
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

HARNESSING DEEP REINFORCEMENT LEARNING: STUDIES IN

ROBOTIC MANIPULATION, ENHANCED SEMANTIC

SEGMENTATION, AND SECURING IMAGE CLASSIFIERS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

DONG HAN
Norman, Oklahoma

2024

HARNESSING DEEP REINFORCEMENT LEARNING: STUDIES IN
ROBOTIC MANIPULATION, ENHANCED SEMANTIC

SEGMENTATION, AND SECURING IMAGE CLASSIFIERS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Samuel Cheng, Chair

Dr. Choon Yik Tang

Dr. Gregory.g.Macdonald

Dr. Golnaz Habibi

© Copyright by DONG HAN 2024
All Rights Reserved.

Acknowledgements

I would like to express my deepest gratitude to all those who have supported me

throughout my PhD journey.

First and foremost, I would like to extend my heartfelt thanks to my mentor,

Dr. Samuel Cheng, for his unwavering guidance, support, and encouragement.

His expertise and insights have been invaluable, and his patience and dedication

have been a constant source of inspiration. I am truly grateful for the opportunity

to work under his mentorship.

I would also like to thank the faculty and staff at the University of Okla-

homa Tulsa Campus for their support and for providing a stimulating academic

environment that has fostered my growth as a researcher.

My deepest appreciation goes to my father, whose constant support and belief

in me have been the bedrock of my achievements. His encouragement has been

a driving force throughout my academic journey. To my mother, I extend my

heartfelt thanks for her endless love and sacrifices. Her support has been invaluable

and has greatly contributed to my success.

I would also like to express my gratitude to my classmates Lu Zhang, Feng

Chen, Lei Yang, Zhihao Zhao, Beni Mulyana, Haoliang Zhang, Pham Huong, and

Reza Babaei. Their camaraderie, collaboration, and support have enriched my

academic experience and made this journey memorable.

Lastly, I owe a special debt of gratitude to my wife. Her unwavering love,

patience, and understanding have been my greatest source of strength. Her

iv

support has been pivotal in helping me navigate the challenges of this journey.

Thank you all for your invaluable contributions to this milestone in my life.

v

Table of Contents

List of Tables ix

List of Figures x

Abstract xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Statements and Contributions 2
1.3 Current Publications . 5
1.4 Organization . 5

2 Theoretical Background on Deep Reinforcement Learning 7
2.1 Fundamentals of Reinforcement Learning 7
2.2 Deep Reinforcement Learning: An Overview 13
2.3 Value-Based Methods in DRL . 14

2.3.1 Q-learning . 14
2.3.2 SARSA . 15
2.3.3 Deep Q-learning (DQN) . 16
2.3.4 Double Deep Q-Learning (Double DQN) 17
2.3.5 Dueling Deep Q-Learning(Dueling DQN) 17

2.4 Policy-based RL . 18
2.4.1 Vanilla Policy Gradient (VPG) 19
2.4.2 Trust Region Policy Optimization (TRPO) 20
2.4.3 Proximal Policy Optimization (PPO) 21

2.5 Actor Critic . 21
2.5.1 Advantage Actor-Critic (A2C) 22
2.5.2 Asynchronous Advantage actor-Critic (A3C) 22
2.5.3 Deep Deterministic Policy Gradient (DDPG) 23
2.5.4 Twin Delayed Deep Deterministic Policy Gradients (TD3) . . . 24
2.5.5 Soft Actor-Critic (SAC) . 25

2.6 Challenges in Deep Reinforcement Learning 27
2.6.1 Sample Efficiency . 28
2.6.2 Stability and Convergence . 28
2.6.3 Exploration and Exploitation 28
2.6.4 Generalization . 29
2.6.5 Reward Shaping . 29
2.6.6 Computational Resources . 30
2.6.7 Scalability . 30
2.6.8 Interpretability . 30

2.7 Summary . 31

3 Deep Reinforcement Learning for Robotic Manipulation 33
3.1 Introduction . 33
3.2 Fundamentals of Robotic Manipulation 35

3.2.1 Definition and Scope of Robotic Manipulation 35

vi

3.2.2 Components of Robotic Manipulation Systems 36
3.2.3 Challenges in Robotic Manipulation 37

3.3 Overview of Deep Reinforcement Learning in Robotic Manipulation . . 38
3.4 Search Methodology . 39
3.5 Applications and Implementations of DRL in Robotic Manipulation . . 41

3.5.1 Practical Implementations of DRL Algorithms 42
3.5.2 Reward Engineering . 45
3.5.3 Graph Neural Network Architectures in DRL for Robotic Manip-

ulation . 50
3.5.4 Current Trends and Future Directions 53

3.6 Summary . 55

4 Enhancing Semantic Segmentation with Reinforced Active Learning 57
4.1 Introduction . 57
4.2 Background . 58

4.2.1 Semantic Segmentation . 58
4.2.2 Active learning . 59
4.2.3 Reinforced Active Learning . 60
4.2.4 Significance of Reinforced Active Learning in Semantic Segmentation 61

4.3 related work . 61
4.4 Methodology . 64

4.4.1 Active learning with reinforcement learning for semantic segmen-
tation . 64

4.4.2 Extensions to DQN . 66
4.5 Experimental Setup . 70

4.5.1 Dataset Description . 70
4.5.2 Data Collection and Preprocessing 73
4.5.3 Evaluation Metrics . 74
4.5.4 Hardware and Software Configurations 74

4.6 Results . 75
4.7 Summary . 79

5 Securing Image Classifiers Against Model Extraction Attacks 80
5.1 Introduction . 80
5.2 Background and related works . 81

5.2.1 Overview of Model Extraction Attacks 81
5.2.2 Previous Studies on Adversarial Attacks and Machine Learning

Security . 83
5.2.3 Reinforcement Learning and Active Learning for Model Extraction 84

5.3 Methods . 85
5.3.1 Problem Definition . 85
5.3.2 Active Learning with Reinforcement Learning for Model Extrac-

tion Attack . 86
5.3.3 DQN . 89
5.3.4 Synthetic Data Generation Techniques 91

5.4 Experiments . 97
5.4.1 Experiment Objectives . 97
5.4.2 Experimental Setup . 98

vii

5.4.3 Results . 100
5.4.4 Ablation Studies . 105
5.4.5 Generalizability . 106

5.5 Discussion . 108
5.6 Summary . 113

6 Conclusion 115

References 119

viii

List of Tables

2.1 The category of different RL algorithms. 27
2.2 The strength and limitations of different RL algorithms. 32

3.1 An overview of the specified search criteria. 41
3.2 A list of papers about GNN implementation relative to RL Algorithms

and learning techniques. 51

4.1 Statistics for each class used in this study. 72

ix

List of Figures

2.1 Block diagram of typical RL . 11
2.2 Types of RL algorithms . 13
2.3 Flowchart of DQN . 17
2.4 Flowchart of Vanilla Policy Gradient 20
2.5 Flowchart of Actor Critic . 22
2.6 Flowchart of Deep Deterministic Policy Gradient 24

3.1 Classic robotic manipulation workflow 35
3.2 The trend of published papers using different RL algorithms in robotic

manipulation . 45
3.3 Classification of imitation learning [1] 46
3.4 The trend of published papers using different reward engineering in

robotic manipulation . 50

4.1 The overall workflow of the active learning with Reinforcement learning
in semantic segmentation. 66

4.2 Labeled frames from the video at 1Hz. 73
4.3 Comparisons of various active learning methods. 75
4.4 Compare PRIO method with varying replay buffer sizes. 76

5.1 Black-box adversarial model extraction attack. 83
5.2 The main workflow of training for Policy π and surrogate models. . . . 88
5.3 The main workflow of training surrogate models using synthetic generation

techniques. 92
5.4 Performance of different DQN policies on surrogate models. 101
5.5 Performance of various DQN policy variants on surrogate models as the

training budget increases. 104
5.6 Performance of different synthetic data generation techniques with PER

method on surrogate models. 105
5.7 Performance of different ablation methods trained on surrogate models. 106
5.8 Performance of different methods trained on CIFAR100 dataset. 108

x

Abstract

This dissertation investigates the transformative potential of Deep Reinforcement

Learning (DRL) in three critical domains: robotic manipulation, enhanced seman-

tic segmentation, and the security of image classifiers. Through comprehensive

exploration and analysis, this research addresses the challenges and limitations

inherent in current DRL methodologies, offering novel insights and practical

solutions.

In the domain of robotic manipulation, the study provides an in-depth ex-

amination of various DRL algorithms, including value-based, policy-based, and

actor-critic methods. The findings highlight the specific strengths and limitations

of each algorithm, guiding the selection of appropriate methods for diverse robotic

applications. Additionally, the research proposes new directions for integrating

multiple learning paradigms to enhance robotic adaptability and performance in

complex environments.

For enhanced semantic segmentation, the dissertation develops a robust frame-

work utilizing reinforced active learning methodologies. By integrating advanced

techniques such as Dueling Deep Q-Networks (Dueling DQN), Prioritized Experi-

ence Replay, Noisy Networks, and Emphasizing Recent Experience, the framework

addresses imbalanced datasets and optimizes annotation processes. Experimen-

tal results demonstrate the framework’s robustness and efficiency across various

domains, particularly under constrained annotation budgets.

In securing image classifiers, the research focuses on developing surrogate mod-

xi

els capable of replicating proprietary image classification models under stringent

constraints. An open-source framework integrating popular DQN extensions is

introduced, demonstrating their effectiveness in enhancing attack methodologies.

The evaluation of synthetic data generation techniques identifies best practices

for training robust adversarial models, advancing the understanding of effective

attack strategies in AI security.

This dissertation underscores the importance of improving sample efficiency,

stability, generalization, and robustness in DRL algorithms. Ethical and practical

considerations are addressed, ensuring the minimization of risks associated with

model extraction attacks. The practical implications extend to various fields,

including autonomous vehicles, robotics, and AI security, providing actionable

insights for deploying DRL technologies.

The research paves the way for future work in integrating multi-paradigm

learning, expanding evaluation frameworks, developing robust defense mechanisms,

and leveraging advanced data generation techniques. The findings reinforce the

transformative potential of DRL, shaping its future applications and ensuring its

role as a critical tool in tackling complex decision-making tasks across diverse

fields.

xii

Chapter 1

Introduction

1.1 Background and Motivation

Deep Reinforcement Learning (DRL) is a powerful subset of machine learning

where algorithms learn to make a sequence of decisions by interacting with a

complex environment to achieve a specific goal. This approach combines the insight

from reinforcement learning (RL) with the representational abilities of deep neural

networks, enabling the solution of problems that were previously intractable due to

their high dimensionality and complexity [2]. Deep reinforcement learning is at the

forefront of AI research due to its ability to solve problems that involve sequential

decision-making, which is crucial for many applications ranging from autonomous

vehicles to strategic game-playing [3]. The integration of deep reinforcement

learning into fields such as semantic segmentation, model extraction attacks,

and robotic manipulation demonstrates its versatility and powerful capability to

improve decision-making processes.

In RL, an agent learns by interacting with an environment, receiving rewards

or penalties based on its actions, and gradually refining its policy to maximize

cumulative rewards. This learning process involves exploring different actions,

evaluating their outcomes, and converging on an optimal strategy over time

[4]. By integrating deep learning, DRL enhances this process by utilizing neural

networks to represent complex policies, allowing agents to handle high-dimensional

1

inputs and learn abstract features. This combination provides a powerful tool for

tackling complex decision-making tasks in various domains. The motivation for

this dissertation stems from the need to overcome the limitations of existing DRL

techniques and extend their applications to new domains. Challenges such as

sample efficiency, stability, and generalization hinder the broader adoption of DRL.

This research aims to address these challenges, advancing the field and expanding

its capabilities. The study focuses on improving the performance and robustness

of DRL algorithms, ensuring they can handle diverse environments and tasks,

from real-time strategic planning to adaptive problem-solving. By doing so, the

dissertation aims to reinforce DRL’s role in driving innovations in AI technologies,

making it an indispensable tool for tackling complex decision-making tasks in

various fields.

1.2 Problem Statements and Contributions

In this section, I present the above-mentioned issues as Problem Statements (PS)

and present the outline of proposed solutions in this dissertation’s contributions

(C).

PS1: The primary problem addressed in this dissertation study is the develop-

ment of surrogate models capable of replicating the functionality of proprietary

image classification models under stringent constraints. Practical challenges iden-

tified in current methodologies include (1) Limited access to the victim model’s

outputs, hindering comprehensive training data acquisition. (2) The need to max-

2

imize model fidelity with minimal interaction with the victim model, minimizing

both ethical and legal risks associated with excessive query volumes.

C1-A: We develop an open-source framework that integrates popular DQN

extensions such as Prioritized Experience Replay, Double DQN, and Dueling DQN.

We illustrate how these can be used to enhance attack methodologies against

neural networks. To the best of our knowledge, this work presents the first attempt

to leverage DQN extensions to model extraction attacks, which has not been

explored in the existing literature.

C1-B: We conduct comparative experiments that benchmark the effectiveness

of these methods against traditional approaches, providing a clear demonstration

of their relative performance and advancing the understanding of effective attack

strategies in the realm of AI security.

C1-C: By evaluating different techniques for synthetic data generation, such

as FGSM and LinfPGD, and comparing their effectiveness in the context of model

extraction, our work identifies best practices and guidelines for practitioners. This

helps in refining the approach to generating synthetic data, which is crucial for

training robust adversarial models.

PS2: Inspired by a burgeoning interest in active learning for semantic seg-

mentation, considerable research has explored various methodologies to optimize

annotation processes and address imbalanced datasets, with emerging techniques

reporting promising efficiencies. However, the bulk of these studies fail to con-

front the pivotal challenge of training large models under constrained annotation

budgets. Overcoming this barrier is essential for deploying enhanced semantic

3

segmentation methods effectively, not only within academic realms but also across

practical applications in diverse fields.

C2: We propose a comprehensive framework utilizing reinforced active learn-

ing methodologies for semantic segmentation. While existing solutions have

demonstrated substantial progress in tackling dataset imbalances and improving

annotation efficiency, our framework offers a robust performance across diverse

domains, particularly excelling in scenarios with constrained annotation budgets.

Our approach enhances the precision of semantic segmentation tasks.

PS3: Within the current landscape of robotics research, practical solutions

for effectively applying deep reinforcement learning (DRL) to complex robotic

manipulation tasks remain scarce. This shortfall is primarily due to the intricate

nature of real-world environments where robots operate and the diverse array of

manipulative actions required. Additionally, the challenge is compounded by the

limited integration of multiple learning paradigms—supervised, unsupervised, and

reinforcement learning—which are essential for enhancing robotic adaptability

and performance across varied tasks.

C3: We meticulously catalogues and examines the extensive array of deep

reinforcement learning algorithms that have been proposed to improve the adapt-

ability and precision of robots in dynamic environments. This analysis delineates

the evolving landscape of value-based methods, policy-based approaches, and

actor–critic techniques, providing a granular understanding of each method’s

strengths and limitations in the context of robotic tasks. Moreover, we explore

the frontier challenges and propose structured directions for future research, thus

4

charting a course for forthcoming advancements in robotic manipulation.

1.3 Current Publications

Peer-Reviewed Journal Articles:

J1: Han D, Babaei R, Shangqing Z, Samuel C. Exploring the Efficacy of Learn-

ing Techniques in Model Extraction Attacks on Image Classifiers: A Comparative

Study[J]. Appl. Sci. 2024, 14, 3785. https://doi.org/10.3390/app14093785.

J2: Han D, Huong P, Samuel C. Enhancing Semantic Segmentation through

Reinforced Active Learning: Combatting Dataset Imbalances and Bolstering

Annotation Efficiency[J]. Journal of Electronic and Information Systems, 2023,

5(2): 45-60.

J3: Han D, Mulyana B, Stankovic V, et al. A Survey on Deep Reinforcement

Learning Algorithms for Robotic Manipulation[J]. Sensors, 2023, 23(7): 3762.

J4: Han D, Wang S, Jiang C, et al. Trends in biomedical informatics: au-

tomated topic analysis of JAMIA articles[J]. Journal of the American Medical

Informatics Association, 2015, 22(6): 1153-1163.

1.4 Organization

The rest of the dissertation is organized as follows: Chapter 2 delves into the

theoretical underpinnings of DRL, discussing its fundamentals, the nuances of

value-based, policy-based, and actor-critic methods, and the inherent challenges

in the field. The focus shifts in Chapter 3 to the application of DRL in robotic

5

manipulation, exploring different DRL algorithms and the specific challenges and

future directions in this area. Chapter 4 examines how DRL can enhance semantic

segmentation, addressing issues like dataset imbalances and annotation efficiency

through reinforced active learning. In Chapter 5, the dissertation explores the

security aspects of DRL by analyzing how to secure image classifiers against

model extraction attacks, evaluating various DQN extensions and synthetic data

generation methods for building robust defense mechanisms. Finally, Chapter 6

concludes the dissertation with a summary of the contributions, insights into future

research directions, and final reflections on the study. Each chapter concludes

with a summary, ensuring clarity and reinforcing the key points discussed, thereby

weaving a coherent narrative throughout the dissertation.

6

Chapter 2

Theoretical Background on Deep Reinforcement

Learning

2.1 Fundamentals of Reinforcement Learning

Reinforcement Learning: Semi-Supervised Learning is a subset and application of

Machine Learning. Reinforcement Learning: Reinforcement learning is another

name for semi-supervised learning, as it is a way to compel an agent to take

steps and interact with an environment to receive the maximum summation of

rewards. In this way, a machine solves the problem by trial and error. Therefore,

the reward or the penalty corresponds respectively to the artificial intelligence

of a machine that is meant to do the same things as what is in the mind of the

programmer. It focuses on the total amount of reward to be obtained in the long

run in a particular state.

The said problems are aimed to be solved by the mathematical structure of

RL. While the designer sets the reward policy, that is, the rules of the game, he

gives no hints or advice to the model for solving the game. It is up to the model

to work out how to execute the challenge to optimize the reward, starting with

completely random failed-to-solve games and ending with advanced techniques and

superhuman abilities. Reinforcement learning is actually the most powerful way

to express imagination of the system by leveraging the strength of research and

multiple trial attempts. Unlike humans, artificial intelligence will gain experience

7

from thousands of parallel gameplays if a reinforcement learning algorithm is run

on a sufficiently efficient computing infrastructure [5].

Reinforcement learning may sound like a very complicated word at first, but

it is essentially goal-driven nomenclature for the set of algorithms that an agent

needs to learn in order to optimize some complex dimension of interest over the

course of a run of time. For example, maximizing the amount of points collected

in a game over several moves. These kinds of algorithms can start from a blank

slate and do superhumanly well, given the right learning settings. This is how they

engage the principle of reinforcement, just like a pet is incentivized by scolding

and treating: the algorithms are penalized for wrong choices and rewarded for

right choices.

Reinforcement learning can be described in terms of an agent, its environment,

state, actions, and rewards. The definitions of these terms are listed below. The

general convention will be to use uppercase letters for sets of things and lowercase

letters for one specific instance of that thing, so for example A will be all the

possible actions that can be taken, and a will be a specific action that is in the

set.

Agent (the player): who moves around doing stuff; for example, a drone

making a delivery, or Super Mario navigating a video game. The algorithm is the

agent. It may be helpful to consider that in life, the agent is you.

Action (A): A is the set of all possible moves the agent takes. Action is what

an agent can do in each state. Some environments, like Atari and Go, have

discrete action spaces, where only a finite number of moves are available to the

8

agent. Other environments, like where the agent controls a robot in a physical

world, have continuous action spaces. In continuous spaces, actions are real-valued

vectors.

Discount factor: The discount factor is multiplied by future rewards as discov-

ered by the agent in order to dampen the rewards’ effect on the agent’s choice of

action. It is designed to make future rewards worth less than immediate rewards;

i.e. it enforces a kind of short-term hedonism in the agent. On an intuitive level:

cash now is better than cash later. We often use discount factors in estimating

value functions.

Environment: The environment is the world that the agent lives in and

interacts with. The environment takes the agent’s current state and action as

input, and returns as output the agent’s reward and its next state. At every step

of interaction, the agent sees a (possibly partial) observation of the state of the

world, and then decides on an action to take. The environment changes when the

agent acts on it, but may also change on its own.

State (S): A state is a concrete and immediate situation in which the agent

finds itself. The states are the locations. The location in which a particular robot

is present in a particular instance of time will denote its state. It can be the

current situation returned by the environment or any future situation. Literature

that teaches the basics of RL tends to use very simple environments so that

all states can be enumerated. This simplifies value estimates into basic rolling

averages in a table, which are easier to understand and implement.

Reward (R): A reward is a feedback by which we measure the success or failure

9

of an agent’s actions in a given state. The goal of the agent is to maximize some

notion of cumulative reward over a trajectory. For example, in a video game,

when Mario touches a coin, he wins points. From any given state, an agent sends

output in the form of actions to the environment, and the environment returns

the agent’s new state (which resulted from acting on the previous state) as well as

rewards if there are any. Rewards can be immediate or delayed. They effectively

evaluate the agent’s action.

Policy (π): A policy is a rule used by an agent to decide what actions to

take. Roughly speaking, a policy is a mapping from perceived states of the

environment to actions to be taken when in those states. In deep RL, we deal

with parameterized policies: policies whose outputs are computable functions that

depend on a set of parameters.

Value (V): It is the expected long-term return (considering the discount factor).

As opposed to the short-term reward given by reward function R. Vπ(s) is the

expected long-term return of the current state under policy π. We discount

rewards or lower their estimated value, the further into the future they occur. See

the discount factor. And remember Keynes: ‘In the long run, we are all dead.’

That’s why you discount future rewards. It is useful to distinguish.

Q-value or action-value (Q): It is similar to Value, except that it takes an

extra parameter, the current action a. Qπ(s, a) refers to the long-term return of an

action taking action under policy π from the current state S. Q maps state-action

pairs to rewards. Note the difference between Q and policy.

Trajectory: A trajectory is a sequence of states and actions in the world. From

10

the Latin ‘to throw across’. The life of an agent is but a ball tossed high and

arching through space-time unmoored, much like humans in the modern world.

Trajectories are also frequently called episodes or rollouts.

The agent-environment interaction process is shown in Fig 2.1. The agent

takes actions and receives feedback from the environment in the form of rewards

or punishments. The agent uses this feedback to adjust its behavior and improve

its performance over time.

Figure 2.1: Block diagram of typical RL

.

An autonomous agent observes state s(t) at time-step t, and then interacts

with the environment using an action a(t), reaching the next state s(t + 1) in

the process. Once a new state has been achieved, the agent receives a reward

correlated with that state r(t+ 1). The agent’s goal is to find an optimal policy,

i.e., optimal action in any given state. Unlike other types of machine learning –

such as supervised and unsupervised learning – reinforcement learning can only

be thought about sequentially in terms of state-action pairs that appear one after

the other.

RL assesses actions by the outcomes, i.e., states, they achieve. It is goal-

oriented, and seeks to learn sequences of actions that will lead an agent to

11

accomplish its goal or optimize its objective function. An example of the RL

objective function is:
t=∞∑
t=0

γtr(s(t), a(t)) (2.1)

This objective function measures all the rewards we will get from running

through the states exponentially increasing the weight γ.

Two important concepts of RL are Monte Carlo learning, a naive idea where

the agent interacts with the environment and learns about the states and rewards,

and Temporal difference (TD) learning, i.e., updating the value in every time step

and without requiring to wait to update the values till the end of the episode.

A Markov decision process (MDP) is defined as a tuple ⟨S,A, r, T, γ⟩ where S

stands for a set of states; A, for actions; r, S×A→ R, for the function specifying

a reward of taking an action in a state; T : S×A×S → R, for the state-transition

function; and γ, for the discount factor implying that a reward obtained in the

future is worth a smaller amount than an immediate reward. Solving an MDP

involves finding a policy that determines the optimal action for each state, with

the goal of maximizing the long-term discounted expected reward. This policy

should be optimal with respect to the MDP’s reward structure and discount factor.

Although it is difficult to make a standardized classification of RL algorithms

due to their wide modularity, many current studies tend to divide them into

value-based, policy-based, and actor-critic algorithms (see Fig 2.2).

12

Figure 2.2: Types of RL algorithms

.

2.2 Deep Reinforcement Learning: An Overview

Deep Reinforcement Learning (DRL) merges the decision-making capability of

Reinforcement Learning (RL) with the powerful representation learning ability

of deep neural networks. This combination enables the solution of complex,

high-dimensional problems that were previously intractable. DRL leverages the

strengths of deep learning to handle raw, high-dimensional inputs such as images,

and it uses reinforcement learning to learn optimal policies through trial and

error.

Nevertheless, deep learning-based reinforcement learning has been a challenge.

In particular, the triumphs of deep learning have been somewhat disconnected

from the reinforcement learning problem setting. Hence, reinforcement learning

requires that the agent, in its most practical form, be able to learn from a scalar

reward signal that is sparse, noisy, and delayed. Perhaps most importantly, the

ability to delay rewards for long sequences of time steps, sometimes thousands of

time steps, is one particularly daunting fact as one compares this with the direct

13

association of inputs and targets that is standard in supervised learning [6].

Deepmind [7] uses deep reinforcement learning for the ultimate in-world

simulation, supporting companies to design their facilities, turn their contact

centers into the superhuman workforce, design warehouses, and much more in an

optimal way.

2.3 Value-Based Methods in DRL

Value-based methods in DRL focus on estimating the value function, which

represents the expected cumulative reward of states or state-action pairs. The

most common value-based methods include:

2.3.1 Q-learning

Q-Learning [8] is a value-based TD method of Reinforcement Learning that uses

Q-values (also called state action values) to iteratively develop the actions of the

learning agent. Q-learning learns the Bellman action-value function Q(s, a): how

good it is to take an action at a given state.

Q(s, a) = r(s, a) + γmax
a
Q (s′, a) . (2.2)

The Bellman action-value equation describes how to calculate the Q-value for

an action taken from a particular state, s. It is calculated as the sum of the

immediate reward for the current state and the discounted optimal Q-value for

the next state, denoted by γ. In Q-learning, the Q-value is updated using the

following rule: the new Q-value is equal to the old Q-value plus the temporal

14

difference error. This update can be framed as trying to minimize a loss function,

such as the mean squared error loss:

L =
(
r + γmax

a′
Q (s′, a′; θ′)−Q(s, a; θ)

)2

. (2.3)

2.3.2 SARSA

The SARSA [9] algorithm is a policy-based variant of the well-known Q-Learning

algorithm. Unlike Q-Learning, which is an off-policy technique that learns the Q

value using a greedy approach, SARSA is an on-policy technique that uses the

action taken by the current policy to learn the Q value. To update Q values, we

use:

Q(s, a) = Q(s, a) + α [R + γQ (s′, a′)−Q(s, a)] . (2.4)

SARSA is a type of on-policy reinforcement learning algorithms, meaning that it

learns the value of actions based on the policy that is currently being followed.

In SARSA, the next action, a′, is chosen using the same epsilon-greedy policy as

the action that led to the current state, s′. One advantage of this approach is

that SARSA is able to learn a near-optimal policy while still allowing for some

exploration. However, if the goal is to learn the optimal policy, it may be necessary

to carefully tune the decay rate of the epsilon value in the epsilon-greedy action

selection process. On the other hand, Q-learning is an off-policy algorithm that

learns the optimal policy directly. While this can be more efficient in certain cases,

it also has a higher per-sample variance and can be more difficult to converge

when used with neural networks.

15

2.3.3 Deep Q-learning (DQN)

One problem with traditional Q-learning is that the size of the Q table grows

exponentially with the number of states and actions, making it impractical for

many problems. To address this, deep Q-learning (DQN) was introduced by Mnih

et al. [6], which uses a neural network to approximate the Q-values. As a universal

function approximator, the neural network is able to capture the relationships

between states and actions more efficiently than the Q table.

However, one issue with using a neural network to learn the Q-values is that

the update rule (Equation 4) depends on the values produced by the network

itself, which can make convergence difficult. To address this, the DQN algorithm

introduces the use of a replay buffer and target networks. The replay buffer stores

past interactions as a list of tuples, which can be sampled to update the value and

policy networks. This allows the network to learn from individual tuples multiple

times and reduces dependence on the current experience. The target networks

are time-delayed copies of the policy and Q networks, and their parameters are

updated according to the following equations:

θQ
′ ← τθQ + (1− τ)θQ′

(2.5)

θµ
′ ← τθµ + (1− τ)θµ′ (2.6)

where θµ
′
and θQ

′
denote the parameters of the policy and Q networks, respectively.

The Figure 2.3 shows the overall workflow of Deep Q-Network.

16

Figure 2.3: Flowchart of DQN

.

2.3.4 Double Deep Q-Learning (Double DQN)

One issue with the DQN algorithm is that it tends to overestimate the true

rewards, leading to inflated Q-values. To address this, the Double DQN algorithm

[10] introduces a modification to the Bellman equation used in DQN. Instead of

using the same equation, the action selection and action evaluation are decoupled

in the following way:

Q(s, a; θ) = r + γQ (s′, argmaxa′ Q (s′, a′; θ) ; θ′) (2.7)

Here, the main neural network, θ, determines the best next action, a′, while the

target network is used to evaluate this action and compute its Q-value. This

simple change has been shown to reduce over-estimations and lead to better final

policies.

2.3.5 Dueling Deep Q-Learning(Dueling DQN)

The Dueling DQN algorithm introduced by Wang et al. [11] seeks to improve upon

traditional DQN by decomposing the Q-values into two separate components: the

17

value function, V (s), and the advantage function, A(s, a). The value function

represents the expected reward for a given state, s, while the advantage function

reflects the relative advantage of taking a particular action, a, compared to other

actions. By combining these two functions, it is possible to compute the full

Q-values for each state-action pair.

To implement this decomposition, the Dueling DQN algorithm introduces a

neural network with two separate output layers, one for the value function and

one for the advantage function. These outputs are then combined to produce the

final Q-values. This modification allows the network to learn more efficiently in

situations where the exact values of individual actions are not as important, as it

can focus on learning the value function for the state.

2.4 Policy-based RL

Policy gradient (PG) methods are widely used reinforcement learning algorithms

that are particularly well-suited to situations with continuous action spaces [12].

The goal of an RL agent using a PG method is to maximize the expected reward,

J (πθ) = E
τ∼πa

[R(τ)], by adjusting the policy parameters, θ. A standard approach to

finding the optimal policy is to use gradient ascent, in which the policy parameters

are updated according to the following rule:

θt+1 = θt + α∇J (πθt) (2.8)

18

where α is the learning rate and ∇J (πθ) is the policy gradient. This gradient can

be further expanded and reformulated as:

∇J (πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ (at | st)R(τ)

]
. (2.9)

In PG methods, the policy function, which maps states to actions, is learned

explicitly and actions are selected without using a value function.

2.4.1 Vanilla Policy Gradient (VPG)

In RL, it is often more important to understand the relative advantage of a

particular action, rather than its absolute effectiveness. The advantage function,

Aπ(s, a), captures this idea by measuring how easier it is to take a specific action,

a, in state s compared to randomly selecting an action according to the policy, π,

considering that the policy will be followed indefinitely thereafter. Mathematically,

the advantage function is defined as:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.10)

where Qπ(s, a) is the action-value function and Vπ(s) is the state-value function

for the policy π. Using this definition, the vanilla policy gradient (VPG) algorithm

[12] can be written as:

∇J (πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ (at | st)Aπ(s, a)

]
(2.11)

The figure 2.4 describe the general workflow of vanilla policy gradient.

19

Figure 2.4: Flowchart of Vanilla Policy Gradient

.

2.4.2 Trust Region Policy Optimization (TRPO)

In policy gradient methods, we aim to optimize a policy objective function, such

as the expected cumulative reward, using gradient descent. These methods are

well-suited for continuous and large state and action spaces, but can be sensitive

to the learning rate. A small learning rate may result in vanishing gradients,

while a large learning rate may cause exploding gradients. Trust Region Policy

Optimization (TRPO) [13] was introduced as a solution to this problem, by

constraining the optimization of the policy to a trust region. This region is defined

as the area where local approximations of the function are accurate, and the

maximum step size is determined within it. The trust region is then iteratively

expanded or shrunk based on how well the new approximation performs.

The policy update in TRPO is given by the following optimization problem,

which uses the Kullback–Leibler (KL) divergence between the old and new policies

as a measure of change:

∇J (πθ) = E
τ∼πθ

[
πθ (at | st)
πθold (at | st)

Ât

]
(2.12)

20

subject to E
τ∼πθ

[KL [πθold (· | st), πθ(· | st)]] ≤ δ (2.13)

where δ is the size of the trust region, and the KL divergence between the old

and new policies must be less than δ. This optimization problem can be solved

using the conjugate gradient method.

2.4.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [14] is an algorithm that aims to address the

overhead issue of TRPO by incorporating the constraint into the objective function

as a penalty. Instead of adding a separate constraint, the KL divergence between

the old and new policies is subtracted from the objective function, multiplied by

a constant C. This allows for the use of simple stochastic gradient descent to

optimize the function:

E
τ∼πθ

[
πθ (at | st)
πθold (at | st)

Ât

]
− C ·KLπθold (πθ) (2.14)

One challenge of PPO is choosing the appropriate value for C. To address this,

the algorithm updates C based on the magnitude of the KL divergence. If the KL

divergence is too high, C is increased, and if it is too low, C is decreased. This

allows for effective optimization over the course of training.

2.5 Actor Critic

Actor-Critics [15] are RL algorithms that combine elements of both value-based

and policy-based methods. In this approach, the actor, a policy network, proposes

an action for a given state, while the critic, a value network, evaluates the action

21

based on the state-action pair. The critic uses the Bellman equation to learn

the Q-function and the actor is updated based on the Q-function to train the

policy. This allows the actor-critic approach to take advantage of the strengths of

both value-based and policy-based methods. The figure 2.5 illustrate the network

architecture of actor critic.

Figure 2.5: Flowchart of Actor Critic

2.5.1 Advantage Actor-Critic (A2C)

In the Advantage Actor-Critic (A2C) algorithm [16], the critic is trained to

estimate the Advantage function instead of the Q-function. This allows the

evaluation of an action to consider not only its success, but also how much better

it is compared to other actions. Using the Advantage function can help reduce

the high variance of policy networks and improve the stability of the model.

2.5.2 Asynchronous Advantage actor-Critic (A3C)

The Asynchronous Advantage actor-Critic (A3C) algorithm [16], released by

DeepMind in 2016, is a highly efficient and effective reinforcement learning

algorithm that has outperformed other methods such as DQN on many tasks. A

22

key feature of A3C is its asynchronous nature, which allows multiple independent

agents (networks) with their own weights to interact with different copies of the

environment in parallel, allowing for more efficient exploration of the state-action

space. A3C has proven to be a robust and reliable method, achieving high scores

on standard reinforcement learning tasks.

2.5.3 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [17] is a reinforcement learning

technique that combines both deep Q learning (DQN) [18] and deterministic

policy gradients (DPG) [19]. DDPG is an actor-critic technique, it uses two neural

networks: a deterministic policy network and a critic (Q) network. The policy

network simply performs the gradient ascent to solve Equation (4). Note that the

critic parameters are frozen as constants. The critic network is updated similarly

to equation (3). Nevertheless, in DDPG, the updated Q values are calculated by

Bellman equation (2) with the target Q network and target policy network. Then,

we minimize the mean squared error loss between the original Q value and the

updated Q value:

L =
1

N

∑
i

(
Qold −

(
r(s, a) + γmax

a
Qtarget (s

′, a)
))2

(2.15)

Since the policy is deterministic, it suffers from inefficient exploration when the

agent was to explore the environment. To improve DDPG policy, the authors add

Ornstein-Uhlenbeck noise [20] to the selected actions during training. However,

more recent research implies that uncorrelated, zero-mean Gaussian noise is

23

effective. The figure 2.6 shows the update rule of Deep Deterministic Policy

Gradient.

Figure 2.6: Flowchart of Deep Deterministic Policy Gradient

2.5.4 Twin Delayed Deep Deterministic Policy Gradients (TD3)

Twin Delayed Deep Deterministic Policy Gradients (TD3) [21] is the successor

to the DDPG. Although DDPG is capable of providing excellent results, it has

its drawbacks. Like many RL algorithms training DDPG can be unstable and

heavily reliant on finding the correct hyper parameters for the current task. This

is caused by the algorithm continuously over estimating the Q values of the

critic (value) network. These estimation errors build up over time and can lead

to the agent falling into a local optima or experience catastrophic forgetting.

TD3 addresses this issue by focusing on reducing the overestimation bias seen in

previous algorithms.

TD3 has three main features that help to solve the aforementioned problems.

Firstly, TD3 uses two critic networks instead of one, and uses the smaller of the

two Q-values as the targets in the Bellman error loss functions. This helps to

24

reduce overestimation by ensuring that the Q-value targets are more conservative.

Secondly, TD3 updates the policy (and target networks) less frequently than the

Q-function, which is called twin delay. The paper suggests one policy update for

every two Q-function updates. This helps to reduce over-fitting and improve the

stability of the algorithm. Finally, TD3 adds noise to the target action, to make

it harder for the policy to exploit Q-function errors by smoothing out Q along

changes in action. This helps to improve the robustness of the algorithm and

reduce its reliance on hyperparameter tuning.

2.5.5 Soft Actor-Critic (SAC)

Developed jointly by UC Berkeley and Google [22], Soft Actor-Critic (SAC) is a

cutting-edge reinforcement learning algorithm. It employs a maximum entropy

approach in which the goal is to determine the optimal policy that maximizes

both the expected long-term reward and the long-term entropy [23]. The objective

function for this maximum entropy RL is displayed below:

J (πθ) = Eπθ

[
T−1∑
t=0

γtR (st, at) + αH (π (. | st))

]
(2.16)

The maximum entropy reinforcement learning objective is used to encourage

exploration. This is achieved by promoting policies that assign equal probabilities

to actions that have similar or almost equal Q-values, which leads to higher entropy.

By explicitly encouraging exploration in this way, SAC is able to effectively explore

the state-action space and find optimal policies.

SAC makes use of three networks: a state value function V parameterized by

25

ψ, the second one is a policy function parameterised by ϕ, and the last network

represents soft state-action value function parameterised by θ. We train the state

Value network by minimizing the following error:

Est∼D

[
1

2

(
Vψ (st)− Eat∼πϕ [Qθ (st, at)− log πϕ (at | st)]

)2]
(2.17)

The loss function implies that across all the states that we sample from our

experience replay buffer, we need to decrease the squared difference between the

prediction of our value network and the expected prediction of the Q function

minus the entropy of the policy function π. We train the soft Q network by

minimizing the following error:

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st, at)− Q̂ (st, at)

)2
]

(2.18)

where

Q̂ (st, at) = r (st, at) + γEst+1∼p
[
Vψ̄ (st+1)

]
(2.19)

In simple words, training is done by minimizing the squared difference between

predicted Q value and the reward plus the discounted expectation of state-value

of next state. Finally, policy network learning is based on:

Jπ(ϕ) = ESt∼D [DKL (πϕ (· | st) ∥ exp (Qθ (st, ·)))] (2.20)

attempting to make the distribution of our policy function look more like the

distribution of the exponentiation of our Q function.

After the discussion of RL algorithms, there are two possible approaches for

finding the optimal policy: on-policy and off-policy. These two terms are used to

describe how, in a general sense, the agent learns and behaves during the training

26

Table 2.1: The category of different RL algorithms.

Methods Value-based Policy-based Actor-critic

On-Policy Monte Carlo

Learning/ SARSA

REINFORCE(PG) A2C/ A3C/

TRPO/ PPO

Off-Policy Q-learning/ DQN

Double/ Dueling

DDPG/ TD3/

SAC

phase, as well as the two main ways that an agent can go about learning/behaving.

Table 2.1 shows the category of different RL algorithms.

While RL has proven to be a powerful approach to solving a wide range of

problems, there are several different algorithms that have been developed to

address different types of environments and learning objectives. In this context,

it is important to understand the strengths and limitations of these algorithms in

order to make informed decisions about which algorithm to use for a particular

application. Table 2.2 describes the strength and limitations of different RL

algorithms.

2.6 Challenges in Deep Reinforcement Learning

Despite the remarkable successes and wide-ranging applications of Deep Reinforce-

ment Learning (DRL), several significant challenges hinder its broader adoption

and effectiveness. Addressing these challenges is crucial for advancing the field

and realizing the full potential of DRL.

27

2.6.1 Sample Efficiency

One of the primary challenges in DRL is sample efficiency, which refers to the

number of interactions with the environment required to learn an effective policy.

Many DRL algorithms require millions of interactions to achieve good performance,

making them impractical for real-world applications where obtaining such data

can be expensive or time-consuming. Improving sample efficiency involves devel-

oping methods that can learn from fewer interactions, such as using model-based

approaches where a model of the environment is learned and used to generate

synthetic experiences.

2.6.2 Stability and Convergence

Training deep neural networks in the context of reinforcement learning can be

unstable and may not always converge to an optimal solution. This instability

arises from several factors, including the non-stationary nature of the environment,

the correlation between consecutive experiences, and the high variance in gradient

estimates. Techniques such as experience replay, target networks, and more

sophisticated optimization methods like Proximal Policy Optimization (PPO)

have been developed to mitigate these issues, but achieving stable and reliable

convergence remains a challenging task.

2.6.3 Exploration and Exploitation

Balancing exploration (trying new actions to discover their effects) and exploitation

(choosing actions that are known to yield high rewards) is a fundamental challenge

28

in reinforcement learning. Effective exploration is crucial for discovering optimal

policies, especially in environments with sparse rewards or high-dimensional action

spaces. Strategies like ϵ-greedy, softmax action selection, and intrinsic motivation

(where the agent is driven by curiosity) are used to address this trade-off, but

finding the right balance remains an open problem.

2.6.4 Generalization

DRLmodels often struggle to generalize beyond the specific tasks and environments

they were trained on. Overfitting to the training environment can result in poor

performance in new, unseen environments. This lack of generalization limits the

applicability of DRL in real-world scenarios where the environment may change

or the agent may encounter novel situations. Research in meta-learning, transfer

learning, and robust policy learning aims to enhance the generalization capabilities

of DRL agents.

2.6.5 Reward Shaping

Designing appropriate reward signals is critical for guiding the learning process.

Poorly designed rewards can lead to unintended behaviors, where the agent

optimizes for the given reward but not the intended outcome. This challenge is

particularly acute in complex tasks where defining a reward function that captures

the desired behavior is difficult. Reward shaping, which involves adding auxiliary

rewards to guide the agent towards desirable behaviors, can help but requires

careful tuning to avoid introducing bias.

29

2.6.6 Computational Resources

DRL algorithms are computationally intensive, requiring significant processing

power and memory. Training deep neural networks involves substantial compu-

tational overhead, and the need for extensive interaction with the environment

further exacerbates this demand. Access to high-performance computing resources,

such as GPUs and TPUs, is often necessary, making DRL research and deployment

expensive and less accessible.

2.6.7 Scalability

Scalability is another challenge, particularly in multi-agent settings or large-scale

environments. Coordinating multiple agents and ensuring efficient learning in

environments with a vast number of states and actions is complex. Techniques

such as hierarchical reinforcement learning, where the problem is decomposed

into smaller, more manageable sub-problems, offer potential solutions but require

further development.

2.6.8 Interpretability

Understanding the decision-making process of DRL agents is challenging due

to the black-box nature of deep neural networks. This lack of interpretability

makes it difficult to trust and validate the actions of DRL agents, especially in

safety-critical applications like healthcare and autonomous driving. Research in

explainable AI (XAI) aims to develop methods for interpreting and explaining the

behavior of DRL agents, providing insights into their decision-making processes.

30

2.7 Summary

Deep Reinforcement Learning represents a powerful paradigm in machine learning,

combining the strengths of reinforcement learning and deep neural networks.

This chapter has provided an overview of the fundamental concepts of RL, the

integration of deep learning into RL, and the various methods and challenges

associated with DRL. Understanding these theoretical foundations is crucial for

advancing the field and developing robust and efficient DRL algorithms capable

of tackling complex decision-making tasks across diverse domains.

31

Table 2.2: The strength and limitations of different RL algorithms.

RL Algorithm Strengths Limitations

Q-Learning Straightforward and easy

to use

Suffers from slow

convergence

SARSA Manages stochastic

environments and policies

Slow convergence

Deep Q-Networks (DQN) Handles high-dimensional

state spaces, directly

learns from sensory data

Difficulty using in

continuous action spaces,

overestimation of Q-values

Policy Gradient Handles continuous action

spaces, learns stochastic

policies

High variance in gradients,

sensitive to

hyperparameters

Actor-Critic Combines the advantages

of policy gradient and

value-based approaches

Difficult to balance

exploration and

exploitation, high variance

in gradients

DDPG Handles continuous action

spaces

Instability, overestimation

bias

SAC Optimizes

entropy-regularized

objectives

Computationally

expensive

32

Chapter 3

Deep Reinforcement Learning for Robotic

Manipulation

3.1 Introduction

Robotic manipulation has become a cornerstone in various industries, ranging from

manufacturing and healthcare to logistics and space exploration [24]. The ability of

robots to perform complex tasks such as assembling products, picking and placing

objects, and performing surgeries has significantly enhanced productivity, reduced

costs, and improved the quality of products and services [1]. In recent years, the

integration of artificial intelligence (AI) and robotics has further accelerated these

advancements, particularly through the application of deep reinforcement learning

(DRL) [25].

Deep reinforcement learning, a combination of reinforcement learning and

deep learning, has emerged as a powerful tool for training robots to perform

manipulation tasks with high precision and adaptability [26]. Unlike traditional

control methods, which rely on predefined rules and models, DRL allows robots

to learn optimal behaviors through interaction with their environment. This

capability is crucial for handling the uncertainties and dynamic nature of real-

world scenarios.

Chapter 2 provided a comprehensive overview of the theoretical foundations of

deep reinforcement learning, covering key concepts such as value-based methods,

33

policy-based methods, and actor-critic approaches. Building on this theoretical

background, Chapter 3 delves into the practical applications of DRL in robotic

manipulation. This chapter presents a survey of recent advances in DRL algorithms

specifically designed for robotic manipulation tasks, exploring how these algorithms

address the challenges and complexities inherent in this field.

The focus of this chapter is to bridge the gap between theory and practice by

examining how DRL algorithms are implemented in robotic manipulation. We

begin with a discussion on the fundamentals of robotic manipulation, outlining

the essential components and typical tasks. Following this, the chapter provides

an overview of the key DRL algorithms used in robotic manipulation, highlighting

their strengths and limitations.

To ensure a comprehensive and systematic review, we employed a rigorous

search methodology to identify relevant publications. This methodology, detailed

in Section 3.4, involved the use of specific keywords, search engines, and criteria

for selecting and excluding studies. The subsequent sections then delve into the

specifics of various DRL algorithms and their applications, discussing both the

challenges encountered and the innovative solutions proposed in recent research.

Finally, the chapter concludes with an analysis of current trends and future

directions in the application of DRL to robotic manipulation. This analysis aims

to provide insights into the evolving landscape of this field and identify potential

areas for further research and development. Through this exploration, we aim to

highlight the transformative potential of DRL in enhancing the capabilities and

versatility of robotic manipulation systems.

34

3.2 Fundamentals of Robotic Manipulation

Robotic manipulation is a subfield of robotics that focuses on the development of

robots capable of interacting with objects in their environment. This capability is

essential for performing a wide range of tasks across various industries, including

manufacturing, healthcare, agriculture, logistics, and more. The primary goal of

robotic manipulation is to create systems that can autonomously perform tasks

that require dexterous and precise handling of objects, much like human hands.

Figure 3.1 shows a classic robotic manipulation workflow. Moreover, Matt Mason

provided a thorough and in-depth description of manipulation in the introduction

of his 2018 review paper [27].

Figure 3.1: Classic robotic manipulation workflow

.

3.2.1 Definition and Scope of Robotic Manipulation

Robotic manipulation involves the control and coordination of robotic arms

and end-effectors (such as grippers) to perform tasks such as picking, placing,

assembling, and manipulating objects. These tasks can vary in complexity from

35

simple pick-and-place operations to intricate assembly and surgical procedures.

The scope of robotic manipulation extends to any application where robots

are required to interact physically with their surroundings to achieve specific

objectives.

3.2.2 Components of Robotic Manipulation Systems

A typical robotic manipulation system consists of three main components:

• Robot Arm: This is the primary manipulator that provides the necessary

degrees of freedom (DoFs) to reach and interact with objects. Modern robot

arms can range from simple two or three DoF systems to complex seven or

more DoF systems, allowing for a wide range of movements and capabilities.

• Gripper or End-Effector: The end-effector is the component that directly

interacts with objects. It can take various forms, including parallel grippers,

suction cups, robotic hands with multiple fingers, or specialized tools for

specific tasks (e.g., welding torches, surgical instruments). The design and

functionality of the end-effector are critical for the successful execution of

manipulation tasks.

• Control System: The control system coordinates the movements of the robot

arm and end-effector. It translates high-level task commands into precise,

executable actions. This system often includes sensors (e.g., cameras, force

sensors) to provide feedback and ensure accurate and adaptive manipulation.

36

3.2.3 Challenges in Robotic Manipulation

Robotic manipulation poses several challenges that need to be addressed for

successful implementation:

• High Dimensionality: Manipulation tasks often involve complex and high-

dimensional state and action spaces. Efficiently exploring and learning in

these spaces is crucial for developing effective manipulation policies.

• Real-World Variability: Real-world environments are dynamic and un-

predictable, requiring robots to adapt to varying conditions and object

properties (e.g., size, shape, texture).

• Perception and Sensing: Accurate perception and sensing are essential for

reliable manipulation. Robots must be able to detect and recognize objects,

estimate their properties, and adjust their actions accordingly.

• Precision and Dexterity: Many manipulation tasks require a high level of

precision and dexterity, similar to human hand movements. Achieving this

level of control is particularly challenging for robots.

• Safety and Reliability: Ensuring the safety and reliability of robotic manip-

ulation systems is critical, especially when operating in close proximity to

humans or handling fragile objects.

Robotic manipulation continues to evolve, driven by advancements in artificial

intelligence, machine learning, and sensor technologies. The application of deep

reinforcement learning (DRL) has shown significant promise in addressing many

37

of the challenges in this field, enabling robots to learn and adapt to complex

manipulation tasks through experience. The following sections will delve into the

specific DRL algorithms and their applications in robotic manipulation, providing

a comprehensive overview of the current state of the art in this exciting and

rapidly advancing area of research.

3.3 Overview of Deep Reinforcement Learning in Robotic

Manipulation

Deep reinforcement learning (DRL) has emerged as a powerful tool for enabling

robots to learn and execute complex manipulation tasks. By combining the

strengths of reinforcement learning (RL) and deep learning, DRL allows robots to

autonomously learn optimal behaviors through interaction with their environment

[28]. This capability is particularly valuable in robotic manipulation, where the

diversity and complexity of tasks require flexible and adaptive solutions.

Robots are programmed with a set of rules and instructions that specify how

they should interact with items in their surroundings in conventional methods

of robotic manipulation. This approach is effective for simple activities, but it

becomes more challenging as the difficulty of the tasks increases. Robots may

manipulate objects in their surroundings using a process called deep reinforcement

learning, which allows them to make mistakes and learn from them. Deep

reinforcement learning provides a more flexible and adaptable method, allowing

robots to learn from experience and change their behavior [29][30]. For instance,

38

the robot receives positive reinforcement if it successfully picks up and moves

an object to the desired location. If it drops the object or fails to transfer it to

the desired location, a negative reward is provided. As it obtains the capacity

to correlate some activities with good results and other actions with undesirable

outcomes over time, the robot develops a strategy for accomplishing the task

at hand [31]. Robotic manipulation using deep reinforcement learning has the

potential to change a variety of industries, including healthcare and manufacturing.

By allowing robots to learn from experience and adjust to changing situations, it

enables them to perform tasks that are too difficult or dangerous for humans to

complete. As research in this area advances, we could expect to see more capable

and advanced robots that can manipulate objects more precisely and effectively.

3.4 Search Methodology

Since RL is more adaptable in highly dynamic and unstructured environments than

more traditional or other AI control approaches, there has been a recent increase

in interest in using RL to operate robotic manipulators[32]. These techniques

have demonstrated impressive results in enabling robots to learn complex tasks

and operate in dynamic environments. Moreover, the growing interest in robotic

manipulation in reinforcement learning has been stimulated by the expanding

availability of affordable and efficient robotic hardware as well as the rising demand

for automation across a variety of industries. Applications of this technology

include manufacturing, logistics, healthcare, and home automation, among others.

39

So, the purpose of this review is to present an overview of the major works using

RL in robotic manipulation tasks and to analyze the future directions of this topic.

In order to achieve this goal, a thorough review of the literature is conducted, and

the content of more than 150 articles in relevant fields is searched and reviewed.

Given the enormous amount of literature on the subject, looking for papers in

reinforcement learning for robotic manipulation can be a difficult task. Start by

identifying the relevant keywords for the search, such as ”reinforcement learning,”

”robotic manipulation,” ”manipulation tasks,” ”control policies,” ”deep learning,”

etc. These keywords will help narrow down the search to the most relevant papers.

Use a specialized search engine such as Google Scholar, IEEE Xplore or ArXiv

to search for papers related to reinforcement learning for robotic manipulation.

These search engines allow filter the results from 2015 to 2022. This period’s

start was chosen because of the release of the RL and deep neural network-using

AlphaGo program[33]. This innovation has made a significant contribution to the

rapid growth of RL.

Meanwhile, studies that were not appropriate for the scope of this review had

to be excluded even though they were relevant to the field of RL. Outdated and

do not contribute to the current state of the field should be exclued. Additionally,

the authors decided to exclude papers that are poorly written or have significant

methodological flaws. An overview of the specified search criteria can be found in

Table 3.1.

40

Table 3.1: An overview of the specified search criteria.

Criteria Description

Keywords ”reinforcement learning” AND ”robotic

manipulation” AND ”manipulation

tasks” AND ”control policies”

Search engine Google Scholar, IEEE Xplore or ArXiv

Time period Between 2015 and the present.

Publication type Academic conference papers and journal

articles

Relevance Exclude studies that are not appropriate

for the scope of the review.

Outdated Exclude old papers that are no longer

relevant to the current state of the field.

Quality Exclude poorly written or

methodologically flawed papers.

3.5 Applications and Implementations of DRL in Robotic

Manipulation

This section explores the practical applications and implementations of deep

reinforcement learning (DRL) algorithms in robotic manipulation. While Chapter

2 provided a theoretical foundation, this section focuses on how these algorithms

are applied in real-world scenarios, including reward engineering techniques such

as imitation learning, behavior cloning, and hierarchical reinforcement learning.

41

3.5.1 Practical Implementations of DRL Algorithms

In robotic manipulation, value-based methods like Q-learning and Deep Q-

Networks (DQN) have been applied to tasks such as grasping and object ma-

nipulation. These methods estimate the value of taking specific actions in given

states, helping robots learn optimal policies through experience. Due to the

quantity of samples necessary for precise estimations, learning continuous control

in high-dimensional, sparse reward environments like robotic manipulation is a

difficult challenge. For these tasks, Rammohan et al. [34] recommend value-based

reinforcement learning, more especially RBF-DQN. For robotic manipulation tasks,

they show that RBF-DQN converges more quickly than existing state-of-the-art

algorithms like TD3, SAC, and PPO, and that RBF-DQN is also amenable to

improvement methods like HER and PER. The authors contend that compared to

policy-gradient approaches, value-based systems may be more susceptible to data

augmentation and replay buffer sampling strategies. The use of equivariant neural

networks in Q-learning and actor-critic reinforcement learning is investigated by

Wang et al. [35]. Equivariant models are suited to robotic manipulation issues

because they enforce symmetry in their convolutional layers and can considerably

increase sampling efficiency when learning an equivariant or invariant function.

The authors suggest equivariant variations of the DQN and SAC algorithms that

take advantage of this structure and show through tests that they can be more

sample-efficient than rival algorithms on certain robotic manipulation challenges.

Methods such as Proximal Policy Optimization (PPO) and Trust Region

42

Policy Optimization (TRPO) are particularly suited for tasks requiring continuous

control. These algorithms directly learn a policy that maps states to actions,

enabling smooth and precise movements. Chen et al. [36] aimed to address

multiple robotic manipulation tasks, such as grasping, button-pushing, and door

opening, using reinforcement learning (RL), state representation learning (SRL),

and imitation learning. To do so, the authors self-built simulated environments in

PyBullet and explored three different learning-style methods using wrapped PPO

and DQN algorithms from the OpenAI baseline. These methods were successfully

applied to solve diverse missions in the self-constructed environments. Clegg et

al. [37] investigate the application of reinforcement learning to create robotic

dressing aides that can predict human movements. The robot offers a client with

an open sleeve of a medical gown, and the individual puts their arm into the sleeve,

according to the researchers’ models of human behavior during dressing assistance.

The system develops a model of human behavior using the TRPO algorithm that

can effectively train for three distinct robot-assisted dressing procedures and can

insert the arm into the sleeve. The purpose of the project is to simulate how

individuals may aid with dressing.

Combining the strengths of value-based and policy-based methods, actor-critic

approaches like Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient

(DDPG) are used for complex manipulation tasks. The actor proposes actions

while the critic evaluates them, balancing exploration and exploitation. Vecerik et

al. [38] developed a model-free reinforcement learning approach for real robotics

with sparse rewards by using demonstrations and extending the Deep Deterministic

43

Policy Gradient (DDPG) algorithm. Both demonstrations and actual interactions

were used to populate a replay buffer, and a prioritized replay mechanism [39]

automatically adjusted the sampling ratio between demonstrations and transitions.

Kilinc et al. [40] proposed a novel framework for robotic manipulation that does

not rely on human demonstrations. They framed every robotic manipulation task

as a locomotion task from the perspective of the manipulated object, and used a

physics simulator to obtain an object locomotion policy. This policy was then

used to generate simulated locomotion demonstration rewards (SLDRs), which

enable the learning of the robot manipulation policy. Yang et al. [41] developed a

Pybullet engine re-implementation of the OpenAI multi-goal robotic manipulation

environment with additional APIs for joint control, customizable camera goals and

image observations, and on-hand camera access. The authors also created a series

of challenging robotic manipulation tasks with sparse rewards, long horizons, and

multi-step and multi-goal objectives to inspire new goal-conditioned reinforcement

learning algorithms. Vulin et al. [42] tackled the challenge of exploration in deep

reinforcement learning for robotic manipulation by introducing an intrinsic reward

based on the sum of forces between the robot’s force sensors and manipulation

objects, encouraging physical interaction. They also proposed a contact-prioritized

experience replay sampling scheme that prioritizes contact-rich episodes and

transitions.

There are lots of RL techniques for robot manipulator to apply. Figure 3.2 cate-

gorize the research papers by using different RL algorithms in robotic manipulation

from 2015 to 2022.

44

Figure 3.2: The trend of published papers using different RL algorithms

in robotic manipulation

.

3.5.2 Reward Engineering

Reward engineering is crucial for designing effective DRL systems for robotic

manipulation. It involves shaping the reward function and learning techniques to

ensure that the learning agent can efficiently achieve the desired behavior.

In imitation learning, the goal is to learn a policy that can mimic the behavior

of an expert. The expert’s behavior is represented as a set of demonstrations,

which can be used to train the policy. The policy is typically learned by minimizing

the distance between the expert’s behavior and the policy’s behavior, using a

distance measure such as the KL divergence or the maximum mean discrepancy.

The advantage of imitation learning is that it does not require a reward function

to be specified, which can be difficult or infeasible in some cases. However, it may

not generalize well to situations that are different from those encountered by the

expert. The classification of imitation learning can be seen in Fig 3.3.

45

Figure 3.3: Classification of imitation learning [1]

.

One popular algorithm for imitation learning is behavior cloning, where the

goal is to learn a policy that can mimic the expert’s behavior. This can be done

by collecting a dataset of expert demonstrations and using it to train a supervised

learning algorithm to predict the expert’s actions given the current state. The

learned policy can then be used to execute the desired behavior in the environment.

Another approach is inverse reinforcement learning, where the goal is to learn the

reward function that the expert is optimizing, and then use this reward function

to train a policy using RL techniques. This allows the agent to not only mimic

the expert’s behavior, but also adapt and improve upon it. An important example

of behaviour cloning is ALVINN [43], a vehicle equipped with sensors that has

learnt to map the sensor inputs into steering angles and drive autonomously. Dean

Pomerleau initiated this research in 1989, and it was also the first implementation

of imitation learning in general.

In Direct policy learning (DPL), the goal is to learn a policy that can replicate

46

the expert’s behavior as closely as possible. This is done through an iterative

process where the policy is trained using supervised learning on a dataset of

demonstrations provided by the expert. The trained policy is then implemented

in the environment and evaluated through interactions with the expert. Any

additional data collected during these interactions is then added to the training

dataset and the process is repeated until the policy converges to a satisfactory

level of performance. RL-teacher [44] is a specific implementation of DPL that

allows for the learning of novel behaviors without the need for a pre-defined reward

function or the ability for the expert to demonstrate the desired behavior directly.

Inverse reinforcement learning (IRL) [45] is a kind of imitation learning in

which we are given a policy or a history of behavior from an agent and use

reinforcement learning to try to discover a reward function that explains the

behavior. IRL, like RL, is seen as an issue as well as a category of techniques.

However, there are two issues with discovering a reward function that is best for

observed behavior. First, for most observations of behavior there are many fitting

reward functions. Many degenerate solutions exist in the set of solutions, such as

providing 0 reward to all states. Second, the IRL algorithms are based on the

assumption that the observed behavior is ideal. This is similar to over-fitting in

supervised learning.

Generative adversarial imitation learning (GAIL) [46] combines IRL with

generative adversarial networks (GAN). GAIL’s purpose is to train generators

that behave similarly to given experts. Meanwhile, the discriminators may be used

as reward functions for RL, which determines if the actions match those of experts.

47

GAIL can learn from a small number of expert trajectories. GAIL is capable of

handling difficult issues and generalizes effectively to unknown scenarios. GAIL is

not exactly IRL, because GAIL learns the policy, rather than the reward function,

directly from the data.

Goal-conditioned imitation learning (GCIL) [47] is a combination of the GAIL

and hindsight experience replay (HER) [48] algorithms. GCIL utilizes the benefits

of both algorithms, such as the ability of GAIL to quickly learn from a few

demonstrations at the start of a task and the ability of HER to generalize and

learn new tasks through hindsight relabeling. In a goal-reaching task, the data

distribution includes both states, actions, and attempted goals. HER improves

the data distribution by replacing the initially desired goals with the actually

achieved goals, since a robot’s failure to achieve a desired goal is still a success in

terms of achieving the goal it actually reached. By optimizing this non-parametric

data distribution, GCIL can improve the efficiency and effectiveness of imitation

learning.

Curriculum learning [49] is a training method in which the complexity of the

data samples used increases gradually over time. The original formulation of

curriculum learning was based on the idea that it mirrors the natural way in

which people learn. While it may seem that curriculum learning is solely about

increasing the complexity of the training experience, it is also about leveraging

knowledge gained from simpler tasks to reduce the exploration needed in more

complex tasks through generalization.

Teacher-student curriculum learning (TSCL) [50] is a method for automating

48

the process of curriculum learning in reinforcement learning. It involves using

two RL agents: a student and a teacher. The student is responsible for learning

and completing tasks, while the teacher is responsible for selecting appropriate

sub-tasks to help the student learn more effectively. By gradually increasing the

complexity of the tasks presented to the student, the teacher helps the student

learn more efficiently and effectively. TSCL is a useful approach for tackling

difficult tasks that may not be able to be learned directly, by breaking them down

into smaller sub-tasks that can be learned more easily.

Different from the teacher-student framework, two agents are doing very

different things. In asymmetric self-play [51], the two agents Alice and Bob both

train on the main task directly. Alice’s role is to propose challenging goals for Bob

to achieve, while Bob’s role is to try to reach those goals. This interaction between

Alice and Bob creates an automated curriculum of progressively challenging tasks,

and because Alice has already completed the task before presenting it to Bob, it is

guaranteed to be achievable. Asymmetric self-play is a method for goal discovery,

in which the two agents work together to find and achieve new goals within the

main task.

Hierarchical reinforcement learning (HRL) [52] is a computational approach

that allows an agent to learn how to perform tasks at different levels of abstraction.

It involves multiple sub-policies working together in a hierarchical framework,

rather than just one policy trying to accomplish the overall goal. This method

has several benefits, such as improved exploration and sampling efficiency, and

can also be used for transfer learning, where low-level policies or sub-policies can

49

be reused for multiple tasks. For example, if an agent has learned how to make

coffee, it can reuse that knowledge when learning how to make a cappuccino by

separating the process into making coffee and then warming and frothing the milk.

HRL can therefore speed up the learning process for new tasks.

For robot manipulators, there are multiple reward engineering strategies

available. Figure 3.4 shows the trend of reward engineering used in robotic

manipulation from 2015 to 2022.

Figure 3.4: The trend of published papers using different reward

engineering in robotic manipulation

.

3.5.3 Graph Neural Network Architectures in DRL for Robotic Ma-

nipulation

This section explores the Graph neural network architectures employed in deep

reinforcement learning (DRL) for robotic manipulation. Graph neural networks

(GNNs) can be used as the network architecture for reinforcement learning prob-

lems in relational environments.

50

Table 3.2 demonstrate a list of papers about GNN implementation relative

to RL Algorithms and learning techniques. Janisch et al. [53] proposed a deep

RL framework based on GNNs and auto-regressive policy decomposition that is

well-suited to these types of problems. They demonstrate that their approach,

which uses GNNs, can solve problems and generalize to different sizes without

any prior knowledge.

Table 3.2: A list of papers about GNN implementation relative to RL

Algorithms and learning techniques.

Reference papers RL algorithms Learning techniques

[54] DQN and GNN Evaluate on OTN routing

map

[55] Blueprint policy and PPG Curriculum learning

[53] GNN and A2C Behavior cloning

[56] PPO Imitation learning

[57] GNN and SAC Sequential curriculum

learning

[58] Model-based method Imitation learning

[59] MDP and GAT Hierarchical imitation

learning

[60] PG and GCN GAIL

[61] PPO and GCN Relational inductive bias

To address the issue of limited generalisation in current DRL-based networking

51

solutions, Almasan et al. [54] present a Deep Reinforcement Learning (DRL)

agent including Graph Neural Networks (GNN). The proposed GNN-based DRL

agent can learn and generalize over diverse network topology since GNNs are

built to generalize over networks of various sizes and architectures. The agent

outperforms cutting-edge methods in topology not seen during training in a

routing optimization use case in optical networks.

Richard Li et al. [57] present a reinforcement learning system that can stack 6

blocks without any demonstrations or task-specific assumptions. They use the

Soft Actor-critic (SAC) algorithm as their base learning algorithm because it is

more robust to hyperparameter choices and random seeds than other off-policy

learners such as Deep Deterministic Policy Gradient (DDPG). They find that

training a policy represented by an attention-based graph neural network (GNN)

enables successful curriculum learning in multi-object manipulation tasks.

Yunfei Li et al. [55] study a challenging assembly task in which a robot arm

must build a feasible bridge based on a given design. The authors divide the

problem into two steps. First, they use an attention-based neural network as a

”blueprint policy” to assemble the bridge in a simulation environment. Then, they

implement a motion-planning-based policy for real-robot motion control.

Lin et al. [56] presents a method for robot manipulation using graph neural

networks (GNNs). The authors propose a GNN-based approach for solving the

object grasping problem, in which the robot must select a suitable grasp pose

for a given object. The approach combines a graph representation of the object

with a GNN to learn a grasp quality function, which predicts the success of a

52

grasp based on the object’s geometry and the robot’s kinematics. The authors

evaluate their method on a dataset of synthetic objects and a real-world grasping

task, and demonstrate that it outperforms previous approaches in terms of both

efficiency and interpretability.

3.5.4 Current Trends and Future Directions

The field of deep reinforcement learning (DRL) for robotic manipulation is rapidly

evolving, with several key trends shaping its development. These trends highlight

the ongoing innovations and the directions in which current research is focused.

Sim-to-Real Transfer: One of the significant trends is improving the transfer

of learned policies from simulation to real-world environments. Techniques such

as domain randomization, which involves varying the simulation parameters to

create a more robust policy, and progressive networks, which help in adapting

learned behaviors to new domains, are gaining traction. These methods aim to

bridge the gap between simulated training environments and the variability of

real-world scenarios, making DRL-trained robots more adaptable and reliable.

Hierarchical Reinforcement Learning (HRL): HRL continues to be a prominent

approach for managing complex tasks by breaking them down into simpler sub-

tasks. This hierarchical structure not only simplifies the learning process but also

enhances the robot’s ability to handle long-horizon tasks. HRL is particularly

useful in tasks such as multi-step assembly processes and autonomous exploration,

where the robot needs to plan and execute a series of actions to achieve a high-level

goal.

53

Multi-Task and Meta-Learning: There is a growing interest in developing DRL

algorithms that can generalize across multiple tasks and learn new tasks quickly.

Meta-learning, which focuses on learning how to learn, enables robots to adapt to

new tasks with minimal training data by leveraging prior knowledge. Multi-task

learning aims to train robots on several tasks simultaneously, improving their

ability to generalize and transfer skills across different applications.

Incorporation of Advanced Sensing and Perception: The integration of ad-

vanced sensing technologies, such as tactile sensors, depth cameras, and LIDAR,

is enhancing the perception capabilities of robots. These sensors provide rich,

multimodal data that can be leveraged by DRL algorithms to make more informed

decisions. Improved perception allows robots to interact more effectively with

their environment, handle objects with greater dexterity, and perform tasks with

higher precision.

Human-Robot Interaction (HRI): Enhancing the interaction between humans

and robots is a critical trend. Research is focusing on making robots more intuitive

and easier to control through natural language commands, gesture recognition,

and shared autonomy. By improving HRI, robots can better assist humans in

collaborative tasks, leading to safer and more efficient operations in environments

such as manufacturing, healthcare, and domestic settings.

Future research in deep reinforcement learning (DRL) for robotic manipulation

will focus on improving sample efficiency through techniques like model-based

reinforcement learning, ensuring robustness and safety with fail-safe mechanisms

and robust policy learning, and integrating DRL with other AI fields such as

54

computer vision and natural language processing. There will be a push towards

scalable and distributed learning frameworks leveraging cloud and edge computing,

and developing personalized learning approaches that tailor robot behaviors to

individual users. Addressing the ethical and societal implications of deploying

robots, such as ensuring transparency, fairness, and accountability in DRL al-

gorithms, will also be crucial. These advancements aim to create intelligent,

adaptable, and reliable robotic systems capable of performing a wide range of

tasks across various industries.

3.6 Summary

In this chapter, we have explored the application of deep reinforcement learning

(DRL) algorithms in robotic manipulation, a field that has seen significant ad-

vancements in recent years. Starting with an overview of robotic manipulation and

its components, we delved into the practical implementations of DRL algorithms,

highlighting value-based, policy-based, and actor-critic methods. These methods

have demonstrated their efficacy in handling complex tasks that require precision,

adaptability, and continuous control.

We also examined the critical role of reward engineering in shaping effective

DRL systems. Techniques such as imitation learning, behavior cloning, inverse

reinforcement learning, and hierarchical reinforcement learning were discussed in

detail. These methods help in designing reward functions and learning policies that

can efficiently solve manipulation tasks by leveraging demonstrations, decomposing

55

tasks, and learning from structured experiences.

Current trends in DRL for robotic manipulation, such as sim-to-real trans-

fer, hierarchical reinforcement learning, multi-task and meta-learning, advanced

sensing and perception, and human-robot interaction, were identified. These

trends underscore the ongoing innovations aimed at enhancing the capabilities

and robustness of robotic systems.

In summary, the application of DRL in robotic manipulation has the potential

to revolutionize numerous industries by enabling robots to perform complex and

precise tasks autonomously. Continued research and innovation in this field

will lead to more intelligent, versatile, and reliable robotic systems, capable

of transforming both industrial processes and everyday life. This chapter has

provided a comprehensive overview of the state of the art in DRL for robotic

manipulation, laying the groundwork for future advancements and applications in

this exciting and rapidly evolving field.

56

Chapter 4

Enhancing Semantic Segmentation with

Reinforced Active Learning

4.1 Introduction

Semantic segmentation is a critical step in computer vision whereby a class label is

assigned to each pixel in an image to partition effectively an image into meaningful

segments. Unlike image classification, where the whole image is labeled with only

one class, semantic segmentation can provide much finer information that would

enable us to interpret and understand visual information at the pixel level.

On the other hand, training a large semantic segmentation model brings

two major issues: dataset imbalance and efficiency of the annotation process.

Moreover, dataset imbalances caused by biases related to age and gender in clinical

contexts or skewed representation in natural images may exert significant impacts

on the performance of the model. Furthermore, tasks related to segmentation in

general and those pertaining to semantic segmentation, in particular are expensive

in terms of time and resources during annotation. These challenges form the basis

for this research study, which investigates reinforced active learning methodologies

for developing semantic segmentation. Advanced methods to be integrated within

the proposed framework include Dueling Deep Q-Networks, Prioritized Experience

Replay, Noisy Networks, and Emphasizing Recent Experience. These are intended

to optimize the efficiency and precision of the segmentation process. Therefore,

57

while the former accelerates the annotation process by selectively picking the most

informative and representative images, the latter alleviates dataset imbalances by

using strategies of mitigating biases.

The key aims of this research are to develop a high-performance model for

achieving accurate and efficient semantic segmentation in various domains and

robust frameworks applicable in cases with imbalanced datasets. Extensive

experiments and evaluations show the improvement but also the limitation of

diverse approaches, which will give insight toward developing more sophisticated

and precise segmentation algorithms.

In short, this chapter presents a comprehensive study on enhancing semantic

segmentation through reinforced active learning. This will make it evident how

the balancing of exploration and exploitation strategies in reinforcement learning

can firmly push forward the field of semantic segmentation toward more effective

and efficient image analysis under different application scenarios.

4.2 Background

4.2.1 Semantic Segmentation

Semantic segmentation is an essential task in computer vision in which one

attempts to classify every pixel in an image into a predefined class. Such dense

classification allows the understanding of visual content and, enabled by this

ability, has furthered applications in various fields, from autonomous driving to

medical imaging and robotics [62]. Unlike in image classification, where only one

58

label for the entire image is given, semantic segmentation provides labeling at

the pixel level, which enriches spatial information concerning object boundaries

and relations within the image. Semantic segmentation could suffer from data

imbalance.

In many real-world cases, however, this is not the situation: there are underrep-

resented classes and biased model predictions that reduce performance for these

classes [63]. For instance, in clinical imaging, there could be an overabundance of

images from a specific demographic, while other parts of a population might be

underrepresented. In natural images, some object categories may overshadow the

dataset, compared to less frequent ones [64]. Such imbalances can lead the learning

process of the model to be biased toward the dominant classes while performing

poorly for the underrepresented classes [65]. The need for pixel-wise annotations

in semantic segmentation is highly time-consuming and labor-intensive. Human

annotation for each image of the dataset with pixel-level detail is highly costly

and also error-prone [66]. The problem of annotations rises manifold if the dataset

is of a very high magnitude, such as an effective way of minimizing human effort

towards quality-assured annotations.

4.2.2 Active learning

Active learning is an ML paradigm that aims to minimize the amount of labeled

data by selectively annotating the most informative samples. Traditional active

learning protocols prescribe how a model at each iteration chooses a subset of

samples from an unlabeled dataset; then if annotated, it would yield a significant

59

improvement in performance over models trained on an equivalently sized, ran-

domly selected sample. This approach reduces annotation effort while focusing

on the most valuable data points [67].

Active learning strategies can be broadly classified into three categories:

• Membership Query Synthesis: The model generates new samples that are

most informative for learning.

• Stream-Based Selective Sampling: The model evaluates each incoming

sample and decides whether to label it based on its informativeness.

• Pool-Based Sampling: The model selects the most informative samples from

a large pool of unlabeled data.

One of the reasons active learning for semantic segmentation has gotten little

attention compared to image classification is that this task is more costly and

complex, as images need to be annotated per pixel.

4.2.3 Reinforced Active Learning

Reinforced active learning combines active learning with reinforcement learning

principles into a strategy that optimizes how samples are selected. Here, an RL

agent selects samples following a developed policy based on past experiences

of this specific task. The agent gets feedback as rewards, which are derived

from improvements in the model’s performance after selecting and incorporating

labeled samples [68]. Reinforced active learning has been shown to work well

in many contexts because the task is one of trading off between exploration

60

and exploitation: one needs to select diverse samples but focus on maximal

performance gain samples. It works particularly well in low-data contexts and

tasks with a high annotation cost [69].

4.2.4 Significance of Reinforced Active Learning in Semantic Segmen-

tation

This work combines the benefits of reinforced active learning with semantic seg-

mentation to handle dataset imbalances and annotation efficiency. The presented

framework here capitalizes on state-of-the-art RL techniques in prioritizing the

selection of informative and representative samples to alleviate the annotation

burden and enhance the model over all classes, whether balanced or imbalanced.

In summary, the chapter has given a broad view of semantic segmentation, the

challenges around it, and how active and reinforced learning methodologies could

offer the potential to mitigate those challenges. The following sections will discuss

the related work, proposed methodology, experimental setup, and results showing

how effective the given framework of reinforced active learning is in improving

semantic segmentation.

4.3 related work

Active learning is a dedicated methodology that focuses on maximal performance

gain with a minimal number of labeled samples. The primary goal is to search

within the unlabeled dataset for samples that contain the maximum amount of

information and present them consecutively to an oracle, like human annotators,

61

for labeling. This effectively minimizes the labeling cost while ensuring sustained

performance. Active learning strategies can be broadly categorized into mem-

bership query synthesis [70], [71], stream-based selective sampling [72], [73], and

pool-based [74] strategies based on the applicability scenario [75]. Many methods

combine different approaches to improve overall active learning performance. For

example, Shui et al. [76] combine the diversity and uncertainty of the query

samples and try to find a balance between these two criteria. Further research

on classical query strategies is also carried out in [77]. However, despite the

vast research on active learning, it still faces significant difficulty in making it

applicable to high-dimensional data such as images, text, and video [78]. This

has meant that most of the problems considered by active learning research are

low-dimensional [79].

However, in the recent past, there has been increasing interest in reinforcement

learning as an approach to acquiring a labeling policy that directly optimizes

the performance of the active learning algorithm. For instance, Dhiman et

al. [80] proposed an automated annotation model for Multimedia Streaming

Applications (MAS) that addresses current challenges, which include slow speeds

and inefficiencies in access to multimedia content. Apply Multi-modal Active

Learning (MAL) and Convolutional Recurrent Neural Network (CRNN) with the

help of Deep Reinforcement Learning (DRL), and therefore, the retrieval accuracy

and performance metrics surpass those of this model. Gong et al. [81] proposed a

Meta Agent Teaming Active Learning (MATAL) framework to effectively reduce

the laborious efforts involved in annotations of poses. Sadigh et al. [82] designed an

62

active learning algorithm for inverse reinforcement learning using human-provided

preferences between two sample trajectories. Kunapuli et al. [83] maintain a level

of information from a human expert through preference elicitation to take actions

within a designated state. Ezzeddine et al. [84] pooled the feedback from a human

trainer, especially when demonstrations provided are suboptimal.

Recent work in active learning also considered semantic segmentation [85].

Uncertainty-driven active learning flags data samples with high aleatoric un-

certainty. Kampffmeyer et al. [86] attempt to maximize the average standard

deviation of the predicted probabilities. Jain et al. [87] incorporate measures

defined over hand-crafted heuristics, encouraging diversity and representative-

ness of labeled samples. Some methods exploit unsupervised super pixel-based

over-segmentation [88], [89] that relies heavily on the precision of superpixel

segmentation. Other works focus on foreground-background segmentation of

biomedical images [90], [91] using likewise designed heuristics. The importance

of self-consistency that should employ simple transformations, not altering the

observation, is focused by Golestaneh et al. [92].

The arrival of DQN was a significant breakthrough, but since then, many

limitations of the algorithm have appeared, and different extensions have been

proposed: Double DQN [10] reduces the overestimation bias of Q-learning [93] by

decoupling the selection from the evaluation of the bootstrap action. Prioritized

experience replay improves data efficiency by an increased replay frequency of

more informative transitions [39]. The dueling network architecture helps to

generalize over the action by independently representing state values and action

63

advantages [11]. Learning from multi-step bootstrapping targets, as in A3C

[94], adjusts the bias-variance trade-off while speeding the propagation of the

newly observed rewards to the states visited earlier. Noisy DQN introduces

stochastic network layers in the network to facilitate exploration [95]. To the best

of our knowledge, our work is the first to examine an agent that integrates all

these components addressed to date in solving the problem of active learning for

semantic segmentation.

4.4 Methodology

4.4.1 Active learning with reinforcement learning for semantic seg-

mentation

Following Casanova et al. [96], we follow their architecture to train the segmenta-

tion network. We formulate this as a Markov decision process. In what follows, an

active learning process is developed to improve the performance of a segmentation

network, f , with parameters θ under a limited number of labeled samples budget

B. At each iteration, a query network, π, parametrized by ϕ, is used to select K

regions from the sizeable unlabeled set, Ut. These regions are then sent to an oracle

to be labeled, thus augmenting the labeled set, Lt. The segmentation network f is

trained on the augmented Lt, and its performance is measured based on the IoU

metric. This process iterates further until the target budget of B is reached. In

this way, it optimizes segmentation network performance by judiciously choosing

representative regions for labeling, and consequently, high-quality segmentation

64

can be achieved with a small amount of labeled data effectively. The approach is

data-centric, and the model learns the selection strategy from the previous AL

instances.

We use four unique data splits in this setup. We train the query network π by

designating a subset of the labeled data DT and using it for multiple iterations of

the active learning process, yielding an effective acquisition function that optimizes

performance within a B region budget. We evaluate the query network on the data

that has been split away, DV . Further, we use a different subset DR to construct

the reward signal, for which we evaluate the performance of the segmentation

network. We also employ the set DS, where DS is not more significant than DT ,

in constructing the representation of the current state.

The Markov decision process is characterized as the tuple (S,A, r, T, γ), where

S indicates a set of states and A is the actions composed of K sub-actions, or

the same, relies on segmentation network, labeled, and unlabeled sets. Each

sub-action consists of soliciting the annotation of a specific region; r : S ×A→ R

for the function based on improvement in mean IoU per class of taking an action

in a state; T : S × A × S → R for the state-transition function; and γ for the

discount factor, implying that a reward obtained in the future is worth a smaller

amount than an immediate reward. Figure 4.1 describes this training workflow.

In our framework, an episode stops as soon as the labeling budget B of regions is

exhausted, after which the segmentation network f is reinitialized with weights

θ0, and a new episode starts. Query policy π training involves the process of

simulating multiple episodes with weight updates after each time step by sampling

65

transitions (st, at, rt+1, st+1) from an experience replay buffer, E.

Figure 4.1: The overall workflow of the active learning with Reinforce-

ment learning in semantic segmentation.

4.4.2 Extensions to DQN

The development path of Deep Q-Networks (DQN) naturally extended into several

significant modifications that tried to solve their shortcomings while improving the

overall performance. These modifications significantly expanded the functionality

of the original DQN framework, allowing more effective and robust learning in

complex environments. As we have already talked about Double DQN and Dueling

DQN in the previous chapter, we will now talk in detail about the rest of the four

extensions used.

Prioritized experience replay: The implementation presented by Schaul

et al. [39] gives rise to a scheme called Prioritized Experience Replay. This is

66

achieved by adding data structure that holds the priority of each transition.

P (i) =
pαi∑
k p

α
k

(4.1)

Now, experiences are sampled concerning the priorities associated with them.

Where α is the hyper-parameter determining how much sampling bias is applied.

These priorities are based on the temporal difference error of the agent in its most

recent training on that experience. Thus, the agent utilizes more learning resources

on less accurate predictions, yielding improvements in weak areas and significant

sample efficiency improvement. The new transitions will have a very high priority,

so sampling from the replay buffer gives a bias to the recent ones. Moreover, it is

interesting to note that stochastic transitions might still be preferred even when

there is little remaining knowledge to learn from.

Emphasizing Recent Experience: Although mainly proposed to speed up

the convergence rate of Soft Actor-Critic (SAC) [97], the method may theoretically

be extended to a wide variety of algorithms and tasks that intrinsically benefit

from the faster learning of more recent experiences, mainly when they consist of

several elements. The basic idea is to sample the original mini-batch from the

data set stored in the replay buffer. Updating parameters are used, and then for

every new mini-batch after that, the range is closer, meaning one focuses more on

recent data points. The scheme works with two principles: (i) A datum close to

the present point is sampled with higher frequency, and (ii) There is a systematic

arrangement of upgradation such that an older datum does not write over the

more recent one. The Experience Replay Emphasis strategy directly addresses

67

the challenge by providing a way for the agent to potentially prioritize recent

transitions while taking into account previously learned policies using a simple

but effective sampling method.

Adaptive epsilon greedy: Epsilon-greedy balances exploitation and explo-

ration. For instance, when epsilon is set at 0.3, an action among the possible

actions is picked at random with a probability of 0.3, while another is chosen greed-

ily as the output action based on argmax(Q) with a probability of 0.7. A more

elaborate variant of the epsilon-greedy approach is the Adaptive-epsilon-greedy

[98]. In this method, for instance, a policy is trained for N epochs/episodes, which

could differ depending on the problem. The method initializes the epsilon with pinit

(for instance, pinit = 0.6) and decays slowly down to ϵ = pend (pend = 0.1) over a

designated number of training epochs/episodes (nstep). Especially in the first train-

ing phase, the model is allowed to have more freedom to explore (e.g., pinit = 0.6),

after which epsilon slowly decreases according to the training epochs/episodes

according to the formula below:

r = max

(
N − nstep

N0

)
(4.2)

ϵ← (pinit − pend) · r + pend (4.3)

This is flexible; it allows the conclusion of training with a very low probability

of exploration, pend after nstep, thus quickly shifting towards a larger focus on ex-

ploitation or a greedier approach towards the very end of training. The probability

of exploration remains small to explore as the policy approaches convergence.

Noisy Network: Noisy networks are employed in many places instead of

68

the epsilon-greedy method because they encourage more efficient and dynamic

exploration during training. A noisy network, as opposed to the epsilon-greedy

technique, influences the parameters in a network by leading to the injection

of stochasticity directly, which is how a more delicate, continuous process of

exploration is achieved. The Noisy Network [95] proposes a new idea of a noisy

linear layer, combining deterministic and noisy parts:

y = (b+Wx) + (bnoisy ⊙ ϵb + (Wnoisy ⊙ ϵw)x) (4.4)

Where ϵw and ϵb are random variables and ⊙ represents the Hadamard product.

Over the long term, the network learns to ignore the noisy stream; however, it does

so at different rates for different areas of the state space, allowing state-dependent

exploration with a type of intrinsic self-annealing. More precisely, such a dynamic

strategy of exploration can fine-tune the relationship between exploitation and

exploration in ways that favor adaptability and learning efficiency in complex

settings.

Soft Update for Target Network: The soft update target network is

a key concept in the field of deep reinforcement learning [17]. It refers to a

technique used to stabilize and improve the training of deep neural networks in

reinforcement learning tasks. Unlike hard updates, which involve periodically

copying the parameters of the main network to the target network, soft updates

gradually blend the parameters of the target network towards those of the main

network. This process helps to mitigate the issue of drastic changes in the target

network, which can lead to instability during the learning process. The value

69

of τ is used. In the paper which proposed an algorithm called DPG, they used

τ = 0.001. The target network is updated as follows:

θtarget = θ · τ + θtarget · (1− τ) (4.5)

Due to the small value of the parameter τ , allowing the target network to

smoothly adjust towards the Q-network’s value. Frequent updates are needed for

this adjustment to be effective. This strategy enables the target network to more

smoothly track changes in the main network, providing a more stable and effective

learning process. It is particularly useful in complex reinforcement learning tasks

where maintaining stability during training is crucial for optimal performance.

4.5 Experimental Setup

This section details the experimental setup for assessing the proposed reinforced

active learning framework for semantic segmentation. It covers the datasets, data

collection and preprocessing techniques, evaluation metrics, comparative baselines,

and the hardware and software configurations employed.

4.5.1 Dataset Description

The primary dataset used in our experiments is CamVid [99], which consists of

360 x 480 street scene images categorized into 32 classes, with sample images

shown in Figure 4.2. These images were captured from a moving vehicle using

high-resolution cameras mounted on the streets, enabling the observation of

various objects. Our study focuses on the segmentation of 11 key classes. In

70

the urban context, the Road, Building, and Sky classes dominate the frames,

comprising about 15.81%, 27.35%, and appearing in nearly all frames. Other

significant classes, such as Car and Pedestrian, consistently appear throughout

the frame sequence but occupy smaller areas, approximately 3.93% and 0.64%,

respectively. Additionally, our analysis includes other classes listed in Table 4.1,

which highlights a notable imbalance among the different classes, a challenge

addressed in our study. The video sequences were recorded during the day and at

dusk, where objects in the scene remain recognizable but appear darker. Daytime

sequences were captured in sunny weather, featuring mixed urban and residential

settings.

The training, validation, and test sets comprise 370, 104, and 234 images,

respectively. Within the training set, we utilized 100 labeled images to construct

DT and 10 images for the state set DS. For the baseline evaluation set DV , 260

images were used. DS has a similar class distribution to DT to accurately represent

it. The original validation set was used to build DR. The test set was employed

to train the model for final segmentation results. Each image was divided into

K regions (where K = 24) with a resolution of 80x90. For implementation, we

conducted 5 different runs with random seeds to calculate the mean and standard

deviation. Data augmentation techniques, such as horizontal flips and random

crops of 224x224, were applied.

In addition to CamVid, we utilized the Grand Theft Auto V (GTA) dataset

[100] for pre-training. The GTA dataset includes synthetic images with pixel-level

semantic annotations, generated from the open-world video game Grand Theft

71

Table 4.1: Statistics for each class used in this study.

Class name Percentage (%) Occurrence

Road 27.3 701

Building 22.7 687

Sky 15.8 699

Tree 10.4 636

Sidewalk 6.33 672

Car 3.4 643

Column Pole 0.98 698

Fence 1.43 363

Pedestrian 0.64 640

Bicyclist 0.53 365

Sign Symbol 0.12 416

% shows the ratio of pixels.

Occurrence shows the number of occurrences over all images.

72

Figure 4.2: Labeled frames from the video at 1Hz.

Auto V. This dataset offers a variety of urban scenes from a car’s perspective,

providing diverse and richly annotated data.

4.5.2 Data Collection and Preprocessing

The CamVid dataset was captured using a digital film camera under fixed con-

ditions without auto-zoom, focus, or adjustments during the collection process.

The cameras were set to a fixed gain and shutter speed, and the aperture was

maximized to prevent overexposure of white objects.

Preprocessing steps included:

• Annotation: Each image in the dataset was manually annotated to assign

pixel-level semantic labels.

• Data Augmentation: To enhance the robustness of the model, data aug-

mentation techniques such as horizontal flips and random crops (224 × 224

pixels) were applied to the images.

• Region Division: Each image was divided into K regions (K = 24) with a

resolution of 80 × 90 pixels for the active learning process.

73

4.5.3 Evaluation Metrics

We trained the active learning agent on DT with approximately 0.5k regions

to optimize the selection of regions that would enhance performance in data-

scarce scenarios. The model was then evaluated using DV, where it accessed an

increasing number of images within different fixed budgets. Once the fixed budget

was reached, the segmentation network was trained with LT until it satisfied the

early stopping condition in DR. The segmentation network ff for all algorithms

was pre-trained with the GTA dataset, a synthetic dataset, and DT. Finally, the

segmentation model’s performance was measured on the CamVid test set using

the Intersection over Union (IoU) score.

4.5.4 Hardware and Software Configurations

The experiments were conducted using a single NVIDIA RTX A5000 GPU with

24 GB of VRAM. The following software configurations were used:

• Operating System: Ubuntu 20.04 LTS

• Deep Learning Framework: PyTorch

• Reinforcement Learning Libraries: OpenAI Gym, Stable Baselines3

Training the active learning agents required approximately 18 hours for 5 runs,

while training the segmentation models to evaluate the active learning algorithms

took a total of 8 hours for 5 runs at each of the 6 budgets.

74

4.6 Results

This section details the experimental outcomes of our reinforced active learning

framework for semantic segmentation. We evaluate the performance of different

active learning techniques, examine the enhancements introduced by our proposed

method, and explore the implications of these results.

In Figures 4.3 and 4.4,We evaluate various methods across increasing budgets

of labeled 128x128 pixel regions. The x-axis, marked as ”Budget,” indicates

the additional number of regions in thousands and the percentage of utilized

unlabeled data. The plots show the means and standard deviations over 5 runs.

The segmentation network used in these methods has been pre-trained with the

GTA dataset and portions of their respective target datasets. The dashed line

indicates 96% of the best performance (Intersection Over Union) achieved by the

segmentation network trained with all available labels. Since the performance of

the preceding work exceeds that of other baseline models, we will use it as the

new baseline model for comparisons with other methods.

Figure 4.3: Comparisons of various active learning methods.

75

Figure 4.4: Compare PRIO method with varying replay buffer sizes.

In detail, Figure 4.3 illustrates the performance of various methods, includ-

ing Prioritized Experience Replay (PRIO) [39], the reproduced DQN baseline

(BASELINE) [96], Dueling Deep Q-network (MDQN) [11], Emphasizing Recent

Experiences (ERE) [97], and Noisy Network (NOISY) [95], Adaptive Epsilon

Greedy (ESP) [98], Soft Update for Target Network [17]. It’s significant to high-

light that at 1.5k regions, the performance of some methods surpasses 96% of the

maximum achieved with fully supervised training (with access to all labels). In

these experiments, the NOISY model performs the worst, indicating that acquir-

ing new labels does not provide substantial additional information to the model.

PRIO and SOFT outperform other methods, including the baseline, across all

budget scenarios except for the 1K case for the PRIO method. They achieve this

without overfitting the training model, while the other methods produce similar

results. This suggests that effective active learning, through selective labeling

or incorporating additional information, can help the segmentation model avoid

local minima and achieve better performance.

In Figure 4.4, a comparison is made between the baseline and PRIOR methods,

76

considering different replay buffer pool sizes: 600, 30,000, 60,000, and 120,000.

Performance remains relatively stable for both 60,000 and 120,000. Interestingly,

PRIOR, despite having a smaller replay buffer (around 600 compared to 30,000,

60,000, and 120,000), outperforms the others by a significant margin.

As the experimental results show, implementing a soft target network update

can enhance performance. This improvement is because soft updates allow the

target network to track changes in the main network more smoothly, resulting

in a more stable learning process. This stability helps the algorithm converge to

a better policy, leading to improved performance with better results and more

reliable Q-value estimations. The Dueling DQN’s improvement arises from its

ability to separately estimate the value and advantage functions of Q-values.

By decoupling these functions, it can better assess the significance of actions in

various states, enhancing learning and generalization. This architecture enables

a more effective understanding of state value and action advantage, leading to

better action selection and performance. Additionally, this separation minimizes

variance in learned action-values, stabilizing learning and ensuring more accurate

estimations, thus addressing issues of Q-value overestimation or underestimation.

Prioritized Experience Replay (PER) significantly enhances reinforcement

learning tasks by improving sample efficiency, stabilizing the learning process,

and promoting effective exploration of the state space. By prioritizing experi-

ences based on higher probabilities for transitions with greater TD errors, PER

accelerates convergence and fosters efficient learning. Emphasizing rare events

helps the agent handle critical scenarios adeptly. The stability of the learning

77

process is maintained through effective policy updates, leading to swift learning

and improved convergence. Thorough exploration of the state space, facilitated

by focusing on high learning potential transitions, enhances the agent’s decision-

making and overall performance. PER’s use reduces bias from uniform sampling

and mitigates high variance issues, leading to more accurate and stable updates

of Q-values, thereby enhancing the learning process and performance in various

reinforcement learning tasks.

Our experiments revealed that certain techniques, such as incorporating Noisy

Networks designed to foster diverse segmentation strategies, adversely affected

segmentation performance by introducing instability in the learning process and

decreasing accuracy in specific scenarios. In complex environments with sparse

rewards or high-dimensional state spaces, challenges arise where adjusting the

exploration rate alone may not ensure effective exploration. Inadequate tuning

of the exploration rate adaptation and neglect of specific learning dynamics can

disrupt the balance between exploration and exploitation, even with adaptive

epsilon-greedy methods, posing challenges in achieving the optimal exploration-

exploitation equilibrium, particularly in certain environments. Moreover, overem-

phasizing recent experiences in a Deep Q-Network (DQN) can hinder reinforcement

learning performance by reducing sample efficiency, impeding generalization, in-

troducing increased variance, and destabilizing the learning process, thereby

compromising the agent’s convergence to an optimal policy. This emphasis also

limits exploration across the state space, restricting the discovery of critical,

infrequently encountered states. Thus, to enhance performance, it is essential to

78

strike a balance between prioritizing recent experiences and maintaining a diverse

set of samples that facilitate effective learning and exploration across the entire

state space.

4.7 Summary

This chapter advances the field of semantic segmentation by showcasing the

benefits of integrating active learning with reinforcement learning. By tackling

issues related to dataset imbalances and annotation efficiency, the proposed

framework provides a practical solution for enhancing semantic segmentation

tasks across various domains. The insights from this research contribute to the

development of more sophisticated and precise segmentation algorithms, thereby

advancing the broader fields of computer vision and machine learning.

In conclusion, reinforced active learning emerges as a promising approach to

addressing significant challenges in semantic segmentation. This research not only

offers a robust framework for current applications but also lays the groundwork

for future innovations in the field.

79

Chapter 5

Securing Image Classifiers Against Model

Extraction Attacks

5.1 Introduction

In recent years, machine learning has made substantial strides, particularly in

image classification. However, as these technologies advance, so do the threats from

adversarial attacks. One significant threat is model extraction attacks, where an

adversary attempts to replicate a machine learning model’s functionality without

accessing its internal parameters or training data. These attacks pose serious

risks, including intellectual property theft and potential subsequent adversarial

attacks.

This chapter examines the efficacy of various learning techniques in conducting

model extraction attacks on image classifiers. The primary focus is on evaluating

how Deep Q-network (DQN) extensions can enhance the performance of surrogate

models, which are replicas of the original models created through these attacks.

Additionally, the chapter explores synthetic data generation techniques and their

role in facilitating efficient model extraction.

We start with a comprehensive overview of the background and related work

in the field, highlighting progress and existing challenges. The methodology

section then details the experimental setup, including the DQN extensions and

synthetic data generation methods used in our study. Following this, we present

80

the results of our experiments, comparing the performance of different techniques

and analyzing the implications of our findings.

By the end of this chapter, we aim to provide valuable insights into the

vulnerabilities of image classification models and the effectiveness of various model

extraction strategies. This knowledge is crucial for developing robust defense

mechanisms to protect machine learning models from such adversarial threats.

5.2 Background and related works

The rise of adversarial attacks targeting image classification models has become

a major issue, exposing vulnerabilities that can be exploited to deceive these

models into making incorrect predictions or classifications [101, 102]. Among

the various categories of adversarial attacks, the black-box adversarial attack

problem is particularly significant due to its practical relevance and the realistic

constraints it imposes on attackers. Unlike white-box attacks, which assume

attackers have complete information about the architecture and parameters of

the model, black-box attacks operate under the assumption that the attacker

has little to no understanding of the target model’s internal workings [103]. This

scenario is more common in real-world settings, where attackers usually do not

have direct access to proprietary or confidential models.

5.2.1 Overview of Model Extraction Attacks

Model extraction attacks involve an adversary attempting to create a surrogate

model that mimics the behavior of a target model by systematically querying

81

it. These attacks can be categorized into black-box and white-box attacks. In

black-box attacks, the attacker only has access to the input-output pairs of the

model, whereas in white-box attacks, the attacker has full knowledge of the model’s

architecture and parameters. Black-box attacks are particularly concerning due

to their practicality in real-world scenarios, where attackers often do not have

access to the internal workings of the models they are targeting.

A key challenge in executing successful model extraction attacks lies in the

strategic utilization of inquiries to the target model. Each query provides feedback

regarding the model’s output for a given input, but excessive querying can

not only raise suspicion but also become impractical due to rate limits or cost

considerations [104]. Prior work in this domain has explored various strategies

to generate adversarial examples under these constraints, yet there remains a

significant gap in effectively utilizing query feedback [105]. This inefficiency in

feedback utilization leads to suboptimal attack strategies that require a large

number of queries, thereby increasing the risk of detection and reducing the

feasibility of the attack [106]. By systematically querying the model and analyzing

its responses, attackers can infer valuable information, allowing them to construct

a surrogate model that closely resembles the original [107, 108].

Figure 5.1 provides a standard example of an adversarial model extraction

attack, illustrating how the surrogate model is refined using feedback from queries

to more accurately mirror the victim model.

82

Figure 5.1: Black-box adversarial model extraction attack.

5.2.2 Previous Studies on Adversarial Attacks and Machine Learning

Security

The field of adversarial machine learning has seen extensive research aimed

at understanding and countering various types of attacks. Han et al. [109]

provide a comprehensive survey on adversarial attacks across different domains,

highlighting the vulnerabilities of machine learning models to these attacks and

the importance of developing robust defense strategies. Other studies, such as

those by Pitropakis et al. [110], have classified and reviewed different types of

adversarial attacks, emphasizing the need to understand these threats to develop

effective countermeasures.

Recent research has also focused on specific adversarial attack methodologies.

For instance, Dong et al. [101] explored momentum-based iterative algorithms

to enhance the effectiveness of adversarial attacks. Similarly, Fang et al. [111]

demonstrated the practical viability of black-box attacks on MNIST classification

models, highlighting the ease with which these attacks can be conducted in

practice.

83

5.2.3 Reinforcement Learning and Active Learning for Model Extrac-

tion

Reinforcement learning (RL) and active learning (AL) have emerged as powerful

tools in the context of model extraction attacks. RL, particularly through Deep

Q-networks (DQN) and its extensions, has shown promise in optimizing the sample

selection process during model extraction. By leveraging RL techniques, attackers

can strategically choose the most informative samples to query the target model,

thereby enhancing the efficiency of the attack.

Active learning, on the other hand, focuses on selecting the most informative

data points to train models, which is especially useful in scenarios with limited

query budgets. Combining RL and AL techniques allows for a more refined and

adaptive approach to model extraction, as demonstrated by recent studies such

as those by Zhang et al. [112] and Chen et al. [113].

Significant progress has been made in understanding and developing techniques

for model extraction attacks. The use of DQN extensions, such as Double DQN [93],

Dueling DQN [11], Noisy Network [95], and Prioritized Experience Replay (PER)

[39], has been explored to enhance the efficiency of these attacks. Additionally,

synthetic data generation techniques, including Jacobian-based methods [114],

Linf-projected Gradient Descent (LinfPGD) [115], and Fast Gradient Sign Method

(FGSM) [116], have been investigated for their potential to improve surrogate

model training.

Despite these advancements, challenges remain in fully understanding the

84

vulnerabilities of machine learning models and developing robust defenses. This

chapter builds on the existing body of research by providing a comprehensive

evaluation of DQN extensions and synthetic data generation techniques in the

context of model extraction attacks. It offers new insights and potential directions

for future research.

5.3 Methods

5.3.1 Problem Definition

The main challenge in model extraction attacks is creating a surrogate model

that can closely replicate the performance of a sophisticated victim online image

classification model using a reduced dataset. This issue arises due to limited

access to the victim model or API and the constraints of computational costs,

data privacy, or proprietary restrictions that limit the amount of data available for

training. The task involves selecting an optimal subset of images that maintains

the diversity and complexity of the larger dataset to effectively train the surrogate

model.

The surrogate model’s goal is to minimize loss measures, such as mean squared

error (MSE), between the surrogate and victim models’ predictions while achiev-

ing similar accuracy, precision, and recall as the victim model. Our research

investigates various methods for image selection, data augmentation, and model

training that maximize the potential of limited data, thereby reducing the reliance

on large datasets without compromising performance. Our aim is to provide

85

meaningful insights into the effectiveness of sample selection and data-free tactics

in conducting model extraction attacks.

5.3.2 Active Learning with Reinforcement Learning for Model Extrac-

tion Attack

Our goal is to select an optimal subset of images that captures the full diversity

and complexity of a larger dataset, enabling effective training of the surrogate

model. This task can be framed as an active learning problem. We approach this

challenge using a Markov decision process model, inspired by studies such as Sener

et al. (2017) [117], Casanova et al. (2020) [96], and Gao et al. (2022) [118]. The

policy network π, acting as an agent in reinforcement learning, is represented by a

deep Q-network [6]. This method allows the model to develop selection strategies

by leveraging outputs from both the victim and surrogate models, guided by

data-driven insights. Our approach differs from existing methods in several key

areas: the problem we address, our definitions of states, actions, and rewards, and

the specific reinforcement learning algorithm used to determine the best policy.

We aim to enhance the performance of surrogate models, S, parameterized

by θ, using a smaller number of images from a large dataset. This process is

iteratively conducted until a specified threshold is met. At each iteration, t, a

policy network π, parameterized by ϕ, selects a single image from a randomly

sampled subset U for training the surrogate model. The selected images are also

processed by the victim model to acquire its outputs. To assess performance, we

employ a straightforward metric: the percentage of images from the total dataset

86

that are correctly classified.

In our methodology, we start by training the victim model using the entire

training dataset to establish it as the target. We then divide the training data

into three distinct segments. A specific portion, designated as Dt, is used for

pre-training the surrogate models. To mitigate overestimation issues during the

policy network’s training phase, we initialize ten different surrogate models, all

sharing the same architecture. For training the policy network π, another subset,

Dr, is employed to facilitate the active learning process over multiple episodes.

This process focuses on refining an acquisition function designed to enhance the

surrogate model’s performance using a carefully selected set of K images. We

utilize a separate data partition, De, to evaluate the policy network, where the

surrogate models are trained up to the defined budget B. The total query budget

is K ∗B, but for simplicity, we refer to it as B.

Figure 5.2 describes the main workflow of training for the Policy Network

and surrogate models. We split the MNIST dataset into three parts. In Phase

1, we use the split Dt to pre-train the surrogate models. In Phase 2, U images

are sampled uniformly from the split Dr. The concatenated U images feature,

computed using a CNN feature extractor, serves as the state representation. The

policy π selects K images and provides them to the surrogate and victim models.

The reward is obtained from the prediction MSE of the surrogate and victim

models. After training the policy π, we fix it and continue training the surrogate

model in Phase 3. Phases 2 and 3 are iteratively trained until the final budget B

is achieved.

87

Figure 5.2: The main workflow of training for Policy π and surrogate models.

The MDP framework is defined by a sequence of transitions (st, at, rt+1, st+1).

Within this framework, for any given state st ∈ S, the agent can choose an action

at ∈ A, which involves selecting specific images from the unlabeled set U . Each

action is associated with the selection of a particular image. The agent then

receives a reward rt+1, calculated based on the feedback from both the surrogate

and victim models. It is important to note that the definitions of states and

actions are not contingent on the specific architecture of the surrogate models.

Our goal is to develop a policy that enhances sample selection to improve the

accuracy of the surrogate model. To achieve this, we utilize a DQN architecture,

employing transitions from an experience replay memory ε to train the policy π.

We begin by assigning a set of initial weights θ0 to the ten surrogate models,

which have been trained using the dataset Dt.The following steps are performed

during each iteration t:

1. A subset U is randomly sampled from Dr.

2. The state st is computed from the feature extractor using U .

88

3. The policy agent chooses action at using an ϵ-greedy policy, with each

action corresponding to the selection of one image for training.

4. The surrogate models and the victim model generate output based on the

selected image.

5. The agent receives the reward rt+1, calculated as the performance differential

between the surrogate model and the victim models.

6. The surrogate models are trained for one iteration on the recently selected

images.

5.3.3 DQN

The desired agent is designed to follow an optimal policy, associating each state

with an action that maximizes total future rewards. We conduct our DQN

training using a divided dataset Dr. The agent observes the current state U of

the environment. Using a neural network, the agent selects actions (images) based

on the current Q-values, which estimate the quality of a state-action combination.

After taking an action, the agent receives a reward and transitions to a new

state. The Q-values are updated based on the reward received and the maximum

predicted Q-values for the new state, using the Bellman equation. To stabilize

learning, DQN uses a replay buffer where past experience tuples (state, action,

reward, next state) are stored. The agent then samples from this buffer to break

the correlation between sequential observations.

The development of Deep Q-Networks (DQN) has led to numerous important

advancements, each aimed at addressing specific shortcomings and enhancing

89

the overall effectiveness of the algorithm. These advancements have significantly

improved the functionality of the target DQN framework, enabling more effective

and resilient learning in complex settings. In this segment, we introduce the en-

hancements to the DQN model that were evaluated. In the actual implementation,

we replace the DQN model with its extensions solely to evaluate and compare

their performance. We also test different combinations of these extensions to

determine which synergies are most effective, providing insights into how these

extensions interact.

Deep Q-networks (DQN) are a reinforcement learning technique that optimizes

decision-making processes by approximating the optimal action-value function.

In the context of model extraction, DQNs can be employed to select the most

informative samples for querying the target model. We explore several extensions

to the standard DQN to enhance its performance:

• Double DQN (DDQN): DDQN mitigates the overestimation bias present

in standard DQN by decoupling the action selection and action evaluation

processes. This is accomplished by employing two separate networks: one

to select the best action and another to evaluate the value of that action.

• Dueling DQN: This extension separates the estimation of state value and

advantage functions, enabling the network to discern valuable states from

advantageous actions, thereby enhancing the stability and performance of

the learning process.

• Noisy Network: Noisy networks introduce randomness into the network’s

90

weights, promoting more effective exploration during training by encouraging

the network to dynamically try different actions.

• Soft Update: This technique incrementally updates the target network’s

weights using a small parameter τ , which gradually blends the weights of

the main network. This approach ensures a more stable training process

compared to hard updates.

• Prioritized Experience Replay (PER) enhances learning efficiency by prior-

itizing experiences with higher temporal difference (TD) errors, ensuring

that more informative samples are replayed more frequently during training.

• Emphasizing Recent Experience (ERE) prioritizes recent experiences by

gradually increasing the sampling frequency of new data points, allowing

the model to adapt more effectively to recent changes.

5.3.4 Synthetic Data Generation Techniques

In training surrogate models using synthetic generation techniques, our workflow

consists of two main phases to utilize the image dataset effectively. In Phase

1, a portion of the dataset, denoted as Dt, is used to pre-train the surrogate

models. This initial training phase helps establish a foundational capability for

the surrogate models to approximate the behavior of the target or victim model.

In Phase 2, we uniformly sample images from a different dataset split, Dr, to start

the synthetic data generation process. The pre-trained surrogate model generates

synthetic image data by perturbing the original images to create modified versions.

91

These altered images are then inputted into the victim model, which processes

them and provides predictions based on its learned parameters. The combination

of the perturbed images and the victim model’s predictions is used to further train

the surrogate models. This methodology ensures that the surrogate models are

trained on both real and synthetically generated adversarial examples, fine-tuning

them to closely mimic the victim model’s behavior. In Figure 5.3 demonstrates

the overall workflow. We split the MNIST dataset into two parts. In Phase

1, split Dt is used to pre-train the surrogate models. In Phase 2, images are

uniformly sampled from split Dr, synthetic image data is generated using the

surrogate model, and the altered images are submitted to the victim model to

obtain predictions. The perturbed images and their associated predictions are

then used to further train the surrogate models.

Figure 5.3: The main workflow of training surrogate models using

synthetic generation techniques.

Jacobian-Based method: The Jacobian-based technique is a gradient-based

strategy that creates synthetic samples for model extraction by utilizing the target

model’s Jacobian matrix [114]. The sensitivity of the model’s outputs to its

inputs is captured by the Jacobian matrix, which provides valuable information

92

for generating informative examples. For a target model f and an input sample x

are used to calculate the Jacobian matrix J(x).

J(x) =
∂f(x)

∂x

The partial derivatives of the model’s outputs with respect to each input

feature are contained in the Jacobian matrix J(x), which essentially captures the

local behavior of the algorithm around the input value x.

We can apply a perturbation onto the data x in the way of the Jacobian matrix

to produce synthetic samples. In particular, a synthetic sample x′ can be acquired

as follows:

x′ = x+ ϵ · sign(J(x))

where the step size that regulates the perturbation’s magnitude is ϵ, and sign(·)

is the sign function applied element-wise to the Jacobian matrix.

The underlying idea of this approach is that perturbing the input sample

in the direction indicated by the Jacobian matrix tends to generate synthetic

samples that are highly sensitive to the target model’s outputs. These synthetic

samples can then be utilized to train a replica model, potentially enhancing its

ability to approximate the target model with improved performance and accuracy.

To optimize the process of generating synthetic samples, various strategies can

be applied, such as experimenting with different step sizes, merging multiple

Jacobian-based samples, or incorporating additional constraints or regularization

techniques.

It is important to note that the Jacobian-based method depends on having

93

access to the target model’s gradients, which may not always be feasible. In

such scenarios, alternative gradient estimation techniques or other synthetic data

generation methods might be required.

The Fast Gradient Sign Method: The Fast Gradient Sign Method (FGSM)

[116] is a gradient-based approach for creating adversarial examples, which can

also be adapted for generating synthetic data in model extraction attacks. FGSM

is both efficient and computationally inexpensive, producing artificial samples by

utilizing the target model’s gradients.

Given a target model f , an input sample x, and a loss function L(·, ·), By

perturbing x in the orientation of the gradient of the loss function in relation to

the input, the FGSM creates a synthetic sample x′:

x′ = x+ ϵ · sign(∇xL(f(x), y))

where y is the ground truth label or target output for x. The sign function applied

element-wise to the gradient is sign(·), and a tiny variable ϵ regulates the size of

the perturbation.

The core idea of FGSM is to move in the direction of the gradient of the loss

function with respect to the input, creating a synthetic sample x′ that maximizes

the loss function L(f(x′), y). This perturbation aims to produce samples that are

informative and challenging for the target model, potentially improving model

extraction performance when used to train a replica model. FGSM is efficient

as it requires only a single gradient computation per input sample. However, it

may be vulnerable to gradient masking or obfuscation techniques employed by

94

the victim model as a defense against model extraction attacks. To enhance the

effectiveness of FGSM for model extraction, various extensions and modifications

can be explored, such as iterative methods (e.g., Projected Gradient Descent),

incorporating additional constraints or regularization techniques, or combining

FGSM with other synthetic data generation methods.

Linf-Projected Gradient Descent: An iterative gradient-based method for

generating adversarial examples is the Linf-projected Gradient Descent (LinfPGD)

[115]. This technique can be adapted to create synthetic data for model extraction

attacks. LinfPGD is an extension of the Fast Gradient Sign Method (FGSM)

and aims to produce more robust and effective synthetic samples. Given a victim

model f , an input sample x, a loss function L(·, ·), and a maximum perturbation

budget ϵ, Under the L∞ norm constraint, LinfPGD iteratively updates x in the

path of the direction of the gradient of the loss function to produce a synthetic

sample x′:

x′t+ 1 = Πϵ (x′t + α · sign(∇xL(f(x′t), y)))

where y is the ground truth label or target output for x, α is the step size, sign(·) is

the sign function applied element-wise to the gradient, and Πϵ(·) is the projection

operator that projects the disturbance to the L∞ sphere with radius ϵ.

The iterative nature of LinfPGD allows for more sophisticated and effective

synthetic sample generation compared to FGSM. By frequently updating the

synthetic sample in the direction of the loss function gradient, LinfPGD can explore

a larger region of the input space, creating samples that are more informative

and challenging for the target model. The L∞ norm constraint ensures that the

95

synthetic samples remain closely bounded to the original input sample, preserving

the semantic and structural characteristics of the input data.

LinfPGD offers several advantages over FGSM, including improved robustness

to gradient masking or obfuscation techniques, and the ability to generate more

diverse and informative synthetic samples. However, it is computationally more

expensive than FGSM due to its iterative nature. Various modifications and

extensions to LinfPGD can be explored, such as adjusting the step size, incorpo-

rating momentum or restart strategies, or combining it with other synthetic data

generation techniques to further enhance its effectiveness for model extraction.

Data-Free Model Extraction: A technique called ”Data-Free Model Extrac-

tion” [119] aims to create a functional duplicate of a target model without access

to its original training data. This method raises significant privacy concerns, as it

allows an adversary to replicate a model’s functionality solely through querying,

without needing any proprietary data from the model owner.

The data-free model extraction process typically involves the following steps:

In the absence of training data, the adversary generates a set of synthetic input

samples to query the victim model. These artificial samples can be created using

gradient-based approaches, Generative Adversarial Networks (GANs), or other

data synthesis techniques. The synthetic input samples are used to query the

victim model, and the corresponding output predictions or labels are collected.

The gathered input-output pairs from the target model queries replace the original

training data. These query responses are used to train a replica model, effectively

extracting the functionality of the target model.

96

The primary challenge in data-free model extraction is generating synthetic

input samples that can effectively capture the target model’s behavior across

a variety of inputs. Techniques such as gradient-based methods or GANs can

be employed to create synthetic samples that provide useful information and

accurately represent the decision boundaries of the target model.

5.4 Experiments

This section begins by detailing the objectives that guide our experiments. It then

provides a summary of the datasets used to evaluate our methodology, describes

the experimental setup, and presents the comparative analysis. We use the MNIST

dataset to evaluate the algorithm, with the results presented here. Each model

was trained using a single NVIDIA RTX A5000 GPU with 24 GB of VRAM.

5.4.1 Experiment Objectives

To Evaluate the Effectiveness of DQN Extensions for Model Extraction Attacks:

The objective is to determine the impact of various Deep Q-network (DQN)

extensions—such as Double DQN, Dueling DQN, Noisy Networks, and Prioritized

Experience Replay (PER)—on the efficiency of surrogate models in model extrac-

tion attacks. This involves evaluating the extensions’ ability to select informative

samples that optimize adversarial benefits under limited query budgets.

To Assess Synthetic Data Generation Techniques: This study aims to evaluate

the performance of various synthetic data generation methods, including the

Jacobian-based method, Linf-projected Gradient Descent (LinfPGD), and Fast

97

Gradient Sign Method (FGSM), in training surrogate models for model extraction.

The focus is on these methods’ ability to enhance the performance of adversary

models. Additionally, the study explores the feasibility and effectiveness of

data-free model extraction attacks, which attempt to replicate a target model’s

functionality without access to the original training data. This involves assessing

the performance of such attacks in constrained query environments.

5.4.2 Experimental Setup

MNIST: In the fields of computer vision and machine learning, the MNIST

dataset (Modified National Institute of Standards and Technology dataset) [120]

is a well-known benchmark for image processing systems and algorithms. It

consists of 70,000 28 × 28 pixel grayscale images of handwritten digits from 0 to

9, with 10,000 images reserved for testing and 60,000 images used for training.

For our purposes, we divided the training set using uniform sampling into

three subsets: 1,000 images to create Dt (used to obtain the pre-trained surrogate

model), 21,000 images to create Dr, and the remaining images to create De. De is

used to continue training the surrogate model while evaluating the fixed trained

policy. The performance of the surrogate model is then evaluated using the test

set.

Implementation Details: From the training set Dr, we sample a subset of

U = 20 images to construct the state representation. A Convolutional Neural

Network (CNN) feature extractor is used to process these images, and the extracted

features are concatenated to form a state. The policy network’s action corresponds

98

to the index number of the chosen image within U .

The split Dr is used to optimize the hyper-parameters, which are selected

based on the best configuration for our technique as well as for baseline methods.

Additionally, Dr is used to create the rewards for the DQN. The reward is

determined by the Mean Squared Error (MSE) difference between the victim

model’s and the surrogate model’s predictions, and it is always negative. To

address the overestimation problem within the policy network, we employ 10

surrogate models and calculate the reward by taking the mean of the 10 MSE

values.

The victim model chosen for our study is ExquisiteNetV2 (2021) [121], which

achieved an accuracy of 99.71% on the MNIST dataset.

In synthetic data generation attacks, we continue to use images from Dr.

An image is randomly selected for perturbation using the previously mentioned

techniques. This perturbed image is then fed into the victim model to produce

a prediction. The surrogate model is subsequently trained using pairs of the

perturbed image and its corresponding prediction.

For the data-free model extraction method, we used randomly generated noise

images as inputs to train the surrogate model, following a similar approach to

the other techniques. Additionally, we employed the entropy method, a purely

active learning approach without reinforcement learning, to serve as a benchmark

against the synthetic data generation techniques.

Evaluation: The evaluation process consists of two stages: assessing the per-

formance of the policy network and evaluating the surrogate model’s effectiveness

99

using our approach. With a set budget B, the policy network π is trained using

Dr to prioritize selecting images that will enhance performance in a sparse data

environment. We test the learned acquisition function and the synthetic data

generation techniques on De, training the surrogate models for various budgets

until the budget is exhausted.

Once the budget is reached, we fix the policy network and proceed to evaluate

the surrogate model with the test data. The objective of our work is to demonstrate

that through the application of the described method, the surrogate model can

produce diverse outcomes. Our goal is to compare this method with others to

identify the most efficient approach, one that requires fewer images to achieve

comparable performance. Essentially, this involves training the surrogate model

with the same number of images while achieving superior results compared to

alternative methods.

5.4.3 Results

Figure 5.4 illustrates the performance of various DQN models, including Double

DQN (DDQN), Noisy Network, Dueling DQN, Soft Update, Emphasizing Recent

Experiences (ERE), and Prioritized Experience Replay (PER). Each line represents

a different DQN model, with the x-axis indicating training surrogate model budgets

from 1,000 to 10,000 in intervals of 1,000, and the y-axis displaying the model’s

accuracy. The ”Budget” labeled x-axis shows the number of queries used to

train the surrogate model. We set specific policies and trained the surrogate

models accordingly. Following this, we evaluated the surrogate models using a

100

test dataset.

Given the significant variability inherent to reinforcement learning (RL) al-

gorithms, we conducted 10 trials to average the accuracy across various trained

policy models. The policy models were trained with K = 4 and a budget of 3,000.

Since the DQN model was initially trained using a budget of 3,000, the total

budget range represented in this figure spans from 3,000 to 13,000.

We also integrated all DQN extensions to identify the configuration that

achieves optimal performance. The findings reveal that this combination of

methods outperforms each method when used individually. Specifically, among

the standalone applications, PER demonstrated the highest performance.

Figure 5.4: Performance of different DQN policies on surrogate models.

We also investigate how an increase in budget for training policy models affects

the performance of our method. Figure 5.5 presents the results of varying the

budget for different trained policy performances. The x-axis represents the training

budget for the surrogate model, ranging from 100 to 1,000 in increments of 100,

while the y-axis shows the model’s accuracy. The policy variants evaluated include

101

DoubleDQN (DDQN), Noisy Network, Dueling DQN, Soft Update, Emphasizing

Recent Experiences (ERE), and Prioritized Experience Replay (PER).

It is important to note that direct comparison across the three subfigures is

not appropriate since the query budgets used for training the DQN models differ

in each case. The total budgets are 4,000 for the first subplot, 5,000 for the second,

and 6,000 for the third. Due to limited accessibility to the victim model, we focus

on evaluating the surrogate model with a constrained budget of 1,000 queries.

This evaluation budget includes the queries used during the training of the policy

models, so the total query budget will be 1,000 plus additional allocations for the

different policy model variants.

Across all models, Prioritized Experience Replay (PER) generally yields higher

accuracy compared to other methods, with Double DQN also performing well. We

evaluated the performance with various sample sizes of selected images, specifically

for K = 1 and K = 3. However, these configurations did not outperform K = 4.

Therefore, we present our best performance results achieved with a sample size of

K = 4.

For synthetic data generation methods, the experiments aimed to evaluate

the effectiveness of various techniques in producing samples that enhance model

performance in model extraction attacks. Specifically, we examined the Jacobian-

based method, Linf-projected Gradient Descent (LinfPGD), Fast Gradient Sign

Method (FGSM), Entropy, and a data-free model extraction approach. To ensure

robust and fair analysis, the experiment was repeated 10 times, and the mean of

the results was calculated to account for variability. We also included one DQN

102

method for comparison with the synthetic data generation methods.

Figure 5.6 illustrates the performance of the Jacobian-based method, Linf-

projected Gradient Descent (LinfPGD), Fast Gradient Sign Method (FGSM),

Entropy, and the data-free model extraction method. The x-axis indicates training

budgets from 1,000 to 10,000 in intervals of 1,000, while the y-axis displays the

model’s accuracy. For comparison, we also included the PER method trained

using the DQN model. Since a budget of 3,000 was used to train the DQN model,

its performance is plotted from a budget of 3,000 up to 10,000.

Among these techniques, PER emerged as the superior method, consistently

outperforming the others in terms of achieving higher accuracy in the model

extraction process. Within the synthetic data generation methods, LinfPGD

outperformed the other methods. Conversely, the data-free method demonstrated

significantly lower performance, suggesting that the allocated query budget may

have been insufficient for generating realistic and useful images for training

purposes. The effectiveness of synthetic data generation in model extraction

attacks appears to be highly dependent on the ability to produce quality training

data, a criterion where the data-free method fell short under the constraints of a

limited query budget.

103

Figure 5.5: Performance of various DQN policy variants on surrogate

models as the training budget increases.

104

Figure 5.6: Performance of different synthetic data generation tech-

niques with PER method on surrogate models.

5.4.4 Ablation Studies

We have demonstrated that several enhancements to DQN can achieve better

performance. Subsequently, we conducted additional experiments to test combi-

nations of these extensions and assess how the removal of each DQN extension

affects model extraction performance. To better understand the influence of each

component on the DQN agent, we performed ablation studies. In each study, we

systematically removed one component from the complete set of extensions. Note

that ERE is implemented based on PER, so when PER is removed in our ablation

study, ERE is also omitted.

Figure 5.7 illustrates the comparison of the accuracy scores of the full com-

bination of extensions to five ablated variants. The x-axis indicates training

budgets from 100 to 1,000 in intervals of 100, while the y-axis displays the model’s

accuracy. Given that a budget of 3,000 was used to train the DQN model, the

105

total budget is 4,000.

Figure 5.7: Performance of different ablation methods trained on surrogate models.

The findings indicate that Prioritized Experience Replay (PER) was the most

critical element among the DQN enhancements, as its removal significantly reduced

performance. The soft update and double DQN were next in importance, as

shown by the results of other ablations. Notably, in the initial stages of learning,

specifically during the first 200 queries, there was a marked difference between the

ablations and the full agent. Overall, removing the dueling network and Noisy net

from the combined setup did not result in a significant performance change. Both

the dueling DQN and Noisy net tend to introduce instability, complicating the

maintenance of a stable learning trajectory and convergence to an optimal policy.

5.4.5 Generalizability

In addition, we conducted preliminary experiments on the CIFAR-100 dataset to

demonstrate the robustness of our model. The CIFAR-100 dataset is a widely used

benchmark in machine learning, especially for image recognition tasks. Developed

106

by the Canadian Institute for Advanced Research (CIFAR) [122], this dataset

contains 60,000 32 × 32 color images categorized into 100 classes, with each class

comprising 600 images.

We divided the training set using uniform sampling into three subsets: 10,000

images to create Dt (used to obtain the pre-trained surrogate model), 21,000

images to create Dr, and the remaining images to create De. This setup makes the

CIFAR-100 dataset particularly challenging and useful for developing and testing

advanced image classification algorithms that require fine-grained recognition

capabilities.

All the training and evaluation processes followed the previous methods. To

simplify, we conducted five trials to average the accuracy across the policy models.

The victim model selected for our study is EffNet-L2 (2020) [123], which achieved

an accuracy of 96.08

Figure 5.8 compares our combination method with five different DQN exten-

sions. The x-axis indicates training budgets from 2,000 to 20,000 in intervals

of 2,000, and the y-axis displays the model’s accuracy. Given that a budget of

3,000 was utilized to train the DQN model, the total budget ranges from 3,000 to

23,000. The policy models were trained with K = 4 and a budget of 3,000. We

doubled the queries for better results, so the total budget range represented in

this figure spans from 3,000 to 23,000.

From experiments with the CIFAR-100 dataset, we observe that larger vic-

tim and surrogate models increase the required runtime. The results show that

performance on the CIFAR-100 dataset is relatively lower. This dataset is in-

107

herently more complex than simpler ones such as MNIST because it comprises

100 classes. This level of granularity necessitates a model with greater capac-

ity to adequately distinguish between the numerous classes. Notably, as model

sizes increase and datasets become more complex, performance tends to decrease,

requiring additional queries to effectively extract the model.

Figure 5.8: Performance of different methods trained on CIFAR100 dataset.

5.5 Discussion

In this section, we analyze the primary results of the tests and discuss the findings

of the experiment. Across all experiments, utilizing DQN models outperformed

synthetic data generation methods. This superiority stems from the fact that

DQN models leverage the original data to train the surrogate model, thereby

incorporating the strongest knowledge derived from the dataset. The experimen-

tal findings indicate that employing the Prioritized Experience Replay (PER)

technique leads to improved performance across all experiments.

This suggests that the PER approach, which likely involves more sophisticated

108

decision-making or optimization processes, is more effective at utilizing the training

budget to enhance model performance. PER ranks experiences according to their

temporal difference (TD) error, or the discrepancy between the expected and

actual rewards. Experiences with higher TD errors are considered more valuable

for learning because they indicate situations where the model’s predictions were

significantly off. By focusing on these experiences, PER enables the model to

learn and adapt more quickly to critical aspects of the environment.

By concentrating on experiences that the model currently finds most chal-

lenging, PER can speed up the learning process, leading to faster convergence

towards optimal policies. This targeted learning approach can be particularly

effective in complex environments where certain states and actions are more

critical to mastering the task. Additionally, PER includes safeguards against the

model focusing too much on a small number of experiences, thereby maintaining

a balance between exploring new knowledge and exploiting known information.

This balance helps achieve not only faster but also more stable learning outcomes.

DDQN ranks second because it addresses the overestimation of action values

that can occur with standard DQN. By decoupling the selection of actions from

their evaluation, DDQN reduces bias in the learning updates, leading to more

stable and reliable learning outcomes. This refinement helps it perform well,

though it lacks the targeted efficiency improvements of PER.

ERE ranks third and enhances learning by focusing on a mix of recent experi-

ences and the entire history, gradually concentrating more on recent interactions.

This approach helps adapt to changes and optimize the model’s performance

109

over time by balancing between exploiting learned knowledge and exploring new

information. However, it may not be as targeted or efficient in prioritizing critical

learning opportunities as PER.

The Noisy Network ranks the lowest among the tested methods. While

it introduces noise into the network parameters to encourage exploration by

diversifying the policy’s behavior, this can also lead to less stable training and

potentially poorer performance when the task requires precise adjustments based

on subtle cues from the environment, as is the case in model extraction attacks.

The randomness introduced might not always align with the most informative

learning paths, unlike the more structured approaches of PER, DDQN, and ERE.

In summary, PER’s potential superiority lies in its ability to prioritize learning

from the most informative experiences. This optimizes the learning process, accel-

erates convergence, and eventually results in enhanced DQN model performance

in model extraction tasks.

One critical aspect of handling CIFAR-100 is the need for a model with greater

capacity. This may involve exploring deeper or more complex neural network

architectures capable of capturing a wide range of features across diverse image

types. Models such as convolutional neural networks (CNNs) that are deeper

and equipped with layers like residual connections might be particularly effective.

These models can learn rich and hierarchical feature representations, making them

more adept at managing the complexities of such a dataset.

The observed low performance on CIFAR-100 could also result from overfitting

to specific features that do not generalize well across the entire dataset. This

110

issue can be mitigated by employing techniques such as data augmentation,

regularization, and dropout, which enhance the model’s ability to generalize

rather than memorize the training data.

Another approach to improving performance is increasing the number of queries

during training. This method, often associated with active learning, involves

iteratively selecting the most informative samples from the dataset to train the

model. By strategically increasing the number of queries, it is possible to refine the

training process to focus on the most beneficial examples, potentially improving

model accuracy and robustness.

In situations where obtaining the original dataset is challenging, the use

of synthetically generated data becomes necessary. Among the synthetic data

generation methods evaluated, the LinfPGD approach demonstrated superior

performance compared to the other techniques. This method iteratively fine-tunes

adversarial examples, carefully exploring the space around the original input within

the constraints of the L∞ norm. This methodical exploration allows it to identify

perturbations that are both subtle and highly effective at deceiving the model,

leading to more potent adversarial examples. Its systematic approach to exploring

adversarial space, coupled with controlled perturbations and iterative optimization,

enables LinfPGD to achieve superior performance in creating synthetic data for

model extraction.

The Jacobian-based method follows LinfPGD in effectiveness. It leverages the

model’s Jacobian matrix to determine the directions in which the input features

should be perturbed to maximize output changes, focusing on the areas where

111

the model is most sensitive. This method effectively uses gradient information

to create informative adversarial examples, which can significantly aid in model

extraction by highlighting the model’s decision boundaries. However, because it

is generally a single-step approach, it might not capture as nuanced a view of the

model’s vulnerabilities as the iterative LinfPGD method, resulting in slightly less

effective synthetic data for training.

FGSM is a more straightforward and faster approach than both LinfPGD and

the Jacobian-based method, as it involves just a single step of perturbation along

the gradient of the loss. This makes FGSM computationally cheaper and quicker

to apply, but it also tends to be less refined. FGSM’s single-step nature means

it might not find the optimal perturbation for the most informative adversarial

examples, especially against well-regularized or complex models. It often leads

to examples that are either too easy for the model to classify correctly or too

aggressive, pushing the examples out of the data distribution and making them

less effective for training robust surrogate models.

Data-free methods rely on randomly generated noise as input images to train

the surrogate model. However, the results are poor because the input-output pairs

consist of random noise images paired with the victim model’s outputs, which

lack meaningful correspondence.

112

5.6 Summary

This chapter examined the efficacy of various learning techniques in model ex-

traction attacks on image classifiers, focusing on enhancing the performance of

surrogate models through the use of Deep Q-network (DQN) extensions and

synthetic data generation techniques. The findings of this study offer significant

insights into the vulnerabilities of machine learning models and the effectiveness

of different strategies for conducting model extraction attacks.

Our comprehensive evaluation demonstrated that DQN extensions, particularly

Prioritized Experience Replay (PER), consistently outperformed other methods

in optimizing sample selection for model extraction. The use of PER led to

higher accuracy and efficiency in surrogate model training by prioritizing more

informative experiences, thus enhancing the overall learning process.

Among synthetic data generation techniques, the Linf-projected Gradient

Descent (LinfPGD) method emerged as the most effective. Its iterative approach

to creating adversarial examples within a controlled perturbation budget proved

highly beneficial for training robust surrogate models. The Jacobian-based meth-

ods and Fast Gradient Sign Method (FGSM) also showed promise, although they

were slightly less effective than LinfPGD.

The data-free model extraction approach, while innovative, demonstrated

significantly lower performance under the constraints of limited query budgets.

This highlights the critical importance of access to meaningful training data,

whether real or synthetically generated, for successful model extraction.

113

The insights gained from this research highlight the critical need to continuously

improve the security of machine learning models against adversarial threats. By

thoroughly evaluating different learning techniques for model extraction attacks,

this study enhances our understanding of machine learning security and guides

the development of more resilient and robust models. As machine learning

technology progresses, it’s essential to stay vigilant and proactive in tackling the

new challenges and threats posed by adversarial attacks.

114

Chapter 6

Conclusion

This dissertation has explored the transformative potential of Deep Reinforcement

Learning (DRL) across three pivotal domains: robotic manipulation, enhanced

semantic segmentation, and the security of image classifiers. By systematically

addressing the challenges inherent in these areas, this research has contributed

significant advancements and practical insights, reinforcing the versatile and

powerful capabilities of DRL.

The exploration into robotic manipulation provided a comprehensive analysis

of various DRL algorithms, including value-based, policy-based, and actor-critic

methods. This detailed examination illuminated the specific strengths and limi-

tations of each method, offering a granular understanding that aids in selecting

appropriate algorithms for different robotic applications. The research also high-

lighted the importance of integrating multiple learning paradigms to enhance

robotic adaptability and performance across diverse tasks. The proposed new

directions for future research in robotic manipulation emphasize the necessity for

such integration to tackle the complex nature of real-world environments where

robots operate.

In the realm of enhanced semantic segmentation, this dissertation devel-

oped a robust framework utilizing reinforced active learning methodologies. The

framework optimizes annotation processes and addresses imbalanced datasets,

integrating advanced techniques such as Dueling Deep Q-Networks (DQN), Prior-

115

itized Experience Replay, Noisy Networks, and Emphasizing Recent Experience.

The comparative experiments demonstrated the robustness and efficiency of the

proposed approach across various domains, particularly excelling in scenarios

with constrained annotation budgets. These findings contribute significantly to

the practical deployment of enhanced semantic segmentation methods, provid-

ing a foundation for more precise and efficient image segmentation in diverse

applications.

Securing image classifiers presented another critical challenge addressed in this

research. The development of surrogate models capable of replicating proprietary

image classification models under stringent constraints was a primary focus. The

introduction of an open-source framework that integrates popular DQN extensions

demonstrated their effectiveness in enhancing attack methodologies against neural

networks. The evaluation of various synthetic data generation techniques identified

best practices and guidelines for practitioners, refining the approach to generating

synthetic data crucial for training robust adversarial models. This research not

only advances the understanding of effective attack strategies in AI security but

also underscores the importance of ethical considerations in conducting model

extraction attacks.

Throughout this research, several overarching themes emerged. The importance

of improving sample efficiency and stability in DRL algorithms was a recurring

focus. Techniques such as Prioritized Experience Replay and soft updates for target

networks proved essential in achieving these improvements. Additionally, the

need for DRL algorithms to generalize effectively across diverse environments and

116

tasks was emphasized. Rigorous experimental evaluations and the development of

robust frameworks have enhanced the applicability of DRL in real-world scenarios,

addressing the challenges of generalization and robustness.

Ethical and practical considerations also played a significant role in this

research. The methodologies developed aimed to minimize interaction with victim

models, mitigating ethical and legal risks associated with model extraction attacks.

The practical implications of this research extend to various fields, including

autonomous vehicles, robotics, and AI security, providing actionable insights that

guide the deployment of DRL technologies in these areas.

Looking forward, this dissertation paves the way for several future research

directions. One significant avenue is the integration of multi-paradigm learning,

exploring the combination of supervised, unsupervised, and reinforcement learning

paradigms to further enhance the adaptability and performance of DRL algorithms.

Expanding evaluation frameworks to include a broader range of datasets and

model architectures will validate the generalizability of the findings and refine the

developed methodologies.

Another critical area for future research is the development of robust defense

mechanisms to counteract the growing sophistication of model extraction attacks.

As these attacks become more advanced, creating and evaluating effective defense

strategies will be crucial in ensuring the security and integrity of machine learning

models. Additionally, leveraging advanced data generation techniques, such as

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs),

can further improve the quality and effectiveness of synthetic data in training

117

adversarial models.

In conclusion, the insights gained from this research underscore the transfor-

mative potential of Deep Reinforcement Learning in driving innovations across

diverse fields. By addressing key challenges and advancing the understanding of

DRL methodologies, this dissertation contributes to the broader goal of developing

intelligent systems capable of tackling complex decision-making tasks. As the

field of artificial intelligence continues to evolve, the findings of this research will

play a crucial role in shaping the future of DRL and its applications, ensuring

that it remains an indispensable tool in the pursuit of technological advancements

and solutions to real-world problems.

118

References

[1] J. Hua, L. Zeng, G. Li, and Z. Ju, Sensors 21, 1278 (2021).

[2] J. Kerbel, Journal of Robotics Research 10, 123 (2024).

[3] P. Lee, T.-B. Chen, H.-Y. Lin, L.-R. Yeh, C.-H. Liu, and Y.-L. Chen,
Bioengineering 11, 548 (2024).

[4] H. Yadavari, V. T. Aghaei, and S. I. GLU, Journal of Robotics and Control
(JRC) 5, 117 (2024).

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Journal of artificial
intelligence research 4, 237 (1996).

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, CoRR abs/1312.5602, 1 (2013).

[7] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, J. Schrittwieser, K. Anderson,
S. York, M. Cant, A. Cain, A. Bolton, S. Gaffney, H. King, D. Hassabis, S.
Legg, and S. Petersen, CoRR abs/1612.03801, 1 (2016).

[8] C. J. Watkins and P. Dayan, Machine learning 8, 279 (1992).

[9] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist
systems (University of Cambridge, Department of Engineering, Cambridge,
UK, 1994), Vol. 37.

[10] H. Van Hasselt, A. Guez, and D. Silver, in Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI Press, Palo Alto, California, USA,
2016), No. 1.

[11] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, in
International Conference on Machine Learning, PMLR (PMLR, New York,
NY, USA, 2016), pp. 1995–2003.

[12] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, in Advances
in Neural Information Processing Systems (MIT Press, Denver, Colorado,
USA, 2000), pp. 1057–1063.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, in International
Conference on Machine Learning, PMLR (PMLR, Lille, France, 2015), pp.
1889–1897.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, CoRR
abs/1707.06347, 1 (2017).

[15] V. R. Konda and J. N. Tsitsiklis, in Advances in Neural Information Pro-
cessing Systems (MIT Press, Denver, Colorado, USA, 2000), pp. 1008–1014.

119

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, in International Conference on Machine Learning,
PMLR (PMLR, New York, NY, USA, 2016), pp. 1928–1937.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, arXiv preprint arXiv:1509.02971 abs/1509.02971,
1 (2015).

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., nature 518,
529 (2015).

[19] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
in International Conference on Machine Learning (PMLR, Beijing, China,
2014), pp. 387–395.

[20] G. E. Uhlenbeck and L. S. Ornstein, Physical review 36, 823 (1930).

[21] S. Fujimoto, H. Hoof, and D. Meger, in International Conference on Machine
Learning, PMLR (PMLR, Stockholm, Sweden, 2018), pp. 1587–1596.

[22] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, et al., arXiv preprint arXiv:1812.05905
abs/1812.05905, 1 (2018).

[23] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, in International Conference
on Machine Learning, PMLR (PMLR, Sydney, Australia, 2017), pp. 1352–
1361.

[24] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, Sensors 23, 3762 (2023).

[25] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, Business &
information systems engineering 6, 239 (2014).

[26] A. Sigov, L. Ratkin, L. A. Ivanov, and L. D. Xu, Information Systems
Frontiers 24, 1 (2022).

[27] M. T. Mason, Annual Review of Control, Robotics, and Autonomous Sys-
tems 1, 1 (2018).

[28] A. Hafiz and M. A. H. Hassaballah, Computer Systems Science and Engi-
neering 45, 123 (2023).

[29] A. M. Hafiz, M. Hassaballah, and A. Binbusayyis, Applied Sciences 13, 723
(2023).

[30] E. F. Morales, R. Murrieta-Cid, I. Becerra, and M. A. Esquivel-Basaldua,
Intelligent Service Robotics 14, 773 (2021).

120

[31] M. Rubagotti, B. Sangiovanni, A. Nurbayeva, G. P. Incremona, A. Ferrara,
and A. Shintemirov, IEEE Control Systems Magazine 43, 44 (2023).

[32] Í. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-
Hidalgo, S. Bøgh, and N. Arana-Arexolaleiba, Robotics and Computer-
Integrated Manufacturing 81, 102517 (2023).

[33] F.-Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J. Zhang,
and L. Yang, IEEE/CAA Journal of Automatica Sinica 3, 113 (2016).

[34] S. Rammohan, S. Yu, B. He, E. Hsiung, E. Rosen, S. Tellex, and G. Konidaris,
arXiv preprint arXiv:2107.13356 abs/2107.13356, 1 (2021).

[35] D. Wang and R. Walters, in International Conference on Learning Repre-
sentations (ICLR, Virtual Conference, 2022).

[36] H. Chen, in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI Press, Palo Alto, California, USA, 2021), No. 18, pp. 15769–15770.

[37] A. Clegg, W. Yu, J. Tan, C. C. Kemp, G. Turk, and C. K. Liu, arXiv
preprint arXiv:1709.07033 abs/1709.07033, 1 (2017).

[38] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, arXiv preprint arXiv:1707.08817
abs/1707.08817, 1 (2017).

[39] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, arXiv preprint
arXiv:1511.05952 abs/1511.05952, 1 (2015).

[40] O. Kilinc, Y. Hu, and G. Montana, arXiv preprint arXiv:1910.07294
abs/1910.07294, 1 (2019).

[41] X. Yang, Z. Ji, J. Wu, and Y.-K. Lai, arXiv preprint arXiv:2105.05985
abs/2105.05985, 1 (2021).

[42] N. Vulin, S. Christen, S. Stevšić, and O. Hilliges, IEEE Robotics and
Automation Letters 6, 2194 (2021).

[43] D. A. Pomerleau, Advances in neural information processing systems 1, 305
(1988).

[44] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei,
arXiv preprint arXiv:1706.03741 abs/1706.03741, 1 (2017).

[45] A. Y. Ng, S. J. Russell, et al., in Proceedings of the International Conference
on Machine Learning (PMLR, Stanford, California, USA, 2000), Vol. 1, pp.
663–670.

[46] J. Ho and S. Ermon, Advances in neural information processing systems 29,
4565 (2016).

121

[47] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel, arXiv preprint
arXiv:1906.05838 abs/1906.05838, 1 (2019).

[48] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, arXiv preprint
arXiv:1707.01495 abs/1707.01495, 1 (2017).

[49] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, in Proceedings of
the 26th Annual International Conference on Machine Learning (PMLR,
Montreal, Quebec, Canada, 2009), pp. 41–48.

[50] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, IEEE transactions on
neural networks and learning systems 31, 3732 (2019).

[51] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus,
arXiv preprint arXiv:1703.05407 abs/1703.05407, 1 (2017).

[52] R. S. Sutton, D. Precup, and S. Singh, Artificial intelligence 112, 181 (1999).

[53] J. Janisch, T. Pevnỳ, and V. Lisỳ, arXiv preprint arXiv:2009.12462
abs/2009.12462, 1 (2020).

[54] P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-
Aparicio, Computer Communications 196, 184 (2022).

[55] Y. Li, T. Kong, L. Li, Y. Li, and Y. Wu, arXiv preprint arXiv:2108.02439
abs/2108.02439, 1 (2021).

[56] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, arXiv preprint
arXiv:2102.13177 abs/2102.13177, 1 (2021).

[57] R. Li, A. Jabri, T. Darrell, and P. Agrawal, in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE (IEEE, Paris, France,
2020), pp. 4051–4058.

[58] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki, in Conference
on Robot Learning, PMLR (PMLR, Virtual Conference, 2020), pp. 979–989.

[59] F. Xie, A. Chowdhury, M. De Paolis Kaluza, L. Zhao, L. Wong, and R. Yu,
Advances in neural information processing systems 33, 2327 (2020).

[60] J. Liang and A. Boularias, in 2023 IEEE International Conference on
Robotics and Automation (ICRA), IEEE (IEEE, New York, NY, USA,
2023), pp. 1807–1813.

[61] M. Oliva, S. Banik, J. Josifovski, and A. Knoll, in 2022 International Joint
Conference on Neural Networks (IJCNN), IEEE (IEEE, Padua, Italy, 2022),
pp. 1–9.

[62] Y. Huang, Z. Huang, and T. Jin, Applied Sciences 14, 4724 (2024).

122

[63] V. Ofitserov and A. Konushin, International Journal of Open Information
Technologies 12, 57 (2024).

[64] S. V. Armstrong, S. Pallickara, S. Pallickara, S. Ghosh, J. F. Breidt, et al.,
Journal of Machine Learning Research 12, 123 (2024).

[65] Y. Bi, Z. Chen, C. Liu, T. Liang, and F. Zheng, Machine Vision and
Applications 35, 74 (2024).

[66] P. Varangaonkar and S. Rode, Multimedia Tools and Applications 80, 1
(2024).

[67] H. Hajiabadi, C. Gerking, L. Hilbert, and A. Koziolek, Journal of Systems
and Software 211, 111986 (2024).

[68] C. Yu, J. Zhu, and X. Li, arXiv preprint arXiv:2402.10074 abs/2402.10074,
1 (2024).

[69] Y. Zhang, H. Tong, Y. Xia, Y. Zhu, Y. Chi, and L. Ying, in Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI Press, Palo Alto,
California, USA, 2022), No. 8, pp. 9118–9126.

[70] D. Angluin, Machine learning 2, 319 (1988).

[71] R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H.
Muggleton, D. B. Kell, and S. G. Oliver, Nature 427, 247 (2004).

[72] I. Dagan and S. P. Engelson, Machine Learning Proceedings 1995 (Elsevier,
Amsterdam, The Netherlands, 1995), pp. 150–157.

[73] V. Krishnamurthy, IEEE Transactions on Signal Processing 50, 1382 (2002).

[74] D. D. Lewis, in ACM SIGIR Forum, ACM (ACM, New York, NY, USA,
1995), No. 2, pp. 13–19.

[75] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, ACM computing surveys (CSUR) 54, 1 (2021).

[76] C. Shui, F. Zhou, C. Gagné, and B. Wang, in International Conference
on Artificial Intelligence and Statistics, PMLR (PMLR, Online, 2020), pp.
1308–1318.

[77] B. Settles, Active Learning, Vol. 6 of Synthesis Lectures on Artificial Intelli-
gence and Machine Learning (Morgan & Claypool, San Rafael, CA, USA,
2012), pp. 1–114.

[78] B. Settles, in Active learning and experimental design workshop in conjunc-
tion with AISTATS 2010, JMLR Workshop and Conference Proceedings
(JMLR: Workshop and Conference Proceedings, Cambridge, MA, USA,
2011), pp. 1–18.

123

[79] J. M. Hernández-Lobato and R. Adams, in International Conference on
Machine Learning, PMLR (PMLR, Lille, France, 2015), pp. 1861–1869.

[80] G. Dhiman, A. V. Kumar, R. Nirmalan, S. Sujitha, K. Srihari, N. Yuvaraj,
P. Arulprakash, and R. A. Raja, Multimedia Tools and Applications 82,
5343 (2023).

[81] J. Gong, Z. Fan, Q. Ke, H. Rahmani, and J. Liu, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE,
New York, NY, USA, 2022), pp. 11079–11089.

[82] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, Active preference-based
learning of reward functions (Springer, New York, NY, USA, 2017).

[83] G. Kunapuli, P. Odom, J. W. Shavlik, and S. Natarajan, in 2013 IEEE 13th
International Conference on Data Mining, IEEE (IEEE, New York, NY,
USA, 2013), pp. 409–418.

[84] A. Ezzeddine, N. Mourad, B. N. Araabi, and M. N. Ahmadabadi, Expert
Systems with Applications 112, 331 (2018).

[85] S. Mittal, J. Niemeijer, J. P. Schäfer, and T. Brox, arXiv preprint
arXiv:2302.04075 1, 1 (2023).

[86] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops (IEEE,
New York, NY, USA, 2016), pp. 1–9.

[87] S. D. Jain and K. Grauman, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, New York, NY, USA,
2016), pp. 2864–2873.

[88] A. Vezhnevets, J. M. Buhmann, and V. Ferrari, in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, IEEE (IEEE, New York, NY,
USA, 2012), pp. 3162–3169.

[89] K. Konyushkova, R. Sznitman, and P. Fua, in Proceedings of the IEEE
International Conference on Computer Vision (IEEE, New York, NY, USA,
2015), pp. 2974–2982.

[90] J. Aklilu and S. Yeung, in Machine Learning for Healthcare Conference,
PMLR (PMLR, Cambridge, MA, USA, 2022), pp. 892–911.

[91] X. Shu, Y. Yang, R. Xie, J. Liu, X. Chang, and B. Wu, SSRN Electronic
Journal 2022, 1 (2022).

[92] S. A. Golestaneh and K. M. Kitani, arXiv preprint arXiv:2008.01860
abs/2008.01860, 1 (2020).

124

[93] H. Hasselt, Advances in neural information processing systems 23, 2613
(2010).

[94] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, arXiv
preprint arXiv:1611.06256 abs/1611.06256, 1 (2016).

[95] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V.
Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, Noisy
Networks for Exploration, 2019.

[96] A. Casanova, P. O. Pinheiro, N. Rostamzadeh, and C. J. Pal, arXiv preprint
arXiv:2002.06583 abs/2002.06583, 1 (2020).

[97] C. Wang and K. Ross, arXiv preprint arXiv:1906.04009 abs/1906.04009,
1 (2019).

[98] M. Tokic and G. Palm, in Annual Conference on Artificial Intelligence
(Springer, Berlin, Heidelberg, 2011), pp. 335–346.

[99] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, in Computer Vision–
ECCV 2008: 10th European Conference on Computer Vision, Marseille,
France, October 12-18, 2008, Proceedings, Part I, Springer (Springer, Berlin,
Heidelberg, 2008), pp. 44–57.

[100] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, in European Conference
on Computer Vision (ECCV), Vol. 9906 of LNCS, edited by B. Leibe, J.
Matas, N. Sebe, and M. Welling (Springer International Publishing, Cham,
Switzerland, 2016), pp. 102–118.

[101] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (IEEE,
New York, NY, USA, 2018), pp. 9185–9193.

[102] M. Soltani, A. Bonakdar, N. Shakourifar, R. Babaei, and K. Raahemifar,
Frontiers in Oncology 11, 661123 (2021).

[103] Y. Dong, S. Cheng, T. Pang, H. Su, and J. Zhu, IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 9536 (2021).

[104] Z. Wei, J. Chen, H. Zhang, L. Jiang, and Y.-G. Jiang, in Proceedings of the
2022 International Conference on Multimedia Retrieval (ACM, New York,
NY, USA, 2022), pp. 587–593.

[105] J. Yang, Y. Jiang, X. Huang, B. Ni, and C. Zhao, Advances in Neural
Information Processing Systems 33, 12288 (2020).

[106] A. Ilie, M. Popescu, and A. Stefanescu, in International Conference on
Neural Information Processing, Springer (Springer, Cham, Switzerland,
2021), pp. 188–200.

125

[107] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, in 25th
USENIX Security Symposium (USENIX Security 16), USENIX Association
(USENIX Association, Berkeley, CA, USA, 2016), pp. 601–618.

[108] X. Zhang, C. Fang, and J. Shi, CoRR abs/2104.05921, 1 (2021).

[109] H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain,
International Journal of Automation and Computing 17, 151 (2020).

[110] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and G. Loukas,
Computer Science Review 34, 100199 (2019).

[111] Y. Fang, Y. Zeng, B. Li, L. Liu, and L. Zhang, Plos one 15, e0231626 (2020).

[112] S. Zhang, X. Xie, and Y. Xu, IEEE Access 8, 128250 (2020).

[113] K. Chen, S. Guo, T. Zhang, X. Xie, and Y. Liu, in Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security (ACM,
New York, NY, USA, 2021), pp. 307–319.

[114] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ACM, New York, NY, USA, 2017), pp. 506–519.

[115] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, arXiv preprint
arXiv:1706.06083 abs/1706.06083, 1 (2017).

[116] I. J. Goodfellow, J. Shlens, and C. Szegedy, arXiv preprint arXiv:1412.6572
abs/1412.6572, 1 (2014).

[117] O. Sener and S. Savarese, arXiv preprint arXiv:1708.00489 abs/1708.00489,
1 (2017).

[118] W. Gao, X. Li, Y. Wang, and Y. Cai, Frontiers in Public Health 10, 879639
(2022).

[119] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(IEEE, New York, NY, USA, 2021), pp. 4771–4780.

[120] L. Deng, IEEE Signal Processing Magazine 29, 141 (2012).

[121] S.-Y. Zhou and C.-Y. Su, arXiv preprint arXiv:2105.09008 abs/2105.09008,
1 (2021).

[122] A. Krizhevsky, G. Hinton, et al., Technical Report 1, 1 (2009).

[123] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, arXiv preprint
arXiv:2010.01412 abs/2010.01412, 1 (2020).

126

