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Abstract

Recent developments in all-digital phased arrays have probed the upper bound

of performance for single monostatic radar system performance. In order for radar

system performance to continue to improve beyond the current state-of-the-art, it is

imperative that research into the implementation of distributed radar systems be per-

formed as such systems will enable significant performance enhancements in compari-

son to traditional monostatic radars. For these systems to be implemented, particularly

in mobile scenarios, both the accurate navigation and synchronization of the systems

must be performed. These processes must be performed at the carrier wavelength

accuracy which poses a strict requirement on the performance of the navigation and

synchronization algorithms. These components have received significant attention in

the literature. However, although they are closely related problems for implementing

mobile distributed radar networks, the potential for implementing algorithms for si-

multaneous navigation and synchronization has largely been unexplored. Therefore,

the research proposed in this dissertation aims to implement algorithms for simul-

taneous navigation and synchronization for distributed radar networks by leveraging

time-of-flight (TOF) ranging signals and associated Doppler measurements.

This dissertation provides a comprehensive literature review of current techniques

for achieving navigation and synchronization solutions. A background is provided, de-

scribing linear and nonlinear Kalman filtering for time-series state estimation, relevant

xxxii



propagation effects on radio signals, a mathematical framework for inertial navigation,

and the radio frequency (RF) synchronization signal model. Current research results

in cooperative navigation for radar motion compensation are presented. A novel al-

gorithm for time, phase, and frequency synchronization is described which is capable

of achieving synchronization exclusively in software, enabling decentralized imple-

mentation in existing radar systems. This algorithm is provided for a single iteration

of synchronization and is also adapted for the Kalman filtering of the synchronization

states. A framework for combining the cooperative navigation and synchronization

routines is provided along with simulated results and analysis on performance. A

preliminary hardware demonstration of the synchronization algorithm is also given.

Finally, a summary of future research direction and goals is provided along with a

conclusion to the dissertation.
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Chapter 1

Introduction

Distributed radar systems are networks of radar sensors with significant spatial

separation between the individual sensors. The large separation between the sensors

in these systems prohibits a physical connection between the nodes in the network

but provides multiple benefits in comparison to traditional monostatic radar sensors.

Because each individual node is capable of transmitting unique signals and receiving

radar returns induced by the transmitted signals of other nodes, they are often referred

to as distributed multiple-input multiple-output (MIMO) radar systems. Distributed

MIMO systems are superior in terms of system survivability due to the lack of a sin-

gle point of failure, similar to the concept of graceful degradation in phased array

systems. Moreover, properly implemented distributed radar systems can achieve sim-

ilar coverage areas to traditional monostatic systems but with lower transmit powers,

reducing the probability of detection [6]. Additionally, implementation costs can be

reduced since a network of many low-cost radar systems can match or exceed the

performance of a single high-performance radar system [7].

The performance enhancements provided by distributed radar networks are nu-

merous. Distributed radar networks can localize targets with higher accuracy than

monostatic systems [8–11], produce target velocity estimates above the monostatic
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blind velocity caused by Doppler aliasing [12], provide three-dimensional velocity

field extraction [13], improve the power gain and directivity of beamforming mis-

sions [14–16], and increase detection performance in cluttered environments [17–19].

Distributed MIMO radar systems also facilitate a dramatic improvement to the per-

formance of synthetic aperture radar (SAR) imaging missions by providing reflectiv-

ity measurements from multiple angles [20], increasing synthetic aperture size [21],

enabling faster update rates for single-pass interferometric SAR [22], and enabling

single-pass holographic SAR for three-dimensional imaging [23].

1.1 Motivation

For all the capabilities promised by distributed MIMO radar systems, implement-

ing them in practical systems poses an extraordinary challenge. For such systems to

be useful, two key processes must be implemented with high accuracy: localization

or navigation, and synchronization. Localization and navigation refer to the determi-

nation of the radar systems’ position in space relative to one another or in an absolute

sense relative to the Earth. In this context, localization refers to this position iden-

tification in networks of stationary nodes while navigation refers to the tracking of

time-evolving positions of moving platforms. Synchronization refers to the alignment

of the radio frequency (RF) electrical states of radar sensors; namely, their clock times,

carrier phases, and carrier frequencies.

In order for radar systems to provide useful information, their positions must be ac-

curately established. This is especially important for moving systems since radar data

must be accurately motion-compensated for the returns collected over a single coher-

ent processing interval (CPI) to be coherently integrated. Fig. 1.1 shows a single-

platform SAR image formed by a platform with perfectly compensated motion and
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(a) (b)

Fig. 1.1: Original SAR image (a) and a SAR image defocused due to navigation errors
(b).

compares it to an image with improperly compensated motion, which leads to az-

imuth spreading phase errors and blurs the image beyond recognition. The coherent

integration of data captured across multiple platforms poses an even stricter require-

ment on motion compensation as all platforms must each be localized; otherwise,

phase errors from one platform may corrupt the coherency of the data captured by

other platforms. Moreover, the navigation of such sensors must be accurate on the or-

der of fractions of a single carrier wavelength. Therefore, the navigation requirement

reduces to centimeters or millimeters as the frequencies of modern radar systems scale

to Ku-band [24], Ka-band [25], and even W-band as researchers explore applications

of commercial automotive radar systems to SAR imaging [26–28]. Thus, it is crucial

that accurate navigation techniques continue to be developed to enable applications of

these high-frequency systems.

Moreover, any form of distributed radar system requires precise synchronization of

the constituent nodes in time, carrier phase, and carrier frequency [21, 29–32]. Radar

systems require strict timing precision to accurately extract range values [24, 33, 34];
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even one nanosecond of time error between a transmitter and receiver will result in

15 cm of range error, rendering high-resolution applications infeasible. To eliminate

range errors across distributed observations of a target, the time offsets between radar

systems in the network must be compensated to below nanosecond accuracy. Fur-

thermore, phase errors between platforms will render coherent operation impossible;

instead of coherent integration of data across platforms, data will destructively inter-

fere from platform to platform and ultimately destroy any cooperative information that

could otherwise be obtained. Finally, frequency errors between platforms will result

in the incomplete removal of the carrier frequency from received signals generated by

other platforms, which will modulate the received signal and lead to errors.

To overcome these challenges, many systems make use of the Global Position-

ing System (GPS), which provides position information for navigation and distributes

a frequency reference for frequency synchronization of platforms through the pulse-

per-second (PPS) service. For navigation purposes, inertial measurement units (IMUs)

can be fused with GPS and other sensor information to provide high-accuracy esti-

mates of position. However, GPS is an imperfect system – its timing distribution

has a standard deviation of 15 ns, which is not sufficient to achieve the required time

and phase synchronization performance between platforms and will also lead to po-

sitioning errors on the order of several meters. Some augmented GPS systems such

as differential GPS (DGPS) or real-time kinematic (RTK) GPS can reduce position-

ing errors to centimeter-level accuracy by compensating for atmospheric propagation

effects, but these require additional hardware or infrastructure to operate and they

do not assist in fully synchronizing phase across platforms. Furthermore, some op-

erating environments, including indoors [35], outer-space [36], and harsh terrestrial

environments [37] block GPS signals such that they cannot be used at all. In certain
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applications, GPS may be blocked, jammed, or spoofed by hostile agents, rendering it

useless. In these cases, navigation must be performed exclusively using IMUs, which

tend to diverge quickly due to the integration step required to obtain position informa-

tion from the measured acceleration and angular velocity. This navigation with IMUs

alone is often referred to as dead-reckoning. Moreover, GPS-denial completely elim-

inates the external synchronization reference to the distributed system. Therefore, to

enable distributed systems that are capable of robust operation in these types of en-

vironments, new techniques must be developed to achieve accurate navigation and

synchronization.

1.2 Prior Work

Much work has been done in the literature to address the navigation and synchro-

nization problems, though they are usually considered separate problems, and often-

times the impact on radar is not considered. In the following subsections, a summary

of prior work addressing the problems of navigation and synchronization is provided.

1.2.1 Navigation

The problem of accurately determining one’s location is ubiquitous across almost

all civil, industrial, and military applications [38–43]. In all navigation algorithms,

platforms attempt to use information from various sensors to compute their position

in three-dimensional space. Oftentimes this position is given relative to some earth-

centered frame of reference, but depending on the application a more localized naviga-

tion solution can be used as well. Common navigation sensors include cameras [44],

light detection and ranging (LiDAR) systems [45], magnetometers [46], among others.
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However, the most common sensors for navigation are satellite navigation systems

such as GPS, which provide absolute position references, and IMU sensors. IMUs

generate measurements of acceleration and angular velocity, which can be integrated

to give estimates of velocity, position, and orientation. Usually, information from

the GPS and IMU sensors is fused together to form an inertial navigation system

(INS) [47], which is often done using some information fusion algorithm like the

Kalman filter. The INS continues to find consistent and ubiquitous use in outdoor

navigation applications [48–50]. The fusion of these two sensors continues to find

so much use because of the way that they complement each other. GPS provides a

stable position reference over the long term, but each individual measurement tends

to be less accurate in the short term, and measurements are typically obtained at a

slower rate of 1–10 Hz. On the other hand, IMU measurements are produced at a

fast rate (100–1000 Hz) and tend to produce accurate position estimates in the short

term. However, because the IMU measurements must be integrated to achieve position

and orientation, errors due to noise in the sensors will accumulate over time and the

navigation solution will diverge [51]. By fusing the sensors together, their advantages

may be combined and their disadvantages may be compensated for.

1.2.1.1 Kalman Filtering

Generally, navigation algorithms utilize an information filter to fuse a known mo-

tion model with the navigating platform’s pose measurements. The Kalman filter, first

proposed in [52], is a time-series estimation technique that has found application in a

stunning variety of fields including economics [53], target tracking [54–56], and com-

puter vision [57], and it has been a staple of navigation algorithms for decades [58–63].

The Kalman filter works iteratively, performing two stages on each iteration: predict-
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ing the current system state (e.g., position, velocity, and orientation) using the previous

system state information and correcting the prediction using measurements such as a

GPS measurement. The filter tracks an estimate of the system state and an associated

covariance under the modeled assumption that both the prediction model and mea-

surements are noisy.

The standard Kalman filter requires that the state and measurement models be lin-

ear. However, because the general navigation equations for a moving platform are

nonlinear, variations of the Kalman filter exist, such as the extended Kalman filter

(EKF) [64], to enable nonlinear models to be included in the Kalman filtering frame-

work by approximating the nonlinear functions’ local linear behavior. The EKF works

by computing the first-order derivative of the nonlinear system state function in the

form of the Jacobian matrix and uses the resulting linear approximation in the same

way as the ordinary linear Kalman filter. The EKF works well in some circumstances

but fails when the model is strongly nonlinear and cannot be approximated as linear.

Moreover, it requires the complicated derivation of the Jacobian of the state model

function.

More recently, a Kalman filtering technique called the unscented Kalman filter

(UKF) has been introduced [65–67]. Rather than approximating the system model

as linear, the UKF approximates the prior probability density function (PDF) at each

iteration by a small set of sample points called sigma points. These points are prop-

agated through the system and measurement models are used to form an output state

and covariance estimate. The UKF generally achieves much better performance than

the EKF while still meeting similar computation complexity, and it is far more com-

putationally feasible in comparison to Monte Carlo-based nonlinear filters such as

the particle filter (PF) [68]. Because of the robustness of the UKF, it has found ap-
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plication in a wide variety of nonlinear estimation applications [69–71], including

navigation [72–74].

1.2.1.2 Navigation for Radar Applications

Navigation systems with mobile radar applications generally operate like any other

navigation system, and will also typically make use of an INS as the core sensing

mechanism. However, as described above, one main challenge in navigation for radar

is that the accuracy of the navigation solution needs to be on the order of the carrier

wavelength. In particular, the navigation errors in the line-of-sight (LOS) direction

should be 1/16 of a wavelength for low-frequency errors (errors that vary by less

than a wavelength over the CPI) and less than 15/1000 of a wavelength for higher

frequency sinusoidal errors [75]. Any additional navigation errors would need to be

compensated for by a phase-error extraction technique such as autofocus [76].

One unique challenge to navigation for mobile radar systems is that the navigation

solution must produce position estimates at the same rate as the radar pulse repetition

frequency (PRF), which is often on the order of kHz or tens of kHz and therefore

much faster than the update rate of an INS. To solve this problem, recent iterative

up-sampled versions of the Kalman filter [62,77] and particle filter [78,79] have been

proposed. These modifications of the traditional filtering algorithms tend to achieve

higher accuracy while also producing a navigation solution at the same rate as the PRF

such that each individual radar pulse can be motion-compensated.

A benefit of performing SAR with a mobile radar system is that the radar data itself

can be used for the purposes of motion compensation and therefore navigation. For

example, techniques have been proposed to enable motion compensation directly from

raw radar data for unmanned aerial vehicle (UAV) applications [80], and one type of

8



autofocus algorithm called prominent point processing enables the direct extraction of

the full radar flight path during the CPI assuming that a sufficient number of strong

scatterers are present in the SAR scene [75, 81, 82].

Generally, traditional navigation techniques with an INS work well for most radar

applications at moderately low frequencies. However, very little exists in the literature

for high-fidelity radar applications in GPS-denied circumstances in which the naviga-

tion solution must be formed by dead-reckoning. While prominent point processing

could in theory be used for GPS-denied navigation, it requires that strong scatterers

be available for motion compensation, which is not a guarantee. Moreover, it assumes

that the radar system on board the moving platform is used for SAR which may not be

the case. Therefore, there is a great need for the development of navigation techniques

that can provide high-accuracy positioning for radar applications in GPS-denied sce-

narios.

1.2.1.3 Cooperative Navigation and Localization

One approach for mitigating the lack of GPS access in swarm navigation is the

cooperative navigation approach. This approach leverages information shared among

sensors along with inter-node measurements to achieve higher levels of accuracy than

the platforms could obtain independently [83–85]. One common inter-node measure-

ment in a cooperative network is a time-of-arrival (TOA) or time-of-flight (TOF) based

range measurement [86]. Such measurements have been shown to be useful in local-

ization of stationary wireless sensor networks [87, 88] as well as in the navigation of

mobile networks of sensors [89–91]. However, the application of these navigation al-

gorithms has yet to be demonstrated in a radar application, and the evaluation of the

impact of these cooperative localization and navigation techniques on radar system
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performance is still an open area of research.

The notion of cooperative navigation is similar to the operating principle of GPS.

Consider Fig. 1.2, which shows a diagram illustrating the operating principle of GPS.

When a GPS receiver computes its position, it receives ranging signals from GPS

satellites orbiting the Earth. These satellites are equipped with highly precise timing

hardware and their positions are known with high precision at all times due to their

well-defined orbits. The receiver can compute the range values between itself and all

the satellites whose ranging signals it can detect, and then triangulate its own position

by deducing the best possible location at which the computed ranging values would be

logical. Cooperative navigation of platforms uses a similar principle leveraging range

values between platforms. However, in this case, the locations of all the platforms

are not known but must be estimated from the range values in conjunction with other

sensors, such as IMUs. In theory, this procedure can enable highly accurate navigation

even when GPS is not available.

1.2.2 Wireless Synchronization

Because synchronization of RF electrical states is such a critical component of dis-

tributed RF networks in radar and communications applications, it has received sig-

nificant attention in the literature. Many of the synchronization approaches detailed in

the literature are proscribed for specific applications (e.g., radar, communications, dis-

tributed phased arrays, etc.), but for the broad majority the techniques can be adapted

and applied in any distributed RF application.

For the synchronization of radar systems to be complete, precise compensation of

offsets in time, carrier phase, and carrier frequency must be performed. Often, the

approaches described in the literature are capable of achieving one or two of these but
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Fig. 1.2: An example of the operation of GPS through the extraction of ranging signals
between GPS satellites and the receiver.

do not address the third, or they make the assumption that the third can be achieved

a priori by an external source. For instance, the technique in [92] achieves time and

phase synchronization but assumes that frequency synchronization is achieved by an

external reference.

For radar applications, synchronization techniques can generally be broken up into

two broad categories: hardware and software synchronization. In hardware synchro-

nization techniques, RF synchronization is achieved through the inclusion of specific

types of hardware in the RF system. In software synchronization techniques, estimates

of the RF electrical states are produced in processing and compensated digitally.

One very common hardware-based synchronization technique that has been re-

cently developed is the self-mixing circuit [93]. This circuit assumes that a primary
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platform transmits a modulated two-tone waveform in which the spacing between the

two frequencies in the signal corresponds to the desired reference clock frequency.

When the secondary platform receives the two-tone waveform, it splits the waveform

into two copies, with one copy being amplified and used as an input to the local oscil-

lator (LO) port of a mixer, with the other acting as the RF input. The output of the mix-

ing circuit therefore contains the sum and difference of the two tones, with a low-pass

filter (LPF) removing the sum and leaving only the reference signal difference. This

circuit has been proven to enable synchronization of frequency [94], phase [95], and

time [96]. Moreover, the two-tone waveform has been demonstrated to enable high-

accuracy ranging between platforms [97] which is important for the compensation

of the propagation phase during the signal transmission from the primary to the sec-

ondary node. However, because the technique requires the introduction of additional

hardware, it cannot be implemented on existing systems without possibly infeasible

system modifications. Moreover, the technique is inherently centralized as it requires

a single primary node to distribute the two-tone reference signal to the secondary

nodes. Finally, the technique is dependent on the transmission of a specific signal and

is therefore not flexible for the use of waveform design and optimization [98].

Software-based synchronization techniques utilize the exchange of signals from

which the RF synchronization variables are extracted and compensated for in post-

processing. A technique for carrier frequency synchronization is proposed in [99]

which is tolerant to Doppler frequencies due to relative motion between platforms.

An approach to phase synchronization for bistatic radar is developed in [100], and a

summary of existing approaches to phase synchronization among MIMO radar sys-

tems is provided in [101]. A procedure is proposed in [29] for synchronizing time and

phase among platforms, but it is dependent upon accurate navigation from an INS.
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A technique for estimating time and phase and compensating for them in processing

is proposed in [92]. This technique leverages the notion of two-way time transfer

(TWTT) to exchange time offset information as well as computing the TOF range

values between each pair of platforms. This technique is highly robust as it does not

require high bandwidths or sophisticated RF hardware. Moreover, it is a decentralized

technique with the amount of time required to complete the synchronization scaling

linearly with the number of platforms in the network. However, it also assumes that

frequency synchronization has been achieved by some external system such as the

GPS PPS.

1.3 Research Objective

As outlined above, the operation of mobile networks of radar systems is highly de-

pendent on accurate estimates of platform position as well as precise synchronization

of the platforms. Generally, in MIMO radar applications, these two crucial compo-

nents are not addressed simultaneously. Furthermore, when procedures are established

for positioning, they often assume that synchronization is achieved a priori through

some external reference such as GPS PPS; similarly, when procedures are established

for synchronization, they often assume that positioning is achieved a priori such as

in [23] and [29]. This approach potentially misses out on significant gains in informa-

tion since the two procedures are ultimately related in a mobile distributed network.

As established in Section 1.2.1.3, navigation performance is improved substantially

by the collection of inter-node range values between platforms. Furthermore, as de-

scribed in Section 1.2.2, multiple synchronization techniques require the creation of

range values for the purpose of propagation phase compensation. Therefore, there is

shared information between the two operations which has as of yet not been exploited
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jointly for radar applications.

To address this gap in the state-of-the-art, the objective of this research is to pro-

duce techniques for simultaneously estimating navigation and synchronization system

states leveraging shared information. This shared information includes range esti-

mates produced during the synchronization procedure as described in [97] and [92]

as well as Doppler shift measurements which can be used to produce relative velocity

estimates. A graphical description of this proposed technique is shown in Fig. 1.3.

Additionally, the synthesis of these techniques will be addressed from a GPS-denied

standpoint to provide some assurance that the proposed technique will be robust to sce-

narios in which absolute references for position and frequency are not available. As a

result, the developed synchronization techniques must be capable of producing time,

phase, and frequency estimates simultaneously. Finally, the proposed synchroniza-

tion technique should be software-based such that it can be implemented on existing

software-defined radar systems.

This research begins in a similar manner to other approaches by addressing the

cooperative navigation and distributed synchronization problems separately. Once

suitable algorithms have been developed for performing the two procedures indepen-

dently, work will be done to combine the two operations into a single algorithm. The

initial goal will be to demonstrate a performance enhancement to radar systems in sim-

ulated data with a future goal being to implement a simple proof-of-concept system

in real hardware to demonstrate the efficacy of the proposed techniques in real radar

systems.
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Fig. 1.3: A graphical representation of simultaneous navigation and synchronization
for a mobile network of heterogeneous platforms with embedded radar sensors.

1.4 Outline

This dissertation is devoted to the development of simultaneous techniques for

navigation and synchronization for networks of radar systems, with a heavy emphasis

on developing digital techniques for synchronization suitable for implementation on

all-digital systems that can easily be integrated with existing navigation algorithms. It

is organized as follows. Following the introduction, Chapter 2 provides a mathemati-

cal background for important concepts related to this work. This chapter will introduce

the framework for the Kalman filter and its nonlinear derivative, the UKF. It will also

introduce important concepts in wave propagation which will have a strong impact on

synchronization performance. Furthermore, nonlinear kinematics and navigation of

mobile platforms will be described along with an overview of navigation error impact

on radar sensing. Finally, a signal model describing the impact of time, phase, and

frequency errors on inter-platform signal transmissions will also be provided.

In Chapter 3, a description of the current research in cooperative navigation for

radar systems is provided. This includes a discussion of how the UKF is leveraged to
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fuse IMU sensor measurements with TOF range values between platforms and GPS

signals if they are available. Performance results are given to show the efficacy of

the algorithm in scenarios with varying levels of GPS access and IMU quality. The

chapter concludes with preliminary simulations of SAR imaging scenarios relying on

cooperative navigation for motion compensation.

Chapter 4 provides a novel decentralized synchronization algorithm for estimat-

ing and compensating time, phase, and frequency in distributed radar networks. The

algorithm is based on the work in [92] which is extended to enable frequency synchro-

nization in GPS-denied environments. Building on the signal model in Chapter 2, this

chapter outlines several similar techniques for synchronization which have applica-

tion in various scenarios. Simulated results of these algorithms’ performance are then

shown. Additionally, a theoretical analysis of the algorithm performance, including a

comparison to the Cramér-Rao lower bound, is provided. The chapter concludes with

radar simulation results of distributed transmit beamforming and MIMO SAR using

the proposed synchronization technique.

Chapter 5 extends the synchronization procedure proposed in Chapter 4 to track

the synchronization states using the UKF. Two different approaches to implementing

the UKF measurement model are derived and compared in simulation. It is shown

that one of the approaches in particular has the capability of accurately tracking syn-

chronization states over time and reducing estimation error in all manner of scenarios,

including with relative motion and Doppler shifts, low update rates, and low SNR.

Chapter 6 derives the minor modifications required to integrate the UKF synchro-

nization approach in Chapter 5 with the cooperative navigation approach described in

Chapter 3. Results are provided demonstrating the efficacy of the simultaneous nav-

igation and synchronization approach for efficiently producing estimates of platform
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positions and clock parameters simultaneously.

Chapter 7 provides a hardware setup description for a small network of two software-

defined radar units synchronized using the proposed synchronization technique de-

scribed in Chapter 4. This hardware setup is demonstrated and it is shown that the

carrier frequency offset between the two platforms may be entirely compensated in

software with digital corrections.

Chapter 8 concludes the dissertation with a summary of the work done. It provides

a list of significant contributions made over the course of this dissertation research.

Finally, a list is provided of future research questions and tasks.
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Chapter 2

Background

This chapter aims to provide background information and a mathematical frame-

work for understanding the important components outlined in this dissertation. First,

the mathematics of the Kalman filter are described with specific attention paid to the

traditional linear Kalman filter and the nonlinear unscented Kalman filter. Next, a de-

scription of various relevant effects on wireless signals due to propagation effects is

provided. After this, an outline of inertial navigation equations is provided for a gen-

eral navigating platform, along with a signal model for understanding the performance

of mobile radars (specifically SAR) as a function of navigation errors. Finally, a signal

model describing the signals observed at one receiver transmitted from another radar

before synchronization is provided to give an understanding of how unsynchronized

systems impact RF performance.

2.1 Kalman Filtering

The goal of the Kalman filter is to accurately predict an unknown random vector

(i.e., the system state) using a dynamic model of how the system evolves with time and

measurements of the system state (or variables related to the system state). For exam-

ple, in a navigation system where the estimated system state is the platform position
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and velocity, the kinematic equations of motion may describe the dynamic model, and

the measurements may be geodetic coordinates extracted from a GPS receiver. The

dynamic model and the measurements are assumed to be corrupted with random noise,

called process noise and observation noise, respectively. The process and observation

noise introduce difficulty in accurately estimating the system state. The Kalman filter-

ing algorithm provides a framework for recursively estimating the system state from

the noisy dynamic model prediction and measurements by producing a weighted com-

bination of the two with the weight, or Kalman gain, calculated based on the computed

accuracy of the prediction and measurement. The Kalman filter also estimates the sys-

tem state’s error covariance so that the accuracy of the recorded system state may be

tracked as the algorithm is iterated. When the system and measurement models are lin-

ear, and the process and measurement noises are white and Gaussian, the Kalman filter

is the optimal system state estimator from a minimum mean squared error (MMSE)

sense assuming that the covariances of the process and observation noise are known.

The algorithm works in two stages, typically referred to as prediction and update.

The prediction stage uses the dynamic model with the system state from the previous

iteration as an input to predict the system state for the current iteration. The dynamic

model also transforms the covariance of the previous estimate to produce the pre-

diction estimate covariance. In the update stage, the predicted state estimate and its

covariance are corrected with the available measurements by generating a posterior

state estimate and covariance. The algorithm can then be iterated indefinitely.

2.1.1 Linear Kalman Filtering

The simplest implementation of the Kalman filter assumes that the dynamic system

model and measurement model are linear. Let xk be an NK-length vector representing

19



the true system state at iteration k of the Kalman filter. The system state between

iterations is modeled by

xk = Fkxk−1 + wk, (2.1)

where Fk is an NK × NK matrix called the state transition matrix. The matrix is often

constant with k, but this is not required. This matrix maps the linear relationship

between the state at iteration k − 1 and the next iteration k. The vector wk is called the

process noise, which is modeled as zero-mean additive white Gaussian noise (AWGN)

distributed with covariance Qk, which is called the process covariance. As with the

state transition matrix, although Qk is often constant with k, this is not required so

long as the change in Qk from iteration to iteration is known. The process noise can

be thought of as errors or omissions in the dynamic model. For instance, higher-

order derivatives of motion will introduce errors in a navigation Kalman filter whose

dynamic model records only position and velocity. The magnitude of these unmodeled

effects contributing to the state prediction errors is modeled in the selection of Qk.

Let zk be an MK-length vector representing the measurements of the system. The

measurements need not directly record values of the system state, though in many

cases, they will. The measurements are related to the system state by

zk = Hkxk + vk, (2.2)

where Hk is an MK × NK matrix called the observation matrix. This matrix maps the

linear relationship between the state value on iteration k and the measurements asso-

ciated with that state. The vector vk is the observation noise, modeled as zero-mean

AWGN distributed with observation covariance Rk. The observation noise is typically

manifested as noise on practical sensors; therefore, Rk can often be determined from a
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datasheet or by observing the sensor measurement variance while the system is static.

As with Fk and Qk, Hk and Rk are often constant with k, but they do not need to

be; in fact, MK can change between iterations depending on when measurements are

available.

Because both the system state and measurements of the state are corrupted by

noise, it is impossible to obtain a perfect, direct estimate of the state xk. The state

vector must therefore be estimated imperfectly. The estimate of the system state from

iteration k is denoted x̂k. An estimate of the error covariance of this estimate is denoted

Ĉk. The initial values x̂0 and Ĉ0 must be selected based on the application.

The prediction step uses the state transition matrix to form a priori estimates of

the state x̂−k and covariance C−k by

x̂−k = Fkx̂k−1

C−k = FkĈk−1FT
k +Qk,

(2.3)

where the superscript T denotes the matrix transpose. Once the a priori estimates are

formed, they are corrected by measurements in the update step. First, an a priori

estimate of the measurement vector ẑk is formed by

ẑk = Hkx̂−k . (2.4)

A new term z̃k, called the innovation, is formed by

z̃k = zk − ẑk (2.5)
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and the covariance of the innovation (Sk) is computed by

Sk = HkC−k HT
k + Rk. (2.6)

The optimal Kalman gain (Kk) is calculated by

Kk = Ck,xzS−1
k , (2.7)

where Ck,xz is the cross-covariance of x̂k and ẑk computed by

Ck,xz = C−k HT
k . (2.8)

Finally, the output state estimate and associated covariance are computed by

x̂k = x̂−k +Kkz̃k

Ĉk = C−k −KkSkKT
k .

(2.9)

This procedure is iterated, where generally, the state is assumed to change with time

and therefore must be estimated continuously.

2.1.2 Extended Kalman Filtering

The traditional formulation of the Kalman filter requires that the state and mea-

surement models be linear (i.e., that (2.1) and (2.2) may be expressed in terms of

matrices Fk and Hk). However, most estimation problems in the real world introduce

nonlinearities to the state transition or measurement function, rendering this approach

impossible. A technique called the extended Kalman filter (EKF) can be used to en-

able Kalman filtering with nonlinear functions. The EKF operates very similarly to the

22



linear Kalman filter, where the matrices Fk and Hk are evaluated as first-order Jaco-

bians of the true nonlinear state transition function, fk, and the nonlinear measurement

function, hk. First, the linear state and measurement models in (2.1) and (2.2) must be

rewritten to include arbitrary nonlinear functions fk(x) and hk(x) in place of Fk and Hk

as

xk = fk(xk−1) + wk (2.10)

and

zk = hk(x−k ) + vk. (2.11)

The a priori estimates of x̂−k and ẑk are computed using fk and hk by

x̂−k = f (x̂k−1) (2.12)

and

ẑk = hk(x̂−k ). (2.13)

The matrices Fk and Hk must be approximated by

Fk =
∂ fk

∂x

∣∣∣∣∣
x=x̂k−1

Hk =
∂hk

∂x

∣∣∣∣∣
x=x̂−k

(2.14)

and may be used in the original expressions containing Fk and Hk. With the exception

of these changes, the remaining filtering equations do not change.

The EKF has found substantial use in many practical recursive estimation prob-

lems. However, it suffers from some significant drawbacks. From a performance

perspective, the EKF is not an optimal estimator in any sense. Moreover, since it uses
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a linearization centered around the state estimate, it may suffer significant inaccuracy

if the state estimate is not correct. The filter will also diverge if a function is strongly

nonlinear around the state estimate (for instance, if a discontinuity is present). More-

over, the EKF is challenging to implement because of the complex derivation required

to compute the Jacobians in (2.14). Another problem with both the linear Kalman

filter and the EKF that is generally not pertinent in most applications is that the state

and measurement models must be known analytically; that is, the actual mathemat-

ical form of Fk and Hk (or fk and hk) must be known, although this will not pose a

restriction in the problems presented in this dissertation.

2.1.3 Unscented Kalman Filtering

The UKF operates with the same framework as the traditional linear Kalman filter,

using prediction and measurement models in tandem to produce accurate state esti-

mates. At the output of each iteration k, estimates of the current system state x̂k and

associated covariance Ĉk are produced. Because the UKF is a nonlinear filter, the

linear formulations of the state and measurement models in (2.1) and (2.2) must be re-

placed by nonlinear formulations given in (2.10) and (2.11). Contrary to the analytic

computation of the state and covariance in the linear Kalman filter, the UKF produces

these estimates via the unscented transform, which seeks to approximate the trans-

formed mean and covariance with a small set of discrete points called sigma points. A

pictorial description of unscented transform is shown in Fig. 2.1.

In general, there are many ways to compute sigma points. A common method is

24



𝒩(𝜇𝑥, 𝑷𝑥) 𝒩(𝜇𝑦 , 𝑷𝑦)

𝑦 = 𝑓(𝑥)

Fig. 2.1: A simple example of the unscented transform. The initial covariance ring
and the input sigma points are shown on the left, while the transformed sigma points
are shown on the right with an estimate of the output covariance ring in blue and the
true transformed covariance ring shown in green. From [2]©2024 IEEE.

to compute 2NK + 1 sigma points subject to

χk,0 = x̂k−1

χk,i = x̂k−1 +

(√
(NK + λu)Ĉk−1

)
i

1 ≤ i ≤ NK

χk,i = x̂k−1 −

(√
(NK + λu)Ĉk−1

)
i

NK + 1 ≤ i ≤ 2NK

(2.15)

where χk,i is the ith sigma point for the current iteration and λu is a tuning parameter

computed by

λu = α
2
u(NK + κu) − NK (2.16)

where κu ≥ 0 and is often set to κu = 1. The value of αu is a scaling parameter in

the range 0 < αu ≤ 1 and is often set to a very small value (e.g. αu = 10−3 [102]).

In general, the “radius” of the sigma points around the mean scales with the value

of NK . Thus, for large state vectors, the sigma points are spread out substantially

from the mean, potentially straddling nonlinear portions of the modeling functions and

therefore capturing non-local behavior, leading to inaccurate transformed statistics and

inflating the impact of higher-order moments subject to the orientation of the sigma

points. The scaled sigma points based on the proper selection of αu enable accurate
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approximation of the prior mean and covariance while ensuring that the sigma point

transformation captures the local behavior of the state and measurement functions.

This is particularly important for this application since the centralized tracking of the

entire network state may lead to huge system states for even moderately large networks

(10+ platforms).

Although the original, and most common, formulation of the UKF computes sigma

points in the manner given in (2.15), more recent research has developed additional

methods for computing a set of sigma points that will properly propagate the prior

statistics through the nonlinear state and measurement functions. Notably, the cuba-

ture Kalman filter (CKF) has recently been proposed [103]. This filter operates very

similarly to the UKF by approximating a PDF with a discrete set of weighted points.

The primary distinction between the sigma-point set in the UKF and the cubature-

point set in the CKF is that the cubature-point set does not include the estimated mean

value, with all the weights placed on points around the mean. This approach has some

advantages over the traditional UKF, primarily greater numerical stability; however,

one downside is the assumption that the prior distribution of xk is Gaussian. Because

numerical stability has not been noted to degrade the performance of the filter, the

standard sigma point set is sufficient for this application.

The square root operation in (2.15) refers to the matrix square root operation, and

the subscript i refers to the ith column (or row, depending on the form of the matrix

square root) of the resulting matrix. The matrix square root is not unique, and multiple

definitions of the matrix square root exist. For instance, a matrix A may be considered

a square root of B if AA = B, AT A = B, or AAT = B. One common technique

for producing a matrix square root is the Cholesky decomposition [104], which pro-

duces an upper-triangular matrix square root A in the form AT A = B. The Cholesky
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decomposition is popular because it is fast and numerically stable. While this works

in the algorithm described here, simulations have demonstrated that a matrix square

root routine that produces a matrix square root in the form AA = B, such as the

Schur method described in [105, 106], performs better in this application. Because

this technique is potentially less numerically stable, the resulting matrix square root

may be complex with very small imaginary parts. These small imaginary parts may

be discarded without adverse consequences.

When the sigma points are produced, they are first propagated through the state

model fk, yielding transformed sigma points

χ
f
k,i = f (χk,i). (2.17)

The state update mean and covariance are then computed from the transformed sigma

points via a weighted sum given by

x−k =
2NK∑
i=0

wi,mχ
f
k,i

C−k =
2NK∑
i=0

wi,c

[
χ

f
k,i − x−k

] [
χ

f
k,i − x−k

]T
+Qk

(2.18)

where wi,m and wi,c are mean and covariance weights and, as with the linear Kalman

filter, Qk is the process covariance for iteration k. In general, the weights should be

selected such that ∑
i

wi = 1 (2.19)

although a slight deviation from this rule is permitted in the scaled UKF for the co-
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variance weights. In the scaled unscented transform, the weights are computed by

w0,m =
λu

NK + λu

wi,m =
1

2(NK + λu)
1 ≤ i ≤ 2NK

w0,c =
λu

NK + λu
+ 1 − α2

u + βu

wi,c =
1

2(NK + λu)
1 ≤ i ≤ 2NK

(2.20)

where βu is a distribution-based parameter; for Gaussian distributions, βu = 2.

In the update step of the UKF, the measurement mean and covariance are com-

puted. First, the sigma points are transformed through hk by

ζk,i = hk(χ
f
k,i). (2.21)

The measurement expectation and its covariance are then computed by the weighted

sums

ẑk =

2NK∑
i=0

wi,mζk,i

Sk =

2NK∑
i=0

wi,c
[
ζk,i − ẑk

] [
ζk,i − ẑk

]T
+ Rk.

(2.22)

Next, the cross-covariance between the measurement expectation and the state update

prediction is computed by

Ck,xz =

2NK∑
i=0

wi,c

[
χ

f
k,i − x−k

] [
ζk,i − ẑk

]T . (2.23)
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The Kalman gain may be computed by

Kk = Ck,xzS−1
k . (2.24)

Finally, the output state from iteration k of the UKF is computed by

x̂k = x−k +Kk (zk − ẑk) (2.25)

and the updated covariance estimate Ĉk is computed by

Ĉk = C−k −KkSkKT
k . (2.26)

2.2 Physical Effects on Transmitted and Received Signals

There are a number of practical effects that operate on a transmitted RF signal as

it travels from the transmitter to a receiver (or in a radar, to a target and back to the

radar system). These practical effects are important for radar operation, and having a

precise understanding of the phenomenology and how to model it correctly will also

be crucial for the derivation of the synchronization procedure in Chapter 4, which

relies heavily on correctly transferring signals with precisely defined time, phase, and

frequency – all of which are impacted by propagation effects. Therefore, this section

provides a description of these propagation effects and how to model them properly.

2.2.1 Propagation Delay and Phase

The most fundamental propagation effect is the introduction of delay due to finite

propagation speed. RF signals propagate through free space at the speed of light,
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c = 299792458 m/s (frequently approximated as c = 3 × 108 m/s), and assuming that

there is a perfect time alignment between a transmitter and receiver, there will be an

observed shift in time based on the distance between them. Suppose that a single-

tone sinusoid at some carrier frequency f c, given by wt(t), is transmitted from the

transmitter, given by

wt(t) = exp
(

j 2π f ct
)
, (2.27)

where t is the time variable and the roman character j is the imaginary unit. Suppose

that a receiver is placed R meters away from the transmitter. The propagation time

will be given by the propagation range divided by the propagation velocity, R/c. The

received signal wr(t) will therefore be given by

wr(t) = exp
(

j 2π f c
(
t −

R
c

))
= exp

(
j 2π f ct

)
exp

(
−j 2π f c R

c

)
. (2.28)

Therefore, the received signal is the same carrier frequency signal but with a phase

shift proportional to the distance of signal propagation.

Suppose that the RF signal is an up-converted baseband signal, s(t), given by

wt(t) = s(t) exp
(

j 2π f c) . (2.29)

Again, assuming time alignment between transmitter and receiver, the received signal

will be a delayed version of the transmitted signal, given by

wr(t) = s
(
t −

R
c

)
exp

(
j 2π f ct

)
exp

(
−j 2π f c R

c

)
. (2.30)

Further, suppose that a down-conversion step is applied at the receiver to remove the
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carrier term. The baseband received signal, sr(t), will then be given by

sr(t) = s
(
t −

R
c

)
exp

(
−j 2π f c R

c

)
. (2.31)

The resulting baseband signal is a phase-shifted and delayed version of the original

baseband signal, with both the phase shift and delay being proportional to the propa-

gation time.

Note that the delay and phase are for the direct propagation between a transmitter

and a separate receiver. In a monostatic radar system, the transmitted signal must

propagate the range to the target and then back, and as such the propagation time will

be doubled, giving a received baseband signal at the radar of

sr(t) = s
(
t −

2R
c

)
exp

(
−j 2π f c 2R

c

)
. (2.32)

2.2.2 Doppler Phase and Doppler Shift

Suppose that there is a relative movement between the transmitter and receiver

such that at two different points in time, there is a separation between them of R1 and

R2. The RF signal observed by the receiver at the first point in time will be

wr(t) = s
(
t −

R1

c

)
exp

(
j 2π f ct

)
exp

(
−j 2π f c R1

c

)
, (2.33)

and at the second point it will be

wr(t) = s
(
t −

R2

c

)
exp

(
j 2π f ct

)
exp

(
−j 2π f c R2

c

)
. (2.34)
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Suppose that the difference between R1 and R2 is small enough that the delay to

the baseband signal is insignificant. The carrier frequency f c will typically be large

enough that the change in phase between the two received signals is observable. This

change in phase is sometimes referred to as the Doppler phase. Suppose that the range

between platforms changes as a function of time based on the function R(t). The re-

ceived signal in this case will be given by

wr(t) = s
(
t −

R(t)
c

)
exp

(
j 2π f ct

)
exp

(
−j 2π f c R(t)

c

)
, (2.35)

where again, the range change will be insignificant on the order of the length of the

baseband signal envelope but will potentially be observable in some way in the phase

term since f c is large. Finally, suppose that R(t) increases linearly due to a constant

velocity v. In this case, the range may be expressed by

R(t) = R1 + vt. (2.36)

Thus, the received signal in (2.35) will reduce to

wr(t) = s
(
t −

R1 + vt
c

)
exp

(
j 2π f ct

)
exp

(
−j 2πv

f c

c
t
)

exp
(
−j 2π f c R1

c

)
. (2.37)

The phase term thus is converted from a constant phase shift to a sinusoid with a

constant frequency, f d, given by

f d = −v
f c

c
. (2.38)
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This single frequency is referred to as the Doppler shift frequency. This may also be

expressed in terms of the carrier wavelength, λc = c/ f c, by

f d = −
v
λc
. (2.39)

From the expression, it can be seen that for a positive velocity (that is, when the

transmitter and receiver move away from one another), the Doppler shift is negative,

while for a negative velocity (that is, when the transmitter and receiver move toward

each other), the Doppler shift is positive. Generally, for a carrier frequency in the GHz

range, the Doppler shift will be in the kHz range for moderate relative velocities. This

shift in frequency will induce a small shift in the carrier frequency that will not be

removed by the down-conversion process. This residual modulation of the baseband

waveform most importantly will cause a pulse-compression peak during time-delay

estimation to be shifted for many types of waveforms. This shift will be directly related

to the magnitude of the Doppler shift frequency by a function called the ambiguity

function.

As with the propagation phase, the expression above is for the observed Doppler

shift at the signal destination from some source. In a monostatic radar system, the

signal must travel to the target and back to the radar, which doubles the phase as

in (2.32). This will also lead to a doubling of the observed Doppler shift given by

f d = −2v
f c

c
. (2.40)
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2.2.3 Signal Power

The above signal derivations make the assumption that the amplitude of the re-

ceived signal is identical to the amplitude of the transmitted signal, which will never

be the case in a real scenario. In a practical scenario, the energy of a transmitted

signal will spread out in space such that the amount of the signal energy received at

the destination will be significantly reduced. Suppose that the transmitter transmits a

signal at a power of Pt, and that the transmitter has an antenna with a gain of Gt (in

linear units). Further, assume that the receiver has an antenna with a gain of Gr. The

Friis transmission formula describes the expected power of the signal received by the

receiver and is given by

Pr =
PtGtGrλ

2
c

(4πR)2 , (2.41)

where R is the range between the transmitter and receiver as above. This expression

only describes the power received at the antenna of the receiver – typically, there will

also be an RF front-end with its own gain, GRF, such that the actual signal power at

the receiver’s analog-to-digital converter (ADC), PD, will be given by

PD = GRFPr. (2.42)

2.2.4 Noise Power and Signal-to-Noise Ratio

The input to the receiver will also generate thermal noise. This thermal noise will

manifest as white noise (no correlation between the noise sequence values at different

points in time), with the power in the noise related to the ambient temperature and the

observed bandwidth by

PN = kbTN B, (2.43)
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where kb is Boltzmann’s constant kb ≈ 1.38×10−23 J/K, TN is the ambient temperature,

and B is the bandwidth. The bandwidth will typically be set by the filters in the RF

front-end. The ratio of the received power, Pr, to the noise power, PN , is referred to as

the input signal-to-noise ratio (SNR), given by

SNRIN =
Pr

PN
. (2.44)

The SNR is a critical component of signal processing as it will directly impact the

ability of useful information to be extracted. The higher the SNR, the better, and

below a certain point, the noise will overpower the signal and no useful information

can be extracted.

The noise will also be amplified by the gain of the RF front-end GRF. Additionally,

the RF front-end will add more noise to the signal such that the signal at the ADC will

have a lower SNR than at the input. Define the noise figure FN as the ratio of the input

SNR to the ADC SNR by

FN =
SNRIN

SNRADC
. (2.45)

The noise figure is a characteristic of the RF front-end, and more details on its com-

putation may be found in [107]. By rearranging (2.45), the SNR at the ADC will be

given by

SNRADC = FNSNRIN. (2.46)

This SNR value (usually expressed in dB) will be crucial in characterizing the perfor-

mance of the algorithms described in this dissertation. Usually, the SNR value alone

in place of the other variables (temperature, antenna gain, etc.), since these will vary

from system to system while the algorithm performance will always be constant for a

given SNR.
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2.3 Navigation for Radar

Localization is an important component of radar applications, particularly modal-

ities that require motion compensation to operate, such as SAR. In the following sec-

tion, basic principles of terrestrial navigation, and a description of navigation error on

SAR performance, are provided.

2.3.1 Nonlinear Kinematic Equations

The following subsection describes the kinematic equations used for integrating

IMU measurements into position and orientation; these equations provide the core of

a dead-reckoning navigation solution and thus do not include GPS or other measure-

ments. Let xnav
i,k be the navigational system state vector of the ith radar node at the kth

time series point composed of

xnav
i,k =


p̄i,k

v̄i,k

θ̄i,k

 , (2.47)

where p̄i,k, v̄i,k, and θ̄i,k denote the 3-dimensional position (x, y, and z), velocity (x,

y, and z), and Euler angle attitude (ϕ, θ, and ψ, denoted “roll”, “pitch,” and “yaw,”

respectively) of the ith radar node at the kth point in a time series, respectively. The

state transition function, fk, is defined as follows. Let Ωi,k be the rotation matrix

associated with θ̄i,k and let the input 3-dimensional body-frame accelerometer and

gyroscope readings be denoted by āi,k and ω̄i,k, respectively. Additionally, let Ωe be

the angular-rate rotation matrix for the Earth-rotation vector, let g be the acceleration

due to gravity, and let ∆t be the update time between the time steps k − 1 and k.

The state transition equations in the earth-centered, earth-fixed (ECEF) frame are then
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given by [47]

Ωi,k = Ωi,k−1Ω
δ
i,k −ΩeΩi,k−1∆t

ār
i,k =

(
Ωi,k−1Ω

a
i,k−1 −

1
2
ΩeΩi,k−1∆t

)
āp,k

v̄i,k = v̄i,k−1 +
(
ār

i,k + g − 2Ωev̄i,k−1

)
∆t

p̄i,k = p̄i,k−1 +
1
2
∆t

(
v̄i,k−1 + v̄i,k

)
,

(2.48)

where θ̄i,k is recovered from the rotation matrix Ωi,k. The transitory matrices Ωδ
i,k and

Ωa
i,k are given by

Ωδ
i,k = I +

sin
∣∣∣ᾱi,k

∣∣∣∣∣∣ᾱi,k

∣∣∣ [
ᾱi,k

]
× +

1 − cos
∣∣∣ᾱi,k

∣∣∣∣∣∣ᾱi,k

∣∣∣2 [
ᾱi,k∆t

]2
× , (2.49)

and

Ωa
i,k = I +

1 − cos
∣∣∣ᾱi,k

∣∣∣∣∣∣ᾱi,k

∣∣∣2 [
ᾱi,k

]
× +

1∣∣∣ᾱi,k

∣∣∣2
1 − sin

∣∣∣ᾱi,k

∣∣∣∣∣∣ᾱi,k

∣∣∣
 [ᾱi,k

]2
× , (2.50)

where
[
ᾱi,k

]
× is the vector skew operation and

ᾱi,k = ω̄i,k∆t. (2.51)

In this formulation, Ωδ
i,k describes the transformation of the body frame at the end of

the update step to the beginning, whileΩa
i,k describes the transformation of the specific

force measured into the body frame to that in the inertial frame.

The reference frame for the navigation formulation in (2.48) is ECEF, though

other reference frames exist, notably earth-centered inertial (ECI), and local naviga-

tion frames such as north-east-down (NED). These other frames may also be used so
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long as the state transition function is correctly implemented. Because a local frame

such as NED is constructed relative to the position of a single body, it may be more

difficult to implement for a distributed network of platforms such as the approach pro-

posed here. Moreover, a Cartesian reference frame such as ECEF or ECI is convenient

for the computation of the inter-node range measurements as described later. One chal-

lenge with the earth-centered formulations is that the acceleration due to gravity (g)

will generally always be rotated to point down in the local frame such that it will be

rotated in the earth-centered frame as a function of position. Let gned be defined by

gned =
[
0 0 g0

]
, (2.52)

where g0 is the scalar acceleration due to gravity which varies as a function of latitude

and height. More details on the precise computation of this value are given in [47].

The NED vector may then be rotated into the ECEF frame by

g = Ωned gned, (2.53)

where

Ωned =


− sin(Lb) cos(λb) − sin(λb) − cos(Lb) cos(λb)

− sin(Lb) sin(λb) cos(λb) − cos(Lb) sin(λb)

cos(Lb) 0 − sin(Lb)

 , (2.54)

where Lb is the latitude of the platform in radians and λb is the longitude in radians.

Details about the computation of Lb and λb from the ECEF p̄i,k may be found in [47].
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2.3.2 Impact of Navigation Errors on SAR Imaging

Suppose that a radar transmits a series of pulses of a particular signal and on re-

ceive performs range compression of the received signal. Let t be the fast-time vari-

able related to the signal variation within a single pulse and τ be the slow-time variable

related to the signal variation from pulse to pulse. Let x̃(t, τ) describe the ideal range-

compressed baseband received signal due to a single point-scatterer at 0 meters from

the radar. Suppose that a single point-scatterer exists at a time-varying range R(τ)

meters from the radar – this variation in range is modeled as significant only on the

slow-time scale and is assumed to be primarily due to the motion of the radar mounted

on a moving platform. The expected baseband receive signal due to the target reflec-

tion x̃R(t, τ) will be a copy of x̃(t, τ) scaled in amplitude by some factor Ax(τ) and

time-delayed by the two-way propagation time 2R(τ)/c where c is the speed of light.

In addition to the time delay, the signal will be phase-shifted as a result of the carrier

phase rotation. The phase shift is given by

∆γ = −
4πR(τ)
λc

, (2.55)

where λc is the carrier wavelength. The expected receive signal is therefore given by

x̃R(t, τ) = Ax(τ)x̃
(
t −

2R(τ)
c

, τ

)
exp

(
−

j 4πR(τ)
λc

)
. (2.56)

Note that the roman character j in (2.56) is used to refer to the imaginary unit to distin-

guish it from the index j later in this dissertation. The goal of motion compensation for

SAR is to estimate and correct for the range-dependent delay and phase shift such that

the received signal may be azimuth-compressed to form a two-dimensional image.

39



Let x(t, τ) be the actual range-compressed baseband receive signal for a particular

SAR scene. Suppose that the receive signal is to be motion-compensated to a scene

center position of p0 such that the range to be compensated Rc(τ) is given by

Rc(τ) = ||p0 − p̄i(τ)||, (2.57)

where p̄i(τ) is the true position vector of the radar platform i from (2.47) resampled

to match the PRF of the radar such as in [77, 78]. Note that while some SAR algo-

rithms will motion compensate an entire data collection based on a single reference

point, others, such as the backprojection algorithm, will perform motion compensation

separately for each pixel in the desired SAR image.

Let g̃(t, τ) be the signal obtained from x(t, τ) after ideal motion compensation,

computed by

g̃(t, τ) = x
(
t +

2Rc(τ)
c

, τ

)
exp

(
j 4πRc(τ)

λc

)
. (2.58)

The motion compensation formulation in (2.58) assumes that Rc(τ) is known exactly,

which in turn implies that a perfect estimate of p̄i(τ) is available. In practice, naviga-

tion inaccuracies will lead to an erroneous estimate R̂c(τ) of Rc(τ). Defining a range

estimate error Re(τ) = R̂c(τ) − Rc(τ), the signal obtained from x(t, τ) after non-ideal

motion compensation g(t, τ) using the erroneous estimate R̂c(τ) is expressed by

g(t, τ) = x
(
t +

2R̂c(τ)
c

, τ

)
exp

(
j 4πR̂c(τ)

λc

)

= g̃
(
t +

2Re(τ)
c

, τ

)
exp

(
j 4πRe(τ)

λc

)
.

(2.59)

The residual range errors in the argument of g̃(t, τ) in (2.59) will result in an erro-

neous translation of the SAR image, while the residual range errors in the phase term

40



in (2.59) will result either in a translation of the SAR image (for linear range/phase

errors) or a smearing of the PSR in the azimuth dimension (for nonlinear range/phase

errors), or both. Generally, large but constant range errors will lead to translations of

the image, while time-varying errors will lead to a blurring of the image due to az-

imuth smearing of the PSR. Note that because the severity of azimuth spreading is due

to the magnitude of the phase error which varies proportionally to the range error and

inversely proportionally to the carrier wavelength, the range error must be small on the

order of a wavelength (λc/16 for slow-varying errors and 0.015λc for higher-frequency

errors [75]) to avoid significant defocusing of the SAR image.

2.4 Signal Model and Synchronization for Radar

The signal model derived here is modeled after, and makes similar assumptions

to, the signal model presented in [92]. Moreover, the resulting model is derived in

similar fashion in [3] and [4]. First, it is assumed that there is a network of Np arbi-

trarily distributed radar sensors with independent oscillators. For simplicity, it is also

assumed that the characteristics of each radar system are identical. Thus, the nominal

frequency of the main oscillator (MO) on each platform is identical, as are the nomi-

nal carrier frequencies and sampling clocks. It is also assumed that for each platform,

a single MO is used as the frequency source for the digital sampling clocks and the

local oscillator (LO). As a result, if there is a frequency error present in the MO of a

platform, an identical offset will be present in the derived frequency sources.

Each MO operates with a nominal frequency of f MO (e.g. 10 MHz). The MO on

platform i is assumed to have a true frequency of f MO
i which deviates somewhat from

the nominal frequency. Define the drift of the MO for platform i (αi) as the ratio of the
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true frequency to the nominal frequency expressed by

αi ≜
f MO
i

f MO . (2.60)

Furthermore, it is assumed that in addition to the clock drift, each clock has an inde-

pendent constant random bias (ϕi). Therefore, the local notion of time for platform i

(τi) may be expressed in terms of the global time (t) by

τi = αit + ϕi. (2.61)

Equivalently, the global time may also be expressed in terms of the local time of

platform i by

t =
τi − ϕi

αi
(2.62)

It is assumed that each platform transmits with a nominal carrier frequency of f c

and has a nominal sampling frequency (both digital-to-analog and analog-to-digital)

of f s. Thus, the true carrier frequency for platform i is f c
i = αi f c and the true sampling

frequency for platform i is f s
i = αi f s. We may assume that the transmitter and receiver,

though frequency locked to the main oscillator, have independent and random phase

offset terms given by γtx
i and γrx

i , respectively.

2.4.1 Stationary Platform Case

Initially, the assumption may be made that all platforms remain stationary for

throughout the synchronization procedure. Suppose that platform i transmits an ar-

bitrary complex baseband waveform s j(t). Let w j(t) be the transmitted signal after RF

up-conversion. Because the signal is generated in the clock domain of platform j, it is
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expressed as

w j (τ j) = s j (τ j) exp
(

j 2π f cτ j

)
exp

(
j γtx

j

)
. (2.63)

By substituting local time for an expression of global time as in (2.61), (2.63) may be

expressed in the global time frame by

w j (t) = s j

(
α jt + ϕ j

)
exp

(
j 2π f c

(
α jt + ϕ j

))
exp

(
j γtx

j

)
. (2.64)

Next, it is assumed that at the time w j (t) is transmitted, platform j is separated from

another platform i by a distance Ri, j. For the stationary platform case, it may be as-

sumed that Ri, j = R j,i. The signal time-of-flight (TOF) is related to the separation

distance by the speed of light (c) by

TOFi, j =
Ri, j

c
. (2.65)

When the transmitted w j (t) is received by platform i, it has undergone a time delay

equal to the TOF between the platforms. When down-converting, the receiving plat-

form down-converts using the LO generated in its own local time frame. The signal

received by platform i from the transmitting platform j (ri, j (t)) is given by

ri, j (t) = w j

(
t − TOFi, j

)
exp

(
−j 2π f cτi

)
exp

(
−j γrx

i
)
, (2.66)

which may be expressed purely in terms of the global time frame using (2.61) by

ri, j (t) = w j

(
t − TOFi, j

)
exp

(
−j 2π f c(αit + ϕi)

)
exp

(
−j γrx

i
)
. (2.67)
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Substituting (2.64) into (2.67) above yields

ri, j (t) = s j

(
α j

(
t −

Ri, j

c

)
+ ϕ j

)
exp

(
j 2π f c

(
α j

(
t −

Ri, j

c

)
+ ϕ j

))
· exp

(
−j 2π f c(αit + ϕi)

)
exp

(
j
(
γ

tx
j − γ

rx
i

))
= s j

(
α jt + ϕ j − α j

Ri, j

c

)
exp

(
j 2π f c

(
(α j − αi)t + ϕ j − ϕi − α j

Ri, j

c

))
exp

(
j γerr

i, j

)
,

(2.68)

where

γ
err
i, j = γ

tx
j − γ

rx
i (2.69)

is the difference between the random transmit and receive carrier phases for platforms

j and i, respectively. Finally, substituting (2.62) into (2.68) above yields

ri, j (τi) = s j

(
α j

αi
(τi − ϕi) + ϕ j − α j

Ri, j

c

)
exp

(
j γerr

i, j

)
· exp

(
j 2π f c

(
α j − αi

αi
(τi − ϕi) + ϕ j − ϕi − α j

Ri, j

c

))

= s j

(
α j

αi
τi − ρ

)
exp

(
j 2π f c

((
α j

αi
− 1

)
τi

))
exp

(
−j 2π f cρ

)
exp

(
j γerr

i, j

)
,

(2.70)

where ρ is an auxiliary variable defined by

ρ =
α j

αi
ϕi − ϕ j + α j

Ri, j

c
. (2.71)

The resulting expression in (2.70) describes an arbitrary signal received by platform i

after being transmitted by platform j as it will be observed in the local clock frame by

platform i and is valid for any arbitrary waveform s j (t) assuming that platforms i and

j have no relative motion.
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2.4.2 Moving Platform Case

For the case of moving platforms, some modifications to the signal model assump-

tions are required. First, it must now be assumed that Ri, j , R j,i unless wi (t) and

w j (t) are transmitted simultaneously. Second, the Doppler shift must be accounted for

based on the radial velocity between the platforms. Recall that the Doppler shift ( f d)

induced by relative motion between the source and observer of an electromagnetic

wave is approximated by

f d = −v
f c

c
, (2.72)

where v is the relative velocity between the source and observer along the line-of-

sight (LOS) between them. The negative sign in (2.72) is included by convention

such that a positive value of v indicates platforms moving away from one another and

thus leading to a growing value of the distance between them. Suppose that there is a

relative velocity of vi, j between platforms i and j during the transmission of the signal

by platform j. Define the Doppler shift between them as f d
i, j which is given by

f d
i, j = −vi, j

f c
j

c
= −vi, j

α j f c

c
. (2.73)

As in typical pulse-Doppler processing applications, the simplifying assumption is

made that because the carrier frequency is significantly larger than the bandwidth of

the baseband waveform, the Doppler shift frequency is approximately constant for the

full RF bandwidth of the system and is dependent almost exclusively on the carrier

frequency. While the transmitted signal w j (t) given in (2.64) will not change relative

to the stationary platform case, the received signal ri, j (t) will be subjected to a Doppler
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shift, producing a new signal (rd
i, j (t)) given by

rd
i, j (t) = ri, j (t) exp

(
j 2π f d

i, jt
)

= s j

(
α jt + ϕ j − α j

Ri, j

c

)
exp

(
j 2π f d

i, jt
)

exp
(

j γerr
i, j

)
· exp

(
j 2π f c

(
(α j − αi)t + ϕ j − ϕi − α j

Ri, j

c

))
.

(2.74)

Finally, substituting (2.62) into (2.74) and simplifying in similar fashion to (2.70)

produces the expression in terms of τi given by

rd
i, j (τi) = s j

(
α j

αi
τi − ρ

)
exp

 j 2π

 f c

(
α j

αi
− 1

)
+

f d
i, j

αi

 τi


· exp

(
−j 2π f cρ

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
.

(2.75)

The resulting expression describes the received signal as it is observed by platform

i for any arbitrary s j (t) with the inclusion of relative motion between the platforms

inducing a Doppler shift.

This chapter provides an overview of relevant mathematical and physical consid-

erations forming the basis for the rest of this dissertation, including Kalman filtering,

wireless signal propagation, terrestrial navigation, and signal modeling. These con-

cepts will be combined in relevant ways to achieve this dissertation’s research goals,

beginning with the UKF-based cooperative navigation algorithm described in the next

chapter.
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Chapter 3

Cooperative Navigation

This chapter describes the work that has been done on a cooperative navigation al-

gorithm. It provides the mathematics of the algorithm, in particular how the algorithm

builds on and integrates into the UKF. Results are shown for different scenarios with

varying IMU qualities and levels of GPS access. Finally, SAR simulations are run

and results are demonstrated showing the effectiveness of cooperative navigation over

traditional non-cooperative navigation for motion compensation in SAR imaging.

3.1 Proposed Algorithm

The algorithm is formulated to fit directly into the UKF. Thus, the primary deci-

sions to be made in formulating the algorithm are procuring the form of the measure-

ment vector and measurement function, and producing estimates of the process and

measurement covariances.

3.1.1 State Model

Suppose that the distributed radar network comprises Np radar nodes. While the

accelerometer and gyroscope biases might typically be included as state variables, they
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are omitted for simplicity since they are not strictly utilized in the proposed algorithm.

The state vector for the entire system, xk, is then given by

xnav
k =



xnav
1,k

xnav
2,k

...

xnav
Np,k


. (3.1)

Thus, the state vector length is NK = 9Np (or N = 15Np if accelerometer and gyro-

scope biases are included). The state update function fk is described by the navigation

equations in (2.48).

3.1.2 Measurement Vector and Measurement Function

The measurement vector is composed of whatever GPS position measurements are

available (if any) and whatever range measurements are available (if any). Therefore,

the length MK of the measurement vector may be subject to change at different iter-

ations. The ordering of the available measurements within the state vector may be

selected arbitrarily if a convention is well-defined. The author uses the following or-

dering convention where the GPS measurements (after conversion to the ECEF frame)

are listed before the range measurements by

znav
k =


zGPS

k

zR
k

 . (3.2)

The most straightforward ordering of the GPS measurement vector is in the order

of platform number such that the GPS measurement vector, when GPS measurements
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are available for every platform, will be given by

zGPS
k =



zGPS
1,k

zGPS
2,k

...

zGPS
Np,k


, (3.3)

where zGPS
i,k is a direct 3-dimensional measurement of p̄i,k. Therefore, the component

of hk for each GPS measurement is the identity function of position. The ordering

of range measurements may be done based on the first platform index followed by

the second platform index such that the range measurement vector composed of all

possible range measurements will be given by

zR
k =

[
Rk

1,2 . . . Rk
1,Np

Rk
2,3 . . . Rk

Np−1,Np
,

]T

(3.4)

where the range measurement component of hk is given by

Rk
i, j = ∥ p̄i,k − p̄ j,k∥. (3.5)

In the work done to date, only complete network topologies are considered. As such,

zR
k will either contain the complete set of L = Np(Np − 1)/2 range measurements as in

(3.4), where L is the number of range measurement links in the network, or it will be

empty (L = 0).
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3.1.3 Computation of Process and Measurement Covariance

Perhaps the most crucial and challenging design consideration in creating a func-

tional Kalman filter is the proper selection of the process and measurement covariance

matrices Qk and Rk. In this subsection, accurate approximations of the measurement

and process covariance matrices are provided.

3.1.3.1 Measurement Covariance

Generally, the measurement covariance is more straightforward to estimate than

the process covariance. The measurement covariance Rk is significantly easier to es-

timate if it is assumed that the measurements are independent since the matrix will

be diagonal with elements equal to the variance of each measurement. Since the vari-

ance of each measurement, or sensor, can be deduced through basic experiments or a

datasheet, the computation of Rk is trivial in this case. Let Rnav
k be the measurement

covariance for the navigation UKF (to differentiate it from other instances of the UKF

later on) For the measurement vector ordered in (3.2), Rnav
k is given by

Rnav
k =

R
GPS
k 0

0 RR
k

 . (3.6)

The matrix blocks in (3.6) are given by

RGPS
k =


ΣGPS

1 . . . 0
...

. . .
...

0 . . . ΣGPS
Np

 , (3.7)
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and

RR
k =


σ2

R,1 . . . 0
...

. . .
...

0 . . . σ2
R,L

 , (3.8)

where σ2
R,l is the range measurement variance of the lth link. Generally, GPS will have

errors with unique variances in the latitude, longitude, and height dimensions, which

must be translated to a covariance matrix described in the ECEF frame. Assuming

the GPS errors in latitude, longitude, and height are independent, we may define a

covariance ΣLLH
i as

ΣLLH
i =


σ2

L,i 0 0

0 σ2
λ,i 0

0 0 σ2
h,i

 , (3.9)

where σ2
L,i, σ

2
λ,i, and σ2

h,i are the latitude, longitude, and height variance of the GPS

measurement for platform p, respectively. Note that the standard deviations σL,i and

σλ,i are given in meters, not in radians or degrees. The covariance may be rotated into

the ECEF frame to produce

ΣGPS
i = ΩnedΣ

LLH
i ΩT

ned. (3.10)

While the above equations are generalized, if each platform uses identical GPS and

ranging hardware, then ΣLLH
i and σ2

R,l will be equal for all l and i while ΣGPS
i will

still vary from platform to platform as a function of position. It is assumed here that

the GPS and range measurement errors are zero-mean additive white Gaussian noise

(AWGN).
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3.1.3.2 Process Covariance

The process covariance is often more difficult to select than the measurement co-

variance, particularly when there exist strong nonlinear relationships between the state

variables. While the navigation equations contain nonlinear relationships between the

orientation and position variables, they are not strong enough to justify consideration.

Let Qnav
k the process covariance for the navigation UKF to differentiate it from the pro-

cess covariance matrices in other instances of the UKF later on. First, by making the

assumption that the process noise for each platform will be independent, the process

covariance may be structured by

Qnav
k =


Qnav

1,k . . . 0
...

. . .
...

0 . . . Qnav
Np,k

 , (3.11)

where the block Qnav
i,k describes the process covariance of the ith platform. Suppose that

the IMU on platform i has accelerometer noise standard deviation σa,i and gyroscope

noise standard deviationσω,i. It is assumed that the accelerometer and gyroscope noise

can both be modeled as zero-mean AWGN. Each platform’s process covariance may

be structured by

Qnav
k,i =


Cpp,i Cpv,i 0

Cvp,i Cvv,i 0

0 0 Cωω,i

 , (3.12)
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where the constituent matrix Cpp,i is computed by

Cpp,i =


σ2

a,i∆t4/4 0 0

0 σ2
a,i∆t4/4 0

0 0 σ2
a,i∆t4/4

 , (3.13)

Cvp,i and Cpv,i are computed by

Cpv,i = Cvp,i

=


σ2

a,i∆t3/2 0 0

0 σ2
a,i∆t3/2 0

0 0 σ2
a,i∆t3/2

 ,
(3.14)

Cvv,i is computed by

Cvv,i =


σ2

a,i∆t2 0 0

0 σ2
a,i∆t2 0

0 0 σ2
a,i∆t2

 , (3.15)

and Cωω,i is computed by

Cωω,p =


σ2
ω,i∆t2 0 0

0 σ2
ω,i∆t2 0

0 0 σ2
ω,i∆t2

 . (3.16)

Although the above definition for Qnav
k does not consider the slight nonlinear relation-

ships in the state variables, it will suffice for most practical applications.
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3.2 Results

In this section, the proposed algorithm is demonstrated in simulation for navigation

accuracy. A set of 8 random platform flight paths are generated over a simulation

time-space of 5 minutes, and noisy sensor measurements are generated to match the

flight paths. The flight paths are simulated by generating a random set of maneuvers

consisting of random acceleration (or deceleration) in the forward-facing x-dimension

of the body frame along with random banks in attitude. The maximum acceleration

during these maneuvers is capped at 8 m/s2 while the maximum angular velocity is

capped at 5°/s. The flight paths are shown in Fig. 3.1. The navigation algorithm is run

using noisy measurements, with the severity of the noise varied for different simulated

qualities of IMUs. The IMU update rate for each simulation is set at 100 Hz, while

the update rate for the inter-node range measurements is set at 1 Hz. For the simulated

case where GPS is available, the update rate of GPS is also set at 1 Hz. Different

cases of the algorithm’s performance are shown in this section. First, a low-quality

IMU is used in cases of networks with 4 and 8 platforms. Next, the case in which

a high-quality IMU is available is demonstrated. In both cases, GPS is simulated as

unavailable, requiring the navigation to be performed exclusively using IMU outputs

and inter-node range measurements. In another case, one platform is given access

to GPS while all others act as GPS-denied platforms. It is then shown that through

the inter-node measurements, the network may still produce navigation solutions that

are on average as accurate as if each platform were navigating using GPS. Finally,

a case is presented in which all platforms have access to GPS to demonstrate the

utility of cooperative navigation even under circumstances when traditional GPS-aided

navigation is possible.
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Fig. 3.1: The 8 simulated motion paths. From [1]©2023 IEEE.

3.2.1 Low-Accuracy IMU, No GPS

The first simulations are run in a case where no platforms have access to GPS, and

the IMU quality is low with parameters σa = 0.05 m/s/
√

hr and σω = 0.75 °/
√

hr.

The ranging accuracy is set at σR,l = 0.1 m for each link l. The accuracy results for

the individual and cooperative navigation, when only four platforms are included, are

shown in Fig. 3.2, while the same results with eight platforms are shown in Fig. 3.3. As

expected, the cooperative navigation accuracy increases with the number of platforms

in the network because more inter-node range measurements may be exploited in the

update step.
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Fig. 3.2: Average platform navigation error for 4 platforms with no GPS and a low-
quality IMU with individual dead-reckoning (black) and using cooperative navigation
(blue). From [1]©2023 IEEE.

3.2.2 High-Accuracy IMU, No GPS

The second simulation is run in a case where, again, no platforms have access to

GPS, but the IMU quality is high with parameters σa = 2.5× 10−5 m/s/
√

hr and σω =

2 × 10−3 °/
√

hr. The accuracy results for the individual and cooperative navigation

with eight platforms are shown in Fig. 3.4. As can be seen, the navigation accuracy

does increase, but not on the same scale as the navigation improvement for the low-

accuracy IMU.

3.2.3 Low-Accuracy IMU, One Platform GPS

The third simulation is run for a case where the IMU quality is low with σa =

0.05 m/s/
√

hr and σω = 0.75 °/
√

hr. The ranging accuracy remains at σR,l = 0.1 m

for each link l. In this simulation, however, one platform has access to a low-quality

GPS with σL,1 = σλ,1 = 5 m and σh,1 = 7 m. The other platforms continue to have

no access to GPS. The accuracy results for this scenario are shown in Fig. 3.5. These
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Fig. 3.3: Average platform navigation error for 8 platforms with no GPS and a low-
quality IMU with individual dead-reckoning (black) and using cooperative navigation
(blue). From [1]©2023 IEEE.

results demonstrate that so long as one platform has access to GPS, it may distribute its

own increase in accuracy to the remaining platforms, enabling GPS-level navigation

accuracy for the entire network, even when the majority of the navigating platforms

have no access to GPS.

3.2.4 Low-Accuracy IMU, All Platforms GPS

The final simulation is run for a case in which all platforms have access to GPS.

In this case, the IMU qualities and GPS properties are identical to the above case.

The accuracy results for this scenario are given in Fig. 3.6. In this instance, it can be

seen that even in situations when GPS is widely available and traditional navigation is

possible, the cooperative navigation scheme will outperform it, in this case by halving

the average navigation error.
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Fig. 3.4: Average platform navigation error for 8 platforms with no GPS and a high-
quality IMU with individual dead-reckoning (black) and using cooperative navigation
(blue). From [1]©2023 IEEE.

3.3 SAR Results

To facilitate a demonstration of the proposed cooperative navigation principles in

the context of radar remote sensing, simulations of SAR data captures are produced

for several situations, highlighting the utility of cooperative navigation for radar ap-

plications. The navigation algorithms are evaluated with respect to the system point

spread response (PSR) as compared to the ideal PSR. This section provides simulated

a PSR for single-platform and distributed-platform SAR systems using traditional and

cooperative navigation schemes. It is worth noting that the simulations conducted here

do not include noise since the focus is on the shape of the PSR, which is defined with

respect to the radar system properties and the navigation quality but is not dependent

on the signal-to-noise ratio (SNR). It has been documented in other works [108] that

there is a significant SNR gain in coherent distributed aperture radar systems, and as

such, this analysis is excluded here.
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Fig. 3.5: Average platform navigation error for 8 platforms with only one platform
having access to GPS and a low-quality IMU with individual dead-reckoning (black)
and using cooperative navigation (blue). From [1]©2023 IEEE.

3.3.1 Single Platform PSR

A scenario is simulated in which 8 platforms are flying in a formation, primarily

in parallel straight lines. The navigation equipment is simulated with identical quality

to the low-accuracy IMU and inter-node ranging accuracy described in Section 3.2.1.

Similarly, in this case, no GPS signal is available on any platform. A target, placed

1000 m away, is observed by a radar system on a single platform which, at the time

of the radar capture, is traversing a 100 m synthetic aperture at a velocity of 100 m/s

over a capture time of 1 s. The range vector to the target is perpendicular to the

velocity vector of the radar platform. It is assumed that the platforms have a precise

knowledge of their locations 180 s before the radar capture occurs, but that for the

time between then and the radar capture their positions must be calculated using the

described cooperative technique. Because of the tendency for the estimated position

to make rapid jumps each time the inter-node range measurements are used to correct

the paths, the radar capture is configured to occur between two ranging updates such
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Fig. 3.6: Average platform navigation error for 8 platforms, each with access to GPS
and a low-quality IMU with individual GPS-aided navigation (black) and using coop-
erative navigation (blue). From [1]©2023 IEEE.

that any range error function Re(τ) will be less jagged (to facilitate this, the inter-

node ranging update rate is reduced to 0.8 Hz – this slightly reduced update rate has

only a very minor impact on the overall navigation performance). Although the radar

platform navigates cooperatively with the other moving platforms in the network, it is

the only platform performing a radar function.

The radar system is simulated to operate with a carrier frequency of 3 GHz (λc =

0.1 m) with a signal bandwidth of 300 MHz. The bandwidth, aperture length, and tar-

get range are all selected interdependently such that the ideal range and azimuth res-

olution are approximately 0.5 m. The radar data collections are motion-compensated

and images are formed using the backprojection algorithm.

Because only a single ideal point target is simulated, the resulting SAR image

represents the PSR of the SAR system given the navigation solution used for motion

compensation. Therefore, when motion-compensated using the true motion profile,

the optimal PSR is formed. When motion compensation is performed using a different

non-ideal navigation profile, deformations and translations of the PSR provide a useful
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Fig. 3.7: Simulated single platform PSR for different navigation solutions: ideal nav-
igation (a), non-cooperative navigation (b), and cooperative navigation (c). From [1]
©2023 IEEE.
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Fig. 3.8: One-dimensional cuts of the simulated single platform PSR for ideal, non-
cooperative, and cooperative motion compensations. The cross-track cut is shown in
(a) and the along-track cut is shown in (b). From [1]©2023 IEEE.

insight into the deleterious impacts of the navigation solution on the SAR imaging

capability. The simulated PSR for the given scenario is given in Fig. 3.7 for the ideal,

non-cooperative, and cooperative navigation cases. The most obvious defect of the

non-ideal PSRs in Fig. 3.7 is the erroneous translation of the target away from the

scene center at the origin. However, the translation of the PSR formed using the non-

cooperative navigation is much more substantial, moving the target’s apparent location

36 m from the origin compared to a much tamer 10 m for the cooperative navigation

case.

Closer inspection of the non-cooperative PSR in Fig. 3.7b reveals not only a sub-

stantial translation from the origin but also azimuth smearing of the PSR which will

ultimately lead to blurring of the image. Fig. 3.8 shows plots of one-dimensional

cross-track and along-track cuts of the PSR for the different navigation cases. From

these plots, it can be seen that in the non-cooperative navigation case, the along-track

(azimuth) PSR has a lowered peak level and a raised sidelobe level compared to the

ideal case, while the cooperative navigation case has no such limitation. The defects

in the non-cooperative navigation case are likely the result of quadratic phase errors

(QPE) which are possibly produced due to an along-track velocity estimation error,
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LOS acceleration measurement errors, or both [75].

3.3.2 Distributed Platform PSR

Another scenario is simulated similar to the single-platform case in which 8 plat-

forms are flying in a formation. In this case, 4 platforms are flying co-linearly while

4 others are flying parallel but offset in the perpendicular dimensions such that they

surround the other 4, providing inter-node range measurements in all spatial dimen-

sions. An image depicting this formation is shown in Fig. 3.9. Unlike the previous

case, this scenario considers multiple platforms in the network as transmitting and re-

ceiving radar signals. The 4 co-linear platforms (shown as colored lines in Fig. 3.9)

are acting as radar systems while the 4 other systems (shown as black lines in Fig. 3.9)

are acting as auxiliarly platforms whose only function is to contribute to the accuracy

of the cooperative navigation technique. In the geometry of Fig. 3.9, the single point

target is located at the origin, orienting its range vector perpendicular to the full aper-

ture composed of the four subapertures. In order to achieve the required accuracy such

that the returns from each radar platform coherently integrate into a focused image,

low-quality GPS is enabled for each platform in this simulation. The noise properties

of the IMUs, GPS, and inter-node range signals are identical to those described in

Section 3.2.4. A single point target is placed 3000 m away and is observed by all 4

platforms as they each traverse a 100 m path at a velocity of 100 m/s over a capture

time of 1 s. The platforms are 100 m apart along their paths and thus form a total

aperture length of 400 m. It is assumed that the platforms have a precise knowledge of

their locations 30 s before the radar capture occurs, but that for the time between then

and the radar capture their positions must be calculated using GPS in conjunction with

the described cooperative radar technique. For similar reasons as with the single plat-
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Fig. 3.9: The motion paths of the 8 distributed platforms during the radar capture. The
colored paths indicate the 4 co-linear platforms that are transmitting and receiving
radar signals, while the black paths indicate the 4 auxiliary platforms that are present
for navigation purposes only. In the given coordinate reference frame, the point target
is located at the origin. From [1]©2023 IEEE.

form PSR simulation, the inter-node ranging updates and GPS updates are performed

at a rate of 0.8 Hz.

In this new scenario, the radar systems are simulated to operate with a carrier

frequency of 425 MHz (λc ≈ 0.706 m) with a signal bandwidth of 60 MHz – these pa-

rameters are taken from [23] in which a distributed SAR capture is implemented with

UAVs. However, in [23] the navigation is implemented with differential global nav-

igation satellite system (DGNSS) technology which is capable of achieving 0.02 m

accuracy, in contrast to the low-quality GPS system simulated here. The aperture

length and target range are selected based on the center frequency and bandwidth such

that the ideal range and azimuth resolution are approximately 2.5 m. As with the
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Fig. 3.10: Simulated distributed platform PSR for different navigation solutions:
ideal navigation (a), non-cooperative navigation (b), and cooperative navigation (c).
From [1]©2023 IEEE.
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single platform case, the radar data collections are motion-compensated and images

are formed using the backprojection algorithm. For these simulations, it is assumed

that the distributed radar platforms are synchronized in time and RF carrier phase and

frequency. Moreover, to simplify the problem, it is assumed that each platform trans-

mits the same signal with signal orthogonality achieved via time-division multiplexing

leading to a reduction in effective pulse repetition time by a factor of 4. Finally, the

simulation considers only the monostatic case for each platform, so signal reflections

between bistatic pairs of transceivers are not included in the processing. To gener-

ate the PSRs, a sub-image is generated for each platform after motion compensation.

Then, the sub-images are added together. Because the simulation is configured such

that phase coherence between the radar systems is achieved a priori, any deformation

of the ideal PSR may only be caused by erroneous motion compensation due to inac-

curate navigation. One interpretation of the results is that the final image formed using

all 4 platforms’ data collections is functionally equivalent to the image formed by a

single platform traversing the 4 motion paths in sequence but collected in a quarter of

the time.

As with the single platform image, because a single ideal point target is imaged

at the origin, the resulting image represents the PSR of the SAR system using each

navigation solution for motion compensation. The PSRs for each case using the 4 dis-

tributed platforms for imaging are given in Fig. 3.10. In this case, because each plat-

form uses GPS in conjunction with the cooperative navigation scheme, both the non-

cooperative and cooperative navigation PSRs are not translated significantly from the

origin. However, it is clear from Fig. 3.10b that the phase correction from motion

compensation is not coherent, and therefore the PSR is heavily degraded in azimuth.

Moreover, as can be seen from one-dimensional cuts of the PSRs in Fig. 3.11, the
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Fig. 3.11: One-dimensional cuts of the simulated distributed platform PSR for ideal,
non-cooperative, and cooperative motion compensations. The cross-track cut is shown
in (a) and the along-track cut is shown in (b). From [1]©2023 IEEE.

PSR in the non-ideal case has its peak value reduced by 2 dB from ideal as a result of

energy spreading into the degraded sidelobes. In contrast, the cooperative navigation

PSR very closely resembles the ideal, implying that the phase correction from motion

compensation in this case enables the distributed SAR image to be formed coherently

from the sub-images.

It should be noted that the dramatically improved PSR for the cooperative navi-

gation case does not result from perfect correction of navigation error. Per the error

plot in Fig. 3.6, the navigation error for the cooperative case when GPS is available

to all platforms and using the same navigation equipment quality will still be ∼0.5 m

on average, which is large relative to the wavelength of λc ≈ 0.706 m. However,

an advantage of the cooperative navigation solution in this case is that the inter-node

range measurements enable the navigation solutions for the distributed network to of-

ten maintain roughly correct relative positions and orientations of the platforms even

if their absolute positions and orientations are slightly incorrect. In addition, even in

cases where the relative navigation is not conducted well, it will usually be the case

that the cooperative navigation solution has lower velocity errors and therefore, as in

the case of the single-platform PSR, this will result in each individual platform con-
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tributing a more ideal sub-image with lower sidelobes. Therefore, although the sub-

image from each radar platform may contain phase errors after motion compensation,

the sub-images from the other platforms will contain very similar phase errors due to

their approximately equal motion compensation errors, and therefore the sub-images

will still add coherently to give the correct PSR.

3.4 Cooperative Navigation with Relative Velocities

Although the above work considers only the range between platforms and direct

GPS readings as measurements for the UKF, in practice relative velocities may be

available as measurements too – this will be the case when the synchronization is im-

plemented with navigation in Chapter 6. Therefore, it will be valuable to have some

indication of how cooperative navigation is impacted by the presence of these mea-

surements. First, assuming these measurements are available, the full measurement

vector must be restructured to give

znav
k =


zGPS

k

zR
k

zv
k

 , (3.17)

where zv
k describes a vector of relative velocities

zv
k =

[
vk

1,2 . . . vk
1,Np

vk
2,3 . . . vk

Np−1,Np
.

]T

(3.18)

The scalar relative velocity may be computed by

vk
i, j = ∥v̄

k
i, j∥ sgn

(〈
p̄i,k − p̄ j,k, v̄k

i, j

〉)
, (3.19)
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where sgn(·) is the signum (or sign) operator used to ensure the relative velocity is

correctly positive or negative, ⟨·, ·⟩ indicates the dot product of two vectors, and v̄k
i, j is

the relative velocity vector given by

v̄k
i, j =

〈
p̄i,k − p̄ j,k, v̄i,k − v̄ j,k

〉
∥ p̄i,k − p̄ j,k∥

2

(
p̄i,k − p̄ j,k

)
. (3.20)

The above expressions serve as the relative velocity component of the measurement

function hk.

This chapter explores a UKF-based approach to achieving cooperative navigation

in a network of platforms using range measurements between the platforms. However,

it does not provided a method for computing the range measurements from raw TOF

signals, and does not consider the radar case in which the systems must be synchro-

nized. In the next chapter, a technique is described for synchronization distributed

networks of radar systems in time, phase, and frequency, which is accomplished in a

manner such that range measurements for navigation are produced as a byproduct for

cooperative navigation.
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Chapter 4

Decentralized Digital Synchronization

This chapter presents the recent advances in digital decentralized synchronization

of distributed radar networks. The proposed algorithm is an extension of [92] to enable

frequency exchange and synchronization without an external frequency reference. The

first component to be addressed is the procedure for estimating clock drift values using

one of three different frequency exchange techniques. This is followed by a descrip-

tion of how to produce estimates of range values between platforms and estimate and

compensate for clock biases and carrier phases. Simulated results are also provided to

demonstrate the performance of the proposed technique. Next, the synchronization ap-

proach is analyzed in terms of its statistical performance in comparison to the derived

CRLB. Practical considerations in solving for the different clock parameters using

least-squares estimation are also provided. These analyses are verified through Monte

Carlo simulations. Finally, two different radar scenarios are simulated to demonstrate

the proposed technique in a practical radar network.

4.1 Estimation of Drift Values

The crux of the proposed synchronization algorithm is the ability of each platform

to estimate its clock drift αi and compensate for it both on transmit and receive. To
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do so effectively, some synchronization waveform must be selected as s j (t). With

a synchronization signal selected and transmitted between platforms, a mathemati-

cal framework for computing estimates of αi for each platform must be established

such that each platform i knows and can compensate for an accurate value of αi. In

this section, multiple synchronization waveforms and drift computation techniques are

proposed with utility in different network scenarios. The output of the estimation for

each technique includes estimates α̂i of αi which may be used to compensate for clock

drift in future signal transmissions; a discussion of how this is accomplished is pro-

vided in Section 4.2.1. The advantages and disadvantages of each technique and the

suggested usage scenarios of each are discussed at the end of this section.

4.1.1 Single-Tone Synchronization with No Platform Motion

In the first synchronization technique, a single-tone waveform is selected as the

baseband transmit waveform for each platform. Suppose that platform j broadcasts a

single tone at a baseband frequency of f αj and a pulse length of Tp, which is received

by all other platforms i. Define the single-tone baseband transmit signal (sαj (τ j)) as

sαj (τ j) = exp
(

j 2π f αj τ j

)
rect

τ j −
Tp

2

Tp

 , (4.1)

where

rect(t) ≜


1 |t| < 1

2

0 else
(4.2)
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is the rectangle function centered at t = 0 with a width of one. Inserting (4.1)

into (2.70) yields the Doppler-free receive waveform (r αi, j (τi)) at platform i given by

r αi, j (τi) = exp
(

j 2π f αj

(
α j

αi
τi − ρ

))
exp

(
−j 2π f cρ

)
exp

(
j γerr

i, j

)
· exp

(
j 2π f c

((
α j

αi
− 1

)
τi

))
rect

 α j

αi
τi − ρ −

Tp

2

Tp


= exp

(
j 2π

(
f c

(
α j

αi
− 1

)
+
α j

αi
f αj

)
τi

)
exp

(
j γerr

i, j

)
· exp

(
−j 2π

(
f c + f αj

)
ρ
)

rect

 α j

αi
τi − ρ −

Tp

2

Tp

 .

(4.3)

The functional form of rαi, j (τi) remains a windowed single-tone sinusoid, with the fre-

quency scaled away from the ideal transmitted frequency f αj due to mismatch between

αi and α j (note that in the case that αi = α j, the frequency of the tone remains f αj ). Ad-

ditional time and phase shifts are also applied as a result of the clock drift mismatch,

clock biases, and propagation distance Ri, j. To estimate the frequency of the single

tone as observed by platform i, the Fourier transform may be computed. Mathemati-

cally, the Fourier transform of (4.3) (Rαi, j ( f )) is given by

Rαi, j ( f ) =
αi

α j
Tp sinc

(
αi

α j
Tp

(
f − f αi, j

))
· exp

(
−j 2π

(
f − f αi, j

) (αi

α j
ρ +
αi

α j

Tp

2

))
· exp

(
−j 2π

(
f c + f αj

)
ρ
)

exp
(

j γerr
i, j

)
,

(4.4)

where

sinc(x) ≜
sin(πx)
πx

(4.5)
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is the normalized sinc function and where f αi, j is defined as the true frequency of the

single tone observed by platform i which is computed by

f αi, j =
(
α j

αi
− 1

)
f c +
α j

αi
f αj . (4.6)

The maximum magnitude of the Fourier transform occurs at the peak of the sinc func-

tion in (4.4), which is located at the value of f αi, j observed by platform i. Therefore, an

estimate f̂ αi, j of f αi, j may be computed by determining the value of f which maximizes

|Rαi, j( f )|. The method for determining the location of the maximum value is discussed

in more detail in Section 4.1.4.

After all platforms have broadcast their synchronization signals, platform i may

produce an estimate f̂ αi, j of f αi, j for all transmitting platforms j , i. By rearranging (4.6),

a linear equation in terms of αi and α j can be constructed as

(
f̂ αi, j + f c

)
αi −

(
f αj + f c

)
α j = 0. (4.7)

Furthermore, it will be impossible to determine the absolute truth values of αi since no

measurements can be made which are not biased by these unknown values. However,

the values of αi may be determined relative to one another, which will be sufficient to

ensure coherent operation among the platforms. It is sensible, therefore, to select one

drift value to be set to unity. For example,

α1 = 1. (4.8)

Since j , i in (4.7), there are Np − 1 linearly independent equations based on infor-

mation available to platform i. When combined with (4.8), Np linearly independent
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equations are available estimating the Np values of α j. Therefore, the estimates α̂ j of

α j for all j may be solved independently on each platform using only its own measure-

ments of the other platforms’ transmitted single-tone signals by solving the system of

Np equations via a matrix inversion. The resulting estimates α̂ j may be compensated

for in future transmitted and received signals. This simple technique will be referred

to as single-tone without exchange. In a practical implementation, assuming a large

order of magnitude for f c, (4.8) may need to be scaled by f c to eliminate numerical

errors, such as

f c
α1 = f c. (4.9)

At the cost of increased complexity and additional signal transmissions compared

to the single-tone without exchange, a more robust drift estimation may be imple-

mented. After the first round of single-tone signals have been broadcast and received

by all other platforms, the estimated values f̂ αi, j should be exchanged among all other

platforms using an arbitrary communication scheme such that all platforms i have

knowledge of f̂ αk, j for all values of k and j with k , j. As a result, in addition to (4.8),

each platform may use a linear least squares estimation technique to solve the system

of N2
p −Np + 1 equations and obtain values of α̂ j. A thorough description and analysis

of the procedure for solving this system of equations is provided in Section 4.4. This

more complex and robust procedure will be referred to as single-tone with exchange.

Although this method will be more complex and require additional time and commu-

nications overhead to complete, it will be more robust against noise and Doppler shifts

in the moving platform case.
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4.1.2 Single-Tone Synchronization with Platform Motion

As with the case of the single-tone waveform with no platform motion, the base-

band transmitted waveform sαj (τ j) is given by (4.1). To determine the received signal

(r α,di, j (τi)) at platform i assuming a non-zero LOS relative velocity between the plat-

forms, (4.1) is substituted into (2.75) in similar fashion to (4.3) to obtain

r α,di, j (τi) = exp

 j 2π

 f c

(
α j

αi
− 1

)
+
α j

αi
f αj +

f d
i, j

αi

 τi

 exp
(

j γerr
i, j

)

· exp
(
−j 2π

((
f c + f αj

)
ρ + f d

i, j
ϕi

αi

))
rect

 α j

αi
τi − ρ −

Tp

2

Tp

 .
(4.10)

As with the case with no Doppler, the functional form of the received signal remains a

single-tone waveform but with the frequency shifted based on clock drift-induced mis-

matches as well as a shift in frequency related to the relative motion-induced Doppler

shift. In the same fashion as the case with no Doppler shift, the Fourier transform can

be computed to determine the frequency of the single tone observed by platform i. The

Fourier transform (Rα,di, j ( f )) is computed by

R
α,d
i, j ( f ) =

αi

α j
Tp sinc

(
αi

α j
Tp

(
f − f α,di, j

))
· exp

(
−j 2π

(
f − f α,di, j

) (αi

α j
ρ +
αi

α j

Tp

2

))
· exp

(
−j 2π

((
f c + f αj

)
ρ + f d

i, j
ϕi

αi

))
exp

(
j γerr

i, j

)
,

(4.11)
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where the variable f α,di, j describes the true single-tone frequency observed by platform

i, similar to (4.6), but including the Doppler shift frequency, and is computed by

f α,di, j =

(
α j

αi
− 1

)
f c +
α j

αi
f αj +

f d
i, j

αi
. (4.12)

As with the stationary platform case, after all platforms j , i have broadcast their

synchronization signals, platform i can produce an estimate f̂ α,di, j of f α,di, j for all trans-

mitting platforms j , i. Because the estimate of the peak value of |Rα,di, j ( f )| does not

depend on Ri, j, the fact that in general Ri, j , Ri, j will not impede this estimation. As

with (4.7), (4.12) may be rearranged to form a linear equation in terms of αi, α j, and

f d
i, j by (

f̂ α,di, j + f c
)
αi −

(
f αj + f c

)
α j − f d

i, j = 0. (4.13)

Additionally, one value of αi should be set to unity as in (4.8). The result is that plat-

form i again has information to form Np linearly independent equations for performing

the single-tone without exchange estimation. However, the addition of the unknown

values of f d
i, j with j , i introduces Np − 1 unknowns, giving a total of 2Np − 1 values

to be estimated. As a result, platform i cannot independently estimate the drift values

and Doppler shifts. Furthermore, attempting to estimate the drifts without accounting

for the Doppler shift frequencies will result in large estimation errors.

Next, consider the case in which each platform broadcasts all of its estimates of

f̂ α,di, j for all j , i to all other platforms such that each platform i has full knowledge of

all values of f̂ α,dk, j for all k , j, which is the single-tone with exchange estimation. As

above, in this case, each platform now has enough knowledge to construct a system of

N2
p − Np + 1 equations. If the assumption is made that the relative velocities between

platforms i and j are equivalent when each platform is transmitting (i.e. vi, j = v j,i and
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f d
i, j = f d

j,i), then between the drift values and the Doppler shift values there are a total

of (N2
p + Np)/2 unknowns to be estimated. So long as Np ≥ 2, the system is fully

determined or overdetermined and thus linear least squares estimation may be used by

each platform independently to solve for the values of α j for all j and f d
k, j for all k and

j with j , k. Thus, each platform has an estimate of its own drift value α̂i which may

be compensated for both on transmit and receive. Additionally, each platform will

have estimates f̂ d
i, j of the Doppler frequencies, which in turn provide relative velocity

information (v̂i, j) which may be extracted by

v̂i, j = −
c f̂ d

i, j

α̂ j f c . (4.14)

4.1.3 Two-Tone Synchronization

As demonstrated in the previous subsections, a major disadvantage of the single-

tone waveform is that in order for drifts to be satisfactorily estimated when Doppler

shifts are expected, a two-way transfer of information is required which increases

the algorithm’s complexity and the communication overhead. To address the case in

which it is desirable for each platform to estimate drift after only a single round of

synchronization broadcasts even in the presence of relative motion, a two-tone syn-

chronization waveform may be used.

Recall the definition of the single-tone waveform sαj (τ j) given in (4.1). Suppose

that another single-tone waveform is defined in a similar fashion but with a new fre-

quency of f βj ; let this waveform be called s βj (τ j). The two-tone waveform (stt
j (τ j)) is

then given by the sum of the single-tone waveforms

stt
j (τ j) = sαj (τ j) + s βj (τ j). (4.15)
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Let r β,di, j (τi) be defined similarly to rα,di, j (τi) in (4.10) for the second tone frequency f βj .

Because the channel is linear, the two-tone signal received by platform i (rtt,d
i, j (τi)) will

simply be the sum of the received signals of the individual tones

rtt,d
i, j (τi) = rα,di, j (τi) + r β,di, j (τi). (4.16)

Denote the Fourier transform of r β,di, j (τi) as R β,d
i, j ( f ), the computation of which will be

identical to (4.11) but with the second tone frequency f βj replacing f αj . Thus, the

Fourier transform of the two-tone waveform as observed by platform i (Rtt,d
i, j ( f )) is

given by the sum of the two individual single-tone Fourier transforms

R
tt,d
i, j ( f ) = Rα,di, j ( f ) + R β,d

i, j ( f ). (4.17)

Based on the sinc function form of the single-tone Fourier transform in (4.11), the

two-tone Fourier transform here will be the sum of two sinc functions of nominally

equivalent power and main-lobe width. Assuming the two-tone frequencies are se-

lected appropriately such that the main-lobes of the sinc functions do not overlap, the

magnitude |Rtt,d
i, j ( f )| will have two primary maximum values at f = f α,di, j and f = f β,di, j ,

where f β,di, j is defined similarly to (4.12) as

f β,di, j =

(
α j

αi
− 1

)
f c +
α j

αi
f βj +

f d
i, j

αi
. (4.18)

In similar fashion to the single-tone waveforms, estimates f̂ α,di, j and f̂ β,di, j of f α,di, j and

f β,di, j , respectively, can be produced by locating the two largest peaks in the magnitude

of Rtt,d
i, j ( f ). As a result, for each value of j with j , i, two linearly independent
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equations are produced, given by

(
f̂ α,di, j + f c

)
αi −

(
f αj + f c

)
α j − f d

i, j = 0(
f̂ β,di, j + f c

)
αi −

(
f βj + f c

)
α j − f d

i, j = 0.
(4.19)

For all j with j , i, this produces 2Np − 2 independent equations; when one drift

value is set to unity as in (4.8), there are 2Np − 1 equations, which exactly matches the

number of unknowns between the drift values and the Doppler shifts between platform

i and all other platforms j with j , i. Thus, estimates α̂ j may be produced for all j

including j = i, and estimates f̂ d
i, j may be produced for all j with j , i, through a

simple inversion of the matrix describing the full linear system of equations. This

procedure will be referred to as the two-tone estimation procedure.

In the case that the two tones are far enough apart that each tone may experience

a noticeably different Doppler shift (e.g. ultra-wideband systems), (4.19) may be for-

mulated using a modified version of (2.73) to directly estimate the velocities by the

approximation

(
f̂ α,di, j + f c

)
αi −

(
f αj + f c

)
α j +

( f αj + f c

c

)
vi, j = 0

(
f̂ β,di, j + f c

)
αi −

(
f βj + f c

)
α j +

 f βj + f c

c

 vi, j = 0.

(4.20)

Note that in order to maintain linearity, the above pair of linear equations approximates

the velocity term by ignoring the impact of α j on the carrier term in (2.73).
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4.1.4 Estimation of the Tone Frequency Using Sinc NL-LS

The sinc NL-LS peak estimation algorithm described in [92] utilizes the Gauss-

Newton nonlinear least squares optimization based on a sinc kernel. The idea is to

estimate the true location of the peak of the sinc function (along with the peak value

and the time-scaling parameter) from a set of three equally-spaced samples located

around the true peak value. The following is a description of the sinc NL-LS algorithm

with some minor modifications made to adapt it to the frequency-domain application.

The sinc NL-LS algorithm is designed to operate on data forming a real-valued

sinc function. As such, the magnitude of the Fourier transform must be taken, which

for the stationary platform case yields

∣∣∣Rαi, j ( f )
∣∣∣ = ∣∣∣∣∣∣αi

α j
Tp sinc

(
αi

α j
Tp

(
f − f αi, j

))∣∣∣∣∣∣ . (4.21)

Practically, this Fourier transform will be computed by a discrete Fourier transform

(DFT) of a discretely-sampled sequence of time-domain data after analog-to-digital

conversion. This is usually done through the fast Fourier transform (FFT) algorithm.

The DFT will have the discrete form

∣∣∣Rαi, j[k]
∣∣∣ = ∣∣∣∣∣∣αi

α j
Tp sinc

(
αi

α j

Tp

Tc

(
k − Tc f αi, j

))∣∣∣∣∣∣ , (4.22)

where Tc is the capture length over which samples are taken, and the roman character

k is used as the frequency index of the DFT to differentiate it from the Kalman filter

index k. A similar result will be obtained for the moving platform case with Rα,di, j ( f )

and Rα,di, j [k]. For the two-tone case, the single-tone frequency values must each be

measured separately by two independent executions of the sinc NL-LS algorithm. For
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each execution, a band-pass filter should be applied centered around the tone whose

frequency is to be estimated.

First, find the index kpk associated with the peak value in the sequence for
∣∣∣Ri, j[k]

∣∣∣
kpk = arg max

k

∣∣∣Ri, j[k]
∣∣∣ . (4.23)

The sinc function kernel fsinc (x; λ) is parameterized by

fsinc (x; λ) = λ0sinc ((x − λ1) λ2) (4.24)

with

x = [−1 0 1]T

λ = [λ0 λ1 λ2]T .

(4.25)

Note that (4.22) matches this kernel form. In this parameterization, λ0 represents the

peak value of the sinc function, λ1 represents the frequency value of the peak, and λ2

represents the width-scaling of the sinc function. The vector x is normalized to unit

samples. A vector y is defined as the three samples nearest to the peak of
∣∣∣Ri, j[k]

∣∣∣
y =

[∣∣∣Ri, j[kpk − 1]
∣∣∣ ∣∣∣Ri, j[kpk]

∣∣∣ ∣∣∣Ri, j[kpk + 1]
∣∣∣] . (4.26)

The goal of sinc NL-LS is to determine the values of λ that most closely match the

three points in y by minimizing the cost function

S =
2∑

i=0

(yi − f (xi; λ))2 . (4.27)
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The gradients of the sinc kernel with respect to the given parameters in λ are given by

∂ fsinc (x; λ)
∂λ0

= sinc(λ2(x − λ1))

∂ fsinc (x; λ)
∂λ1

=
λ0 [sinc (λ2 (x − λ1)) − cos (πλ2 (x − λ1))]

x − λ1

∂ fsinc(x; λ)
∂λ2

=
λ0 [cos (πλ2 (x − λ1)) − sinc (λ2 (x − λ1))]

λ2
.

(4.28)

We begin by initializing

λ0 =

[∣∣∣Ri, j[kpk]
∣∣∣ 0 Tp

Tc

]T

. (4.29)

This initialization reflects the idea that the best initial estimate for the sinc peak is

the observed peak value, the best initial estimate for the time shift is 0 (implying that

the observed peak sample is the true peak), and the best initial estimate for the sinc

argument scaling factor is Tp/Tc, which, assuming the values of αi and α j are close to

1, is very close to the true scaling factor in (4.22). Note that for the computation of the

gradient with respect to λ1, the expression has indeterminate form when xi − λ1 = 0,

which is guaranteed on the first iteration since x1 = 0 and the initial value of λ1 = 0.

Using L’Hôpital’s rule it can be shown that in this indeterminate case the gradient

resolves to zero.

The algorithm is then performed iteratively. On the nth iteration, the matrix Jaco-

bian J is computed by

J =
[
∂ f (x; λn)
∂λ0

∂ f (x; λn)
∂λ1

∂ f (x; λn)
∂λ2

]
(4.30)

and the residual error ∆y is computed by

∆y = y − f (x; λn). (4.31)
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Assuming that three points are used for x and y, the update vector ∆λmay be computed

by

∆λ = J−1∆y. (4.32)

If more than three points are used, then J will not be square and ∆λmust be computed

by

∆λ = (JT J)−1JT∆y. (4.33)

With ∆λ computed, the next parameter values may be computed by

λn+1 = λn + ∆λ. (4.34)

Once convergence is achieved, the final estimated parameters are given in λ̃, and the

true frequency peak estimate is computed by

f̂ αi, j = f [kpk] +
λ̃1

Tc
(4.35)

where f [kpk] denotes the frequency value associated with the peak sample kpk. A

processing diagram describing the steps to compute the frequency estimates f̂ αi, j for

the single-tone case is shown in Fig. 4.1, which can be extended to the two-tone case

in which two sinc functions will be present in the frequency domain.

4.1.5 Selection of Frequencies Single- and Two-Tone Waveforms

The selection of the tones used in the frequency transfer will depend on the band-

width of the systems in use and what sort of orthogonality between the broadcasts is

desired – time or frequency. If a time-division multiplexing scheme is utilized (i.e.

each platform has a prescribed time slot for their frequency broadcast), then it makes
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Fig. 4.1: A process diagram for computing the frequency estimates f̂ αi, j. From [4]
©2024 IEEE.

the most sense for f αj = 0 for all j. That is, each platform directly broadcasts at its

carrier frequency.

However, it is also possible for a frequency-division multiplexing scheme to be

employed, enabling all platforms to broadcast simultaneously. The caveat is that due

to the unknown drift values between platforms, the selected tone frequencies must be

spaced out enough such that the carrier frequency error cannot skew them enough to

overlap with the tone frequency allocated to another platform. To do so requires an

understanding of the quality of the MO. For instance, suppose it is known that each

platform is equipped with an MO whose frequency stability is ±10 parts per million
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(ppm), and it is equipped on all platforms in a network with a carrier frequency of

f c = 10 GHz. Further, suppose that platform 1 has no oscillator drift (α1 = 1),

platform 2 has +10 ppm drift (α2 = 1.00001), and platform 3 has −10 ppm drift

(α3 = 0.99999). Further, suppose that f α2 = −100 kHz and f α3 = 100 kHz. Using (4.6)

for stationary platforms, it can be shown that due to the carrier drift, the two tones

overlap at f α1,2 = f α1,3 ≈ 0 when received by platform 1. Thus, in this example network,

values of f αj should be spaced out by more than 200 kHz to avoid overlap. Additional

guard spacing should also be included based on the expected severity of the Doppler

shift.

In the two-tone waveform, the two tones should be spaced out enough such that

their main lobes do not overlap. The main lobe width is set by the pulse length Tp,

and the distance between the two nulls on either side of the sinc main lobe is 2/Tp.

Therefore, the two tones should be separated by at least 2/Tp, though additional spac-

ing may be desirable to avoid unwanted interference due to sidelobes. If frequency-

domain multiplexing of the two-tone waveforms is desired for simultaneous transmit,

then it is possible to interleave the two-tone waveforms from different platforms so

long as the tone separation is wide enough and the spacing rules for the single-tone

waveforms are obeyed.

4.1.6 Comparison of Techniques

The first proposed technique in Section 4.1.1, single-tone without exchange, is by

far the simplest. It requires only the first round of broadcasts of the single-tone syn-

chronization signals, so it eliminates the communication overhead required of trans-

mitting the frequency estimates among the other platforms after this first round. Be-

cause only one tone is required for each platform, it is bandwidth efficient. However,
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as discussed in Section 4.1.2, it has no way of accounting for Doppler shift frequen-

cies in the presence of relative motion and will not work at all unless the network is

stationary. Moreover, as can be seen in Section 4.3, this technique will be more sus-

ceptible to SNR, and if high synchronization performance is required with lower SNR

then it will possibly be better to implement the more complex sharing of frequency

estimates among the full network.

The second proposed technique in Section 4.1.1 and explored in more detail in

Section 4.1.2, single-tone with exchange, is more complex but more robust than with-

out exchange. It is more robust to noise due to the overdetermined nature of the

system of equations and may be modified to enable direct estimation and removal of

the Doppler shift frequencies, which not only nullifies their impact on the estimation

of the drift values but also allows them to be used in relative navigation applications.

Furthermore, because only single tones are required, it will more efficiently utilize

the available bandwidth. However, the additional round of communications required

to share the frequency estimates doubles the communication overhead required for

frequency synchronization. This technique is recommended in applications where the

system must be robust to low SNR and certainly in applications in which large Doppler

shifts are expected. It will still hold an advantage over the two-tone procedure when

the bandwidth of the RF subsystems is limited and frequency multiplexing is desired.

However, if the additional communications overhead is unacceptable, then the two-

tone procedure provides a workable alternative.

Finally, the two-tone estimation procedure proposed in Section 4.1.3 provides the

ability to compensate for Doppler without requiring an additional round of commu-

nication broadcasts. However, it has the drawback of requiring double or more than

double the bandwidth per broadcast. Moreover, as shown in Section 4.3, the two-tone
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procedure has significantly worse performance than the single-tone with exchange

technique and requires large tone separation and a long pulse length to produce suffi-

ciently high-quality estimates of clock drifts and Doppler shifts, even with moderate

SNR. This technique is recommended in applications where Doppler shifts are ex-

pected but when an additional round of communications for exchanging the frequency

estimates is not acceptable.

4.2 Compensating for Clock Drifts and Biases

In the previous section, multiple techniques for producing estimates α̂i of the clock

drifts on each platform in the network. While previous work has addressed how to

compensate for the drifts once estimates are available [3], it is presented here as well

for completeness. Moreover, methods described in [92] for compensating clock bias

and carrier phase in a priori frequency synchronized networks are adapted here for

post-synchronization estimation and compensation of the residual clock biases and

carrier phases.

4.2.1 Compensating for Clock Drift

After the drift estimation procedure from Section 4.1 is completed, each platform i

will have an estimate of its own clock drift α̂i. Using the estimates, each platform can

modify its transmitted and received signals and properly scale the time axes of each

to bring its signals in line with those of all other platforms and enabling frequency-

synchronized operation.

It is assumed here that while the Doppler shift from moving platforms will impact

frequency synchronization, these shifts will not be large enough to impact the pulse
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compression waveforms required for time and phase synchronization and as such they

can be ignored here. Beginning with the global time signal transmitted by platform

j in (2.64), it can be seen that the transmitted signal has its baseband waveform time

axis dilated based on the value of α j and the carrier frequency is shifted in a similar

way. With a more accurate understanding of the digital-to-analog sampling frequency,

the baseband waveform may be recomputed by dividing the time axis by α̂ j. More-

over, the baseband waveform should be multiplied by a corrective sinusoid to ensure

the transmit waveform is truly at the carrier frequency. Define this new baseband

waveform (s′j(τ j)) by

s′j(τ j) = s j

(
τ j

α̂ j

)
exp

(
j 2π f c

(
1
α̂ j
− 1

)
τ j

)
. (4.36)

This new baseband waveform is simply the result of stretching or compressing the

time axis of the original baseband waveform and applying a modest frequency shift.

The transmitted signal after up-conversion (w′j(τ j)) is given by

w′j(τ j) = s′j(τ j) exp
(

j 2π f cτ j

)
exp

(
j γtx

j

)
= s j

(
τ j

α̂ j

)
exp

(
j 2π f c

(
1
α̂ j

)
τ j

)
exp

(
j γtx

j

)
.

(4.37)

Substituting (2.61) into (4.37) above produces the global time transmit waveform

w′j(t) = s j

(
α j

α̂ j
t +

ϕ j

α̂ j

)
exp

(
j 2π f cα j

α̂ j
t
)

exp
(

j 2π f c ϕi

α̂ j

)
exp

(
j γtx

j

)
. (4.38)

If α̂ j = α j, (4.38) can be simplified to

w′j(t) = s j

(
t +

ϕ j

α̂ j

)
exp

(
j 2π f ct

)
exp

(
j 2π f c ϕi

α̂ j

)
exp

(
j γtx

j

)
, (4.39)
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whereby the baseband waveform is correctly scaled in global time and the actual car-

rier frequency is equal to the nominal carrier frequency. In reality, because the drift

estimates cannot be computed absolutely in the global time frame but are instead esti-

mated relative to one another, this simplification cannot be exactly justified. However,

this exercise demonstrates that this method of compensating α̂ j will ensure transmit

coherence in some relative frame with the other platforms. Save some relative esti-

mation errors, the platforms will be frequency synchronized with one another even

though they may not be perfectly synchronized in the global frame.

To compute the transmit compensated signal received by platform i in its local

clock domain (r′i, j(τi)), (4.36) is inserted into (2.70) to produce

r′i, j (τi) = s′j

(
α j

αi
τi − ρ

)
exp

 j 2π

 f c

(
α j

αi
− 1

)
+

f d
i, j

αi

 τi


· exp

(
−j 2π f cρ

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
= s j

(
α j

α̂ jαi
τi −

ρ

α̂ j

)
exp

 j 2π

 f c

(
α j

α̂ jαi
− 1

)
+

f d
i, j

αi

 τi


· exp

(
−j 2π f cρ

1
α̂ j

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
.

(4.40)

Recall that ideally, the received waveform will be a copy of the original transmitted

waveform s j (t) with no time dilation or carrier frequency distortion. However, both

effects are clearly present in (4.40). To remedy this, the fact that the sampling clock

on the receiver is multiplied by αi may be addressed by defining a new time axis (τi)

for the signal defined by

τ′i =
τi

α̂i
, (4.41)

which is essentially equivalent to acknowledging the true sampling frequency as be-
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ing different from the nominal sampling frequency. Substituting this new time axis

into (4.40) yields

r′i, j (τ′i) =s j

(
α jα̂i

α̂ jαi
τ′i −

ρ

α̂ j

)
exp

(
j 2π

(
f c

(
α jα̂i

α̂ jαi
− α̂i

)
+
α̂i

αi
f d
i, j

)
τ′i

)
· exp

(
−j 2π f cρ

1
α̂ j

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
.

(4.42)

As mentioned above, the estimated values of α̂i will likely never be equivalent to the

true value of αi. This is due to the assumption that one of the drift values (e.g. α1)

is equal to unity, which is likely untrue in the global time frame. However, assuming

perfect noiseless estimation of α̂i for all i, the ratio of α̂i to αi will be equivalent to the

ratio of α̂1 to α1. That is,
α̂i

αi
=
α̂1

α1
=⇒
αi

α̂i
=
α j

α̂ j
(4.43)

which results in
α jα̂i

α̂ jαi
= 1 (4.44)

and
α j

α̂ jαi
=

1
α̂i
. (4.45)

By substituting in (4.44), the compensated received signal in (4.42) may be simplified

to

r′i, j (τ′i) = s j

(
τ′i −

ρ

α̂ j

)
exp

(
j 2π

(
f c (1 − α̂i) +

α̂i

αi
f d
i, j

)
τ′i

)
· exp

(
−j 2π f cρ

1
α̂ j

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
.

(4.46)

The resulting signal has the time dilation effect removed, with only a time and phase

shift remaining as well as a residual carrier frequency shift. Define a carrier compen-
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sation signal (bi(τ′i)) where

bi (τ′i) = exp
(

j 2π f c (α̂i − 1) τ′i
)
. (4.47)

In digital processing, the received signal should be multiplied by bi (τ′i) to yield the

final compensated signal (rb
i, j (τ′i)) given by

rb
i, j (τ′i) = r′i, j (τ′i)b (τ′i)

= s j

(
τ′i −

ρ

α̂ j

)
exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)
· exp

(
−j 2π f cρ

1
α̂ j

)
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j γerr

i, j

)
.

(4.48)

This final correction yields the desired signal transmitted by platform j with only a

time delay and phase shift and all adverse time-scaling and frequency offsets elim-

inated. Note that for cases with non-zero relative platform motion, the impacts of

the Doppler shift frequency and a small Doppler phase due to receiver clock bias are

still present in the signal. Further, it should be noted that the tacit assumption is made

in (4.48) that Ri, j is the range between platforms i and j at τ′i = 0. Therefore, the initial

phase of the signal will be set based on Ri, j and the other components of ρ, while the

Doppler shift will alter the signal phase over time. Alternately, the Doppler shift term

could be replaced by reformulating the expression to include a time-varying range

term, which is fundamentally the source of the Doppler shift. In later formulations in

which Ri, j , R j,i, it will be assumed that the Doppler shift phase due to the change

in time is accounted for by the inequality of these ranges, and thus, the Doppler shift

term will be ignored for the purpose of computing phase and range values.
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4.2.2 Compensating for Clock Bias and Carrier Phases

To achieve full synchronization in time, phase, and frequency, the remaining un-

known phase and time shifts resulting from the clock biases and RF transmitter and re-

ceiver phase shifts must be corrected. A procedure for doing this is presented in [92].

In this work, it is assumed that the systems have already been synchronized in fre-

quency by locking to some global frequency reference (i.e. that αi = 1). Therefore, it

can be applied to the estimation of the remaining biases and carrier phases after drift

compensation with some modifications (detailed below) to account for the globally

incorrect drift estimates and the potential for Ri, j , R j,i due to relative motion between

signal broadcasts which is not considered in [92].

As described in [92], this process begins with each platform broadcasting some

pulse-compression waveform (such as a linear frequency-modulated (LFM) pulse)

which can be used for time-delay estimation. Each receiving platform i computes

the cross-correlation of the received signal rb
i, j (τ′i) with the known baseband pulse-

compression waveform s j (τ′i), yielding the cross-correlation signal di, j(τ′i), which will

have a sinc-function form assuming the spectrum of s j (τ′i) is approximately rectan-

gular. Note that for severe relative platform motion, it will be beneficial to apply a

Doppler shift correction to rb
i, j (τ′i) based on the estimate f̂ d

i, j to avoid a perceived de-

lay shift as dictated by the ambiguity function of s j (τ′i). Using the time-domain sinc

NL-LS described in [92], the peak value of the cross-correlation mi, j can be computed,

which mathematically is given by

mi, j =
ρ

α̂ j
=

1
α̂i
ϕi −

1
α̂ j
ϕ j +

α j

α̂ j

Ri, j

c
. (4.49)

The delay values mi, j determined by platform i for all platforms j with j , i should
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then be broadcast in a final round of communications to all other platforms such that

every platform has shared knowledge of mi, j for all (i, j) pairs with j , i. Before this

broadcast is carried out, however, additional information should be included to assist

in computing carrier phases. Platform i will have full knowledge of mi, j and di, j(τ′i) for

all j with j , i independently of other platforms. It can be deduced from (4.48) that

the phase of the cross-correlation signal (∠di, j(τ′i)) at the peak value (delayed to mi, j)

will be equal to

∠di, j(mi, j) = γerr
i, j − 2π

(
f cmi, j + f d

i, j
ϕi

αi

)
, (4.50)

where di, j (mi, j) refers to the value of the cross-correlation signal evaluated at τ′i =

mi, j. Each receiving platform i should then compute the phase values ∠di, j(mi, j) for

all j , i. Once all these values have been collected, platform i should broadcast a

message containing all its computed values of mi, j and ∠di, j(mi, j) for all j with j , i.

When all platforms have carried out this broadcast, every platform will share common

knowledge of all values of mi, j and ∠di, j(mi, j).

4.2.2.1 Computing Clock Biases with Symmetric Range

Computation of the clock biases is more straightforward in the case where Ri, j =

R j,i, which is true if there is no relative motion during the synchronization process or

if the ranging signals are broadcast simultaneously using some orthogonality scheme

other than time-division, such as code-division multiplexing. In this case, noting the

equivalence of the drift to drift estimate ratios in (4.43), an estimate of the range

between platforms R̂i, j may be computed by

R̂i, j =
α j

α̂ j
Ri, j =

c
(
mi, j + m j,i

)
2

(4.51)
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and an estimate of the clock bias difference, with each clock bias being scaled by the

associated clock drift estimate, is computed by

ϕ̂i, j =
1
α̂i
ϕi −

1
α̂ j
ϕ j =

mi, j − m j,i

2
. (4.52)

These estimates are computed from mi, j once all values are shared commonly among

all platforms. Note that it must be assumed that α j/α̂ j is sufficiently close to 1 that the

range estimate in (4.51) is not significantly affected by the scaling.

As in [92], define ϕ̃i by

ϕ̃i =
1

Np

∑
j

ϕ̂i, j, (4.53)

which ultimately describes the adjusted clock bias for platform i toward the network

mean. On transmit, the clock bias of the platform j may be corrected by applying a

fractional delay of ϕ̃ j and a phase correction of exp
(
−j 2π f cϕ̃ j

)
, while the clock bias

of platform i on receive may be corrected by applying a fractional delay of −ϕ̃i and a

phase correction of exp
(
j 2π f cϕ̃i

)
.

Instead of adjusting the clock bias of each platform by correcting to the network

mean, each clock bias value may also be computed directly since the equations de-

scribed in (4.52) form a system of linear equations with (N2
p − Np)/2 + 1 equations

with Np unknowns assuming there is an equation included setting a value to zero (e.g.,

ϕ1 = 0) to ensure that the system is full rank. While there are technically N2
p − Np + 1

equations, they are not linearly independent because ϕ̂i, j = ϕ̂ j,i. If this approach to bias

compensation is used, the correction as above but by setting the correction amount to

ϕ̂i/α̂i rather than just ϕ̂i. A detailed description of how this linear system of equations

may be formulated and solved is provided in Section 4.4.
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4.2.2.2 Computing Clock Biases with Asymmetric Range

Computing the clock biases under the assumption that Ri, j , R j,i is less straightfor-

ward. This will generally only be the case if the synchronization broadcasts from each

platform are allocated using a time-division multiple-access (TDMA) scheme, and the

impacts will be more significant if the relative velocities of the platforms are large in

comparison to the TDMA time-slot size (∆TDMA).

This derivation uses similar notation to [92] as the technique described there makes

the inherent assumption that TDMA is used to achieve orthogonality of the transmit-

ted synchronization signals. This derivation also assumes that the drift compensation

procedure described in Section 4.1 has been completed. Suppose that a TDMA time

slot of length ∆TDMA is used and that the platform TDMA broadcast slots are assigned

in ascending order of platform number j. According to its own clock time, platform j

will transmit its signal at τtx
j where

τtx
j = ( j − 1)∆TDMA, (4.54)

which is expressed in the global frame as ttx
j by

ttx
j = ( j − 1)∆TDMA −

ϕ j

α̂ j
. (4.55)

The signal is received by sensor i relative to its own clock at time τrx
i, j where

τrx
i, j = ( j − 1)∆TDMA +

α j

α̂ j

Ri, j

c
+
ϕi

α̂i
−
ϕ j

α̂ j
, (4.56)
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which is expressed in the global frame as trx
i, j by

trx
i, j = ( j − 1)∆TDMA +

α j

α̂ j

Ri, j

c
−
ϕ j

α̂ j
. (4.57)

Note that

τrx
i, j = ( j − 1)∆TDMA + mi, j. (4.58)

For the purposes of estimating Doppler shift, the assumption is made in Section 4.1

that vi, j = v j,i, which is reasonable if it can be assumed that platforms undergo negligi-

ble acceleration during the synchronization procedure. Therefore, this assumption is

repeated here. Under this assumption, Ri, j and R j,i will have a difference between them

equal to the constant relative velocity multiplied by the time between their respective

signal receipts. Define ∆ti, j to be

∆ti, j = trx
i, j − trx

j,i = ( j − i)∆TDMA +
Ri, j − R j,i

c
+
ϕi

α̂i
−
ϕ j

α̂ j
. (4.59)

The relationship between the range values is given by

Ri, j =R j,i + vi, j∆ti, j

=R j,i + vi, j

(
( j − i)∆TDMA +

Ri, j − R j,i

c
+
ϕi

α̂i
−
ϕ j

α̂ j

)
.

(4.60)
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Substituting (4.60) into (4.56) obtains an alternate expression for τrx
i, j given by

τrx
i, j = ( j − 1)∆TDMA +

ϕi

α̂i
−
ϕ j

α̂ j

+
α j

α̂ j

1
c

(
R j,i + vi, j

(
( j − i)∆TDMA +

Ri, j − R j,i

c
+
ϕi

α̂i
−
ϕ j

α̂ j

))
= ( j − 1)∆TDMA +

α j

α̂ j

R j,i

c
+ vi, j

α j

α̂ j

( j − i)∆TDMA

c

+ vi, j
α j

α̂ j

Ri, j − R j,i

c2 +
α j

α̂ j

vi, j

c

(
ϕi

α̂i
+
ϕ j

α̂ j

)
+
ϕi

α̂i
−
ϕ j

α̂ j
.

(4.61)

Of the eight terms in the final expression in (4.61), the first can be directly subtracted

since it is known exactly, which converts τrx
i, j to mi, j. Using the estimate v̂i, j, the third

can also be approximated and removed to give a new value of mi, j (m′i, j) expressed by

m′i, j = mi, j − v̂i, j
( j − i)∆TDMA

c
, (4.62)

which, similar to the assumption for the range estimate in (4.51), requires the assump-

tion that α j/α̂ j is very close to 1. The fourth term may be considered negligibly small

due to the c2 in the denominator and will be disregarded in this derivation. Assuming

an accurate value of v̂i, j, (4.61) may be simplified to

m′i, j =
α j

α̂ j

R j,i

c
+

(
1 +
α j

α̂ j

vi, j

c

) (
ϕi

α̂i
−
ϕ j

α̂ j

)
. (4.63)

Finally, the delay m j,i may be subtracted from the velocity-compensated delay m′i, j to

give

m′i, j − m j,i =

(
2 +

vi, j

c

) (
ϕi

α̂i
−
ϕ j

α̂ j

)
. (4.64)
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Therefore, a velocity-compensated value of ϕ̂i, j may be computed by

ϕ̂i, j =
m′i, j − m j,i

2 + v̂i, j

c

. (4.65)

The remaining clock drift compensation may be performed using the result of (4.53)

identically to the stationary case.

Should the range values be needed (for instance, for use in relative navigation), an

estimate R̂ j,i may be computed by

R̂ j,i = c
(
m j,i + ϕ̂i, j

)
(4.66)

and by rearranging (4.59) and (4.60) and assuming α j/α̂ j ≈ 1, an estimate R̂i, j may be

computed by

R̂i, j =
R̂ j,i

(
1 − v̂i, j

c

)
+ v̂i, j( j − i)∆TDMA + v̂i, jϕ̂i, j

1 − v̂i, j

c

. (4.67)

The key differences here compared to the stationary estimate in (4.52) involve the

compensation of the relative platform velocity occurring in the removal of the addi-

tional TDMA slots in (4.65) and the additional compensation in (4.65). This procedure

is reliant on an accurate estimate of the relative velocities, whose estimation is highly

dependent on SNR as seen in Section 4.3. Therefore, the TDMA approach should

only be used if moderately high SNR can be guaranteed or if additional navigation

equipment such as inertial sensors can be employed to assist in computing accurate

relative velocity estimates. Otherwise, implementing another orthogonality scheme

and avoiding the required estimate of v̂i, j will be better.
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4.2.2.3 Computing Carrier Phase Values

For the computation of phase, once all platforms have broadcast and received

broadcasts containing all values of mi, j and ∠di, j (mi, j) and after each platform has

computed estimates of ϕ̃i, the carrier phase error estimates for all pairs (i, j) with i , j

may be produced by

γ̂
err
i, j = ∠di, j (mi, j) + 2π

(
f cmi, j + f̂ d

i, jϕ̃i

)
. (4.68)

Next, a system of N2
p − Np + 1 (along with an equation such as γtx

1 = 0, see below)

linear equations described by (2.69) may be solved for the 2Np unknowns to produce

estimated values of γtx
i and γrx

i , which each platform can independently solve for using

the commonly known values of γ̂err
i, j . These must be solved for with the understanding

that one of the phase values must be selected as a known constant phase reference

point (e.g. γtx
1 = 0). With all transmit and receive phases known, each platform i

must apply a phase shift of −γtx
i to all transmitted waveforms and a phase shift of γrx

i

to all received signals. Note that in the edge case where Np = 2, both systems must

have a phase value with a reference phase of zero (e.g., γtx
1 = γ

tx
2 = 0). Note that

although the carrier phases may in theory be computed by linear least-squares, there

is a large likelihood that phase difference values contain wrapped phases from the true

phase difference values expected to be computed from (2.69), which will introduce

systematic errors in the solution. A discussion of how to properly set up and solve

the system of linear equations, as well as how to handle phase wrapping during the

estimation process, is given in Section 4.4.
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4.2.3 Fully Synchronized Signal Model

After all synchronization clock corrections are applied, the resulting synchro-

nized model is derived here for the general Doppler shift case. Begin with the drift-

compensated transmit waveform as described in (4.36). After computing the clock

bias estimate (either ϕ̂ j directly or ϕ̃ j), it is compensated for on transmit through a

fractional delay and phase shift. Similarly, the transmit carrier phase estimate γ̂tx
j is

compensated for. Define s̃′(τ j) as the clock drift, clock bias, and carrier phase com-

pensated baseband transmit waveform, which is given by

s̃′(τ j) = s j

(
τ j − ϕ̂i

α̂ j

)
exp

(
j 2π f c

(
1
α̂ j
− 1

)
τ j

)
exp

(
−j 2π f c ϕ̂ j

α̂ j

)
exp

(
−j γ̂tx

j

)
. (4.69)

While the above expression assumes that the clock bias correction is applied using

a direct estimate of the clock bias ϕ̂ j, such that the correction ϕ̂ j/α̂ j is applied, this

correction can be replaced with the network mean correction ϕ̃ j without any additional

changes to the expression. A similar substitution will need to be made in future steps

related to clock bias correction. From (2.75), the received signal, r̃i, j(τi), will be given

100



by

r̃i, j(τi) = s̃ j

(
α j

αi
τi −
α j

αi
ϕi + ϕ j − α j

Ri, j

c

)
exp

 j 2π

 f c

(
α j

αi
− 1

)
+

f d
i, j

αi

 τi


· exp

(
−j 2π f c

(
α j

αi
ϕi − ϕ j + α j

Ri, j

c

))
exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j
(
γ

tx
j − γ

rx
i

))
= s j

(
α j

α̂ jαi
τi −

α j

α̂ jαi
ϕi +

1
α̂ j

(
ϕ j − ϕ̂ j

)
−
α j

α̂ j

Ri, j

c

)
exp

(
j 2π f c

(
α j

α̂ jαi
− 1

)
τi

)

· exp

 j 2π
f d
i, j

αi
τi

 exp
(
−j 2π f c

(
α j

α̂ jαi
ϕi −

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))

· exp
(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j
((
γ

tx
j − γ̂

tx
j

)
− γrx

i

))
.

(4.70)

Next, the local receiver time axis, τi, is dilated by the estimated clock drift α̂i as

in (4.41). This results in

r̃i, j(τ′i) = s j

(
α jα̂i

α̂ jαi
τ′i −

α j

α̂ jαi
ϕi +

1
α̂ j

(
ϕ j − ϕ̂ j

)
−
α j

α̂ j

Ri, j

c

)
exp

(
j 2π f c

(
α jα̂i

α̂ jαi
− α̂i

)
τ′i

)
· exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)
exp

(
−j 2π f c

(
α j

α̂ jαi
ϕi −

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))
· exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j
((
γ

tx
j − γ̂

tx
j

)
− γrx

i

))
.

(4.71)
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Multiplying by the carrier correction term bi(τ′i) yields the fully receive drift corrected

signal, r̃b
i, j(τ

′
i), given by

r̃b
i, j(τ

′
i) = r̃′i, j(τ

′
i)bi(τ′i)

= s j

(
α jα̂i

α̂ jαi
τ′i −

α j

α̂ jαi
ϕi +

1
α̂ j

(
ϕ j − ϕ̂ j

)
−
α j

α̂ j

Ri, j

c

)
exp

(
j 2π f c

(
α jα̂i

α̂ jαi
− 1

)
τ′i

)
· exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)
exp

(
−j 2π f c

(
α j

α̂ jαi
ϕi −

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))
· exp

(
−j 2π f d

i, j
ϕi

αi

)
exp

(
j
((
γ

tx
j − γ̂

tx
j

)
− γrx

i

))
.

(4.72)

The receiver then partially compensates for clock bias by applying a fractional delay

of −ϕ̂i/α̂i, which produces the signal r̃c
i, j(τ

′
i), given by

r̃c
i, j(τ

′
i) = r̃b

i, j

(
τ′i +

ϕ̂i

α̂i

)
= s j

(
α jα̂i

α̂ jαi
τ′i −

α j

α̂ jαi

(
ϕi − ϕ̂i

)
+

1
α̂ j

(
ϕ j − ϕ̂ j

)
−
α j

α̂ j

Ri, j

c

)
· exp

(
−j 2π f c

(
α j

α̂ jαi

(
ϕi − ϕ̂i

)
−

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))
· exp

(
j 2π f c

(
α jα̂i

α̂ jαi
− 1

)
τ′i

)
exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)

· exp

−j 2π
f d
i, j

αi

(
ϕi − ϕ̂i

) exp
(
−j 2π f c ϕ̂i

α̂i

)
exp

(
j
((
γ

tx
j − γ̂

tx
j

)
− γrx

i

))
.

(4.73)
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Finally, to yield the fully corrected receive signal, r̃ f
i, j(τ

′
i), the phase shifts of exp

(
j 2π f cϕ̂i/α̂i

)
and exp

(
j γ̂rx

i

)
are applied, yielding

r̃ f
i, j(τ

′
i) = s j

(
α jα̂i

α̂ jαi
τ′i −

(
α j

α̂ jαi

(
ϕi − ϕ̂i

)
−

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))
· exp

(
−j 2π f c

(
α j

α̂ jαi

(
ϕi − ϕ̂i

)
−

1
α̂ j

(
ϕ j − ϕ̂ j

)
+
α j

α̂ j

Ri, j

c

))
· exp

(
j 2π f c

(
α jα̂i

α̂ jαi
− 1

)
τ′i

)
exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)

· exp

−j 2π
f d
i, j

αi

(
ϕi − ϕ̂i

) exp
(

j
((
γ

tx
j − γ̂

tx
j

)
−

(
γ

rx
i − γ̂

rx
i
)))
.

(4.74)

Under the assumption of ideal estimation of clock bias and carrier phase (i.e., ϕ̂i = ϕi,

γ̂tx
j = γ

tx
j , and γ̂rx

i = γ
rx
i ) and ideal relative estimation of clock drift (i.e., αi/α̂i = α j/α̂ j),

this expression will reduce to

r̃ f
i, j(τi) = s j

(
τ′i −
α j

α̂ j

Ri, j

c

)
exp

(
j 2π
α̂i

αi
f d
i, jτ
′
i

)
exp

(
−j 2π f cα j

α̂ j

Ri, j

c

)
, (4.75)

which shows the ideal receive signal but where the propagation delay, the propagation

phase, and Doppler shift frequency are scaled by the erroneous drift ratio. Making the

further assumption that the clock drifts are estimated perfectly (i.e., α̂i = αi, which

would only be possible if α1 = 1), (4.74) further reduces to

r̃ f
i, j(τi) = s j

(
τ′i −

Ri, j

c

)
exp

(
j 2π f d

i, jτ
′
i

)
exp

(
−j 2π f c Ri, j

c

)
, (4.76)

which is the ideal received signal with the correct propagation delay, propagation

phase, and Doppler shift frequency.
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4.2.4 Algorithm Summary

At the completion of the information exchange, each radar platform has produced

an estimate of its own clock drift, clock bias, and transmit and receive phases. Each

of these can continue to be compensated as described here to maintain coherent oper-

ation. A diagram describing the full operation of the proposed synchronization tech-

nique is given in Fig. 4.2.

4.3 Simulated Results

To evaluate and compare the utility of the proposed techniques, multiple simula-

tions are run, sweeping over a variety of parameters to demonstrate their impact on

the outcomes of the synchronization. For all simulations, each root-mean-square error

(RMSE) data point is computed from 1000 independent trials. Additionally, each sim-

ulation is run with f c = 3 GHz and Np = 3. Unless stated otherwise, a band-pass filter

with a bandwidth of 5 MHz is applied around each tone during the estimation process

in both the single-tone and two-tone procedures. For the results showing the accuracy

of the drift estimates α̂i, the values are normalized by the true value of α1 under the

assumption that α̂1 = 1.

4.3.1 Single-Tone Algorithm Performance

First, the single-tone estimation techniques are simulated. In these simulations,

the pulse length Tp is set to 100 µs, the capture length Tc is set to 200 µs, and the

sampling frequency f s is set to 200 MHz. The drift values are randomly generated

from a normal distribution with zero mean and a standard deviation σα = 100 × 10−6.

The clock bias values are randomly generated from a normal distribution with zero
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Start

Broadcast frequency reference pulses
amongst all platforms pairwise us-
ing either (4.1) or (4.15) for s j(τ j)

Each platform computes the received fre-
quency values f̂ αi, j and f̂ βi, j if using two-tone

technique using the FFT and sinc NL-LS

If using single-tone with exchange,
each platform exchanges all values

of f̂ αi, j / f̂ α,di, j with all other platforms

Solve for α̂i and f̂ d
i, j, if applica-

ble, using (4.7), (4.13), or (4.19)
α̂i, f̂ d

i, j

Begin compensating clock drifts by ex-
panding/compressing time axes on TX us-

ing (4.36) and on RX using (4.42) and (4.48)

Broadcast ranging signals
amongst all platforms pairwise

Each platform computes mi, j and
∠di, j(mi, j) and exchanges these values
in broadcast with all other platforms

mi, j,
∠di, j (mi, j)

Estimate ϕ̂i, j using (4.52) or (4.65)
and estimate γ̂err

i, j using (4.68)

Estimate ϕ̃i using (4.53) and esti-
mate γtxi and γrxi using the linear sys-
tem of equations described in (2.69)

ϕ̂i, j, γ̂err
i, j

ϕ̃i, γtxi ,γrxi

Begin compensating clock biases and
carrier phases through fractional de-
lays and digital phase adjustments

In all subsequent operations, compensate for
clock drift, bias, and carrier phase on TX and RX

Fig. 4.2: A flowchart of the proposed synchronization algorithm. From [4] ©2024
IEEE.
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Fig. 4.3: A plot comparing the RMSE of the clock drift estimate α̂i as a function of the
SNR at the estimating platform as produced by the single-tone estimation techniques,
both with and without exchange, when there is no relative motion between platforms.
From [4]©2024 IEEE.

mean and a standard deviation σϕ = 10 × 10−9.

Fig. 4.3 shows the RMSE of α̂i for the single-tone techniques, both with and with-

out exchange, as a function of SNR. For this simulation, each platform is simulated

as stationary and thus there is no error introduced by uncompensated Doppler shift

frequencies. Each technique has an RMSE which decreases inversely with an increase

in SNR for SNR values greater than -25 dB. As expected, the single-tone estimation

with exchange slightly outperforms the estimation without exchange. For the single-

tone with exchange, at an SNR of 0 dB, the drift value is estimated with an RMSE of

∼10−8, giving a carrier frequency misalignment of ∼30 Hz when f c = 3 GHz. For an

SNR of 30 dB, the RMSE is ∼3 × 10−10, giving a carrier frequency misalignment of

less than 1 Hz.

Consider the case in which the single-tone techniques are employed where the

platforms experience uncompensated relative motion. Fig. 4.4 shows the RMSE of
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Fig. 4.4: A plot comparing the RMSE of the clock drift estimate α̂i as a function of the
SNR at the estimating platform as produced by the single-tone estimation techniques,
both with and without exchange, where there is uncompensated relative motion be-
tween the platforms. From [4]©2024 IEEE.

α̂i for the single-tone techniques as a function of SNR when the platforms are not

stationary. In this simulation, platforms are generated with random velocities from a

normal distribution with zero mean and a standard deviation of σv = 10 m/s. The

velocities and resulting Doppler shifts are not estimated or compensated by the single-

tone with exchange technique. All other parameters of the simulation are identical to

those of the simulation with no velocity displayed in Fig. 4.3. In this case, the single-

tone without exchange technique levels off in RMSE at 10−7 for SNR> −20 dB, while

the single-tone with exchange technique exhibits similar performance, indicating that

it is robust to small relative velocities even if the Doppler shifts are ignored.

4.3.2 Estimation Performance with Doppler Compensation

Next, the techniques which include velocity and Doppler frequency compensation

are evaluated. Unless otherwise noted, the simulations here are run with the same
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Fig. 4.5: A plot comparing the RMSE of the clock drift estimate α̂i as a function of the
SNR at the estimating platform as produced by the Doppler-compensating estimation
techniques. From [4]©2024 IEEE.

parameters as in the single-tone algorithm simulations.

Fig. 4.5 shows the RMSE of α̂i for the single-tone with exchange and two-tone

Doppler-compensating synchronization algorithms. In one case of the two-tone tech-

nique (the solid red line), the same pulse length, capture time, and sampling frequency

are used, and a tone separation of 150 MHz. However, these parameters lead to gen-

erally poor performance with nearly two orders of magnitude increase in RMSE com-

pared to the single-tone technique. Therefore, an enhanced set of two-tone parameters

is also simulated, with a pulse length Tp of 500 µs, a capture time Tc of 1 ms, a sam-

pling frequency f s of 400 MHz, and a tone separation of 300 MHz. The RMSE for

this enhanced case is given in Fig. 4.5 as the dashed red line. As with the no-Doppler

case above, the RMSE decreases proportionally to the inverse of SNR. With normal

parameters, the two-tone technique performs poorly and never is able to reduce the

RMSE below 10−9 with less than the maximum simulated 60 dB of SNR. However,

the enhanced parameters nearly match the performance of the single-tone technique.
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Fig. 4.6: A plot comparing the RMSE of the Doppler shift and velocity estimates
α̂i as a function of the SNR at the estimating platform as produced by the Doppler-
compensating estimation techniques. From [4]©2024 IEEE.

Therefore, should the no-exchange advantage of the two-tone technique be required,

the designer must be willing to accept the trade-off of a number of increased perfor-

mance parameters to maintain similar synchronization performance compared to the

single-tone with-exchange procedure.

For the same simulations, the RMSE of Doppler frequency f̂ d
i, j and v̂i, j are given

in Fig. 4.6, respectively. As with the drift estimates, the enhanced parameters are

required for the two-tone technique to come close to matching the single-tone with

exchange technique. For these more capable techniques, an SNR of 0 dB gives a

2–3 m/s velocity RMSE, while for an SNR of 30 dB this figure reduces to less than

0.1 m/s velocity RMSE. Therefore, even for the single-tone technique (at least, with

the parameters provided here; the pulse length and sampling frequency could be in-

creased to improve performance), a moderately high SNR will be required to give

accurate relative velocity information.
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Fig. 4.7: A plot comparing the RMSE of the clock drift estimate α̂i as a function of
the pulse length (Tp) at the estimating platform as produced by the single-tone and
two-tone estimation techniques. From [4]©2024 IEEE.

4.3.3 Impact of Pulse Length

The pulse length Tp will play a large role in the performance of the synchronization

techniques. Because a longer pulse has more energy, it will reduce the RMSE of the

estimation procedure even as SNR remains the same. Fig. 4.7 shows the α̂i RMSE

of the two single-tone techniques and the two-tone technique as a function of pulse

length. In this simulation, SNR is fixed at 30 dB and the platforms are stationary (i.e.

vi, j = 0). This demonstrates that for the same pulse length, the two-tone procedure

has more than an order of magnitude higher RMSE, highlighting the strong trade-off

in performance introduced by the two-tone estimation technique.

4.3.4 Impact of Tone Separation on Two-Tone Estimation

One important consideration in the use of the two-tone synchronization procedure

is the spacing of the two transmitted tones f αj and f βj . In general, larger separations
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Fig. 4.8: A plot comparing the RMSE of the clock drift estimate α̂i as a function of
the tone separation (| f αj − f βj |) for the two-tone estimation technique. From [4]©2024
IEEE.

between the two tones will lead to better performance. Fig. 4.8 shows the RMSE of α̂i

as a function of tone separation given by | f αj − f βj |. In this simulation, the pulse length

is set to 500 µs while the capture length is set to 1 ms. To accommodate the higher

tone separation values, the sampling frequency is increased to 600 MHz. Moreover, to

accommodate the lower tone separation values, the standard deviation of the randomly

generated drift values is reduced to σα = 10 × 10−6 and the bandwidth of the band-

pass filter around the tones is reduced to 1 MHz. These results indicate that fairly large

tone separations are required to produce reasonable estimates of the clock drift; as a

result, this technique may only prove viable in situations where wide bandwidths are

available.

4.3.5 Impact of Platform Velocity

It is of interest to determine how tolerant the different techniques are as the relative

velocities between the platforms increase, leading to more significant Doppler shift
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Fig. 4.9: A plot comparing the RMSE of the clock drift estimate α̂i as a function of
the random platform velocity standard deviation (σv) for all single-tone techniques
(with and without exchange, with and without Doppler estimation) and the two-tone
technique. From [4]©2024 IEEE.

frequencies. Fig. 4.9 shows the RMSE of α̂i for all the estimation techniques as a

function of the standard deviation of the simulated random platform velocities, σv. As

expected, single-tone without exchange has performance that degrades linearly as σv

increases since it makes no attempt to compensate for the Doppler shifts. The single-

tone with exchange is resilient to increased velocities even when the Doppler shifts are

not directly estimated; however, after the velocities increase past σv ≈ 200 m/s, the

RMSE for the case in which Doppler frequencies are not estimated begins to degrade

while the RMSE for the case in which they are estimated and compensated maintains

consistent RMSE performance. Similarly, the two-tone procedure maintains constant

performance regardless of the magnitude of σv. These results indicate that with the

single-tone with exchange procedure, so long as the relative velocity information is

not needed and the relative velocities can be assumed to be small, it is not necessary to

estimate or compensate for the Doppler shifts. Moreover, if no-exchange is a required

parameter of the network, the two-tone technique will clearly outperform the single-
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tone without exchange technique with similar parameters so long as σv > 1 m/s.

4.3.6 Impact of Network Size

In some cases, there is a performance dependence on the number of platforms,

Np, in the network. Fig. 4.10 shows the RMSE of α̂i as a function of network size

Np. The simulations here are performed without platform motion, noting that from

Fig. 4.9 it can be inferred that the performance of the single-tone with exchange and

two-tone techniques will not experience a performance degradation if velocities are

non-zero while the single-tone without exchange technique will; therefore, to include

a comparison with single-tone without exchange, platform velocities are set to zero.

The SNR of the simulations is set to a constant 30 dB. The single-tone parameters

are identical to those from previous simulations, while the two-tone parameters are

identical to the normal parameters demonstrated in Section 4.3.2.

From Fig. 4.10, it can be seen that the drift estimation RMSE of the single-tone

with exchange technique has an inversely proportional relationship with Np such that

larger network sizes produce higher performance. For the single-tone without ex-

change and the two-tone techniques (i.e., the two techniques that do not exchange

information before forming estimates), the performance shows a minor degradation as

Np increases from 3 to 5, after which the performance remains constant for increasing

values of Np. These results follow logically from the amount of information avail-

able to each respective estimation algorithm: for the single-tone without exchange

and two-tone techniques, there are exactly enough equations available to solve for the

number of unknowns regardless of the network size. However, in the single-tone with

exchange technique, the number of unknowns grows linearly while the number of in-

dependent equations grows quadratically with the number of platforms. Therefore, it
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Fig. 4.10: A plot comparing the RMSE of the clock drift estimate α̂i as a function of
the number of platforms in the network (Np) for both single-tone techniques (with and
without exchange) and the two-tone technique. From [4]©2024 IEEE.

is reasonable to expect the estimation error produced by this algorithm to be reduced

as the network size increases.

4.3.7 Impact of Carrier Frequency

Because the underlying signal model has an explicit dependence on carrier fre-

quency, it is reasonable to expect that in some cases the carrier frequency will impact

the overall performance. Fig. 4.11 shows the RMSE of α̂i as a function of carrier fre-

quency f c. Noting again that the single-tone without exchange technique will have a

varying performance as a function of platform velocity while the other two techniques

will not, Fig. 4.11 includes results for the single-tone without exchange technique for

both σv = 0 m/s and σv = 10 m/s. As with other simulations, the network size is set

to Np = 3. Unlike previous simulations, the filter bandwidth for isolating the tones

is substantially increased to 200 MHz since for a fixed clock drift, the observed tone

frequency will shift further at a higher carrier frequency. Thus, if the filter bandwidth
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were kept at 5 MHz, the procedure would stop working entirely after a certain carrier

frequency threshold was exceeded. All other simulation parameters are identical to

those described in Section 4.3.6 above.

From Fig. 4.11 it can be deduced that for the single-tone with exchange and the

single-tone without exchange with no velocity, there is a decrease in error proportional

to the increase in carrier frequency. However, for the two-tone case and the single-

tone without exchange with velocity, the performance is constant as a function of

f c. For the single-tone without exchange technique, this is because the lower bound

of performance is set by σv per Fig. 4.9. For the two-tone technique, this is likely

because estimation errors induced by high Doppler velocities cancel out any benefit

caused by the increased carrier frequency, while for the single-tone with exchange,

the additional information enables higher-quality estimation in the same way that it

enables this in the presence of noise as demonstrated in Fig. 4.5.

4.4 Least-Squares Solutions and Statistical Analysis

Throughout the proposed synchronization procedure, clock parameters are esti-

mated as the solutions to several sets of linear equations. These systems tend to be

over-determined with noisy coefficients, and as such the estimation process must uti-

lize either ordinary least-squares (OLS) or weight least-squares (WLS) estimation.

Generally, OLS may be applied when the covariance matrix of the solution vector is

either unknown or a scalar matrix, while WLS may be applied when the covariance

matrix is known to have varying values along the diagonal or when there are non-

zero off-diagonal terms in the matrix. In this section, the OLS and WLS solutions

for the clock parameter estimations are provided. Furthermore, the statistical perfor-

mance of the least-squares estimation process is analyzed through the Cramér-Rao
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lower bound (CRLB) and the covariance propagation through a linear system during

OLS and WLS. Because the statistical performance of the synchronization technique

is heavily dependent on SNR, and in particular the WLS solution requires accurate

knowledge of the SNR, a simple procedure is given for estimating the SNR. Finally,

simulated results are provided which demonstrate the theoretical performance bound

of the proposed synchronization technique.

The analysis in this section is as follows. First, the OLS and WLS estimation tech-

niques are described for the general case, and specific expressions for producing WLS

estimates of clock drift, clock bias, and carrier phase are provided along with expres-

sions for computing the associated estimate covariance. Next, it will be shown that the

sinc NL-LS procedure meets the CRLB for frequency and time-delay estimation over

a useful range of SNR values. It will also be shown that the phase extraction after pulse

compression meets the CRLB for phase estimation over a particular range of useful

SNR values. Expressions will then be provided for converting the CRLB variance
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values into useful covariance matrices to be used during WLS estimation. A simple

procedure will also be described for producing SNR estimates from the received sig-

nals such that the CRLB variance values may be accurately estimated. Finally, it will

be shown through a set of case studies that the full estimation of the synchronization

parameters approaches or meets the expected variance computed through the WLS

covariance transformations.

4.4.1 Solving for Clock Parameters with OLS and WLS

As described in Sections 4.1 and 4.2, the clock drifts, clock biases, and carrier

phases may be estimated by solving sets of linear equations. A general system of

linear equations may be formulated as

Ax = b, (4.77)

where A is an Mb × Mx matrix describing the coefficients of the system of equations

relating x and b, x is an Mx vector of values to be solved for, and b is an Mb × 1

solution vector containing values describing the solutions to each equation. It is further

assumed that b is corrupted by additive noise with covariance Cb. Assuming the case

where Mb > Mx, The most straightforward solution to this system of equations is OLS,

which makes use of the Moore-Penrose pseudo-inverse matrix. In this formulation, the

solution x̂ may be computed by

x̂ =
(
AT A

)−1
AT b. (4.78)

However, this formulation is only valid when the covariance Cb is a scalar matrix

– that is, when the variance of each component of b is equivalent and there are no
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correlations between the different entries of b. Therefore, the OLS solution should

only be used in cases in which this is true or when the covariance matrix is not known

or cannot be estimated.

In the case where Cb is known and is not scalar, the WLS solution x̂ may be

computed by [109]

x̂ =
(
AT C−1

b A
)−1

AT C−1
b b. (4.79)

Furthermore, the covariance of the solution x̂, Σx, may be computed by

Σx =
(
AT C−1

b A
)−1

, (4.80)

which will be valid for both the OLS and WLS cases. Generally, if the covariance

matrix is known (which will be the case for all the linear least-squares procedures in

this chapter), using WLS is preferable, and as such the WLS estimation is assumed

from this point on.

4.4.1.1 Clock Drift WLS

The system of equations for solving for clock drifts described in (4.7) (or (4.13) in

the Doppler case) does not exactly follow the model in (4.77) because the noisy data

in f̂ αi, j or f̂ α,di, j are included in the coefficients of the system of equations rather than

the solution vector. However, using WLS may still be justified by making a minor

approximation. First, assuming f̂ αi, j is corrupted by additive noise, it may be rewritten

as

f̂ αi, j = f αi, j + η
α
i, j (4.81)

118



where ηαi, j is the noise component of f̂ αi, j, which will crucially have the same covariance

as f̂ αi, j. Thus, (4.7) may be rewritten as

(
f αi, j + η

α
i, j + f c

)
αi −

(
f αj + f c

)
α j = 0. (4.82)

Because αi ≈ 1, ηαi, jαi ≈ η
α
i, j, and therefore (4.82) may be rearranged to give

(
f αi, j + f c

)
αi −

(
f αj + f c

)
α j ≈ −η

α
i, j, (4.83)

which does have the linear form required by WLS. Therefore, the system of equations

in (4.7) may be solved using WLS with the covariance of the frequency measurements.

A similar result can be achieved with the Doppler case in (4.13) to give

(
f α,di, j + f c

)
αi −

(
f αj + f c

)
α j − f d

i, j ≈ −η
α,d
i, j , (4.84)

where ηα,di, j is the additive noise component of f̂ α,di, j .

Let A f be the (N2
p − Np + 1) × Np matrix describing the coefficients of the system

of equations in (4.7) for the stationary case and let A f ,d be the (N2
p − Np + 1) × (Np +

N2
p/2−Np/2) matrix describing the coefficients of the system of equations in (4.13) for

the Doppler case. Furthermore, let x̂α be a vector of the clock drift estimates produced

by least-squares estimation, let x̂d be a vector of the Doppler shift frequency estimates

produced by least-squares estimation, and define a vector x̂ f as

x̂ f =

x̂αx̂d

 . (4.85)

In future integrations of the synchronization estimates with position estimates, it will
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be convenient to have direct radial velocity estimates. Assuming each platform trans-

mits at the same carrier frequency, a vector of velocity estimates may be computed

by

x̂v = −
c
f c x̂d (4.86)

and another frequency vector

x̂ f ,v =

x̂αx̂v

 . (4.87)

Let b f be a vector containing the frequency estimates f̂ αi, j for the stationary case, or-

dered such that the entries align properly with the rows of A f . Define the covariance

of b f as C f . Similarly, define b f ,d as a vector containing the frequency estimates f̂ α,di, j

for the Doppler shift case, ordered such that the entries align properly with the rows

of A f ,d. Note that for future applications, it will be convenient to directly compute the

clock drifts rather than the relative velocity – in this case, a matrix may be defined as

A f ,v in which the rows are constructed with coefficients solving for relative velocity

directly rather than Doppler shift (for example, as in (4.20), but with only a single

equation for one of the tones). In the same way, b f ,d has covariance C f ,d. A discussion

of how to compute these covariance matrices is provided in Section 4.4.3. The WLS

solution in the stationary case may therefore be computed by

x̂α =
(
AT

f C−1
f A f

)−1
AT

f C−1
f b f , (4.88)

while the WLS solution in the Doppler case is given by

x̂ f =
(
AT

f ,dC−1
f ,dA f ,d

)−1
AT

f ,dC−1
f ,db f ,d. (4.89)
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Finally, the solution covariance matrix for the stationary case, Σα, is computed by

Σα =
(
AT

f C−1
f A f

)−1
, (4.90)

while the solution covariance matrix for the Doppler shift case, Σ f , is computed by

Σ f =
(
AT

f ,dC−1
f ,dA f ,d

)−1
. (4.91)

Similarly, for the direct velocity estimation case, the WLS solution, x̂ f ,v is given by

x̂ f ,v =
(
AT

f ,vC
−1
f ,dA f ,v

)−1
AT

f ,vC
−1
f ,db f ,d, (4.92)

while the solution covariance matrix for the direct velocity estimation case, Σ f ,v, is

computed by

Σ f ,v =
(
AT

f ,vC
−1
f ,dA f ,v

)−1
. (4.93)

4.4.1.2 Clock Bias WLS

In the case where direct estimates of clock bias are desired instead of normalization

to the network mean, WLS can be used to solve the system of equations in (4.52). Let

Aϕ be the N2
p/2 − Np/2 + 1) × Np matrix describing the coefficients of ϕi and ϕ j in the

system of equations in (4.52) (note that mi, j and m j,i are used to compute ϕ̂i, j but are

not included in this system of equations). Let x̂ϕ be a vector of the clock bias estimates

produced by least-squares estimation, and let bϕ be a vector containing the clock bias

difference estimates ϕ̂i, j, which can be computed either from (4.52) or from (4.65).

Define the covariance of bϕ as Cϕ. A description of how to compute Cϕ is provided in
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Section 4.4.3. The WLS solution will be computed by

x̂ϕ =
(
AT
ϕC−1

ϕ Aϕ

)−1
AT
ϕC−1

ϕ bϕ, (4.94)

while the solution covariance, Σϕ, is computed by

Σϕ =
(
AT
ϕC−1

ϕ Aϕ

)−1
. (4.95)

4.4.1.3 Carrier Phase WLS

Finally, for carrier phase estimates, WLS can be used to solve the system of equa-

tions in (2.69). As before, let Aγ be the N2
p − Np + 1) × 2Np matrix describing the

coefficients of γtx
j and γrx

i in the system of equations in (2.69). Let x̂γ be a vector of

the carrier phase estimates produced by least-squares estimation, and let bγ be a vec-

tor containing the carrier phase difference estimates γ̂err
i, j . Define the covariance of bγ

as Cγ. A description of how to compute Cγ is provided in Section 4.4.3. The WLS

solution will be computed by

x̂γ =
(
AT
γC−1
γ Aγ

)−1
AT
γC−1
γ bγ, (4.96)

while the solution covariance, Σγ, is computed by

Σγ =
(
AT
γC−1
γ Aγ

)−1
. (4.97)

4.4.1.4 Unwrapping Phase Values

Because the phase of a complex number will by necessity be computed between

−π and π, it is possible that the system of equations for phase in (4.96) cannot be
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solved correctly using the known phase estimates in bγ since the difference between

two wrapped phase values may fall outside the range of −π and π. Therefore, to enable

correct phase estimation, the phase values in bγ must be unwrapped properly such that

the estimation in (4.96) will produce valid phase values.

Each individual linear equation in Aγ only has two variables as dictated by (2.69).

Since it is initially assumed that γtx
1 = 0, the equations of the form γ̂err

i,1 = γ
tx
1 − γ

rx
i may

be solved for all γrx
i with i ≥ 2 using the known estimates of γ̂i,1. Let γ̃rx

i describe the

estimates of γrx
i calculated in this way, and similarly define γ̃tx

j . From the estimates of

γ̃rx
i for i ≥ 2, all remaining estimates for γ̃tx

j may be computed, with the assumption

that γ̃tx
1 = 0. Finally, any of the estimates γ̃tx

j with j , 1 may be used to compute γ̃rx
1 .

Let x̃γ be the vector containing the estimates γ̃tx
j and γ̃rx

i with an identical ordering to

xγ.

The estimates in x̃γ will be serviceable for a moderate SNR but will not achieve

the minimum mean-squared error since they are not computed using the WLS solution

in (4.96). To use the WLS solution, the original values of γ̂err
i, j in bγ must be unwrapped.

First, compute a new estimate of bγ, b̃γ, given by

b̃γ = Aγx̃γ. (4.98)

Because these values are recomputed from true estimates of the carrier phase values

rather than the range delay values, they will include the required phase wrappings

and are not required to fall in the range of −π to π. A vector of the phase wrapping

amounts, bwrap, can be determined by computing the difference between bγ and b̃γ and

rounding each element of the difference vector to the nearest multiple of 2π as

bwrap = round
(
ỹγ − yγ, 2π

)
. (4.99)
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Finally, the WLS solution may be computed by

x̂γ =
(
AT
γC−1
γ Aγ

)−1
AT
γC−1
γ

(
bγ + bwrap

)
. (4.100)

4.4.2 Cramér-Rao Lower Bound Analysis

To proceed with the statistical performance analysis, it is convenient to have a

closed-form expression for the variance of the frequency, time-delay, and phase mea-

surements from which the synchronization variables are derived. Because of the non-

linear nature of the sinc NL-LS estimation, the explicit analysis of the variance of these

estimators is difficult. A simpler approach is to compute the CRLB of the time-delay,

frequency, and phase measurements, and then show by simulation that the estimators

employed here meet it over a relevant range of SNRs.

The CRLB is a statistical bound that describes the theoretical minimum achievable

variance of an estimator given the PDF of a set of data parameterized by the quantity

to be estimated. For a scalar parameter φ, the variance of an unbiased estimator φ̂ will

satisfy [109]

var(φ̂) ≥ CRLB(φ) =
1

−E
[
∂2 ln p(x;φ)

∂φ2

] , (4.101)

where E[·] denotes the expected value operator, x denotes the data available to the

estimator, and p(x;φ) denotes the PDF of x parameterized by φ. This expression is the

inverse of a quantity called the Fisher information of the parameter to be estimated.

An estimator that meets the minimum possible variance is referred to as efficient. It

is worth noting that the CRLB only describes the minimum variance achievable by an

estimator given a particular data model, but does not usually provide a way of deter-

mining the form of the estimator or even describing whether such an estimator exists.
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Furthermore, for more complex estimators, it may be intractable to analytically show

that an estimator meets the CRLB, but it can sometimes be shown through simulation

that the estimator meets the CRLB in some cases. This is the approach taken in this

analysis.

To begin, the CRLB of the variance of the measurement of the frequency parameter

f̂ , denoted σ2
f , of a complex sinusoid in AWGN is given by [109]

var
(

f̂
)
= σ2

f ≥
3

2π2 · T 3
p · f s · SNR ·

(
1 −

(
1

Tp f s

)2
) . (4.102)

Furthermore, it is shown in [109] that the efficient estimator for f is to identify the fre-

quency value for which the periodogram is maximized – that is, for which the power

spectral density (PSD) of the signal is maximized. This approach to finding the max-

imum frequency value in a frequency-domain representation of the data is identical

to the sinc NL-LS frequency estimation approach – however, to do so using the pe-

riodogram by itself would require up-sampling the data to achieve high resolution or

would ultimately degrade the estimator performance due to low frequency-resolution.

Because the frequency estimation through sinc NL-LS aims to achieve the same end

as maximizing the periodogram (just in a computationally more efficient way), it is

intuitive to assume that the sinc NL-LS frequency estimator will be efficient.

To demonstrate this, Fig. 4.12 shows a simulation case study for frequency estima-

tion using sinc NL-LS as proposed here, using a sampling frequency of f s = 100 MHz

and a pulse length of Tp = 200 µs. Each data point is computed as the standard devia-

tion of error over 1000 independent trials. In this simulation, the FFT is zero-padded

to up-sample by a factor of 4, which has been determined through experience to in-

crease the accuracy of the frequency estimation. Two simulation cases are shown in
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Fig. 4.12: one in which the data log is not truncated and contains only noise before and

after the pulse location within the data capture, as would likely be the case in the pro-

posed synchronization technique, and one in which the data log is truncated such that

the frequency may be observed throughout the full data log. It may be seen that for the

truncated case, the estimator variance meets the CRLB for SNR values greater than -

25 dB, while for the non-truncated case, the estimator variance closely approaches but

does not quite meet the CRLB for the same values of SNR. However, because in either

case the variance closely approaches the CRLB, the CRLB expression in (4.102) may

be used to directly estimate σ2
f . It should also be noted that the point at which the

estimation begins to meet the CRLB will vary somewhat with parameters such as the

pulse length and sampling frequency.

Next, the CRLB of the variance of the measurement of a time-delay parameter τ̂,

denoted σ2
τ, of a complex signal in additive white Gaussian noise (AWGN) is given

by [92]

var (τ̂) = σ2
τ ≥

3
2π2 · B2 · f s · Tp · SNR

(4.103)

where B is the signal bandwidth. Note that the SNR in the above equation refers

to the input SNR and not the output SNR after the matched-filtering is performed.

A simulation case study showing that the time-delay estimation using sinc NL-LS

meets the CRLB is given in [92]. Fig. 4.13 shows a plot of the standard deviation

of the time-delay estimates as a function of SNR for a receiver with f s = 100 MHz,

B = 50 MHz, and Tp = 200 µs. As verified in this similar case study, the time-delay

estimate applied here will meet the CRLB for values of SNR greater than -25 dB,

and thus the measurement variance, σ2
τ, may be computed using the CRLB expression

in (4.103). Note that the SNR level at which the time-delay estimate begins to meet

the CRLB will depend on signal parameters, though in general the estimate will meet
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Fig. 4.12: The simulated frequency estimate standard deviation compared to the
CRLB.

the CRLB so long as SNR is greater than 0 dB.

Finally, the CRLB of the variance of the measurement of a phase parameter γ̂,

denoted σ2
γ, of an arbitrary complex pulsed signal in AWGN must be derived as the

typical phase CRLB listed in traditional sources such as [109] typically refers to the

estimation of the phase of a single-frequency sinusoid rather than an arbitrary signal

such as the pulse-compression LFM waveform used in this work. To begin, let p(t)

be an arbitrary complex signal with pulse length Tp and bandwidth B that is non-zero

only between t = 0 and t = Tp. Let the measured signal s(t) be given by

s(t) = p (t) e j γ, (4.104)

where γ is the unknown phase to be estimated. The signal samples to be leveraged in

the hypothetical estimator are sampled with a sampling time of Ts, with a sampling
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Fig. 4.13: The simulated time-delay estimate standard deviation compared to the
CRLB.

frequency f s = 1/Ts, giving the sampled signal

s[n] = p (nTs) e j γ. (4.105)

Assuming the signal is embedded in AWGN with noise variance σ2
N , the Fisher infor-

mation for γ is provided in a simplified form by [109]

I(γ) =
2
σ2

N

Ns−1∑
n=0

∣∣∣∣∣∣∂s[n; γ]
∂γ

∣∣∣∣∣∣2 , (4.106)

where Ns is the number of samples in the signal. The partial derivative of s[n] with

respect to γ is given by
∂s[n; γ]
∂γ

= j p (nTs) e j γ, (4.107)
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such that (4.106) may be rewritten as

I(γ) =
2
σ2

N

Ns−1∑
n=0

|p (nTs)|2 . (4.108)

Noting that only the non-zero samples of p (nTs) will contribute to the sum, the sum-

mation bounds may be changed to give

I(γ) =
2
σ2

N

Mp−1∑
n=0

|p (nTs)|2 , (4.109)

where Mp is the number of samples within the pulse length and is given by the floor

of Tp/Ts. The summation may be approximated by an integral, yielding

I(γ) ≈
2
σ2

N

1
Ts

∫ Tp

0
|p (t)|2 dt. (4.110)

Noting that the power of the signal Ps is given by

Ps =
1

Tp

∫ Tp

0
|p(t)|2 dt, (4.111)

the Fisher information can be expressed by

I(γ) =
2
σ2

N

PsTp

Ts
. (4.112)

Observing that the SNR is given by Ps/σ
2
N , and noting that Ts = 1/ f s, the substitutions

yield

I(γ) = 2 · Tp · f s · SNR. (4.113)
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Finally, inverting I(γ) yields the final CRLB for γ

var
(
γ̂
)
= σ2

γ ≥
1

2 · Tp · f s · SNR
, (4.114)

which is the final result for the phase CRLB.

Using the same signal parameters as the simulation demonstrated in Fig. 4.13,

Fig. 4.14 shows that the phase estimate meets the CRLB for SNR values greater than

-25 dB but less than 40 dB. This deviation from the CRLB after 40 dB is due to the

error in phase lookup from the digitized data since the integer sample peak is used

for computing phase rather than interpolating the phase in between samples during

the sinc NL-LS process; however, it will usually be inconsequential given the high

likelihood that a reasonable SNR will fall within the -25 to 40 dB range. Because the

SNR will likely fall within this range, the measurement variance,σ2
γ, may be computed

using the CRLB expression in (4.114).

4.4.3 Covariance of Estimates

To properly perform WLS, good estimates of the covariance matrices for the fre-

quency, time, and phase measurements are necessary. These matrices can be con-

structed under two key assumptions: that the estimates each meet or closely approach

the CRLB, which has been shown above, and that the measurements are indepen-

dent, and as such the covariance matrices may be diagonal with each entry along the

diagonal being computed by the associated CRLB expression. The independence as-

sumption follows from the fact that the error in each measurement arises from the

introduction of AWGN, which by definition will not introduce correlated errors.
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Fig. 4.14: The simulated phase estimate standard deviation compared to the CRLB.

First, for the frequency estimates, C f and C f ,d may both be computed as

C f = C f ,d = diag
([

V f
1,2 V f

1,3 . . . V f
1,Np

V f
2,1 V f

2,3 . . . V f
Np−1,Np

ϵ f

])
, (4.115)

where V f
i, j is defined as V f

i, j = var
(

f̂ αi, j
)
= var

(
f̂ α,di, j

)
, which may be computed using

the CRLB in (4.102), and where the diag (·) operator indicates a diagonal matrix with

the enclosed vector containing the diagonal entries. The value of ϵ f is included to

describe the variance in the solution to α1 = 1, which is nominally 0, though in a

real computation should be set to an arbitrarily low non-zero value to avoid numerical

errors. This covariance matrix describes the covariance of the vector containing all the

values of ηαi, j or ηα,di, j . Note that because in general this frequency estimation will not

be done with the data truncated to the width of the single-tone pulse, the variance of

the frequency measurement will likely not meet the CRLB. Assuming an up-sampling

of the FFT by a factor of 4, the measurement variance should approach closely to the

CRLB, and therefore (4.102) may still be applied with minimal error.
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The time-delay measurements, mi, j, are produced with variance Vτ
i, j computed

from the CRLB in (4.103). Let V R
i, j be the variance of the range measurements R̂i, j.

From (4.51), V R
i, j may be computed by

V R
i, j =

c2

4

(
V τ

i, j + V τ
j,i

)
. (4.116)

The range estimates can be constructed into a covariance matrix, ΣR, by

ΣR = diag
([

V R
1,2 V R

1,3 . . . V R
1,Np

V R
2,3 . . . V R

Np−1,Np

])
. (4.117)

Similarly, define V ϕ
i, j as the variance of the clock bias offset estimates ϕ̂i, j. From (4.52),

V ϕ
i, j may be computed by

V ϕ
i, j =

1
4

(
V τ

i, j + V τ
j,i

)
. (4.118)

If the direct estimates of clock bias are desired, the covariance matrix Cϕ can be con-

structed in a similar manner to C f by

Cϕ = diag
([

V ϕ
1,2 V ϕ

1,3 . . . V ϕ
1,Np

V ϕ
2,3 . . . V ϕ

Np−1,Np
ϵϕ

])
. (4.119)

In a similar fashion to ϵ f , the value of ϵϕ is included to describe the variance in the

solution to ϕ1 = 0, which is nominally 0, though in a real computation should be set

to an arbitrarily low non-zero value to avoid numerical errors.

Finally, the post-pulse compression phase measurements, ∠di, j(mi, j), are produced

with variance V γi, j computed from the CRLB in (4.114). From (4.68), the variance of

the carrier phase difference estimates, Verr
i, j , may be computed by

Verr
i, j = V γi, j + (2π f c)2

(V τ
i, j

2
+

V τ
j,i

2

)
. (4.120)
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From here, the covariance matrix Cγ may be defined as

Cγ = diag
([

Verr
1,2 Verr

1,3 . . . Verr
1,Np

Verr
2,1 Verr

2,3 . . . Verr
Np−1,Np

ϵerr

])
, (4.121)

where, similarly to the clock drift case, the value of ϵerr is included to describe the

variance in the solution to the equation γtx
1 = 0, which is nominally 0, though in a

real computation should be set to an arbitrarily low non-zero value to avoid numerical

errors.

4.4.4 Computing SNR

During the runtime of the proposed synchronization algorithm, it will be important

for an accurate estimate of the SNR of each signal to be available for the correct

construction of the covariance matrices for use in WLS estimation. A large body

of literature exists on this topic, though much of it is specifically devoted to SNR

estimation for communications signals [110]. The approach used in this work is the

matched-filter-based approach in [111], which has the advantage of being fast and

requiring only one pulse of the signal to achieve high accuracy.

4.4.5 Statistical Analysis Simulated Results

The proposed technique is evaluated here in terms of RMSE as a function of sev-

eral system and signal parameters. To confirm the theoretical performance, the RMSE

is also compared directly to the CRLB derived previously in this section. The follow-

ing normalizations are performed in this analysis. Since it is assumed that α1 = 1, all

true clock drift values are normalized by α1 to ensure a fair error comparison. For the

clock drift and carrier phase estimates, α1 and γtx
1 are omitted from the RMSE com-
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Fig. 4.15: The simulated clock drift estimate RMSE compared to the predicted vari-
ance derived from the CRLB as a function of SNR.

putation to avoid artificially reducing the RMSE since their error is zero by definition.

For the computation of the CRLB for clock drift and carrier phase, which are extracted

from the covariance matrices Σα and Σγ, the CRLB is computed by taking the mean of

the variance values along the diagonal. In a similar fashion to the RMSE, the variance

values associated with α1 and γtx
1 are omitted from this computation.

In each of the following simulations, the following errors are included. First, the

clock drift values are simulated as Gaussian distributed random values with a mean

of 1 and a standard deviation of σα = 25 × 10−6. The clock biases are simulated as

Gaussian distributed random values with a mean of 0 and standard deviation of σϕ =

1× 10−8 s. The TX and RX carrier phase values are uniformly distributed between −π

and π. Finally, the platforms are simulated to have three-dimensional positions whose

x, y, and z position values are simulated as Gaussian distributed random values with a

mean of 0 and a standard deviation of σp = 100 m. Furthermore, all of the following

simulations use the single-tone with exchange technique for clock drift estimation. A

TDMA time slot of 1 ms is used for all simulations as well, which will produce a
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noticeable impact when platform motion is included.

4.4.5.1 Stationary Platforms

The first set of simulations concerns the case of stationary platforms. These will

have the property that Doppler shift need not be considered. Crucially, this means that

time-delay errors due to incorrect Doppler estimation will not reduce range, bias, and

phase estimation accuracy. The case of Doppler shift is considered in Section 4.4.5.2.

First, the synchronization performance is analyzed as a function of SNR. This sim-

ulation is performed with a pulse length of Tp = 200 µs, a carrier frequency of

f c = 3 GHz, a sampling frequency of f s = 100 MHz, and a signal bandwidth of

B = 50 MHz for the time-delay estimation. Each data point is computed from 1000 in-

dependent simulated trials. Fig. 4.15 shows the RMSE for the clock drift estimates,

α̂i, in this scenario along with the variance predicted as derived from the frequency

estimate CRLB. The RMSE fails to exactly converge to the CRLB, which is a direct

result of the frequency estimates not reaching the CRLB due to the lack of pulse trun-

cation, as shown in Fig. 4.12. For these waveform and system parameters, an SNR of

0 dB leads to an RMSE of 3 parts per billion (ppb), which at 3 GHz leads to a carrier

frequency misalignment of 9 Hz; at 30 dB, the RMSE goes below 100 parts per trillion

(ppt), leading to a carrier frequency misalignment of 0.3 Hz. As with the frequency

CRLB simulation in Fig. 4.12 produced with similar parameters, the RMSE begins to

approach the CRLB for SNR values above -25 dB.

For the same simulation parameters, Fig. 4.16 shows the RMSE for the clock bias

difference estimate, ϕ̂i, j, along with the variance predicted by the time-delay CRLB.

As with the clock drift estimate, the RMSE closely approaches but does not meet the

CRLB. However, this is not a result of the time-delay estimate accuracy, which is
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Fig. 4.16: The simulated clock bias estimate RMSE compared to the predicted vari-
ance derived from the CRLB as a function of SNR.

demonstrated in Fig. 4.13 to meet the CRLB. Instead, this is due to the clock drift

estimate error, which adds a minor frequency error to the time-delay waveform due to

the carrier frequency skew. This frequency error results in a small but non-zero shift

in the pulse compression output as predicted by the ambiguity function of the chirp

waveform. This time-delay error ultimately manifests as additional error in the clock

bias estimates, forcing it to be slightly above the CRLB. Even so, the RMSE at 0 dB

SNR is as low as 53.5 ps, while at the higher 30 dB of SNR the RMSE is less than

2 ps. As with the time-delay CRLB simulation in Fig. 4.13 produced with similar

parameters, the RMSE begins to approach the CRLB for SNR values above -25 dB.

Similarly, Fig. 4.17 shows the RMSE for the range estimates, R̂i, j, along with the

variance predicted by the time-delay CRLB. Fig. 4.17 shows two RMSE plots for

range: an unnormalized plot in which the RMSE is computed using the true range

value Ri, j, and a normalized plot in which the RMSE is computed using the range

value scaled by the ratio of the clock drift estimate to the true clock drift (i.e., α j

α̂ j
Ri, j).

This is a valuable RMSE comparison since the ratio α j

α̂ j
will usually not equal 1 even if
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Fig. 4.17: The simulated range estimate RMSE compared to the predicted variance
derived from the CRLB as a function of SNR. The blue plot shows the unnormalized
RMSE computed against the true range values, while the red plot shows the normal-
ized RMSE computed against the drift ratio scaled range values.

the clock drift values are perfectly estimated due to the assumption that α1 = 1. The

unnormalized RMSE levels off at 3.5 mm error at 10 dB SNR, while the normalized

RMSE meets the CRLB for all SNR values above -25 dB. Interestingly, unlike the

clock bias estimate RMSE shown in Fig. 4.16, the normalized range estimate RMSE

does meet the CRLB despite both estimates being derived from the same time-delay

estimates. The reason for this is that the time-delay estimates mi, j and m j,i for a pair

of platforms will have equal and opposite errors introduced by clock drift estimate

errors due to the inverse clock skew between the platforms. Thus, since the range is

computed in (4.51) as the average of the two time-delay measurements, these opposite

errors will cancel each other out. This contrasts with the clock bias estimate, which is

computed in (4.52) as the weighted difference of the time-delay estimates, and as such

the opposite errors will add together.

Also using the same simulation parameters, Fig. 4.18 shows the RMSE for the
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Fig. 4.18: The simulated carrier phase estimate RMSE compared to the predicted
variance derived from the CRLB as a function of SNR.

carrier phase estimates, γ̂tx
i and γ̂rx

i , along with the variance predicted by the time-

delay and phase CRLB. As with the clock bias estimates, the carrier phase RMSE

approaches but does not meet the CRLB exactly due to additional time-delay errors

caused by the clock drift-induced frequency error. This plot highlights the difficulty

in phase synchronization since, despite very nearly meeting the CRLB, it requires

∼15 dB of SNR to achieve even 10° RMSE in carrier phase; to achieve 1° RMSE re-

quires greater than 30 dB. At 0 dB SNR, the phase RMSE is at an unacceptable 100°.

The primary hurdle in achieving high phase synchronization performance is achieving

high time-delay estimation performance, since this component of the phase variance

in (4.120) dominates the variance introduced by the phase measurement itself. Thus,

increasing phase estimate accuracy in this case requires increasing the time-delay ac-

curacy, which can be accomplished through a combination of higher bandwidths and

sampling frequencies, longer pulse lengths, and greater SNR, as dictated by the CRLB

in (4.103).

Fig. 4.19 shows the clock drift estimate RMSE as a function of carrier frequency,
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Fig. 4.19: The simulated clock drift estimate RMSE compared to the predicted vari-
ance derived from the CRLB as a function of carrier frequency f c.

f c, while Fig. 4.20 shows the RMSE as a function of the number of platforms in the

network, Np. In both of these, the SNR is held constant at 30 dB. First, these plots

show that the clock drift will approach but not meet the CRLB due to the frequency

estimate not meeting the CRLB. These plots also show that the clock drift estimate

RMSE is inversely related to both the carrier frequency and network size, neither of

which is included in the expression for frequency CRLB in (4.102). Instead, these

parameters contribute to the predicted variance bound in the covariance computation

in (4.90). For the carrier frequency case, a higher carrier frequency adds “resolu-

tion” to the drift estimation since varying the clock drift by some amount will lead to

larger changes in frequency, while the frequency estimate itself retains the same accu-

racy. The downside to increasing carrier frequency is that the accuracy requirement for

clock drift estimation increases to achieve the same level of frequency alignment be-

tween systems; as a result, this increased accuracy due to higher carrier frequency will

be canceled out by the increased accuracy requirement. In the case of network size,

a larger number of platforms yields a quadratically scaled number of equations and
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Fig. 4.20: The simulated carrier phase estimate RMSE compared to the predicted
variance derived from the CRLB as a function of the network size Np.

increases the degree to which the clock drift system of equations is overdetermined.

4.4.5.2 Moving Platforms

In the next scenario, platforms in the Monte Carlo simulation are simulated to have

platform motion, with the velocity standard deviation in each dimension being set to

σv = 10 m/s. Other than this, the properties of the simulation with the stationary plat-

form case are unchanged. First, the clock drift RMSE along with predicted variance

derived from the CRLB is shown in Fig. 4.21. When comparing to the stationary case

in Fig. 4.15, the RMSE, as well as the CRLB, are unchanged, implying that there is

no expected or actual impact on the clock drift estimation performance when platform

motion is present. This is generally corroborated by the results in Fig. 4.9.

For the same simulation parameters, Fig. 4.22 shows the RMSE for the Doppler

shift frequency estimate, f̂ d
i, j, along with the variance predicted by the transformation

of the frequency CRLB. As with the clock drift estimate, this closely approaches the
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Fig. 4.21: The simulated clock drift estimate RMSE with platform motion compared
to the predicted variance derived from the CRLB as a function of SNR.

performance predicted in the CRLB but does not reach it entirely. This is also due to

the frequency estimates not reaching the CRLB due to the lack of pulse truncation,

as shown in Fig. 4.12. It can be seen that the Doppler frequency estimation with

these specific simulation parameters leads to a 10 Hz RMSE at an SNR of 0 dB, and

decreases by 5 Hz per decade. Therefore, sub-Hz level accuracy is achievable for

greater than 20 dB of SNR.

The RMSE for the clock bias difference estimate, ϕ̂i, j, with platform motion is

shown in Fig. 4.23, along with the variance predicted by the time-delay CRLB. Com-

pared to the stationary case in Fig. 4.16, the RMSE is higher for all values of SNR.

This is due to the increased frequency offset of the time-delay waveform, now caused

both by carrier frequency skew present in the stationary case as well as the uncom-

pensated Doppler shift resulting from error in the Doppler shift estimation, both of

which lead to erroneous shifting as predicted by the ambiguity function. Although

the performance is certainly lowered for the platform motion case, it is not lowered

significantly, and moderate levels of SNR will still lead to clock bias estimation errors
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Fig. 4.22: The simulated Doppler shift estimate RMSE with platform motion com-
pared to the predicted variance derived from the CRLB as a function of SNR.

in the low ps range.

The range RMSE is shown in Fig. 4.24. Recall from Section 4.2.2.2 that the range

between platforms will not be symmetric when TDMA is used to multiplex the ranging

signals during the time synchronization procedure. Therefore, the expression in (4.67)

should be used in place of the expression in (4.51) to compensate for the amount the

platforms move relative to one another between their respective time slots. It can

be seen here that the performance of the range estimation is degraded. This will be

primarily due to the imperfect estimation due to the TDMA – the motion will be com-

pensated somewhat by (4.67), but this expression makes some assumptions and will

therefore lead to error. In particular, the range estimates hit an accuracy floor after a

certain level of SNR, and no additional SNR will improve the estimate RMSE. How-

ever, it can clearly be seen that both the drift normalized and unnormalized estimates

are improved and have a lower SNR floor when the asymmetric range computation

is used in place of the symmetric range computation. Furthermore, the unnormal-

ized RMSE with the asymmetric range computation still reaches an RMSE of close to
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Fig. 4.23: The simulated clock bias estimate RMSE with platform motion compared
to the predicted variance derived from the CRLB as a function of SNR.

5 mm at an SNR of 20 dB, which should be an acceptable error level for cooperative

navigation.

Finally, Fig. 4.25 shows the RMSE for the carrier phase estimates, γtx
i and γrx

i , for

the platform motion case, along with the variance predicted by the time-delay and

phase CRLB. Due to the range estimate error in Fig. 4.24 at higher levels of SNR as a

result of the TDMA velocity errors, the phase estimates also get lower at higher levels

of SNR, leveling off at around 1° after 40 dB of SNR. This error will be difficult to

overcome since, as discussed above, the carrier phase error will be dominated by the

range RMSE rather than the direct phase estimation RMSE described by the CRLB

shown in Fig. 4.14. Tor the lower values of SNR (0–30 dB), the carrier phase estimates

will generally meet the same RMSE as the stationary case shown in Fig. 4.18 since

the range RMSE will not strongly deviate from the CRLB over these values of SNR.
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Fig. 4.24: The simulated range estimate RMSE with platform motion compared to
the predicted variance derived from the CRLB as a function of SNR. The blue plot
shows the unnormalized RMSE computed against the true range values, while the
red plot shows the normalized RMSE computed against the drift ratio scaled range
values, both computed using the asymmetric range computation in (4.67). The cyan
and magenta plots show the same unnormalized and normalized range RMSE but
using the symmetric range computation in (4.51).

4.5 Radar Results

In this section, the proposed synchronization technique is demonstrated in two

practical radar scenario simulations. In the first, a wirelessly distributed array of sta-

tionary transmitters is used to perform transmit beamforming toward a target location.

The coherent energy gain of the transmitted signals at the destination is analyzed over

a short period for varying values of SNR during the synchronization procedure. In

the second, three platforms are simulated in a distributed SAR scenario with relative

motion between the SAR platforms. The SAR PSRs are computed for several differ-

ent values of SNR to show the synchronization effectiveness in scenarios with relative

motion.
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Fig. 4.25: The simulated carrier phase estimate RMSE with platform motion compared
to the predicted variance derived from the CRLB as a function of SNR.

4.5.1 Distributed Beamforming Results

First, a simulated scenario is devised in which a distributed array of transmitter

platforms are coordinated to transmit a single signal toward a known destination and

beamform such that the transmitted signals add coherently at the destination. This sce-

nario is simulated with and without synchronization, with synchronization performed

at several different levels of SNR to demonstrate the coherent gain performance at the

desired destination. The synchronization procedure used in this case is single-tone

with exchange.

In the simulated scenario, the beamforming destination is placed at the origin, and

20 transmitters are placed in a line 1000 m from the destination. The transmitters

are spaced 100 m apart and the line is centered along the line-of-sight vector to the

destination. A diagram of the simulated scenario is provided in Fig. 4.26. In this

scenario, it is assumed that each transmitter knows its own position, the positions of

the other transmitters, and the position of the destination such that localization errors
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Fig. 4.26: The simulated distributed beamforming scenario.

will not contribute any loss to the coherent gain at the destination.

After synchronization, each platform transmitter begins transmitting LFM pulses

toward the destination. In addition to applying the time and phase compensations

required by the synchronization routine, each transmitter i also applies a fractional

time delay, τi
0, and a phase shift, γi

0, relative to a reference range, R0, such that its

transmitted signal will arrive at the destination at the same time as a signal transmitted

from a transmitter separated from the destination by a distance R0. The time shift is

determined by

τi
0 =

R0 − Ri

c
, (4.122)
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where Ri is the distance between transmitter i and the destination, and the phase shift

is determined by

γ
i
0 = −2π f c R0 − Ri

c
. (4.123)

The time delay in conjunction with the phase shift will ensure that there is RF coher-

ence as well as information coherence at the destination.

In this scenario, each transmitter transmits at a carrier frequency of f c = 3 GHz.

The transmitted signals are LFM waveforms with a pulse length of 5 µs and a band-

width of 50 MHz. The reference range, R0, is selected as the largest distance between

the destination and any one transmitter, as shown in Fig. 4.26. The destination is

simulated with reference to the clock drift of transmitter 1 (shown on the far left of

Fig. 4.26) such that the simulated signal window will remain stationary over time.

The signal transmissions are simulated periodically over a 1 s time span to show

how decoherence will occur over time due to the imperfectly corrected carrier frequen-

cies at the transmitters. The clock biases are distributed with a low standard deviation

of 10 ns such that at t = 0, even when unsynchronized, the transmitted signals will

mostly appear within the signal window even though they will not coherently integrate

due to phase and frequency offsets. Over time, however, the signals will drift out of

the signal window and will not contribute to the coherent gain. For simplicity, the sig-

nals are simulated at baseband as though they were down-converted at the destination,

though in reality, the destination would be a target reflecting the radar signals back to

the transmitters.

Let td be the reference time at the destination, and let rd, j(td) be the signal transmit-

ted by transmitter i in the reference time at the destination. The total signal observed
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at the destination, rd(td), will be given by

rd(td) =
20∑
i=1

rd,i(td). (4.124)

The energy Er of the total signal may be computed by

Er =

∫
|rd(td)|2 dtd. (4.125)

In this simulation, the energy computation is only performed over the time interval

in which the signals are expected to appear with a 100 ns buffer on either side. As a

result, signals with significant time drift due to unsynchronized clock drifts will drift

outside this integration window and will not be included in the energy calculation.

Fig. 4.27 shows the result of the summation of the 20 incident signals at the desti-

nation for several different synchronization cases. For the case of no synchronization,

the coherent sum has a very low amplitude at td = 0 owing to the lack of phase

coherence amongst the signals. The amplitude is also modulated due to the lack of

frequency synchronization amongst the transmitters. At td = 1, the individual signals

have largely drifted out of the signal window and the sum has a low amplitude and

does not match the LFM template at all. With synchronization at 10 dB SNR, the

summation at td = 0 has an amplitude of nearly 20, indicating nearly perfect coher-

ence. However, at td = 1, the amplitude has diminished significantly due to the loss of

phase coherence owing to small but non-zero errors in carrier frequency amongst the

transmitters. This problem is observed with 30 dB SNR to a much lesser degree, and

the problem is nearly eliminated when synchronized with 50 dB SNR.

To compute an explicit metric for coherent gain, the ratio of the energy, Er, in the

summed signal to the energy in the ideal summed signal is computed for the different
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Fig. 4.27: The 20 individual signals at the destination and their sum: without synchro-
nization, at td = 0 (a) and td = 1 (b); with synchronization at 10 dB SNR, at td = 0 (c)
and td = 1 (d); with synchronization at 30 dB SNR, at td = 0 (e) and td = 1 (f); and
with synchronization at 50 dB SNR, at td = 0 (g) and td = 1 (h). The coherent sum of
the signals is shown in black.
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Fig. 4.28: The coherent energy gain of the beamformed signal, relative to the ideal
case, as a function of time.

synchronization cases, such that 0 dB of coherent gain indicates perfect performance.

This evaluation is performed over the 1 s simulation time to show how the gain per-

formance changes with time. The results are given in Fig. 4.28. For the case of no

synchronization, the gain performance starts below -10 dB at td = 0 and deteriorates

further as time goes on, ending with -20 dB of gain. The synchronization case with

10 dB of SNR has nearly perfect performance at td = 0, but its performance quickly

deteriorates due to the carrier frequency misalignment between transmitters. However,

with 30 dB of SNR, only 1 dB of coherent gain is lost over the simulation time, and

with 50 dB of SNR, the coherent gain loss is negligible. These results indicate that

if the synchronization is performed in a case with lower SNR (<20 dB, for example),

it will need to be performed again at regular intervals to maintain high performance.

If larger values of SNR are expected, then the procedure can be performed less fre-

quently.
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4.5.2 SAR PSR Results

To demonstrate the impact of the synchronization procedure on radar performance,

a distributed radar network scenario is simulated. The performance of the simulated

network is compared with and without synchronization. The simulated scenario is a

MIMO SAR mission in which three SAR platforms fly co-linearly at different veloc-

ities and with different sub-aperture lengths during the CPI. The platforms are simu-

lated with random clock drifts, clock biases, and carrier phases to be compensated to

enable MIMO operation.

In this scene, a single point target is located at the origin such that the gener-

ated SAR images describe the PSR of the simulated radar network, which provides a

holistic description of the quality of the images formed by this particular MIMO SAR

imaging configuration. Each system flies 9 km away from the target with a flight alti-

tude of 300 m. Platform 1 flies with a velocity of 40 m/s, Platform 2 with a velocity of

50 m/s, and Platform 3 with a velocity of 60 m/s. The CPI is 1 s long and the platforms

fly co-linearly but with an uneven spread between the subapertures such that the full

aperture formed by the platforms is 360 m long with the gaps being filled due to the

MIMO configuration equivalent phase centers [23]. Fig. 4.29 shows the SAR imaging

geometry of this scene.

The radar systems operate with a carrier frequency of 3 GHz. Each system captures

1200 pulses at a PRF of 1200 Hz over the 1 s CPI. The platforms are configured to

transmit in a MIMO configuration through TDMA in which each platform is assigned

1/3 of the pulse repetition time (PRT). The radar waveform used by each system is an

LFM pulse with a length of 10 µs and a bandwidth of 100 MHz.

The simulated clock drifts αi are randomly generated from a uniform distribution
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Fig. 4.29: The motion paths of the three MIMO SAR platforms. The single target
location at the origin is indicated by an X. From [4]©2024 IEEE.

bounded by 1 ± 25 × 10−6, modeling oscillators with a ±25 ppm accuracy. The clock

biases ϕi are randomly generated from a normal distribution with a standard devia-

tion of 10 ns. The carrier phases γtx
i and γrx

i are randomly generated from a uniform

distribution between −π and π rad.

Four different synchronization cases are simulated. In the first, the radar systems

are simulated with perfect synchronization to each other and to the global time frame

– that is, αi = 1, ϕi = 0 s, and γtx
i = γ

rx
i = 0 rad. In the second, the randomly generated

clock and phase errors are not compensated at all. In the third and fourth scenar-

ios, the single-tone with exchange synchronization technique is performed to achieve

synchronization, with 30 and 50 dB of SNR during the synchronization procedure,

respectively.

The two-dimensional magnitude images of the PSRs resulting from these four
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Fig. 4.30: Simulated PSR for different synchronization cases: perfect synchronization
(a), no synchronization (b), synchronization performed with 30 dB of SNR (c), and
synchronization performed with 50 dB of SNR (d). From [4]©2024 IEEE.

synchronization cases are shown in Fig. 4.30. Note that although the practical syn-

chronization cases are simulated with 30 dB and 50 dB of SNR for the purposes of

synchronization, noise is not included in the radar simulation to enable clear observa-

tion of the PSR since simulated noise would only raise the noise floor of this image

and provide no additional information on the performance of the radar systems due

to synchronization accuracy. The PSR images are formed using the backprojection

algorithm, and it is assumed that the locations of the radar systems on each pulse are

known perfectly such that motion compensation contributes no error to the formation

of the PSR. The ideal PSR shows a clear 2-D sinc function form centered at the origin,

which is to be expected from a PSR. There are some distortions in the cross-range

(or azimuth) dimension of the PSR due to the irregularities of the full MIMO aperture.

153



The case of no synchronization shows a severely smeared PSR with two peaks, neither

centered at the origin as desired, indicating no useful summation of the radar returns

from each different platform. An image formed with this PSR would be severely

blurred and unrecognizable. The case of synchronization with 30 dB of SNR shows

a PSR whose shape closely matches the ideal, though with more degradation in the

sidelobe structure in azimuth due to imperfect coherent integration among platforms,

indicating some minor residual phase errors. Finally, the case of synchronization with

50 dB of SNR shows a PSR that matches the ideal with no discernible error, indicating

that with this relatively high level of SNR, a sufficiently high-quality synchronization

can be achieved to effectively eliminate noticeable errors in the SAR image.

One-dimensional cuts of the cross-track and along-track dimensions of the PSRs

are shown in Fig. 4.31. The magnitude of the PSRs shown in these plots are normal-

ized to the peak of the ideal PSR and shifted such that the peak of each PSR is aligned

with the others in the plot. As a result, these plots show not only the cross-track

degradation of the PSR when the MIMO platforms are not properly synchronized but

also the coherent gain lost when the radar returns cannot be coherently integrated. Ta-

ble 4.1 lists three quality metrics for the different PSRs: the relative peak value (RPV),

which describes the mainlobe peak value normalized to the ideal case; the peak side-

lobe level ratio (PSLR), which describes the ratio of the peak sidelobe value of the

PSR to the peak value in the mainlobe; and the integrated sidelobe level ratio (ISLR),

which describes the ratio of the energy in the sidelobes to the energy in the main-

lobe. For the RPV, a larger value is better (with the ideal value being 0 dB). Without

synchronization, the RPV is less than -10 dB, indicating a 10 dB reduction in coher-

ent gain. This dramatic loss in image power is a result not only of the out-of-phase

summation of sub-images but also of the fact that the clock offsets between platforms
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Fig. 4.31: One-dimensional cuts of the simulated PSR for the cases of perfect syn-
chronization, no synchronization, and synchronization performed with 30 and 50 dB
of SNR. The cross-track cut is shown in (a) and the along-track cut is shown in (b).
From [4]©2024 IEEE.

Table 4.1: PSR Quality Metrics. From [4]©2024 IEEE.

RPV (dB) PSLR (dB) ISLR (dB)
Ideal Sync 0.000 -11.367 -4.457
No Sync -10.022 -0.937 4.707
30 dB SNR Sync -1.225 -9.295 -3.908
50 dB SNR Sync -0.008 -11.343 -4.458

virtually guarantee that the MIMO returns between platforms will not appear at the

correct range and will therefore not contribute significant energy to the PSR at all. As

a result, the PSR is composed only of the summation of the returns from the three

monostatic configurations. The case of synchronization with 30 dB SNR also shows a

minor coherent gain reduction with an RPV of -1.2 dB, though this can be attributed

primarily to phase errors rather than range misestimation. In the 50 dB SNR case, the

PSR almost perfectly matches the ideal PSR and has an RPV of only -0.008 dB. For

PSLR and ISLR, lower values that are as close as possible to the ideal synchronization

case are better. For the unsynchronized case, the PSLR is greater than -1 dB, indicat-

ing a sidelobe level nearly matching the mainlobe (which is clear from Fig. 4.31b),

while the ISLR is greater than 0 dB, indicating a larger amount of energy in the side-
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lobes than the mainlobe. The synchronized cases improve these metrics substantially,

reducing the PSLR to -9 and -11 dB and the ISLR to -4 dB. For the 50 dB SNR case,

the PSLR and ISLR are very near to those of the ideal PSR.

The technique described in this chapter enables synchronization of distributed

radar systems in time, phase, and frequency. However, as described here, it may only

be performed once or in a sequence in which all prior synchronization information is

discarded. To maximized synchronization quality over time, some form of Kalman

filter should be implemented with the synchronization procedure to track the synchro-

nization states over time. The process for integrating the synchronization technique

with a Kalman filter is described in the next chapter.
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Chapter 5

Filtered Synchronization

The synchronization technique, as described above in Chapter 4, is to be performed

once and the different clock corrections are used perpetually. This solution is not prac-

tical in reality since imperfections in clock drift estimation will lead to an observed

drift in clock bias and carrier phase over time. Furthermore, due to real clock con-

siderations such as the Allan variance [112], the frequency offset of the oscillators

manifesting in the clock drift will not remain constant over time, and such must be

reevaluated regularly to maintain synchronization. The simplest approach to resolve

this problem is to perform the synchronization process periodically. However, because

the synchronization procedure relies on no previous information, the information on

the previous synchronization iteration is discarded. By implementing a Kalman filter

to track the clock state estimates, previous iterations of the clock parameter estimates

may be leveraged. The main advantage of doing this is that the accuracy of each

successive estimate of different clock parameters will generally increase over time.

Furthermore, if the SNR of the signal exchanges fluctuates with time, the clock pa-

rameter estimates with high SNR can be prioritized, while those with low SNR can be

ignored.

In this chapter, a framework for applying principles of the Kalman filter (with an
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emphasis on the UKF for ease of integration later on with the cooperative navigation

filter) is provided. First, the state model is described. This state model includes es-

timates of relative velocity and range, though it does not directly attempt to estimate

platform position and velocity as this is addressed in Chapter 6. The initialization

of the filter is discussed as well. The most difficult component of implementing the

filter is properly obtaining meaningful measurements and deriving an accurate mea-

surement model. Two methods for doing this are proposed in this section, which have

different advantages and limitations. The first method uses time-delay, frequency, and

phase measurements directly with a nonlinear relationship modeled between the mea-

surements and the clock parameter state values. The second method simply reproduces

the synchronization technique at each iteration and the clock parameter estimates are

used directly as measurements. For each of these proposed measurement models, pre-

liminary accuracy results are provided and discussed.

5.1 State Model

For the basic synchronization problem, it is sensible to track the clock drift, clock

bias, and TX and RX carrier phases of each transceiver platform, as well as the range

and relative radial velocities between each pair of platforms. For now, the tracking of

the absolute positions and velocities of the platforms is omitted in favor of including

only relative ranges and velocities between pairs of platforms. Define xαk as

xk
α =

[
α

k
1 . . . α

k
Np

]T
(5.1)
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where αk
i is the drift value, αi, for platform i on iteration k. For the estimate of the

clock drift on iteration k, define α̂k
i . Similarly, define xϕk as

xk
ϕ =

[
ϕk

1 . . . ϕk
Np

]T
, (5.2)

where ϕk
i is the bias value, ϕi, for platform i on iteration k. For the estimate of the

clock bias on iteration k, define ϕ̂k
i . Finally, define xk

γ as

xk
γ =

[
γ

tx
1,k γ

rx
1,k . . . γ

tx
Np,k γ

rx
Np,k

]T
, (5.3)

where γtx
i,k and γrx

i,k are the TX and RX carrier phase values, γtx
i and γrx

i , respectively, for

platform i on iteration k. For the estimates of the carrier on iteration k, define γ̂tx
i,k and

γ̂rx
i,k.

Further, define xk
R as

xk
R =

[
Rk

1,2 Rk
1,3 . . . Rk

1,Np
Rk

2,3 . . . Rk
Np−1,Np

]T
(5.4)

and xk
v as

xk
v =

[
vk

1,2 vk
1,3 . . . vk

1,Np
vk

2,3 . . . vk
Np−1,Np

]T
. (5.5)
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The full system state on iteration k (xsync
k ) may then be described by

xsync
k =



xk
α

xk
v

xk
ϕ

xk
R

xk
γ



. (5.6)

Generally, the constituent variables of xk
α, xk

ϕ, and xk
γ may evolve randomly with

time but not in a way that may be modeled explicitly. Instead, these variables are

modeled as constant with time and the random walk of the clock drift, bias, and car-

rier phases are described by the process covariance. Furthermore, the inter-platform

range values may be described as evolving based on the relative radial velocities of

the platforms, which in turn is assumed to be constant with some random change de-

scribed in the process covariance. Thus, the full system update function, fk(x), may

be described by

xk+1
α = xk

α + wk
α

xk+1
ϕ = xk

ϕ + wk
ϕ

xk+1
γ = xk

γ + wk
γ

xk+1
R = xk

R +
(
xk

v + wk
v

)
∆t

xk+1
v = xk

v + wk
v

(5.7)

where wk
α is the clock drift state process noise vector for iteration k with wk

α ∼ N
(
0, Qαk

)
,
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wk
ϕ is the clock drift state process noise vector for iteration k with wk

ϕ ∼ N
(
0, Qϕ

k

)
,

wk
γ is the clock drift state process noise vector for iteration k with wk

γ ∼ N
(
0, Qγk

)
,

and wk
v is the velocity process noise vector with wk

v ∼ N
(
0, Qv

k

)
. The noise values are

unknowable and are not included in the model during the state transition portion of

the Kalman filter, and the noise is accounted for in the process covariance matrix.

Each of the covariance matrices described above will most likely be a diagonal

matrix since it is assumed that each platform will have independent clock errors and

generally independent motion characteristics. In a real system, Qαk will have its en-

tries defined by the Allan variance of each MO. Ideally, it would be expected that Qϕ
k

and Qγk will be zero since the carrier phase and clock bias are modeled as constants.

However, in practice, these values may actually drift somewhat as imperfections in the

clock drift estimate will ultimately manifest practically as a slow drift of the time axis

on each receiver related to the clock skew (drift in clock bias) and a slow drift of the

carrier phase related to the carrier offset between platforms. The relative velocity co-

variance will be very difficult to define since it will generally depend on the expected

motion (in particular, the expected accelerations) of each platform relative to one an-

other. Modeling these matrices precisely is the subject of future work and will not

be explored in detail in this dissertation. Assuming that some meaningful values for

these covariance matrices are available, the process covariance for the synchronization
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Kalman filter, Qsync
k , may be defined by

Qsync
k =



Qαk 0 0 0 0

0 Qv
k 0 Qv

k∆t 0

0 0 Qϕ
k 0 0

0 Qv
k∆t 0 Qv

k∆t2 0

0 0 0 0 Qγk



. (5.8)

5.2 Initializing the Filter State and Covariance

Initializing the filter is straightforward. The initialization begins by running the

synchronization algorithm once. This produces the estimates x̂ f defined in (4.86)

(which contains the clock drift estimates x̂α and velocity estimates x̂v), x̂ϕ defined

in (4.94), x̂γ defined in (4.96), as well as estimates of range in a vector x̂R. The initial

system state estimate, x̂sync
0 , may therefore be defined by

x̂sync
0 =



x̂α

x̂v

x̂ϕ

x̂R

x̂γ



. (5.9)
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The initial system state covariance, Ĉsync
0 , is given by

Ĉsync
0 =



Σ0
f ,v . . . . . . 0

... Σ0
ϕ

. . .
...

...
. . . Σ0

R
...

0 . . . . . . Σ0
γ


, (5.10)

where Σk
f ,v is the clock drift and velocity covariance computed from (4.93) using the

SNR at iteration k; Σk
ϕ is the clock bias covariance computed from (4.95) using the

SNR at iteration k; Σk
R is the range covariance computed from (4.117) using the SNR

at iteration k; and Σk
γ is the carrier phase covariance computed from (4.97) using the

SNR at iteration k.

5.3 Time, Phase, and Frequency Approach

After the initial synchronization process to initialize the filter, signals must con-

tinue to be periodically exchanged between platforms to continue tracking the syn-

chronization quality of the network and correcting errors. After the initial synchro-

nization, even with clock errors, the clock drift will be sufficiently corrected such that

signals are virtually guaranteed to fall within the receive window of each receiver.

As a result, there is no downside to transmitting a single-tone signal for frequency

extraction along with a pulse-compression waveform for time and phase extraction,

resulting in a 50% reduction in the amount of time required for each iteration of the

synchronization. Define the signal broadcast by transmitter j as

s j(τ j) = sd
j (τ j) + st

j(τ j), (5.11)
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Fig. 5.1: An example of s j(τ j) using a LFM pulse as for the pulse-compression com-
ponent.

where sd
j (τ j) is some pulse-compression signal with a pulse width Tp, bandwidth B, an

auto-correlation response of d j(τ j), and an ambiguity function A j(t, f ). Furthermore,

st
j(τ j) is a rectangularly windowed pulse of a single tone frequency f αj delayed from

sd
j (τ j) by some amount T2, also with a pulse length of Tp, expressed by

st
j(τ j) = exp

(
j 2π f αj τ j

)
rect

τ j −
3
2Tp − T2

Tp

 . (5.12)

In a practical scenario, the pulse length of sd
j (τ j) and st

j(τ j) may be set differently, but

for simplicity here they are assumed to both be the same value Tp. Further, since the

full signal on receive will be matched-filtered using sd
j (τ j) as the filter template, T2

should be set such that the matched-filter output due to st
j(τ j) will not interfere with

the peak value of d j(τ j). The easiest way to ensure this is by setting T2 = Tp, and this

assumption will be made moving forward. An example of s j(τ j) using this model with

a LFM pulse for sd
j (τ j) is shown in Fig. 5.1.

Because each platform continues applying the synchronization corrections to all

164



transmitted and received signals, each receiver i observes the signal broadcast by trans-

mitter j as the signal r̃ f
i, j(τ

′
i) as described in (4.74). Let r̃k

i, j(τ
′
i) be the received signal at

platform i and transmitted by platform j on iteration k including all TX and RX correc-

tions. In each of the Kalman filtering approaches to synchronization described here,

the final corrected signal in (4.74) will be described in terms of the previous clock

state estimates (which are known constants) and the current true clock state values

(which are unknowns). Furthermore, to be given entirely in terms of the state values,

the Doppler shift frequency f d
i, j is replaced by the Doppler shift expression in terms of

the radial velocity state variable given by

f d
i, j = −vk

i, j
f c

c
. (5.13)

Additionally, let T tx
j,k be the transmit time for platform j at iteration k, which must be

included since it will impact the time-delay estimate due to time-axis dilation and the

phase estimate due to offsets in carrier frequency. In this way, (4.74) can be modified

to give r̃k
i, j(τ

′
i) as

r̃k
i, j(τ

′
i) = s j

αk
jα̂

k−1
i

α̂k−1
j α

k
i

τ′i −

 αk
j

α̂k−1
j α

k
i

(
ϕk

i − ϕ̂
k−1
i

)
−

1
α̂ j

(
ϕk

j − ϕ̂
k−1
j

)
+
αk

j

α̂k−1
j

Rk
i, j

c

 − T tx
j,k


· exp

−j 2π f c

 αk
j

α̂k−1
j α

k
i

(
ϕk

i − ϕ̂
k−1
i

)
−

1
α̂k−1

j

(
ϕk

j − ϕ̂
k−1
j

)
+
αk

j

α̂k−1
j

Rk
i, j

c


· exp

 j 2π f c

αk
jα̂

k−1
i

α̂k−1
j α

k
i

− 1

 τ′i exp
(
−j 2π

α̂k−1
i

αk
i

vk
i, j

f c

c

(
τ′i − T tx

j,k

))

· exp
(

j 2π
1
αk

i

vk
i, j

f c

c

(
ϕk

i − ϕ̂
k−1
i

))
exp

(
j
((
γ

tx
j,k − γ̂

tx
j,k−1

)
−

(
γ

rx
i,k − γ̂

rx
i,k−1

)))
.

(5.14)
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The above expression will be valid for this time, phase, and frequency approach, as

well as the iterative synchronization approach described in Section 5.4.

The process of computing measurement inputs to the UKF will involve extracting

the time-delay, phase, and frequency of the received signals in much the same way

as the original synchronization procedure. Define τ̂k
i, j, γ̂

k
i, j, and f̂ k

i, j as the time-delay,

phase, and frequency estimates, respectively, extracted from r̃k
i, j(τ

′
i) on iteration k be-

tween transmitter j and receiver i. Let dk
i, j(τ

′
i) be the cross-correlation of sd

j (τ
′
i) with

r̃k
i, j(τ

′
i). Similarly to the original synchronization time-delay estimate, τ̂k

i, j is determined

as the time value which maximizes dk
i, j(τ

′
i), and the phase estimate, γ̂k

i, j, is given as the

phase of the cross-correlation at this point, ∠dk
i, j(τ̂

k
i, j). Using the time-delay estimate,

the received signal should be truncated to include only the single-tone pulse such that

the frequency domain estimation will meet the CRLB (recall from Section 4.4.2 that

the sinc NL-LS frequency domain estimation only meets the CRLB when the capture

length is as long as the pulse length). Finally, after this truncation, the FFT of the

truncated data should be computed and the frequency estimate, f̂ k
i, j, can be computed

as the solution to the sinc NL-LS frequency domain peak estimation. These estimates

will be directly used to form the measurement vector for this approach to the synchro-

nization UKF, and will also be used in forming the measurement vector in the iterative

synchronization approach described in Section 5.4.

Define zk
τ,TPF as the measurement vector for iteration k containing time-delay mea-

surements obtained from the signal exchanged between transmitter j and receiver i,

given by

zk
τ,TPF =

[
τ̂k

1,2 τ̂k
1,3 . . . τ̂k

1,Np
τ̂k

2,1 τ̂k
2,3 . . . τ̂k

Np−1,Np

]T
. (5.15)
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Similarly, define a phase measurement vector, zk
γ,TPF, by

zk
γ,TPF =

[
γ̂

k
1,2 γ̂

k
1,3 . . . γ̂

k
1,Np

γ̂
k
2,1 γ̂

k
2,3 . . . γ̂

k
Np−1,Np

]T
. (5.16)

Finally, define a frequency measurement vector, zk
f ,TPF, by

zk
f ,TPF =

[
f̂ k
1,2 f̂ k

1,3 . . . f̂ k
1,Np

f̂ k
2,1 f̂ k

2,3 . . . f̂ k
Np−1,Np

]T
. (5.17)

The full measurement vector for the time, phase, and frequency approach, zTPF
k , may

then be composed of these measurements by

zTPF
k =



zk
τ,TPF

zk
γ,TPF

zk
f ,TPF


. (5.18)

With the state model described here, and the measurement model derived below, the

full UKF may be run exactly as described in Section 2.1.3.

5.3.1 Derivation of Measurement Model

This section derives the measurement function, hk(z), for the time, phase, and

frequency approach. By observation of the fully corrected signal model in (4.74),

a measurement model may be constructed for τ̂k
i, j, γ̂

k
i, j, and f̂ k

i, j. Note that each sig-

nal exchange will leverage the clock error estimates from the previous iteration to

compensate the signal on the current iteration, and thus the measurement model will

depend on the previous (known) estimates and current (unknown) state parameters.
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First, the time-delay estimate, τ̂k
i, j, will be computed as the delay parameter of

the baseband signal in (4.74). This is computed by determining the peak value of

dk
i, j(τ

′
i) through sinc NL-LS interpolation. Because it is not assumed that the pulse-

compression signal is not Doppler-tolerant, it is possible that an additional frequency

shift-induced time shift will be present. This additional shift can be computed from

the peak of the ambiguity function A j(t, f ) at the f value equal to the frequency shift

in (4.74). Ignoring the RX signal contribution of st
j(t) and focusing on the RX compo-

nent corresponding to sd
j (t), the cross-correlation will be given by

dk
i, j(τ

′
i) = A j

αk
jα̂

k−1
i

α̂k−1
j α

k
i

τ′i − ρ̃ − T tx
j,k, f c

αk
jα̂

k−1
i

α̂k−1
j α

k
i

− 1

 − α̂k−1
i

αk
i

vk
i, j

f c

c

 exp
(
−j 2π f cρ̃

)
exp

 j 2π f c

αk
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(5.19)

where the auxiliary variable ρ̃ is defined by

ρ̃ =
αk

j

α̂k−1
j α

k
i

(
ϕk

i − ϕ̂
k−1
i

)
−

1
α̂ j

(
ϕk

j − ϕ̂
k−1
j

)
+
αk

j

α̂k−1
j

Rk
i, j

c
. (5.20)

The expression in (5.19) includes a phase term related to the carrier offset and the

transmit time since the carrier offset phase will be set approximately based on the

transmit time since in general the carrier offset term after correction will be very low-

frequency. Note that the expression in (5.19) makes the simplifying assumption that

the scaling ratio of clock drifts is close enough to one that there will not be an impact
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to the pulse compression operation – that is, that

αk
jα̂

k−1
i

α̂k−1
j α

k
i

≈ 1. (5.21)

Recall that the ambiguity function defines the cross-correlation response of a pulse

compression signal with its frequency-shifted counterpart. Thus, the result in (5.19)

can be interpreted as providing the cross-correlation function in the case of a specific

frequency shift induced by the Doppler shift and the carrier offset between platforms,

with the remaining phase modifications remaining the same as in (5.14). As dictated

by the ambiguity function, the cross-correlation will also be shifted in time. Thus, the

total measured time-delay will include the true time-delay given by ρ̃ as well as the

time shift due to the frequency shift.

Define the time shift due to the frequency shift as

τA,k
i, j = arg max

τ′i

A j

τ′i , f c

αk
jα̂

k−1
i

α̂k−1
j α
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i

vk
i, j

f c

c


 , (5.22)

where the value in the frequency argument of A j(t, f ) is computed based on the two

sinusoidal terms in (5.14) multiplied with the original baseband signal. To determine

the time-delay estimate, the time argument of the ambiguity function in (5.19) must

be solved such that it equals zero, which requires scaling the delay parameters by the

inverse of the clock drift ratio. The model for τ̂k
i, j may therefore be expressed by

τ̂k
i, j =
α̂k−1

j α
k
i

αk
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(5.23)
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Next, the phase measurement, γ̂k
i, j, will be computed as the phase of the received

baseband signal in (5.14). Similarly to the Doppler-intolerant case for time-delay

measurement, the ambiguity function phase must be included assuming that the phase

along the peak value is not constant as a function of f . The model for γ̂k
i, j may therefore

be expressed by

γ̂
k
i, j = − 2π f c
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(5.24)

The frequency measurement is extracted from the peak value of the Fourier trans-

form of the single-tone component of r̃k
i, j(τ

′
i). Let r̃t

i, j(τ
′
i) be the single-tone component

of r̃k
i, j(τ

′
i) after it is truncated. This is computed by inserting (5.12) into (5.14), yielding
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The frequency measurement, f̂ k
i, j, will be computed as the frequency of the single-tone

signal, using sinc NL-LS interpolation and thus the model for f̂ k
i, j may be expressed by

f̂ k
i, j = f αj

αk
jα̂

k−1
i

α̂k−1
j α

k
i

+ f c

αk
jα̂

k−1
i

α̂k−1
j α

k
i

− 1

 − α̂k−1
i

αk
i

vk
i, j

f c

c
. (5.26)

5.3.2 Covariance of Measurements

The observation covariance matrix for iteration k of the synchronization UKF,

RTPF
k , is computed directly from the variance values σ2

τ, σ
2
γ, and σ2

f , which will in

turn be computed from the associated CRLB expressions. It is assumed that all mea-

surements are independent of one another, and thus RTPF
k will be diagonal. Define Rτ

k

as the covariance of the time-delay measurements given by

Rτ
k = diag

([
Vτ,k

1,2 Vτ,k
1,3 . . . Vτ,k

1,N Vτ,k
2,1 Vτ,k

2,3 . . . Vτ,k
N−1,N

])
(5.27)

where Vτ,k
i, j is defined as var

(
τ̂k

i, j

)
computed using (4.103). Similarly, define Rγk as the

covariance of the phase measurements given by

Rγk = diag
([

Vγ,k1,2 Vγ,k1,3 . . . Vγ,k1,N Vγ,k2,1 Vγ,k2,3 . . . Vγ,kN−1,N

])
(5.28)

where Vγ,ki, j is defined as var
(
γ̂k

i, j

)
computed using (4.114). Finally, define R f

k as the

covariance of the phase measurements given by

R f
k = diag

([
V f ,k

1,2 V f ,k
1,3 . . . V f ,k

1,N V f ,k
2,1 V f ,k

2,3 . . . V f ,k
N−1,N

])
(5.29)
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where V f ,k
i, j is defined as var

(
f̂ k
i, j

)
computed using (4.102). The full observation covari-

ance is then structured by

RTPF
k =


Rτ

k 0 0

0 Rγk 0

0 0 R f
k


. (5.30)

5.3.3 Preliminary Results

In this section, some preliminary results demonstrating the efficacy, and limita-

tions, of this approach are provided. A set of four platforms with randomly generated

clock error parameters and positions are simulated. For these simulations, the simpli-

fying assumption is made that there is no drift of the clock parameters over time – that

is, that the clock parameter covariance matrices in the process covariance in (5.8) (Σk
α,

Σk
ϕ, and Σk

γ) are equal to zero. Future work will address the addition of more realistic

clock components such as Allan variance. In practice, this approach has shown to be

limited to relatively high values of SNR before diverging, so the simulations are gen-

erally performed at these high values of SNR. A discussion of specific advantages and

limitations of this approach is provided in Section 5.3.4.

While the UKF update equations are sound from a mathematical standpoint, their

implementation on a computer may run into numerical issues leading to errors and po-

tential instability. This problem is exacerbated when the values of the variables in the

state vector (and their associated variance values in the state covariance) are separated

by many orders of magnitude, which is the case here. For instance, the estimated clock

drift values will vary on the ppm scale while range values will vary on the hundreds or

thousands of meters scale, leading to 9 or 10 orders of magnitude difference. Thus, to

alleviate these problems, the values of the different state values (and some of the mea-
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surements are normalized). The clock drift and clock bias values are normalized by a

factor of 10, while the range and velocity values are normalized by a factor of 1/c. The

carrier phase state values are normalized by a factor of 10−3. Furthermore, the phase

measurements are normalized by a factor of 1/c and the frequency measurements are

normalized by a factor of 1/ f c.

For each of the simulation case studies below, the following simulation parameters

are used. Unless otherwise stated, the SNR is set to 30 dB. The carrier frequency f c

is set to 3 GHz. The pulse length is set to 100 µs, while the sampling frequency is set

to 200 MHz. The capture length in the initial synchronization is set to 400 µs, while

it is set to 600 µs in the subsequent iterations of the UKF to account for the longer

signal. The signal bandwidth in the LFM waveforms is set to 50 MHz. The TDMA

scheme is used with the time slot set to 1 ms. The clock drift errors are drawn from

a uniform distribution limited to within 25 ppm of 1. The clock bias errors are drawn

from a Gaussian distribution with a standard deviation of 100 ns. The full simulations

are conducted over 30 s with iterations taking place at 10 Hz, unless otherwise stated.

5.3.3.1 Stationary Systems, Assuming No Motion

In this first case study, a network of four stationary platforms with randomly dis-

tributed positions is used. In this scenario, the UKF is formatted to assume the plat-

forms are stationary, such that the relative platform velocities are omitted from the

state vector, and the processing is slightly modified to assume that there will be no

Doppler shifts.

Fig. 5.2 shows the error results for a single platform in the network of four plat-

forms, while Fig. 5.3 shows these same results for the mean error for the full network

of four platforms. There are several noteworthy aspects of these results. First, it can be
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Fig. 5.2: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed for a single platform in a stationary network of
four platforms with relative velocities assumed in the UKF to be zero. The above plots
show the error for a single platform of clock drift (a), clock drift (zoomed) (b), clock
bias (c), range with the other three platforms (d), TX carrier phase (e), and RX carrier
phase (f). The solid lines show the error, while the dashed lines indicate the expected
standard deviation of the error bound predicted by the UKF.
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Fig. 5.3: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed as the mean error for a stationary network of
four platforms with relative velocities assumed in the UKF to be zero. The above plots
show the mean error for clock drift (a), clock drift (zoomed) (b), clock bias (c), range
between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 5.4: The range error when the true value of α1 = such that there is no range
scaling – the single platform (a) and the mean over the full network of four platforms
(b).

seen that the clock drift and carrier phase error generally converge to zero over time,

indicating that the reduction of error expected from the Kalman filtering is occurring.

In particular, the clock drift estimate error rapidly converges, falling to less than 1 ppt

over the 30 second simulation time.

However, the clock bias and range values do not converge to zero. The clock

bias can be explained as the clock drift error not exactly being zero – as a result, the

signals will still have a small time offset which grows over time with T tx
j,k. The range

error values do seem to converge, but not to zero. This is because it is assumed that

α1 = 1, which is not true, and as a result the estimate of range is scaled by the ratio

of α j/α̂ j. This small error (0.4 mm) will grow linearly with range for networks with

large distances between platforms. Fig. 5.4 shows the range error for a simulation case

in which the true value of α1 is actually 1 – in this case, it can be seen that the bias in

the range error is removed, and the range error between the platform and all the other

platforms converges toward zero.

Fig. 5.5 shows the innovation values in z̃k for time, phase, and frequency. It can be

seen that the time and phase innovations quickly converge to zero, implying that the

system state value is predicted well enough at the beginning of each iteration such that
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Fig. 5.5: The innovation values in z̃k – time (a), phase (b), and frequency (c).

the measurement estimates closely match the true measurement, minus the noise on

the measurements. There are some isolated instances in which the phase innovations

jump to higher values, which is likely a result of a single wrapped phase value in the

sigma points such that the weighted average in computing that particular entry of ẑk

does not lead to zero. However, these isolated errors do not seem to impact the UKF

operation significantly. The frequency innovations do not get better after the initial
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iterations and are instead dominated by the noise on the measurements throughout the

UKF operation. This implies that the tighter synchronization as the UKF operation

continues does not help the frequency estimation, unlike time and phase, where the

estimate of time and phase improves as the clock drift is better known. This facet of

the frequency estimation is why it is such an effective way of producing clock drift

estimates before coarse time synchronization can be achieved.

Of interest is the fact that the clock drift estimate converges so rapidly. In this

example, the initial error of close to 100 ppt is reduced after only one iteration to

close to 10 ppt – a reduction in error of a whole order of magnitude. By the end of

the 30 s simulation (300 iterations), the error has reduced to 0.4 ppt – a reduction of

nearly three orders of magnitude from the original estimate. This is likely because of

the introduction of time-delay information. In the original synchronization algorithm

using time-delay information is not possible due to the lack of a guarantee that the

transmit and receive windows will align well, and therefore using frequency estima-

tion to infer clock drift from the carrier skew is used. Once this initial synchronization

is performed, the RX signal is essentially guaranteed to fall within the receive win-

dow. However, due to the non-zero clock drift error at each iteration, the signal will

still drift by small amounts. This small amount of drift can be more easily detected

by time-delay measurements than frequency measurements because the time-delay

measurements obtain high-resolution information due to the ease with which larger

bandwidths can be obtained when compared to longer signal times required to obtain

high-resolution information in the frequency domain.
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5.3.3.2 Stationary Systems, Assuming Motion

In the second case study, the same network of four stationary platforms is used.

In this scenario, the UKF is formatted to assume the platforms are not stationary as

described in the problem formulation previously in this chapter. Thus, the relative

platform velocities are estimated by the UKF. Although most of QIS
k is assumed to

be zero since the clock parameters are simulated as constant, the radial velocity co-

variance Σk
v in general will not be zero since the changing geometry of the network

over time as platforms move implies that the relative velocities will not be constant.

Because no assumptions are made on the initial positioning of the platforms and there

is no direct estimation of the platform positions over time, there is not a good way to

estimate the correct value for Σk
v. For this simulation, Σk

v is assumed to be the scalar

matrix Σk
v = 10−3I.

Fig. 5.6 shows the error results for a single platform in the network of four plat-

forms, while Fig. 5.7 shows these same results for the mean error for the full network

of four platforms. These simulation results align in terms of general performance with

the results where the stationary platforms were assumed – the clock drift error rapidly

decreases to zero, the range and clock bias errors converge but not to zero (for iden-

tical reasons to the case where stationary platforms were assumed), and the carrier

phase errors both diminish to zero. The radial velocity estimation error also gener-

ally approaches zero, with some spikes in error which are eliminated after one or two

iterations.

Interestingly, the clock drift error reduces more quickly in this case than in the case

where stationary platforms were assumed – this is perhaps contrary to intuition since

there is more information to estimate in this case where error could be introduced.

Nevertheless, the clock drift error for the single platform in this case is reduced to
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Fig. 5.6: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed for a single platform in a stationary network of
four platforms with relative velocities being estimated by the UKF. The above plots
show the error for a single platform of clock drift (a), relative velocity with the other
three platforms (b), clock bias (c), range with the other three platforms (d), TX carrier
phase (e), and RX carrier phase (f). The solid lines show the error, while the dashed
lines indicate the expected standard deviation of the error bound predicted by the UKF.
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Fig. 5.7: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed as the mean error for a stationary network of
four platforms with relative velocities being estimated by the UKF. The above plots
show the mean error for clock drift (a), relative velocities between platforms (b), clock
bias (c), range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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0.06 ppt by the end of the 30 s simulation in contrast to the 0.4 ppt for the case in

which the platforms were assumed stationary, giving nearly an order of magnitude in

improvement.

5.3.3.3 Impact of Moderate to Low SNR

Next, the same network of four stationary platforms is simulated to perform the

synchronization UKF procedure but with a reduced SNR value of 20 dB. Fig. 5.8

shows the mean error for the different estimation quantities for this scenario. It is quite

clear from this simulation that the estimation falls apart rapidly – in fact, outside of the

initial synchronization, the synchronization is completely erroneous, leading to purely

random phase errors, large velocity errors and range errors, and non-convergence of

the clock drift and clock bias values. More investigation is necessary to determine the

point of failure, as it is unlikely that this algorithm can be deployed reliably on any

network if it cannot tolerate even moderately low SNR. This conclusion is the primary

impetus for developing the stabler iterative synchronization UKF technique described

in Section 5.4.

5.3.3.4 Impact of Iteration Frequency

Another drawback to this approach is that it requires relatively quick updates to the

UKF, which may be a problem in applications with low downtime requirements. The

previous successful demonstrations of the UKF synchronization using this approach

use an update rate of 10 Hz. Fig. 5.9 shows the mean error results when the update rate

is reduced to 1 Hz. As with the low SNR case, the reduction in sampling frequency

leads to a radical increase in mean error for all the variables. It may therefore be

concluded that even with moderately high SNR, this technique does require a relatively
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Fig. 5.8: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed using an SNR of 20 dB, leading to significant
error and a general collapse of the estimation process. The above plots show the mean
error for clock drift (a), relative velocities between platforms (b), clock bias (c), range
between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 5.9: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed with a UKF update rate of 1 Hz, leading to
significant error and a general collapse of the estimation process. The above plots
show the mean error for clock drift (a), relative velocities between platforms (b), clock
bias (c), range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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high update rate. This is likely due to the measured phase value changing due to the

clock drift error in the carrier correction. Even a good estimate of clock drift will leave

residual error in the carrier frequency correction, which manifests as a low-frequency

skew. If the low-frequency skew is not sampled fast enough, the phase will alias, and

the estimation cannot be performed correctly.

5.3.3.5 Impact of Platform Motion

Finally, Fig. 5.10 shows the simulated mean error in a scenario of four platforms

where there are relative velocities between platforms. As with the other disruptions,

this causes the error to grow unacceptably. This is likely due to an error with how the

Doppler shift frequency is compensated to accurately compute phase on each iteration

as well as how the relative motion is computed alongside range, ultimately leading

to divergence. Ultimately, this limitation is possibly the most limiting as the even-

tual goal is to add the synchronization together with the navigation, which by nature

requires motion to be included.

5.3.4 Discussion of Advantages and Limitations

This approach has several implementation issues which ultimately make it unsuit-

able for use in a practical scenario. The results when using this approach diverge

significantly even in fairly straightforward scenarios, such that the error increases sig-

nificantly for even moderately low SNR values. Furthermore, the algorithm requires

a relatively quick update rate of the UKF, with performance degrading significantly

when the update rate is less than a few Hz. This may be a significant issue in networks

where downtime is a concern since the exchange of signals can take several millisec-

onds. This will be particularly pronounced if TDMA is required to multiplex the
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Fig. 5.10: Simulated UKF synchronization error with the time, phase, and frequency
approach. These results are computed with small but non-zero motion between plat-
forms, leading to significant error and a general collapse of the estimation process.
The above plots show the mean error for clock drift (a), relative velocities between
platforms (b), clock bias (c), range between platforms (d), TX carrier phase (e), and
RX carrier phase (f).
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signals, which highlights the desirability of other forms of orthogonality [98]. Most

crucially, this approach stops working well when actual platform motion is included –

it can correctly estimate the synchronization states and relative velocities when those

velocities are zero, but ultimately cannot work well when there are accelerations be-

tween platforms.

The primary advantage of this approach is that the clock drift estimation begins to

use time and phase information in addition to frequency information. This is hugely

helpful due to the increased information resolution provided by pulse compression

waveforms, which can have high bandwidths rather than requiring long pulse lengths

– this is in contrast to frequency estimation, which can only have increased information

resolution by increasing the pulse length, which, per the discussion above, is not desir-

able due to downtime considerations. However, this advantage is considerable since

the clock drift error in this approach (when the proper conditions are met) approaches

sub-ppt level, which would lead to extraordinarily well-synchronized systems.

5.4 Iterative Synchronization Approach

Due to the limitations of the time, phase, and frequency approach, another ap-

proach to the synchronization filtering is proposed here. In this approach, the full

synchronization algorithm described at the beginning of this chapter is performed at

regular intervals, producing direction one-to-one measurements of the state variables

in the clock parameter estimates as well as the range and relative velocity estimates.

By doing so with properly computed covariance, the UKF (or theoretically a linear

Kalman filter) can be used to fuse the measurements with the state estimates to pro-

duce a more accurate estimate over time.

This approach uses the same transmit signal form of s j(t) described in (5.11) since
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this signal contains all the information required to perform the synchronization algo-

rithm. Furthermore, as with the time, phase, and frequency approach, because clock

drift is aligned well enough from the initial synchronization, all the information from

both components of the signal will be virtually guaranteed to fall within the properly

timed receive window.

The primary change for this synchronization filtering approach when compared

to the time, phase, and frequency approach is in the measurement model. Rather

than using the direct time, phase, and frequency estimates as measurements, the UKF

measurements are taken from the output of the synchronization procedure. Define

zk
α,IS as the measurement vector for iteration k containing the clock drift measurements

obtained from the kth iteration synchronization, given by

zk
α,IS =

[
α̂

z,k
1 . . . α̂

z,k
Np

]T
, (5.31)

where α̂z,k
i is the clock drift estimate for platform i produced as a measurement for the

update step of the synchronization UKF on iteration k. In a similar manner, define zk
ϕ,IS

as

zk
ϕ,IS =

[
ϕ̂z,k

1 . . . ϕ̂z,k
Np

]T
, (5.32)

define zk
γ,IS as

zk
γ,IS =

[
γ̂

tx,z
1,k γ̂

rx,z
1,k . . . γ̂

tx,z
Np,k

γ̂
rx,z
Np,k

]T
, (5.33)

define zk
R,IS as

zk
R,IS =

[
R̂z,k

1,2 R̂z,k
1,3 . . . R̂z,k

1,Np
R̂z,k

2,3 . . . R̂z,k
Np−1,Np

]T
, (5.34)
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and define zk
v,IS as

zk
v,IS =

[
v̂z,k

1,2 v̂z,k
1,3 . . . v̂z,k

1,Np
v̂z,k

2,3 . . . v̂z,k
Np−1,Np

]T
. (5.35)

In (5.32) and (5.33), ϕ̂z,k
i , γ̂tx,z

i,k , and γ̂rx,z
i,k are the clock bias, TX carrier phase, and RX

carrier phase, respectively, of platform i produced as measurements for the update step

of the synchronization UKF on iteration k, and in (5.34) and (5.35), R̂z,k
i, j and v̂z,k

i, j are the

range and velocity, respectively, between platforms i and j produced as measurements

for the update step of the synchronization UKF on iteration k. Finally, these vectors

may be constructed to form the full measurement vector zIS
k given by

zIS
k =



zk
α,IS

zk
v,IS

zk
ϕ,IS

zk
R,IS

zk
γ,IS



. (5.36)

Because the measurement vector above will be formed using the WLS process in

which clock drifts and velocities are solved for together, it will be convenient to define

a measurement vector zk
f ,IS where

zk
f ,IS =


zk
α,IS

zk
v,IS

 . (5.37)

Because the measurement vector aligns exactly with the values expected in the state

vector, the measurement function hk will be the identity function.
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5.4.1 Modifications to Synchronization Procedure

To use the iterative synchronization approach, the original synchronization proce-

dure must be slightly modified to account for the fact that the transmit and receive

corrections for the different clock parameters are being applied, and that to accurately

track the clock parameters, these corrections must be “undone” during each subse-

quent iteration’s estimation. This is accomplished simply by acknowledging that the

synchronization procedure, when performed on the compensated signals, produces es-

timates of the corrected clock parameters rather than the actual clock parameters, and

by backing the previous estimate of the clock parameters out, updated estimates of the

true clock parameters can be produced.

From the original synchronization procedure, the clock parameter, range, and ve-

locity estimates are all produced from direct estimates of time, phase, and frequency.

Therefore, the estimates of these quantities computed by (5.23), (5.24), and (5.26)

may be used for this purpose.

To begin with the frequency estimation, (5.26) may be rearranged to give

α̂k−1
i

α̂k−1
j

(
f αj + f c

)
α

k
j −

(
f̂ k
i, j + f c

)
α

k
i − α̂

k−1
i vk

i, j
f c

c
= 0. (5.38)

This equation may be solved as a system of equations as in (4.92) to produce the

measurement vector zk
f ,IS.

Next, consider the time-delay estimate τ̂k
i, j given in (5.23). Define the bias error

for platform i on iteration k as ϕe,k
i given by

ϕe,k
i = ϕ

k
i − ϕ̂

k−1
i . (5.39)
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The time-delay estimate in (5.23) may therefore be expressed by

τ̂k
i, j =

1
α̂k−1

i

ϕe,k
i −

αk
i

αk
jα̂

k−1
i

ϕe,k
j +
α̂k−1

i

αk
i

Rk
i, j

c
+
α̂k−1

j α
k
i

αk
jα̂

k−1
i

(
τA,k

i, j + T tx
j,k

)
. (5.40)

Under the assumption made in (4.43), this can be simplified to

τ̂k
i, j =

1
α̂k−1

i

ϕe,k
i −

1
α̂k−1

j

ϕe,k
j +
α̂k−1

i

αk
i

Rk
i, j

c
+ τA,k

i, j + T tx
j,k. (5.41)

Finally, assuming that τA,k
i, j can be estimated from the frequency estimate and that T tx

j,k

is known, these can be subtracted off to produce an augmented time-delay estimate τ̃k
i, j

τ̃k
i, j =

1
α̂k−1

i

ϕe,k
i −

1
α̂k−1

j

ϕe,k
j +
α̂k−1

i

αk
i

Rk
i, j

c
. (5.42)

This simplifying assumption removes the erroneous clock drift scaling of τA,k
i, j , and

more importantly, T tx
j,k. Because T tx

j,k will quickly grow large relative to the clock drift

error ratio, the error resulting from this simplification will become significant – how-

ever, this significant error can be absorbed into the clock bias estimate and will not

impact the range estimate, as will be shown in Section 5.4.1.1. Noting that the new

expression in (5.42) has an identical form to the original expression in (4.49), the range

estimates R̂z,k
i, j may be formed by computing

R̂z,k
i, j =

τ̃k
i, j + τ̃

k
j,i

2
. (5.43)

Similarly define ϕe,k
i, j as the bias error difference between platforms i and j on iteration

k given by

ϕe,k
i, j =

1
α̂k−1

i

ϕe,k
i −

1
α̂k−1

j

ϕe,k
j . (5.44)
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An estimate of the bias error difference ϕ̂e,k
i, j may be computed by

ϕ̂e,k
i, j =

τ̃k
i, j − τ̃

k
j,i

2
. (5.45)

Estimates of the clock bias errors, ϕ̂e,k
i , may be formed by solving the system of equa-

tions in (5.44) in the same manner as in (4.94). Finally, the true clock bias measure-

ments, ϕ̂z,k
i , may be formed for all platforms by computing

ϕ̂z,k
i = ϕ̂

e,k
i + ϕ̂

k−1
i . (5.46)

Finally, consider the phase estimate γ̂k
i, j given in (5.24). Define the transmit carrier

phase error for platform i on iteration k as γtx,e
i,k given by

γ
tx,e
i,k = γ

tx
i,k − γ̂

tx
i,k−1 (5.47)

and the receive carrier phase error for platform i on iteration k as γrx,e
i,k given by

γ
rx,e
i,k = γ

rx
i,k − γ̂

rx
i,k−1. (5.48)

Using these phase error values, the phase estimate in (5.24) may be re-written as

γ̂
k
i, j = − 2π f c

 αk
j

α̂k−1
j α

k
i

ϕe,k
i −

1
α̂ j
ϕe,k

j +
αk

j

α̂k−1
j

Rk
i, j

c

 + 2π f c 1
αk

i

vk
i, j

f c

c
ϕe,k

i +
(
γ

tx,e
j,k − γ

rx,e
i,k

)
+ ∠A j

τA,k
i, j , f c

αk
jα̂

k−1
i

α̂k−1
j α

k
i

− 1

 − α̂k−1
i

αk
i

vk
i, j

f c

c

 + 2π f c

αk
jα̂

k−1
i

α̂k−1
j α

k
i

− 1

 T tx
j,k.

(5.49)

As with the time-delay estimate, the phase due to the ambiguity function phase can be
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compensated for directly. It may also be assumed that if (5.21) holds, the phase term

due to the carrier offset and the transmit time will be zero and can be ignored. Thus, a

new augmented phase estimate, γ̃k
i, j, may be produced, which is given by

γ̃
k
i, j = − 2π f c

 αk
j

α̂k−1
j α

k
i

ϕe,k
i −

1
α̂ j
ϕe,k

j +
αk

j

α̂k−1
j

Rk
i, j

c

 + 2π f c 1
αk

i

vk
i, j

f c

c
ϕe,k

i +
(
γ

tx,e
j,k − γ

rx,e
i,k

)
.

(5.50)

As with the time-delay estimate, the simplifying assumption which removes T tx
j,k will

not actually hold in practice and will introduce phase errors since T tx
j,k grows large

relative to the clock drift error ratio. However, the errors will not impede the proper

estimation of the carrier phase values since they will ultimately be canceled out. This

is discussed further in Section 5.4.1.1. Define the carrier phase error difference term

between platforms i and j on iteration k, γerr,e
i, j,k , as

γ
err,e
i, j,k = γ

tx,e
j,k − γ

rx,e
i,k . (5.51)

This error term describes the phase difference between the compensated TX carrier

phase of platform j and the compensated RX carrier phase of platform i in the same

manner as γerr
i, j for the uncompensated case. In the same manner as (4.68), the expres-

sion in (5.50) can be rearranged to produce

γ
err,e
i, j,k = γ̃

k
i, j + 2π f c

 αk
j

α̂k−1
j α

k
i

ϕe,k
i +

1
α̂ j
ϕe,k

j +
αk

j

α̂k−1
j

Rk
i, j

c

 − 2π f c 1
αk

i

vk
i, j

f c

c
ϕe,k

i . (5.52)

Noting that the delay phase term in the expression above is approximately equivalent

to the carrier frequency multiplied by the delay estimate τ̃k
i, j in (5.42), an estimate γ̂err,e

i, jk
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may be computed by

γ̂
err,e
i, j,k = γ̃

k
i, j + 2π f c

(
τ̃k

i, j − v̂z,k
i, j

f c

c
ϕ̂e,k

i

)
, (5.53)

which has the same form as (4.68) producing the original phase difference estimate,

with the minor change that the Doppler shift frequency is replaced with the expres-

sion in terms of the relative platform velocity. From these values of γ̂err,e
i, j,k , the system of

equations in (5.51) may be solved in the same manner as in (4.96) to produce estimates

of the carrier phase errors, γ̂tx,e
i,k and γ̂rx,e

i,k . Note that as with the original solution for car-

rier phase, this must be solved to account for phase wrapping as described in 4.4.1.4.

Finally, the direct measurements of the carrier phases may be formed by

γ̂
tx,z
i,k = γ̂

tx,e
i,k + γ̂

tx
i,k−1, (5.54)

and

γ̂
rx,z
i,k = γ̂

rx,e
i,k + γ̂

rx
i,k−1. (5.55)

5.4.1.1 TX Time Errors in Clock Bias and Carrier Phase

As discussed in the previous subsection, the transmit time term T tx
j,k is removed

from the clock bias and carrier phase computations. However, because it is scaled by

the clock drift ratio term, there will be a small but ultimately non-negligible error in

the time-delay and phase terms. However, the structure of these errors is such that

they will be canceled out. The un-simplified time-delay measurement in (5.40) may

be differently expressed as

τ̂k
i, j =

1
α̂k−1

i

ϕe,k
i −

αk
i

αk
jα̂

k−1
i

ϕe,k
j +
α̂k−1

i

αk
i

Rk
i, j

c
+τA,k

i, j +T tx
j,k+

 α̂k−1
j α

k
i

αk
jα̂

k−1
i

− 1

 (τA,k
i, j + T tx

j,k

)
. (5.56)
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When the ambiguity function time shift and transmit time are removed, the true value

of this augmented time-delay will be given by

τ̃k
i, j =

1
α̂k−1

i

ϕe,k
i −

αk
i

αk
jα̂

k−1
i

ϕe,k
j +
α̂k−1

i

αk
i

Rk
i, j

c
+

 α̂k−1
j α

k
i

αk
jα̂

k−1
i

− 1

 (τA,k
i, j + T tx

j,k

)
. (5.57)

Crucially, it can be shown that

α̂k−1
j α

k
i

αk
jα̂

k−1
i

− 1 ≈ 1 −
αk

jα̂
k−1
i

α̂k−1
j α

k
i

. (5.58)

To show this, let zr be a temporary variable defined by

zr =
α̂k−1

j α
k
i

αk
jα̂

k−1
i

≈ 1. (5.59)

The degree to which zr ≈ 1 will generally follow the accuracy of the estimates of the

clock drift – for instance, if the standard deviation of the clock drift error is 1 ppb, zr

has a high likelihood to fall within 1 ppb of 1. To show that (5.58) is true, it must be

shown that when zr ≈ 1,

zr − 1 ≈ 1 −
1
zr
. (5.60)

First, it is trivial to show that

(zr − 1)
∣∣∣∣∣
zr=1
=

(
1 −

1
zr

) ∣∣∣∣∣
zr=1
= 0. (5.61)

Furthermore, differentiating with respect to zr shows that

d
dzr

(zr − 1)
∣∣∣∣∣
zr=1
= 1 (5.62)
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d
dzr

(
1 −

1
zr

) ∣∣∣∣∣
zr=1
=

(
1
z2

r

) ∣∣∣∣∣
zr=1
= 1. (5.63)

Thus, the function zr − 1 and 1 − 1/zr are tangent to each other at zr = 1, and as

such (5.60) is true so long as zr is close to 1. Therefore, it follows that (5.58) is true.

Figure. 5.11 shows plots of these two functions and how they are tangent to each other

at zr = 1. It also shows that for small deviations of zr around 1 (within 1 × 10−6 of 1),

the error between the functions does not exceed 1 × 10−12, or one ppt.

Therefore, there is negative symmetry in this error term across τ̂k
i, j and τ̂k

j,i in a

similar manner to the clock biases. As a result, in computing the range in (5.43),

the clock drift offset induced error will cancel out, while it will appear in the clock

bias difference estimate – that is, the true clock bias difference estimate may be more

accurately expressed as

ϕe,k
i, j =

1
α̂k−1

i

ϕe,k
i −

1
α̂k−1

j

ϕe,k
j +

 α̂k−1
j α

k
i

αk
jα̂

k−1
i

− 1

 (τA,k
i, j + T tx

j,k

)
. (5.64)

As a result, the additional time-delay error due to the clock drift offset and will not

appear in the range estimates, ensuring that the range measurements can still be accu-

rately used in relative navigation. However, the clock bias estimates will absorb this

error. This is an intuitive result, since clock drift errors over time will appear as a

“drift” in the clock bias.

Next, the carrier phase estimates will also have error as a result of the residual un-

compensated clock drifts. This manifests as very low-frequency carrier offsets which

cause the apparent carrier phases between platforms to drift between synchronization

iterations on the longer time scales seen in T tx
j,k. Generally, the phase due to the am-

biguity function will be small enough that ignoring it will not cause noticeable error.

However, the carrier phase drift will be significant. To account for this, define γ̌k
i, j as
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Fig. 5.11: Plots of the functions zr − 1 and 1 − 1/zr (a) and the error between them
locally around zr = 1 (b).

the true value of γ̃k
i, j, given by
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(5.65)

197



and therefore the phase error difference is more accurately expressed by

γ
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k
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(5.66)

The actual estimate of this phase error difference then is expressed by

γ̂
err,e
i, j,k = γ̃

k
i, j + 2π f c

(
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j,k. (5.67)

However, from (5.57), the time-delay will also contain a similar error. When the full

expression for τ̃k
i, j is included, (5.67) will be given by
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(5.68)

Assuming that τA,k
i, j is small compared to T tx

j,k (which is true unless the Doppler veloc-

ity is unrealistically large), it can be ignored. As a result, based on the equivalence

in (5.58), the error terms at the end of the expression in (5.68) cancel each other out,
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and the phase error difference estimate will contain only the desired phase information.

5.4.2 Covariance of Measurements

The measurement covariance, RIS
k , for the iterative synchronization approach will

be defined in an identical manner to the initial system state covariance, Ĉsync
0 , in (5.10)

because the measurements are obtained from the same operations as the initial system

state. Therefore,

RIS
k =



Σk
f ,v . . . . . . 0

... Σk
ϕ

. . .
...

...
. . . Σk

R
...

0 . . . . . . Σk
γ


, (5.69)

where the constituent covariance matrices must be recomputed based on the measured

SNR at iteration k.

5.4.3 Preliminary Results

In this section, some preliminary results demonstrating the efficacy of the itera-

tive synchronization approach are provided. A set of four platforms with randomly

generated clock error parameters and positions are simulated. As with the results for

the time, phase, and frequency approach in Section 5.3.3, the clock parameters are

assumed to remain constant throughout the simulation time.

The following normalizations of the state variables and measurements are used to

ensure numerical stability of the UKF. The clock drift and clock bias state values and

measurements are normalized by a factor of 10, while the range and velocity state

estimates and measurements are normalized by a factor of 1/c. The carrier phase state
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values and measurements are normalized by a factor of 10−3.

The following parameters are used for the simulations, which are identical to the

parameters used in the time, phase, and frequency approach. Unless otherwise stated,

the SNR is set to 30 dB. The carrier frequency f c is set to 3 GHz. The pulse length is

set to 100 µs, while the sampling frequency is set to 200 MHz. The capture length in

the initial synchronization is set to 400 µs, while it is set to 600 µs in the subsequent

iterations of the UKF to account for the longer signal. The signal bandwidth in the

LFM waveforms is set to 50 MHz. The TDMA scheme is used with the time slot

set to 1 ms. The clock drift errors are drawn from a uniform distribution limited to

within 25 ppm of 1. The clock bias errors are drawn from a Gaussian distribution

with a standard deviation of 100 ns. The full simulations are conducted over 30 s with

iterations taking place at 10 Hz, unless otherwise stated.

As will be seen, the clock drift estimation using this technique is not quite as

accurate as with the time, phase, and frequency approach. As a result, as described

above, the clock bias absorbs a large amount of error due to the compounding error of

the clock drift error multiplied into T tx
j,k. However, the measurements of clock bias at

each iteration will still be highly accurate and will generally capture this error such that

synchronization can still be achieved. Therefore, a process covariance term for clock

bias is added here so that the previous state estimate for clock bias is ignored in favor

of the most recent measurements. This is not strictly necessary since the measurement

itself may be used as the true clock bias value and the tracked state may generally be

ignored or omitted. The downside of the apparent shift in clock bias at each iteration

is that the changing values cannot be tracked effectively and thus the accuracy will not

build over time. Fortunately, because the original time-delay estimation is so accurate,

this will not typically be necessary and will only pose problems in scenarios with
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extremely low SNR.

5.4.3.1 Stationary Systems, Assuming No Motion

In this first case study, a network of four stationary platforms with randomly dis-

tributed positions is used. The platform positions are identical to the stationary plat-

form positions used in the time, phase, and frequency results in Section 5.3.3. In

this scenario, the UKF is formatted to assume the platforms are stationary, such that

the relative platform velocities are omitted from the state vector and the processing is

slightly modified to assume that there will be no Doppler shifts.

Fig. 5.12 shows the error results for a single platform in the network of four plat-

forms, while Fig. 5.13 shows these same results for the mean error for the full network

of four platforms. There are several noteworthy aspects of these results. As expected,

the clock drift and carrier phase errors tend to converge toward zero. Interestingly, the

range errors don’t change significantly over the course of the simulation, indicating

that the initial covariance is heavily weighted enough toward confidence that there is

no need to overwrite the results. This phenomenon does not carry over when motion is

introduced. The clock bias error in Figs. 5.12c and 5.13c is plotted in two ways. The

first, in blue, shows the absolute clock bias error. The second, in cyan, shows the clock

bias error normalized to the additional time shift error due to the clock drift estimation

error. These plots show that although the absolute error will randomly walk, the nor-

malized error (which accounts for the actual necessary clock bias compensation due

to clock drift error) will remain very low, falling down to the picosecond level.

The primary disadvantage here is that the clock drift error does not reach the same

low level as it does in the time, phase, and frequency approach, achieving a mean error

of 5 ppt over the 30 s simulation time compared to the < 1 ppt in the time, phase, and
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Fig. 5.12: Simulated UKF synchronization error with the iterative synchronization
approach. These results are computed for a single platform in a stationary network of
four platforms with relative velocities assumed in the UKF to be zero. The above plots
show the error for a single platform of clock drift (a), clock drift (zoomed) (b), clock
bias (c), range with the other three platforms (d), TX carrier phase (e), and RX carrier
phase (f). The solid lines show the error, while the dashed lines indicate the expected
standard deviation of the error bound predicted by the UKF.
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Fig. 5.13: Simulated UKF synchronization error with the iterative synchronization
approach. These results are computed as the mean error for a stationary network of
four platforms with relative velocities assumed in the UKF to be zero. The above plots
show the mean error for clock drift (a), clock drift (zoomed) (b), clock bias (c), range
between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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frequency approach. As discussed above, this is because the iterative synchronization

approach only leverages the frequency domain information for clock drift estimation

inherent to the original synchronization procedure. The lack of high-resolution time-

domain information causes the error to reduce at a slower rate and to converge toward

a generally higher error value. While this is a major limitation when compared to the

time, phase, and frequency approach, the remaining test cases that would not work

properly with that approach will still enable correct tracking of variables with the

iterative synchronization approach.

5.4.3.2 Stationary Systems, Assuming Motion

In this example, the same network of four stationary platforms is used. In this sce-

nario, the UKF is formatted to assume the platforms are not stationary as is described

in the problem formulation previously in this chapter. As with this similar case for

the time, phase, and frequency approach in Section 5.3.3.2, Σk
v is assumed to be the

scalar matrix Σk
v = 10−3I to account for the unknown relative accelerations between

platforms.

Fig. 5.14 shows the error results for a single platform in the network of four plat-

forms, while Fig. 5.15 shows these same results for the mean error for the full network

of four platforms. These results align with the performance when stationary platforms

were assumed, with the clock drift and carrier phase estimate errors approaching zero.

The clock bias results continue to show low but not convergent error when accounting

for the impact of non-zero clock drift error. The relative velocity errors drop very near

to zero after only a few iterations, showing that the UKF quickly converges on these

values. The range errors tend to stay relatively constant, but with some noise added

due to the small errors in the relative velocity estimation. As with the time, phase, and
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Fig. 5.14: Simulated UKF synchronization error with the iterative synchronization
approach. These results are computed for a single platform in a stationary network of
four platforms with relative velocities being estimated by the UKF. The above plots
show the error for a single platform of clock drift (a), relative velocity with the other
three platforms (b), clock bias (c), range with the other three platforms (d), TX carrier
phase (e), and RX carrier phase (f). The solid lines show the error, while the dashed
lines indicate the expected standard deviation of the error bound predicted by the UKF.
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Fig. 5.15: Simulated UKF synchronization error with the iterative synchronization
approach. These results are computed as the mean error for a stationary network of
four platforms with relative velocities being estimated by the UKF. The above plots
show the mean error for clock drift (a), relative velocities between platforms (b), clock
bias (c), range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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frequency results, the range estimates are biased due to the false assumption of α1 = 1.

Fig. 5.16 shows the range error results when α1 is intentionally simulated to equal 1

such that the range bias disappears. In this case, it can be seen that the range error

approaches zero after only a few iterations but retains some noise due to imperfect

relative velocity information.

Fig. 5.17 shows the error of the simulated state estimates along with the associated

measurements of the corresponding variables for a single platform. Due to the lack

of filtering capability for clock bias, the clock bias plot is omitted. Furthermore, for

readability, only a single range and relative velocity measurement set is used rather

than all three. Because the SNR does not change over time, the noise on the error

function for each variable maintains more or less the same magnitude. However, due

to the UKF filtering the noise over time, the estimate errors converge to zero (with the

exception of range due to the range bias) despite the continued presence of noise on

the measurements.

5.4.3.3 Impact of Low SNR

In this example, the SNR is lowered from 30 dB to 10 dB to demonstrate the

resilience of the iterative synchronization procedure to low SNR. In contrast to the

time, phase, and frequency approach, the iterative synchronization approach continues

to produce error that converges to zero over time even with lower values of SNR.

Consider Fig. 5.18, which shows the mean error results over the simulation time

for the network with 10 dB of SNR, and Fig. 5.19, which shows the state estimates

and measurement values of these variables for a single platform. Although the error

admittedly converges much slower in this case when compared to the 30 dB SNR

case above, the general trend of the error to reduce significantly over time is still
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Fig. 5.16: The range error when the true value of α1 = such that there is no range
scaling – the single platform (three range values and standard deviations) (a) and the
mean over the full network of four platforms (b).

present. It should be pointed out as well that based on the high error after only a

single iteration as seen at t = 0 of the error plots, the initial synchronization would

not produce estimates with high enough quality to perform distributed radar tasks,

while the filtered synchronization does over time. Furthermore, as seen throughout

the measurements in Fig. 5.19, the measurements produced by single iterations of the

synchronization procedure do not improve over time since the SNR does not go up,

while the filtered output of the UKF continues to converge to zero while using those

same measurements.

5.4.3.4 Impact of Iteration Frequency

In this example, the iteration frequency is lowered from 10 Hz to 0.2 Hz to demon-

strate the resilience of the iterative synchronization procedure to lower UKF update

rates. In contrast to the time, phase, and frequency approach, the iterative synchro-

nization approach continues to produce error that converges to zero over time even

with a much lower iteration frequency. This ability owes to the canceling of the time

and phase errors due to the transmit time T tx
j,k. To compensate for the much lower

update frequency, the simulation time is increased from 30 s to 300 s.
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Fig. 5.17: Simulated UKF synchronization error of the system state and measurements
with the iterative synchronization approach. These results are computed for a single
platform in a stationary network of four platforms with relative velocities being es-
timated by the UKF. The above plots show the error for a single platform of clock
drift (a), relative velocity with the other three platforms (b), range with the other three
platforms (c), TX carrier phase (d), and RX carrier phase (e). The solid lines show
the error, while the dashed lines indicate the expected standard deviation of the error
bound predicted by the UKF.
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Fig. 5.18: Simulated UKF synchronization error with iterative synchronization ap-
proach. These results are computed using an SNR of 10 dB. The above plots show the
mean error for clock drift (a), relative velocities between platforms (b), clock bias (c),
range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 5.19: Simulated UKF synchronization error of the system state and measurements
with the iterative synchronization approach. These results are computed using an SNR
of 10 dB. The above plots show the error for a single platform of clock drift (a), relative
velocity with the other three platforms (b), range with the other three platforms (c),
TX carrier phase (d), and RX carrier phase (e). The solid lines show the error, while
the dashed lines indicate the expected standard deviation of the error bound predicted
by the UKF.
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Fig. 5.20: Simulated UKF synchronization error with iterative synchronization ap-
proach. These results are computed using an SNR of 10 dB. The above plots show the
mean error for clock drift (a), relative velocities between platforms (b), clock bias (c),
range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 5.20 shows the mean error for the different state variables for the full network

with the lowered UKF update frequency. Although the general performance is lower

than the 10 Hz update rate in the other simulation scenarios, the trend of the error

reduction for all the variables remains the same, with the clock drift error ultimately

reducing close to 20 ppt. In contrast to the time, phase, and frequency approach,

these results indicate that this approach will still be applicable in situations where low

downtime is a system requirement leading to lower update rates.

5.4.3.5 Impact of Platform Motion

In this final study, relative platform motion, including accelerations, is added to

the simulation. The results demonstrate that the iterative synchronization procedure

will lead to a reduction in error over time even when non-constant relative velocities

are included.

Fig. 5.21 shows the mean error for the system state of the full four-platform net-

work with motion included between platforms. The clock drift and carrier phase errors

follow the same trend as before, generally converging to zero relatively quickly. There

are some velocity estimation errors related to the unanticipated accelerations since the

velocity estimation is not a high enough quality at each iteration while the UKF state

prediction step is not capable of predicting the change in velocity. These velocity esti-

mation errors lead to small errors in clock bias (even the clock drift normalized clock

bias) and range but do not have a noticeable negative impact on the carrier phase and

clock drift.
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Fig. 5.21: Simulated UKF synchronization error with iterative synchronization ap-
proach. These results are computed with relative motion and accelerations between
the platforms. The above plots show the mean error for clock drift (a), relative veloc-
ities between platforms (b), clock bias (c), range between platforms (d), TX carrier
phase (e), and RX carrier phase (f).
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5.4.4 Discussion of Advantages and Limitations

Contrary to the time, phase, and frequency approach, the iterative synchronization

approach is a robust and simple implementation of the UKF for tracking clock param-

eters over time, and it would prove highly useful in a wide variety of use cases. The

approach operates with high-quality results even for low values of SNR, making it

applicable for situations with longer-range links between platforms when high receive

power cannot be guaranteed. The approach also maintains relatively high performance

when the UKF update rate is very low. This would be a major advantage in scenarios

where the radar systems in the network cannot tolerate downtime in the radar oper-

ation, such as in electronic warfare (EW) contexts. Another important advantage is

that the iterative synchronization UKF approach can tolerate relative motion between

platforms without a significant loss of performance. This key advantage will ulti-

mately make it the choice for simultaneous navigation and synchronization described

in Chapter 6.

The only real disadvantage of this approach when compared to the time, phase,

and frequency approach is that the clock drift estimation continues to rely exclusively

on frequency-domain estimation, which lacks the information resolution of the time-

domain resolution. This leads to higher error and slower convergence, although the

error achievable by this approach is still serviceable for a practical network of radar

systems. Future work will benefit from finding a way to incorporate time-domain

estimation for clock drift estimation once coarse time synchronization is achieved in

the initial synchronization iteration.

The theory and simulations provided in this chapter provide a framework for adapt-

ing the proposed synchronization techniques into a Kalman filter for iterative tracking
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of the synchronization states over time. In the next chapter, this adaptation will be

extended to enable simultaneous navigation and synchronization using this technique

integrated with the work done in Chapter 3.

216



Chapter 6

Simultaneous Navigation and Synchronization

The ultimate goal of developing the cooperative navigation and synchronization

approaches described in the rest of this dissertation is to enable simultaneous naviga-

tion and synchronization for mobile distributed systems. This chapter presents prelim-

inary results in the combining of cooperative navigation described in Chapter 3 with

the UKF synchronization described in Chapter 5 into a single cohesive state estima-

tor to this end. Because of the current limitations of the time, phase, and frequency

approach to filtered synchronization, the iterative synchronization approach described

in Section 5.4 is chosen to be integrated into this full framework. In the following

sections, the full modifications to the state models of the individual UKF components

are described as well as the changes made to the measurement model to accommodate

the new state model. Results are then given to demonstrate the overall accuracy of the

simultaneous navigation and synchronization approach for several different cases.

6.1 Full State Model

As with previous descriptions of a network, it is assumed that there is a distributed

radar network comprising Np radar nodes. The total system state vector on iteration k,
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xns
k , is constructed by

xns
k =


xns

1,k

...

xns
Np,k


, (6.1)

where xns
i,k is the single-platform state-vector for platform i on iteration k constructed

by

xns
i,k =



p̄i,k

v̄i,k

θ̄i,k

αk
i

ϕk
i

γtx
i,k

γrx
i,k



. (6.2)

It is assumed that there is no coupling between the state transition functions of the nav-

igation variables and synchronization variables. Therefore, the state transition func-

tion fk for this application may be described by the navigation state update in (2.48)

and the synchronization state update described in (5.7). Similarly, the process co-

variance Qns
k can be constructed from the associated navigation and synchronization

process covariance matrices, structured as

Qns
k =


Qns

1,k . . . 0

...
. . .

...

0 . . . Qns
Np,k


. (6.3)
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The individual constituent matrices of Qns
k will be structured by

Qns
i,k =



Qnav
i,k . . . . . . . . . 0

...
[
Qαk

]
i,i

. . .
. . .

...

...
. . .

[
Qϕ

k

]
i,i

. . .
...

...
. . .

. . .
[
Qγk

]
2i−1,2i−1

...

0 . . . . . . . . .
[
Qγk

]
2i,2i



, (6.4)

where the notation [Q]i, j indicates the entry in the ith row and jth column of an arbitrary

matrix Q.

6.2 Full Measurement Model

The measurement vector for the simultaneous navigation and synchronization will

include GPS measurements (if available) and will include the measurement vector for

the chosen synchronization approach since the synchronization procedure generates

the range and relative velocity values to be ultimately used in the cooperative naviga-

tion. As discussed in Chapter 5, the time, phase, and frequency approach experienced

unacceptably high levels of error for any reasonable and practical scenario. As a result,

the iterative synchronization approach is the best choice. Therefore, the measurement

vector on iteration k, zns
k , will be given by

zns
k =


zGPS

k

zIS
k

 . (6.5)
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As with the cooperative navigation, the values of zGPS
k may be assumed to align one-

to-one with the corresponding position variables for each platform, and as such this

component of the measurement function, hk, may be assumed to be the identity.

Furthermore, as with the synchronization UKF, the measurements corresponding

to the clock parameters (αi, ϕi, γtx
i , and γrx

i ) will line up exactly with the state variables,

and as such the portion of hk concerning these variables will also be the identity. The

range measurements, R̂z,k
i, j , and the relative velocity measurements, v̂z,k

i, j , will no longer

directly align with state variables and must instead be related to the cartesian posi-

tion and velocity variables. These may be computed in an identical manner to (3.5)

and (3.19) for range and relative velocity, respectively.

6.3 Results

In this section, some preliminary results demonstrating the efficacy of the simulta-

neous navigation and synchronization approach are provided. A set of four platforms

with randomly generated clock error parameters and positions are simulated. As with

the synchronization filtering results in Chapter 5, the clock parameters are assumed to

remain constant throughout the simulation time.

As with the filtered synchronization, the state variables, covariance values, and

measurements must be normalized to limit the impact of numerical errors in the com-

putation of the unscented transform due to the large order-of-magnitude difference

between several different variables. The following normalizations of the state vari-

ables and measurements are used to ensure numerical stability of the UKF. The clock

drift state values and measurements are normalized by a factor of 10, while the clock

bias state values and measurements are normalized by a factor of 1000. The range and

velocity measurements are normalized by a factor of 1/c, as are the position and ve-
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locity state variables. When applicable, the GPS measurements are scaled by a factor

of 1/c. The Euler angle state variables are normalized by a factor of 10−3. The carrier

phase state values and measurements are normalized by a factor of 10−3.

The following parameters are used for the simulations, which are identical to the

parameters used in the UKF synchronization approach shown in Chapter 5. Unless

otherwise stated, the SNR is set to 30 dB. The carrier frequency f c is set to 3 GHz.

The pulse length is set to 100 µs, while the sampling frequency is set to 200 MHz. The

capture length in the initial synchronization is set to 400 µs, while it is set to 600 µs

in the subsequent iterations of the UKF to account for the longer signal. The signal

bandwidth in the LFM waveforms is set to 50 MHz. The TDMA scheme is used with

the time slot set to 1 ms. The clock drift errors are drawn from a uniform distribution

limited to within 25 ppm of 1. The clock bias errors are drawn from a Gaussian

distribution with a standard deviation of 100 ns. To produce results comparable to the

cooperative navigation results in Chapter 3, the full simulations are conducted over

300 s. To shorten the simulation times, the navigation simulation is run at 10 Hz

rather than 100 Hz, and the synchronization is produced every 10 iterations (1 Hz)

unless otherwise stated. The motion paths of the four platforms are shown in Fig. 6.1.

Unless otherwise stated, the IMU accuracy on each platform is the low-accuracy IMU

described in Chapter 3.

6.3.1 Initial Study

For the default parameters outlined above, the simulation results are provided be-

low. Fig. 6.2 shows the synchronization variable errors for a single platform in the

network as an example, along with standard deviation bounds on the state estimates

for the variables for which direct state estimates are produced (recall that range and
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Fig. 6.1: The motion paths for the four platforms used to evaluate the simultaneous
navigation and synchronization.

relative velocity are not included in the state vector directly in this approach). For

the case of range and relative velocities, the estimates are computed from the actual

estimates of position and velocity in the ECEF Cartesian coordinate system. Fig. 6.3

shows these same variables but plots the average error over the entire network.

The results shown in Fig. 6.4 and Fig. 6.1 are highly similar in quality to those of

the iterative synchronization demonstrated for a similar case in Fig. 5.21. Importantly,

the estimates of the clock drift and carrier phases tend to converge such that the error

approaches zero. There are some notable distinctions, some of which are due to dif-

ferences in the techniques and some of which are artifacts of the different simulation

parameters. First, note how the clock bias estimate with drift compensation has higher

error than in the iterative synchronization procedure. This results from the modifica-

tion to the process covariance not being sufficient to allow the clock bias estimates to
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Fig. 6.2: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed for a single platform in a net-
work of four platforms. The above plots show the error for a single platform of clock
drift (a), relative velocity with the other three platforms (b), clock bias (c), range with
the other three platforms (d), TX carrier phase (e), and RX carrier phase (f). The solid
lines show the error, while the dashed lines indicate the expected standard deviation
of error bound predicted by the UKF.
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Fig. 6.3: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed as the mean error for a network
of four platforms. The above plots show the mean error for clock drift (a), relative
velocities between platforms (b), clock bias (c), range between platforms (d), TX
carrier phase (e), and RX carrier phase (f).

224



match the measurements properly, which is likely caused by the underlying update rate

of the UKF being higher than the measurement availability rate, which is not the case

in the iterative synchronization UKF. To fix this, the measurements of clock bias are

directly substituted for the state variables, leading to some additional error. However,

because the additional compensated error is still within a fraction of a nanosecond,

this is considered sufficient.

Another notable distinction is the increased range error. This is an artifact of the

simulation, since this simulation is run over 300 s rather than 30 s, and the platforms

move much further away from one another as the simulation carries on. The resulting

increased distances lead to much higher biasing of the true range measurements due

to the clock drift error arising from the incorrect assumption that α1 = 1.

In addition to the synchronization variables, the network mean error for navigation

is shown in Fig. 6.4, with comparisons between the dead-reckoning navigation and

cooperative navigation. The reduction in error is similar in magnitude to the four-

platform cooperative navigation case in Fig. 3.2, though the overall error for both

cases is increased due to the reduced simulation update rate. Generally, it would

be expected that the cooperative navigation quality would be increased rather than

decreased due to the expected range variance at 30 dB being much lower than the 0.1 m

standard deviation assumed in the simulations in Chapter 3. However, as demonstrated

in Fig. 4.24, the true range measurement accuracy tapers off after a fairly low SNR due

to error introduced by the ambiguity function and bias introduced by the clock drift

error. As a result, the higher accuracy in theory does not translate to practice. Future

work may need to consider practical ways to estimate the true range variance given

these additional practical effects on top of SNR.
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Fig. 6.4: Average platform navigation error for 4 platforms using simultaneous navi-
gation and synchronization, with individual dead-reckoning (black) and using cooper-
ative navigation (blue).

6.3.2 Results with Lower SNR

In this example, the SNR is lowered from 30 dB to 10 dB to demonstrate the syn-

chronization and cooperative navigation performance in lower SNR scenarios. Con-

sider Fig. 6.5, which shows the mean error for the synchronization variables in this

case, and Fig. 6.6, which shows the cooperative navigation and dead-reckoning navi-

gation errors. The synchronization variable errors are increased in a similar manner to

those in Fig. 5.18, though there are some distinctions due to the simulation differences

described above. The range error is very similar to the 30 dB SNR case, since the

error is dominated by the increased range between platforms and those errors rather

than the SNR, are described in Fig. 4.24.

Interestingly, the cooperative navigation error in this case is reduced from the

higher SNR case, as seen in Fig. 6.6. This is likely because in the 10 dB SNR case,

the estimated range variance described by the (4.116) will more closely match reality,

as opposed to the 30 dB case in which the estimated variance will be much lower than
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Fig. 6.5: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed as the mean error for a network
of four platforms with 10 dB of SNR. The above plots show the mean error for clock
drift (a), relative velocities between platforms (b), clock bias (c), range between plat-
forms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 6.6: Average platform navigation error for 4 platforms using simultaneous naviga-
tion and synchronization with 10 dB of SNR, with individual dead-reckoning (black)
and using cooperative navigation (blue).

the error variance in reality. Thus, the measurements are more appropriately weighted

in the update step in comparison to the IMU updates, leading to overall increased ac-

curacy. This scenario highlights the importance of properly weighting the covariance

of measurements to avoid over-trusting inaccurate measurements.

6.3.3 Results with Realistic Variable SNR

In this next scenario, the SNR values are adjusted based on the expected SNR

based on the Friis formula and SNR computation described in Section 2.2.4. For this

simulation, it is assumed that each platform transmits with a power of Pt = 10 W.

Isotropic antennas are assumed such that Gt = Gr = 0 dB. For simplicity, the RF

front-end gain and noise figure are both assumed to be 0 dB such that the SNR at the

antenna is the observed SNR at the ADC. The SNR values are estimated using the

technique referenced in Section 4.4.4.

Error results in the synchronization states for a single platform, along with stan-
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Fig. 6.7: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed for a single platform in a net-
work of four platforms with variable SNR based on the Friis formula. The above plots
show the error for a single platform of clock drift (a), relative velocity with the other
three platforms (b), clock bias (c), range with the other three platforms (d), TX carrier
phase (e), and RX carrier phase (f). The solid lines show the error, while the dashed
lines indicate the expected standard deviation of error bound predicted by the UKF.
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Fig. 6.8: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed as the mean error for a network
of four platforms with variable SNR based on the Friis formula. The above plots show
the mean error for clock drift (a), relative velocities between platforms (b), clock bias
(c), range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 6.9: Average platform navigation error for 4 platforms using simultaneous navi-
gation and synchronization with variable SNR based on the Friis formula, with indi-
vidual dead-reckoning (black) and using cooperative navigation (blue).

dard deviation lines, are shown in Fig. 6.7, while the mean errors for the network in

estimating the synchronization variables in this case are shown in Fig. 6.8. Particu-

larly in Fig. 6.7 where the standard deviation bounds are shown, it can be seen that the

errors estimates of clock drift and carrier phase generally do not change much after the

75 s point, indicating that the estimates are not updated strongly. This is a logical re-

sult since as the simulation continues, the platforms spread out and the range between

them increases, leading to a large reduction in SNR. Thus, the measurement covari-

ance is large and the result is that the measurements will be weighted much lower than

the original state estimates during the update phase of the UKF.

The navigation error results are shown in Fig. 6.9. Despite the much lower SNR

toward the end of the simulation, the cooperative navigation error still is close to the

error in the 30 dB case and significantly outperforms the dead-reckoning error.

231



0 50 100 150 200 250 300

Time (s)

0

2

4

6

C
lo

c
k
 D

ri
ft
 E

rr
o
r

10
-11

(a)

0 50 100 150 200 250 300

Time (s)

0

0.02

0.04

0.06

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

(b)

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

C
lo

c
k
 B

ia
s
 E

rr
o
r 

(s
)

10
-9

Mean Error Mean Error Drift Norm

(c)

0 50 100 150 200 250 300

Time (s)

0

0.2

0.4

0.6

R
a
n
g
e
 E

rr
o
r 

(m
)

(d)

0 50 100 150 200 250 300

Time (s)

0

0.5

1

1.5

2

T
X

 P
h
a
s
e
 E

rr
o
r 

(d
e
g
)

(e)

0 50 100 150 200 250 300

Time (s)

0

0.5

1

1.5

2

2.5

R
X

 P
h
a
s
e
 E

rr
o
r 

(d
e
g
)

(f)

Fig. 6.10: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach with a synchronization update rate of 0.1 Hz. These results
are computed as the mean error for a network of four platforms. The above plots show
the mean error for clock drift (a), relative velocities between platforms (b), clock bias
(c), range between platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 6.11: Average platform navigation error for 4 platforms using simultaneous nav-
igation and synchronization with a synchronization update rate of 0.1 Hz, with indi-
vidual dead-reckoning (black) and using cooperative navigation (blue).

6.3.4 Results with Lower Update Rate

This scenario shows the performance of the synchronization and navigation when

the rate at which the synchronization procedure is performed is lowered to 0.1 Hz

(once every 10 s). The network mean errors for the synchronization states are shown

in Fig. 6.10. The errors in general have the same quality as the 1 Hz update rate in

Fig. 6.3, which is unsurprising since it was confirmed in Chapter 5 that the update rate

would not significantly impact the synchronization quality (though this may prove

untrue if the clock states were not simulated to remain constant). The only visible

distinction is that the estimate error displays a “stair step” form with jumps at the

update times. The main issue is that the clock bias errors make a significant jump,

even going above a single ns – this clock bias error may be significant enough to

introduce phase errors in signals. This will be the primary limitation of decreasing the

update rate unless a solution to this issue is found in future work.

The navigation results with the lower update rate are shown in Fig. 6.11. Interest-

233



ingly, the update rate also does not seem to impact the cooperative navigation accuracy

severely, indicating that the cooperative navigation quality will remain high even with

a decrease in the availability of ranging signals.

6.3.5 Results with GPS

This scenario shows the impact of including GPS measurements in the simultane-

ous navigation and synchronization procedure. The GPS measurements are included

at the same update rate as the synchronization measurements on the same iterations,

and the variance of the GPS measurements is identical to the variance of the GPS

measurements described in Chapter 3. Fig. 6.12 shows the mean errors for the syn-

chronization states with the GPS enabled. In general, these results show very similar

quality synchronization to the results without GPS in Fig. 6.3, with the only noticeable

improvement being the clock drift error being reduced. Fig. 6.13 shows the navigation

error for this case; unsurprisingly, the cooperative navigation with GPS far outper-

forms dead-reckoning. Because the point of this simulation is to show the simultane-

ous navigation and synchronization, which by nature includes the ranging signals, it is

not evident how to draw a comparison between GPS with and without the cooperative

navigation as in Fig. 3.6.

6.3.6 Results with a High-Accuracy IMU

In this final scenario, the results of the simultaneous navigation and synchroniza-

tion approach are produced using an IMU with high accuracy. As with the lower-

accuracy IMU used in each other scenario, the IMU properties are described in Chap-

ter 3. Fig. 6.14 shows the mean errors for the synchronization states using the higher-

accuracy IMU. Similar to the GPS case, there is not a significant increase in syn-
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Fig. 6.12: Simulated UKF synchronization error with the simultaneous navigation
and synchronization approach. These results are computed as the mean error for a
network of four platforms with access to GPS. The above plots show the mean error for
clock drift (a), relative velocities between platforms (b), clock bias (c), range between
platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 6.13: Average platform navigation error for 4 platforms using simultaneous
navigation and synchronization with access to GPS, with individual dead-reckoning
(black) and using cooperative navigation (blue).

chronization accuracy, although the clock drift estimate error is somewhat reduced

compared to Fig. 6.3. One interesting anomaly is the jumps in phase error around

50 and 200 s. Although these jumps are relatively small (only slightly larger than a

degree), they do represent a departure from the pattern of general reduction in error

over time. More analysis of the phase error will be necessary to determine the source

of these errors.

Fig. 6.15 show the navigation error for the dead-reckoning and cooperative case

with the high-accuracy IMU. In contrast to the cooperative navigation scenario in

Fig. 3.4, the dead-reckoning closely matches the cooperative navigation case to some

extent. This is likely due to the range measurement bias due to relative velocity and

clock drift error present in the realistic ranging signals, in which case the ranging

signals must be ignored to some extent in favor of the highly accurate IMU navigation

updates.
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Fig. 6.14: Simulated UKF synchronization error with the simultaneous navigation and
synchronization approach. These results are computed as the mean error for a network
of four platforms with high-accuracy IMUs. The above plots show the mean error for
clock drift (a), relative velocities between platforms (b), clock bias (c), range between
platforms (d), TX carrier phase (e), and RX carrier phase (f).
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Fig. 6.15: Average platform navigation error for 4 platforms using simultaneous navi-
gation and synchronization with high-accuracy IMUs, with individual dead-reckoning
(black) and using cooperative navigation (blue).

6.4 Discussion

This chapter does demonstrate that the simultaneous navigation and synchroniza-

tion approach works while using the iterative synchronization approach to achieve

filtered synchronization and ranging and relative velocity measurements. In terms of

cooperative navigation accuracy, similar results to those in Chapter 3 can be achieved

using this approach, while similar results in synchronization to those in Chapter 5 can

also be achieved using this approach.

There are some important sources of error that reduce the quality of the results

presented in this chapter. First, the proposed digital synchronization technique has

the drawback of introducing clock drift bias by making the assumption that α1 = 1,

which introduces ranging errors. The ranging errors are compounded by minor time-

delay shifts due to errors in Doppler shift compensation, although these errors will be

present in any technique relying on the exchange of such signals in the presence of

unknown Doppler shifts. These ranging errors ultimately degrade the performance of
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the navigation and make it difficult to perfectly estimate the ranging variance required

to correctly construct the measurement covariance matrix.

The second problem is that the iterative synchronization approach, although stable

and functional, discards a significant amount of information. Theoretically, the time,

phase, and frequency approach does not abstract away any of the information that

can be extracted from signals, such that the impact on the ranging and single-tone

frequency signals due to the contribution of every state variable, including navigation

states and clock parameters, can be modeled and extracted through the measurement

function. As a result, in theory, the dependencies of all system state variables on one

another can be quantified correctly through the measurement function, which would

ultimately lead to higher accuracy overall, which can be seen in some way in the time,

phase, and frequency results showing how the time-delay measurement allows for very

accurate estimates of clock drift. When using highly-accurate navigation equipment,

such as GPS (or RTK GPS, for instance) or high-accuracy IMUs, these could even be

refined in such a way as to compute and compensate for the clock drift biases; that

is, the assumption that α1 = 1 could be discarded in favor of pulling out the ranging

biases over time and compensating for them.

In contrast to these possibilities, the iterative synchronization approach which is

used here discards time-delay information when computing clock drift and discards

additional frequency information when computing clock biases, ranges, and phases.

Because there is no additional information, the proposed simultaneous navigation ap-

proach is not much different from running the iterative synchronization UKF sepa-

rately and simply pulling the range and relative velocity measurements over to a con-

current cooperative navigation UKF. Therefore, future efforts will focus on correcting

the errors in the time, phase, and frequency approach such that the benefits it endows
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to synchronization accuracy, and ideally, navigation accuracy, can be fully realized in

future iterations of this work.
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Chapter 7

Preliminary Hardware Demonstration

This chapter provides some preliminary results demonstrating the hardware im-

plementation of the synchronization algorithms described in this work. To date, the

only component of the synchronization that has been fully and reliably implemented

on the hardware setup is the carrier frequency synchronization accomplished through

the estimation of the clock drifts as described in Chapter 4. Implementation of other

parts of the algorithm has already been accomplished in [92] and as such this is not

deemed a crucial part of this demonstration. Future work on the implementation will

involve implementing all components of the synchronization, including reliable time

and phase synchronization, as well as implementation of the time-series UKF estima-

tion described in Chapter 5.

7.1 Hardware Setup

To validate the proposed frequency synchronization technique, two custom-built

software-defined radios (SDRs) were employed. The core of each SDR unit is an Ana-

log Devices AD9361 dual-channel transceiver, which comprises all components of

the transceiver chain including digital-to-analog converters (DACs), analog-to-digital

converters (ADCs), and the RF up-conversion and down-conversion. The transceiver
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Fig. 7.1: A block diagram of the hardware used in this experiment. From [5] ©2024
IEEE.

is governed by a Zynq 7020 integrated field-programmable gate array (FPGA) and

dual-core ARM processor, which configures the transceiver chip, loads the programmable

transmit waveform to the transceiver, collects the received digital signal, and interfaces

with the external central processing computer. Each SDR communicates through an

Ethernet interface with a dedicated processing computer, which collects the received

data, loads waveforms and configurations defined by the user, and communicates

through a network to the user’s computer where all pre- and post-processing of the

waveforms and received data is accomplished.

Each SDR is capable of running on an internal 10 MHz oscillator or an external

clock source. Each node may also be programmed to output a trigger signal after the

system is reset to begin a new session. This trigger signal can be input to all other

SDRs in the network to reset the FPGA clock counter. This coarse synchronization

step is important for properly implementing the frequency synchronization procedure

since the received signals will quickly drift outside the receive window before the

FPGA clock counter can be scaled to compensate for clock drift. This coarse synchro-

nization requirement is a limitation of the hardware implementation rather than the

proposed synchronization procedure since the SDR data capture length is currently

limited to 100 µs due to restrictions on the data communication rate.

The two SDRs have their transmitters and receivers connected via coaxial cables
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Fig. 7.2: An image of the connected SDR units. From [5]©2024 IEEE.

in a loopback mode. At the beginning of the experiment, a trigger from SDR 1 is

input back into SDR 1 and SDR 2 to reset the FPGA clock counters and ensure that the

clocks start aligned. A Siglent SDG 1032X two-channel arbitrary waveform generator

is used to generate reference clock inputs to both SDRs. SDR 1 receives a 10 MHz

clock input, giving a drift value of α1 = 1, while SDR 2 receives a 10.0001 MHz clock

input, giving a drift value of α2 = 1.00001. This emulates a clock error of 10 ppm,

which is a reasonable performance to expect from a typical crystal oscillator. The

SDRs transmit with a nominal carrier frequency of f c = 3.07 GHz. A block diagram

of the hardware configuration is shown in Fig. 7.1, and an image of the connected pair

of SDRs is shown in Fig. 7.2.

After the initial coarse synchronization, each node transmits the rectangularly-

windowed synchronization pulse, with SDR 1 transmitting at a baseband frequency

f α1 = 1 MHz and SDR 2 transmitting at a baseband frequency f α2 = −1 MHz. Each

transmitted pulse has a pulse length of 60 µs. Each SDR receives in a 100 µs window

sampled at 30 MHz, with the receive window aligned such that the received pulse will

fit entirely in the window with at least 15 µs cushion on either side without accounting

for any propagation delay. With a clock drift of 1.00001, it is guaranteed that the full

243



pulse will appear in the receive window so long as the pulse is transmitted within 1.5 s

of the initial coarse synchronization. After this, the clock drift value is estimated and

used to compensate the carrier frequency and the FPGA clock, which ensures that

future transmitted signals will be aligned in the receive window of the other node.

All clock drift estimations and waveform compensations are performed on a desktop

computer. For simplicity, the communication of the frequency estimates is achieved

through the computer link rather than through a modulated communications waveform

over the coaxial link between the SDRs.

7.2 Experimental Results

To demonstrate the statistical accuracy of the proposed technique, a sample set of

100 single-tone pulse exchanges is produced to generate 100 independent clock drift

estimates. The FPGA clock is aligned using the first clock drift estimate to ensure the

subsequent pulses will fall within the receive window, though no carrier corrections

are applied such that the quality of each drift estimate will still be identical to the first

estimate. Because there are only 2 nodes in the network and it is assumed α1 = 1,

only an estimate of α2 is produced. The 100 clock drift estimates have a mean of

µα = 1.000009999818253, giving a mean error of µϵ = −1.81746824257× 10−10. The

standard deviation of the clock drift estimate errors is σϵ = 9.75395662× 10−9, which

translates to <10 ppb error. At the carrier frequency of this experiment, the result is

an average corrected carrier frequency misalignment of 29.94 Hz.

Next, the system was reset and another clock drift estimate was produced, this

time with a value of α̂2 = 1.000010000252. To demonstrate the carrier frequency

corrections in (4.36) and (4.47), the same single-tone waveforms with frequencies

of f α1 = 1 MHz and f α2 = −1 MHz were transmitted with the transmit and receive
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Fig. 7.3: The FFT of the single-tone signals transmitted and received by each platform,
before and after the carrier frequency corrections were applied. The FFT is computed
with an up-sampling factor of 200. From [5]©2024 IEEE.

corrections applied by both platforms. Fig. 7.3 shows the FFT of the signals received

by both nodes from one another, before and after the carrier frequency corrections.

The FFT is taken after zero-padding to increase the frequency resolution. Because of

the precisely known clock drift, the expected frequency error before corrections may

be computed to be 30.7 kHz, which matches closely to the frequency offsets observed

in Fig. 7.3. After correction, the frequency error of the tone received by node 1 is

22 Hz and the error of the tone received by node 2 is 31 Hz, which are larger errors

than the expected 0.773 Hz computed from the clock drift estimate. These errors are

attributable to the small but non-negligible noise power on the signals, which may

slightly shift the expected peak positions during the up-sampling process.

Finally, in a distributed radar application, it is desirable to coherently sum signals

received by disparate platforms. For this to happen accurately, frequency errors be-

tween signals must be eliminated. Fig. 7.4 shows the summation of two signals trans-

mitted and received by the SDRs from one another, both with and without frequency
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Fig. 7.4: The signals received by nodes 1 and 2 summed without frequency corrections
(a) and with frequency corrections (b). For clarity, only the real part of the signals are
shown. From [5]©2024 IEEE.

corrections. The baseband signals are single-tone pulses with nominal frequencies

of 500 kHz. When the frequency corrections are not applied, the summation of the

offset sinusoids produces a modulating effect, while the summation of the corrected

sinusoids is clearly at the correct frequency with no modulation over the width of the

pulse.
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Chapter 8

Conclusion

The goal of the research in this dissertation is to develop practical techniques for

cooperative navigation and synchronization of wirelessly distributed radar platforms

in a cooperative radar sensor network. Advances in radar remote sensing will need

to consider distributed and MIMO capabilities to maintain the modern trend of in-

creased performance. As radar engineers continue to probe the upper limits on perfor-

mance in a monostatic system, it is anticipated that next-generation systems will see

the proliferation of distributed architectures since not only do they provide increased

performance in a traditional sense at a potentially lower per-unit cost, but they will

also provide capabilities that are not possible from a monostatic point of view due

to their many geometric degrees of freedom. To enable the true capabilities of such

systems, integrated localization and synchronization routines such as those described

in this dissertation are of paramount importance.

First, a cooperative navigation routine is presented in Chapter 3. This procedure

builds very simply on the existing principles of the UKF, using inter-platform ranging

measurements in conjunction with traditional navigation measurements such as accel-

eration and angular velocity measurement inputs from an IMU, as well as GPS posi-

tioning signals when available, to track platforms’ positions over time in an absolute
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manner. It has been shown that even when using a low-quality IMU, the cooperative

positioning can improve navigation error by upwards of 90% in a moderately sized

network of navigating platforms in a GPS-denied scenario. Even in a scenario where

GPS is available, the cooperative navigation framework enables a halving of the over-

all error. In both cases, the cooperative navigation case will generally outperform the

non-cooperative case in terms of SAR performance when a system is included on one

or all of the platforms.

Chapter 4 presents a newly developed algorithm for digitally synchronizing dis-

tributed networks of RF systems – although the emphasis in this dissertation is on

radar, it must be noted that this technique is applicable to the synchronization of any

network of RF systems requiring synchronization on transmit and receive, such as dis-

tributed communication arrays. This technique is decentralized, making it robust to

any single point of failure. The technique can also be run very quickly, requiring rel-

atively few transmissions from each system and only requiring significant amounts of

time to complete in large networks when TDMA is required. In future iterations,

other methods of signal orthogonality will be implemented, such as MIMO rang-

ing waveforms and full exploitation of the frequency multiplexing of the single-tone

waveforms, allowing the systems to receive the transmitted waveforms from all other

platforms simultaneously and dramatically reducing the required runtime. The tech-

nique enables highly accurate estimation of clock drift, clock bias, and carrier phase,

which may be compensated for to achieve frequency, time, and phase synchronization.

Notably, this technique is entirely digital, which is a significant improvement to the

state-of-the-art in this area which either cannot be accomplished without additional

hardware, requires an external frequency reference, or can only be accomplished on

receive but not on transmit, obviating use in systems requiring concentrated energy
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on target such as directed communications or transmit beamforming for radar. It has

been shown that this technique performs well enough with moderate SNR to maintain

synchronization over a second or more without requiring updates, enabling such tech-

niques as distributed transmit beamforming and high-quality MIMO SAR from plat-

forms with relative motion since Doppler shifts do not adversely impact the frequency

transfer performance. In addition to deriving and testing the algorithm extensively, a

thorough theoretical analysis is provided through comparison to the CRLB, showing

that the estimation technique closely approaches or meets the CRLB for the estima-

tion of all clock parameters. Finally, the procedure produces estimates of range and

relative velocity which may be used in cooperative navigation.

This synchronization algorithm is only a “one-shot” solution, meaning that the

clock parameter estimates are only valid for one point in time and will become un-

usable quickly, either due to drift of the clock parameters or errors in the original

estimates. To override this issue, tracking approaches using the UKF are discussed in

Chapter 5. First, the state model is derived for tracking the clock parameters and other

relevant state variables over time. Next, two measurement models are proposed: the

time, phase, and frequency approach, and the iterative synchronization approach. In

the time, phase, and frequency approach, general signals are transmitted and the time,

phase, and frequency of the received signals at each platform are measured. With

the nonlinear measurement model relating these measurements back to the original

clock parameters, the UKF is able to track the parameters over time. However, this

approach, while extremely accurate with respect to clock drift in some scenarios, falls

apart quickly in the presence of relative motion and low SNR, making it unsuitable for

use in its present form. The iterative synchronization approach, on the other hand, es-

sentially runs the original synchronization algorithm at a set interval, and subsequent

249



measurements of clock parameters are integrated into the current estimates through

the UKF. Results are provided which show that while the clock drift estimates are not

as accurate as the time, phase, and frequency approach due to the lack of time-delay

information in forming the estimates, all clock parameters may be reliably tracked in

every circumstance, including low SNR, relative motion, and low update rates.

As a result of the iterative synchronization approach’s success, this technique is

selected for the integration of synchronization and navigation, which is described in

Chapter 6. In this chapter, the iterative synchronization measurement model is inte-

grated into the cooperative navigation simulation developed in Chapter 3. The only

minor change required is to modify the state model to include cartesian position, ve-

locity, and orientation rather than ranges and relative velocities. Instead, these range

and relative velocities are used directly as measurements such that navigation may still

be performed exactly as before. It is shown that by integrating these two procedures

together, the performance of each procedure individually is maintained in all scenar-

ios, including low SNR, variable SNR, and various motion paths. Future work will

involve correcting the errors in the time, phase, and frequency approach since the ad-

ditional information available in this approach is expected to increase the accuracy of

both synchronization and navigation.

Finally, a first-time demonstration of the synchronization technique described in

Chapter 4 is provided in Chapter 7. The results are demonstrated for a two-node

network of SDRs with a known offset in clock drift. The clock drift is compensated

for with ppb level accuracy, leading to a measured frequency correction of close to

30 Hz. Future iterations of this will focus on improving this accuracy since this will

likely not be sufficient for obtaining high-accuracy Doppler phase measurements in a

real radar system.
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8.1 Contributions of this Work

The following significant contributions are made in this work:

• Development of UKF-based cooperative navigation

• Demonstration of benefits of navigation in cooperative networks with heteroge-

neous GPS access

• Utilization of cooperative navigation in single-aperture and distributed SAR

• First-time demonstration of a fully-digital synchronization algorithm for time,

phase, and frequency

• Development of multiple frequency synchronization approaches tailored to dif-

ferent system requirements and tolerances

• Derivation of anticipated synchronization performance based on the CRLB

• Derivation of technique for solving for wrapped phase values using OLS and

WLS

• Demonstration of synchronization for use in high-quality distributed transmit

beamforming and MIMO SAR

• Development of two UKF-based approaches for tracking synchronization states

over time

• Demonstration of UKF-based tracking of synchronization states, showing re-

duction in error over time
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• First-time demonstration of simultaneous tracking of navigation and synchro-

nization clock states

• First-time demonstration of the proposed all-digital synchronization approach

in real hardware

8.2 Future Work

This dissertation provides a foundation and framework for navigation and synchro-

nization in mobile distributed radar networks. However, there are still many tasks to be

completed related to this research and a large body of future research to be performed.

This section lays out some of these future efforts.

8.2.1 Kalman Filtering of Wrapped Phase

One key problem with the implementation of the iterative synchronization UKF

approach is that if the true wrapped carrier phase is close enough to π or −π, the noisy

estimates will occasionally wrap around, leading to a large apparent jump in phase

which biases the mean value. The result is that the UKF will converge to a value

between the true value and the noisy wrapped estimates. This problem is illustrated

in Fig. 8.1. To make this technique universally applicable, a solution will need to

be derived such that noisy estimates can be unwrapped correctly to ensure the true

mean phase will be converged upon. This may be as simple as un-dynamically se-

quential phase estimates but may also require a more complex approach since there is

a non-zero chance in low-SNR situations that an apparent wrapping of phase will be

a legitimate jump in phase due to noise. An analysis of this problem and, ideally, a

functional solution will be the subject of a future study.
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Fig. 8.1: A plot illustrating the problem of wrapped noisy phase estimates on UKF
phase estimation when the carrier phase value is near the ±π value.

8.2.2 Proper Implementation of Time, Phase, and Frequency

As alluded to in Chapters 5 and 6, the iterative synchronization approach is ser-

viceable for reducing synchronization error over time and providing measurements

for cooperative navigation. However, in directly producing the clock state, range, and

relative velocity estimates, it discards a significant amount of information which can

increase overall estimation accuracy. This is most notable in the clock drift estima-

tion accuracy, which is significantly lower in the time, phase, and frequency estima-

tion procedure, which leverages time, phase, and frequency information rather than

just frequency alone to produce high-quality estimates. Furthermore, the accuracy of

other clock parameter estimates, along with range and relative velocity estimates, is

dependent on clock drift synchronization being performed with high accuracy. There-

fore, future work must focus on properly characterizing the sources of error in the

time, phase, and frequency approach in non-ideal scenarios such as lower SNR and

the presence of relative motion. One possible approach to this is to dynamically al-

ter the update rate of the UKF based on the estimated SNR and estimated clock drift

variance to ensure that there will not be aliasing of the phase estimates from itera-
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tion to iteration since it is possible that the estimation error is due to aliasing phase

information when there are Doppler shifts and carrier frequency skew.

Included in this future work will be the exploration of techniques for extracting

range bias due to incorrect estimation of clock drift based on the assumption of α1 =

1. If the navigation system is accurate enough, and particularly if high-quality GPS

measurements are available, it may be possible to extract the ranging bias over time

and from there estimate the true values of αi rather than just relative ones.

8.2.3 Demonstrate Technique with Practical Clock Simulations

As discussed in Chapter 5, the Kalman filtering of the synchronization state esti-

mates serves not only to converge on clock parameters estimates in the presence of

noise but also to track non-constant clock states as they slowly evolve with time, for

instance, as a result of the frequency drift of an oscillator described by its Allan vari-

ance. Therefore, future work will involve simulations including additional realistic

clock errors to demonstrate the UKF’s ability to track changing errors over time while

simultaneously reducing error. This will include both building a simulation that con-

siders these practical clock errors as well as developing methods for characterizing the

clock errors in the design of the process covariance matrix.

8.2.4 Full Hardware Demonstration of Synchronization

The hardware demonstration of the synchronization algorithm in Chapter 7 pro-

vides a fairly limited demonstration of the synchronization capabilities described in

previous chapters. In general, this demonstration only demonstrates the ability of the

single-tone with exchange technique to synchronize in frequency, but due to some

practical effects in the SDR units, the phase synchronization is not consistent. This
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inconsistency is primarily due to the FPGA sampling time, which restricts TX and

RX frames to discrete multiples of 8 ns, leading to large unanticipated changes in de-

lay phase, and the amount of time required to buffer waveforms such that the carrier

phase will change due to carrier skew before the carrier phase can be estimated and

compensated correctly. Future work in this area will correct these issues by address-

ing the underlying FPGA limitations. First, work must be done on the TX buffering

of the waveform to compensate for the time and phase change required due to the po-

tential offset between the desired TX time and the actual TX time aligning with the

FPGA clock. The slow buffering time of the waveforms must be addressed by mov-

ing the components of the waveform generation from MATLAB directly to the FPGA

itself to eliminate the slow transfer of data required for each waveform correction.

The resulting corrections will enable a more consistent and convincing demonstration

of the proposed synchronization technique which will correct for all of time, phase,

and frequency. This completed system will also include a Kalman filtering compo-

nent in which the UKF techniques discussed in Chapter 5 will be demonstrated in real

hardware. Finally, a third SDR unit will be procured such that the synchronization

techniques described in this dissertation can be tested in a network of more than two

nodes.

8.2.5 Navigation and Synchronization Demonstration

While a basic hardware demonstrator has been constructed, all navigation work

to date has been done using only simulation. Implementing a distributed navigation

demonstration will be significantly more challenging than the synchronization alone

since it will still require the implementation of all the synchronization algorithms to

obtain the ranging measurements. However, this must also be done on top of imple-
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menting some way of moving the radar platforms with a ground truth available. This

will possibly be done using some form of track-mounted system as this will enable

precise control and ground truth position measurements with which to compare. An-

other option is to simply place platforms on different vehicles and use high-precision

RTK GPS units to produce the ground truth position measurements. This will need

to be implemented with four units at a minimum to match the simulated performance

shown in Chapter 3.

8.2.6 Distributed Radar Demonstration

In addition to the full navigation and synchronization implementation, a full dis-

tributed radar demonstration using the proposed synchronization algorithm is pro-

posed. This proposed demonstration may use the same SDR implementation in Chap-

ter 7 since these systems are fully functional radar units. As with the desired full

synchronization demonstration, it is anticipated that this demonstration be done with

at least three units since most of the targeted radar applications (distributed beam-

forming, MIMO SAR, etc.) will benefit from more than two nodes. A good starter

demonstration would be a stationary network demonstrating coherent TX beamform-

ing similar in nature to the simulation in Chapter 4, while long-term demonstrations

would possibly include some form of MIMO SAR to include all of synchronization

and motion compensation provided by the proposed simultaneous navigation and syn-

chronization approach.

8.2.7 Decentralized Implementation of Filtering

One major challenge in developing the proposed distributed estimation approach

toward implementation in practical systems is enabling a decentralized approach. While
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the synchronization approach described in Chapter 4 is decentralized in that no cen-

tralized computations need to take place, the method does not consider synchroniza-

tion with any directional communications links as may appear in some networks [113].

Furthermore, the UKF approach to navigation, synchronization, and their combination

as proposed in this dissertation is exclusively centralized such that all computations

will be performed on one (or all) nodes, and all state vectors and covariance matrices

comprise the states and correlations among all platform states. This will ultimately

lead to infeasible implementation for even moderately large networks.

To overcome this, decentralized approaches will be explored in future research.

The distributed and decentralized Kalman filters have been previously explored in the

literature [114, 115] to handle the networks of sensors attempting to apply Kalman

filtering to reach consensus on a system state estimate. However, these particular

implementations make some assumptions that would make them infeasible for the

problem at hand. Efforts in potentially adapting the framework provided by these

Kalman filter implementations toward the synchronization and cooperative navigation

problems will be explored.
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“Swarm exploration and navigation on Mars,” in 2013 Int. Conf. Localization
GNSS ICL-GNSS, Jun. 2013, pp. 1–6.

[37] M. G. Amin, P. Closas, A. Broumandan, and J. L. Volakis, “Vulnerabilities,
threats, and authentication in satellite-based navigation systems [scanning the
issue],” Proc. IEEE, vol. 104, no. 6, pp. 1169–1173, Jun. 2016.

[38] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “GNSS position integrity in
urban environments: A Review of literature,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 9, pp. 2762–2778, Sep. 2018.

[39] I. Skog and P. Handel, “In-car positioning and navigation technologies—a sur-
vey,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 4–21, Mar. 2009.

[40] J. Wen, L. He, and F. Zhu, “Swarm robotics control and communications: Im-
minent challenges for next generation smart logistics,” IEEE Commun. Mag.,
vol. 56, no. 7, pp. 102–107, Jul. 2018.

[41] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for
wireless personal networks,” IEEE Commun. Surv. Tutor., vol. 11, no. 1, pp.
13–32, 2009.

[42] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localization: A
review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–149, Jan. 2014.

261



[43] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind. Elec-
tron., vol. 59, no. 11, pp. 4409–4420, Nov. 2012.

[44] I. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation by a mobile robot
with obstacle avoidance using single-camera vision and ultrasonic sensing,”
IEEE Trans. Robot. Autom., vol. 14, no. 6, pp. 969–978, Dec. 1998.

[45] C. Toth, D. A. Grejner-Brzezinska, and Y.-J. Lee, “Terrain-based navigation:
Trajectory recovery from LiDAR data,” in 2008 IEEEION Position Locat.
Navig. Symp., May 2008, pp. 760–765.

[46] A. Wahdan, J. Georgy, W. F. Abdelfatah, and A. Noureldin, “Magnetometer cal-
ibration for portable navigation devices in vehicles using a Fast and autonomous
technique,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2347–2352, Oct.
2014.

[47] P. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems, 2nd ed. Artech House, Mar. 2013.

[48] L. Chang, K. Li, and B. Hu, “Huber’s M-estimation-based process uncertainty
robust filter for integrated INS/GPS,” IEEE Sens. J., vol. 15, no. 6, pp. 3367–
3374, Jun. 2015.

[49] G. Guo and J. Liu, “A stochastic model-based fusion algorithm for enhanced
localization of land vehicles,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10,
2022.

[50] A. Noureldin, T. B. Karamat, M. D. Eberts, and A. El-Shafie, “Performance
enhancement of MEMS-based INS/GPS integration for low-cost navigation ap-
plications,” IEEE Trans. Veh. Technol., vol. 58, no. 3, pp. 1077–1096, Mar.
2009.

[51] “A double-stage Kalman filter for orientation tracking with an integrated pro-
cessor.”

[52] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960.

[53] M. Athans, “The importance of Kalman filtering methods for economic sys-
tems,” in Annals of Economic and Social Measurement, Volume 3, number 1.
NBER, 1974, pp. 49–64.

[54] L. P. Perera, P. Oliveira, and C. Guedes Soares, “Maritime traffic monitoring
based on vessel detection, tracking, state estimation, and trajectory prediction,”
IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 1188–1200, Sep. 2012.

262



[55] S. Blackman, “Multiple hypothesis tracking for multiple target tracking,” IEEE
Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp. 5–18, Jan. 2004.

[56] A. Farina, B. Ristic, and D. Benvenuti, “Tracking a ballistic target: comparison
of several nonlinear filters,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 854–867, Jul. 2002.

[57] S. Y. Chen, “Kalman filter for robot vision: A survey,” IEEE Trans. Ind. Elec-
tron., vol. 59, no. 11, pp. 4409–4420, Nov. 2012.

[58] D.-J. Jwo and S.-H. Wang, “Adaptive fuzzy strong tracking extended Kalman
filtering for GPS navigation,” IEEE Sens. J., vol. 7, no. 5, pp. 778–789, May
2007.

[59] M. B. Alatise and G. P. Hancke, “Pose estimation of a mobile robot based on
fusion of IMU data and vision data using an extended Kalman filter,” Sensors,
vol. 17, no. 10, p. 2164, Oct. 2017.

[60] J. Crassidis, “Sigma-point Kalman filtering for integrated GPS and inertial nav-
igation,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 2, pp. 750–756, Apr.
2006.
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Appendix A

Notation

The following notation and symbols are used:

āi,k – A 3×1 vector denoting the body-frame acceleration, as measured by
an accelerometer, of platform i at time-series point k

ār
i,k – A 3 × 1 vector denoting the acceleration of platform i at time-series

point k in the ECEF frame
A j(t, f ) – The ambiguity function of sd

j (t)
Ax(τ) – The amplitude of a received signal as a function of slow-time
A f – The matrix describing the coefficients of the system of linear equa-

tions solving for clock drift in the stationary case
A f ,d – The matrix describing the coefficients of the system of linear equa-

tions solving for clock drift in the Doppler shift case
A f ,v – The matrix describing the coefficients of the system of linear equa-

tions solving for clock drift in the Doppler shift case with coefficients
solving for relative radial velocity directly rather than Doppler shift

Aγ – The matrix describing the coefficients of the system of linear equa-
tions solving for carrier phase in the stationary case

Aϕ – The matrix describing the coefficients of the system of linear equa-
tions solving for clock bias

bi(t) – The carrier frequency compensation term on receive for platform i
B – Bandwidth
b f – A vector containing the frequency estimates f̂ αi, j
b f ,d – A vector containing the frequency estimates f̂ α,di, j

bγ – A vector containing the clock bias difference estimates γ̂err
i, j

bϕ – A vector containing the clock bias difference estimates ϕ̂i, j

c – The speed of light c = 299792458 m/s (approximately 3 × 108 m/s)
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C f – The covariance matrix of the frequency estimates vector, b f , in the
stationary case

C f ,d – The covariance matrix of the frequency estimates vector, b f ,d, in the
Doppler shift case

C−k – The a priori covariance matrix (the covariance of x−k ) in a Kalman
filter at iteration k

Ĉk – The covariance matrix of the state estimate (the covariance of x̂k) of
a system in a Kalman filter at iteration k

Ĉsync
k – The covariance matrix of the synchronization state estimate at itera-

tion k
Ck,xz – The cross-covariance matrix between the state estimate and measure-

ment estimate (the cross-covariance of x̂k and ẑk) in a Kalman filter
at iteration k

Cpp,i – The position constituent covariance matrix of the cooperative navi-
gation process covariance for platform i

Cvp,i, Cpv,i – The position and velocity constituent cross-covariance matrix of the
cooperative navigation process covariance

Cvv,i – The velocity constituent covariance matrix of the cooperative navi-
gation process covariance for platform i

Cγ – The covariance matrix of the clock bias difference estimates vector
bγ

Cϕ – The covariance matrix of the clock bias difference estimates vector
bϕ

Cωω,i – The orientation constituent covariance matrix of the cooperative nav-
igation process covariance for platform i

di, j(t) – The cross-correlation signal between the signal received by platform
i and the signal transmitted by platform j

dk
i, j(t) – The cross-correlation signal between the signal received by platform

i (r̃k
i, j(τ

′
i)) and the pulse-compression signal ((sd

j (τ
′
i)) transmitted by

platform j on iteration k of the synchronization UKF
d j(t) – The auto-correlation response of the pulse compression component

sd
j (t) transmitted by platform j during the iterative synchronization

process
f – The continuous frequency variable in Hz
f c – Nominal carrier frequency
f c
i – True carrier frequency of platform i

f d – Doppler shift frequency
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f d
i, j – Doppler shift frequency between platforms i and j due to relative

velocity vi, j – the convention is defined in this dissertation such that
platforms moving away from one another have a negative Doppler
shift frequency

f̂ d
i, j – An estimate of the Doppler shift frequency between platforms i and

j due to relative velocity vi, j

f̂ k
i, j – The frequency estimate of the single-tone component of r̃k

i, j(τ
′
i)

f MO – The nominal main oscillator frequency of a platform
f MO
i – The true main oscillator frequency of platform i

f s – Nominal sampling frequency
f s
i – True sampling frequency of platform i

f αj , f βj – A single-tone frequency transmitted by platform j
f αi, j, f βi, j – The true frequency of the observed single tone observed by platform

i and transmitted by platform j
f αi, j, f βi, j – The estimated frequency of the observed single tone observed by

platform i and transmitted by platform j
f α,di, j , f β,di, j – The true frequency of the observed single tone observed by platform

i and transmitted by platform j including the Doppler shift frequency
f̂ α,di, j , f̂ β,di, j – The estimated frequency of the observed single tone observed by

platform i and transmitted by platform j including the Doppler shift
frequency

fk(x) – The state transition function in nonlinear Kalman filtering at iteration
k

Fk – The state transition matrix in a linear Kalman filter at iteration k
FN – The noise figure of an RF front-end
g0 – The scalar acceleration due to gravity
g(t, τ) – A range-compressed and motion compensated baseband receive sig-

nal for a radar system as a function of fast-time t and slow-time τ
g̃(t, τ) – The ideal range-compressed and motion compensated baseband re-

ceive signal for a radar system as a function of fast-time t and slow-
time τ assuming perfect motion compensation

g – The acceleration due to gravity in the ECEF frame
gned – The acceleration due to gravity in the NED frame
Gr – Receiver antenna gain
GRF – RF front-end gain
Gt – Transmitter antenna gain
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hk(x) – The measurement function in nonlinear Kalman filtering at iteration
k

Hk – The observation matrix in a linear Kalman filter at iteration k
i – An index unit
I – The identity matrix
j – An index unit
j – The imaginary unit j =

√
−1

J – A Jacobian matrix
k – The iteration index in a Kalman filter
k – The frequency index of the DFT
kb – Boltzmann’s constant kb ≈ 1.38 × 10−23 J/K
kpk – The index of the peak magnitude value in a DFT
Kk – The Kalman gain in a Kalman filter at iteration k
l – An index unit
Lb – Latitude
L – The number of links between platforms in the network
mi, j – The peak value of the cross-correlation during the TWTT process
m′i, j – The peak value of the cross-correlation during the TWTT process

adjusted to account for asymmetric range between moving platforms
in a TDMA ranging scheme

MK – The length of the measurement vector in a Kalman filter
n – An index unit, and the index for a discrete time-domain signal
NK – The length of the state vector in a Kalman filter
Np – The number of radar platforms in a network
p – An index unit
p̄i,k or p̄i(τ) – A 3×1 vector denoting the position of platform i at time-series point

k (discrete) or slow-time τ (continuous)
PD – Power at the system ADC
PN – Noise power
Pr – Received signal power
Pt – Transmitted signal power
p0 – The scene center position for motion compensation
Qk – The process covariance in a Kalman filter at iteration k
Qnav

k – The process covariance in the navigation UKF at iteration k
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Qnav
i,k – The process covariance associated with platform i in the navigation

UKF at iteration k
Qns

k – The process covariance in the navigation and synchronization UKF
at iteration k

Qns
i,k – The process covariance associated with platform i in the navigation

and synchronization UKF at iteration k
Qsync

k – The process covariance in the synchronization UKF at iteration k
Qv

k – The radial velocity process covariance matrix for the synchronization
UKF at iteration k

Qαk – The clock drift process covariance matrix for the synchronization
UKF at iteration k

Qγk – The carrier phase process covariance matrix for the synchronization
UKF at iteration k

Qϕ
k – The clock bias process covariance matrix for the synchronization

UKF at iteration k
ri, j(t) – The baseband received signal transmitted by platform j and received

by platform i
r′i, j(t) – The baseband received signal transmitted by platform j and received

by platform i with transmit drift compensation
r̃i, j(t) – The baseband received signal transmitted by platform j and received

by platform i with transmit drift, bias, and phase compensation
rb

i, j(t) – The baseband received signal transmitted by platform j and received
by platform i after carrier frequency compensation

r̃b
i, j(t) – The baseband received signal transmitted by platform j and received

by platform i after carrier frequency compensation with transmit
drift, bias, and phase compensation

r̃c
i, j(t) – The baseband received signal transmitted by platform j and received

by platform i after carrier frequency compensation with transmit
drift, bias, and phase compensation and receive bias correction

R, R1, R2,
R(t)

– Generic range variables

rd
i, j(t) – The baseband received signal transmitted by platform j and received

by platform i with the Doppler shift included
r̃ f

i, j(t) – The baseband received signal transmitted by platform j and received
by platform i after all transmit and receive clock corrections are ap-
plied
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r̃k
i, j(t) – The baseband received signal transmitted by platform j and received

by platform i after all transmit and receive clock corrections are ap-
plied on iteration k of the synchronization UKF

r̃t
i, j(t) – The truncated single-tone component of the baseband received signal

transmitted by platform j and received by platform i after all trans-
mit and receive clock corrections are applied on iteration k of the
synchronization UKF

rtt
i, j(t) – The two-tone baseband received signal transmitted by platform j and

received by platform i including the Doppler shift
r αi, j(t), r βi, j(t) – The single-tone baseband received signal transmitted by platform j

and received by platform i
r α,di, j (t),
r β,di, j (t)

– The single-tone baseband received signal transmitted by platform j
and received by platform i including the Doppler shift

Ri, j – The range between platforms i and j
R̂i, j – An estimate of the range between platforms i and j
Rk

i, j – The range between platforms i and j on iteration k
R̂z,k

i, j – The measurement of the range between platforms i and j at iteration
k of the UKF for the iterative synchronization approach

R(τ) – The range to a target from a radar system as a function of slow-time
Rc(τ) – The true motion compensation range to a target from a radar system

as a function of slow-time
R̂c(τ) – The estimated motion compensation range to a target from a radar

system as a function of slow-time
Re(τ) – The error in the estimated motion compensation range to a target

from a radar system as a function of slow-time
Rk – The measurement covariance in a Kalman filter at iteration k
R f

k – The covariance of the frequency measurements at iteration k of the
synchronization UKF

RGPS
k – The covariance of the GPS measurements (zGPS

k ) at iteration k
RIS

k – The covariance of the synchronization measurements (zsync
k ) at itera-

tion k for the iterative synchronization approach
Rnav

k – The covariance of the navigation measurements (znav
k ) at iteration k

RR
k – The covariance of the range measurements (zR

k ) at iteration k
RTPF

k – The covariance of the synchronization measurements (zsync
k ) at itera-

tion k for the time, phase, and frequency approach
Rγk – The covariance of the phase measurements at iteration k of the syn-

chronization UKF
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Rτ
k – The covariance of the time-delay measurements at iteration k of the

synchronization UKF
Rtt

i, j ( f ),
Rtt

i, j [k]
– The Fourier transform (or DFT) of the received two-tone signal trans-

mitted by platform j and received by platform i (rtt
i, j(t))

Rαi, j ( f ),
R
β
i, j ( f ),
Rαi, j [k],
R
β
i, j [k]

– The Fourier transform (or DFT) of the received single-tone signal
transmitted by platform j and received by platform i (r αi, j(t))

R
α,d
i, j ( f ),
R
β,d
i, j ( f ),
R
α,d
i, j [k],
R
β,d
i, j [k]

– The Fourier transform (or DFT) of the received single-tone signal
transmitted by platform j and received by platform i including the
Doppler shift (r α,di, j (t))

s j(t) – An arbitrary complex baseband waveform transmitted by platform j
s′j(t) – An arbitrary complex baseband waveform transmitted by platform j

with drift compensation
sd

j (t) – The pulse compression component of the iterative synchronization
signal transmitted by platform j

st
j(t) – The single-tone component of the iterative synchronization signal

transmitted by platform j
stt

j (t) – The two-tone baseband transmit signal transmitted by platform j
sαj (t), s βj (t) – The single-tone baseband transmit signal transmitted by platform j
S – A cost function metric
Sk – The innovation covariance matrix (the covariance of z̃k) in a Kalman

filter at iteration k
SNRADC – SNR at the input to a receiver’s ADC
SNRIN – SNR at the input to a receiver’s antenna
t – The time variable used to describe fast-time and global true time for

signals
ttx

j – The transmit time of platform j according to global time
trx
i, j – The receive time at platform i of the signal transmitted by platform j

according to global time
Tc – Capture length
T tx

j,k – The transmit time of platform j on iteration k of the synchronization
UKF

Tp – Pulse length
Ts – Sampling time
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T2 – The gap between sd
j (t) and st

j(t)
TOFi, j – The time-of-flight between platforms i and j
v – Generic velocity variable
v̄i,k – A 3× 1 vector denoting the velocity of platform i at time-series point

k
vi, j – The relative velocity between platforms and i and j – the conven-

tion assumed in this dissertation is that positive velocity implies the
platforms are moving apart from one another

vk
i, j – The relative velocity between platforms and i and j on iteration k of

the UKF
v̄k

i, j – The relative velocity vector between platforms and i and j on itera-
tion k of the UKF

v̂i, j – An estimate of the relative velocity between platforms and i and j
v̂z,k

i, j – The measurement of the relative velocity between platforms i and j
at iteration k of the UKF for the iterative synchronization approach

Verr
i, j – The variance of the carrier phase difference estimates γ̂err

i, j

V f
i, j – The variance of the frequency estimates f̂ αi, j or f̂ α,di, j

V f ,k
i, j – The variance of the frequency measurement f̂ k

i, j

V R
i, j – The variance of the range estimates R̂i, j

V γi, j – The variance of the direct phase estimates ∠di, j(mi, j)
V γ,ki, j – The variance of the phase measurement γ̂k

i, j

V τ
i, j – The variance of the time-delay estimates mi, j

V τ,k
i, j – The variance of the time-delay measurement τ̂k

i, j

V ϕ
i, j – The variance of the clock bias difference estimates ϕ̂i, j

vk – Measurement noise in a Kalman filter at iteration k
wi,c – The sigma point weight for sigma point i used in computing the co-

variance of transformed sigma points in the unscented transform
wi,m – The sigma point weight for sigma point i used in computing the mean

value of transformed sigma points in the unscented transform
w j(t) – An arbitrary complex RF up-converted signal transmitted by plat-

form j
w′j(t) – An arbitrary complex RF up-converted signal transmitted by plat-

form j with drift compensation
wk – Process noise in a Kalman filter at iteration k
wk

v – Radial velocity process noise in the synchronization UKF at iteration
k
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wk
α – Clock drift process noise in the synchronization UKF at iteration k

wk
γ – Carrier phase process noise in the synchronization UKF at iteration

k
wk
ϕ – Clock bias process noise in the synchronization UKF at iteration k

x – One dimension in Cartesian space
x(t, τ) – A range-compressed baseband receive signal for a radar system as a

function of fast-time t and slow-time τ
x̃(t, τ) – The ideal range-compressed baseband receive signal for a radar with

a single point scatterer at zero meters (i.e., the ideal matched filter
response) as a function of fast-time t and slow-time τ

x̃R(t, τ) – The ideal range-compressed baseband receive signal for radar with
a single point scatterer at R meters as a function of fast-time t and
slow-time τ

xk – The true state vector of a system in a Kalman filter at iteration k
xnav

k – The true state vector of the navigation UKF at iteration k
xns

k – The true state vector of the simultaneous navigation and synchroniza-
tion UKF at iteration k

xsync
k – The true state vector of the synchronization UKF at iteration k

x−k – The a priori state vector of a system in a Kalman filter at iteration k
xnav

i,k – The navigational system state vector for the ith platform at time series
point k

xns
i,k – The simultaneous navigation and synchronization system state vector

for the ith platform at time series point k
xk

R – The range state vector of the synchronization UKF at iteration k
xk

v – The relative velocity state vector of the synchronization UKF at iter-
ation k

xk
α – The clock bias state vector of the synchronization UKF at iteration k

xk
γ – The carrier phase state vector of of the synchronization UKF at iter-

ation k
xk
ϕ – The clock drift state vector of the synchronization UKF at iteration k

x̂d – The estimates of Doppler shift frequency produced by least-squares
estimation

x̂ f – The estimates of clock drift and Doppler shift frequency produced by
least-squares estimation

x̂ f ,v – The estimates of clock drift and relative radial velocity produced by
least-squares estimation
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x̂k – The estimated state vector of a system in a Kalman filter at iteration
k

x̂sync
k – The estimated synchronization state vector for the synchronization

UKF at iteration k
x̂v – The estimates of relative radial velocity produced by least-squares

estimation
x̂α – The estimates of clock drift produced by least-squares estimation
x̂γ – The estimates of carrier phase produced by least-squares estimation
x̂ϕ – The estimates of clock bias produced by least-squares estimation
y – One dimension in Cartesian space
z – One dimension in Cartesian space
zk

f ,IS – The synchronization UKF clock drift and velocity measurement vec-
tor at iteration k for the iterative synchronization approach

zk
f ,TPF – The synchronization UKF frequency measurement vector at iteration

k for the time, phase, and frequency approach
zk – The measurement vector in a Kalman filter at iteration k
zGPS

k – The GPS measurement vector at iteration k
zGPS

p,k – The GPS measurement vector for platform p at iteration k
zIS

k – The synchronization measurement vector at iteration k for the itera-
tive synchronization approach

znav
k – The navigation measurement vector at iteration k

zns
k – The simultaneous navigation and synchronization measurement vec-

tor at iteration k
zTPF

k – The synchronization measurement vector at iteration k for the time,
phase, and frequency approach

zR
k – The range measurement vector at iteration k in the navigation UKF

zv
k – The relative velocity measurement vector at iteration k in the naviga-

tion UKF
ẑk – The a priori estimate of the measurement vector in a Kalman filter at

iteration k
z̃k – The measurement innovation in a Kalman filter at iteration k
zk

R,IS – The synchronization UKF range measurement vector at iteration k
for the iterative synchronization approach

zk
v,IS – The synchronization UKF and velocity measurement vector at itera-

tion k for the iterative synchronization approach
zk
α,IS – The synchronization UKF clock drift measurement vector at iteration

k for the iterative synchronization approach
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zk
γ,IS – The synchronization UKF carrier phase measurement vector at itera-

tion k for the iterative synchronization approach
zk
γ,TPF – The synchronization UKF phase measurement vector at iteration k

for the time, phase, and frequency approach
zk
τ,TPF – The synchronization UKF time-delay measurement vector at itera-

tion k for the time, phase, and frequency approach
zk
ϕ,IS – The synchronization UKF clock bias measurement vector at iteration

k for the iterative synchronization approach
αu – A tuning parameter of the UKF
ᾱi,k – A 3 × 1 vector denoting the the Euler-angle rotation increment of

platform i at time step k
αi – The drift of the clock on platform i relative to global time t equal to

αi = f MO
i / f MO

αk
i – The clock drift of platform i at iteration k of the UKF
α̂i – The estimate of the clock drift of platform i
α̂k

i – The estimate of the clock drift of platform i at iteration k of the UKF
α̂

z,k
i – The measurement of the clock drift of platform i at iteration k of the

UKF for the iterative synchronization approach
βu – A distribution-based tuning parameter of the UKF – for Gaussian

distributions, βu = 2
γrx

i – The receiver carrier phase for platform i
γ̂rx

i – An estimate of the receiver carrier phase for platform i
γrx

i,k – The receiver carrier phase of platform i at iteration k of the UKF
γ̂rx

i,k – The estimate of the receiver carrier phase of platform i at iteration k
of the UKF

γ
rx,e
i,k – The receiver carrier phase estimate error of platform i at iteration k

of the UKF
γ̂

rx,e
i,k – An estimate of the receiver carrier phase estimate error of platform i

at iteration k of the UKF
γ̂

rx,z
i,k – The measurement of the receiver carrier phase of platform i at itera-

tion k of the UKF for the iterative synchronization approach
γtx

i – The transmitter carrier phase for platform i
γ̂tx

i – An estimate of the transmitter carrier phase for platform i
γtx

i,k – The transmit carrier phase of platform i at iteration k of the UKF
γ̂tx

i,k – The estimate of the transmit carrier phase of platform i at iteration k
of the UKF
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γ
rx,e
i,k – The transmit carrier phase estimate error of platform i at iteration k

of the UKF
γ̂

rx,e
i,k – An estimate of the transmit carrier phase estimate error of platform i

at iteration k of the UKF
γ̂

tx,z
i,k – The measurement of the transmit carrier phase of platform i at itera-

tion k of the UKF for the iterative synchronization approach
γerr

i, j – The difference between the transmitter carrier phase of platform j
and the receiver carrier phase of platform i

γ̂err
i, j – An estimate of the difference between the transmitter carrier phase

of platform j and the receiver carrier phase of platform i
γ

err,e
i, j,k – The difference between the transmitter carrier phase error of platform

j and the receiver carrier phase error of platform i
γ̂

err,e
i, j,k – An estimate of the difference between the transmitter carrier phase

error of platform j and the receiver carrier phase error of platform i
γ̂k

i, j – The phase estimate of the pulse-compression component of r̃k
i, j(τ

′
i)

γ̃k
i, j – The phase estimate of the pulse-compression component of r̃k

i, j(τ
′
i)

ignoring the ambiguity function phase and phase due to the carrier
offset and transmit time

γ̌k
i, j – The phase estimate of the pulse-compression component of r̃k

i, j(τ
′
i)

accounting for the phase due to the carrier offset and transmit time
∆t – The amount of time in seconds between time steps k − 1 and k
∆ti, j – The difference between the trx

i, j and trx
j,i

∆TDMA – TDMA time-slot size
∆γ – Carrier phase shift of a received radar signal
ϵ f – An arbitrarily small variance value to approximate zero variance in

clock drift least-squares estimation
ϵγ – An arbitrarily small variance value to approximate zero variance in

carrier phase least-squares estimation
ϵϕ – An arbitrarily small variance value to approximate zero variance in

clock bias least-squares estimation
ζk,i – The ith sigma point of the UKF at iteration k transformed through the

measurement model hk

ηαi, j – The additive noise component of f̂ αi, j
ηα,di, j – The additive noise component of f̂ α,di, j

θ – The pitch component of the three-angle Euler angle set
θ̄i,k – A 3×1 vector denoting the Euler angle attitude of platform i at time-

series point k
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κu – A tuning parameter of the UKF
λb – Longitude
λc – Carrier frequency wavelength
λu – A tuning parameter of the UKF
ρ – An auxiliary delay variable
ρ̃ – An auxiliary delay variable
σa,i – The noise standard deviation for the accelerometer on platform i
σ f – Frequency estimation standard deviation
σh,i – The height standard deviation of the GPS measurement for the ith

platform in a network
σL,i – The latitude standard deviation of the GPS measurement for the ith

platform in a network
σR,l – The range standard deviation of the lth link between platforms in a

network
σv – Velocity standard deviation
σα – Clock drift standard deviation
σγ – Phase estimation standard deviation
σλ,i – The longitude variance of the GPS measurement for the ith platform

in a network
στ – Time-delay estimation standard deviation
σϕ – Clock bias standard deviation
σω,i – The noise standard deviation for the gyroscope on platform p
Σ f – The covariance matrix of the clock drift and Doppler shift frequency

estimates after least-squares estimation
Σ f ,v – The covariance matrix of the clock drift and relative radial velocity

estimates after least-squares estimation
Σk

f ,v – The covariance matrix of the clock drift and relative radial velocity
estimates after least-squares estimation using the SNR at iteration k

ΣGPS
i – The covariance of the 3-dimensional GPS measurements of platform

i in the ECEF frame
ΣLLH

i – The covariance of the 3-dimensional GPS measurements of platform
i in terms of latitude, longitude, and height

ΣR – The covariance matrix of the range estimates
Σk

R – The covariance matrix of the range estimates using the SNR at itera-
tion k
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Σα – The covariance matrix of the clock drift estimates after least-squares
estimation in the stationary case

Σγ – The covariance matrix of the carrier phase estimates after least-
squares estimation

Σk
γ – The covariance matrix of the carrier phase estimates after least-

squares estimation using the SNR at iteration k
Σϕ – The covariance matrix of the clock bias estimates after least-squares

estimation
Σk
ϕ – The covariance matrix of the clock bias estimates after least-squares

estimation using the SNR at iteration k
τ – The time variable generally used to refer to slow-time in a radar sig-

nal
τi – The local time variable for platform i taking into account the clock

drift and bias
τ′i – The local time variable for platform i taking into account the clock

drift and bias after axis adjustment to compensate for clock drift
τA,k

i, j – The time shift of the pulse-compressed component of r̃k
i, j(τ

′
i) due to

the frequency shift as dictated by the ambiguity function A j(t, f )
τ̂k

i, j – The time-delay estimate of the pulse-compression component of
r̃k

i, j(τ
′
i)

τ̃k
i, j – The time-delay estimate of the pulse-compression component of

r̃k
i, j(τ

′
i) compensated to remove the transmit time and frequency-shift

delay
τrx

i, j – The receive time at platform i of the signal transmitted by platform j
according to the local time of receiving platform i

τtx
j – The transmit time of platform j according to the local time of trans-

mitting platform j
ϕ – The roll component of the three-angle Euler angle set
ϕi – The clock bias of platform i
ϕk

i – The clock bias of platform i at iteration k of the UKF
ϕ̂i – An estimate of the clock bias of platform i
ϕ̂k

i – The estimate of the clock bias of platform i at iteration k of the UKF
ϕe,k

i – The clock bias error for platform i on iteration k
ϕ̂e,k

i – The estimated clock bias error for platform i on iteration k
ϕe,k

i, j – The clock bias error difference between platforms i and j on iteration
k
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ϕ̂e,k
i, j – An estimate of the clock bias error difference between platforms i

and j on iteration k
ϕ̂z,k

i – The measurement of the clock bias of platform i at iteration k of the
UKF for the iterative synchronization approach

ϕ̃i – The network mean-adjusted clock drift for platform i
ϕi, j – The drift estimate scaled clock bias difference between platforms i

and j
ϕ̂i, j – An estimate of the drift estimate scaled clock bias difference between

platforms i and j
χk,i – The ith sigma point of the UKF at iteration k
χ

f
k,i – The ith sigma point of the UKF at iteration k transformed through the

state model fk

ψ – The yaw component of the three-angle Euler angle set
ω̄i,k – A 3×1 vector denoting the body-frame angular velocity, as measured

by a gyroscope, of platform i at time-series point k
Ωe – The angular-rate rotation matrix for the Earth-rotation vector
Ωi,k – The rotation matrix corresponding to θ̄i,k

Ωa
i,k – The rotation matrix corresponding to the transformation of the spe-

cific force measured in the body frame to the inertial frame for plat-
form i at time step k

Ωδ
i,k – The rotation matrix corresponding to the transformation of the body

frame at the end of the navigation update step to the beginning for
platform i at time step k

Ωned – The rotation matrix to convert from the NED frame to the ECEF
frame
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Appendix B

Abbreviations

The following abbreviations are used:

ADC Analog-to-digital converter
AWGN Additive white Gaussian noise
CKF Cubature Kalman filter
CPI Coherent processing interval
CRLB Cramér-Rao Lower Bound
DAC Digital-to-analog converter
DFT Discrete Fourier transform
DGPS Differential GPS
ECEF Earth-centered Earth-fixed
ECI Earth-centered inertial
EKF Extended Kalman filter
EW Electronic warfare
FFT Fast Fourier transform
FPGA Field-programmable gate array
GPS Global positioning system
IMU Inertial measurement unit
INS Inertial navigation system
ISLR Integrated sidelobe level ratio
LFM Linear frequency modulated/modulation
LiDAR Light detection and ranging
LO Local oscillator
LOS Line-of-sight
LPF Low-pass filter
MIMO Multiple-input multiple-output
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MMSE Minimum mean squared error
NED North-east-down
NL-LS Non-linear least-squares
OLS Ordinary least-squares
PDF Probability density function
PF Particle filter
ppb Parts per billion
ppm Parts per million
PPS Pulse-per-second
ppt Parts per trillion
PRF Pulse repetition frequency
PRT Pulse repetition time
PSD Power spectral density
PSLR Peak sidelobe level ratio
PSR Point spread response
RF Radio frequency
RMSE Root-mean-squared error
RPV Relative peak value
RTK Real-time kinematic
RX Receiver
SAR Synthetic aperture radar
SDR Software-defined radio
SNR Signal-to-noise ratio
TDMA Time-division multiple-access
TOA Time-of-arrival
TOF Time-of-flight
TWTT Two-way time transfer
TX Transmitter
UAV Unmanned aerial vehicle
UKF Unscented Kalman filter
WLS Weighted least-squares
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