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Abstract

Clouds have a significant but uncertain impact on Earth’s climatological and hy-

drological cycles. In particular, the warm rain process has considerable inconsistencies

between current theories and observations. One hypothesis to explain this is the role

of turbulence in broadening the droplet size distribution. The primary methods of

studying these processes have been through laboratory studies, direct numerical simu-

lations, and large eddy simulations. However, these processes are difficult to study as

they occur on a broad range of scales. This makes large eddy simulations appealing

as they remain computationally efficient by modeling the smallest, dissipative scales of

motion. While past studies have made efforts to improve the subgrid-scale stress tensor

and scalar flux vectors in large-eddy simulations, subgrid-scale terms related to cloud

microphysics have received little attention. Specifically, subgrid-scale supersaturation

variance is important when considering a Lagrangian microphysics approach as it arises

from the Langevin equation, and both subgrid scale supersaturation and concentration

covariance and subgrid scale concentration variance arise from the filtered evolution

equation for droplet size distribution. It is these terms that were the focus of this

study.

This study computed the true subgrid-scale variance and covariance terms from

data of direct numerical simulations of Rayleigh-Bénard convection in the Michigan

Technological University Pi Chamber. Five cases of varying aerosol injection rates

were considered, each with a Rayleigh number of 7.9 × 106. The true subgrid-scale

terms were compared to two candidate models: the gradient model and the scale-

similarity model. Statistical analysis consisting of probability density functions, joint

probability density functions, and correlation coefficients was used to assess model per-

formance. Results concluded that the gradient model had relatively poor agreement

with the true subgrid-scale terms with joint probability density functions that did not

follow the one-to-one line which would indicate good skill, and correlation coefficients

xiii



between ρ = 0 − 0.4. In contrast, results from the similarity model indicated joint

probability density functions that closely followed the one-to-one line, and correla-

tion coefficients between ρ = 0.3 − 0.9 suggesting good agreement between the true

and modeled subgrid-scale term. Altogether, the similarity model showed promise for

modeling the subgrid-scale supersaturation variance, supersaturation and concentra-

tion covariance, and concentration variance. However, future investigation with higher

Rayleigh numbers is warranted where larger scale separation exists between the large

and small scales of turbulence.
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Chapter 1

Introduction

1.1 The Importance of Clouds

The impact of clouds on Earth’s climatological and hydrological systems is significant.

Clouds modify the Earth’s net radiative budget and can promote positive or negative

climate feedbacks (Stephens and Greenwald, 1991; Stevens et al., 2005). In fact, the role

of clouds in climate feedbacks remains one of the largest uncertainties when considering

climate change and variability. Having a clear understanding of cloud processes can

significantly improve the future predictions of climate models. While the effect of clouds

influences large-scale climatology, they also have considerable impacts on smaller-scale

hydrological systems.

The presence of clouds can produce precipitation which results in positive effects

during a drought, or negative impacts in extreme precipitation events. The processes

supporting precipitation are broadly broken down into cold rain and warm rain pro-

cesses. The cold rain process refers to clouds with temperatures below freezing which

results in ice clouds and mixed phase clouds. In contrast, the warm rain process is

characterized by clouds with temperatures above freezing where no ice particles are

present. While many knowledge gaps remain regarding ice formation and growth in

cold clouds, uncertainties also remain for the processes behind warm rain–especially

early in the cloud life cycle (Shaw et al., 1998). In particular, the early stages of

collision-coalescence are poorly understood as large droplets (> 30µm) are required

1



before collision-coalescence takes place (Anderson et al., 2021; Grabowski and Wang,

2013). Various hypotheses have been developed to explain the process behind warm

rain and the development of a few large droplets initiating collision-coalescence. One

of these hypotheses is the likelihood of preferential growth zones due to turbulence.

The following section will investigate recent research efforts behind these processes to

better understand the warm rain process.

1.2 Turbulence Impacts on Cloud Microphysics

It is widely understood that clouds are turbulent in nature which can result in fluctua-

tions in supersaturation and impact the distribution of cloud condensation nuclei in the

warm rain process. In an effort to further understand the warm rain process, Beard and

Ochs (1993) used observations to sample the droplet growth process. In doing so, they

identified what are described as “cloud microstructures to smaller scales” which results

in varying droplet sizes and concentrations. These microstructures on smaller scales

were one of the initial investigations into the now, more commonly, researched topic

of cloud turbulence. While cloud turbulence occurs on small scales, its significance

cannot be ignored on short-term and long-term scales for meteorological and climato-

logical events. Shaw (2003) provided support for this by stating, “If we are to under-

stand the role of clouds in human affairs and the global environment, we are obliged

to increase our understanding of processes occurring on seemingly unrelated scales,

such as cloud-droplet activation and the subsequent temporal and spatial evolution of

cloud-particle size distributions.” As stated previously, there are many components of

small-scale turbulence that can result in significant impacts on cloud physics processes.

In a recent review article, Grabowski and Wang (2013) states two significant results

from cloud turbulence studies: 1) “. . . small-scale turbulence alone does not produce
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a significant broadening of the cloud-droplet spectrum,” and, 2) “. . . small-scale tur-

bulence in cumulus clouds makes a significant contribution to the collision-coalescence

of droplets. . . ” Vaillancourt and Yau (2000) supported that proper conditions could

improve collision efficiency within the clouds and could be a significant contributor to

precipitation development. However, a deeper understanding of the way turbulence is

characterized in clouds is necessary to fully understand the broader implications.

Quantifying the “small scales” that are referred to when discussing cloud turbulence

is important. Generally speaking, these small scales are on the order of micrometers

to millimeters. Shaw (2003) states, “These scales are fundamental to the microscale

physics of droplet growth, which determines spatial and temporal variations in the

droplet size distribution.” In addition, Shaw (2003) characterizes these small scales

“by large Reynolds numbers, small energy dissipation rates, moderate rms velocities,

and a large inertial subrange spanning several orders of magnitude.” Since turbulence

takes place on such fine scales, airborne observations of cloud microphysics are more

challenging to use when investigating turbulent structures (Shaw, 2003). In an effort

to understand some of these small-scale, turbulent processes, several other methods

of investigation have been used and will be the focus of this introduction: laboratory

studies, direct numerical simulations, and the utility of large eddy simulations.

1.3 Recent Research Endeavors

As noted previously, accurate observations of cloud turbulence are limited in the real

atmosphere. This is due to complexities in data collection including the location of

warm clouds and limitations in observational platforms related to the small scales of

interest. To aid in further understanding, other methods can provide more data volume

and pointed investigations when studying cloud turbulence.
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1.3.1 Pi Chamber

One method for cloud turbulence research is laboratory experiments. A prominent ex-

perimental facility for studying cloud-aerosol-turbulence interactions is the Pi Chamber

at Michigan Technological University. The Pi Chamber is a laboratory chamber with

a volume of 3.14 m3 used to study cloud microphysics within steady-state conditions

(Chang et al., 2016). The chamber has a warm plate on the floor and a cool plate on

the ceiling which results in buoyancy-driven turbulent motions and Rayleigh-Bénard

convection (Anderson et al., 2021; Chang et al., 2016). Rayleigh-Bénard convection

is characterized by a large-scale circulation within smaller turbulent fluctuations (An-

derson et al., 2021). Further, this large-scale circulation was found to oscillate from

the mean circulation, but more detail on this can be found in Anderson et al. (2021).

Since the steady-state conditions can be observed for hours to days, this can provide

extremely useful data on fluctuating turbulent structures for long periods of time. The

primary objectives for the development of the Pi Chamber were to gain better un-

derstanding of the distributions of temperature, water vapor, droplet size, and other

relevant thermodynamic and cloud microphysical characteristics in turbulent environ-

ments.

Recent studies have investigated these processes and have found evidence that

turbulence has an influential role in cloud microphysics. Prabhakaran et al. (2020)

found that there are two regimes with which droplets become activated. The first

is a mean-dominated regime and the second is a fluctuation-dominated regime. The

mean-dominated regime is characterized by mean supersaturations within the cham-

ber. However, the fluctuation-dominated regime is classified by mean subsaturated

conditions within the chamber, but greater turbulent motions. The study was con-

ducted by injecting aerosol particles at a steady rate into the chamber to support

cloud activation. This was conducted at varying mean saturation ratios controlled by
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the temperature profiles within the chamber. Throughout the process of droplet ac-

tivation, the droplet size distribution was observed with an optical particle counter.

Since this study observed activated cloud particles in both mean supersaturated con-

ditions as well as unsaturated conditions, the results support the idea that turbulence

can provide preferential growth zones where there are above-average saturation ratios

while also promoting greater droplet size distributions than the environmental mean

(Prabhakaran et al., 2020).

Similar to Prabhakaran et al. (2020), Shawon et al. (2021) also injected aerosol

particles into the chamber. In contrast to Prabhakaran et al. (2020), measurements of

temperature and water vapor were evaluated with thermistors and hygrometers rather

than relying on the mean saturation ratio conditions. With data on the temperature

and water vapor, the saturation ratio could be calculated to determine fluctuations

within the chamber which would indicate possible preferential droplet growth zones.

Some of this study’s key findings suggest that turbulence can impact the relationship

between a particle’s size and chemical makeup due to saturation ratio fluctuations in

a turbulent flow. In addition, turbulence can increase the number of activated cloud

droplets due to temperature fluctuations likely resulting in preferential growth zones

(Shawon et al., 2021). These findings support Prabhakaran et al. (2020) where the

fluctuation-dominated regime resulted in cloud droplet activation even in unsaturated

conditions. While these were not necessarily unsaturated conditions, this still sug-

gests preferential growth areas where droplets have greater than average droplet size

distributions correlated to above-average saturation ratios.

Finally, Anderson et al. (2021) studied the spatial distribution of saturation ratio

throughout the chamber. Similar methods to Shawon et al. (2021) were used with

the thermistors and hygrometers. Since these measurements could only be taken at
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specific points, this study wanted to investigate how path-averaged and point mea-

surements of supersaturation differed. To evaluate this, the collected data was applied

to a large eddy simulation to determine the path-averaged values of temperature and

water vapor. With these, the path-averaged saturation ratio could be computed. The

results concluded that there were significant fluctuations in each of these variables. In

addition, the temperature and mixing ratio were positively skewed near the updrafts

and negatively skewed near the downdrafts. In contrast, the saturation ratio was al-

ways negatively skewed, but more negatively skewed near the downdraft. Anderson

et al. (2021) comments on the importance of these fluctuations by stating, “. . .

spatial variations of the mean in the chamber may affect, for example, where droplets

preferentially activate or evaporate.” This is further evidence supporting the ideas

already proposed and observed by Prabhakaran et al. (2020) and Shawon et al. (2021).

However, this article does propose an important issue that, while laboratory exper-

iments are extremely valuable, they do lack the ability to fully understand particle

history. Further, this study uses one of the more prominent methods of investigation

in the cloud turbulence community- numerical simulations. The numerical simulation

approach will be further discussed in the following sections.

1.3.2 Direct Numerical Simulations

Direct numerical simulations (DNS) are a powerful tool in turbulence research as they

can fully resolve the entire spectrum of turbulence, including the smallest dissipative

scales of motion. Even early studies investigating turbulence impacts on cloud micro-

physics provided important discoveries. For example, the first study to simulate the

condensational growth process within a turbulent flow was Vaillancourt et al. (2002).

Their results concluded that there were areas of preferential concentration within re-

gions of low vorticity. However, the results also concluded that there were narrower
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droplet distributions in a turbulent flow than in a flow without turbulence (Vaillan-

court et al., 2002; Shaw, 2003). This study had several limitations including Reynolds

numbers lower than cumulus clouds and the model not accounting for droplet-diffusive

interactions (Vaillancourt et al., 2002). These limitations may have greatly impacted

the authors’ results. With improvements in technology and increases in computing

power, more recent studies have been conducted and are more aligned with the find-

ings outlined previously.

Kumar et al. (2018) investigated the impacts of turbulent mixing and entrainment

on droplet size distributions. This study was conducted by simulating two planes– one

with a clear air interface and one with supersaturated air and varying domain sizes.

Lagrangian droplet particles were simulated to provide information on droplet position

and growth. In addition, information on liquid water content and supersaturation

could be determined. Further information on the model configuration can be found in

Kumar et al. (2013, 2014). The results of this study concluded that droplet distribution

is strongly dependent on the spatial scale of a turbulent flow. This indicates that

the scale with which mixing takes place will have a significant impact on the degree

to which particles become activated (Kumar et al., 2018). These results supported

those of previous works such as Grabowski and Wang (2013) which summarized that

entrainment is a multi-scale process that has significant impacts on the growth of

cloud droplets. However, Grabowski and Wang (2013) also summarized that small-

scale turbulence alone is not the sole contributor to a broader droplet size distribution,

but can contribute to large-eddy hopping. Large-eddy hopping would allow particles

to be transported from smaller eddies to larger eddies, greatly impacting their droplet

growth history (Grabowski and Wang, 2013).

Similar work was conducted by Thomas et al. (2020) where DNS was used to

simulate the impact of homogeneous isotropic turbulence on cloud microphysics and
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investigate methods to improve the simulation of these processes. The general model

configuration was based on the simulations investigated in Lanotte et al. (2009). In

addition to a real DNS, a “scaled-up DNS” model was developed and used for these

studies. The scaled-up DNS is able to increase the domain and use super-droplets to

represent a group of droplets rather than simulating individual droplets. Finally, a

stochastic model similar to Grabowski and Abade (2017) was used to model super-

saturation fluctuations and serve as a method for comparison of real and scaled-up

DNS models. The results of this study suggest that both the droplet size distribution

and supersaturation fluctuations increased with increasing domain size. In addition,

Thomas et al. (2020) states, “One can argue that scale-dependent supersaturation fluc-

tuations can induce significant droplet concentration heterogeneities at the cloud base

that arguably affect droplet growth aloft.” Not only does this support previous DNS

studies, but it also supports findings from the Pi Chamber that suggest alterations in

droplet growth history due to turbulent fluctuations.

Further investigations related to the Pi Chamber was a study conducted by MacMil-

lan et al. (2022) which used a DNS to simulate the processes within the chamber. To

simulate this, the model had solid walls at both the top and bottom of the simula-

tion. In addition, there were temperature and relative humidity fluxes applied to the

top and bottom of the simulation to replicate the warm and cool plates within the

chamber. The key difference between this model and the Pi Chamber were that the

simulated Rayleigh numbers (7.9 × 106) were lower than the laboratory experimental

values (Ra ∼ 109). In addition, there were no sidewalls within the simulation, but

a periodic domain in the horizontal direction (Thomas et al., 2019; MacMillan et al.,

2022). The sidewalls in the Pi Chamber result in condensation which acts as a humid-

ity sink and limits the maximum relative humidity within the chamber. To account for

this in the DNS, a sink term was applied in the model to ensure consistency. Similar to
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other previous studies, this model also used Lagrangian superdroplets. More detailed

information on the model configuration can be found in Richter et al. (2021). The re-

sults from this study suggest that features such as aerosol activation rates in the DNS

perform well compared to the results from the Pi Chamber. However, there were some

important findings in contrast to those found in the chamber. When the Lagrangian

particles were investigated, they were found to have significant differences in supersatu-

ration fluctuations than the results measured from an Eulerian perspective. This study

observed non-Gaussian distributions with heavy tails within the Lagrangian distribu-

tions as compared to the Gaussian-distributed supersaturation fluctuations observed

in the Pi Chamber. In addition, droplets underwent multiple periods of activation and

deactivation. As noted by MacMillan et al. (2022), these results may have significant

impacts on how accurately models predict cloud microphysical processes. Additional

details on the role of DNS in future microphysical studies will be explored in this

review.

1.3.3 Large Eddy Simulations

Similar to DNS, large eddy simulations (LES) are also commonly used to study turbu-

lence. The difference between DNS and LES is that DNS can fully resolve the smallest

scales of motion while LES must model the smallest scales and fully resolve the largest

eddies in the flow. Modeling the effects of the small scales (below the model’s grid spac-

ing) is done with subgrid-scale models. Methods for representing microphysical pro-

cesses in LES include bulk, bin, and Lagrangian microphysics schemes. Bulk schemes

make predictions about particle characteristics that are related to the moments of a

particle size distribution (Hu and Igel, 2023). As such, the shape of the droplet size

distribution is assumed a priori. Since particle characteristics are predicted rather than

explicitly solved, bulk schemes are the least computationally expensive (Khain et al.,
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2015; Shima et al., 2009). However, this decreased computational expense results in

greater inaccuracies (Khain et al., 2015; Shima et al., 2009). Due to these limitations

in accuracy, bulk schemes are primarily used for operational models leaving bin and

Lagrangian schemes for research purposes (Morrison et al., 2020).

Bin schemes explicitly solve the evolution equations for particle characteristics

within certain size or mass ranges (Hu and Igel, 2023; Grabowski, 2020; Morrison et al.,

2020). While this method produces more accurate results, they are more computation-

ally expensive (Hu and Igel, 2023; Morrison et al., 2020; Khain et al., 2015; Shima

et al., 2009). However, inaccuracies in the broadening of the droplet size distributions

arise when vertical advection is incorporated (Morrison et al., 2018). In addition, they

become more computationally expensive with increasing variables to predict (Morrison

et al., 2020). To balance computational expense and accuracy, the Lagrangian method

was developed (Shima et al., 2009). This method tracks an ensemble of particles with

the same properties (i.e., position, velocity, radius, etc.), known as superdroplets, as

they evolve in a fluid flow (Grabowski, 2020). Despite being limited by the number of

superdroplets that can be tracked in a given model, this method is less computationally

expensive while maintaining accuracy making it a useful subgrid-scale tool (Grabowski,

2020). With a variety of subgrid-scale models, LES has been a method used to inves-

tigate cloud microphysics and turbulence for decades (Thomas et al., 2019). Over the

years, this science has greatly improved the understanding of the intersection between

these two research areas. However, since the effects of the smallest scales of motion

must be modeled in LES, comparisons with field research studies, laboratory stud-

ies, and other models are important to ensure an accurate representation of the small

scales. This section will explore some studies that have investigated these topics.

An important intercomparison study between LES and observations in marine stra-

tocumulus clouds was conducted by Stevens et al. (2005). This study used observations
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from the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field

campaign and 10 different LES models. Each of the models were initialized from the

observed conditions from the DYCOMS-II campaign. While the grid spacing, time

series, and thermodynamic calculations were standardized, models were allowed to

have different numerical algorithms and subgrid-scale schemes. Further detail about

each of the models and the cases used for comparison can be found in Stevens et al.

(2005). The results from this study conclude that altering vertical grid spacing or

subgrid models to reduce mixing at the cloud top compares well to the observations.

However, the base configuration overestimates mixing at the top of clouds which then

underestimates turbulence and liquid water path. Finally, it was identified that there

is greater sensitivity to the details of observed data when representing mixing at cloud

tops (Stevens et al., 2005). This study is closely related to the results of Grabowski and

Wang (2013) which outlined the complications of entrainment as a multi-scale process

relating to droplet growth. It is further summarized by Devenish et al. (2012) where

it is stated that modeled subgrid scale eddies may be contributing to the entrainment

rate in addition to large-scale eddies resolved by LES. This highlights an important

complication of LES modeling— the challenge of implementing accurate subgrid-scale

modeling schemes.

In an effort to better understand and quantify droplet size distributions from various

models, Morrison et al. (2018) investigated three different modeling frameworks in LES

that use bin microphysics to identify the most realistic method. The frameworks com-

pared in this study were parcel, one-dimensional, and three-dimensional models. This

study used Smagorinsky methods for subgrid-scale mixing and follows various previous

studies for model configuration, but these details can be found in Morrison et al. (2018).

The key findings from this study suggest that droplet size distribution broadening is

primarily driven by numerical diffusion resulting from vertical advection in the resolved
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flow when bin microphysics are used (Morrison et al., 2018). This was determined by

a model where Eulerian transport was neglected, but droplet size distributions were

comparable to Lagrangian processes previously understood and accepted. However, it

is important to note that the reasoning behind this broadening droplet size distribution

may not be physical. In addition, Morrison et al. (2018) suggested that droplet size

distribution variability and droplet size distribution broadening from mixing are un-

derrepresented in LES models. Further, Morrison et al. (2018) stated, “It is reasonable

to think that unphysical broadening from vertical numerical diffusion compensates for

underrepresenting or neglecting these physical broadening mechanisms.” As such, it

is also mentioned that new methods should be developed to accurately model these

processes which will be further explored in the future works section (Morrison et al.,

2018).

Similar to the work of MacMillan et al. (2022), Thomas et al. (2019) simulates

the Pi Chamber with a numerical model but uses LES rather than DNS. The LES

in this study uses turbulent kinetic energy (TKE) to model the subgrid scales (SGS)

where the smallest scales of motion are located. This study also has solid walls for the

top, bottom, and sidewalls. In addition, it uses Monin-Obukhov similarity theory to

simulate fluxes at each of these walls. Finally, it uses spectral bin microphysics which

serves to simulate the aerosol-cloud interactions. Additional information on the LES

configuration can be found in Thomas et al. (2019). When this study was conducted,

the results concluded that this model portrayed microphysical processes that were con-

sistent with the results found in the Pi Chamber. This included Gaussian distributed

supersaturation, droplet size distributions increasing with decreasing droplet number

density, and the process of condensational growth being the dominant growth process

(Thomas et al., 2019). However, the finding of Gaussian distributed supersaturation is

not consistent with the more recent findings from MacMillan et al. (2022). This may
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suggest that the LES is not adequately resolving the small scales while the Pi Chamber

does not gain enough information from an Eulerian perspective. More information on

how the LES subgrid scales can be improved will be discussed in the next section.

1.4 Current Knowledge Gaps

One of the outstanding research efforts the cloud physics community pursues is fully

understanding the warm rain process. Turbulence impacts on cloud microphysics have

been one of the hypotheses for furthering the current knowledge. Turbulence may

have a significant effect as it can provide preferential growth regions as a result of

supersaturation fluctuations. The primary methods of research on this topic have been

through laboratory experiments and numerical modeling since field studies are difficult

to investigate small-scale cloud microphysical changes with time. While recent studies

have supported this and have contributed significantly to current understanding, there

is a lot to investigate to ensure accurate interpretations and representations of these

processes. While there are many ways laboratory studies could be improved, such as the

development of larger cloud chambers with larger residence times required for collision-

coalescence, this analysis will primarily focus on improving numerical modeling.

Many of the studies outlined in this introduction have noted the limitations of

numerical models and where future works efforts should be focused. DNS is a pow-

erful tool when modeling cloud turbulence as it can fully resolve the smallest scales

of motion. However, its utility within larger domains is limited as it becomes too

computationally expensive. As a result, LES models are often used as it is less compu-

tationally expensive. LES stays computationally efficient as it fully resolves large-scale

motions but models the smaller scales. This then results in challenges as the smaller

scales must be properly modeled in order to remain physically accurate.

13



Many previous studies have focused on improving models for SGS stress tensor

and scalar flux vectors (Liu et al., 1994; Porté-Agel et al., 2001; Sullivan et al., 2003;

Higgins et al., 2007; Chumakov, 2008). While these have improved LES modeling, few

studies have investigated SGS models for interactions between turbulence and cloud

microphysics. In particular, uncertainties arise in bin microphysics with the evolution

equation for the droplet size distribution where droplets are binned by radius or mass.

This equation is given as:

∂f(r)

∂t
+∇ · [vpf(r)] +

∂

∂r

[γ
r
sf(r)

]
= J(r) +

1

2

∫ r

0

r2

r′′2
Γ12 [r

′′, r′] f(r′′)f(r′)dr′

−
∫ ∞

0

Γ12(r, r
′)f(r)f(r′)dr′

(1.1)

where r is droplet radius, vp is droplet velocity, s is supersaturation, J is rate of

nucleation, Γ12 is the collision kernel, and γ is a function of temperature and pressure

(Yau and Rogers, 1996). The terms on the left-hand side (from left to right) are

the local change of droplet size distribution, advection, and condensation/evaporation.

On the right-hand side, the terms are (from left to right) nucleation, production of

droplets of radius r by collision-coalescence, and loss of droplets of radius r by collision

coalescence. These terms maintain contributions from all scales of motion. If equation

1.1 is low pass filtered, consistent with typical LES methods (Pope, 2000), the resolved

scale droplet size distribution evolution equation is as follows:

∂f̃(r)

∂t
+∇ ·

[
ṽpf̃(r)

]
+

∂

∂r

[γ
r
s̃f̃(r)

]
= J̃(r) +

1

2

∫ r

0

r2

r′′2
Γ12(r

′′, r′)f̃(r′′)f̃(r′)dr′

−
∫ ∞

0

Γ12(r, r
′)f̃(r)f̃(r′)dr′ − 1

ρa
∇ · πvp,f(r) −

∂

∂r

[γ
r
χs,f(r)

]
+
1

2

∫ r

0

r2

r′′2
Γ12(r

′′, r′)χf(r′′),f(r′)dr
′ −

∫ ∞

0

Γ12(r, r
′)χf(r),f(r′)dr

′.

(1.2)
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From this, terms emerge that represent the SGS supersaturation and concentration

covariance (χs,f(r) = s̃f(r) − s̃f̃(r)) of particle radius, r, and the SGS concentration

covariance (χf(r),f(r′) = ˜f(r)f(r′) − f̃(r)f̃(r′)) of particles with radius r and r′. The

terms on the left-hand side are (from left to right) the local change of the resolved

scale droplet size distribution, resolved scale advection, and resolved scale condensa-

tion/evaporation. On the right-hand side, the terms are (from left to right) the resolved

scale nucleation, production of droplets of radius r by the resolved-scale collision coales-

cence, loss of droplets of radius r by the resolved scale collision coalescence, transport

of droplets due to the SGS covariance between the droplet size distribution and particle

velocity, SGS condensation/evaporation, production of droplets of radius r by SGS col-

lision coalescence, and loss of droplets of radius r by SGS collision coalescence. Current

LES models solve the resolved scale terms and neglect the terms for the SGS condensa-

tion/evaporation, production of droplets of radius r by SGS collision coalescence, and

loss of droplets of radius r by SGS collision coalescence. In addition, supersaturation

fluctuations are important when considering Lagrangian microphysics as they deter-

mine the condensational growth of cloud droplets. Typically, these are modeled with

the Langevin equation which includes the supersaturation variance within the stochas-

tic term (Pope, 2000; Grabowski and Abade, 2017). The supersaturation variance can

be broken down into resolved and subgrid-scale components (⟨S ′2⟩ = ⟨S̃ ′2⟩ + ⟨τSS⟩)

where τSS is the SGS supersaturation variance which must be modeled.

At this time, few studies have investigated these terms to develop SGS models.

Some recent studies have created SGS models for the supersaturation variance with

a linear eddy model, while Lagrangian-based studies have used stochastic methods

(Grabowski and Abade, 2017; Hoffmann and Feingold, 2019). However, Salesky et al.

(2024) evaluated the SGS supersaturation variance of data collected in the Pi Cham-

ber with a priori tests. This approach will be investigated in this thesis and applied
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to SGS terms including supersaturation variance, supersaturation and concentration

covariance, and concentration variance.
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Chapter 2

Data and Methods

2.1 DNS Code

This study conducted a series of simulations with direct numerical simulations (DNS)

of Rayleigh-Bénard convection consistent with the Pi Chamber from Michigan Tech-

nological University. These simulations were completed using the Cheyenne cluster at

the National Center for Atmospheric Research (NCAR) as part of a small computing

allocation. This study closely follows the methods outlined in MacMillan et al. (2022)

which used the NCAR Turbulence with Lagrangian Particles (NTLP) model described

in Richter et al. (2021). However, details of the relevant methods are outlined below.

2.1.1 Eulerian Flow Fields

This model explicitly solves the Navier-Stokes equation for momentum in addition to

the scalar advection diffusion equations for temperature and humidity which provide

an Eulerian flow field. These equations were subject to the Boussinesq approximation

and are given as the following:

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇π + k̂

g

T0

T ′
v + ν∇2u+ Sm, (2.2)
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∂T

∂t
+ u · ∇T = α∇2T + ST , (2.3)

∂qv
∂t

+ u · ∇qv = Γ∇2qv + Sv, (2.4)

where u is the velocity vector of the fluid, T is the temperature, and qv is the water

vapor mixing ratio. Further, π is a pressure variable that enforces incompressibility and

k̂ is the vertical unit vector for gravitational acceleration, g. The reference temperature,

T0 equals 300 K, and T ′
v is the virtual temperature perturbation. Finally, ν, α, and

Γ are the diffusivities for momentum, temperature, and water vapor, while Sm, ST ,

and Sv are source terms for momentum, temperature, and vapor as a result of the

droplets. Further details on the expanded expressions for the source terms can be

found in Richter et al. (2021). Each of these equations is solved with second-order

finite differencing in the vertical direction while horizontal derivatives were calculated

using the psuedospectral approach. Details on the boundary conditions applied to this

simulation will be discussed in a later section.

2.1.2 Lagrangian Particles

Similar to the Pi Chamber, aerosols were injected in the simulations, where they were

represented using a superdroplet scheme (Shima et al., 2009). The superdroplet method

is characterized by a set of droplets each of which represent an ensemble of droplets

with the same characteristics. Different injection rates were simulated by changing

the multiplicity, or the number of particles one superdroplet represents. With this

scheme, Lagrangian particle information including particle location (xp), velocity (vp),

temperature (Tp), and radius (r) was maintained. The evolution equations for these

processes were as follows:
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dxp

dt
= vp, (2.5)

dvp

dt
=

1

τp
(u− vp), (2.6)

dTp

dt
=

1

τT
(Tf − Tp) +

γT
r

dr

dt
, (2.7)

dr

dt
= γq

r

τp
(qv − q⋆), (2.8)

where the particle information is fully two-way coupled to the background flow through

the temperature of the fluid (Tf ), the velocity of the fluid (u), and the water vapor

mixing ratio of the fluid (qv). Further, q⋆ is the water vapor mixing ratio at the particle

surface as derived from Köhler theory. Finally, τp and τT represent inertial and thermal

time constants while γT and γq are coefficients that account for processes such as specific

heat, density, and heat transfer. In addition, these equations were integrated with an

implicit, backward Euler scheme. Further information on the injection rates assessed

will be discussed in the following section.

2.2 DNS Cases

To remain similar to the Pi Chamber, the domain of the DNS was 2m x 2m x 1m

with grid spacing of 1283. The simulations were run with a third-order Runge-Kutta

scheme that had a constant time step (∆t) of 0.05 s for 5000 s. Further, the relative

humidity at the bottom and top boundaries was set to 100% to ensure a saturated
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environment for droplet activation. Also consistent with the Pi Chamber was the initi-

ation of Rayleigh-Bénard convection by warm and cool boundary conditions simulating

the warm and cool plates present in the chamber. These boundary conditions are con-

sistent with those outlined in MacMillan et al. (2022), and were prescribed to be 299K

at the bottom boundary and 280 K at the top boundary. Further, the aerosol injec-

tion rate was varied by changing the multiplicity of the superdroplets (i.e., how many

particles one superdroplet represents). For this study, five injection rates were simu-

lated: 1cm−3min−1, 3cm−3min−1, 10cm−3min−1, 30cm−3min−1, and 100cm−3min−1.

All simulation case settings are displayed in Table 2.1.

Variable Value

Domain [Lx × Ly × Lz] 2m× 2m× 1m

Grid points [Nx, Ny, Nz] 128, 128, 128

Timestep [∆t] 0.05 s

Temperature [Tbottom, Ttop] 299, 280 K

Relative humidity [RHbottom, RHtop] 100, 100%

Rayleigh number [Ra] 7.9× 109

Aerosol injection rate [ṅ] 1, 3, 10, 30, 100 cm−3min−1

Table 2.1: Simulations setting for each of the five cases where aerosol injection rate
was varied.

While the simulation remains similar to the conditions of the Pi Chamber, one

difference lies in the Rayleigh numbers. Rayleigh numbers for this flow can be defined

as:

Ra =
g∆T L3

z

T0 ν α
(2.9)

where g is the gravity of the fluid (set to a constant, g = 0.043m s−2), ∆T is the

difference between the top and bottom boundary conditions for temperature, Lz is the

vertical domain, T0 is the reference temperature, 300 K, and ν and α are the diffusivities
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for momentum and temperature. With these given parameters, the simulation results

in a Rayleigh number of approximately 7.9 × 106. While this is lower than the Pi

Chamber (Ra ∼ 109), the DNS is limited by computational expense. However, future

work with this study will increase the Rayleigh numbers simulated.

As droplets are able to activate into cloud condensation nuclei within the simulation,

maintaining information on the size of the activated droplets is significant. This allows

for a comparison between the particle size and background flow characteristics. In

particular, relationships between particle size and fluid supersaturation are of interest.

Supersaturation, s, is defined as:

s =
e

es(θ)
− 1 (2.10)

where e is the vapor pressure and es(θ) is the saturation vapor pressure dependent on

temperature. However, supersaturation in the cases within this study was much higher

than that of the Pi Chamber and may influence the relationship between particle size

and supersaturation. Future studies will apply a humidity correction available in the

simulation parameters. Finally, while the model is capable of resolving the collision

coalescence process, this was not implemented in this study. The collision coalescence

process may be beneficial for future studies of cloud turbulence processes. Any further

information on the simulation configuration can be found in MacMillan et al. (2022)

or Richter et al. (2021).
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Figure 2.1: Horizontal and temporal average of temperature (a) and supersaturation
(b) profiles with height where blue shading represents the standard deviation. In
addition, black dashed lines represent heights 0.1m, 0.5m, and 0.9m.

2.3 Analysis Techniques

2.3.1 Data Processing

As noted previously, the DNS was configured to simulate cloudy, turbulent Rayleigh-

Bénard convection consistent with the Pi Chamber. Due to the heating applied to

the bottom and top boundaries inducing Rayleigh-Bénard convection, boundary layer

features were observed near the top and bottom boundaries. However, the fluid became

well mixed in the center of the domain. These features are visualized when considering
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the vertical profiles of temperature and supersaturation in Figure 2.1. The boundary

layer features are significant as the flow and particles may behave differently within this

regime. As such, this analysis identifies three heights for comparison: 0.1 m, 0.5 m, and

0.9 m as denoted in Figure 2.1. The heights selected sample near the top and bottom

boundary layers in addition to the well-mixed layer. However, further considerations

for the variables of interest must also be made.

Figure 2.2: Contours of fluctuations for vertical velocity (a-c), temperature (d-f), and
supersaturation(G-I) at heights 0.1m (c, f, and i), 0.5m (b, e, and h), and 0.9m (a, d,
and g) for an arbitrary time.
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Figure 2.3: Droplet size distributions for each case of varying injection rates: ṅ= 1, 3,
10, 30, and 100cm−3min−1.

In addition to the large-scale circulation characteristic of Rayleigh-Bénard convec-

tion, small-scale fluctuations are pertinent. These fluctuations are defined through

Reynolds decomposition which defines the fluctuation as how much the true value de-

parts from the mean quantity (a′ = a − ⟨a⟩). These fluctuations can be observed by

the horizontal contours of vertical velocity, temperature, and supersaturation at the
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Figure 2.4: Horizontal and temporal average of concentration profiles with height for
each injection rate. In addition, black dashed lines represent heights 0.1m, 0.5m, and
0.9m.

previously selected heights (Fig. 2.2). The large-scale updraft is evident on the left

side of the domain with a broad downdraft on the right side of the domain (Fig. 2.2

b). However, the fluctuations can be visualized where the large-scale circulation is still

present. It is these fluctuations, particularly when considering supersaturation, that

are of interest in this study.
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When considering the Lagrangian particles, each particle was assigned to the nearest

grid cell within the domain. Further, the number of particles in each grid cell was

counted and binned according to size. Three particle size bins were used: < 1µm, 1–5

µm, and > 5µm. These bins were determined from the droplet size distribution of all

particles for each case (Fig. 2.3). With the given particle bins, the concentration of

particles at each grid point was calculated. The horizontally averaged vertical profile

of these concentrations is displayed in Figure 2.4. Since the DNS explicitly resolves

the particle activation process, particles corresponding to unactivated aerosols (< 1µm)

were neglected in this study. Therefore, only concentrations of activated cloud droplets

(> 1µm) were used for analysis. As expected, the number of particles increased with

increasing injection rate. However, the largest injection rate case (100 cm−3min−1)

had lower concentrations than the second largest injection rate (30 cm−3min−1). It

is believed that this is due to a lack of statistical convergence, or it could be due to

large droplets falling out of the domain. Regardless, further investigation into this

observation should be evaluated in future work.

2.3.2 Subgrid Scale Terms

With the Eulerian flow fields and Lagrangian particle information, several subgrid-scale

quantities can be investigated including supersaturation variance (τSS), supersaturation

and concentration covariance (τSC), and concentration variance (τCC). Each of these

terms is defined as:

τSS = S̃S − S̃S̃, (2.11)

τSC = S̃C − S̃C̃, (2.12)
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Figure 2.5: Contours of supersaturation at 0.5m for an arbitrary time where supersat-
uration was filtered with a 2D Gaussian filter at varying filter widths.

and

τCC = C̃C − C̃C̃, (2.13)

where S is the supersaturation, C is the concentration, and (̃·) represents a low-pass

spatial filter. While supersaturation and concentration covariance and concentration

variance are derived from equation 1.2 which evaluates the terms binned by particle

size (i.e., χs,f(r) and χf(r),f(r′)), this study focuses on the concentration, C, of all acti-

vated particles. As noted in the introduction, the evolution equation for droplet size

distribution (equ. 1.1) represents all scales of motion. To model these processes in

large eddy simulations, Equation 1.1 is low pass filtered where contributions from the

resolved scales and subgrid scales emerge. The contributions from the subgrid scales

must be modeled in LES but do not have subgrid-scale models to represent their in-

teractions at this time. This study will aim to develop a model for these processes.
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These terms are directly related to the resolved scale quantities simulated. The super-

saturation variance is important for Lagrangian models where the Langevin equation

appears, while the supersaturation and concentration covariance and concentration

variance terms arise within the evolution equation for droplet size distribution. As a

result, representing the subgrid-scale contributions of these terms is significant for accu-

rately simulating environments containing cloud processes. When considering subgrid

scale terms containing concentration, it is important to note that those concentrations

are dependent on particle size bins (τf(r),f(r′)). However, the number of particles in

this study was limited due to a lower Rayleigh number flow. This resulted in a lack

of statistical convergence for particles to be classified by particle size. Therefore, the

total concentration of activated particles (> 1µm) is considered in this study. Details

regarding the candidate models will be discussed in the next section.

First, the subgrid-scale terms can be broken down into resolved and modeled com-

ponents:

⟨S ′2⟩ = ⟨S̃ ′2⟩+ ⟨τSS⟩. (2.14)

Here, S is the supersaturation and (̃·) represents a low-pass spatial filter and ⟨·⟩ denotes

ensemble mean. However, any subgrid scale term of interest could be replaced for

supersaturation. Further, the modeled terms can be broken down into the following:

τSS = S̃S − S̃S̃. (2.15)

The filtered quantities in this case were calculated with a 2D Gaussian filter where

∆ = 2, 4, 8, 16, 32, and 64 dx. These filter widths were applied to Figure 2.5.

As expected, smaller filter widths maintain greater detail while the data becomes

smoothed over with larger filter widths. Since the larger filter widths smooth out data

to the point where the large-scale circulation is a challenge to distinguish, the larger
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filter widths of ∆ = 32 and 64 dx will be neglected in this study. The filtered subgrid

scale terms will be considered further in the following section.

2.3.3 Subgrid Scale Candidate Models

Once the sugbrid scale terms were calculated, further analysis into modeling the SGS

terms was conducted. This study focuses on two types of models: a scale similarity

model and a gradient model. These models were selected as they maintain low compu-

tational costs with test filtering for the similarity model and calculations of gradients

for the gradient model. This is more efficient as compared to other methods which

require solving for prognostic equations. Here, the similarity model is defined as:

τm,s
SS = CsimLSS, τ

m,s
SC = CsimLSC , and τ

m,s
CC = CsimLCC , (2.16)

where

LSS = S̃S̃ − S̃S̃, LSC = S̃C̃ − S̃C̃, andLCC = C̃C̃ − C̃C̃, (2.17)

is known as the Leonard term which corresponds to supersaturation variance at the

smallest scales resolved in an LES, and Csim represents a dimensionless coefficient that

is determined by assuming that the true and modeled SGS quantities have the same

mean value (i.e., Csim = S̃′2

τSS
). In addition, the overbar terms denote test filters with a

second 2D Gaussian filter with width ∆ = 2∆ (i.e., ∆ = 4, 8, 16, 32, 64, and 128 dx).

Again, the last two filter widths will not be considered in this study.

In addition to the similarity model, the performance of the gradient model was also

considered. It is defined as:

τm,g
SS = Cgrad∆

2 ∂S̃

∂xi

∂S̃

∂xi

, τm,g
SC = Cgrad∆

2 ∂S̃

∂xi

∂C̃

∂xi

, and τm,g
CC = Cgrad∆

2 ∂C̃

∂xi

∂C̃

∂xi

, (2.18)
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where Cgrad again represents a dimensionless coefficient. Similar to the similarity

model, Cgrad is determined by assuming that the true and modeled SGS quantities

have the same mean value (i.e., Csim = S̃′2

τSS
). Further, finite differencing was used for

the vertical derivatives considering they have solid boundaries, and derivatives were

taken in spectral space for the horizontal derivatives (∂S̃
∂x

and ∂S̃
∂y
) to account for the

periodic domain in the horizontal directions.

Once these models were calculated, comparisons between the true and the mod-

eled subgrid scale terms were assessed to determine the model most comparable to the

true subgrid scale term. The performance of each model was assessed with statisti-

cal methods including correlation coefficients, probability density functions, and joint

probability density functions. These results will be discussed in the following section.

From there, conclusions could be drawn to suggest a model for further implementation

into large eddy simulations.
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Chapter 3

Results

This section outlines results from analysis of Pi Chamber direct numerical simulation

output for the subgrid-scale (SGS) terms of interest: supersaturation variance (τSS),

supersaturation and concentration covariance (τSC), and concentration variance (τCC).

Each is presented with three of the five injection rate cases (the two end members

and one intermediate case) and two heights (one within the bulk of the flow, and

one within the upper boundary layer) as strong trends correlating to injection rates

and heights were not observed. Both candidate models (scale-similarity and gradient

models) were assessed with statistical analysis including probability density functions,

joint probability density functions, and correlation coefficients.

3.1 Supersaturation Variance

This section investigates the SGS model performance for the supersaturation variance

(τSS). First, the SGS fraction was considered (Fig. 3.1). This is the fraction of the

SGS supersaturation variance to the total resolved plus SGS supersaturation variance.

The SGS fraction was assessed at three different injection rates (ṅ = 1, 10, and 100

cm−3min−1) and four varying filter widths (∆/dx = 2, 4, 8, and 16). For smaller filter

widths (∆/dx = 2 or 4), more than 50% of the supersaturation variance was resolved

at the grid level. When considering larger filter widths (∆/dx = 8 or 16), more than
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Figure 3.1: SGS fraction of the supersaturation variance with height at varying filter
widths and injection rates.

50% of the supersaturation variance remained in the sub-grid scales which must be

modeled. Despite some variability in the bottom and top boundaries, there were few

differences between each injection rate case.

The probability density functions (PDFs) were analyzed for the true SGS supersat-

uration variance (τSS) and both candidate models (gradient model, τm,g
SS , and similarity
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Figure 3.2: Probability density functions of the true SGS supersaturation variance (τSS)
and modeled supersaturation variance for the similarity model (τm,s

SS ) and the gradient
model (τm,g

SS ) normalized by the standard deviation of the true SGS term (στSS
). All

are plotted at one height (z/h=0.5) within the bulk of the flow. The injection rate
increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The
filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

model τm,s
SS ). All were normalized by the standard deviation of the true subgrid su-

persaturation variance (στSS
). These PDFs were evaluated with increasing aerosol

injection rates (ṅ = 1, 10, and 100 cm−3min−1), increasing filter widths (∆/dx = 2,
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Figure 3.3: Probability density functions of the true SGS supersaturation variance (τSS)
and modeled supersaturation variance for the similarity model (τm,s

SS ) and the gradient
model (τm,g

SS ) normalized by the standard deviation of the true SGS term (στSS
). All

are plotted at one height (z/h=0.9) near the upper boundary layer. The injection rate
increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The
filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

8, and 16), and at two locations: one within the bulk of the flow (z/h= 0.5, Fig. 3.2)

and one within the upper boundary layer (z/h= 0.9, Fig. 3.3). There were gamma

distributions for the smallest filter widths (Figures 3.2 and 3.3 (a), (d), and (g)) with
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a transition to a nearly bimodal distribution at the largest filter widths (Figures 3.2

and 3.3 (d), (f), and (i)). The transition to a bimodal distribution was likely due to in-

creasing filter width where the large-scale circulation characteristic of Rayleigh-Bénard

convection influenced the PDFs. This bimodal feature was particularly noted in the

injection rate case ṅ = 10cm−3min−1 (Figures 3.2 and 3.3 d-f). It is uncertain why

this injection rate produces these results as compared to the others.

When assessing the trends of each candidate model, there were significant discrep-

ancies observed. While both the gradient and similarity models closely followed the

true SGS supersaturation variance for the smallest filter width ∆/dx = 2, the gradient

model quickly underpredicted the PDFs at the larger filter widths. In contrast, the

similarity model more closely represented the trends observed in the true SGS super-

saturation variance across all filter widths, injection rates, and heights. However, it is

important to note that the PDFs only provide information about the distributions in

the mean sense; PFDs do not provide information as to whether the true and modeled

SGS terms are correlated. As such, joint PDFs and correlation coefficients are analyzed

for each candidate model in the following sections.

3.1.1 Gradient Model

First, the gradient model was evaluated using joint PDFs for the same injection rates

(ṅ = 1, 10, and 100 cm−3min−1), filter widths (∆/dx = 2, 8, and 16), and heights

(z/h= 0.5 and 115) as the PDFs previously discussed (figures 3.4 and 3.5). Consistent

with the hypothesized results from the PDFs, the joint PDFs were not well aligned

with the one-to-one line that indicates good agreement between the true SGS supersat-

uration variance, τSS, and the modeled supersaturation variance, τm,g
SS . Overall, it did
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Figure 3.4: Joint probability density functions of the true SGS supersaturation variance
(τSS) and modeled supersaturation variance for the gradient model (τm,g

SS ) normalized
by the standard deviation of the true SGS term (στSS

). All are plotted at one height
(z/h=0.5) within the bulk of the flow. The injection rate increases from top to bottom:
ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to
right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

not appear that changes in the injection rates or filter widths produced significantly

different results. However, greater variability appeared within the upper boundary
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Figure 3.5: Joint probability density functions of the true SGS supersaturation variance
(τSS) and modeled supersaturation variance for the gradient model (τm,g

SS ) normalized
by the standard deviation of the true SGS term (στSS

). All are plotted at one height
(z/h=0.9) near the upper boundary layer. The injection rate increases from top to
bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases
from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

layer (Fig. 3.5) as compared to the bulk of the flow (Fig. 3.4). This variability did not

result in better performance of the gradient model.
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Figure 3.6: Correlation coefficients of the true SGS supersaturation variance (τSS) and
modeled supersaturation variance for the gradient model (τm,g

SS ) with height at varying
filter widths and injection rates.

Further supporting the conclusions that the gradient model doesn’t represent the

true SGS supersaturation variance well were the correlation coefficients presented in

Figure 3.6. These are plotted for the three injection rates considered previously in

addition to four filter widths (∆/dx = 2, 4, 8, and 16). While the correlation coefficients
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were not constant with height, they were generally between ρ ≈ 0.1 − 0.4 (Fig. 3.6).

There were no clear differences in the correlation coefficients between injection rates.

However, there were some differences in the correlation coefficients at varying filter

widths. Overall, the correlation coefficients of the filter widths oscillated around ρ ≈

0.1−0.4, but the larger filter widths (∆/dx = 8 and 16) had greater fluctuations toward

lower ρ values. Despite this, the general statement remains true that the gradient model

had little skill in modeling the true SGS supersaturation variance. Further discussion

of this will take place in Section 3.1.3.

3.1.2 Similarity Model

Consistent with the gradient model, joint PDFs were investigated for the true SGS su-

persaturation variance (τSS) and modeled supersaturation variance with the similarity

model (τm,s
SS ). In analyzing these across varying injection rates (ṅ = 1, 10, and 100

cm−3min−1), filter widths (∆/dx = 2, 8, and 16), and heights (z/h= 65 and 115), the

similarity mode closely followed the one-to-one line indicating good agreement between

the true and modeled SGS supersaturation variance (figures 3.7 and 3.8). However, the

joint PDFs were slightly above this line suggesting the model may slightly overpredict

the true SGS supersaturation variance. These observations followed closely across all

injection rates, filter widths, and the two heights selected.

When considering the correlation coefficients for each of these injection rates and

filter widths (∆/dx = 2, 4, 8, and 16), there was surprising agreement across all cases.

The correlation coefficients were nearly always between ρ = 0.75-0.9, suggesting a good

correlation between the true and modeled SGS supersaturation variance (Fig. 3.9). In

addition, this was consistent across all filter widths. There was some variability at

39



Figure 3.7: Joint probability density functions of the true SGS supersaturation variance
(τSS) and modeled supersaturation variance for the similarity model (τm,s

SS ) normalized
by the standard deviation of the true SGS term (στSS

). All are plotted at one height
(z/h=0.5) within the bulk of the flow. The injection rate increases from top to bottom:
ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to
right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

∆/dx = 16, but the variability that occurred was not significant or indicative of little

correlation between the true and modeled terms. It is also worth noting that the

correlation remained high throughout the profile, despite changes in the SGS fraction
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Figure 3.8: Joint probability density functions of the true SGS supersaturation variance
(τSS) and modeled supersaturation variance for the similarity model (τm,s

SS ) normalized
by the standard deviation of the true SGS term (στSS

). All are plotted at one height
(z/h=0.9) near the upper boundary layer. The injection rate increases from top to
bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases
from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

due to the bottom and top boundary layer features. Overall, this model performed

well throughout the profile, at varying injection rates, and filter widths.
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Figure 3.9: Correlation coefficients of the true SGS supersaturation variance (τSS) and
modeled supersaturation variance for the similarity model (τm,s

SS ) with height at varying
filter widths and injection rates.

3.1.3 Discussion

Both the gradient and similarity models were assessed with PDFs, joint PDFs, and

correlation coefficients to identify the utility of either model for representing the SGS

supersaturation variance. Results suggest that the gradient model was less skillful at
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modeling this term as the PDFs do not replicate the true SGS supersaturation variance

PDFs, joint PDFs deviate significantly from the one-to-one line, and low values for

correlation coefficient were observed. In contrast, the PDFs of the similarity model

replicated those of the true SGS supersaturation variance. Further, the joint PDFs of

the similarity model showed trends that closely followed the one-to-one line indicative

of positive agreement between the true and modeled SGS supersaturation variance.

Correlation coefficients generally greater than ρ = 0.75 also indicated good correlation

between these cases. This agreement was observed for each filter width suggesting

that any filter width chosen for an SGS model will have skill in representing the SGS

supersaturation variance. Considering the similarity model performs well for large filter

widths (i.e., ∆/dx = 8 or 16), it has practical relevance for modeling cloud-containing

environments with large eddy simulations of moderate resolution.

3.2 Supersaturation and Concentration Covariance

To remain consistent with the supersaturation variance, profiles for the SGS fraction

of concentration covariance were evaluated at varying injection rates (ṅ = 1, 10, and

100 cm−3min−1) and filter widths (∆/dx = 2, 4, 8, and 16, Fig. 3.10). Similar to the

results of supersaturation variance, the supersaturation and concentration covariance

generally remained less than 50% indicating that the majority of the SGS covariance is

located on the resolved scale. However, this did not apply when considering the larger

filter widths (∆/dx = 8 or 16) at the transition between the boundary layer features

and the bulk of the flow. Here, the SGS fraction was between approximately 60-90%,

excluding the upper boundary layer for the 100 cm−3min−1 case, and ∆/dx = 8 for the

10 cm−3min−1 case at the lower boundary layer. In general, the SGS fraction between
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Figure 3.10: SGS fraction of the supersaturation and concentration covariance with
height at varying filter widths and injection rates.

60-90% suggests that the transition between the boundary layers and the bulk of the

flow primarily occurs within the subgrid scales. Overall, larger filter widths resulted

in a higher percentage of the supersaturation and concentration covariance located in

the subgrid scales. Otherwise, there were no significant differences between each case.
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Figure 3.11: Probability density functions of the true SGS supersaturation and concen-
tration covariance (τSC) and modeled supersaturation and concentration covariance for
the similarity model (τm,s

SC ) and the gradient model (τm,g
SC ) normalized by the standard

deviation of the true SGS term (στSC
). All are plotted at one height (z/h=0.5) within

the bulk of the flow. The injection rate increases from top to bottom: ṅ = 1 (a-c), 10
(d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to right: ∆/dx=
2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

PDFs of the supersaturation and concentration covariance for the true SGS co-

variance (τSS), gradient-modeled SGS covariance (τm,g
SS ), and similarity-modeled SGS
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Figure 3.12: Probability density functions of the true SGS supersaturation and concen-
tration covariance (τSC) and modeled supersaturation and concentration covariance for
the similarity model (τm,s

SC ) and the gradient model (τm,g
SC ) normalized by the standard

deviation of the true SGS term (στSC
). All are plotted at one height (z/h=0.9) near

the upper boundary layer. The injection rate increases from top to bottom: ṅ = 1
(a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to right:
∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

covariance (τm,s
SS ) were compared between different filter widths (∆/dx = 2, 8, and 16)

and injection rates (ṅ = 1, 10, and 100 cm−3min−1) at two heights: z/h= 0.5 and z/h=

46



0.9 (Figures 3.11 and 3.12). Similar to supersaturation variance, these PDFs appeared

near Gaussian with smaller filter widths and transitioned to a bimodal distribution for

larger filter widths. As noted previously, this bimodal distribution likely occurred due

to influences of the large-scale circulation. In assessing each injection rate, trends in

the results remained relatively consistent across all cases. However, there were consid-

erable differences when evaluating the difference between the true and modeled SGS

supersaturation and concentration covariance.

Similar to the supersaturation variance, the similarity model produced PDFs that

followed the same trend as the true SGS supersaturation and concentration covariance.

However, there were a few exceptions to this, particularly within the upper boundary

layer where there were outliers (Fig. 3.12 (c) and (d)). However, the gradient model

displayed little skill in capturing the trends of the PDFs throughout all cases. Since

definitive results regarding the skill of models could not be assessed with the SGS

fraction and PDFs, these will be quantified further in the following section.

3.2.1 Gradient Model

Joint PDFs of the gradient model (τm,g
SC ) and true SGS supersaturation and concentra-

tion covariance (τSC) for the cases described for the PDFs in the previous section are

presented in Figures 3.13 and 3.14. The results are consistent across all injection rates,

filter widths, and heights. None of the joint PDFs for the given cases aligned closely

about the one-to-one line that would suggest positive agreement between the true and

modeled SGS supersaturation and concentration covariance. This suggests little skill

in using the gradient model to represent this term.
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Figure 3.13: Joint probability density functions of the true SGS supersaturation and
concentration covariance (τSC) and modeled supersaturation and concentration covari-
ance for the gradient model (τm,g

SC ) normalized by the standard deviation of the true
SGS term (στSC

). All are plotted at one height (z/h=0.5) within the bulk of the flow.
The injection rate increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i)
cm−3min−1. The filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e,
h), and 16 (c, f, i).

Supporting this conclusion were the correlation coefficients between the gradient

modeled and true SGS supersaturation and concentration covariance (Fig. 3.15). For
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Figure 3.14: Joint probability density functions of the true SGS supersaturation and
concentration covariance (τSC) and modeled supersaturation and concentration covari-
ance for the gradient model (τm,g

SC ) normalized by the standard deviation of the true
SGS term (στSC

). All are plotted at one height (z/h=0.9) near the upper boundary
layer. The injection rate increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100
(g-i) cm−3min−1. The filter width increases from left to right: ∆/dx= 2 (a, d, g), 8
(b, e, h), and 16 (c, f, i).

each injection rate and filter width, the correlation coefficients oscillated about ρ = 0

throughout the profile. This indicates no correlation between the true and modeled
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Figure 3.15: Correlation coefficients of the true SGS supersaturation and concentra-
tion covariance (τSC) and modeled supersaturation and concentration variance for the
gradient model (τm,g

SC ) with height at varying filter widths and injection rates.

SGS supersaturation and concentration covariance. In addition, it did not appear

that a particular injection rate or filter width improves the correlation coefficients

produced. As a result, the gradient model is not recommended to represent the SGS

supersaturation and concentration covariance.
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3.2.2 Similarity Model

Figure 3.16: Joint probability density functions of the true SGS supersaturation and
concentration covariance (τSC) and modeled supersaturation and concentration covari-
ance for the similarity model (τm,s

SC ) normalized by the standard deviation of the true
SGS term (στSC

). All are plotted at one height (z/h=0.5) within the bulk of the flow.
The injection rate increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i)
cm−3min−1. The filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e,
h), and 16 (c, f, i).
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Figure 3.17: Joint probability density functions of the true SGS supersaturation and
concentration covariance (τSC) and modeled supersaturation and concentration covari-
ance for the similarity model (τm,s

SC ) normalized by the standard deviation of the true
SGS term (στSC

). All are plotted at one height (z/h=0.9) near the upper boundary
layer. The injection rate increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100
(g-i) cm−3min−1. The filter width increases from left to right: ∆/dx= 2 (a, d, g), 8
(b, e, h), and 16 (c, f, i).

To assess the utility of the similarity model, the joint PDFs between the true (τSC)

and modeled supersaturation and concentration covariance (τm,s
SC ) were performed for
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Figure 3.18: Correlation coefficients of the true SGS supersaturation and concentra-
tion covariance (τSC) and modeled supersaturation and concentration variance for the
similarity model (τm,s

SC ) with height at varying filter widths and injection rates.

the same injection rates, filter widths, and heights as the gradient model (Figures 3.16

and 3.17). The joint PDFs did not indicate significant positive agreement between the

similarity model and true SGS term particularly at the smallest filter width (Figures

3.16 and 3.17 (a), (d), and (g)). However, larger filter widths followed the one-to-one
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line slightly better indicating better agreement the true and modeled SGS term. This

was further assessed with the correlation coefficients.

Correlation coefficients between the true SGS and similarity-modeled supersatura-

tion and concentration covariance were assessed between the varying injection rates and

filter widths (Fig. 3.18). These were notable as they had considerable variability with

height. Overall, the correlation coefficients range between ρ ≈ 0.3–0.75. As such, the

similarity model indicated relatively positive correlation between the true and modeled

SGS covariance. It is worth noting that the largest filter width (∆/dx = 16) remained

the most consistent with height as compared to the other filter widths for all injection

rates. However, the variations with height may not indicate that this filter width is

accurate for modeling the supersaturation and concentration covariance.

3.2.3 Discussion

When considering the supersaturation and concentration covariance, the gradient model

did not show skill in predicting the SGS covariance. However, the similarity model

indicated some skill in predicting the true SGS supersaturation and concentration co-

variance. The similarity model appeared to replicate the PDF of the true SGS super-

saturation and concentration covariance and followed the one-to-one line in the joint

PDFs indicating good agreement between the true and modeled SGS covariance at

larger filter widths (∆/dx = 8 and 16). Despite correlation coefficients for the similar-

ity model being significantly variable with height, they ranged between ρ = 0.3− 0.75

which suggested there was relatively good agreement between the true and modeled

SGS covariance. In contrast, the gradient model had a notably poor correlation be-

tween the true and modeled SGS covariance with correlation coefficients generally

equal to ρ = 0. Despite relatively good correlations for the similarity model, further
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investigation into alternative methods for modeling the supersaturation and concen-

tration covariance may be warranted to better correlate the true SGS covariance to the

modeled covariance.

3.3 Concentration Variance

The final term considered is the concentration covariance. As completed with the

other SGS terms, the SGS fraction was calculated for three injection rates (ṅ = 1,

10, and 100 cm−3min−1) and four filter widths (∆/dx = 2, 4, 8, and 16, Fig. 3.19).

Notable about this SGS fraction was that more than 90% of the true SGS concentration

variance (τCC) occurred within the subgrid scales. While the smallest filter width

(∆/dx = 2) indicated approximately 90% of the concentration occurred in the subgrid

scales. However, larger filter widths suggested an SGS fraction between 95-100%. These

results were significant as they indicate nearly all of the concentration covariance is

within the subgrid scales and must be modeled by a subgrid-scale model. In addition,

it is worth mentioning that the SGS fractions remained relatively constant with height.

This is particularly notable as it suggests the concentration variance is not as influenced

by the upper or lower boundary layers as the SGS terms including supersaturation.

To compare the gradient and similarity models with the true SGS concentration

covariance, PDFs were plotted for the three injection rates analyzed previously and

three filter widths (∆/dx = 2, 8, and 16). In addition, Figure 3.20 was evaluated

at z/h= 0.5, within the bulk of the flow, and Figure 3.21 was evaluated at z/h=

0.9, within the upper boundary layer. Each PDF was normalized by the standard

deviation of the true SGS concentration variance (στCC
). The PDFs were gamma-

distributed for the smallest filter width (a), (d), (g) ∆/dx = 2 for all cases. The
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Figure 3.19: SGS fraction of the concentration variance with height at varying filter
widths and injection rates.

larger filter widths transitioned to a nearly bimodal distribution, likely due to the

large-scale circulation from Rayleigh-Bénard convection. While the similarity model

showed some skill in representing these distributions, particularly at the lower filter

widths (∆/dx =2, and 8), the gradient model did not follow the PDFs of the true SGS

concentration variance. This suggests decreased skill in the gradient model’s ability
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Figure 3.20: Probability density functions of the true SGS concentration variance (τCC)
and modeled concentration variance for the similarity model (τm,s

CC ) and the gradient
model (τm,g

CC ) normalized by the standard deviation of the true SGS term (στCC
). All

are plotted at one height (z/h=0.5) within the bulk of the flow. The injection rate
increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The
filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

to represent this SGS variance. These hypotheses will be quantified in the following

sections to better qualitatively and quantitatively assess each model’s accuracy.
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Figure 3.21: Probability density functions of the true SGS concentration variance (τCC)
and modeled concentration variance for the similarity model (τm,s

CC ) and the gradient
model (τm,g

CC ) normalized by the standard deviation of the true SGS term (στCC
). All

are plotted at one height (z/h=0.9) near the upper boundary layer. The injection rate
increases from top to bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The
filter width increases from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).
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Figure 3.22: Joint probability density functions of the true SGS concentration variance
(τCC) and modeled supersaturation variance for the gradient model (τm,g

CC ) normalized
by the standard deviation of the true SGS term (στCC

). All are plotted at one height
(z/h=0.5) within the bulk of the flow. The injection rate increases from top to bottom:
ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to
right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

3.3.1 Gradient Model

To assess the ability of the gradient model to represent the true SGS concentration

covariance (τCC), joint PDFs were plotted for the same injection rates, filter widths,
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Figure 3.23: Joint probability density functions of the true SGS concentration variance
(τCC) and modeled supersaturation variance for the gradient model (τm,g

CC ) normalized
by the standard deviation of the true SGS term (στCC

). All are plotted at one height
(z/h=0.9) near the upper boundary layer. The injection rate increases from top to
bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases
from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

and heights described for the PDFs discussed previously (Figures 3.22 and 3.23). It

is first important to note that the joint PDFs for the smallest filter widths (∆/dx =

2) had small magnitudes. This was likely due to statistical convergence limitations
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Figure 3.24: Correlation coefficients of the true SGS concentration variance (τCC) and
modeled supersaturation and concentration variance for the gradient model (τm,g

CC ) with
height at varying filter widths and injection rates.

as there are few particles at each grid cell. However, to remain consistent with past

variance and covariance terms, these filter widths and bin spacing were selected for

comparison. Regardless, the joint PDFs did not closely follow the one-to-one line that

indicates good agreement between the gradient-modeled SGS concentration variance
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(τm,c
CC ) and the true SGS concentration variance. This was true across all cases, and all

followed similar trends independent of injection rate, filter width, or height.

Relatively poor agreement between the true SGS concentration covariance and SGS

concentration covariance modeled by the gradient model was further supported by

the correlation coefficients plotted in Figure 3.24. Here, the gradient model had low

correlation coefficients of approximately ρ =0.2 for all injection rates and filter widths.

It may be worthwhile to consider increasing filter width had a notable increase in

the variability of correlation coefficient values with height. However, it did not appear

that any filter width had particularly better or worse correlation coefficients that would

result in a recommendation for further use in developing a subgrid-scale model.

3.3.2 Similarity Model

The injection rates, filter widths, and heights investigated for the PDFs and joint PDFs

for the gradient model were also assessed between the true SGS concentration variance

(τCC) and the modeled SGS concentration variance with the similarity model (τm,s
CC ,

Figures 3.25 and 3.26). As was observed with the gradient model, there were few

contours for the joint PDFs for the smallest filter width (Fig. 3.25 (a), (d), and (g)),

likely due to a small number of particles at each grid point which became filtered out

at small filter widths. However, the data observed seemed to follow the one-to-one line

indicating positive agreement between the true and modeled SGS variance. Further,

this trend was observed for the remainder of the injection rates, filter widths, and

heights. The joint PDFs appeared to follow the one-to-one line closely, suggesting the

similarity model likely has good skill in representing the concentration variance term.
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Figure 3.25: Joint probability density functions of the true SGS concentration variance
(τCC) and modeled supersaturation variance for the similarity model (τm,s

CC ) normalized
by the standard deviation of the true SGS term (στCC

). All are plotted at one height
(z/h=0.5) within the bulk of the flow. The injection rate increases from top to bottom:
ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases from left to
right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

The correlation coefficients for each injection rate and filter width with height also

supported positive agreement between the true SGS concentration variance and the
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Figure 3.26: Joint probability density functions of the true SGS concentration variance
(τCC) and modeled supersaturation variance for the similarity model (τm,s

CC ) normalized
by the standard deviation of the true SGS term (στCC

). All are plotted at one height
(z/h=0.9) near the upper boundary layer. The injection rate increases from top to
bottom: ṅ = 1 (a-c), 10 (d-f), and 100 (g-i) cm−3min−1. The filter width increases
from left to right: ∆/dx= 2 (a, d, g), 8 (b, e, h), and 16 (c, f, i).

similarity model values of concentration variance (Fig. 3.27). All cases observed cor-

relation coefficients above ρ = 0.8 indicating the similarity model does have skill in

representing the true SGS concentration variance. A considerable result also indicated
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Figure 3.27: Correlation coefficients of the true SGS concentration variance (τCC) and
modeled supersaturation and concentration variance for the similarity model (τm,s

CC )
with height at varying filter widths and injection rates.

that the correlation coefficients improved with increasing filter width. This is a signifi-

cant result as it supports the use of a larger filter width to model the SGS concentration

variance which would improve computational efficiency than if a smaller filter width

was selected.
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3.3.3 Discussion

When the utility of the gradient and similarity models were compared to the true SGS

concentration variance, the similarity model had better skill in capturing the trends

in the true SGS variance. This was supported by all methods of analysis where the

PDFs did not replicate the true SGS concentration variance well, the joint PDFs did

not closely follow the one-to-one line, and correlation coefficients were low. However,

the similarity model did show skill for each case to accurately represent the true SGS

concentration variance. Overall, the PDFs followed the trend of the true SGS variance,

the joint PDFs followed the one-to-one line closely for all cases, and the correlation

coefficients were generally greater than ρ = 0.8. Further, it appeared that larger filter

widths may improve the accuracy of the modeled SGS variance. This was particularly

noted in the correlation coefficients for the similarity model which increased in magni-

tude with increasing filter width. As such, it is likely that the similarity model would

be best suited for further development into a subgrid-scale model.

3.4 Relevance to Previous Studies

Few past studies have investigated ways to model all SGS terms considered in this

work. However, Salesky et al. (2024) assessed the SGS scalar variance with data from

the Pi Chamber. This study also compared the use of both the similarity and gradient

models for representing the SGS supersaturation variance. The results in this thesis

followed closely to those outlined in Salesky et al. (2024). The gradient model was

found to have fairly poor skill in representing the SGS supersaturation variance with

correlation coefficients of ρ ≈ 0.2, comparable to the ρ ≈ 0.1 − 0.4 observed in this

study. Salesky et al. (2024) also found that the similarity model more accurately

represented the SGS supersaturation variance with correlation coefficients of ρ ≈ 0.8
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which aligned with correlation coefficients between ρ = 0.75− 0.9 found in this study.

Therefore, there is a strong indication that the similarity model is the best candidate

for future subgrid-scale models of supersaturation variance.

Despite the supersaturation and concentration covariance and concentration vari-

ance not being assessed in Salesky et al. (2024), Liu et al. (1994) provides support

for the use of the similarity model to represent the supersaturation and concentration

covariance. While Liu et al. (1994) focused on modeling the SGS stress tensor, cor-

relation coefficients between the true SGS stress tensor and filtered strain rate tensor

were less than ρ ≈ 0.2 for the Smagorinsky model which is readily used in LES models.

This is lower than the ρ = 0.25− 0.75 observed by the similarity model in this study.

As a result, an argument could be made for the similarity model to represent the SGS

supersaturation and concentration covariance. Finally, while studies evaluating con-

centration variance were lacking, high correlation coefficients (ρ = 0.8 − 0.9) for the

similarity model suggest considerable agreement supporting its use for an SGS model

to implement into LES. While the gradient model indicated less skill with correlation

coefficients near ρ = 0.2, low correlation coefficients are often used for SGS models of

momentum (Liu et al., 1994). This suggests the gradient model may be warranted to

represent the concentration covariance. Overall, it is recommended that the similarity

model be used to represent the SGS terms evaluated in this analysis (τSS, τSC , and

τCC).
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Chapter 4

Summary and Conclusions

Clouds have a significant impact on Earth’s weather and climate systems but remain

poorly understood. Studies have suggested that turbulence can induce supersatura-

tion fluctuations which result in broader droplet size distributions (Vaillancourt and

Yau, 2000; Grabowski and Wang, 2013). As a result, this could improve the collision

efficiency of droplets supporting better efficiency of precipitation development. How-

ever, these processes occur on small scales (micrometers to millimeters) making them

difficult to study.

Recent studies have investigated the role turbulence plays in cloud microphysics us-

ing laboratory facilities such as the Pi Chamber at Michigan Technological University,

direct numerical simulations, and large eddy simulations. Results from these studies

observed possible preferential droplet growth zones where supersaturation fluctuations

were observed (Prabhakaran et al., 2020; Shawon et al., 2021; Anderson et al., 2021).

Further, they concluded that droplet history plays a significant role in understanding

a particle’s potential to activate in the future (Thomas et al., 2020; MacMillan et al.,

2022). These small-scale details are important particularly when considering studies

involving large eddy simulations. Large eddy simulations are useful due to their com-

putational efficiency. They obtain this by fully resolving the large scales of motion

and modeling the smallest scales. While some studies have investigated modeling the

stress tensor and scalar flux vector, terms related to interactions between turbulence
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and cloud microphysics have received little attention. Modeling these small-scale inter-

actions with accuracy is significantly important in understanding cloud microphysics

processes and their broader impacts. Currently, no subgrid scale terms represent some

of these processes; it is these terms that were investigated.

This study examined three subgrid scale quantities: supersaturation variance (τSS),

supersaturation and concentration covariance (τSC), and concentration variance (τCC).

The supersaturation variance appears in Lagrangian microphysics where a stochastic

term contains both the resolved and subgrid-scale supersaturation variance. While the

resolved supersaturation variance can be derived from explicitly resolved terms, the

subgrid-scale supersaturation variance must be modeled. However, the development

and testing of accurate models for the SGS supersaturation variance has received little

attention to date. Similarly, supersaturation and concentration covariance and con-

centration variance are terms that arise when the evolution equation for droplet size

distribution (eq. 1.1) is filtered and applied in an Eulerian framework. The subgrid-

scale covariance and variance both have resolved and modeled components in LES.

While the resolved components are explicitly calculated in LES, subgrid scale models

do not currently exist for the modeled components. It was the goal of this study to

identify potential subgrid-scale models to be implemented into LES.

To study the SGS variance and covariance terms of interest, this project evalu-

ated an ensemble of direct numerical simulations similar to the Pi Chamber. These

simulations induced Rayleigh-Bénard convection with Rayleigh numbers of 7.9 × 106.

Five cases were tested with varying injection rates: 1, 3, 10, 30, and 100 cm−3min−1.

While supersaturation in the DNS was higher than in the Pi Chamber and the Rayleigh

number was lower than achievable in the Pi Chamber, the results are still valid as this

was a turbulent flow with particles that could activate and form cloud condensation

nuclei. Despite the limitations, a benefit of these methods was the ability to gather
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information on Lagrangian particles. As a result, particle size information could be

investigated as it correlated to the background flow.

From the DNS data, both the true SGS terms of interest (τSS, τSC , and τCC) and

candidate models could be calculated. Then, the true subgrid scale quantities were

compared to two candidate models: the gradient model and the scale-similarity model.

The accuracy of each model was evaluated with several statistical methods including

probability density functions, joint probability density functions, and correlation coeffi-

cients. Each model was compared across the subgrid scale terms of interest for varying

injection rates, filter widths, and heights in the domain. Results indicated that the

gradient model did not perform exceptionally well in any case with correlation coeffi-

cients between ρ ≈ 0− 0.4. However, the similarity model did show skill in predicting

the true subgrid scale terms with correlation coefficients ranging between ρ ≈ 0.3−0.9.

This was particularly true for the supersaturation and concentration variances. These

results followed closely with recent work published by Salesky et al. (2024). While

neither the gradient model nor the similarity model performed exceptionally well for

the supersaturation and concentration covariance, the similarity model performed sig-

nificantly better (ρ = 0.3 − 0.75) than the gradient model (ρ = 0). Further, results

were similar to other subgrid-scale models currently in practice for the SGS stress ten-

sor which has correlation coefficients of ρ ≈ 0.2 (Liu et al., 1994). As such, it was

recommended that the similarity model be used to represent the subgrid-scale terms

evaluated in this study in future subgrid-scale models.

It is important to note that this study contained limitations primarily related to the

maximum Rayleigh numbers achievable. In particular, the maximum number of parti-

cles able to be injected into the simulation was another limitation. As a result, compar-

isons of concentrations between particles of different radii could not be conducted due

to a lack of statistical convergence. Future work should expand the Rayleigh numbers
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simulated to remain more consistent with the Pi Chamber while also increasing the

number of particles within the flow. Further, unrealistic supersaturation values should

be a consideration when evaluating these results. While it was not hypothesized that

these errors would have significant influences on the quality of the results, the exact

implications of the results are not fully understood. In particular, the influence that

mean supersaturation has on droplet activation is uncertain and should be investigated

further. Finally, future work should implement these results into a subgrid-scale model

in LES. From there, the performance of the model should be assessed with a posteriori

testing to evaluate accuracy in representing these terms.
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