

(AERONET) and retrieval of Generalized Retrieval of Aerosol and Surface Properties (GRASP). 

To address the quilting effect observed across the edges of adjacent retrieval patches—each 

composed of multiple pixels that are retrieved simultaneously—a three-step strategy was 

implemented within the retrieval algorithm. As a significant part of this study, further advancement 

came with the development and integration of a neural network (NN) based radiative transfer and 

optics module, which has significantly accelerated the radiative transfer modeling process, 

increasing efficiency by three to four orders of magnitude without compromising modeling 

accuracy. The innovative use of automatic differentiation for the analytical Jacobian matrix 

calculation from the trained NNs has further accelerated computations and improved the precision 

of derivative estimations.  

Accuracy assessments over MAIA's Los Angeles primary target area have shown that aerosol 

optical depth (AOD) retrievals are comparable to those from AERONET and GRASP-HP. 

Compared to AERONET reference AODs, the RMSEs of MAIA-NN based retrieval are 0.152, 

0.050, 0.036, and 0.033 for wavelengths 565, 670, and 1020 nm, respectively. In contrast, the 

RMSEs of GRASP-HP based retrieval are 0.084, 0.084, 0.081, and 0.082, respectively. The three-

step strategy not only mitigates the visual quality of aerosol maps but also substantially improves 
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retrieval performance by enforcing physically plausible constraints. As a result, there was a RMSE 

performance enhancement for MAIA-NN retrievals, with a notable improvement of 49%, 59%, 

and 62% at 565, 670, and 1020 nm wavelengths, despite a slight 4.8% decrease at 440 nm. 

Remarkably, the NN-based approach has proven to be more than 400 times faster than the 

traditional method, taking less than 1 second per pixel on average, indicating its transformative 

capability for near-real-time aerosol retrieval from MAP satellite data. 
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1 Introduction 

1.1 Background 

Atmospheric aerosols are small solid or liquid particles suspended in the air ranging in size 

from a few nanometers to tens of micrometers. Despite their small size, they exert a notable 

influence on climate, air pollution, and public health. Aerosols contribute to cooling the planet by 

reflecting solar radiation into space, known as the direct climate effect. Additionally, tiny particles 

can act as cloud condensation nuclei (CCN), providing the foundation for cloud formation. This 

indirect influence of aerosols on climate through clouds is referred to as the indirect impact. 

Current research indicates that the overall climate impact of aerosols opposes that of greenhouse 

gas-induced warming(Haywood and Boucher, 2000; Ramanathan et al., 2001). Moreover, as a 

major source of air pollutants, aerosols in the boundary layer have a significant impact on human 

health. Fine particulate matter (PM), such as PM2.5, can penetrate deep into the respiratory system, 

causing respiratory diseases and cardiovascular problems. Additionally, certain aerosols (from 

biomass burning, industrial emissions, and engine exhaust) contain or can transport toxic 

chemicals exacerbating their adverse effects on human health (Pope et al., 2002). 

Aerosols exhibit wide variations in terms of their sources, spatial distribution, and chemical 

composition. Each type of aerosol plays a distinct and critical role in shaping atmospheric 

processes and environmental outcomes. Understanding the complexities and nuances of aerosol 

properties is crucial for uncovering their broader implications for climate, air quality, and human 

well-being. Aerosol remote sensing provides essential constraints for these purposes.   

1.2 Remote Sensing of Aerosols 

One powerful tool for studying aerosols is remote sensing, which allows for the observation 

and measurement of aerosol properties over large spatial scales and extended periods. By 
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measuring and analyzing the reflected, scattered, or emitted radiation from the atmosphere, aerosol 

concentrations, types, and microphysical properties can be estimated.  

Remote sensing instruments are deployed by various platforms, including ground-based, air-

borne, and satellite-borne systems, each offering unique advantages in aerosol research. For 

example, the ground-based Aerosol Robotic Network (AERONET, Holben et al., 1998) utilizes 

instruments such as sun photometers at fixed ground stations to measure both transmitted and 

diffuse light and infer aerosol quantities such as aerosol optical depth (AOD), size distribution, 

and column abundance. Ground-based observation systems, although offering valuable long-term 

and accurate aerosol properties data, often face limitations in spatial coverage. In contrast, air-

borne and satellite-borne instruments offer broader spatial analysis. Radiometric satellite sensors 

like the Moderate Resolution Imaging Spectroradiometer (MODIS, King et al., 1992; Salomonson 

et al., 1989) and the Multiangle Imaging SpectroRadiometer (MISR, Diner et al., 1998) have 

enhanced capabilities to detect aerosol properties (Kahn and Gaitley, 2015). Moreover, the 

integration of polarization in measurements can further improve the remote sensing accuracy of 

aerosol absorption (Hasekamp, 2010; Lebsock et al., 2007; Mishchenko et al., 1997). Multi-angle 

polarimeter (MAP) is a passive remote sensor that integrates multi-angular, multi-spectral, and 

polarimetric measurement abilities. Airborne Multiangle SpectroPolarimetric Imager (AirMSPI, 

Diner et al., 2013), for instance, is a MAP instrument that provides reliable polarimetric imaging 

function, seven aerosol bands from 355 to 865 nm, and high spatial resolution (10-25 meters/pixel). 

This and other airborne instruments like the Research Scanning Polarimeter (RSP, Cairns et al., 

1999) , the airborne Spectropolarimeter for Planetary Exploration instrument (SPEX, Smit et al., 

2019) and Airborne Hyper Angular Rainbow Polarimeter (AirHARP, Puthukkudy et al., 2020) 

have significantly advanced our measurement of aerosol properties and dynamics.  
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As a pioneering satellite-borne polarimeter, POLDER (Polarization and Directionality of 

Earth's Reflectances) has demonstrated the utility of MAP remote sensing in studying aerosol-

cloud interactions, aerosol composition, and surface properties. More advanced satellite-borne 

MAP instruments such as Multi-viewing Multi-channel Multi-polarisation Imager (3MI, Fougnie 

et al., 2018) and Multi-Angle Imager for Aerosols (MAIA, Diner et al. 2018) are set to further 

advance the measurement capabilities to gain further insights into aerosols and their impacts.  

1.3 Research Objectives and Structure 

Selected by NASA's 3rd Earth Venture Instrument solicitation, the Multi-Angle Imager for 

Aerosols (MAIA) aims to investigate the human health effects caused by exposures to various 

types of particulate matter (PM) and is anticipated to launch in 2025.  

To meet the scientific objectives of the MAIA project, an optimization-based aerosol inversion 

approach has been developed to perform the Step-1 aerosol retrieval. As the output, total/column 

AOD and aerosol properties including absorption, size distribution, and non-sphericity are derived 

and further used to calculate the AOD fractions of absorbing and non-absorbing aerosols, spherical 

and non-spherical aerosols, and fine and coarse mode aerosols. This study aims to validate this 

algorithm using POLDER data. Furthermore, considering the computationally intensive nature of 

the optimization-based algorithm, this research explores the integration of deep neural network 

(DNN) methodologies to enhance retrieval efficiency.  

The upcoming chapters outline the framework and details of this structure: Chapter 2 offers a 

brief overview of aerosol properties, polarimetric remote sensing, surface reflection model, 

radiative transfer model, and the optimization-based retrieval algorithm. Chapter 3 describes the 

data used in this study. Chapter 4 elaborates on implementing a three-step retrieval strategy to 

mitigate the quilting effect of retrieved maps. Chapter 5 examines the application of DNNs in 
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modeling for polarimetric remote sensing. Lastly, chapter 6 summarizes the findings and discusses 

future research directions. 
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2  Radiative Transfer and Aerosol Property Inversion 

2.1 Polarized Radiative Transfer Model 

Radiative transfer (RT), the physical phenomenon describing the emission, absorption, and 

scattering of radiation, is fundamental in aerosol remote sensing. Specified for satellite remote 

sensing, we need to retrieve the aerosol properties from the radiance measured by satellite at the 

top of the atmosphere (TOA). To achieve this, a mathematical and physical model of RT must be 

established as a prerequisite for accurate retrieval.  

To construct an effective RT module for aerosol remote sensing, it is necessary to adopt a 

scheme involving a coupled atmosphere-surface (CAS) system. The atmosphere system is 

simplified as molecule particles of gases surrounding Earth and aerosol particles. The radiance 

emitted and reflected by surfaces of Earth interact with the atmosphere system, also contributing 

an unneglectable portion of TOA radiance. A multi-layer model of the CAS system, specifically 

for RT modeling in this context, is detailed in Figure 2.1. Structurally, from bottom to top, the 

system starts with the Earth's surface, followed by a mixed layer of aerosol particles and Rayleigh 

scattering molecules, and capped by a pure molecule layer (Rayleigh layer).  

 
Figure 2.1 A multi-layer model of the coupled atmosphere-surface (CAS) system for RT modeling. 
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A hybrid Markov-chain/adding-doubling RT model (Xu et al., 2017) was adopted in the study. 

This model adeptly captures the complex interactions between aerosol particles and atmospheric 

molecules. The mixed layer above the surface is optically inhomogeneous due to the varying 

concentration of aerosols, and a Gaussian vertical distribution profile for aerosols is assumed. The 

Markov chain method is utilized for calculating polarized RT in this inhomogeneous layer, while 

the Rayleigh scattering layer, being optically homogeneous, uses the doubling method for RT 

modeling. The integration of local radiative fields across these layers, including the land surface, 

is achieved through an adding strategy.  

The aerosol properties and surface reflectance, together with additional geometric parameters 

(e.g., solar and view zenith angle, solar and view azimuth angle), serve as inputs to the model. The 

output of this RT model includes the Stokes vector components (L, Q, U, V) of the radiance 

measured at the top of the CAS system. These components are then used to calculate the linear 

polarimetric components q and u through Eqn. (2-1) and (2-2), respectively, for fitting the signals 

(L, q, u) measured by a polarimetric sensor. 

 𝑞 =  
𝑄

𝐿
 (2-1)

 𝑢 =  
𝑈

𝐿
 (2-2)

2.2 Aerosol Properties 

The most crucial and fundamental aerosol properties in the remote sensing field are size 

distribution, refractive index, and shape. They dominate the interaction of a single aerosol particle 

with electromagnetic radiation, such as how it absorbs and scatters the radiation in various 

directions. 

As a proxy of aerosol composition, the complex refractive index is described as:  
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 𝑚 = 𝑚 + 𝑚 𝑖, (2-3)

where 𝑚  and 𝑚  are the real and imaginary parts of the refractive index, respectively. The real 

part determines the extent to which light bends upon entering the interface of a particle, while the 

imaginary part contributes to light absorption by the particle.  

Knowing the aerosol refractive index and size distribution, one can use a variety of light 

scattering models to compute light scattering properties from different types of particles. For 

example, Mie theory, a classical and purely mathematical-physical approach, describes the 

scattering of electromagnetic waves by homogeneous spherical particles. The T-matrix method, 

which extends Mie theory, offers a more efficient way to calculate scattering by non-spherical 

particles. The Geometric Optics Approximation (GOA) provides a simplified method for modeling 

light scattering by particles significantly larger than the wavelength of the incident light. 

All the light scattering theories can calculate the scattering coefficient ( 𝐾 ), extinction 

coefficient (𝐾 ), and 4x4 phase matrix elements, which are used as input for radiative transfer 

(RT) computation. 

Aerosol Optical Depth (AOD, τ) quantifies the extinction of solar or terrestrial radiation due to 

aerosols along the path of light propagation. It is related to the aerosol concentration and extinction 

coefficient (Kext) by the equation: 

 𝜏 = 𝐾 (𝑧)d𝑧 (2-4)

 
where z is the altitude of the atmosphere.  

While AOD quantifies the aerosol-induced extinction of radiation. The partial amount of 

reflected, absorbed, and scattered in different directions, is very important and related to particle 

scattering properties. Single Scattering Albedo (SSA, ϖ) 
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 𝜛 =
𝐾

𝐾
 (2-5)

represents the ratio of scattering to total extinction by aerosols. It is a dimensionless quantity 

ranging from 0 to 1. The higher the value of SSA, the stronger the scattering relative to absorption.  

2.3 Surface Reflection Models 

Surface reflection models describe how light is reflected from various types of surfaces (such 

as water, vegetation, and urban materials). As surface reflection is dependent on both the 

illumination and the viewing geometries, it’s described as Bidirectional Reflectance Distribution 

Function (BRDF). For MAP instruments, both the unpolarized reflection ( ℜ , ) and 

polarized reflection (ℜ , ) components need to be considered, namely the overall BRDF takes 

the following form: 

 ℜ = ℜ , 𝐃 + 𝐫(𝜋 − 𝑖 )ℜ , 𝐫(−𝑖 ), (2-6)

where 𝐃 is the null matrix except D11=1, and the matrices 𝐫(𝜋 − 𝑖 )and 𝐫(−𝑖 ) rotate the Stokes 

vector into the meridian and reflection planes via angles 𝑖  and 𝑖 , respectively (Hovenier, 1969). 

In this study, the Rahman-Pinty-Verstraete (RPV) model, (Rahman et al., 1993) is adopted for 

modeling unpolarized surface reflection components. The polarized surface reflection component 

is based on a micro-facet model (Cox and Munk, 1954a, 1954b; Diner et al., 2012; Litvinov et al., 

2011).  

2.3.1 Rahman-Pinty-Verstraete (RPV) model 

The depolarizing component of BRDF as given by the RPV model (Rahman et al., 1993) is 

expressed as: 

 ℜ , =
𝑎

𝜋

(cos 𝜃 cos 𝜃 )

(cos 𝜃 +cos 𝜃 )
𝐹(𝑔 ; Ω)[1 + 𝑅(𝐺)], (2-7)
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where the Lambertian term 𝑎 controls the amplitude of reflection (0 < 𝑎 < 1), the modified 

Minnaert term 𝑘  dominating the bowl or bell shape of the angular distribution (0 < 𝑘 < 1) and 

𝑔  is the asymmetry parameter of the Henyey-Greenstein phase function (−1 < 𝑔 < 1). 𝐹(𝑔 ; Ω) 

is evaluated as,   

 𝐹(𝑔 ; Ω) =
1 − 𝑔

(1 + 𝑔 + 2𝑔 cos Ω)
. (2-8)

The 1 + 𝑅(𝐺) term in Eq. (2-7) accounts for the “hot-spot” effect, where  

 𝑅(𝐺) =
1 −

𝑎
𝜋

1 + 𝐺
, (2-9)

and 

 𝐺 = tan 𝜃 +  tan 𝜃 − 2 tan 𝜃 tan|𝜃 | cos(𝜙 − 𝜙 ), (2-10)

Denoting (𝜃 , 𝜙 ) and (𝜃 , 𝜙 ) as the combinations of zenith angles and azimuthal angles of 

the incident and viewed light, respectively, the scattering angle is calculated by 

 cos Ω = −𝜇 𝜇 + 1 − 𝜇 1 − 𝜇 cos(𝜙 − 𝜙 ), (2-11)

where 𝜇  and 𝜇  are the cosines of 𝜃  and 𝜃 , respectively. 

2.3.2 Polarized Bidirectional Reflectance Distribution Function 

The polarizing component of BRDF (pBRDF) parameters are retrieved by fitting polarimetric 

observations. By use of a micro-facet model (Cox and Munk, 1954a,b; Litvinov et al., 2011), the 

pBRDF is expressed as: 

 ℜ , =
𝜀

𝜋

𝐅 , (𝑛 ; Ω)

4𝜇 (cos 𝜃 + cos 𝜃 )

1

2𝜎
exp −

1 − 𝜇

𝜇 2𝜎
𝑓 (Ω), (2-12)

where 𝜀  controls the polarized component of the surface reflection, 𝐅 ,  is the Fresnel reflection 

matrix,𝜎  is the slope variance, and 𝑓  accounts for the shadowing effect:  

 𝑓 𝑘 ; Ω =
1 + cos 𝑘 (𝜋 − Ω)

2
, (2-13)
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with 𝑘  controlling the width of the shadowing function (0 < 𝑘 < 1). The cosine of the tilt angle 

of the facet surface normal for a particular illumination and viewing geometry is given by: 

 𝜇 =
𝜇 + 𝜇

2
cos

𝜋 − Ω

2
. (2-14)

The micro-facet model parameter 𝜀  is wavelength-dependent and controls the weight of pBRDF 

while 𝜎  and 𝑘  are wavelength-independent angular shape parameters.  

2.4 Optimization-based Inversion 

Traditional non-polarimetric remote sensing techniques often rely on the lookup table (LUT) 

method due to the limited information. Hence, the LUT approach has limitations due to its reliance 

on discrete parameter spaces that may not capture global or temporal variations in aerosol 

properties, potentially leading to biased retrievals. In contrast, optimization-based retrieval 

methods explore solutions in a continuous parameter space, offering more flexibility and 

comprehensiveness. These methods maintain transparency in physics and algorithmic design and 

are adaptable to various observational inputs, including extra constraints to enhance retrieval 

accuracy. Traditional optimization techniques like Newton's method and the Levenberg-Marquardt 

method (Levenberg, 1944; Marquardt, 1963) have been employed in aerosol remote sensing. 

Nevertheless, these methods face challenges of non-uniqueness in solutions when the retrieval 

space is broadened to include numerous parameters with partial observational information. This 

issue can be partially resolved by integrating multiple observational types, such as combining lidar 

with polarimetric data, which enhances the information content and helps constrain the retrieval 

process. 

The MAIA Step-1 aerosol retrieval is optimization-based and uses the multi-pixel algorithm 

concept (Dubovik et al., 2011). It imposes a priori smoothness conditions to constrain the spatial 

and temporal variations of aerosol properties and surface reflections. This approach has been 
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further refined by retrieving the observations acquired by MAIA’s prototype instrument - the 

Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) (Diner et al. 2013; Xu et al. 2017). 

Figure 2.2 illustrates the flowchart of the MAIA Step-1 aerosol retrieval algorithm used in this 

study.  

 

Figure 2.2 The general structure of the optimization-based aerosol and surface properties inversion 
algorithm. 

A significant limitation of optimization-based retrieval is low efficiency due to the high 

computational cost of running radiative transfer modeling repeatedly to fit the measured data. 

Optimization is iteration-based. During these iterations, the Jacobian matrix must be computed —

a process that involves individually perturbing elements of the state vector and running the forward 

model multiple times. To enhance the operational viability and efficiency of the optimization 

approach, this study integrates Deep Neural Networks (DNNs) into remote sensing modeling. The 

specifics of DNNs will be introduced in the chapter 5. 
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3 Data 

To test the optimization-based MAIA Step-1 aerosol retrieval, the measurement data from 

multi-angle polarimeter (MAP) - POLDER is used. The purpose of this study is to check whether 

Step-1 retrieval can achieve similar retrieval accuracy as that of POLDER’s near-real-time 

retrieval using the Generalized Retrieval of Atmosphere and Surface Properties (GRASP, Dubovik 

et al., 2010) which is also optimization-based. We will also compare the retrieval results to the 

ground-based AERONET reference AOD data to check the retrieval accuracy and reliability. 

3.1 MAP data 

3.1.1 MAIA 

As a satellite-borne instrument, MAIA is anticipated to launch in 2025. Operating from space, 

it will focus its observations on a set of globally distributed target areas, categorized as follows: 

Primary Target Areas (PTAs): These are major urban areas where MAIA’s epidemiologists 

will investigate the effects of airborne PM on human health. Eleven PTAs have been designated 

for detailed study. 

Secondary Target Areas (STAs): These include additional regions where the research will 

extend to broader air quality studies. 

Calibration/Validation Target Areas (CVTAs): These areas are essential for routine 

observations that ensure the ongoing accuracy of the MAIA instrument’s measurements and the 

data products derived from them. 
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Targets of Opportunity (TOOs): MAIA will also monitor significant episodic events, such as 

major wildfires or volcanic eruptions, that impact air quality. The geographic locations and 

frequency of observations for TOOs are flexible and event-driven. 

Figure 3.2 presents the locations of the globally distributed PTAs, STAs, and CVTAs for the 

MAIA mission. This study’s interest is focused on MAIA’s PTA. 

 

Figure 3.1 The globally distributed Primary Target Areas (PTAs), Secondary Target Areas (STAs), and 
Calibration/Validation Target Areas (CVTAs) locations of MAIA mission. Adapted from 
https://maia.jpl.nasa.gov/mission/#target_areas.  
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Table 1 MAIA spectral bands and their rationale. 
Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 
Polarization Rationale 

364 41  Aerosol absorption and height 

388 40  Aerosol absorption and height 

414 38  Aerosol absorption and height 

440 54 Yes 
Aerosol absorption and height, small aerosol size, 

aerosol refractive index, cloud masking 

551 43  Small aerosols, surface reflection, cloud masking 

646 70 Yes Small aerosols, aerosol refractive index, cloud masking 

749 18  Small aerosols, bracket absorption bands 

762.5 7  Aerosol and cloud height detection 

865 53 Yes 
Small aerosol size, bracket absorption bands, surface 

reflection, cloud masking 

943 47  Water vapor abundance 

1044 98  
Aerosol refractive index, bracket absorption bands, large 

aerosol size 

1608 73  Large aerosols, cloud masking 

1882 95  Water vapor abundance, cloud masking 

2124 125  Large aerosols, surface reflection 

3.1.2 POLDER 

POLDER-1 and 2 flew on board the Japanese Advanced Earth Observing Satellites (ADEOS) 

platforms ADEOS-I and II from November 1996 to June 1997 and from April 2003 to October 

2003, respectively. Unfortunately, due to the failures of the platforms’ solar panels, POLDER-1 
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and 2 have rather a limited time series of observations. POLDER-3 was launched in December 

2004 on the PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences 

coupled with Observations from a Lidar) platform. POLDER/PARASOL (hereafter POLDER-3) 

was operational from March 2005 till October 2013 POLDER-3 provided global coverage about 

every 2 d with ~6 km spatial resolution at nadir (Tanré et al., 2011). 

The POLDER-3 imager includes three gaseous absorption channels (763, 765, and 910 nm) 

alongside six channels (443, 490, 565, 670, 865, and 1020 nm) for measuring total radiance and 

three channels (490, 670, and 865 nm) for measuring polarization. The spectral bands of POLDER-

3 and their purposes are detailed in Table 2. The number of viewing angles for all spectral channels 

ranges from 14 to 16, depending on the pixel's position on the charge-coupled device (CCD).  

The Generalized Retrieval of Atmosphere and Surface Properties (GRASP) algorithm was 

developed to further exploit the aerosol information content of POLDER-3 spectral MAP 

measurements (Dubovik et al., 2011). This innovative algorithm has undergone extensive 

validation through systematic and/or regional case studies, affirming its reliability and accuracy 

on aerosol optical properties in diverse atmospheric conditions (Chen et al., 2020; Zhang et al., 

2021). Hence the products of aerosol optical properties derived from GRASP from POLDER-3 

MAP measurements are regarded as a crucial source of validation in this research. There are 

several different POLDER-3 products provided by GRASP (e.g., “optimized”, “high-precision”, 

and “models”). These products are consistent but were obtained using different assumptions in 

aerosol modeling with different accuracies of RT calculations (Chen et al., 2020). Specifically, the 

GRASP-HP (“high-precision”) products were utilized in this study due to their employment of the 

most accurate RT calculations. 
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Table 2 POLDER-3 spectral bands and their rationale. (Adapted from https://www.aeris-
data.fr/en/projects/polder-parasol/ ) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 
Polarization Rationale 

443 20  Cloud detection, ocean color 

490 20 Yes Aerosol retrieval, cloud pressure 

565 20  Aerosols and Calipso lidar at 532 nm 

670 20 Yes Aerosol retrieval, cloud properties 

865 20 Yes Aerosol retrieval, cloud properties 

763 and 765 40 and 10  
Cloud oxygen pressure by differential absorption 

technique in oxygen A band 

910 40  Water vapor retrieval 

1020 40  Aerosols ans Calipso lidar at 1064nm 

3.2 Validation Data from AERONET 

AERONET products of AODs are derived from its measurements every 15 minutes. 

AERONET AODs can be used not only for aerosol monitoring but also as "ground truth" for 

validating satellite retrievals. 

3.3 Data Collocation 

Before implementing the validation study, we developed a method to collocate the POLDER-3 

MAP measurements, the AERONET data, and GRASP aerosol property products in both temporal 

and spatial dimensions. The POLDER-3 measurement data are archived at the ICARE Data and 

Services Center, where they are organized into separate files based on different orbits. Accessing 

data for specific temporal and spatial requirements can be challenging due to the way the datasets 

are organized. We have successfully downloaded all POLDER-3 measurement data from 2005 to 
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2013 from https://www.icare.univ-lille.fr/asd-content/archive/?dir=PARASOL/L1_B-HDF.v1.01 

and all the daily GRASP aerosol property products from https://download.grasp-

sas.com/download/polder/polder-3/high-precision/v1.2/l3/.  

The collocation strategy is detailed as follows: 

1. Download the latitude and longitude information for all AERONET sites. 

2. Identify AERONET sites within MAIA’s PTAs based on the PTA geolocation range; the 

number of AERONET sites collocated in each PTA is listed in Table 3. 

3. Determine the grid index closest to the geolocation of the collocated AERONET sites, 

including neighboring grid indices, as our algorithm leverages spatial information smoothness 

to constrain retrieval. The input to our algorithm should consist of patches of MAP 

measurements. 

4. Iterate through all the POLDER-3 files to extract MAP measurement data from the collocated 

grid indices. 

5. Download all AERONET data for the sites identified in step 2 and collocate this with the 

extracted POLDER-3 measurement data in the temporal dimension, a time difference of 45 

minutes is adopted in this study. 

The annual distribution of collocated cases across MAIA’s 11 PTAs from 2005 to 2013 is 

summarized in Table 4. 
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Table 3 AERONET sites located within MAIA’s 11 Primary Target Areas (PTAs) 
Short Name of PTA PTA Name Number of AERONET sites 

CHN CHN-Beijing 16 

ESP ESP-Barcelona 59 

ETH ETH-AddisAbaba 2 

IND IND-Delhi 62 

ISR ISR-TelAviv 16 

ITA ITA-Rome 46 

TWN TWN-Taipei 24 

USA-AT USA-Atlanta 30 

USA-BO USA-Boston 181 

USA-LA USA-LosAngeles 77 

ZAF ZAF-Johannesburg 18 

 

Figure 3.2 Distribution map of AERONET sites located within MAIA’s USA-LosAngeles PTA. 
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Table 4 Annual distribution of collocated observations over MAIA’s 11 PTAs from 2005 to 2013. 
PTA 2005 2006 2007 2008 2009 2010 2011 2012 2013 Total 

CHN 56 91 61 62 81 141 131 125 113 861 

ESP 30 68 145 131 126 99 165 329 299 1392 

ETH 0 0 0 0 0 0 0 0 0 0 

IND 8 11 5 38 69 69 105 143 108 556 

ISR 28 42 34 18 30 74 63 83 101 473 

ITA 28 50 67 70 54 36 78 104 94 581 

TWN 1 4 6 10 1 9 14 3 2 50 

USA-AT 9 21 10 29 6 17 32 18 63 205 

USA-BO 40 68 82 51 64 60 64 100 56 585 

USA-LA 17 53 67 56 32 74 130 124 340 893 

ZAF 6 43 34 0 36 7 37 58 6 227 

Total 223 451 511 465 499 586 819 1087 1182  

  



 

20 
 

4 Mitigation of Quilting Effect 

Constrained by limited computer memory, the implementation of multi-pixel inversion of all 

pixels that compose a full MAP image at one time is not practical. To alleviate the computational 

burden, the retrieval process should be carried out on smaller patches, each containing a certain 

number (m×n) of pixels. These patches can then be processed in parallel on individual computer 

cores. However, when retrievals are implemented on these independent patches, a quilting effect 

may emerge across their borders. This is due to the ill-posed nature of remote sensing inversion. 

Due to the lack of crosstalk across patches during the retrieval, the quilting effect is caused. 

2 1 2 … 2 

1 2 1  1 

2 2 2  2 

⋮   ⋱ ⋮ 

2  2 … 2 

Figure 4.1 Illustration of the three-step retrieval strategy aimed at mitigating the quilting effect within a 
MAP observation that requires processing. The blocks marked with the numbers 1 and 2 represent distinct 
groups of patches, each encompassing m×n pixels.  

To enable crosstalk among patches to mitigate the quilting effect, a three-step strategy is 

adopted as illustrated in Figure 4.1: 

Step 1: Yellow patches (marked with the number 1) are retrieved in parallel. 

Step 2: Blue patches (marked with the number 2) are then retrieved, with the use of Step 1 derived 

aerosol solutions derived at the edge pixels of the yellow patches to inform this Step-2 retrieval. 

Here “inform” means the use of a smoothness constraint applied to ensure the smooth transition 

of solution across the patch edges (Dubovik et al., 2011). 



 

21 
 

Step 3: Like Step 2 re-retrieving the blue patches again, but with the use of Step 2 derived aerosol 

solutions derived at the edge pixels of the yellow patches to inform this Step-3 retrieval. 

The three-step retrieval strategy implemented to minimize the quilting effect is demonstrated 

using POLDER-3 ’s MAP measurements over MAIA’s USA-LA PTA. The effectiveness of this 

approach is illustrated in the AOD map presented in Figure 4.2. Subfigure (a) shows the retrieval 

results across all patches without implementing the three-step strategy, where a noticeable quilting 

effect is observed. Subfigures (b) display the AOD outputs from applying Step 1 and Step 2 

retrievals of the same POLDER-3 imagery. Subfigure (c) further includes the results from 

implementing all three steps of the retrieval strategy on the same imagery, demonstrating the 

progressive reduction of the quilting effect. 

It is important to recognize that the proposed strategy not only smoothens the aerosol product 

maps but also significantly enhances the retrieval performance as reasonable physical constraints 

are imposed. As the price to pay, the three-step approach increases the computational cost by 

approximately 50%, thereby intensifying the demand for more efficient modeling strategies. The 

method to address this demand will be explored in the following chapter. 

 

  

(a) (b) (c) 
Figure 4.2 A demonstration of the three-step retrieval strategy designed to mitigate the quilting effect in 
aerosol retrieval, which is the AOD map retrieved from POLDER-3 MAP imagery over MAIA’s USA-LA 
PTA. (a) The retrieval results over all the patches without the application of three-step strategy. (b) Output 
AOD from implementing Step 1 and 2 retrievals of the same POLDER-3 imagery. (c) Output AOD from 
implementing Step 1, 2 and 3 retrievals of the same imagery.  
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5 Neural Networks for Radiative Transfer Modeling 

Neural network (NN) models are developing rapidly due to the advancement in machine-

learning infrastructure and demands in broad applications and are demonstrated to be efficient in 

approximating physical functions (Lin et al., 2017).The biggest advantage that NN provides is the 

ability to include nonlinear terms and flexibility that are often lacking in previous deterministic or 

statistical approaches (Alzubaidi et al., 2021). This capability positions neural networks as a 

potential alternative to physical radiative transfer (RT) modeling, offering a pathway to 

significantly enhance computational efficiency.  

5.1 Training Data 

Machine learning relies on training using a large amount of data. To train an NN that can 

sufficiently represent the forward model for interpreting MAP measurements, we generated a large  

training dataset by carrying out RT simulations adopting the Markov chain radiative transfer model 

coupled with the adding-doubling method (Xu et al., 2016).  

We simulated 1.6 million cases for each spectral band according to the forward model as 

discussed in section 2.4 to cover various combinations of aerosol and surface scenarios, as well as 

a large range of solar and viewing geometries. From these simulations, 1.5 million cases were 

randomly selected to be fed into the training process. These cases were divided according to the 

typical training, validation, and testing ratios of 0.7, 0.15, and 0.15, respectively. The remaining 

0.1 million cases were set aside as test cases to assess the neural network's accuracy, which will 

be discussed in the next section. 

To ensure comprehensive coverage of the possible range of variables, the data should be 

sampled from a sufficiently wide range. However, while some variables can exhibit a wide range 

of values, most real-world scenarios occur within a narrower range. Taking this into account, some 
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variables are sampled from a linear distribution, whereas others are sampled from a log-uniform 

distribution to better represent their actual distribution in practical scenarios. These sampling 

strategies are informed by climatological analyses of the variables from AERONET (if available). 

When the direct application of a log-uniform distribution does not align well with the 

climatological distributions of certain variables, we add an offset to their actual range prior to 

applying the log-uniform distribution. This adjustment ensures a better fit with observed data 

patterns. The ranges of parameters and their corresponding sampling strategies are detailed in 

Table 5.  
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Table 5 Parameters used to represent the aerosol and surface properties for the radiative transfer simulation 
and NN training.   

Parameters Symbol Unit Range Sampling 
Sampling 

offset 

Total aerosol volume 

concentration 
Cv μm3/ μm2

 [1e-6, 5] log-uniform 1e-2 

Volume fraction of fine mode 

aerosols 
fv, fine - [0.01, 0.99] Linear - 

Fine mode aerosol 

characteristic radius 
Reff, fine μm [0.08, 1.00] log-uniform 0 

Fine mode aerosol logarithmic 

characteristic width 
lnSfine - [0.2, 0.6] log-uniform 0 

Coarse mode aerosol 

characteristic radius 
Reff, coarse μm [1, 10] Linear - 

Coarse mode aerosol 

logarithmic characteristic 

width 

lnScoarse - [0.3, 0.5] log-uniform 0 

Mean height of aerosol layer Hasl km [0.05, 10] log-uniform 0.5 

Half width of aerosol layer Sasl km [0.5, 2.5] log-uniform 0 

Real refractive index for fine 

mode aerosols 
mr, fine - [1.36, 1.60] log-uniform 0 

Imaginary refractive index for 

fine mode aerosols 
mi, fine - [4.9e-5, 0.1] log-uniform 0 

Real refractive index for 

coarse mode aerosols 
mr, coarse - [1.36, 1.60] log-uniform 0 

Imaginary refractive index for 

coarse mode aerosols 
mi, coarse - [4.9e-5, 0.1] log-uniform 0 

Spherical particle fraction fv, spheric - [0.05, 0.99] Linear - 

Spectral weight of BRDF aλ - [1e-6, 1e-2] [1e-3, 1.001] log-uniform 0 

Anisotropy parameter 1 kλ - [0.999,1.001] [1e-3, 1.001] log-uniform 1 

Anisotropy parameter 2 gλ - [-0.05, 0.05] [-0.999, 0.999] log-uniform 1 

Weight of pBRDF ελ - [0.999, 1.001] [1e-3, 50] log-uniform 0 

Shadowing width kγ - [1, 100] [1, 100] log-uniform 0 

Slope variance 𝜎  - [0.01, 2π] [0.01,1] Linear - 

Solar zenith angles θ0 ° [0, 75] Linear - 

viewing zenith angles θv ° [0, 75] Linear - 

relative viewing azimuth angle φv ° [0, 360) Linear - 

Surface Altitude Altsurf km [0, 6] log-uniform 1 
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5.2 Neural Network Training 

A feed-forward neural network can be defined recursively with one input layer, one output layer, 

and k hidden layers: 

 𝒉 = Φ(𝑾 𝒙 + 𝒃 ), (5-1)

 𝒉 = Φ 𝑾 𝒉 + 𝒃 ,      𝑝 = 1, … , 𝑘 − 1, (5-2)

 𝒚 = 𝑾 𝒉 + 𝒃 . (5-3)

Here for our case, x represents the input parameter vector, which includes parameters necessary 

for defining the forward model as outlined in Table 5, the output vector y represents predicted 

Multi-Angle Polarization (MAP) measurements by the neural network, and Φ is the activation 

function. The weight matrix 𝑾  and bias vector 𝒃  facilitate connections between the pth and 

(p+1)th NN layers via Eq. (5-2). Figure 5.1 illustrates the schematic structure of a neural network 

mode for estimating polarimetric radiance. 

 

Figure 5.1 Schematic diagram of a neural network mode for estimating polarimetric radiance. The left box 
indicates the input parameters including aerosol properties, gases abundance, surface reflection properties, 
and geometric parameters. 

Various activation functions were evaluated, and the hyperbolic tangent (Tanh) function was 

chosen for the hidden layers due to its smooth, nonlinear characteristics that are conducive to 
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regression tasks. The Tanh function is frequently employed in situations requiring nuanced 

nonlinearity, which is defined as: 

 tanh(𝑥) =
𝑒 − 𝑒

𝑒 + 𝑒
. (5-4)

After conducting plenty of tests on the training settings, the neural network architecture 

configurations are finalized as 3 hidden layers with 18 neurons each for aerosol optical properties 

(AOD and SSA); for 𝜏 , which combines AOD and Rayleigh scattering-induced extinction, 

the NN architectures are 4 hidden layers and 18 neurons per layer; for the MAP measurements 

(BRF, q, and u), the architecture involved 7 hidden layers with 18 neurons each.  

The training process aims to minimize the cost function, defined here as the mean square error 

(MSE) between the training data generated from radiative transfer simulations and the predicted 

NN values. The selection of hyperparameters and architecture requires careful optimization. In this 

study, the Levenberg-Marquardt (LM) algorithm was employed as the optimizer, providing 

efficient optimization during the backpropagation step. Overall, the optimization of the models 

can be summarized in four steps: 

1. Compute the output vector y from the input vector x through the hidden layers.  

2. Calculate the mean squared error (MSE) cost function using the given truth.  

3. Employ the LM algorithm in the backward propagation step to update the parameters.  

4. Iteratively update the weights until the optimal solution is achieved. 

5.3 Accuracy Assessment 

We evaluate the training accuracy of NN-based optics and RT models using 0.1 million 

simulation cases that have not been used in the training. Figure 5.2 presents a side-by-side 

evaluation of the neural network predictions and direct computational results of optical properties 

AOD and SSA, RT quantities including intensity (or radiance, expressed in BRF units), and the 



 

27 
 

polarimetric component q at the 440 nm POLDER-3 band. Figure 5.3 outlines the mean absolute 

error (MAE) over a land surface for (a) L, (b) q, (c) u, (d) AOD, and (e) SSA. The associated error 

bars denote the standard deviation. While there is some variability, the neural network model 

demonstrates reasonable performance of accuracy, especially in predicting BRF, AOD, and SSA. 

This study underscores the feasibility of replacing the online/physical optics and RT model with 

the use of NN optics and RT model. 

 
Figure 5.2 Comparison of neural-network and direct calculations of AOD, SSA, intensity (in BRF unit) and 
polarimetric component q at 440 nm band.  
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Figure 5.3 Prediction error profiles for POLDER-3 band measurements over land surface, showing Mean 
Absolute Error (MAE) for (a) Bidirectional Reflectance Factor (BRF), (b) linear polarization components 
q, (c) linear polarization components u, (d) Aerosol Optical Depth (AOD), and (e) Single Scattering Albedo 
(SSA), with standard deviations represented by error bars. 

To enhance the accuracy of NNs, the inclusion of more training data and the development of 

more complex network architectures could be beneficial. In this case, however, the LM optimizer 

deployed by DNN will require more memory and a longer time for Jacobian matrix (with respect 

to network weights) evaluation. The latter is computationally intensive for large networks. The 

optimizer used in the current study would not be suitable for further improvement. A more viable 

alternative for scaling up could be the Adaptive Moment Estimation (Adam) optimizer. The 

algorithm has been shown to perform well in practice and converges rapidly for large datasets 

and/or large-scale machine-learning problems (Kingma and Ba, 2017).  

5.4 Jacobian Matrix 

As described in the chapter 2.4, one of the drawbacks of the optimization-based retrieval 

method is Jacobian matrix needs to be calculated, which involves repeatedly calling forward 

radiative transfer if Jacobian calculation uses a finite difference method (FDM). 
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The Jacobian matrix is pivotal in optimization-based retrieval. It describes how radiative 

quantities respond to small perturbations in the state vector components. It is required at the 

iterative step to guide the direction and magnitude of steps to take to move toward a convergent 

solution. For an observation vector comprising N measurements (𝑦 = [𝑦 , 𝑦 , … , 𝑦 ]  ) and a state 

vector of M components ( 𝑥 = [𝑥 , 𝑥 , … , 𝑥 ] ), the Jacobian matrix exhibits the following 

structure, 

 𝐉 =

⎣
⎢
⎢
⎢
⎢
⎡ ⋯

…

⋮ ⋮ ⋱ ⋮

⋯ ⎦
⎥
⎥
⎥
⎥
⎤

×

. (5-5)

Each matrix element within the Jacobian matrix needs to be calculated utilizing FDM, 

 
∂𝑦

𝜕𝑥
=

𝑦 (𝑥 , 𝑥 , … , (𝑥 + ∆𝑥 ), ⋯ 𝑥 ) − 𝑦 (𝑥 , 𝑥 , … , 𝑥 , ⋯ 𝑥 )

∆𝑥
. (5-6)

In our case, state vectors typically have a length of 23, whereas POLDER-3 measurements 

typically with a length of 180 (comprising 12 radiance and polarization measurements across 15 

angles each). This means that the neural networks need to be invoked 8280 times to calculate the 

Jacobian for a single set of state vectors at each iteration step. Despite the rapid computational 

capability of neural networks, this still places an extreme computational burden on the retrieval 

process. 

To mitigate this issue and further accelerate the retrieval speed, we employ a strategy of 

deriving the Jacobian matrix analytically from the neural network model instead of using FDM. 

This approach is based on automatic differentiation techniques, which utilize the chain rule of 

calculus to compute derivatives quickly and accurately, allowing for the efficient calculation of 
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gradients even in complex neural networks (Baydin et al., 2018). By applying the chain rule to the 

neural networks layer by layer, the Jacobian matrix can be expressed as follows: 

  (5-7)

It should be noted that the chosen activation function Φ must be differentiable to ensure that 

Equation (5-7) is valid. 

The method not only speeds up the computation by avoiding the computationally expensive 

process of calculating derivatives via finite differences but also increases the accuracy of the 

derivative estimates, which are crucial for iteration-based optimization processes. By analytically 

computing the Jacobian matrix directly from the neural network outputs, we substantially reduce 

the number of neural network evaluations required per iteration, thereby accelerating the overall 

retrieval process without sacrificing accuracy. 

5.5 Joint Retrieval Results on POLDER-3 MAP Data 

Following the successful development of NN-RT and NN-optics models, they are integrated 

into the MAIA's Level 2 aerosol retrieval algorithm. The efficacy of the NN-enhanced MAIA 

aerosol retrieval algorithm (hereafter MAIA-NN) is evaluated using the collocated POLDER-3 

MAP data spanning from 2008 to 2011 over MAIA’s USA-LA PTA, encompassing a total of 287 

scenarios. The performance of MAIA-NN is compared against the physical online RT-based 

MAIA aerosol retrieval algorithm (hereafter MAIA-OL), as well as reference data obtained from 

ground-based AERONET measurements and GRASP-HP (High-Precision daily products v1.2) 

retrievals. 
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All three aerosol retrieval algorithms: GRASP-HP, MAIA-OL, and MAIA-NN are compared 

against AERONET reference data at the four POLDER-3 aerosol bands shared with AERONET 

(440, 675, 870, and 1020 nm). For quantifying the validation results, we used standard statistical 

parameters, including slope and bias of linear regression, Pearson’s linear correlation coefficient 

(R), and root-mean-square error (RMSE). The metrics of R and RMSE are calculated as follows: 

 
𝑅 =  

∑ ((𝑥 , − 𝑥 )((𝑥 , − 𝑥 )

∑ (𝑥 , − 𝑥 ) ∑ (𝑥 , − 𝑥 )

, 
(5-8)

 RMSE =
∑ (𝑥 , − 𝑥 , )

𝑁
. (5-9)

 Figure 5.4 shows the comparison of MAIA-OL and GRASP-HP retrievals of AODs against 

AERONET reference data. Figure 5.5 shows the comparison of MAIA-NN and GRASP-HP 

retrievals of AODs against AERONET reference data. The comparative analysis of slope and bias 

metrics across the algorithms is detailed in Table 6, while the analysis of R and RMSE can be 

found in  

Table 7.  

It should be noted that in both Table 6 and Table 7, the metrics displayed for MAIA-OL 

retrievals pertain exclusively to Step-3 of the three-step strategy. In contrast, for MAIA-NN, 

metrics for both Step-1 as well as Step-3 retrievals are included.  
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Figure 5.4 Comparison of MAIA-OL based retrieval of AODs to GRASP retrievals and to AERONET 
reference AODs at the four POLDER-3 aerosol bands shared with AERONET.  

 
Figure 5.5 Same as Figure 5.4 but for MAIA-NN based retrieval. 
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Table 6 Comparison of aerosol retrieval algorithm performance on AOD at the four POLDER-3 aerosol 
bands shared with AERONET: slope and bias metrics for GRASP-HP, MAIA-OL, and MAIA-NN 
algorithms. 

Algorithm 
440 nm 675 nm 870 nm 1020 nm 

Slope Intercept Slope Intercept Slope Intercept Slope Intercept 

GRASP-HP 0.874 0.064 0.789 0.073 0.690 0.073 0.583 0.075 

MAIA-OL 0.651 0.119 0.513 0.067 0.511 0.041 0.461 0.032 

MAIA-NN 

Step-1 
0.851 0.108 0.651 0.062 0.563 0.044 0.465 0.039 

MAIA-NN 

Step-3 
0.798 0.104 0.645 0.047 0.576 0.026 0.506 0.021 

 
Table 7 Similar with Table 6, but for R and RMSE metrics.  

Algorithm 
440 nm 675 nm 870 nm 1020 nm 

R RMSE R RMSE R RMSE R RMSE 

GRASP-HP 0.761 0.084 0.569 0.084 0.394 0.081 0.286 0.082 

MAIA-OL 0.609 0.115 0.449 0.068 0.363 0.051 0.282 0.048 

MAIA-NN 

Step-1 
0.559 0.145 0.353 0.098 0.226 0.088 0.155 0.087 

MAIA-NN 

Step-3 
0.706 0.152 0.634 0.050 0.524 0.036 0.423 0.033 

Generally, both MAIA-OL and MAIA-NN show comparable performance with GRASP-HP. 

Specifically, at the 440 nm wavelength, GRASP-HP demonstrates superior statistical performance 

in comparison to AERONET reference AODs. GRASP-HP achieves a slope closest to 1 (0.874), 

which is better than MAIA-OL (0.651) and MAIA-NN (0.798). Additionally, GRASP-HP exhibits 

a higher correlation coefficient (R = 0.761) and lower values of bias (0.064) and RMSE (0.084) 

compared to MAIA-OL (R = 0.609, bias = 0.119, RMSE = 0.115) and MAIA-NN (R = 0.706, bias 
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= 0.104, RMSE = 0.152). At other bands, both MAIA-OL and MAIA-NN show an overall lower 

bias and RMSE compared to GRASP-HP, suggesting a closer match to the reference data. For 

example, at the band of 675 nm, the bias and RMSE values of GRASP-HP are 0.073 and 0.084 

respectively, while those metrics for both MAIA-OL (bias = 0.067, RMSE = 0.068) and MAIA-

NN (bias = 0.047, RMSE = 0.050). 

The introduction of the three-step strategy aimed at reducing the quilting effect has resulted in 

overall enhanced performance across the bands. Although with a slight decrease of about 4.8% at 

440 nm indicating a performance drop, improvements were observed at other wavelengths, 

specifically approximately enhancements of 49%, 59%, and 62% for 565, 670, and 1020 nm, 

respectively. 

In comparing the two MAIA methods, MAIA-OL and MAIA-NN exhibit similar scatter 

patterns when compared with AERONET data, signifying the effectiveness of using neural 

networks to approximate the physical RT model. Statistically, MAIA-NN seems to excel beyond 

MAIA-OL, likely due to the efficiency of deriving the Jacobian matrix directly from the neural 

network outputs. 

All three aerosol retrievals show some spread around AERONET reference data, which could 

be due to a) screening residue of cloud contamination at some view angles; and b) modeling bias 

from using the RPV surface reflection model. Given the information “budget” offered by 

POLDER-3, optimization over a large number of retrieval parameters increases the diversity of 

the solution to fit observation. In this case, extra a priori constraints are needed to further constrain 

retrieval, and retrieval parameters need to be down-selected. 

A notable advancement in computational efficiency is achieved through the application of 

DNNs for RT modeling in aerosol property retrievals. In an assessment of 287 cases, where each 
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case comprises five 3×3-pixel patches, MAIA-OL’s processing time totaled around 660 hours, 

averaging roughly 2.3 hours per case. In contrast, the MAIA-NN algorithm reduced the overall 

computational time to about 1.57 hours, with the average per-case duration dropping to 

approximately 0.006 hours, less than 20 seconds. This efficiency leap, over 400 times, underscores 

the significant potential of DNNs to boost the speed and scalability of near-real-time aerosol 

retrievals from MAP satellite data.  
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6 Summary and Outlook 

In this study, we extensively tested the MAIA Step-1 aerosol retrieval component using 

POLDER-3 MAP data. Aerosol retrievals over MAIA's USA-LA PTA demonstrate the AOD 

accuracy comparable to that of GRASP-HP retrieval of POLDER-3 data. 

To overcome the quilting effect observed at the junctions of retrieval patches, a novel three-

step strategy was implemented. It not only smoothens the aerosol product maps but also 

significantly enhances the retrieval performance as physically realistic constraints are imposed, 

and further smooths the inherent ill-posed problem in remote sensing retrieval. The advancements 

were quantitatively evident, with RMSE improvements for MAIA-NN retrievals at 49%, 59%, and 

62% for wavelengths of 565, 670, and 1020 nm respectively, despite a minor reduction of 4.8% at 

440 nm. 

Significant advancements were made by integrating an NN-based module for radiative transfer 

and optics. This integration also included the use of automatic differentiation for calculating the 

analytical Jacobian matrix, speeding up computations, and improving the precision of derivative 

estimations. What’s more, probability due to the precise analytical Jacobian matrix calculations, 

the statistical metrics vailed an overall superior performance of MAIA-NN compared to the 

physical-based MAIA-OL algorithm. 

Building on the advancements described, accuracy assessments carried out over 287 cases in 

MAIA's USA-LA PTA from 2008 to 2011 revealed that AOD retrievals are comparable to those 

from AERONET and GRASP-HP. Compared to AERONET reference AODs, the RMSE of 

MAIA-NN based retrieval are 0.152, 0.050, 0.036, and 0.033 for wavelengths 440, 565, 670, and 

1020 nm, respectively. In contrast, the RMSE values for GRASP-HP based retrieval were 0.084, 

0.084, 0.081, and 0.082 for the same wavelengths, respectively. 
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It should be noted that though MAIA Step-1 aerosol retrieval accuracy is comparable to that of 

near-real GRASP retrieval when retrieving POLDER-3 data, it still does not meet MAIA's AOD 

uncertainty target, which is the maximum of either 0.05 or 15% for column AODs in the mid-

visible range. This shortfall highlights several issues: 

1. The limitation of POLDER-3 spectral measurements across visible to near-infrared spectral 

range and its measurement uncertainty (2% relative to the magnitude of radiance and 0.01 

for the degree of linear polarization, as noted by Dubovik et al., 2011) impact the high AOD 

retrieval accuracy.  

2. The necessity of imposing further a priori constraints (e.g. a priori of surface reflection and 

aerosol properties) into the optimization of retrieval processes. 

3. The need to further advance both the forward and inversion models to enhance retrieval 

accuracy.  

With MAIA's broader spectral coverage, extending from ultraviolet to shortwave infrared, and 

its higher polarimetric measurement accuracy (e.g., 0.5% for the degree of linear polarization), 

improvements are anticipated. The integration of the following strategies is expected to bolster 

AOD retrieval accuracy: 

1. Utilizing estimated AODs from Step-0 retrieval, which is based on MISR’s look-up table 

search approach (Kahn et al., 2010);  

2. Incorporating a priori knowledge of surface reflection from the MAIAC surface dataset 

(Lyapustin et al., 2018) into the aerosol characterization.  

Adopting such strategies has already shown promising results in column AOD retrieval using 

MISR data over MAIA's USA-LA PTA, where targeted MAIA AOD retrieval accuracies have 
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been achieved (Wenzhi Zhang, private communication). Based on these successes, further retrieval 

tests are planned at additional MAIA PTAs at the next stage. 
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