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Abstract

The analysis of discrete states in the psychological sciences are common-

place. One of the most powerful techniques used to analyze transition be-

tween states is the Markov model. The Markov model is composed of states

and transitions, the transitions measure the probability from moving from

one state into another at any point in time. Alternatives to the Markov

model include the semi-Markov model, which relaxes some of the assump-

tions made in the Markov model, and may make it more appropriate for the

analysis of behavioral data. As the acquisition of these types of data are

now easier given recent technological developments, such as the ubiquity of

smartphones, streams of states can now easily be acquired from multiple in-

dividuals. Multilevel modeling is capable of pooling across individual’s with

heterogeneous characteristics to make inferences that are true across the pop-

ulation. The goal of this dissertation is to synthesize three perpetrate streams

of modeling together to propose an alternative methodological framework for

the analysis of intensive longitudinal data composed of discrete states. The

three methodological streams include multilevel modeling, survival analysis,

and Markov models. Multilevel modeling provides a framework to make in-

ferences about a population when data are composed of clusters. Survival

analysis describes a framework which can be used to estimate when an event

is most likely to occur, and incorporates an inferential framework to identify

variables which may increase or decrease the likelihood of these events across

time. Finally, the Markov model describes a time series analytic framework

which is used to identify the probability of a state transition to occur at

a specific point in time. By synthesizing these three streams, a multilevel

Markov, or semi-Markov model can be estimated in an efficient fashion and
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can identify predictor variables which influence transition probabilities, and

the timing of these probabilities.

In order to showcase the utility of these methods, both a simulation study,

and an empirical study are examined. The simulation study is used to ex-

amine the resilience of time-to-event models estimated under various simula-

tion factors, and to compare the performance of Markov, semi-Markov, and

their multilevel counter parts to estimate the true parameters. The empiri-

cal study examines the pre- and post-treatment effects when comparing case

versus intervention cohorts and their verbal dynamics during a structured

parent-child interaction task. The goal is to examine difference is positive

and negative behaviors after the administration of a structured parent child

interaction therapy.
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CHAPTER 1

INTRODUCTION

The goal of any scientific pursuit is to build an axiomatic understanding of

natural phenomena. Psychology, the study of the human mind, performs

this by assessing an individual’s behavior in various contexts. Analyses of

behavior typically require binning observations into discrete categories. For

example, when asked how an individual may feel, a response may be that of

an emotional state such as ”happy.” These state variables are commonplace

across the behavioral sciences. Of course, individuals may have different

definitions of happy, and also different times when and where they may feel

happy. Addressing these individual differences is necessary to build axiomatic

laws; however, ironically, the individual so highly valued in the definition of

psychology can be easily ignored by the tools of the field.

Psychology has long held a contentious relationship with measurement,

especially when compared with fields such as Physics. For example, physicists

would never describe a star as “bright”; they are equipped with measurement

devices which can return lumens, temperature, and specific spectral analysis

of the elements composing a star. Yet, psychologists require participants to

assign their behaviors and moods into nominal categories. This juxtaposition

of measurement capabilities was the motivation for the 1932 Ferguson com-

mittee, where groups of physicists and psychologists were tasked to identify
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if measurement is possible in the behavioral sciences (Ferguson, 1932). The

results of the committee were bleak for the behavioral sciences, where the

physicists argued that if terms used to measure psychological phenomenon

were not “additive” then they could not be considered valid measurements.

Nonetheless, the behavioral sciences have persisted, and incorporated such

criticisms into the analytic approaches utilized; however, these discrete states

are still commonplace in the psychological lexicon as are approaches that re-

main agnostic to the individual. Now, as technological advances have been

made which greater facilitate the acquisition speed and granularity of behav-

ioral data, psychologists must again grapple with how to analyze nominal

states acquired from heterogeneous populations.

Historically, the psychological sciences have been performed from a nomo-

thetic perspective. The term nomothetic has two Greek roots: “nomos” and

“thetes,” the former meaning to assign laws, and the latter referring to one

who puts, places or establishes (Definition of NOMOTHETIC, n.d.). That

is, when nomothetic practices are employed in the behavioral sciences, the

goal of the researcher is to assign rules to groups of individuals. These ap-

proaches have been the focus of psychological studies since its inception. In

fact Wilhelm Wundt, the “father” of psychology, may have been the first

to follow such nomothetic principles when studying behavioral phenomenon

(Uher, 2021). Because the goal of the nomothetic approach is to identify a

set of rules that are true to a population, psychologists assign these rules

to groups of individuals whilst washing over an individual’s heterogeneity.

Gordon Allport may have summarized this concern in a more succinct quote:

“As a rule, science regards the individual as a mere bothersome accident.
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Psychology, too, ordinarily treats him as something to be brushed aside so

the main business of accounting for the uniformity of events can get under

way” (Allport, 1937). While the inertia in psychology arguably still is in

favor of nomothetic approaches, there is a relatively inchoate growth in the

application of idiographic practices.

An idiographic approach towards psychology requires refocusing analyses

onto individuals (Allport, 1937). While the nomothetic approach requires

making rules to large samples of individuals, the idiographic approach em-

phasizes making rules out of patterns in an individual’s behavior. Classi-

cal examples of an idiographic approach would be a case study. Changing

the focus of psychological research from groups of individuals back onto a

single individual requires alternative methodological designs. Examples of

methodology which have lowered the burden to pursue idiographic analysis

includes the advent of ecological momentary assessment (EMA; (Shiffman et

al., 2008)) In an EMA design, participants are not required to change their

daily practices, they are actually encouraged to maintain as much normalcy

as can be expected while an individual is being examined. The individual

in the study is now requested to perform a behavioral screener throughout

their day. This allows the researcher to passively obtain data, and examine

changes in their psychological status.

As the rise of intensive longitudinal data (ILD) acquired from practices

such as EMA becomes ever more prevalent, so does the acquisition of discrete-

state data these participants may be provide. Understanding an individual’s

trajectories throughout their own psychological landscape has only recently

become a feasible outcome in the psychological sciences. Techniques such as

the ANOVA, a primary analytic tool of the behavioral sciences, is applica-
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ble when the error values are independent and identically distributed. This

assumption no longer holds for EMA data, as there may be inertia within

an individual’s time series. For example, perhaps a researcher is interested

in arousal, something which is known to follow the circadian rhythm, the

individual’s biology will influence their arousal throughout the day. Such an

example creates some auto dependence structure in their data, invalidating

the independence assumption. Circumventing the independence assumption

requires psychologists to apply methods specifically developed to analyze

time series data.

Time series analyses are a specific suite of tools which are used to analyze

data that are acquired repeatedly from a single unit of analysis. The EMA

approach provides data which typically necessitate these methods. When

applying an EMA design a single questionnaire may be asked repeatedly to

a participant, the suite of tools required to analyze the data may have to

shift based on the questions the researchers seek to answer. Examples of

commonly applied time series analysis include the auto regressive model, the

moving average model, state space models, and the focus of this dissertation,

the Markov model. Each of these models seeks to incorporate the dependency

structure of the data into the estimation of the model. The dependency can

be thought of as the inertia of the unit of analysis. When greater dependency

exists, there are more consistent fluctuations about the mean that is, the

highs will stay higher for longer periods of time and the lows will stay lower.

For the AR model this is represented by greater autoregressive coefficients,

in the Markov model, this is represented by greater intra-state transitions.

Each of these models has it’s own best use scenarios. For example, when a

single stream of data is acquired from a single unit of analysis and the data
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are continuous, the autoregressive model may be most applicable. When the

outcome variable is composed of discrete-states then the Markov model may

be best applied.

Idiographic sciences refocus the goal of the project, wherein nomothetic

assigns rules to a broad range of individuals, idiographic pursuits are squarely

focused on an individual (Allport, 1937). In order to circumvent these nomo-

thetic divisiveness, idiographic principles allow for psychological researchers

to better understand an individual’s characteristics (Allport, 1937). This

suite of analyses have grown in popularity lockstep with the growth of eco-

logical momentary assessment designs (EMA; Shiffman et al. (2008)). While

the dichotomy between nomothetic and idiographic has been discussed as

a binary one, the actuality is that methods exist which can span the con-

tinuum. This dissertation seeks to describe how individual characteristics

can be incorporated into the analysis of ILD when the data are composed of

discrete-states acquired across a continuous-time setting.

1.1 Motivation

The acquisition of ILD, composed of manifest discrete states, has been facil-

itated by developments such as EMA. Analyzing these ILD is typically per-

formed by tools such as Markov models where the unit of analysis is the tran-

sition between states. However, these state transitions may be a specific to an

individual’s propensity to stay or transition across states (Goodman, 1961).

Pooling data across multiple individuals presents distinct analytic challenges

such as dealing with the within-individual versus between-individual vari-

ance (McNeish et al., 2021; McNeish, 2023). Techniques used to circumvent

this concern do exist and have been previously applied for the analysis of
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discrete-state data, such as the multilevel Markov model (de Haan-Rietdijk

et al., 2017). However, despite its wide application and rich set of software

toolboxes, some assumptions of the Markov model may hinder its utility for

psychological data. For example, the discrete-time Markov model is not ap-

propriate when data are acquired at random intervals throughout the day

with varying intervals, which requires a continuous-time approach. Addi-

tionally, the Markov model has additional strict assumptions, one of which

is known as the “memoryless” assumption. This assumption states that the

time spent in a state does not influence the probability to transition to other

states. This assumption may not be reflective of the true psychological phe-

nomenon where transitions may depend on the time spent in a state. Thus,

the motivation of this dissertation is twofold: first, examine the capabili-

ties to incorporate individuals’ propensity to transition into continuous-time

discrete-state models, and second, what happens when a “memoryless” ap-

proach is assumed when data do not adhere to this assumption? To examine

these questions of the Markov-model and a more flexible semi-Markov model

are compared. The semi-Markov model relaxes the “memoryless” assump-

tion inherent to the Markov model. Additionally, these models are estimated

in a multilevel form which can accommodate participant specific transition

propensities. This chapter first introduces Markov models, survival analysis,

and how survival analysis, or time-to-event models, are equivalent, and finally

how these can accommodate the intra-cluster correlation which is inherent

to an individual’s time series.
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1.2 Manifest Markov Models

The Markov Model has been a mainstay analytic tool since its inception in

the early 1900s, by Russian mathematician Andrei Andreevich Markov. The

earliest application of the Markov model was used to examine consonant

and vowel dispersion in poetry (Basharin et al., 2004; Markov, 1913). The

discrete state can be summarized by this example where letters can only be

categorized as either a consonant or a vowel, and they can only exist in one of

these classifications at each point in “time.” The discrete time in this example

is a bit more opaque, the chain is illustrated by the procession of letters. To

the reader, no time has passed when they glance over the words. But to the

model, every new letter represents a passage of “time.” In these discrete-

time models, “time” proceeds in fixed units; in the poetry example, there

can be no half steps between letters. The procession can only be identified

by integers. The mathematical formalization of the Markov model seeks to

identify transitional probabilities between these states in discrete-time. In

order to identify these probabilities the Markov model is composed of several

components. The first would be the state space that exists within the data:

S = S1, S2, ..., Sr. Where Sr represents a discrete state, and r is the total

number of possible states. The Markov model seeks to identify transitions pij,

between possible states which represents the probability of transitions from

state si into state sj. The Markov matrix which can describe the dynamics

of the state transitions, and can be used to estimate the most probable state

at a future time. Estimating these transition probabilities is facilitated by

the Markov assumption, which is mathematically formulated as such:

P (Xt+1 = j|Xt = i,Xt−1 = ..., X1) = P (Xt+1 = j|Xt = i)

7



In this, Xt represents the state at time t, P (Xt+1 = j|Xt = i,Xt−1 =

..., X0) represents the probability of being in state j at time t+1, assuming the

system was in state i at time t, and previous states at times t−1 through time

t = 1. The assumption states that the probability of transiting into future

states is only influenced by the current state of the system, and the history

of the system has no influence on transition probabilities. This assumption

is useful because it reduces the total number of parameters that need to be

estimated. For example, consider a lag(0) and a lag(1) model with two states.

The lag denotes the influence that the previous n states have on the current

transition. For the lag(0) model, the following transition matrix needs to be

estimated:

S1 S2

P =
S1

S2

 p11 p12

p21 p22


In this example, only four probabilities need to be estimated. Compare

this to a lag(1) model where the following transition matrix need to be esti-

mated:

S1 S2

P =

S11

S12

S21

S22



p111 p112

p121 p122

p211 p212

p221 p222


Here, the model must now estimate 8 total transition probabilities. This

pattern grows exponentially, as the order of the Markov model grows for a

two state model. The number of probabilities that need to be estimated is
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calculated as mT−1, where m is the dimensions of P , and T is the order of

the Markov model.

A continuous-time model relaxes the discrete-time assumption and al-

lows for transitions to occur at any time. Now, the model must estimate a

series of transition intensities qij(t, z(t)) where the intensity represents the

instantaneous risk of moving from state i into state j:

qij(t, z(t)) = lim∆t→0
P (S(t+∆t) = s|S(t) = r)

∆t

These intensities form a matrix Q. The qualities of the Q matrix are com-

posed of rows which sum to 0 and diagonal entries equal to qii = −Σs̸=iqis.

The state transition times, or sojourn times, are then sampled from an expo-

nential distribution with a rate of qij thus determining the probability that

an individual remains in a specific state for a period of time denoted by

the survival function S. The “memoryless” property for a continuous-time

Markov model is reflected in the static nature of these intensity transition

parameters (Cox & Miller, 1977). That is, the instantaneous transition rates

are constant and are independent of time, and are only influenced by the

current state of the model. The rates of the exponential distribution being

used to sample the sojourn time are only determined by the intensity rate

qij (Jackson, 2011).

One of the earlier applications of the Markov model to psychological data

dates back to the early 1950s, by work performed by George Miller. Miller

applied the Markov model to examine how learning proceeds in rats when

navigating a “T” maze (Miller, 1952). The “T” maze task requires the rat to

navigate the maze towards some reward, at the intersection the rat chooses
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either a left or right turn. The data was composed of either correct or

incorrect passages through the maze. The discrete states were composed

of either a correct traversal or an incorrect traversal through the maze. The

discrete time was assessed as every sequential navigation attempt of the rat

through the maze. This work introduces the first formal introduction of

the Markov model into psychological analysis, and also introduces the least-

squares estimation technique for identifying transition probabilities.

Following a brief hiatus, the next most prominent example of the mod-

els application was in 1979, by psychologist Charles Brainerd. Brainerd was

again interested in learning, and how to better assess the mastery of spe-

cific concepts (Brainerd, 1979). Their analyses extended the logic of Piaget’s

stages of development where development is measured as a sequential pro-

gression through discrete stages of skill master (Piaget, 1972). The analyses

specifically seek to examine how developmental stages interact with Piaget’s

conservation task. The conservation tasks tests a child’s ability to identify

differences between two identical objects. Most famously, this task requires

children to identify differences in the amount of liquid that exists in a con-

tainers with different size and shapes. For example, when a liquid is moved

from a shorter and wider cylinder into a more narrow and taller cylinder,

children are inclined to believe that the taller cylinder possess a greater vol-

ume of liquid, despite their equivalence. In these analyses the Markov model

was used to examine developmental influences for transitions into and out of

mastery of the conservation of liquid.

Outside of learning, the manifest Markov model has been applied to other

forms of behavioral research, examples can be found in fields such as drug

use Lee et al. (2018), resilience research (von Eye & Brandstädter, 1998; von
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Eye & Schuster, 2000), interpersonal dynamics (D. Li et al., 2020), vocational

and aptitude based research (Vermunt et al., n.d.),personality research (de

Haan-Rietdijk et al., 2017) and measurement invariance of ILD (Vogelsmeier

et al., 2022). All of these examples apply a discrete-time approach towards

the application of the Markov model.

The continuous-time Markov model has been applied much more spar-

ingly across psychological research. Limited examples of it’s application can

be found in educational research (Shao et al., 2022) , measurement invaraince

of ILD (Vogelsmeier et al., 2019).

The Markov model is an extremely flexible tool which can be used to

examine a wide range of questions. Both discrete-time and continuous-time

examples of the model exist, and can be applied depending on the acquisition

techniques used.

1.3 Survival Models

Survival models stem from a series of analyses which seek to estimate the

time-to-event for a specific state transition. The name derives from it’s appli-

cations in the biostatistics and epidemiological literature, where these tools

are used for modeling time until death in populations. However, they have

alternative names depending on the field applied, for example the survival

analysis is termed reliability analysis when applied in engineering (Elmahdy,

2015), or event history analysis when applied in sociology (Allison, 2014).

This dissertation will primarily use the time-to-event nomenclature, although

these are all interchangeable. These models are often applied when questions

of “whether or when” are asked (Keiley & Martin, 2005; Singer & Willett,

2003). The model is formulated using separate but interchangeable functions.
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These include the hazard function, and the namesake survival function. The

survival function is defined as

S(t) = 1− F (t) = e(−
∫ t
0 h(u)du) = e−H(t) = P (T ≥ t)

Where S(t) is the probability that a unit of observation lasts longer than t

time units; F (t) =
∫ t

0
f(u)du = P (T < t) = 1−S(t) ; H(t) is the cumulative

hazard, expressed as
∫ t

0
h(u)du, and T is a random variable representing

the time of an event (Lim, 2021). The survival function is a decreasing

function such that S(0) = 1 and limt→+∞ S(t) = 0. The F (t) defines some

distributional function, in this specific instance it describes the probability

that a unit of analysis lasts less than or equal to t time. The hazard function

is defined as:

h(t) = lim∆t→0
P (t ≤ T < t+∆t|T ≥ t)

∆t
= f(t)/S(t)

This function describes the instantaneous “hazards” of an event occurring

at specific point in time, t. The numerator, f(t) is the probability density

function used to define the distributional function, F (t). Knowing either

the survival function or the hazard function allows for complete transition

between the two functions. For example to the relationship between the

survival function and the hazard function follows:

S(t) = e−h(t)

One of the most accessible techniques used to estimate these functions

is the Kaplan–Meier method (Kaplan & Meier, 1958). The Kaplan-Meier
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method is a nonparametric approach used to estimate the hazards of an event

occurring at a specific point in time. Inferential extensions of the Kaplan-

Meier approach include the Cox proportional hazard model (Cox PH) (Cox,

1972). The Cox PH model allows for inferences to be made on the hazards of

the model by incorporating both time variant and invariant predictors which

act multiplicatively on the hazards of the model. The formulation takes the

following form:

h(t|Xi) = h0(t)e
(β1X1i+...+βpXpi)

Where h0(t) represents the baseline hazards of an event occurring at time

t, the β represents a linear coefficient weight and Xpi is the pth covariate

for subject i. This formulation excludes an intercept term as the baseline

hazards acts as an intercept. The Cox-PH model is semi-parametric in that

no assumptions are made about the distribution of the hazards when using

the Kaplan-Meier method, but it assumes that all of the β terms are linear

effects. The Kaplan-Meier approach allows for both discrete and continuous

outcomes and the Cox-PH can be incorporated in a similar fashion across

both formulations. Additionally, the Cox-PH formulation allows for time

variant and time invariant predictors to be included so intermittent observa-

tions prior to an outcome can be used to influence the hazards of an event

occurring (Austin et al., 2020).

Psychological examples of discrete time survival models can be found in

the assessment of clinical change in alcohol use Koenig et al. (2020), eating

disorders (Herzog et al., 1997), and research examining trends in job turnover

(Morita et al., 1989). Continuous-time survival models are much more spar-

ingly applied given the increased complexity of acquiring the data and poten-
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tially of analysis too (Gardner & Griffin, 1989). Examples of continuous-time

analysis can be found in eye gaze patterns between dyads (Gardner, 1993),

as well as in clinical literature (Hecht & Voelkle, 2021). Consistent across all

of these examples is the application of exponential models to estimate the

time-to-event data. The exponential distribution is defined by a single rate

parameter which describes the decrease in the survival function over time.

The exponential survival function takes the following form:

S(t) = e−λt

Given the relationships among the functions the the hazards function

then becomes:

h(t) = λ

Indicating a constant hazard over time. This allows for the estimation of

hazards to be identified at any point in time, which means a continuous-time

model can be estimated.

Additional extensions of the survival model include its ability to handle

nested data structures via multilevel or hierarchical modeling practices (Bryk

& Raudenbush, 1992). Within the survival nomenclature, these models are

typically referred to as frailty models (Balan & Putter, 2020; Hougaard,

1995). The frailty model incorporates an additional cluster specific compo-

nents into the estimation of the hazard function. The updated hazard takes

the following form:

h(t|Z) = Zh(t)

Here, the Z term describes a latent random term which reflects a specific

14



propensity to transition between states. The distribution of these term can

take many forms, but more commonly the distribution is assumed to follow

a normal, or multivariate normal depending on the terms that are included.

The frailty term multiplicatively influences the hazards, so an individual with

a frailty term of 1 follows the base hazard function.

The benefits of the frailty modeling framework specific to psychological

data include the extension to recurrent events. That is, because multiple

events can be recorded within an individual, the frailty framework can ac-

count for the interdependence of the data acquired within a single individual’s

time series. Such practices are important when seeking to pool time-to-event

analyses across multiple individuals’ time series (Lougheed et al., 2019).

Frailty models have been applied within the behavioral sciences. Ex-

amples can be found in developmental psychology (Lougheed et al., 2019)

where researchers were examining the recurrence of frustration in children

when practicing several alternative anger control strategies. The clusters in

this study were composed of children when frustration was elicited multiple

times within each child. Additional examples include examining time until

therapy drop-out (i.e. treatment success) where patients had repeated assess-

ments of symptoms, and patients were also clustered within specific therapists

(Gmeinwieser et al., 2020). One final example includes an analysis of dyadic

social interactions between parents and their children, examining how the

parent’s behavior influences the child’s and vice versa. In fact, this is an

example of a multistate survival analysis which is the focus of a later section

of this chapter. In these analyses parents and children were examined across

several states of interaction (Stoolmiller & Snyder, 2014). One consistency

across all of these models should be noted: every model utilized the Cox-PH
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modeling framework. To reiterate, the Cox-PH framework imposes no distri-

butional assumptions on the hazards; however, any covariates of interest are

assumed to have a linear effect on the hazards. This is important to note as

there are fully parametric alternatives which may be better applied for the

analysis of behavioral data.

1.4 Weibull Regression

While the Cox-PH model is a nonparametric example of a survival model

there are examples of parametric models which impose a distributional as-

sumption on the hazards. One such example is Weibull regression (Weibull,

1939). The Weibull distribution is commonly used to model time-to-event

data, especially when the hazards are not constant overtime. Such analyses

are termed accelerated failure time models, they are distinguished from the

Cox-PH model as they examine how predictors influence the acceleration or

deceleration of an event’s occurrence as opposed to linear multiplicative in-

fluences on the hazards. These models have been shown to be efficacious and

better describe biological phenomenon (Kay & Kinnersley, 2002; Stroustrup

et al., 2016; Wei, 1992).

The Weibull distribution includes two parameters, a shape and scale pa-

rameter, the hazard function of the model takes the following distribution:

h(t) = λγtγ−1

The survival function for the distribution takes the following form:

S(t) = e−λtγ
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Function Exponential Weibull
f(t) λe−λt λγtγ−1e−λtγ

S(t) e−λt e−λtγ

h(t) λ λγγ−1

Table 1.1: Comparison of the Exponential and Weibull distributions density,
survival, and hazards functions.

One unique feature of the Weibull function is that when the shape pa-

rameter is equal to one, the distribution is equivalent to the exponential

distribution.

See figure 1.1 for a graphical comparison of a Weibull distribution with a

shape distribution greater than 1 and an exponential distribution

Additionally, see table 1.1 for a comparison of the density, survival, and

hazard functions for the exponential distribution and the Weibull distribu-

tion.

The benefits of using a parametric distribution for time-to-event analysis

include its ability to estimate the model using techniques such as maximum

likelihood (Carroll, 2003; Ikbal et al., Mar-2022). This is important when

expanding the Weibull regression to incorporate predictors into the model.

Examples of time-to-event analysis using Weibull regression are more

readily found in fields such as engineering and economics. Engineering typi-

cally utilizes the Weibull distribution to estimate time-to-failure for compo-

nents in some form of design. For example Weibull regression has been used

to study the lifespan of bridges (van Noortwijk & Klatter, 2004), electrical

equipment (Reddy et al., 2021), and others. Examples found in economics

have examined time spent unemployed (Dell’Aringa & Lodovici, 1988), addi-

tional multilevel examples of the same topic are also found in the economics

literature (Sohn et al., 2007).
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Figure 1.1: Comparing an Exponential distribution and Weibull distributions
with equivalent rate shape parameters
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Examples of psychological literature applying Weibull regression can be

found in examinations of work absenteeism (Fichman, 1989), and multilevel

approaches for the estimation of response times (Kay & Kinnersley, 2002).

In summary, hazards estimated from a Weibull model are extremely flex-

ible. A lot of natural phenomenon may not follow an exponential distribu-

tion’s static fixed hazard rate, the Weibull model can accommodate mono-

tonically increasing or decreasing hazard function.

1.5 Semi-Markov Models

The estimation of the Markov model is facilitated by two assumptions: state

transitions are only influenced by the current state, and these transitions are

time homogeneous. The semi-Markov model relaxes the second of these as-

sumptions by allowing for transitions to be influenced by a “local clock”. The

concept of a local clock details how the transition probability is influenced

by the time a state has been occupied (Boyd & Lau, 1998). This relaxes

the “memoryless” property of the continuous-time Markov model, which ad-

heres to the exponential distribution to determine transition probabilities at

a point of time. One of the more commonly applied distributions used to es-

timation transition intensities for semi-Markov models includes the Weibull

distribution (Asanjarani et al., 2022; Ikbal et al., Mar-2022).

The utility of these semi-Markov models, and the relaxation of the “mem-

oryless” property is best underscored by examining their application to clini-

cal data. For example, when applying a survival model examining transition

from life into death in a population of cancerous patients, it is important

for the model to respect the nature of cancerous cell growth. A hallmark of

cancer is the exponential growth of tumors thus the longer a life threaten-
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ing tumor is present the more likely a transition is to occur. The Weibull

distribution is capable of incorporating these accelerated time-to-event fea-

tures into the estimation of hazards, all in a parametric fashion (Van Wijk

& Simonsson, 2022; Wei, 1992).

Given its increased flexibility, the estimation of semi-Markov models is

inherently more difficult. The goal of the continuous-time Markov model

is to estimate the most probable state at a specific point in time. This is

facilitated by the two assumptions of the Markov model. Relaxing the “mem-

oryless” assumption now means the most probable state occupied at a point

in time is dependent upon the local clock, and the current state. Typically, a

continuous-time Markov model is solved via a series of differential equations.

For every state, a differential equation is estimated examining transitions

into and out of this state (Boyd & Lau, 1998; Jackson, 2011). This modeling

is facilitated largely by the constant nature of these transition intensities;

however, when a semi-Markov model approach is applied these become more

difficulty to estimate. Solutions for semi-Markov model are typically solved

by parametric estimation by examination of the sojourn times. Specifically,

the logarithm of the sojourn times can be regressed onto a function, and the

likelihood of this function can be maximized to match the distribution of the

observed transition times (Król & Saint-Pierre, 2015; Wei, 1992).

1.6 The Equivalence of Continuous-Time Semi-Markov Models

and Survival Analysis

As may be apparent now, the survival model and the Markov model share

many underpinnings. Both of these techniques seek to identify the time until

a transition is to occur. In order to perform this, “hazards” of an event
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occurring given the current state of an individual at a specific point of time

are estimated. The most basic form of the survival model seeks to identify a

transition from “life” into a “death” state. In this formulation of the model,

one cannot transition out of the death state, and thus the death state is

known as an absorbing state (Meira-Machado et al., 2009). Alternatives

to the two-state survival model are known as multistate models. In these

examples, there may be an additional “diseased” state which participants can

exist. In these continuous-time multistate survival models, the formulation

is identical to that of the continuous-time Markov model (Asanjarani et al.,

2022); however, one benefit of viewing the problem as a time-to-event analysis

is the ability to utilize parametric distributions outside of the exponential

distribution to model the hazards, as is employed in the estimation of semi-

Markov models (Król & Saint-Pierre, 2015).

In order to navigate between the sojourn analysis and the multistate

transition intensity estimation of the Markov model it is important to de-

scribe some foundation parameters in these models. Translating between

the sojourn analyses and the Markov models begins with the elementary

components of a Markov model: the homogeneous Markov chain, {Xn}n≥0

where X is a stochastic process generated from states {1, 2, ..., S} where the

probability of nth jump from state i to state j for i ̸= j is pij, formally:

pij = P (Sn = j|Sn−1 = i)

The goal of a continuous-time multistate model is to extend these discrete-

state transitions into an instantaneous intensity matrix, formally:

qij(t, xi) = lim∆t→0
P (S(t+∆t) = s|S(t) = r)

∆t
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The intensity represents the instantaneous risk of a transition from state

i into state j at a specific point in time t. The intensity matrix forms a

matrix that is identical in dimensions to that of the transition matrix de-

noted Q. The diagonal elements of the intensity matrix are estimated as

qij = −Σi ̸=jqij. Typically, in a time-homogeneous Markov model these in-

tensities are estimated by fitting an exponential distribution to the observed

sojourn times. The goal of a continuous-time Markov model is to estimate

the probability an individual is in a state at any specific point in time. In or-

der to model these transitions at a specific point in time the intensity matrix

is used and is estimated as
−qij
qii

.

The semi-Markov model follows an identical framework but assumes the

sojourn times no longer follow an exponential distribution. Examples of func-

tions that can be used to estimate hazards include the log-normal, inverse

Gaussian, and of course the focus on this dissertation, the Weibull distribu-

tion.

Translating between a model with a constant hazard, and a monotoni-

cally decreasing or increasing hazard requires estimating the hazard function

that best fits the observed transitions X, and the time of these transitions

T . Translating between the hazards of a single transition and a multistate

transition is established with the following relationship (Asanjarani et al.,

2022 ; Król & Saint-Pierre, 2015):

λij(t) =
pijSij(t)

Si(t)
fij(t) = pij

fij(t)

Si(t)

Here, λij represents the instantaneous hazards of a transition occurring,

Sij is the survival function for a transition from state i into state j, Si is the

survival function for all emissions from state i, and finally fij is the density
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function for transitions from state i into state j. This formula allows for the

translation between the sojourn analysis typically employed in time-to-event

analyses, and continuous-time multistate models. In fact, one of the main

benefits of the simplicity of this model, is that bearing some restrictions,

most distributions that are appropriate to apply for time-to-event analyses,

can now be used for these continuous-time multistate analyses. The up-

dated hazards for a Weibull multi-state time-to-event analysis now take the

following form:

λij(t) = pij
ηij
µij

(
t

µij

)ηij−1 =
ηij

p
−1/ηij
ij µij

(
t

p
−1/ηij
ij µij

)ηij−1

Notably, the scale parameter of the Weibull distribution assumes the fol-

lowing form p
−1
ηij

ij µij while the shape parameter is the same as prior (Asan-

jarani et al., 2022). This allows for a Weibull time-to-event analysis to be

translated into a continuous-time semi-Markov model. Additionally, as the

models are Weibull regression, the same inferences can be made on these

hazards as is performed in survival analysis, as well as the same extension to

include frailty terms.

1.7 Alternatives to Multilevel Markov and semi-Markov Models

Alternatives to the multilevel Markov model must be considered given the

data present to the researcher and the questions that are sought to be an-

swered. The multilevel semi-Markov model can be used when the analy-

ses seek to generalize across a heterogeneous population and the data are

composed of manifest discrete-states. Alternative methodology may be best

applied when alternative scenarios exist. For instance, one of the more com-
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monly applied methodological tool is the hidden Markov model (Visser et

al., 2002).

The hidden Markov model is appropriate when multiple streams are data

acquired for every participant at each timepoint, and the manifest states are

not present in the data. These methods have similar multilevel extensions

which allow them to incorporate transition differences across individuals (de

Haan-Rietdijk et al., 2017), as well as semi-Markov extensions (Yu, 2010).

One final methodological consideration is the source of potential hetero-

geneity observed in participants. If the source of the heterogeneity is po-

tentially derived from sampling across populations with different dynamics,

then a mixture Markov model may be more appropriate (Maruotti & Rocci,

2012). For the mixture Markov model, the assumption is that participants

are sampled from latent groups, and these groups have homogeneous transi-

tion patterns within themselves.

Each of these methods have their own benefits and drawbacks. The

biggest drawbacks for the multilevel Markov and semi-Markov model is model

identification, there are arguments that these models cannot be estimated in

a frequentists framework if the complexity of the random effects is too large

generally necessitating Bayesian approaches (Altman, 2007; Seltman, 2002).

Of course, if the researchers are concerned about measurement error, and

have the data to estimate a hidden Markov model, then these hidden Markov

models can reduce some concerns of measurement error. The drawback to

this is of course the proper identification of the number of clusters, and iden-

tification of the starting state for every participant. The same problem exists

for the mixture Markov models, but instead of the number of states the con-

cern is the correct identification of the number of mixture groups that are
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being sampled within.

1.8 Review

The application of Markov, and semi-Markov models is equivalent to multi-

state time-to-event analyses under the correct parameterization. Under such

parameterizations, benefits from both models can be incorporated. Haz-

ard functions, such as the Weibull, and frailty modeling can be drawn from

the survival analysis literature. This allows for multilevel Markov and semi-

Markov models to be estimated. Additionally, these models can be estimated

in fully parametric techniques allowing for a flexible approach to be applied

for model estimation (e.g. Maximum Likelihood and Bayesian). The Markov

assumption, and the ease of interpretation can be drawn from the Markov

modeling framework for explanation and description of sample and popula-

tion characteristics. This dissertation seeks to describe, and emphasize the

benefits of this merged analytic stream using both a simulation study, as

well as an empirical study. The simulation study will examine parameter

recovery capabilities of time-to-event models under various formulations, the

empirical study will showcase how inferences can be made using these models

to examine population dynamics.
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CHAPTER 2

Simulation Study

2.1 Introduction

Simulated data are the testing ground for methodological studies as it allows

researchers to examine the capability for a naive model to identify the true

population characteristics in a controlled system. Specifically, because data

are created using a mechanism where all parameters are known, when a naive

model is estimated under varying simulation factors, differences between the

estimated and the true parameters can be measured. This simulation study

seeks to follow this framework to examine several specific questions about

the analysis of manifest state time series. Specifically these will examine

the performance of time-to-event analyses with and without the memoryless

property constraint, as well as examining the influence that intra-cluster cor-

relation contributes to these analyses. This requires simulating data under

various data generation mechanisms and to estimate a series of time-to-event

models using both multilevel and without multilevel components. The spe-

cific question this simulation study seeks to answer include:

• How well does an exponential time-to-event model estimate a criterion

variables true magnitude when data are generated from a distribution

with constant and nonconstant hazards

26



• How well does a Weibull time-to-event model estimate the true magni-

tude of a criterion variable when data are generated from a distribution

with constant and nonconstant hazards

• How well can a Weibull model pick up on the true shape parameter

being used to generate data

• How much misestimation of the true shape a parameter influence the

fixed effect parameter estimation

• How well do the confidence intervals from each of these models recover

the true population parameter

Each of these questions also examine the influence random variance has

when answering these questions. That is, when data are generated with

non-negligible random variance, how well do these models perform when the

model includes or excludes a random effect term. In the survival framework,

these means to include frailty terms when simulating the data with levels of

variance in the term. The specific steps performed to estimate these effects

are further explained upon below.

2.2 Methods

In order to answer these questions several discrete steps had to be performed.

First, data were generated with known parameters varying several common

characteristics of an intensive longitudinal design. Second, four separate

models were estimated, two continuous-time Markov models, one including

a random effect, and two semi-Markov models, using Weibull regression,

also one including a random effect. Third, the inferential capabilities of the
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various model estimation methods were compared by identifying estimated

parameters with the ground truth, this process was performed examining

both the root mean squared error (RMSE =

√
ΣN

i=1(θtrue−θestimate)

N
) as well

as a significance framework. The significance framework required identifying

if a parameter had a 0 effect when in reality the true effect was or was not

0, as well as if the true parameter was included within the credible interval

estimated within the model. The third step was carried out using both an

ANOVA framework, as well as a generalized linear regression framework.

All analyses were carried out using the R language (R. C. Team, 2020), all

models were estimated using STAN (S. D. Team, 2023), all code is available

online here.

2.2.1 Simulation Factors

Data were were created by sampling sojourn times from a Weibull distribu-

tion when varying seven separate factors, these factors included: the total

sample size, the minimum number of observations taken within a simulated

individual’s time series, the transition patterns between states, the range of

the Weibull scale values selected to generate sojourn times, the Weibull shape

values, the main effect of the criterion variable, and finally the magnitude of

the random variance. The simulation conditions across each level are found

in table 2.1.

A total of 1,000 samples were drawn within every factor yielding a total

of 27 × 1, 000 = 128, 000 total samples. Within every sample, a total of

four models were estimated, two Markov (i.e. exponential) models, two semi-

Markov (i.e. Weibull) models, and two models including random intercepts.

In total 512, 000 total unique models are estimated which are to be included
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Factor Levels
Sample Size 20; 100

Observation Length 20; 40
Population Transition Matrix Stable; Random

Weibull Scale Range .5-5; 5-10
Weibull Shape Parameter 1; 3

Criterion Variable Magnitude 0; .8
Random Effect Variance 0; 1

Table 2.1: Factors to be manipulated in simulation study

in all subsequent analyses.

Each of these parameters are taken to exaggerate the Markov model-

ing parameters that exist and are commonly observed in the psychological

literature found using these models. For example, sample sizes in some of

the earlier literature utilizing Markov models applied a limited sample size,

for example Miller had a sample size of 10 participants (Miller, 1952). More

recent studies have seen a growth in participant sizes such as the work by Vo-

gelsmeier and peers which capitalized on EMA to examine depression symp-

toms in more than 160 participants overtime (Vogelsmeier et al., 2021). The

sample size reflects the number of unique individuals that will provide a dis-

tinct time series. This is important because as the random variance increases,

the state transition patterns observed within individuals will become more

distinct within every unique individual.

The second factor manipulated is the length of a time series within every

individual. This varies the amount of information that a specific individ-

ual provides to the model. In order to create an observation length for

every unique individual, every participant has an observation length sam-

pled from a uniform distribution. The minimum are detailed in table 2, and

the maximum values are twice the minimum. For example, if the minimum

observation length was 20, then every participants observation length was

29



randomly sampled from a uniform distribution with a minimum of 20 and a

maximum of 40 observations. The minimum value was selected based on the

definition of intensive longitudinal data in the behavioral sciences suggesting

that more than 20 observations within individual’s justifies the application

of time series analytic methodology (Asparouhov et al., 2018).

The third factor was the population transition matrix which describes the

probability that a state is selected given the current state of an individual.

Two population transition matrices were used, a stable matrix where emission

probabilities were strongest for the current state, and a random matrix where

emission probabilities were equivalent across all possible states. Example

two-state transition matrices are provided below:

Pstable =

.8 .2

.2 .8

 ;Prandom =

.5 .5

.5 .5


This alters the amount of information that is present for each transition

pattern. Because every unique transition will have it’s own specific Weibull

scale parameter, the more observations of a specific transition provide more

information to the model to estimate what the true transition rates are for ev-

ery distinct transition pattern. Thus, it is hypothesized that Weibull models

will recover parameters better when a random transition matrix is used.

Two parameters must be sampled when in order to sample sojourn times

from a Weibull distribution , a scale and a shape parameter. The Weibull

distributions true scale range was used to sample the population fixed effect

for every transition. A uniform distributions had either a minimum value of

.5 or 5, and a maximum value of 5, or 10. When the Weibull distribution has

a lower scale range, the time-to-event distributions would be less scaled to the
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right, and sojourn times would be closer to 0. The longer distribution allows

for greater information when hazards which may deviate from the exponential

distribution. The hypothesis is that both the shape and criterion parameter

will be more difficult to recover with lower scale parameters

The Weibull shape parameter was used to determine if hazards were con-

stant, or monotonically increasing. Specifically, when the Weibull shape pa-

rameter is “1” the memoryless property of the Markov model is satisfied.

Thus the hazards of an event (i.e. a transition) occurring are constant. When

the shape parameter is 3, the hazards of an event increase the longer a state

is maintained, thus the memoryless property is not satisfied. This means

that the time spent within a state determines influences that hazards such

that the longer a state is maintained the more likely a transition is to oc-

cur. It is hypothesized that estimation error will be the highest when shape

parameters are mismatched, that is, when an exponential model is fitted to

a Weibull model. However, the Weibull model is capable of recovering an

exponential distribution, which may potentially reduced this concern when

a semi-Markov approach is taken.

The magnitude of the criterion variable was chosen between a null effect

and a relatively large magnitude. This criterion variable acts uniformly across

all scale parameters included in the model. A time invariant predictor is

sampled from a normal distribution (N(µ = 0, σ = 1)) for every participant

contributing a unique time series. This predictor then creates a main effect

acting on the scale parameters of the distribution with either a 0 effect or an

effect of relatively large magnitude 0.8.

Finally, the last variable manipulated was the magnitude of the random

variance. Random variance in these models influences the hazards across all
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transitions. In the survival vernacular this is the frailty term, in a Markov

vernacular this influences an individual’s propensity to stay or move between

states. This will be exhibited in the sojourn times, participants with a ran-

dom effect greater than 0 will have longer sojourn times. Two variances

were selected either none, or large. The motivation here was to see how

well subject specific patterns influence the inferential capabilities of these

models. The hypothesis states that a multilevel modeling framework will

protect against larger variance, and a fixed effect modeling approach will see

increased error when random variance increases.

2.2.2 Model Fitting

After having simulated the data, the next step is to measure how well a naive

model can recreate the population parameters using four different methods.

The methods include:

• An exponential time-to-event model (i.e. continuous-time Markov model)

• Amultilevel exponential time-to-event model (i.e. multilevel continuous-

time Markov model)

• AWeibull time-to-event model (i.e. continuous-time semi-Markov model)

• A multilevel Weibull time-to-event model (i.e. multilevel continuous-

time semi-Markov model)

Consistent across all models were the fixed effect parameters to be es-

timated. In order to parameterize a continuous-time discrete-state Markov

model a shape parameter has to be estimated for every inter-state transi-

tion. For a three-state transition matrix this requires the estimation of an
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intercept term and 5 additional fixed effects. On top of this, a criterion vari-

able acting across all main effects was to be estimated. For the continuous-

time Markov model a time-to-event analysis was used assuming the sojourn

times followed an exponential distribution. For the multilevel continuous-

time Markov model, participant specific random intercept term was included

and sojourn times were again assumed to follow an exponential distribution.

For the continuous-time semi-Markov model, a time-to-event analysis was

estimated by modeling the sojourn times with a Weibull distribution. The

multilevel continuous-time semi-Markov model included a participant specific

intercept.

All models were estimated using a Bayesian framework. Specifics to the

fitting process include a warm-up period using a total of 2,000 iterations, a

sampling period which included 5,000 iterations, thinning included every 3

sample generated, and a total of 3 chains were sampled. Diffuse and unin-

formed priors were included. All sampling was performed using the STAN

language using the No U-turn Sampler (NUTS) algorithm (Homan & Gel-

man, 2014; S. D. Team, 2023).

2.2.3 Assessment of Model Performance

In order to answer the specific questions the simulation study seeks to an-

swer several models had to be estimated. The first model, the most general

identifies parameter error across all models when comparing the estimated

criterion variables magnitude with the true parameter. In order to identify

any error attributed to specific simulation factors the parameter estimation

error was modeled as the root of the squared error (
√
(θestimate − θtrue)2;

RSE) between the true and the estimated value. The RSE was regressed
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onto all of the simulation factors as well as an additional factor indicating

which type of model is being estimated. The models included either a semi-

Markov or a Markov model with or without a multilevel component. Up to

all four-way interactions were included in this ANOVA model. In order to

identify which simulation factors contributed to the estimation error. This

was performed by measuring the η2 of each predictor in the model. In order to

ease interpretation, all η2 values less than 0.01 were excluded from additional

examinations. These results will inform the reader for how much error exists

across all models, but specifically, if the different model estimation techniques

reduce error when comparing across the four modeling approaches.

Next, error was assessed for the Weibull models ability to estimate the

true population shape parameter. An identical procedure was performed as

in the previous analyses, but now the model was constrained to only include

the semi-Markov models. This analysis examines the ability for a Weibull

regression to identify the true shape parameter under the various simulation

factors included in this study.

The third set of analyses examines the coverage of the true main effect

by the 95% Bayesian credible interval (BCI). The BCI acts as an alternative

to standard error and p-value based approaches for significance although the

interpretation different. The BCI allows researchers to state the probability

that the true effect lies between the BCI with a specific degree of confidence.

The outcome for these models now examines if the 95% BCI includes the

true population parameter. For models where the true magnitude of 0, this

would require for the lower BCI interval to be less than 0 and for the upper

interval to be greater than 0. For the models with a large criterion magnitude,

coverage was identified when the model included the parameter but excluded
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0 in the BCI. The coverage was measured using a binary approach where

the parameter was either included or excluded in the 95% BCI, this follows

recommended practices for Bayesian analyses (Kruschke & Liddell, 2018).

This binary outcome was then regressed onto all simulation parameters as

well as the model estimation technique used, similar to the previous ANOVA

models.

2.3 Results

2.3.1 Model Estimation

All models were successfully estimated although not all models converged at

an acceptable level. Convergence in a Bayesian framework can be assessed by

the scale reduction statistic, which is also known as the R̂ value. This mea-

sures the within- and between-chain parameter sampling variability, when

chains have mixed and convergence is achieved than the difference between

chains will lead to an R̂ value close to 1. The larger values suggest models

did not converge (Gelman & Rubin, 1992). A total of 551 models had R̂

values greater than 1.5, of these 517 were from the multilevel Weibull mod-

els, and the remaining 34 were from the multilevel exponential models. All

of these models were excluded form any subsequent analyses, however, it is

worth stating that these convergence issues represent a minority of the total

estimated models (0.001%).

2.3.2 Criterion Parameter Estimation Error

The first ANOVA examined the difference between the estimated and true

criterion parameter. The most influential predictors from the ANOVA model

were assessed using the η2 effect size, all values greater than 0.01 were exam-
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Parameter η2

Magnitude of Random Variance .29
Sample Size .15

Model Strategy .05
Sample Size: Magnitude of Random Variance .10

Model Strategy: Magnitude of Random Variance .03

Table 2.2: Predictors with larger than 0.01 effect sizes from ANOVA exam-
ining criterion variable estimation error

ined as well as the main effects from the model (see table 3). The only main

effects which had η2 greater than 0.01 were the magnitude of the random

variance (η2 = 0.29), the sample size (η2 = 0.15), and the model used to

estimate the effect (η2 = .05; see figure 2.1).

There were only two separate two-way interactions which had an effect

size larger than 0.01. These include the interaction between the sample size

and the magnitude of the random variance (η2 = 0.10; see figure 2.2), and the

interaction between the modeling strategy and the magnitude of the random

variance (η2 = 0.03; see figure 2.3). The interaction between sample size

and the magnitude of random variance is driven by an increase in parameter

estimation error when the sample size is small, and the random variance is

large, compared to much lower error when random variance is not present.

The second interaction is driven by the increase of error specific to the Markov

model when random variance is large, while the remaining techniques error is

much closer. Error across all modeling techniques is consistent when random

variance is not present. No three-way interactions had an effect size larger

than 0.01.
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Figure 2.1: The main effects from an ANOVA examining differences between
the true and estimated effect.

Figure 2.2: Two-way interaction between magnitude of random variance and
the sample size
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Figure 2.3: The two-way interaction between modeling strategy and the mag-
nitude of the random variance.

Parameter η2

Shape Parameter .84
Model Strategy .07

Magnitude of Random Variance .02
Shape Parameter: Model Strategy .04

Magnitude of Random Variance: Model Strategy .03

Table 2.3: Predictors with larger than 0.01 effect sizes from ANOVA exam-
ining shape estimation error

2.3.3 Shape Estimation Error

The second analysis examined how well the semi-Markov models can recover

the true shape parameter. The most influential predictors from the ANOVA

were assessed again using the η2 effect size, all main effects (see figure 5)

from the ANOVA and any interaction term with an η2 greater than 0.01 are

further explored. The most influential main effects include the population

shape parameter (η2=.84), the model strategy (η2=0.07), and the magnitude

of the random variance (η2=0.02; see table 2.3).

The two-way interactions with an η2 greater than 0.01 include the in-

teraction between the true shape parameter and the model strategy (η2 =
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0.04; see figure 2.5), as well as the interaction between the magnitude of the

random variance and the modeling strategy (η2 = 0.03; see figure 2.6).The

direction of both of these interactions indicated the multilevel semi-Markov

model had lower error than the fixed effect framework.
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Figure 2.4: The main effects from an ANOVA examining differences between
the true and estimated shape parameters.

2.3.4 Parameter Estimation Error and Shape Estimation Error

Relationship

The next examination is an ANCOVA examining the influence of shape pa-

rameter error on criterion variable estimation. This set of analyses focuses

on when shape parameters do not agree, what does this due to criterion vari-

able estimation. An ANCOVA was estimated including all prior terms that

were included tin the previous ANOVA models and an additional continuous

variable which captures the shape error for a specific model. Any variables

in the ANCOVA model that include the shape error in them and had an η2

greater than 0.01 were examined (see table 2.4).

The largest η2 was for the main effect for shape error (η2 = 0.12), the

effect indicated that as shape error increased, the error when estimating the

criterion variable also increased (see figure 2.7A).

There were two other terms with an η2 greater than 0.01, these included

the interaction between the shape error and the true population shape term
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Figure 2.5: Two-way interaction from an ANOVA examining differences be-
tween the true and estimate shape parameters

Figure 2.6: Two-way interaction from an ANOVA examining differences be-
tween the true and estimate shape parameters
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Parameter η2

Shape Error .12
Shape Error:Shape Value .04
Shape Error:Sample Size .02

Shape Error:Model Strategy .01
Shape Error:Shape Value:Sample Size .01

Table 2.4: Effect sizes examining the influence of shape error on criterion
variable parameter estimation error

Figure 2.7: Parameter estimation error regressed onto shape estimation error
main effect and two-way interaction.

(η2 = 0.04; see figure 2.7B), and the interaction between the shape error with

the sample size (η2 = 0.02, see figure 2.7C). The first interaction suggests that

shape error increases criterion variable estimation error much more rapidly

when the true shape parameter was equal to one, while criterion estimation

error increased at a much slower rate when the true population shape term

was greater than one. The second interaction suggests that shape parameter

misestimation poses a much more dangerous threat when the sample size is

smaller.

2.3.5 Main Effect Coverage

The final set of analyses examine the capabilities for the model to capture the

true criterion variable within the 95%-BCI estimated. For example, when the

data were simulated with a true population criterion variable parameter of
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Table 2.5: Effect sizes for GLM examining criterion variable parameter cov-
erage

Parameters Estimate OR
Intercept 2.07 7.92
Large Sample Size 0.70 2.01
Long Minimum Observation -0.26 0.77
Random Emission Pattern 0.00 1.00
Long Scale Values 0.01 1.01
Weibull Shape Parameter -0.20 0.81
Large Main Effect -1.67 0.19
Large Random Variance -0.65 0.52
ML-sMM 0.56 1.75
MM -0.16 0.85
ML-MM 0.57 1.77

0, the model assess if 0 is within the lower and upper 95%-BCI range. When

the true criterion variable was equal to 0.8, the coverage also examined if 0

was within the 95%-BCI. So if the 95%-BCI was below 0 and greater than .8,

this was not included as successfully covering the true population parameter.

To begin with, the main effects of the generalized linear model, the co-

efficients and odds-rations of the main effects are listed (see table 2.5) and

displayed (see figure 2.8). The effect with largest Odds for successfully cov-

ering the criterion variable’s true effect was the sample size, when increasing

the sample size then odds are 2.00 times more likely to capture the true

parameter. The next best thing to capture the parameter would be the

modeling strategy, the multilevel exponential and Weibull model had simi-

lar odds-ratios (ORexponential = 1.76;ORWeibull = 1.74) when compared to a

fixed effect Weibull regression approach.

The examination of the two-way interactions was focused on interactions

including modeling strategy. The interaction between the magnitude of the

random variance and the modeling strategy displays how poorly the fixed
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Figure 2.8: Proportion of correct identifications for all main effects in GLM
predicting correct classification of true population effect
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effect approach perform when compared to the multilevel alternatives (see

figure 2.9). For example, when random variance is large, the fixed effect

exponential model correctly captures the true criterion variable’s effect 55%

of the occasions; whereas, the multilevel alternative captures the true effect

more than 75% of the time. When random variance was not present, per-

formance across all modeling types was much more consistent with accuracy

ranging from .8 to .75, with the most accurate being the multilevel exponen-

tial model, and the least accurate being the fixed effect Weibull approach.

The next two-way interaction which merited discussion was the interaction

between the sample size and the modeling approach (see figure 2.10). The

interaction was driven by superior performance of the multilevel modeling

techniques across both sample size permutations, although performance was

higher across all techniques when sample sizes were larger.
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Figure 2.9: Two-way interaction examining identification accuracy for the
population fixed effect across all modeling strategies with and without ran-
dom variance
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Figure 2.10: Two-way interaction examining identification accuracy for the
criterion variable across modeling strategy and sample size
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2.4 Discussion

The major motivation of this simulation was to examine how flexible is the

continuous-time Markov model when data do not adhere to the memoryless

assumption applied in the model. This question was further compounded

with pooling information from a homogeneous and heterogeneous popula-

tions as assessed the magnitude of random effect variance. Performance of

four separate modeling techniques was assessed across three separate analy-

ses. The results offered convergent results describing when a model is con-

strained to include the memoryless assumption (i.e. exponential distribution)

and as random variance increases, not accounting for either of these increases

criterion variable estimation error.

The first ANOVA examined the distance from a model estimated criterion

variable and the population’s true effect. The biggest predictor of estimation

error was the presence of random variance. Specifically, when data were

simulated with a participant specific sampled from a normal distribution with

a variance of 1 this presence or lack thereof, explained roughly 30% of the

error between the true and estimated parameters. While the shape parameter

used to generate the data did not display a strong effect size from this model

the next two set of analyses specifically address shape mismatch between

generated and estimated model. One of the best steps taken to reduce the

error was identified by the model estimation strategy, which explained only

roughly 5% of the total variance, but in the anticipated direction. Specially

error was lower when models were estimated including a random effect in

the estimation, and even lower when the model was estimated assuming

the data were generated from a Weibull distribution, across even wen they

were generated from an exponential distribution. Furthermore, the multilevel
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models displayed equivalent levels of estimation error when no random effect

was present in the data, indicating that estimating the model via a Bayesian

multilevel model potentially offers no drawbacks in this simulation study.

The second model examines the capabilities of the Weibull regressions

to estimate the true population shape’s parameter. The exponential distri-

bution models were excluded from these analyses as the shape parameter is

fixed, at least when translating a Weibull into an exponential distribution.

These models examine the factors that contribute to difficulties when iden-

tifying the true shape parameter, the largest effect size was unsurprisingly

if the data were generated with a shape parameter equal to or greater than

1. The shape parameter becomes much more difficult to estimate when the

true value is greater than one. Consistent with the previous set of analyses,

estimation error also increased when random variance was introduced into

the model. Again, consistent with the previous set of analyses, the multilevel

Weibull model (i.e. the multilevel semi-Markov model) performed the best

at recovering the true shape parameter.

The importance the model to recover the shape parameter is underscored

by the ANCOVA. The ANOCVOA examines the relationship between the

criterion variable estimation error and shape parameter mismatch. There is a

strong positive relationship between these two variables, in fact the ANCOVA

suggests that more than 10% of the error in the criterion variable can be

explained by the shape parameter error. These analyses were constrained to

both the multilevel and the fixed effect Weibull analyses. The exponential

regression is equivalent to a Weibull regression with a shape parameter of 1,

had these models been included in these analyses the estimation error would

have either been 0 or 2; while the no shape estimation error is excellent, the
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error of 2 is larger than the majority of observed differences between true

and estimated shape parameters.

Finally, the last analysis examined the coverage of the true parameter

effect via a logistic regression. Coverage was classified as identifying 0 within

the 95%-BCI when the true parameter was 0 or having the true parameter

effect of 0.8 and excluding 0 in the 95%-BCI. This framework was set up

to mimic recommended practices when applying a Bayesian modeling frame-

work (Kruschke & Liddell, 2018). The results of the model clearly indicate

superior performance when a multilevel framework is applied. Classification

accuracy remained consistently around 80% for both the multilevel exponen-

tial and multilevel Weibull models when estimated with and without true

population random variance. While the fixed effect counterparts accuracy

plummeted to as low as 55%. When these models were estimated without

any random variance, performance across all models improved, however, the

multilevel models still had better accuracy values. What this suggests for

the applied researchers is that there seems to be little to no risk of apply-

ing a multilevel framework for estimating time-to-event analyses. Of course,

this is in stark contrast to some of the published literature that examines

the utility of frailty models. The criticisms surrounding the application of

frailty models examines issues in identifying the model with complex mul-

tistate analyses (Putter & van Houwelingen, 2015). Here, a total of 554

models did not converge at an acceptable level representing less than 0.001%

of estimated models. Suggesting that the Bayesian sampling criteria applied

to estimate these models may reduce these such concerns. It is worth stat-

ing that these previous concerns were made when estimating the multi-state

frailty models for panel data; whereas, the application of these models were
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to intensive longitudinal data, which may reduce the potential concern of

model identification.

This simulation puts forward a compelling narrative for the application

of the multilevel Weibull model when estimating time-to-event data. This

suggestion is even stronger when there is potential for intra-cluster correla-

tion for timing of the outcomes of interest. Studies which examine dyadic

interactions are certainly vulnerable to these such dyadic specific variance.

This is why the applied study in the next section is a strong candidate for

the multilevel Weibull model that is applied.
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CHAPTER 3

Dynamics of Verbal Parental Actions During A Structured

Cleaning Task

3.1 Introduction

Parent-child interactions have been a mainstay in psychological research

for decades. Such topics date back to the invention of talk based therapy

paradigms such as psychoanalysis as developed by Freud (Freud, 1910). More

recently psychology has focused on the quality of the relationship between

an infant and their caregiver such as those assessed by the strange situation

paradigm (Ainsworth et al., 1978). Now, contemporary treatment paradigms

are seeking to structure this relationship to improve parent-child relation-

ships. By structuring the disciplinary and reinforcement practices between

a parent-child dyad, Parent-Child Interaction Therapy (PCIT; S. Eyberg

(1988)), seeks to improve the bonds between a child and their caregiver.

The foundation of PCIT is born out of fields such as social learning, at-

tachment theory, and family systems theory (E. A. Skowron et al., 2024).

Early applications of PCIT were focused on treating externalizing and op-

positional disorders in children (Cooley et al., 2014). The structure of PCIT

involves “coaching” a parent through various types of interactions with their

child. The coaching is performed by a trained therapist. Throughout the
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administration, parent-child interactions are observed by the therapist, the

parent wears a microphone so they can listen to instructions from the thera-

pist. Through this mechanism, the therapist is capable of coaching the parent

through various situations they may face during these therapy sessions. The

administration of PCIT has two distinct stages which either focus on child

directed or parent directed interactions. The child directed stage is focused

on developing positive interactions between the parent and the child. Mas-

tery of the child directed stage is assessed by the frequency of these positive

practices expressed over a 5-minute play session. Parents are instructed to

allow the child to lead play sessions and the parent is instructed to encourage

and praise their child when appropriate. The parent directed stage involves

teaching the parent safe and effective strategies to discipline their child when

children are misbehaving or ignoring their parent. Mastery of the parent

directed stage involves the ability for the parent to enforce these disciplinary

practices (Eyberg et al., 2014; Funderburk & Eyberg, 2011).

Several tasks and outcomes exist which can be used to measure the effi-

cacy of PCIT. The dyadic parent-child interactions interactions coding sys-

tem (DPICS; Eyberg et al. (2014)) provides a fairly uniform process to

analyze the mastery of PCIT. The DPICs is a structured task that is com-

posed of 3 5-minute blocks where the parent and child are recorded during a

laboratory setting session. The first 5-minute session is child-led play, where

the parent is instructed to allow the child to guide what the dyad will be

doing. The next is a 5-minute parent-led play session, where the parent

leads the child in play for 5 minutes. Finally, the last session is a 5-minute

clean-up task, where the parent instructs the child to clean up the room. The

goal of the clean-up task is to simulate a frustrating situation for both the
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parent and child, and to observe and code the parent’s behavior, and if the

child complies with the parents commands. Beyond the actual laboratory

session, the DPICs also provides a coding framework which assigns parental

actions into one of three distinct and nonoverlapping categories. These cat-

egories include PRIDE, neutral, DON’T actions. As the goal of PCIT is to

increase the frequency of positive (i.e. PRIDE) interactions, and decrease the

frequency of negative (i.e. DON’T) actions the DPICs provides a structured

setting to assess the frequency of these behaviors. The specifics of these ver-

bal coding classifications are further expanded upon in the methods section

of this chapter. This task was developed specifically for PCIT, the DPICS

system is highly sensitive to behaviors that are coached in PCIT and other

behavioral parent training programs (Nelson & Olsen, 2018).

Historically, the analyses of the DPICs task have focused on the frequency

of parental verbal interactions (Eyberg et al., 2014). These frequencies typi-

cally capture the total number of PRIDE, neutral, and DON’T verbal actions,

and the child’s compliance to commands. Either the ratio or tallies of these

behaviors will then be used as a criterion variables to assess PCIT treatment

effects. Such practices have long been the analytic paradigm for DPICs stud-

ies, for example these tallies have been used to estimate factor scores (Cañas

et al., 2022), examine the efficacy of PCIT intervention (Abrahamse et al.,

2016; Bjørseth & Wichstrøm, 2016; Cooley et al., 2014), and to assess the

psychometric properties of the DPICs (Cañas et al., 2020; Gridley et al.,

2018). Analyzing the outcomes in this manner of course ignores how richly

the data are coded in terms of what and when an action occurs. Recent steps

have been taken to analyze the DPICs via incorporation when and how much

of parental actions are performed.
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Temporal analyses of the DPICs task have been a relatively recent method-

ological pursuit. Examples of these analyses specific to the DPICs include ap-

plications of both discrete-time dynamic structural equation modeling (Somers

et al., 2024), and a hidden Markov model based approach (Lunkenheimer et

al., 2017). The former deviates from the current study because data are

collapsed into specific length epochs. The application of the discrete-time

structural equation modeling as applied by Somers et al., required assigning

all actions taken within 10-second epochs, and using these as a multivariate

streams of data. This work allowed the authors to examine dynamic relation-

ships between the parent’s harsh behavior and the child’s compliance across

and within epochs. The work by Lunkenheimer et al., did use data from the

DPICs analyses, but included data beyond the coding of the parent’s verbal

exchanges. The parents had streams of multiple behaviors including posi-

tive behaviors such as: directive, positive reinforcement, engagement, and

emotional support behaviors, as well as negative behaviors which included:

off-task disengagement, intrusion, and negative discipline. While these data

may be available to any video-recorded DPICs assessment, they go beyond

the simple coding structure that is inherent to both that PCIT and DPICs

share. These data were coded into 1-second epochs, and a hidden Markov

model was used to identify transition between engaged and unengaged states

across dyads.

The goal of this study is to examine verbal dynamics of parents during the

DPICs study and how the administration of PCIT influences these dynamics.

Parents who are at high risk of abuse or neglect were recruited and pre-

and post-PCIT DPCIS administrations were used to examine differences in

verbal interactions following the administration of PCIT. Furthermore, we
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also seek to incorporate the child’s compliance behavior and to examine how

this influences the parents behavior. These set of analyses seek to incorporate

the minimally coded DPICs analyses but incorporates the richness of the

temporal aspects of these data to examine the dynamic behaviors.

3.2 Methods

The goal of this study was to examine how PCIT therapy influences parent-

child interactions during the administration of the DPICS task. The tasks

required to examine this goal are described below, briefly this required, re-

cruiting participants who were at high-risk for abuse or neglect of their chil-

dren, administer a pre-treatment DPICs session, assign participants to either

a case or intervention cohort, administer the PCIT therapy or service-as-usual

(SAU), and then administer a post-treatment DPICs. The DPICs data were

coded for every verbal interaction the parent had with their child, and these

verbal interactions were the unit of analysis for all semi-Markov models. The

semi-Markov models examined the timing and type of interaction a parent

had with their child during the clean-up task of the DPICs task. These in-

teractions were then analyzed using a multilevel Weibull regression model.

These steps are further expanded upon below.

3.2.1 Participants

Parents and their 3–7-year-old children were recruited from the Oregon De-

partment of Human Services (DHS) child welfare and self-sufficiency units.

Prospective families completed an initial phone screen with a research re-

cruiter who introduced the study and inclusion criteria, as follows: 1) parent

is 18+ years old at study entry and 2) is the participating child’s biological
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or custodial caregiver; 3) participating child is 3 to 7 years old; 4) parent and

child were living together at least 50% time; 5) both spoke English. Parents

with a history of perpetrating child sexual abuse were excluded along with

their children due to contraindications for PCIT services. Further informa-

tion on the clinical trial’s recruitment procedures is available in the study

protocol (Nekkanti et al., 2020; E. Skowron, 2023). The study employed a

parallel group design, in which families were randomized to PCIT interven-

tion or DHS services-as-usual (SAU) control conditions, blocked by child sex

and age. An allocation ratio of 1.5:1 to intervention and control conditions

helped to ensure sufficient families were randomized to intervention. Alloca-

tion was concealed from research assistants who conducted the assessments.

Of 228 families scheduled for an intake, 204 parent-child dyads completed pre-

treatment assessments and were randomized to condition: PCIT intervention

group; n = 120; and SAU control group; n = 84. Sample size was determined

based on Monte Carlo simulations using Mplus (Linda K., Muthén & Bengt

O., Muthén, 2017) to enable detection of small intervention effects and small-

to-moderate mediation effects with estimated power greater than 0.80. At

study entry, parents were between ages 18 and 64 (M = 32.32, SD = 6.38)

and were predominantly mothers (n=180). The majority (98%) of partici-

pating parents were biological parents of their child. Less than half (46.3%)

of parents were employed, and 78.5% of households were living below the

federal poverty line based on 2020 U.S. Department of Health and Human

Services guidelines. A majority (73.5%) of parents had experienced 4 or more

Adverse Childhood Experiences (ACEs M = 5.24, SD = 2.69) themselves.

Participating children were 3-7 years of age (M =4.76, SD = 1.40 years) with

the exception of one child who turned 8 years-old a few days before a canceled
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assessment was rescheduled. A majority (69.1%) of children had experienced

3 or more ACEs at study entry. Only one-third (34.8%) of parents reported

elevated Eyberg Child Behavior Inventory (Eyberg & Robinson, 1983) be-

havior problems. Regarding the adequacy of randomization, no significant

differences were observed across conditions on any pretreatment variables ex-

cept marital status (38% of parents were married or living together in the

PCIT condition versus 24% in the control group).

The sample was drawn from consecutive family referrals received between

April 2016 and June 2019 from the Department of Human Services-Child

Welfare and Self-Sufficiency, and who consented to enroll in the study. The

study was registered with clinical trials.gov (Coaching Alternative Parent-

ing Strategies Study; NCT02684903) and procedures were approved by the

Institutional Review Board. Written informed consent was obtained from

participating parents and the family’s caseworker in cases where the Depart-

ment of Human Services maintained legal custody of the child while parents

retained physical custody. Children and their parents in both conditions

completed identical pre- and post-intervention assessments. The majority of

enrolled families in the control group (81%) and PCIT intervention condition

(83%) completed the post-treatment assessments, which were conducted on

the same timeline across the conditions (i.e., M=7.8, SD=2.3 months post-

study entry). Families were compensated for attending assessments, reim-

bursed for transportation costs, and received refreshments, rest breaks, and

childcare for non-participating children. Participating children received a

small prize.
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Action State Verbal Classification
Pride Compliable Commands, Behavior Description, Praise, Reflection
Neutral Neutral Talk, Questions
Don’t Negative Talk, Non-Compliable Commands

Table 3.1: DPICs Verbal coding actions for Clean-up task

3.2.2 DPICS Dyadic Interaction Task

Using a standardized set of toys distributed across the playroom table and

floor, child and parent dyads completed a series of three 5-min interaction

tasks. In the Child-Led Play task, parents were instructed to let their child

decide what to play with and follow their child’s lead in the play. Next during

the Parent-Led play task, parents were instructed to choose the play activity.

In the final task, Toy Clean-Up, parents were instructed to direct their child

to clean up all of the toys by themselves. Digital video-recording enabled of-

fline transcription and behavioral coding via the Dyadic Parent-Child Inter-

action Coding System-IV (DPICS-IV; S. Eyberg (1988); see below). Parental

verbal actions were coded into one of several distinct and non overlapping

categories (see table 3.1). The timing of each of these behaviors and these

specific states composed an individual’s data stream (see figure 3.1A&B for

an example).

3.2.3 Modeling

In order to model transition dynamics the time between specific state emis-

sions were modeled using a continuous-time semi-Markov model parame-

terized via a multilevel Weibull regression. The multilevel framework was

applied given the qualitative differences observed in the frequency of verbal

actions within specific dyads (see figure 3.1 A&B). This required regressing

the sojourn times for specific state transitions (see figure 3.1C) onto specific
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Figure 3.1: Comparing the most active dyad during the clean-up task with
the most passive active dyad

criterion variables. The criterion variables included if an assessment was

performed at a pre- or post-intervention assessment, if the participant was

assigned to the SAU group or the intervention group, and the specific transi-

tion type. All of these analyses follow an intent-to-treat paradigm such that

for any dyad assigned to the intervention cohort, even if they did not receive

any PCIT sessions, they were coded as the intervention group. All variables

and up to all three-way interactions were included.

The next model examines how the compliance from the child influences

the parents verbal actions. This required estimating an additional model

because compliance is only possible following a compliable command which

is coded as a PRIDE action. Thus, these terms could not be included when all

possible interactions were explored because the transitions out of the neutral

and DON’T states can not interact with compliance. In order to examine the

influence that compliance has on parent’s actions, sojourn times following all

compliable commands were regressed onto the same criterion variables as in
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the previous model plus an additional variable detailing if the child complied

with the command.

Models were estimated using a Bayesian framework. A total of 10,000

samples were performed with a burn-in length of 2,000 samples. Chains were

thinned by including every 10th estimated sample. A total of 6 chains were

estimated. The sampling was performed using the NUTs algorithm which is

standard to the STAN software (S. D. Team, 2023). Significant effects were

examined via the 95%-BCI, any four-way or three-way interaction which did

not include 0 in the BCI was further examined. Interactions were examined

both by observing the mean sojourn time of a state, as well as examining the

hazards for a specific transition, the former informs temporal differences on

when transitions occur, while the latter incorporates transition probabilities

the estimation. All analytic code is available online here.

3.3 Results

3.3.1 All Transition Summary Statistics

In total, there were 23,862 verbal interactions recorded across all groups, and

waves. The most frequent state was the neutral state with a total of 12,007

neutral expressions observed. There were a total of 6,120 PRIDE expressions

and the most infrequent state was the 5,735 expressions. The quickest emis-

sions were observed within the DON’T into DON’T state interactions, with

a mean sojourn time of 2.7 seconds (see figure 3.1C). The slowest transitions

were observed between the PRIDE into PRIDE transitions with an average

sojourn of 4.5 seconds (see figure 3.1C).
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3.3.2 Model Convergence

Model convergence was assessed using the R̂ statistic as well as visual as-

sessment of the autocorrelation function within each parameter’s samples.

The first examines if the chains had mixed R̂ values below 1.05 are generally

deemed as evidence that chains have mixed and convergence was obtained.

All parameter R̂ values were less than 1.05, indicating chains mixed well. The

second, visual assessment of the auto correlation functions from the drawn

samples indicates if the sampling procedure was able to sufficiently examine

the parameter space. Autocorrelations with lag’s greater than 1 were all less

than .1 suggesting little to no relationship of prior samples influence future

samples. Thus, the evidence indicates that the Bayesian models converged

and were able to adequately sample the parameter space.

3.3.3 Wave by Group Effects Across All Transition Patterns

The next set of analyses examines both treatment and practice effects. Prac-

tice effects are indicated by a wave by transition-type interaction. This inter-

action is controlling for group effects. In total, three interactions saw a wave

effect: the first was the PRIDE into PRIDE transition (β = 0.14, BCIlower =

0.02, BCIupper = 0.26; see figure 3.2), this suggests that on the second ad-

ministration of the DPICs, sojourn times increased for these transitions.

The second effect was observed for the PRIDE into neutral interactions

(β = −0.21, BCIlower = −0.36, BCIupper = −0.05), indicating emission from

the PRIDE state into the neutral state occurred quicker in the second admin-

istration of the DPICS. The last practice effect was observed for the neutral

into neutral interactions (β = −0.17, BCIlower = −0.30, BCIupper = −0.03)

indicating quicker emissions from neutral into neutral upon readministration
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Figure 3.2: Comparing pre- and post-intervention sojourn times across
groups

of the DPICS.

The next set of analyses examines the three-way interactions which ex-

amines the PCIT effect on the readministration of the DPICs sojourn times.

Non-zero effects were observed in two transition times when examining these

effects. The transitions from PRIDE into neutral for the intervention co-

hort displayed a longer sojourn time compared to the control cohort at wave

3 (β = 0.13, BCIlower = 0.01, BCIupper = 0.32; see figure 3.2). The sec-

ond transition for the neutral into DON’T state (β = 0.10, BCIlower =

0.01, BCIupper = 0.23; see figure 3.2), again indicating a longer transition

time for the intervention cohort.

The next set of analyses examines hazard rates between any of these tran-
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Figure 3.3: Comparison for PRIDE to PRIDE hazard rates comparing group
and wave effects

sitions. While the previous models examine temporal differences, these anal-

yses also incorporate the probability of transitions observed between specific

states. The specific transition of interest were comparing the hazards of tran-

sition from PRIDE into PRIDE, comparing the group by wave interaction.

Comparing the hazards of this transition across groups at the first assessment

of the DPICS displays no group differences (see figure 3.3); however, the post

assessment displays a clear separation in the hazards when comparing the in-

tervention versus the control group. As the number of PRIDE expressions

was greater for the intervention cohort on the second administration of the

DPICs this growth was predominantly driven by within PRIDE transitions.
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3.3.4 Examining The Influence of Compliance on The Dynamics

Parental Verbal Actions

The final set of analyses focus specifically on how child compliance influ-

ences the dynamics of parental verbal interactions. A total of 3641 compli-

able commands were delivered across all groups and waves. Of these, the

majority were complied with (n=2494). In order to examine these trajecto-

ries, child compliance was coded following any compliable command. The

first set of analyses examine the sojourn times for state transitions follow-

ing any compliable command delivered by the parent, which is coded as a

PRIDE action by the DPICs (see figure 3.4). The first effect of interest

was the main effect of compliance which increased sojourn times across all

transition types (β = 0.29, BCIlower = 0.01, BCIupper = 0.55). The second

effect worth highlighting was an interaction involving transition type, group,

and wave, this was observed for the PRIDE into PRIDE transitions. This

interaction suggested a longer sojourn time for the intervention cohort fol-

lowing a noncompliance compared to the control cohort at second DPICs

assessment(β = 0.48, BCIlower = 0.05, BCIupper = 0.91; see figure 3.4). The

last interaction in this same category to highlight involved transitions from

PRIDE into DON’T when comparing case and control cohorts at second ad-

ministration of the DPICs. The intervention cohort saw a increase in their

sojourn times when transition from PRIDE into DON’T on the readminis-

traion of the DPICs (β = 0.71, BCIlower = 0.18, BCIupper = 0.1.06).

Finally, the last set of results examines hazards for transitions into PRIDE

across the compliance of the child, wave, and group (see figure 3.5). Hazards

at the first administration of the DPICs suggest very little separation between

the groups within a the compliance categories. A separation is distinguished
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Figure 3.4: Influence of child compliance on sojourn times

when comparing the hazards from the second administration of the DPICs.

When a child does not comply to a command, the control cohort has a higher

hazard rate, when a child does comply, the intervention cohort has a higher

hazard.
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Figure 3.5: Hazards comparing PRIDE to PRIDE transitions across group,
wave, and child compliance
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3.4 Discussion

The goal of these analyses was to examine what influence PCIT had on

dyadic verbal interactions during a structured clean-up task as administered

within the DPICs task. This was performed using a semi-Markov model

as parameterized through a multilevel time-to-event Weibull model. These

models examined general dynamics of parental verbal expressions as well as

the influence that a child’s compliance has on their parents. The results

displayed both inter- and intra-state differences and timing when comparing

the first and second administration DPICs, as well as some group differences

following the administration of PCIT.

The largest differences in group dynamics were observed in arguably the

most desirable state in the DPICs hierarchy. Parents in the intervention

cohort displayed greater hazards for a PRIDE into PRIDE transition. As the

goal of PCIT is to encourage clear and concise direction and positive reward

when these actions are performed (Funderburk & Eyberg, 2011; Lieneman

et al., 2017; E. A. Skowron et al., 2024). The PRIDE state captures the

actions that are required to perform this, during the PCIT sessions parents

are instructed to give clear direct commands for what is being requested

of the child, upon completion of the command, the parent is instructed to

praise the child for their compliance. This is to say the parent is being

actively instructed or how to engage in pride actions and how to maintain in

these PRIDE states. This was evidenced by increased hazards for the PRIDE

to PRIDE transitions, as well as growth in the probability of transitioning

from PRIDE into PRIDE when comparing the control with the intervention

cohort.

The second goal of PCIT is lower the frequency of DON’T state expres-
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sions. the DON’T state captures behaviors which are though to be evoking

frustration within the dyad (Schuhmann et al., 1998). For example, the most

frequently expressed DON’T state were noncompliable command. An exam-

ple of a noncompliable command would be “clean up” where the command is

far too ambiguous for the child to comply to these instructions. The present

results offer little differences in the frequency of these behaviors, for exam-

ple, the probability of DON’T intrastate transitions for the control cohort

remained relatively stable (pd→d;t1 = .45; pd→d;t3 = .42), and the intervention

cohort displayed a similar pattern (pd→d;t1 = .43; pd→d;t3 = .45). One poten-

tial explanation for this was the sample of interest. The current study was

predominantly focused on parent-child dyads who were at high risk of abuse

or neglect. The DON’T actions, and noncompliance are potential mecha-

nisms for instances of abuse (Rodriguez et al., 2018; Rodriguez & Tucker,

2015).

The next set of analyses examines how the compliance from the child

influences the parent’s actions. This required a separate model which was

specific to any compliable command the parent expressed. The most clear

separation between the first and second administration of the DPICs was

evidenced in the sojourn times of the PRIDE to PRIDE transitions. Sur-

prisingly, for the control cohort, when compliance was not observed their

PRIDE exchanges following this noncompliance were quicker compared to

when compliance was observed. Additionally, the PRIDE following a non-

compliance was more than one and a half seconds quicker in the control cohort

(s=2.75) versus the intervention cohort (s=4.2) following PCIT. Previous re-

search has examined similar patterns where parent-child dyads reinforced

each others negative behaviors (Lorber et al., 1984). Here a similar pattern

69



is observed, where noncompliance, when it is followed by a PRIDE behavior,

occurs quicker in the SAU cohort.

Another interesting result from the compliance analyses were how the

sojourn times across all transitions following a compliance were increased

across almost all transitions across group at the second administration of

the DPICs. The exception to this pattern were transitions into the neutral

state for the control cohort (s=3.8). The main effect of compliance within

the intervention cohort may be present due to the structure of PCIT, where

parents are instructed to wait for their child to complete the task before re-

warding the child’s behavior. However, because this main effect exists across

both the control and intervention cohort may be present due to limitations

in the DPICs coding system.

Finally, it is worth noting that the most frequent transitions are within

and between the neutral state. The neutral state may be the least studied

of any of the states, yet it is the state that parents are most frequently ex-

pressing. This pattern is true for both models: parents displayed a total of

1907 neutral actions following a compliable command regardless of the child’s

compliance or not representing more than half of all possible transitions fol-

lowing a compliable command, and a total of 12,596 state expressions across

the entirety of the clean-up task, again representing far more than half of all

state expressions.
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CHAPTER 4

Discussion

As the capabilities of researchers to acquire streams of data from unique

participants increases, the issues of analyzing data acquired from heteroge-

neous clusters also increases. Pooling across heterogeneous populations has

been incorporated into many of psychology’s methodological advances. The

methods and analyses discussed in this project showcase the importance and

capabilities of multilevel survival analyses to accommodate heterogeneous

populations. The alternatives to these practices are either case-study, sin-

gle subject based designs, or to ignore the nesting and potentially reduce

inferential capabilities of the models. The question now returns to the orig-

inal methodological continuum posed by Allport of choosing a location be-

tween idiographic and nomeothetic (Allport, 1937). The methods posed in

this analysis seek to pool information and accommodate within-individual

characteristics with population inferential capabilities allowing researchers

to straddle the idiographic versus nomeothetic continuum.

The growth of ILD within the psychological sciences demands method-

ological development which can accommodate heterogeneous populations

when estimating population fixed effects. Historically, the motivation from

experimental psychological researchers has been to reduce the impact of in-

dividual differences to increase inferential capabilities of studies (Cronbach,
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1957). Now, as methodological innovation has lead to the introduction of

EMA designs, the experimentalist has less capabilities to control for the

individual’s characteristics when designing studies. It now becomes more

difficult to control for population heterogeneity through experimentation in

these open world studies.

Pooling across individuals in ILD studies is not novel. Examples of multi-

level structural equation modeling are present across the literature. Methods

include more basic single unit analysis such as the auto regressive model, to

more advanced state space models such as the dynamic structural equation

modeling (Asparouhov et al., 2018). Examples exists for multilevel vector au-

toregressive models (Y. Li et al., 2022), as well as multilevel factor analysis

(Song & Zhang, 2014). This dissertation describes an alternative modeling

technique which can be applied when data are manifest-state and continuous-

time in nature. Perhaps the motivation in the psychological sciences is to

navigate towards state-space models, these models are applicable when the

true state of the unit of analysis is better assessed by a measurement or la-

tent model. While the methods proposed here were described purely using

manifest states, the same multilevel Weibull regression can be used when

states are latent (Yu, 2010).

One of the major motivations of this study was to identify how time-to-

event based analyses can be used akin to Markov models. This alternative

framework allows for more flexible parametric distributions to be used to

analyze the hazards of event timing. Additionally, this parametric approach

can accommodate likelihood based estimation procedures such as maximum

likelihood and the Bayesian approaches utilized in this dissertation. This

is important for the advancement of these analytic approaches given the
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potential issues when estimating complex multilevel models in a maximum

likelihood approach.

Of course, the utility of these models to researchers is only feasible once

they make their way into software packages which are more readily accessed.

Here in lies the biggest limitation of the methods examined in this study.

There are few software packages which perform Markov analysis in program-

ming languages such as R. For example packages such as msm exist, but cannot

incorporate a multilevel modeling framework (Jackson, 2011). To date, there

are no software packages which perform manifest multilevel Markov modeling

in R. One package which can accommodate this workflow within these analy-

ses is the flexsurv package, which performs time-to-event analyses, but this

is only implemented in a frequentist based approach, potentially limiting the

complexity of random effects. For semi-Markov models, packages such as

SemiMarkov can be used to fit these models, but multilevel extensions are

not included (Król & Saint-Pierre, 2015). The software implemented in this

package required Bayesian estimation through the STAN software. Bayesian

software typically has a higher barrier to entry than more commercial free-

ware software such as R.

4.1 Simulation

The simulation study examined the capabilities of time-to-event models to

estimate both true Weibull shape parameters and the magnitude of the pop-

ulation criterion variable. Two parametric distributional families were used

to model simulated sojourn times: exponential and Weibull. These models

were also estimated with and without random effects. A total of 128 factor

permutations were created, 1,000 samples were drawn within each sample
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permutation, and four models were estimated within every sample yielding a

total of 512,000 estimated models. The factors which most heavily influenced

the parameter recovery were largely the magnitude of random variance, and

the modeling strategy used to recover parameters.

Random variance is an ever present issue in psychological data. Incor-

porating a multilevel framework across more modeling frameworks would be

prudent for psychologists. The case is further underscored considering that

cognitive questions are theorized to be a random sampling from all possible

questions which can be used to assess a latent trait (Revelle, 2024; Steyer,

1989; Yarkoni, 2020). The analysis here were posed in a different manner,

that being random samples of individual’s as opposed to questions, but the

outcome is the same: random variance for time-to-event models must be

respected. One of the more pronounced findings was the resilience of the

multilevel exponential and Weibull model to identify the true parameters, as

well as their ability to cover the true population parameter. In fact even when

no random variance was present in the data, the performance of the multi-

level and fixed effect models was near equivalent when examining criterion

variable estimation error. Of course, when random variance was large, this

is when errors were large and nonignorable, on average the multilevel models

displayed error of roughly .77, while the fixed effect Weibull model displayed

an error of .85, and the exponential model displayed an error larger than

1.2. These results inform researchers that the most resilient models would

be the multilevel nonconstant hazard (semi-Markov model) with respect to

identifying a criterion variable when random variance may be present in the

data.

The second ANOVA examined the capabilities to recover the true shape

74



parameter. Additionally, an ANCOVA examined error when estimating the

criterion variable’s magnitude that can be attributed to the misestimation of

the shape parameter. First, the ability to recover the true shape parameter

was much greater in the multilevel Weibull approach with a mean error of

0.4, compared to the fixed effect approaches mean error of more than 1.4.

This is across all simulation factors, but it is important to incorporate these

findings with the ANCOVA results. The ANCOVA provides a glimpse into

how much the criterion variable estimation error can be attributed to the

shape parameter error, roughly 12% of criterion variable estimation error can

be attributed to the shape parameter error. This relationship further varied

depending upon other sampling permutations but the results in the best case

sampling permutations still indicated a relatively strong effect. These results

suggest the multilevel Weibull model performed the best at estimating the

true shape parameter, which reduces criterion variable estimation error.

Finally, the logistic regression examined the capabilities for the estimated

models to cover the true parameter within the 95%-BCI. This practice fol-

lows some best recommendations for the applications of Bayesian models.

The most powerful predictor for recovery was unsurprisingly sample size.

A larger sample size doubled the odds of correctly recovering the true pa-

rameter when ignoring all other sampling factors. The next best predictors

were the application of either a multilevel exponential or a multilevel Weibull

model, with a near equivalent odds ratio across the both of these. Now, one

potential contributor to this would be the larger “standard error”; in the

Bayesian instance, this would be the sampling distribution. The influence of

these practices were attempted to be controlled for by only allowing non-zero

BCI intervals for the non-zero criterion variable. That is, both power, the
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ability to detect an effect, and specificity, the ability to identify a null effect,

were examined. Additionally, a fairly aggressive sampling practice was taken

to reduce the influence of autocorrelation samples, but the ACF were not

examined due to the number of models estimated.

Across all of these different models, it was surprising how little influence

the additional simulation factors influenced the estimation of both the cri-

terion and shape error. The additional factors included observation length,

transition matrix, and the range of the scale parameters. These factors dis-

played no effect sizes that merited further discussion. This may either speak

to the resilience of the time-to-event models to recover the true parameters

across these simulation factors, or a potential limitation to how the sim-

ulation was implemented. Regardless, it is worth pointing out that these

simulation factors carried little weight across these models.

Limitations of the simulation study include, but are not limited to, the

methods used to generate the data, the small number of factors included, the

naive priors, and the lack of any estimation error in the criterion variable.

The general take away from the simulation study should underscore the flex-

ibility of a Bayesian approach using the Weibull model as an alternative to

Markov models for psychologists. However, because the data were generated

by sampling sojourn times from various Weibull distributions, it should be

less surprising that the Weibull models were the best performing analytic

choice. However, the performance of the Weibull model was near equivalent

when the data were generated from an exponential distribution, which is the

distribution that a continuous-time Markov model employs when estimating

transition intensities (Jackson, 2011; Smith & Stoneley, 1997). Both the fac-

tors, and their levels, were selected based on a brief literature search of the
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application of Markov models across the psychological field, and specific to

the empirical study included in this dissertation. One of the difficulties for

implementing an EMA study is of course, the benefit of doing so, partici-

pants maintain their naturalist lifestyle. This introduces all possible type of

confounding influences that cannot be controlled. While the simulation pro-

tects against any possible sources of variation that cannot be identified, this

of course is not reflective for the true acquisition of ILD discrete-state data.

The selection of priors in the Bayesian framework is very influential, even

more so as the sample size decreases. Here, diffuse and naive priors were em-

ployed as to ease the implementation and keep a uniform processing stream

across all models, nonetheless, applied scientists should be cautioned to iden-

tify and justify the priors whenever possible. Finally, one of the biggest and

most consistent issues when working with behavioral data is the reliability

and the validity of the data being measured. This simulation study chose

to ignore both of the issues when creating the the criterion variable. The

capabilities of these models to identify the true relationships were best case

scenarios, introducing measurement error into this equation will likely reduce

the models capabilities to identity these relationships.

The conclusions of this simulation, while considering these limitations,

still suggests the Weibull model in-lieu of the exponential Markov based

approach as an attractive alternative.

4.2 Verbal Dynamics of Parents During a Clean-up Task

The semi-Markov model employed in the empirical study, parameterized as a

time-to-event Weibull regression, sought to examine how parents verbal be-

haviors are influenced by both the administration of PCIT, and compliance
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from their child. The results suggest that after the administration of PCIT

parent’s display greater hazards (i.e. more likely) to exhibit PRIDE behav-

iors. One surprising finding was examined by the timing of PRIDE events

following a noncompliance from the control cohort, where PRIDE behaviors

occurred quicker in time compared to the behaviors where a compliance was

observed.

This study does provide information into how and when PRIDE actions

are likely to occur, this is even more important considering the sample was

composed of families that were at higher risk for abuse and neglect. This was

evidenced by the higher than average adverse childhood experience counts

observed in both the children and their parents. Encouraging positive inter-

actions in families at a higher risk of externalizing problems has previously

been shown to be a protective factor to reduce externalizing problems in

their children (Deater-Deckard et al., 2004). While the sample here is not

specifically at risk of externalizing behaviors, here we show how PCIT does

move the bar towards greater PRIDE behaviors, and how child’s compliance

is greater rewarded with PRIDE behaviors following the child’s compliance

in the PICT cohort. These positive interactions are an important index for

the efficacy of intervention (Granic et al., 2007).

Applying a multilevel semi-Markov model was a novel tool for the analy-

sis of the DPICS data, and prudent given the magnitude of both the random

variance and the shape parameter. Population dynamics are unsurprisingly

heterogeneous when examining the verbal interactions. The magnitude of

the random variance term was 0.60, suggesting large heterogeneity in time-

to-event patterns across dyads. Additionally, the estimated shape param-

eter was 1.5, indicating a monotonically increasing hazard rate, suggesting
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a continuous-time Markov model may not be appropriate. The simulation

study suggested that when random variance was large, and the shape param-

eter was misestimated, criterion variable error was larger. Thus, the most

appropriate analytic choice for these data was the multilevel semi-Markov

model.

The methods applied within this empirical study were utilizing the mini-

mally coded DPICs data, other studies have expanded the coding system to

better incorporate parent and child behavior into the analyses. A good exam-

ple expanding the coding system is observed by Lunkenheimer et al., where

parental behaviors were coded into one of nine possible behaviors, and the

child’s were coded into one of seven possible behaviors. These behaviors were

coded as either present or not present, and were coded on a second-by-second

basis. A hidden Markov model was used to examine the dynamics across nine

states composed of both the child and mothers behaviors. Similar findings

were present suggesting that intra-state transitions of positive, neutral, or

DON’T action transitions were greater (Lunkenheimer et al., 2017).

One realm that has not received much attention in the DPICs analyses is

the most frequently visited state observed in this empirical study. The most

frequent state was the neutral state. This state is composed of both neutral

talk, and questions. The greatest intra-state transition probabilities were in

the neutral state,additionally, the greatest inter-state emissions from PRIDE

were into Neutral, and the same was observed for the DON’T behaviors. The

neutral state composed more than half of all verbal interactions between the

parent and their children, yet, the literature is fairly agnostic to coding these

behaviors, or encouraging them throughout the administration of the DPICs.

Limitations to the current methods stem both from the coding system
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applied as well as the inability to predict the probability of compliance. Ad-

dressing child compliance is an important goal when trying to reduce exter-

nalizing behavior as well as abuse in children (Lind et al., 2020; Somers et al.,

2024). One of the benefits of the clean-up task is also an inherent drawback,

the task is free form in nature. The parents instruct their children to clean

the room, the dyads receive no further instructions. The verbal interactions

are then thought to be as naturalistic as possible, even though the dyads

are being monitored during the task. The goal of the DPICs is to assess

the compliance rates of children during the clean-up task, but compliance is

defined as compliance to a verbal command from a parent. Some dyads may

be penalized if the child cleans the toys without verbal instruction based on

this coding framework. Thus, a child who completes the task without verbal

instruction, may be summarized as a noncomplient child. Of course, this

is built on an even larger issue inherent to the discretization of any verbal

interaction, the coding systems employed. The PRIDE behaviors are com-

posed of what are deemed and coached to be positive interactions by the

PCIT therapy, yet the quality of these PRIDE behaviors is lost based on

the binary coding structure employed. Both direct and indirect commands

were included in PRIDE events for this study when direct commands elicit

better compliance. Additionally, nonverbal actions are ignored completely

from these analyses, so any nonverbal interaction is excluded. This can give

the effect that some less verbal dyads contribute less, when their interactions

may be equivalent to any of the three coded states. Finally, the methodology

employed in this study examines the most probable state transitions, and

the timing of these transitions; however, longer sequences of behaviors may

very well influence these trajectory. For example, PCIT attempts to encour-
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age PRIDE behaviors following compliance, yet these analyses provide little

to no insight into the correct sequence of behaviors. Incorporating previous

steps can be readily incorporated into the Weibull regression framework, this

process was not examined in the current study. It would be interesting to

better examine a longer sequence of parental actions and the influence this

has on the child’s compliance as well as the dynamics of the parents actions.

4.3 Future Work

The use of time-to-event models are important for questions which answer

“whether or when”; multi-state time-to-event models can be used to examine

similar questions when there are multiple events of interest. The method-

ology proposed in this dissertation, that of a multilevel Weibull regression,

should be attractive to psychologists as continuous-time discrete-state data

become more readily available. Several facets of time-to-events models were

not explored in these analyses such as using censored data. The censoring

of data occurs when the timing of an event is not known. Two types of cen-

soring exist: left and right censoring, left censoring occurs when the event

occurred within a range of known times, and right censoring occurs when

the event has not yet been observed (Clark et al., 2003). Both of these are

possible to exist in psychological data. Given that typical EMA studies may

not catch the true timing of potential transitions given the temporally ran-

dom sampling, incorporating these limitations would be important for future

studies.

Another big appeal for these time-to-event models are the ability to in-

corporate both time variant and time-invariant predictors (Lougheed et al.,

2019). Incorporating time variant predictors into longitudinal data can in-
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troduce issues such as non linearity. The empirical analyses in this study

used time variant predictors such as compliance to a command from a child

to their parent. This is a binary predictor in nature, but data with more

complex compositions can be incorporated and relationships can be modeled

using complex approaches such as spline models.

Finally, stepping back and examining the application of time-to-event

models, psychology can incorporate these models into additional fields of

study. Psychometrics may benefit from these types of models. Reliability

analysis, in the engineering framework, estimates the time until a system

fails. Reliability analysis in the psychometric literature examines how con-

sistent a test is after repeated administration. Yet, in the psychological litera-

ture, temporal differences between the readministration of tests are handled

in nonunifrom methods. In fact, the practice effect are typically handled

in nonuniform ways generally using techniques that are not appropriate for

temporal differences, these practice effects are very influential across psycho-

logical tests (Bartels et al., 2010). The time-to-event models can be used to

examine when scores differ, can incorporate explanatory variables into pre-

dicting these differences, and of course examine the temporal component of

these differences as well.

4.4 Conclusion

Science progresses in incremental steps, having the right data and the right

model facilitates this process. Selecting the best methodology for time-series

analysis further complicates these problems, especially when data are sam-

pled from a heterogeneous population, or working with dyads (Gates & Liu,

2016). The methodology here seeks to address a specific methodological
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need when data are composed of nonoverlapping discrete-state data acquired

from a continuous-time sampling procedure. The Weibull regression offers

an attractive methodological stream which can incorporate complex random

effect structures estimated by Bayesian sampling procedures. An additional

distinguishing aspect of the data examined within these analyses were the

presence of both variant and invariant predictors. The Weibull regression

was capable of handling both, further underscoring why this is an attractive

methodological tool for dyadic analyses.

Using this methodology it was shown how PCIT influences parental be-

haviors. Specifically, greater intra-state transitions within the PRIDE be-

haviors, as well as PRIDE behaviors following a complied behavior. These

analyses were capable of pulling information across a wide range of hetero-

geneous verbal interactions patterns. Other attempts to perform this have

applied multilevel discrete-time Markov models. This dissertation has show-

cased the capabilities to pool heterogeneous continuous-time discrete-state

analyses for verbal interactions within the DPICs protocol. This will facil-

itate the analysis of similar data, and can be easily extended to work with

multivariate data in a similar capacity.
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