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Abstract

The electromagnetic spectrum is a finite resource that has become increasingly

congested as the use of wireless communications and RF applications have expanded.

With increased congestion, dynamic spectrum sensing and spectrum sharing tech-

niques have been of increasing interest. However, dynamically accessing the spectrum

on a pulse-by-pulse basis breaks traditional pulse assumptions that are used to inform

range-Doppler processing. Additionally, even with a dynamic hopping scheme, more

spectrum than is available may be needed to successfully carry out critical radar tasks,

creating two unique challenges.

First, this work addresses pulse-by-pulse agility in two parts. This work presents

a mismatched filter technique to reduce range-sidelobe modulation when processing

a CPI of bandwidth agile pulses. Additionally, a modified backprojection technique

enables Doppler processing of frequency agile CPIs. These two techniques work to-

gether effectively on CPIs of fully agile pulses, and real-world experimental data ver-

ifies their performance.

Second, this work develops a demodulation/remodulation estimation and extrac-

tion processing chain that actively cancels interference from orthogonal frequency

division multiplexing sources and provides a 19 dB improvement in radar detection

performance. When combining active interference cancellation and pulse agile pro-

cessing, this work provides the tools to ensure radar systems can operate continually

in an environment with a congested electromagnetic spectrum.

xvii



Chapter 1

Introduction

The electromagnetic spectrum is a finite resource with increasing demand from

government, industrial, and commercial interests. The spectrum has long been divided

into bands; each allocated to a single user with guard bands and regulations meant to

limit cross-band interference. However, as wireless communications proliferate to in-

clude more users, more devices, and new data-intensive applications, the network’s

need for additional spectrum only grows. To provide more spectrum for communica-

tions networks, allocations must be taken from other users, including radar.

The competitive and commercial nature of communications provides a very clear

utility that justifies additional spectrum allocations for next-generation communica-

tions networks. The utility of radar allocations is harder to define, especially in the

bits per hertz framework used for communications [1]. Wireless network utilization

of spectrum varies heavily with time and geographic location based on the number

of active users [2]. Consequently, by leveraging spectrum sharing techniques, a sec-

ondary user can identify and leverage unused spectrum, leading to more efficient use

of bands that are not actively used by the primary user. Many sharing techniques

have been developed to allow secondary users opportunistic and dynamic access to

the spectrum. [3, 4, 5, 6, 7, 8].
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Various rules-based sharing techniques have been investigated, and regulators have

adopted a variety of sharing schemes for various bands [9]. Several techniques have

been proposed, including citizens broadband radio service (CBRS), which defines a

tiered system of users who can request spectrum access from a centralized database

[10, 11]. Additional investigation has been carried out on the coexistence of 5G net-

works and fixed satellite services at C-band [12].

Non-cooperative techniques have also been adopted. One such non-cooperative

technique is the unlicensed national information infrastructure (U-NII), or listen-before-

talk, rules that allow wireless network users to share commercial weather radar bands

[13]. The listen-before-talk structure requires a secondary user to ’listen’ for a pri-

mary user of the spectrum before beginning operation and must continue to monitor

the environment and cease operation when the primary user is present.

Taking advantage of the pulsed nature and sensitive receivers of radar systems al-

lows for a unique opportunity to share the spectrum by allowing others to take the

primary user role. Algorithms like the fast spectrum sensing (FSS) technique take

advantage of the quiet time between radar pulses to gather snapshots of the spectrum

and apply threshold-based detection to identify available bands of spectrum [14]. A

dynamic detection threshold can be calculated from the noise estimate using tech-

niques such as hardware optimized cell averaging estimation (HO-CAE) [15]. Com-

bining FSS and HO-CAE algorithms provides a real-time spectrum sensing technique

to identify available spectrum with the sub-millisecond speeds required to match the

frequency agility of modern communications networks, allowing for a listen-while-

talk type of operation [16]. Pulse-to-pulse agility is important for the radar to operate

as a secondary user, thereby avoiding the bands occupied by communications users.

Traditional pulsed radar systems typically transmit at high power using directional

2



antennas [17]. As a consequence, the radar can easily interfere with communication

devices in its main beam. Further, even low interference-to-noise ratio (INR) commu-

nications signals in the radar band can cause significant interference at the output of

constant false alarm rate (CFAR) detectors [18, 19, 20, 21].

Coexisting with primary users that can change frequency allocation on sub-millisecond

time scales by changing waveform parameters on a pulse-to-pulse basis also causes

processing challenges. Traditional range-Doppler processing utilizes the matched fil-

ter to extract range information in fast time, and the fast Fourier transform (FFT)

across slow time to measure the Doppler shift, thereby obtaining the target’s radial

velocity relative to the radar [22]. The matched filter is used with the FFT under the

assumption that every pulse in the CPI is identical. By changing the pulses within a

CPI, traditional processing techniques produce a degraded or destroyed range-Doppler

response.

Non-uniform pulse trains have been used to increase range resolution by trans-

mitting narrowband waveforms in steps across a wide bandwidth [23]. Non-uniform

pulse trains cause grating lobes to appear in the Doppler space, requiring intelligent

design of the time duration and bandwidth to minimize the periodic phase effects that

reduce performance [24]. More recently, work has explored using a non-uniform pulse

train to create a Gaussian spectrum shape to reduce the sidelobe level associated with

processing frequency hoping pulse trains [25]. While control of the non-uniform pulse

train provides many degrees of freedom to mitigate processing effects [26], this work

focuses on an arbitrary set of pulses dictated by the spectral environment. Therefore,

the degrees of freedom associated with the bandwidth and center frequency are lost.

For environments with strong clutter returns, [27] presents a non-adaptive clutter

cancellation technique that mitigates clutter spreading in Doppler using fast convo-

3



lution. Further, [28] proposed an adaptive technique that recursively optimizes filter

weights to adapt in both the range and Doppler dimensions, suppressing unwanted ef-

fects from bandwidth and frequency agility. An image processing approach from [29]

iteratively applies Richardson-Lucy deconvolution to compensate for the point spread

function (PSF) derived from any arbitrary pulse train. Reiterative, fully adaptive tech-

niques are effective methods of correcting for agile pulse trains. However, they are

computationally intensive and not feasible for high data rate systems.

Unfortunately, spectrum-sharing schemes will always present the potential for in-

terference when the system fails to detect primary users. Similarly, there are times

when an adaptive, mission-critical radar system, like the terminal Doppler weather

radar (TDWR) described in [30], may not be able to find any available spectrum,

which may require operating in the presence of an interfering user. No matter the

reason, when a communications user is present as an in-band interferer, techniques

are needed to minimize the impact on radar processing. Ultimately, this work seeks

to answer the following two questions: What is the cost of changing the frequency

and bandwidth of every pulse to adapt to an open spectrum, and how can a system

compensate? How can the interference be mitigated if no spectrum is available and

in-band communications users are present?

1.1 Objectives

This work first presents two techniques for mitigating target response degradation

caused by intra-CPI bandwidth and frequency agility. First, mismatched filters are

introduced as a technique to allow the use of agile bandwidth pulse CPIs. This work

identifies the most robust solution to mitigate range-sidelobe modulation by investi-

gating different mismatch filter templates and their trade-offs. Second, a first princi-

4



ples analysis identifies the cause and impact of frequency agility on the phase history.

The identified phase term informs the development of a modified backprojection tech-

nique to help focus targets when processing frequency agile pulses at baseband. The

two techniques are complementary and, when applied together, successfully mitigate

the cost of full pulse agility.

Finally, this work develops a signal processing chain that actively cancels in-band

OFDM communications interference via demodulation/remodulation estimation and

extraction. Demod/remod estimation reduces the interference duty cycle from 100

percent, even in complex environments with unknown time and frequency synchro-

nization. Median filtering further reduces interference when added to the end of the

processing chain while maintaining the performance of the matched filter. This work

presents the efficacy of the demod/remod processing chain by examining the radar de-

tection performance and total energy reduction.

1.2 Outline

Following this introduction, Chapter 2 provides a brief background on the pulse-

Doppler radar model and traditional processing methods. A light introduction to con-

stant false alarm rate (CFAR) detection is provided to support future discussions on

radar performance carried out in Chapter 6. An OFDM signal model and a high level

overview of communications structures is given before the chapter concludes with

some background on spectrum sensing techniques that were used to inform the ground

truth, agile pulse parameters.

Chapter 3 presents an analysis of bandwidth agile pulse processing and introduces

the mismatched filter as a technique to mitigate the range sidelobe modulation. Ad-

ditionally, the chapter provides the performance of different mismatched filter tem-
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plates and compares them to a simple windowed matched filter response as a baseline.

Chapter 4 presents a phase analysis on a CPI of frequency agile pulses and introduces

backprojection as a technique to compensate for the effects of frequency hopping.

The imaging function is analyzed, and a metric called relative sidelobe energy growth

(RSE) is defined to provide a quantitative performance measure. Chapter 5 brings

the mismatched filter and the modified backprojection algorithm together and demon-

strates the algorithms’ performance in a case where bandwidth and frequency vary

simultaneously. Additionally, each pulse agile chapter uses experimental results from

data collected with a software-defined radio (SDR) testbed to verify the effectiveness

of each algorithm.

Chapter 6 sets aside the idea of agile pulses and examines the radar performance

that can be achieved in the presence of a communications emitter. The chapter begins

with an analysis of demodulation/remodulation estimation using a simple model, in-

cluding the effects of radar receiver blanking, its position within the communication

signal, and mitigation strategies that improve the robustness of the communications

signal estimate. Chapter 6 continues by increasing model fidelity to include more re-

alistic effects, including channel, time, and frequency offsets. The chapter presents

techniques that overcome the challenges of the expanded model and carries out a thor-

ough performance analysis. Finally, the chapter compares adaptive pulse compression

(APC) as a reiterative method of canceling interference and analyses overall perfor-

mance and robustness, especially considering the increased computational complexity.

Chapter 7 concludes the dissertation by providing a summary of the work carried out

and future work that can expand on the tools developed here.
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Chapter 2

Background

This chapter serves to provide a background on radar processing, CFAR detec-

tion, OFDM interference, and spectrum sensing. A brief introduction to each of these

concepts helps to support the discussions carried out in future chapters. This chap-

ter also provides a set of spectrum measurements that are used for the frequency and

bandwidth agile parameters to inform simulation and testing for the development of

correction algorithms.

2.1 The Pulse-Doppler Radar Model

Pulse-Doppler radar begins with a series of identical pulses, each transmitted by

the radar system at some pulse repetition interval (PRI). The pulses reflect off the en-

vironment and return to the radar system. The system processes a collection of the

received pulses together in a coherent processing interval (CPI). This work will con-

sider the linear frequency modulated (LFM) waveform, which is defined as a complex

baseband signal by [22]

x(t) = e
j2π(−β

2
t+ β

2Tp
t2)

, (2.1)
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where β is the bandwidth of the waveform in hertz and Tp is the pulse duration in

seconds.

There are many different classes of radar waveforms, each with characteristics

that provide performance trade-offs for different operating modes of the radar, and

waveform design and optimization is still an active field of research. The LFM was

selected as a baseline because it has very well-understood characteristics and is widely

used as an introductory waveform [22]. It is worth noting that the basics of pulse-

Doppler processing are independent of the waveform used by the system.

The complex baseband waveform is mixed up to the RF frequency, F0, and is

transmitted by the system. The transmitted pulses reflect off of objects in the scene,

and energy is received back at the radar system, where the signal is mixed down from

the RF frequency back to the complex baseband. The received baseband radar signal

is a scaled, time delayed copy of the transmitted waveform and is given as

yR(t,m) = α(m)x(t− τ(m))ej2πF0τ(m) . (2.2)

Here, α(m) is the pulse-dependent scaling factor given by the radar range equation

defined by [31]

α(m) =
GtGrλ

2σ

(4π)3R(m)4kTBL
, (2.3)

where Gt and Gr is the gain of the transmit and receive antenna, λ is the wavelength

of the center frequency, σ is the radar cross section of the target, R is the range to

the target, k is Boltzman’s constant, T is the system temperature, B is the receiver

bandwidth, and L represents the system losses. The time delay τ(m) is the two way

time delay to the target on the mth pulse in the CPI and is given by

τ(m) =
2R(m)

c
. (2.4)
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The stop-and-hop assumption assumes an instantaneous range measurement of

each target at the pulse transmission time. When using the stop-and-hop assumption,

the target is stationary while the pulse interacts with it and moves instantaneously to

the next measurement location [22]. Since the target is not moving while the pulse is

interacting with it, the pulse will not have any distortions due to the target’s motion.

The Doppler response, therefore, is only modeled by the phase rotation caused by the

continually moving target, and an independent Doppler phase term is not modeled.

At this stage, the pulse return has some duration Tp, which can have a potentially

large range extent. The matched filter is used to maximize the signal-to-noise ratio

(SNR) of the target return by ’compressing’ the long pulse and focusing the energy

into a narrow range response [22]. The matched filter for any given waveform is the

time-reversed, conjugate copy of the waveform given as

z(r,m) = yR(t,m) ∗ x∗(−t) , (2.5)

where yR(t,m) is the received data for the mth pulse. The matched filter response is

the autocorrelation function of the waveform, centered at the target’s range. For an

LFM, the autocorrelation is approximately sinc shaped. The matched filter cancels all

of the waveform phase leaving only the phase caused by the two way time delay to the

target. Therefore, the matched filter response can be given as

z(r,m) = α(m)ρx(r,m)e−j2πF0τ(m) . (2.6)

The waveforms are transmitted as some constant rate, called the pulse repetition

frequency (PRF). The PRF and PRI are linked as the PRI is the inverse of the PRF.

The duration of the pulse will, at times, be referred to as a percentage of the PRI,

this percentage is called the duty cycle. The ADC samples of PRI are collected and
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together are called the fast time dimension. When stacking the matched filtered PRIs

together, the cross pulse dimension is called the slow time. The residual phase caused

by the time delay causes a slow phase rotation in slow time as the target moves from

pulse to pulse.

If the target stays in the same range bin for the duration of the CPI, then the discrete

Fourier transform (DFT), typically implemented as a fast Fourier transform (FFT),

can be applied across the slow time pulses to extract a Doppler frequency from the

phase rotation. The relative velocity of a target creates a Doppler frequency shift that

depends on the carrier frequency of the radar pulse and is related by

v =
cFD
2F0

, (2.7)

where FD is the Doppler frequency caused by the phase rotation and F0 is the center

frequency. The FFT is the matched filter across slow time when using identical pulses,

and the Doppler response has a similar sinc like shape as the fast time matched filter

response of the LFM.

After applying the matched filter in fast time and then the FFT in slow time, the

result is a 2D image that represents range and Doppler. This image is called a range-

Doppler map or a range-Doppler plot. Figure 2.1 shows a reference range-Doppler

map without noise for a target at 40 kilometers traveling at 27 meters per second.

Using traditional range-Doppler processing, the point spread function of the target is

a sinc shape in each dimension.

For range-Doppler processing using uniform PRIs, there is the notion of unam-

biguous range and Doppler. For range, any target whose two-way range delay exceeds

the PRI will be ambiguous because the target return occurs after the next pulse is

transmitted. In this situation, the system cannot distinguish between the long-range
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Figure 2.1: A reference range-Doppler map containing a target at a range of 40 km
traveling at 27 m/s when using a 3 GHz center frequency.

target return from pulse one and a near-range target return from pulse two. Similarly,

If the target’s motion creates a Doppler frequency that exceeds ±PRF
2

, then the phase

rotation aliases, meaning that the phase rotation is completing one or more full rota-

tions around the unit circle between slow time samples, and the true Doppler cannot

be determined.

2.1.1 Simulation

Throughout this work a simulation is used to investigate various behaviors and test

the proposed techniques. In order to carry out this analysis the point spread function

(PSF) is used to identify artifacts of the processing techniques in question. PSFs are
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ideal range-Doppler map responses generated for a single target in the absence of

noise. Unless noted otherwise, the radar simulation used in this work will utilize the

parameters provided in Table 2.1 to simulate a pulse-Doppler radar with a single target.

Target locations will be selected so that they do not fall on the sample grid in range or

Doppler to provide the most informative performance.

Table 2.1: Simulation Parameters

CPI Size, M 256 Pulses
Sample Time, Ts 10 ns
RF Frequency, F0 5 GHz
PRF 5 kHz
Pulse Duration, Tp 30 µs
Constant Pulse Bandwidth, β 16.211 MHz

2.1.2 Experimental Testbed

The techniques presented in Chapters 3, 4, and 5 are developed from the signal

models used for the simulation. When developing from signal models, the actual

success of the algorithm depends heavily on the correctness of the model. To verify the

techniques, a software-defined radio (SDR) testbed and outdoor test experiment was

used to verify the performance shown by the simulated results. An Ettus USRP X310

software-defined radio (SDR) was used as a radar testbed with two Ubiquity airMAX 5

GHz, 30 dBi RocketDish LW Antennas. Two CPIs of pulses were interleaved together:

constant pulses without agility to provide a baseline response, and a CPI of the agility

under test which is used to verify the processing approach. The radar testbed was

operated in simultaneous transmit and receive (STAR) mode with the same parameters

described in Table 2.1 except with a CPI of 128 pulses.

Figure 2.2 shows the test scenario setup outside of the Radar Innovations Lab (RIL)
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on the campus of the University of Oklahoma. The experimental system was setup at

the end of the road and radar captures were taken as a pickup truck drove away from

the system. To reiterate, the spectrum was free of interference for the experiment, but

for the frequency agile case the radar selected center frequencies according a sample

set of real-world experimental data.

2.2 CFAR Detection

This work will use detection performance as a metric to analyze the quality of

interference cancellation, so it is important to provide a brief overview of the tech-

nique that is used. For detection, two measurement distributions are considered: one

distribution represents the null hypothesis from which noise-only measurements are

drawn, and the second distribution represents the measurements that contain a target

and noise [22]. The goal of detection algorithms is to correctly identify the source

distribution of each sample.

When applying radar signal processing, the goal is to focus the target energy and

provide separation between the target present and noise-only distributions. With these

two distinct distributions, a threshold can be used to classify each measurement as

noise or target plus noise. Figure 2.3 shows the noise only and target plus noise dis-

tributions separated by a detection threshold. The region under the noise curve to the

right of the threshold is the probability of a false alarm (PFA); these are noise-only

values greater than the detection threshold. Similarly, the region under the target plus

noise, to the left of the threshold is the probability of missed detection.

CFAR detectors, as the name suggests, sets the threshold such that the false alarm

rate is always constant. Keeping the PFA consistent helps determine performance

metrics for systems upstream of the detector, like trackers. For a CFAR threshold with
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Figure 2.2: Radar test scene.

a known Gaussian null distribution, the threshold, T , can be set as [22]

T = −σ2
0 ln(PFA) , (2.8)

where σ2
0 is the noise power. However, the noise distribution is unknown a priori and

must be estimated. For this work, cell averaging CFAR (CA-CFAR) will be used for

detection.
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Figure 2.3: The noise distribution and target plus noise distribution split with a
detection threshold. The probability of false alarm (left) and probability of missed

detection (right) are shown.

Xi

Reference Cell

Guard Cell

Figure 2.4: Guard and reference cell placement relative to the cell under test in
CA-CFAR.

It can be shown that the maximum likelihood estimate of σ2
0 can be found by taking

the average of NR noise only, training samples [22]. CA-CFAR takes advantage of

this and averages cells adjacent to the cell under test. However, as discussed in a

previous section, targets have sidelobes in the range-Doppler map. To avoid sidelobes

contaminating the estimate of the noise distribution, guard cells provide separation

from the cell under test and the reference cells. Figure 2.4 shows how the guard and

reference cells are placed around the cell under test.

Each noise estimate is only valid for one cell under test and a new threshold value

needs to be calculated for each cell. Since the quality of the noise estimate is directly

related to the number of cells used, the new threshold will also rely on the number of
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reference cells. The CA-CFAR threshold is given as

T = NR

(
P

−1/NR

FA − 1
)
σ̂2
0 (2.9)

where σ̂2
0 is the noise power estimate. The CA-CFAR threshold equation will be used

for all detection performance metrics in this work.

2.3 OFDM Communications

OFDM has become a very popular signal type because of its overall efficiency and

flexibility. It is the primary signal type used in modern WiFi, LTE, and 5G networks,

and recently, work has shown that it is effective for other applications such as radar

[32] and RCS extraction [33]. OFDM and the communication structures will be pre-

sented in this section as it is the interference source that is used in chapter 6.

OFDM signals are made of two main pieces: the symbol and the cyclic prefix. A

single OFDM symbol can be defined in the continuous time domain using the inverse

discrete Fourier Transform (IDFT) [34]

xc(t) =
rect( t−Tc

Tc
)

√
Nsub

Nsub−1∑
k=0

Xke
j2πkt/Tc (2.10)

where Tc is the symbol duration in seconds. Each of the Nsub subcarriers is mod-

ulated with a complex valued symbol, Xk, which is drawn from a constellation of

points based on the modulation order, that is the number of bits per subcarrier. Not all

subcarriers are modulated with data, LTE and 5G define some number of guard sub-

carriers which are the outer most subcarriers that do not receive data modulation [35]

[36]. The guard subcarriers are defined to provide frequency separation from adjacent

users of the spectrum.
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The cyclic prefix provides a guard interval in time that prevents the multipath ef-

fects of the channel from mixing symbol data together creating inter-symbol interfer-

ence (ISI) [35]. The cyclic prefix can take on many different lengths based on the

length of the free space channel. The cyclic prefix is a copy of the last NCP samples

of the symbol appended to the beginning. This cyclic prefix does not carry any data

and is stripped away before symbol demodulation.

OFDM symbol generation is highly efficient using the FFT and inverse FFT (IFFT).

A vector of complex modulation values represents the subcarrier values in the fre-

quency domain. Taking the IFFT of the subcarrier vector creates the time domain

signal. Finally, the last NCP samples from the end of the symbol are prepended to the

front of the symbol create the cyclic prefix.

Symbol generation is shown in Figure 2.5 for a symbol with 128 subcarriers, of

which 52 are guard subcarriers, generated using a 64 quadrature amplitude modulation

(64-QAM) constellation which encodes 6 bits of data per subcarrier. Adding the cyclic

prefix after the IFFT is trivial. For the symbol generated in Figure 2.5, the 4G-LTE

standard would allow nine samples to create a short cyclic prefix, ten samples to create

a normal cyclic prefix, or 32 samples to create an extended cyclic prefix [37].

This work generates OFDM symbols using uniform randomly distributed data bits

modulated onto symbols with the parameters shown in Table 2.2. Using random data

bits ensures that no particular structure is present in the symbols that skew perfor-

mance. Additionally, random data bits allow for extension to Monte Carlo simulations

without worrying about duplicate data generating identical symbols.
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IFFT

Figure 2.5: The IFFT used to generate the time domain OFDM signal from
subcarrier.

Table 2.2: OFDM Parameters

Subcarrier Spacing 15 kHz
Subcarriers 1200
Sample time 32.55 ns
Symbol Duration 66.67 µs
Cyclic Prefix Duration 4.7 µs
3 dB bandwidth 18 MHz
Modulation 64-QAM
Samples/Symbol 2048
Samples/Cyclic Prefix 144

2.3.1 Capacity

For digital modulation, various constellations exist, each having a different number

of points. With more points, each constellation point can represent more bits. Figure

2.6 shows constellations for quadrature phase shift keying (QPSK), 16-QAM, and 64-

QAM constellations. QPSK has four constellation points and a modulation order of

2 and, therefore, supports log2(4) bits per symbol. The most significant bit addresses

the real part of the complex value, and the least significant bit addresses the imaginary

component. Similarly, 16-QAM has a modulation order of 4, with the most significant

two bits addressing the real part and the least significant bits addressing the imaginary

component. This pattern continues to ever higher modulation orders of 64-QAM (also

shown in Figure 2.6) and even 1024-QAM used in 802.11ax [38].
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Figure 2.6: Symbol constellations for QPSK, 16-QAM, and 64-QAM.

When noise is added, variance is added to each sample in both time and frequency.

As more points are added to the constellation, the points become closer together and

the values must vary less, or they will be misidentified. This is directly related to

the noise power and the capacity of the channel. The limit of a channel’s capacity is

described by the Shannon bound, which is given as [39]

C = B log2

(
1 +

S

Nnoise

)
, (2.11)

where B is the bandwidth, S is the signal power, and Nnoise is the noise power. From

this equation, the network’s desire for more spectrum becomes clear. For a fixed SNR,
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more spectrum is required to boost the total information capacity of the network. In

an ideal world, SNR would be boosted infinitely as capacity increases logarithmically

with SNR but only linearly with bandwidth; however, the limits of SNR are often set

by physical constraints such as max transmit power and receiver noise figure.

When demodulating, the value on each subcarrier is mapped to the nearest constel-

lation point. As the SNR decreases, the relative variance of each point increases, and

if the modulation order is too high, the data values will migrate between constellation

points and be decoded incorrectly. So, the use of modulation order is directly limited

by the SNR at the receiver as described by (2.11).

2.3.2 Pilots and Structure

Other effects occur when the signal is transmitted through free space. The direct

path between the transmitter and receiver is the first signal to arrive, but other mul-

tipath copies of the transmitted signal are also received. These multipath effects are

caused by the propagation channel and are modeled as a convolution in time. That is,

the receive signal becomes

yc(t) = xc(t) ∗ h(t) , (2.12)

where h(t) is the multipath channel response, xc(t) is the transmitted communications

waveform and yc(t) is the received signal. The channel is represented by some number

of taps, each with a delay and magnitude. Figure 2.7 shows the reference vehicular

channel response defined by the 3GPP standards consortium, sampled at the rate of

the communications signal [40]. Here, the seven peaks correspond to the seven taps.

Because this channel is applied as a time domain convolution, it can be modeled

as a multiply in the frequency domain. For OFDM, each subcarrier has a different
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Figure 2.7: The 7 tap vehicular channel sampled at 30.72 MHz.

channel effect that is being multiplied onto it. And if the transmitted subcarrier values

were known, an estimate of the channel could be derived. As discussed previously,

the cyclic prefix provides a guard interval in time to prevent ISI. However, the channel

effects still need to be accounted for to successfully decode data.

To correct these multipath effects, some part of the OFDM signal needs to be

known at the receiver. Pilot subcarriers are added to some of the symbols and are

known at the transmitter and receiver. The pilots are spaced evenly across the symbol

with some subcarrier spacing and some symbol spacing. Since these pilot values are

known at the receiver, they can be used to estimate the frequency domain channel

values at that subcarrier. Two primary classes exist for the pilot structure: decision-
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directed used in WiFi and pilot-assisted used in LTE and 5G [41].

Decision-directed systems send symbols with a pilot on every subcarrier and al-

lows the receiver to estimate the channel across all subcarriers directly. Because

OFDM assumes that the channel changes slowly, this symbol containing all pilots

are only sent occasionally. Pilot-assisted takes a different approach and spreads a few

pilots across the subcarriers of a symbol. From these pilots, the channel can be esti-

mated, and then an interpolation is used to get the channel value of each subcarrier.

This work will focus on pilot-assisted OFDM structures.

LTE is defined at a high level by a standard radio frame of 10 ms divided into 10,

1 ms subframes. Each subframe is made up of two 0.5 ms slots. Each slot contains

7 OFDM symbols when using a normal OFDM prefix and 6 OFDM symbols when

using an extended prefix [37]. Figure 2.8 shows how a radio frame is divided into

symbols.

Because of the slow changing assumption about the channel, channel estimates

can be averaged together over the duration of a subframe. In LTE, each slot has two

symbols with pilots in them. These two symbols have pilots that are offset in fre-

quency, so both are needed to make a single channel estimate across all of the pilots.

For a subframe, the channel estimate can be derived by averaging what is effectively

two channel estimates together. Figure 2.9 shows how the pilots are distributed across

symbols and subcarriers. For the subframe, two pilots are available for each pilot

subcarrier location, one in each slot. The values of these two channel estimates are

averaged together before interpolation is used to get a full channel estimate across all

subcarriers.

The number of pilots that are used is intentionally minimized. Any subcarrier that

is carrying a pilot, is transferring known information and not user data. So, increas-
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Figure 2.9: Pilots, denoted with a P, are distributed across symbols in time and
subcarriers in frequency.

ing the number of pilots directly reduces the effective capacity of the network. The

values that are assigned to the pilots are pseudorandom sequences called gold codes

[42]. These constant modulus codes are useful for their high autocorrelation and low

crosscorrelation.

This work will deviate slightly from the LTE pilot configuration described here.

The pilot subcarrier spacing will be set at five as in LTE, but the symbol spacing will

be set at one, placing pilots on every other symbol. Additionally, the pilots will not be

offset in frequency and instead be aligned down the symbol. The pilot structure here
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is changed because this work does not assume that the channel is changing slowly.

So pilots on the symbols will be used as independent channel estimates that will only

be applied to itself and its pilot free neighbors. These changes provide maximum

flexibility for processing.

The tools for time synchronization are also buried in the radio frame structure.

In LTE, a primary synchronization signal (PSS), a constant modulus Zadoff-Chu se-

quence, and a secondary synchronization signal (SSS), a constant modulus M se-

quence, are used to provide precise timing offset [37]. Each of these two signals

occur twice in the 10 ms radio frame, in the first and sixth subframes. The PSS and

SSS exhibit very high autocorrelation that allows for precise timing synchronization.

However, to take advantage of these signals, both instances need to be captured in

their full duration. Loss of any part of these signals can limit the user’s ability to syn-

chronize. More about this vulnerability will be discussed later in Chapter 6.

2.4 Spectrum Sharing

Spectrum sharing has been of increased interest as a way to use the spectrum more

efficiently. As such, many diverse techniques have been proposed that enable dy-

namic spectrum access. Sharing requires not only sensing but also decision making

techniques [43]. Many management strategies have been proposed ranging from sim-

ple statistics approaches to intensive machine learning and predictive modeling.

A hierarchical network of agents to control various radar parameters was proposed

in [44] that enables decisions to be made at different levels using algorithms and cost

functions of various complexity [45]. The cost function designs have been developed

that optimize radar operation directly from detection and tracking performance [46].

Predictive machine learning techniques have been developed to predict the type of
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emitters that currently use the spectrum [47, 48]. By identifying the type of emitter that

is present in the scene, a cognitive radar system can proactively anticipate their use of

the spectrum. Predictive schemes are not limited just to machine learning techniques

as stochastic approaches have also been presented [49]

Some techniques take a simpler approach, looking directly at the spectrum and

making decisions based strictly on power, focusing on optimizing for signal-to-noise

ratio (SNR) [14]. With a lower complexity sensing algorithm, an efficient perception

action cycle (PAC) can be used to continuously monitor the spectrum and actively

make decisions [2, 50]. Previous work expanded on the PAC with hardware optimized,

cell averaging estimation (HO-CAE), a greedy dynamic spectrum sensing technique

based on CFAR detection [51]. Like CFAR, HO-CAE estimates the noise floor of each

spectrum snapshot. Unlike CFAR, the estimate is derived from a set of overlapping

averaging windows. An order selection is taken from the ranked values and used as the

noise floor estimate to calculate the spectrum occupancy decision threshold. Pairing

HO-CAE with the streaming PAC and FSS model allows for real-time dynamic band

selection for a radar system.

To provide parameters for a realistic simulation, the HO-CAE/FSS implementa-

tion from [16] was deployed to a USRP X310 software-defined radio (SDR) utiliz-

ing 100 MHz of front end bandwidth at 2.44 GHz center frequency, collected with a

VERT2450 antenna. The spectrum was collected in the Radar Innovations Laboratory

at the University of Oklahoma. The spectrum-sharing data was used with an emulated

radar system to determine what band selection would be made for each pulse, where

HO-CAE/FSS provides the widest contiguous unoccupied band available for the radar

to utilize.

Figure 2.10 shows the location of the pulses as they would appear relative to other
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Figure 2.10: An example of pulses used for processing overlaid on the spectrum
collect the band selections were derived from.
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Figure 2.11: The center frequency, FH(m), and bandwidth, β(m) used for the agile
cases.
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users of the spectrum, where the pulses appear as horizontal bars across frequency,

periodically spaced in time (the y axis) while some of the other users are outlined in

red. For all simulation results presented, 256 consecutive pulse locations (i.e., center

frequency and bandwidth) were selected. These pulse parameters provide an exemplar

case for studying the impact of bandwidth and frequency agility. Figure 2.11 shows

the center frequency and bandwidth for each pulse that was derived from this real-

world data, where the center frequency is referenced relative to complex baseband at

2.44 GHz.

It was assumed that the extreme congestion of 2.44 GHz would require a signifi-

cant amount of agility to prevent collisions, and Figure 2.11 indicates this assumption

was correct. For the frequency agility studies, the center frequencies shown in top

plot of Figure 2.11 were used and the bandwidth was held constant at 16.211 MHz.

For the bandwidth agility studies the center frequency is held constant to F0 and the

bandwidth per pulse is given in the bottom plot of Figure 2.11. For the fully agile

case both the center frequency and the bandwidth are changed according to Figure

2.11. Unless noted otherwise, the remaining simulation parameters are given in Table

2.1. It is important to note that the measured spectrum was only used to generate the

waveform parameters. All simulations and measured results are in clear spectrum, to

isolate the impact of interference from the signal processing results.
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Chapter 3

Intra-CPI Bandwidth Agility

This chapter examines the consequences of changing the waveform bandwidth on

a pulse-to-pulse basis. Here, the model from Section 2.1 holds in all but the initial

waveform definition. The changing bandwidth can be defined as

x(t,m) = e
j2π(

−β(m)
2

t+
β(m)
2Tp

t2)
. (3.1)

Similar to (2.1), TP is the pulse duration, but the bandwidth, β(m) is defined as a

function of the pulse number.

For this chapter only the bandwidth will vary on a pulse-to-pulse basis, while the

center frequency will remain constant. Bandwidth agility does not impact the slow

time phase at the target’s range. As such, the distortion is not directly caused by the

slow time phase, which is extracted using FFT-based Doppler processing, but rather

the sidelobe magnitudes of the matched filter output.

The bandwidth of a waveform is inversely related to the range resolution as [22]

∆R(m) =
c

2β(m)
. (3.2)

Therefore, the range resolution is directly related to the width of the mainlobe of the
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output of the matched filter: the higher the bandwidth, the narrower the mainlobe.

The various pulses used for simulation had a minimum bandwidth of 6.54 MHz and

a maximum bandwidth of 53.91 MHz. This variation across the associated pulses is

shown in the bottom plot of Figure 2.11. The output of matched filtering of these

pulses produces many different mainlobe widths, as shown in Figure 3.1.

When waveforms with different bandwidths are used in a single CPI, the peaks of

all waveforms are aligned, but the remaining roll-off of the mainlobe will not align.

Effectively, there is additional amplitude modulation where the mainlobe roll-off and

sidelobes do not align. RSM is created when the FFT is applied across slow time at

the range bins with these mismatched sidelobes. Figure 3.2 shows the simulated effect

of bandwidth agility without any correction.

When looking at the RSM created by bandwidth agility, the first course of inves-

tigation is to apply a window to the matched filter to attempt to mitigate the RSM.

By applying a window to the matched filter, sidelobes can be reduced at the cost of

a wider mainlobe [53]. By applying a Blackman window to each pulse before the

matched filter, the sidelobes of the response can be reduced and therefore the number

of range bins that are impacted by RSM is reduced. Figure 3.3 shows the normalized

PSF that results from applying a windowed matched filter to each pulse and using FFT

Doppler processing.

The windowed matched filter does limit the range spread by pushing down the

sidelobes of the matched filter and, therefore, the RSM that is caused by the mis-

alignment of the sidelobes. Although the effective range of the RSM is limited, the

mainlobe is broadened by the window and is misshapen which continues to introduce

RSM. The misshapen mainlobe is due to the continued misalignment of the range re-

sponse of the matched filter. Although the Blackman window broadens the mainlobe
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Figure 3.1: Each pulse at the output of the matched filter [52]. ©IEEE

of each matched filter response, the broadening is a function of the range resolution

so the higher bandwidth waveforms will continue to have narrower mainlobes than

the lower bandwidth waveforms. This chapter investigates methods for replacing the

match filter because although windowed matched filtering provides an improvement

to limit the severity of the RSM, a more robust solution is needed.

3.1 Mismatched Filtering

Optimized mismatched filtering uses a least-mean-square optimization based on

some cost function depending on the desired application. Specifically, mismatched
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Figure 3.2: The result of using traditional range-Doppler processing on a CPI of
bandwidth agile pulses [52]. ©IEEE

Figure 3.3: Normalized PSF resulting from windowed matched filtering and
FFT-based Doppler processing [52]. ©IEEE

filtering has been proposed as a technique to enable sidelobe reduction [54]. More

recently, the mismatched filtering technique has been proposed to mitigate RSM that
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results from using non-identical polyphase-coded FM (PCFM) waveforms within a

single CPI [55]. With the mismatched filter technique, a filter is created for each

waveform such that the output of the filter has minimized the error relative to some

desired output. Here the mismatched filter is used as a way to normalize the response

across pulses with varying bandwidths using various templates as the desired output

of the mismatched filter.

3.1.1 Formulation

The mismatched filter criterion selected in this paper seeks to minimize the error

between the filter output and some template. Minimizing this template error will en-

sure that the filter outputs will have as common a shape as possible. The cost function

to achieve this can be defined as [56]

JLS =
∣∣∣∣hmAH − y

∣∣∣∣2 , (3.3)

where y is the template for the desired output of the filter, and Am is constructed as

the delay-shift matrix, or convolution matrix, of the mth pulse which takes the form

Am =



x1 0 · · · 0

... x1
...

xN
... . . . 0

0 xN x1
... . . . ...

0 · · · 0 xN


(3.4)

AH
m is the Hermitian transpose and the dimensions of A are ((K + 1)N − 1)×KN ,

where K is the over length factor and N is the length of the pulse. Note that for the
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purposes of this work while the bandwidth is allowed to change on a pulse-to-pulse

basis, the pulse duration and sample time is kept constant.

The mismatched filter, ĥm, for the mth pulse, can be found via the optimization

[55]

ĥm = (AH
mAm + δI)−1AH

my . (3.5)

Here I is the identity matrix and δ is a diagonal loading term that prevents the matrix

from becoming singular.

To create a filter response with the shape of a given template, the filter needs to

be longer than a traditional matched filter. The extra length allow additional degrees

of freedom to enable the creation of a filter to match the template shape and reduce

sidelobes. The length of the filter is K times the length of the transmitted pulse. It

is important to keep K as small as possible, as the size of the matrix Am increases

rapidly and the cost of inverting large matrices is computationally expensive, on the

order of O(n3). Additionally, a longer filter will amplify the noise compared to a

shorter filter. With the computation considerations primarily in mind, this work sets

K = 2, which yields a matrix Am of size 8999 × 6000 for the waveform and system

parameters described in Table 2.1.

3.2 Common Matched Responses

When fitting the mismatched filter response to a template, the question naturally

arises: what is the best template? The first option considered is the response of the

waveform with the smallest bandwidth, corresponding to the worst resolution. Select-

ing the lowest resolution ensures that all of the mismatched filter’s degrees of freedom

are used to maximize the filter’s match to the template shape.
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When creating the template, y, the minimum bandwidth matched filter output is

generated by convolving the minimum bandwidth LFM with the time-reversed, com-

plex conjugate of itself. If creating a mismatched filter with K > 1, then the matched

filter output needs to be padded by (K − 1)N zeros. While the minimum bandwidth

template may result in the most uniform output across pulses, it also sacrifices the

additional resolution offered by the higher bandwidth pulses. Using this minimum

bandwidth matched filter as a template inherently allows the best matching perfor-

mance, as there are no sidelobe reduction or super resolution constraints. Therefore,

all available degrees of freedom for mismatched filter optimization can be used to

match the template shape. If this template shape is matched, more traditional window

techniques can be used to further reduce sidelobes if so desired.

The second clear option is to use the matched filter response of the maximum

bandwidth waveform as the template. In this case, all of the waveforms in the CPI

that are not at the maximum bandwidth require filters that super-resolve the mainlobe.

The super-resolution requirements of these filters are going to utilize some degrees

of freedom. Consequently, when using a filter with the same length as the minimum

bandwidth template, the filter output will not fit the template as well. As a result, there

is a fundamental tradeoff between resolution and RSM.

Figure 3.4 shows the normalized PSFs that result from a mismatched filter with

minimum and maximum bandwidth matched filter templates. Using the lowest res-

olution template provides a perfect correction to the ideal PSF with the minimum

bandwidth resolution. The minimum mismatched filter template wastes the additional

bandwidth available in other pulses and, therefore, transmitting the wider bandwidth

waveforms would provide no additional resolution.

Looking at the maximum bandwidth result in Figure 3.4 shows that when using
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(a)

(b)

Figure 3.4: Normalized PSF generated using the mismatched filter with minimum
bandwidth template, (a), and the maximum bandwidth template, (b), both with FFT

Doppler processing [52]. ©IEEE

K = 2 there are not enough degrees of freedom to enforce the shaping requirements

of the template and extract the super-resolution performance from the pulses that have
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a narrower bandwidth. As a result, significant RSM is generated from the increased

error between the filter output and the template. To improve this performance, a larger

value for K could be used to increase the size of the filter and provide the filter with

more degrees of freedom. However, as previously discussed, increasing the length of

the filter is very computationally expensive due to the matrix inverse that is required.

Therefore, it is advantageous to create a template that can enforce super-resolution

without significantly increasing the size of the filter.

To improve the resolution of the target response beyond the minimum bandwidth

resolution, super-resolution techniques should be explored directly. A super-resolution

template can be constructed using a vector of zeros with a one in the central element

given as [57]

ySR =

[
0 · · · 0 1 0 · · · 0

]
. (3.6)

Using the simple super-resolution vector allows all degrees of freedom to be used

on super-resolving the narrow bandwidth pulses instead of trying to force a particular

shape. By setting the desired sidelobes to zero in the super resolution template defini-

tion, the RSM will correspondingly be reduced. Figure 3.5 shows the normalized PSF

that is generated using the super-resolution vector.

Figure 3.6 shows the output of a mismatched filter using a super-resolution tem-

plate. Because there is not a desired output shape, the super-resolution vector pro-

vides a performance middle ground. Super-resolution provides better resolution per-

formance than the minimum bandwidth template at the cost of some RSM confined to

the mainlobe, and better RSM performance relative to the maximum bandwidth tem-

plate at the cost of some resolution.
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Figure 3.5: Normalized PSF generated using the mismatched filter with
super-resolution template with FFT Doppler processing [52]. ©IEEE

3.3 Quantitative Results

Other significant parameters need to be considered with the mismatched filter

results. The null-to-null mainlobe width, WNN , is important for understanding the

achieved resolution with each technique. Additionally, the SNR achieved when noise

is present is critical, specifically when comparing against the performance of the win-

dowed matched filter. To measure the SNR, the noise power was compared to the peak

of a target return in simulation data. Measuring the noise power at ranges far from the

target ensure that the processing of the waveform is not mixed in. Comparing the

noise value to the measured target peak effectively provides the output SNR of the

processing technique on the measured data.

The performance of waveforms can be measured by the integrated sidelobe level

(ISL) or the peak sidelobe level (PSL) of their autocorrelation function or ambiguity

function [58]. Here the PSF is examined instead of the ambiguity function. Therefore,
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Figure 3.6: The output of the mismatched filter using the super-resolution template
[52]. ©IEEE

the metric of interest is the ratio of sidelobe energy when using bandwidth agile pulses

to the sidelobe energy present when using constant pulses.

First, the total energy in the PSF is defined as

Etot =

∫ PRF
2

−PRF
2

∫ RU

RL

|Z(r,m)|2 drdFd , (3.7)

where RU is the upper bound of range given as

RU =

(
1

PRF
− Ts

)
c

2
(3.8)
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and Ts is the sample time. RL is the minimum range which is less than zero because

of the matched filter and defined as

RL = −
Ts
((

N+Nh

2

)
− 1
)

2
, (3.9)

where N = Tp/Ts is the sampled waveform length and Nh is the filter length. If a

matched filter is used, then N = Nh. However, this general definition is adopted here

to allow for the use of mismatched filters. The energy in the mainlobe is defined as

EML =

∫ D2

D1

∫ R̂2

R̂1

|Z(r,m)|2 drdFd , (3.10)

whereD1 andD2 are the Doppler bounds of the mainlobe, and R̂1 and R̂2 are the range

bounds of the mainlobe. These range bounds will vary based on the signal processing

used. The relative sidelobe energy growth, RSE, is finally given by

RSE =
ETot − EML

EC
Tot − EC

ML

, (3.11)

where the superscriptC denotes the energy of the PSF derived from the use of constant

pulses. Here all quantities are expressed in linear units, but it is useful to define RSE

in decibels. As such RSE will be expressed in dB using the 10log10 relationship.

So, the sidelobe energy relative to the PSF of a CPI of constant maximum band-

width pulses and constant minimum bandwidth pulses is used to understand the side-

lobe performance and RSM mitigation of each template. As shown in Section 2.4

a minimum bandwidth of 6.54 MHz and a maximum bandwidth of 53.91 MHz was

found in the measured spectrum. The desired performance is expected to have more

sidelobe energy relative to the constant maximum bandwidth case but less energy than
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the minimum bandwidth case. The sidelobe energy will be expressed as relative met-

rics, RSEmin and RSEmax, using these constant bandwidth values in (3.11).

Because the sidelobe energy metrics rely on the relative magnitude, RSEmin and

RSEmax values are calculated without normalizing the peak magnitude of the PSFs.

Additional considerations need to be made in the case of the super-resolution mis-

matched filter. The minimum and maximum bandwidth mismatched filter templates

have peak values that are greater than 0 dB while the super-resolution vector’s peak is

0 dB.

The minimum and maximum resolution matched filter templates had a peak value

greater than 1, while the super-resolution template has unity magnitude. In order to

provide the fair comparison of sidelobes, the super-resolution vector, ySR, was scaled

by the max value of the minimum resolution matched filter templates. This elementary

scaling of the template vector causes significant noise amplification through the filter.

Because of this noise amplification, the scaled super-resolution is only used for side-

lobe comparison purposes, otherwise the regular super-resolution template is used.

Table 3.1 shows the performance metrics for the various mismatched filter tem-

plate types, traditional matched filtering, and windowed matched filter performance.

WNN can be used to compare the range resolution of each technique relative to the

maximum bandwidth resolution, given by the maximum bandwidth mismatched fil-

ter. The minimum resolution is given by the minimum bandwidth mismatched filter,

which perfectly matches the response of the lowest bandwidth waveform. It is also

important to note that the Doppler resolution at the target range is unaffected, with

only a loss of peak power resulting from the bandwidth agility impacting the Doppler

domain.

All of these factors need to be balanced, trading off the SNR and null-to-null main-
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Table 3.1: Bandwidth Agility Performance

SNR (dB) RSEmin RSEmax WNN (bins)
Matched Fil-
ter

58.619 dB 1.18 dB 8.31 dB 16

Windowed
Matched Fil-
ter

56.385 dB -4.47 dB 2.66 dB 76

Min. Mis-
matched

51.500 dB 0.00 dB 7.13 dB 32

Max. Mis-
matched

32.608 dB -2.99 dB 4.13 dB 10

Scaled Super
Res. Mis-
matched

56.423 dB -6.00 dB 1.12 dB 24

lobe width (i.e., range resolution). The minimum bandwidth mismatched filter exactly

matches the minimum bandwidth constant case showing a perfect reconstruction of

the ideal PSF. But, if the system is going to use the smallest bandwidth template, there

is no reason to transmit the higher bandwidth pulses. All of the available spectrum

needs to be leveraged, including when additional bandwidth is available. Therefore,

a technique that leverages the additional bandwidth is desired such that the additional

bandwidth available from other pulses is not wasted.

The maximum bandwidth mismatched filter has worse sidelobe performance than

the windowed matched filter, but much better resolution. The scaled, super-resolution

technique provides the best sidelobe performance and significantly better mainlobe

width than the windowed matched filter and the minimum mismatched filter.

The SNR measure is where the maximum bandwidth mismatched filter fails to

perform. Because it cannot enforce the shaping criteria, the noise is significantly

amplified through the filter and causes a significant SNR reduction. Ultimately, the

super-resolution mismatched filter is selected as the filter to be used to mitigate the
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bandwidth agility as it provides the best combination of performance metrics.

The trade-off between these techniques can be seen in the filter’s response to var-

ious bandwidths. Figure 3.7 shows the super-resolution mismatched filter applied to

the average bandwidth pulse compared to the minimum bandwidth matched filter out-

put and minimum bandwidth windowed matched filter output. Here, it is clear that the

mismatched filter is able to outperform both windowing and matched filtering when

compared against the minimum bandwidth case.

But, the average super-resolution mismatched filter should also be compared to

the case where only the maximum bandwidth is transmitted to get a complete under-

standing of the performance. Figure 3.8 shows the super-resolution mismatched filter

applied to the average bandwidth pulse compared to the maximum bandwidth matched

filter output and maximum bandwidth windowed matched filter output. As expected

from the RSE measurements, the average super-resolution response performs worse

than either of the maximum bandwidth matched filters. The trade-off allows for a

more consistent shape from the super-resolution filter that reduces RSM at the cost of

some range resolution, but that is still better than minimum bandwidth range resolu-

tion. Note that all plots are generated with the sample time of 10 ns, corresponding

to a Nyquist sampling of 100 MHz bandwidth. Consequently, the sidelobes of Figure

3.8 are not as over sampled as the sidelobes in Figure 3.7.

Ultimately, this represents a very complex trade-space that allows for system de-

pendent decision making. Different filters can be used depending on the performance

requirements of the system. If the maximum SNR is needed to resolve one very small

target, than matched filtering may be needed to extract the absolute maximum SNR.

However, if multiple targets are present, the super resolution mismatched can reduce

RSM and reduce the likilihood that a large target will mask a neighboring small target.

42



3000 3100 3200 3300
Range (Samples)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B
)

Min. BW MF
Min. BW Wind. MF
Avg. Super Resolution MMF

Figure 3.7: The output of the minimum bandwidth matched filter, minimum
bandwidth windowed matched filter, and the super-resolution mismatched filter

applied to the average bandwidth waveform [52]. ©IEEE

3.4 Experimental Results

Using the experimental testbed described in Section 2.1.2 and a pickup truck as a

target, CPIs of bandwidth agile pulses were tested to verify the results on real-world

data. Often, optimization-based approaches can become very dependent on the dy-

namic range of the data. In simulation, the available precision far exceeds what is

generally achievable with experimental data. The HO-CAE data set generated a CPI

of 128 bandwidth agile pulses. All CPIs were identical, but each had the bandwidth

agile data. Figure 3.9 compares data processed with standard matched filtering and

the proposed mismatched filtering technique using the super resolution template.

The mismatched filter technique works well on data from the outdoor collection,
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Figure 3.8: The output of the maximum bandwidth matched filter, maximum
bandwidth windowed matched filter, and the super-resolution mismatched filter

applied to the average bandwidth waveform [52]. ©IEEE

showing that the optimized filters are sufficiently robust to be used with representative

data. The experimental data shows the characteristics predicted by the simulation

results. RSM is cleaned up across the image, and Doppler sidelobe structures can

be identified from the strong clutter returns, indicating the RSM has been suppressed

to the noise floor. The cleaner image means smaller targets that might otherwise be

masked with standard processing would be more easily distinguished.

This additional performance comes at the cost of 0.5 dB of peak loss measured in

this CPI. The total trade-off is well-used. With less than 1 dB of peak loss, the range-

Doppler image is significantly cleaner, especially around the strong clutter and direct

path returns.
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Figure 3.9: Experimental data using bandwidth agile CPIs processed using the
matched filter (top) and the super resolution mismatched filter (bottom).
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Chapter 4

Intra-CPI Frequency Agility

Now that a technique has been developed to mitigate the bandwidth agility, the

focus turns to frequency agile pulses. Unlike bandwidth agile pulse, frequency agile

pulses uses the same complex baseband signal for all of the pulses. However, an

intermediate frequency step is needed to add the frequency agility.

To generate the frequency agile signal, each pulse from Equation 2.1 is mixed to

IF yielding

xIF (t,m) = x(t,m)ej2πFH(m)t , (4.1)

where FH(m) is the hopped IF frequency of the mth pulse measured relative to the

center frequency. It is important to note that, although it is modeled as mixing up to

the IF frequency here, the IF waveform would likely be synthesized directly as it is

within the instantaneous bandwidth of the system. In other words, it is assumed that

any IF processing is done at digital IF, after sampling. However, for generality the

signal model is developed as a continuous time domain signal.

The transmitted signal is achieved by mixing the IF signal to the radio frequency
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(RF), F0, for transmission as

xRF (t,m) = x(t,m)ej2πFH(m)tej2πF0t . (4.2)

The received signal is a scaled, time-delayed copy of the transmitted signal

zRF (t,m) = α(m)x(t− τ(m),m)ej2πFH(m)(t−τ(m)) · ej2πF0(t−τ(m)) (4.3)

where α(m) is the pulse-dependent scaling factor given by the radar range equation

give in (2.3) , and the time delay, τ(m), is the two way time delay to the target on the

mth pulse in the CPI.

The receive signal is mixed back down to IF, leaving a residual RF phase term that

depends only on target range which yields

zIF (t,m) = α(m)x(t− τ(m),m)ej2πFH(m)t · e−j2π(FH(m)+F0)τ(m). (4.4)

Notice, at IF there remains only the IF mixing term and then a term that relies on

both the RF carrier and IF term that is related to the target motion at each pulse. The

baseband signal can finally be expressed by mixing down the IF frequency resulting

in

z(t,m) = α(m)x(t− τ(m),m)e−j2π(FH(m)+F0)τ(m) . (4.5)

The IF signal defined in (4.4) and baseband signal from (4.5) are both of interest

in the investigation of the processing effects and will be examined to understand if the

processing should take place at IF or baseband. Pulse compression is applied to the

received signals via the matched filter to convert the signal from the fast time domain

47



to the range domain and is given as function of range, r, and pulse, m, as

zIF,PC(r,m) = α(m)ρxIF (r,m) · e−j2π(F0)τ(m) (4.6)

and

zPC(r,m) = α(m)ρx(r,m)e−j2π(FH(m)+F0)τ(m), (4.7)

where ρx is the output of the matched filter of the baseband waveform defined as (2.1)

and ρxIF is the output of the matched filter of the IF waveform defined in (4.1). The

Doppler term is expressed by the phase’s rate of change due to the target’s motion.

Here the Doppler term is implicitly represented in τ(m). To extract the Doppler in-

formation the Fourier transform can be applied across slow time at each range bin of

the pulsed compressed signal, implemented with the FFT. This process results in the

range-Doppler map, or in the case of the simulation the point spread function (PSF),

ZIF (r, Fd) andZ(r, Fd), which are each a function of range, r, and Doppler frequency,

Fd.

First, an investigation of frequency agility is carried out. From the signal model

in the previous section, it is clear that frequency agility will have an impact on the

phase of each pulse. Specifically, at the output of the matched filter, there will be

an impact on the slow time phase history across pulses that will impact the Doppler

response in the range-Doppler image. The phase history will also help to understand

the relationship between the Doppler phase term at IF and baseband. To carry out this

investigation a radar system was simulated to generate the point spread function using

the parameters in Table 2.1 with a simulated target at 200 meters and a radial velocity

of 20 meters per second.
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4.1 Phase Analysis

The non-agile, slow time phase history should be examined to provide a baseline

for analysis. When using a non-agile assumption, the matched filter neutralizes the

phase from the waveform and, therefore, using (4.7), the non-agile, slow time phase

history from a target can be expressed as

ΘR = −2πF0τ(m). (4.8)

Figure 4.1 compares three different phase histories: the fixed (i.e., non-agile) base-

band phase history, the IF frequency agile phase history derived from (4.6), and the

baseband phase history derived from (4.7). When using the IF matched filter in (4.6),

only the ideal phase history term remains. However, because the signal is sampled and

not continuous, there exists some phase offset between the sampled time delays and

the true delay of the target. The phase offset, dependent on the IF frequency and the

true delay of the target can be seen in Figure 4.1 by the slight mismatch between the

fixed baseband phase history and the IF phase history.

The baseband phase history deviates from the desired phase history curve more

significantly as a function of the IF frequency. Generally, this would mean that the

processing should be carried out at IF where the phase history is more closely aligned.

There are other practical considerations that make baseband processing a more attrac-

tive option. From a practical perspective, by processing at baseband the signal can be

further decimated from the IF sample rate down to the bandwidth sample rate. Deci-

mating to the baseband rate can significantly reduce the amount of data that needs to

be moved and processed by the system. This can be a key advantage as radar front

ends continue to support larger instantaneous IF frequencies and direct RF sampling
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Figure 4.1: Unwrapped agile baseband and agile IF slow time phase history
compared to that of a CPI of pulses with no frequency agility with 100 MHz of front

end bandwidth [59]. ©IEEE

systems become more popular. This can also have an advantage in digital array radars

with many channels.

Similarly, when processing at baseband fewer pulse compression filters need to be

stored and calculated than when processing at IF. Baseband processing requires only

one filter per bandwidth, while IF processing requires a filter for every bandwidth/IF

frequency combination that might be used, which can quickly become impractical for

efficient processing. Because of the efficiency benefits for this work the processing is

carried out at baseband. This choice increases the importance of correcting the phase

offset introduce by frequency agility.
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Figure 4.2: Unwrapped agile baseband and agile IF slow time phase history
compared to that of a CPI of pulses with no frequency agility with 2 GHz of front end

bandwidth [59]. ©IEEE

Generally, the phase performance would indicate that processing and correction

should occur at IF. However, because more front end bandwidth would be advanta-

geous to enable additional opportunities for sharing, it is important to investigate how

increasing the front end bandwidth relative to the center frequency impacts the behav-

ior of the phase history. As 100 MHz is narrow relative to the carrier frequency of

5 GHz, a 2 GHz front end bandwidth was simulated. The IF frequency of the pulses

from the HO-CAE/FSS output were normalized to the new front end bandwidth while

the waveform bandwidth was kept the same.

Figure 4.2 shows the resulting phase histories from the 2 GHz bandwidth case.
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When the front end bandwidth increases, and the frequency hops increase accordingly,

the phase history processed at both IF and baseband diverge significantly from the

baseline of constant pulses. Since the behavior of the IF processing changes based

on the hopping bandwidth relative to the center frequency, this work will focus on

applying the correction when processing at baseband. The importance of correction is

increased by choosing to process at baseband but this choice provides more consistent

behavior as the available bandwidth for hopping increases.

4.1.1 Phase Correction

The effects of frequency agility on traditional FFT range-Doppler processing at

baseband are significant without correction. Figure 4.3 shows the range-Doppler im-

age of the simulated point target at 200 meters with a relative velocity of 20 meters

per second. The Doppler and range cuts of the target location are shown at the top

Figure 4.3: Applying traditional FFT based range-Doppler processing to the
baseband matched filtered data with the target’s range and Doppler cuts shown [59].

©IEEE
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and right plots of Figure 4.3, respectively. As shown in the Doppler cut the Doppler

information is completely lost due to the effects of the phase residue caused by the

baseband frequency hopping. Additionally, the phase distortion is carried throughout

the extended range of the matched filter response, smearing across Doppler in every

case. Notably, from examination of the range-Doppler plot the distortion presents as a

uniform grid, indicating that the nulls in the matched filter output are aligned. Further,

it can be seen from the range cut on the plot to the right of Figure 4.3 that the use of a

constant bandwidth preserves the pulse compression response of the waveform.

Through examination of the phase term in the baseband radar return after pulse

compression from (4.7), a correction term to extract the desired phase history given

by (4.8) can be identified as

Cm(τ(m)) = ej2πFH(m)τ(m) . (4.9)

The correction factor relies on τ and although the Doppler effects are implied in this

term, it only depends on the range of the target at any given pulse. The output of the

matched filter is relative to target range, r. Therefore, this correction factor can be

applied directly to each pulse at the output of the matched filter.

4.2 Modified Backprojection Algorithm

The previous section identified a range dependent phase correction that needs to

be applied to refocus the target response. Without any knowledge of the target, a

technique needs to be developed that will correct for any target in the scene. An

algorithm that collects all of the energy for each range bin should be used. A focusing

algorithm traditionally used in synthetic aperture radar (SAR), backprojection is an

ideal technique for refocusing the target in energy [60].
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4.2.1 Backprojection

Although the backprojection algorithm is most commonly found in SAR image

processing, the technique has also been proposed as a method for focusing range-

Doppler images that contain fast-moving targets [61]. The backprojection algorithm

treats every pixel in the range-Doppler map as a unique motion profile with a starting

range and velocity corresponding to the location of that pixel in the image. For each

pixel in the image, the energy contribution for that motion profile, from each pulse,

will be gathered into the final image.

To accomplish this, the algorithm begins by calculating the range to each pixel on

the mth pulse. This target range for each pixel at the mth pulse, R̂m, can be given as

R̂m(r, v) = r + (m− 1)vTP , (4.10)

where r is the range axis and v is the velocity axis of the resulting range-Doppler

image.

Once a grid of ranges, R̂m, has been calculated, then the value from the fast time

pulse needs to be interpolated. For this work, interpolation was applied in two steps.

First, a high-quality FFT interpolation was used and then a low-quality linear inter-

polation was used to interpolate to the exact range. After obtaining the interpolated

values from the pulse to the grid of range values, a phase correction needs to be ap-

plied to focus the energy from a target at that range if it were to exist. The desired

phase correction angle, ψB, is based on the targets range at that pulse and is given as

[61]

ψB = −2πF0
2R̂m(r, v)

c
. (4.11)
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The pixel of the range-Doppler image, P , that corresponds to the range, r, and veloc-

ity, v, is constructed by interpolating to the hypothetical target’s location in each pulse

and multiplying by a phase correction that corresponds to that range. Combining the

processes for each pixel yields

P (r, v) =
M∑
m=1

xRxBB

(
t+

2R̂m(r, v)

c
,m

)
ejψB . (4.12)

4.2.2 Modified Backprojection

Modifications are made to the phase correction term to enable the processing of

the frequency agile pulses [59]. The phase correction in (4.11) takes the same form as

the constant frequency slow time phase history given by (4.8), making it an ideal place

to implement a correction. Adapting the backprojection factor for the frequency agile

pulse case can be extrapolated from the baseband signal given by (4.7) in the signal

model.

Adding the hopping frequency to the correction factor yields

eψBej2πFH(m)
2R̂m(r,v)

c . (4.13)

Combining the new terms into the backprojection correction yields the correction

phase

ψMB = 2π(FH(m)− F0)
2R̂m(r, v)

c
. (4.14)

Using the modified backprojection algorithm by replacing ψB with ψMB in (4.12)

successfully sharpens the target and recovers the Doppler information, providing a

peak Doppler sidelobe of -14.7 dB while maintaining a strong range response. Figure

4.4 shows the range-Doppler image that results from using the modified backprojec-
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Figure 4.4: Result of applying modified backprojection to the baseband match
filtered data [59]. ©IEEE

tion method on the frequency agile pulses and the range and Doppler cuts at the target’s

true range and Doppler.

There are a few notable features for discussion. The first is the continued pres-

ence of RSM. While the correction does focus the target at the correct range, RSM

remains. The RSM persists because the phase distortion extends across the length of

the matched filter on each side of the target. However, because of the roll-off of the

matched filter response the RSM likewise rolls off quickly. Since this correction is

applied for every motion profile in the range-Doppler space, regardless of the pres-

ence of a target, the sidelobes present in the range bins adjacent to the target bin will

decorrelate which accounts for the distortion of the range profile.

Similarly, the mainlobe of the target’s range response is distorted by the decorrela-

tion effect. In the range bins immediately adjacent to the target’s range bin, the phase

correction decorrelates with the mainlobe rolloff and sidelobe creating nulls instead of
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the smooth mainlobe. The shoulders at -6.2 dB around the peak are a direct result of

this decorrelation and technically make the mainlobe narrower. Because of the hop-

ping frequency the pulses have a collectively wider bandwidth, which provides a more

narrow mainlobe then would be expected from non-hopped waveforms [23].

Secondly, the Doppler response is affected by this technique. Although the Doppler

response is focused, it does not take on the expected shape. Instead of rolling off with

a sinc-like shape, as would usually be expected with constant pulses, the Doppler re-

sponse starts rolling off but flattens below -20 dB, while maintaining a narrow peak

at the correct Doppler. The RSE metric from the previous section will be used as a

metric to understand the sidelobe performance.

Point spread functions are usually generated at zero range and Doppler, but in this

case there is very minimal distortion of a target with zero range and zero velocity

Doppler (Hz)

Doppler (Hz)

Figure 4.5: The constant pulse mainlobe boundaries in range and Doppler are shown
in (a) and (b), respectively. The agile pulse mainlobe boundaries in range and

Doppler are shown by (c) and (d) respectively [52]. ©IEEE
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because τ(m) is zero pulse-to-pulse and so it is not impacted by changing center

frequency. In order to get a representative metric, an unnormalized version of the PSF

that was examined in Figure 4.4 with a target at 200 meters and traveling at 20 meters

per second was used. This target location does not fall on the sample grid in either

range or Doppler, thus providing an accurate representation of real target performance.

The mainlobe was defined from null-to-null, and the location of the sidelobe bound-

aries is shown in Figure 4.5. Overall, from (3.11) there was an RSE = 6.384 dB in-

crease in sidelobe energy for the agile pulses when compared to a constant bandwidth

of 16.211 MHz, as defined in Table 2.1. The increase is primarily caused by the lack

of roll-off in the Doppler domain. Additionally, the definition of the mainlobe in the

agile case is slightly narrower than the mainlobe in the constant case, expanding the

limits of the sidelobe energy calculation. Ultimately, the peak magnitude is unchanged

when using the frequency agile pulses, and the PSL is just below the expected value

at -13.4 dB.

4.2.3 Range Migration

Backprojection is designed to focus fast moving targets since it works by interpo-

lating to the hypothesized target location. By adapting the backprojection algorithm

to compensate for the baseband phase offset fast targets that migrate across range bins

can be focused into a single target point.

To compare the FFT and the modified backprojection, the phase correction from

(4.9) is applied directly at each range cell at the output of the baseband match filter.

An FFT is then taken across each range bin to extract Doppler information. Figure 4.6

shows the result of FFT processing on a target moving at 70 meters per second at 1500

meters. When apply the FFT processing, the phase history is spread across range bins

58



Figure 4.6: Performance of direct correction FFT processing on range migrating
targets and a Doppler cut at the target’s true range [52]. ©IEEE

which causes target spreading in both range and Doppler.

Figure 4.7 shows the result of applying modified backprojection. With the modi-

fied backprojection the target is focused to a single range and Doppler bin and power

is recovered compared to the FFT processing. Figure 4.6 and Figure 4.7 are left un-

normalized to show the relative power gain from backprojection compared to FFT

processing. It is worth noting that the speed of our target is limited by the carrier

frequency and PRF, a relatively low PRF of 5 kHz was used with a small number

of pulses to keep the simulation comparable to what could be transmitted by our test

hardware.
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Figure 4.7: Performance of modified backprojection processing on range migrating
targets and a Doppler cut at the target’s true range [52]. ©IEEE

4.3 Why Backprojection?

As pointed out in the previous section, backprojection is a technique used to com-

pensate for target smearing caused by a fast-moving target that migrates across range

cells in a single CPI. The correction factor is only defined in terms of range, so in

the nominal case that range migration is not present, backprojection may not seem

necessary. But, targets are not stationary for an entire CPI; they are moving, so the

correction has a different phase in each pulse based on each motion profile. The error

of not accounting for the motion can degrade the Doppler response over time. This

section compares backprojection to a direct application of a single correction value,
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defined in (4.9), across each range bin. The phase history for a target placed on the

range-Doppler grid at 200.86 meters traveling at 20.2008 m/s is examined to show the

need for the modified backprojection technique.

Figure 4.8 shows the wrapped phase history of the on-grid target after a correction

is applied directly across slow time with a single value. There is a sound agreement

between the phase history for the first 20 pulses. However, the direct comparison

begins to deviate from the backprojection technique. This target is not moving fast

enough to migrate in range, but the error between the correction and target ranges

accumulates.

Figure 4.9 shows how the Doppler response changes based on the two correction

approaches. First, the reference response is unfocused, as has been shown repeatedly.

When applying the direct correction, the target becomes focused, but the sidelobes

are significantly elevated and approach the sidelobes of the unfocused target. Finally,

for the modified backprojection correction, the Doppler response is perfectly recon-

structed for the on-grid target. These curves show a clear improvement of up to 15 dB

by using the backprojection over a direct application of the phase correction.

Similarly, the correction relies on the absolute range of the target. The phase phase

error introduced with hopping is more severe with larger hopping frequencies and at

longer ranges. The linked dependence between range and the correction mean that

an individual augmented DFT matrix could not be used to correct the phase error and

would only provide the performance of the direct correction. Again, modified back-

projection proves to be necessary to extract the best phase correction performance.

Targets exist in a continuous space that does not fall on a discrete grid, so all sim-

ulated results in the previous sections were range and velocity values that fell between

the discrete grid. Here, the performance improvement of backprojection over direct
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Figure 4.8: Wrapped phase history after direct correction and backprojection
correction.

correction was examined using an on-gird target to provide a good reference. As seen

before, a target that exists off the grid will not have a perfect Doppler response, but

the modified backprojection technique minimizes that error over the other correction

method.

4.4 Experimental Results

Using the experimental testbed described in Section 2.1.2, a series of frequency

agile pulses were tested to verify the results provided by the simulation. Figure 4.10

shows the real-world data processed with FFT Doppler processing and modified back-
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Figure 4.9: Doppler response of uncorrected, directly corrected, and backprojection
corrected phase.

projection, both processed with the matched filter. The real-world results reflect an

excellent agreement with the simulation and, consequently, the signal model. Be-

fore correction the target energy is spread across Doppler with no Doppler peak. Be-

fore correction, stationary scatterers are somewhat focused but have significant energy

spreading in Doppler.

With correction the vehicle’s motion becomes visible in the range-Doppler image

moving away from the radar testbed, defined here as negative Doppler. The target is

focused in the scene with strong peaks in both range and Doppler. As with simulation,

the Doppler sidelobes are flat while the mainlobe in range is affected by decorrelation

effects.

Other targets are also focused in the image. The strongest return at zero range and
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Figure 4.10: CPI of real-world data with traditional FFT range-Doppler processing
(top) and with modified backprojection (bottom) applied at the output of the matched

filter [52]. ©IEEE

zero Doppler is the direct path antenna coupling return and is the result of the STAR

operating mode. As discussed previously, this direct path at zero range and Doppler

is mostly focused with and without correction because τ is zero for all pulses. Other

stationary scatterers are also present at various ranges at zero Doppler which are also

successfully focused using the direct application of the correction.
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Chapter 5

Fully Agile Pulse Processing

In the case when the radar is fully agile, that is changing in both frequency and

bandwidth from pulse-to-pulse, the phase correction and mismatched filtering tech-

niques need to be combined into a single procedure. First, each received pulse needs

to be mixed down to baseband as was discussed in Section 4.1. Then instead of apply-

ing a matched filter, a super-resolution mismatched filter is applied as discussed in the

previous section. Using the output of the mismatched filters, modified backprojection

can be applied to correct the images for the frequency agility and generate the range-

Doppler image.

The modified backprojection and mismatched filtering techniques complement

each other well. Because the two methods are independent they can be applied sequen-

tially, each mitigating the respective distortion they were designed to compensate for.

The super-resolution provides an additional benefit for mitigating the distortion caused

by frequency agility. The modified backprojection only focuses the range where the

target exists and leaves residual RSM in range. With the super-resolution mismatched

filter, the range extent of the RSM caused by frequency agility is reduced just as it was

with bandwidth agility.

Table 5.1 shows the RSE and bin width measurements from full agility. As ex-
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Table 5.1: Full Agility Performance

RSEmin RSEmax WNN (bins)
Matched Filter 2.20 dB 9.34 dB 16
Windowed Matched Filter -1.38 dB 5.74 dB 76
Min. Mismatched -2.64 dB 4.48 dB 32
Max. Mismatched -0.30 dB 6.82 dB 10
Scaled Super Res. Mismatched -4.41 dB 2.72 dB 24

pected, in most cases the addition of the frequency agility increases the RSE as com-

pared to bandwidth agility alone. Because the sidelobes are not focused like the main-

lobe of the target, the sidelobes create some smearing at range. Similarly, performance

is improved over the frequency agility only case because the window and mismatched

filters help to reduce the range spread by reducing the sidelobe level of the waveform.

Figure 5.1 shows a CPI of real data from the scenario discussed previously using

fully agile pulses and standard matched filter and FFT Doppler processing with the

range and Doppler cuts at the target’s location shown. Without correction only the

antenna coupling at zero range and zero Doppler is focused, the target and clutter

scatters have their energy spread across Doppler and do not focus to a peak. Figure

5.2 shows the result of processing with the super-resolution mismatched filter and

phase correction technique. Using the proposed processing chain, the target and even

clutter scatters are focused into sharp responses.

Applying the phase correction at the output of the mismatched filter is trivial and

can be done with a lookup table to speed up the process. The mismatched filter is

very computationally intensive with a matrix inverse on the order of the number of

pulse samples. However, by processing at baseband, only mismatched filters for each

bandwidth are required, not each bandwidth/IF pair that is required for IF processing.

By processing at baseband, the mismatched filters could reasonably be precomputed

and then pulled from storage when a pulse with a certain bandwidth is needed. Recent
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Figure 5.1: A real-world CPI of fully agile pulses processed with matched filtering
and FFT-based Doppler processing without correction. The range and Doppler cuts at

the target’s location are shown.

Figure 5.2: A real-world CPI of fully agile pulses processed with super resolution
mismatched filter and modified backprojection. The range and Doppler cuts at the

target’s location are shown.
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works have investigated methods for reducing the computational complexity of the

mismatched filter, but the reduced computation does have some trade-offs that need to

be studied for each application [62].

Other work has investigated methods for handling the effect that non-uniform

pulses have on the clutter and clutter statistics, especially with spectrally notched

waveforms [63] [64]. Since the present work looks more at the deterministic effects

of pulse-to-pulse agility, a more appropriate comparison is the Richardson-Lucy de-

convolution technique described in [65] that deconvolves the distorted point spread

function from the range-Doppler image. The Richardson-Lucy technique is very com-

putationally efficient as it only uses convolution, which can be efficiently implemented

with the FFT, and element-wise multiplication and division.

As with the work in [63], the Richardson-Lucy technique described in [65] pro-

cesses the pulses at the intermediate frequency. As described in section 4.1, when

processing at IF there is a strong target peak that is distorted or presented with am-

biguities. The Richardson-Lucy algorithm is ideal for restoring a distorted PSF. Un-

fortunately, as demonstrated in Figure 4.3, when processing at baseband the target is

completely obscured, so there aren’t any features in the point spread function that the

Richardson-Lucy technique can use to extract the true target return.

5.1 Computational Complexity

The computational complexity of the combined algorithm is of interest to deter-

mine if the algorithms could be applied in real-time to the continuous stream of data

that a radar system produces. First, the most computationally intensive part of the al-

gorithm is calculating the mismatched filter of each pulse. Calculating the mismatched

filter for a given template requires a matrix inverse of the total filter size, which, as
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mentioned in section 3.1, is twice the length of the waveform, leaving a complexity of

O((2N)3).

Fortunately, the mismatched filters can be calculated beforehand. If all pulses

are mixed down to baseband, then the mismatched filters rely only on bandwidth.

For a given system, the band selection algorithm would likely use a maximum and

minimum selection bandwidth. Additionally, band selection has a resolution. HO-

CAE, for example, had a resolution of 97.656 kHz, which is set by the instantaneous

bandwidth of the system and the size of the FFT used to generate the snapshot. In this

case, a mismatched filter would be generated for each discrete bandwidth that could

be used based on the number of bins that HO-CAE can select.

By precomputing the mismatched filter, its complexity is not considered for real-

time operation, leaving only the backprojection method to consider. Backprojection

is highly parallelizable, with each range-Doppler cell independent in the calculation.

The most intensive part of the calculation for each range-Doppler cell is the coarse

oversampling that uses the FFT. The FFT algorithm can be carried out in O(nlog(n)),

where n is the number of values in the oversampled vector. With sufficient resources

for parallel compute, the backprojection algorithm has been demonstrated in real-time

in [66].

Because the two algorithms needed to process fully agile pulses operate in different

domains, they are complementary for implementation. With the benefit of calculating

mismatched filters offline, the ability to operate in real-time becomes limited to the

modified backprojection technique, which can be accelerated to operate in real-time

due to its highly parallelizable nature. Together, these algorithms provide a highly

effective and efficient method for processing pulses that change bandwidth and fre-

quency on a pulse-by-pulse basis.
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Chapter 6

Communications Interference Mitigation

Non-cooperative spectrum sharing schemes will always present the potential for

interference between users. In fully adaptive schemes of the future, there are times

when a mission-critical radar system, like the terminal Doppler weather radar (TDWR)

described in [30], may not be able to find any available spectrum, which will require

operating in the presence of an interfering user. No matter the reason, when a com-

munications user is present as an in-band interference source, techniques are needed

to minimize the impact on radar processing.

Previous work has introduced demodulation and remodulation (demod/remod) as

an estimation technique for interference cancellation when the radar is operating in

a simultaneous transmit and receive (STAR) mode [67]. Passive radar heavily influ-

enced the demod/remod technique. Instead of transmitting energy, passive radar sys-

tems utilize signals of opportunity transmitted by local infrastructure or other emitters

present around the scene [68].

Passive radar systems collect two signals of interest. First, a receive antenna is

pointed directly at the signal of opportunity source, providing a direct path reference

waveform that is used for correlation processing [69]. Second, a receive antenna is

pointed in the direction of interest to collect echoes from the scene. The data is pro-
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cessed from these two input sources using a bistatic geometry [69].

Over the last two decades, passive radar systems have been developed and in-

vestigated to operate on many signals of interest such as FM radio, DAB radio, and

DVB-T [70], and the feasibility of many other emitters of opportunity has been ex-

amined [71]. As wireless communication devices proliferate and telecommunications

networks rapidly expand, recent work has shown that 5G parameters can be extracted

so that 5G networks can be used as a source for passive radar [72].

While passive and STAR systems are able to receive continuously without inter-

ruption, many high-power radar systems must blank their receiver when transmitting,

which results in the loss of some reference signal information [31]. This chapter

presents an active interference mitigation technique using demodulation and remodu-

lation to estimate the reference signal for extraction. The main focus of this chapter

assumes that the radar system only has a single antenna or that the interference is in

the main beam of a steered multi-element array.

The OFDM communications model presented in Chapter 2.3 is used to simulate an

OFDM time signal, which is received by a pulse-Doppler radar system that blanks its

receiver on transmit. When combining the radar and interference signals, the interfer-

ence power is set to some output interference-to-signal ratio (ISR), which describes the

ratio of the average interference power to the target peak in the output range-Doppler

map. Complex white Gaussian noise is generated with an output interference-to-noise

ratio (INR) of -25 dB. Each of the three vectors, the radar return vector, the interfer-

ence vector, and the noise vector, are added together after the radar timeline has been

applied to remove data that would be lost from the receiver blanking but before any

processing has occurred.

This chapter will begin by exploring the ideal performance of the demod/remod
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technique. Initially, the communications signal is generated without a channel or

Doppler offset. The initial performance evaluation provides insight into the effects

of receiver blanking. The next section of this chapter expands the OFDM model to

include a channel and a large Doppler offset. The performance will be evaluated by

examining the technique’s raw fast-time power reduction, probability of detection,

false alarm statistics, and target peak loss after interference cancellation and tradi-

tional range-Doppler processing.

The chapter will conclude by investigating and comparing the demod/remod pro-

cess with a statistics-based approach called adaptive pulse compression (APC) [73].

APC’s sensitivity to model mismatch and the notional covariance will be examined to

understand the future feasibility of such a technique.

6.1 Demodulation//Remodulation Estimation: The Ideal Model

A radar system sends a pulse and then collects a PRI of samples. The pulse-and-

listen cycle is carried out continuously and some number of PRIs are collected into

a CPI and processed together. When the radar system is transmitting the receiver is

blanked. When the blanking occurs, information about the continuous interference

is lost. This blanking is referred to as the system channel. The time duration of the

waveform, and the data loss from the disabled receiver, can be relatively short com-

pared to the total duration of an OFDM symbol. Figure 6.1 shows receiver blanking

from a uniform pulse train relative to a series of OFDM symbols.

Pulses are likely to fall within the boundaries of a symbol and are unlikely to be

time aligned. If the scope of OFDM demodulation were confined to a PRI, more

data would be lost than necessary because the rest of the symbol duration beyond the

PRI boundary would need to be zero-padded. Zooming out and demodulating relative
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Figure 6.1: A series of OFDM symbols shown with receiver blanking shown in red.
[74] ©IEEE

to a CPI means that only the samples blanked by the receiver and symbols at the

beginning and end of the CPI need to be zero padded. It is, therefore, advantageous to

demodulate an entire CPI of symbols at once instead of one PRI at a time.

Figure 6.2 shows the blanked region of a full interfering communications signal

and the resulting sample vector that is received by the radar system. Interference

from an OFDM communication network source is constantly present at the antenna,

as shown in the top left of Figure 6.2. The top right of the figure shows the samples

that are collected by the radar system. Notably, the sampled full CPI vector does

not accurately reflect the true time as the blanked times are “missing.” Consequently,

zeros must be inserted to make the vector represent a true time axis.

Estimating the communications signal begins by examining a full CPI worth of

data, and zeros are inserted into the vector to represent the samples lost by the receiver

blanking. Additionally, zeros are appended to the end of the CPI so that there is

enough samples for an integer number of OFDM symbols. The CPI vector is divided

on the symbol boundaries, and each symbol is demodulated. Standard demodulation

is used as described in section 2.3. First the cyclic prefix is removed and then the FFT

is applied to the remaining samples. Finally, the complex symbol values are removed
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Figure 6.2: The interference signal with blanked regions highlighted (top left) and the
samples that are actually received by the system (top right). The bottom shows the

zero inserted vector that is used for demodulation.

from each occupied subcarrier. Using the modulation order constellation, the symbol

values can be translated to bits. Each of the complex values are snapped to the nearest

constellation point to decode data.

Once bits have been extracted, the appropriate modulation constellation is used to

modulate the data back onto an OFDM symbol using the same modulation parameters

that were used for demodulation. By decoding down to the bits, a robust estimate of

the symbol can be constructed where error results captured by the bit error rate (BER).
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Figure 6.3: The demodulation/remodulation estimation and extraction technique
block diagram [74]. ©IEEE

At higher levels of the communications model, forward error correction is utilized in

the data packets that can account for low BERs [75]. This work will stay confined

to the lowest level of the communication model and assume that no information is

available about the data packet level structure.

For sufficiently high INRs, BER would be low enough to effectively extract all of

the bits and provide a perfect reconstruction of the time domain signal. This would

continue to hold if the entire interfering signal were captured; however, some data

is lost due to receiver blanking. The data loss results in a degraded estimate of the

transmitted signal. After remodulation, the reference signal vector is subtracted from

the original data record. With a perfect estimate of the interference signal, subtracting

the reference signal from the data record would result in only noise and radar returns.

However, because the estimate is imperfect, a residue of the communication interfer-

ence is left behind.

Once the estimated signal has been removed from the radar returns, standard

matched filtering and Doppler processing can be applied. Figure 6.3 shows a block

diagram of the demodulation/remodulation (demod/remod) estimation and extraction

technique relative to the radar processing flow.
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6.1.1 Initial Performance

To understand the demod/remod performance with the system channel included, a

Monte Carlo simulation is carried out for several combinations of PRF and pulse duty

cycles. Here the duty cycle defines the pulse duration as a percentage of the PRI. To

begin, uniformly distributed random data bits are generated and modulated to generate

a series of OFDM symbols whose total duration is at least the length of a CPI. The

OFDM symbols are blanked, and zeros are added according to the radar timeline for

the given PRF and duty cycle under test.

Once the blanked symbols are generated, a blanked noise vector is added to create

an interference-to-noise ratio of -25 dB. The set of noisy, blanked symbols are then

demodulated and remodulated to create a reference signal and the reference signal

is subtracted from the initial receive vector of blanked symbols. The result is the

reduction in interference and noise power. If the symbols are perfectly estimated, the

total reduction would be 25 dB since the total performance is bounded by the noise

power. For each test case, 5000 CPI iterations were carried out and the results are

reported in Figure 6.4.

The results show that total interference reduction performance is maximized with

a lower PRF and shorter pulses, which is in direct contention with traditional radar

performance metrics. While a radar system optimizes parameters to maximize energy

on target, here longer pulses and more energy on target increase the symbol data loss

and degrades the estimate of the interfering signal. Similarly, as the PRF increases,

although the pulses duration is shorter when using the same duty cycle, having more

discrete blanks in the symbol has a greater impact than a larger single blank.

It is intuitive that interference cancellation performance is better when data loss
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Figure 6.4: Average power reduction from demodulation/remodulation estimate and
extraction [74]. ©IEEE

is reduced. Looking closer at the OFDM interference signal model and the receiver

blanking provides a better understanding of the underlying behavior. Recall that in

section 2.3 OFDM communications symbols are defined as

xi(t) =
rect( t−Tc

Tc
)

√
Nsub

Nsub−1∑
k=0

Xke
j2πkt/Tc . (6.1)

Looking at just the OFDM definition, which is just a sum of sinusoids, each with a

phase and amplitude term, one might expect that the power of each sinusoidal com-

ponent is simply reduced. However there is more happening when blanking is intro-
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duced. The system channel can be defined as

ρ(t) = u(t) +
M−1∑
i=0

−u(Υi) + u(Υi + Tp) , (6.2)

where u(t) is the unit step function, Υi is the start time of the ith pulse and Tp is the

pulse duration. Unlike the free space channel described in section 2.3, the system

channel is multiplicative. The receive signal is therefore defined as

xiRX(t) = xi(t) · ρ(t) . (6.3)

Multiplying the communication signal in the time domain is equivalent to convolving

with a sinc function in the frequency domain. When expanded, the rect function that

defines the time duration of the OFDM symbol is what implicitly changes. Therefore,

the system channel simply replaces the rect function to yield

xiRX(t) =
ρ(t)√
Nsub

Nsub−1∑
k=0

Xke
j2πkt/Tc . (6.4)

Changing the shape of the rect function changes the orthogonality of the subcarriers.

Without the system channel each subcarrier has a perfect sinc like shape where all

other subcarriers reside in a null of the each other’s sinc function. Figure 6.5 shows

how a single subcarrier’s oversampled sinc function changes when the system channel

is used in place of the rect function. Looking at the oversampled sinc functions, the

sidelobes’ shape changes such that adjacent subcarriers on longer land in the sinc nulls

and the sidelobe structure energy is increased.

When the rect function is replaced by the system channel, the shape, while still

sinc like, changes and some interaction between the symbols can occur. When the or-

thogonality of the subcarriers changes, an increase in the BER rate should be expected.
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Figure 6.5: The sinc shape changes from the nominal shape as more of the symbol is
lost to the system channel.

This sinc shape is further degraded when the pulse duration is increased which leads

to worse performance.

Figure 6.6 shows how a subcarrier contributes to all other subcarriers when the

middle of the OFDM symbol is blanked in time. When the full signal is captured,

each point is independent and the subcarrier only provides energy to itself, as every

other point is orthogonal and falls into a null in the sidelobes. When some of the signal

is blanked, then the points are no longer orthogonal and each subcarrier contributes

energy to every other subcarrier.
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Figure 6.6: The sinc shape shows a contribution of every point to each subcarrier
shown for a single blank of a quarter and half of a symbol compared to the fully

received case.

6.1.2 Blanking Location

In addition to the sinc effects discussed above, the location of the data loss also

plays an important roll in defining reconstruction performance. Three distinct per-

formance categories can be defined based on the regions that are lost to the system

channel.

First, if the blank is confined exclusively to the cyclic prefix, the symbol data can

still be demodulated without loss, because the cyclic prefix is stripped off before sym-

bol demodulation and so none of the data is changed. Additionally, since there is no
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Figure 6.7: When the system channel is confined to the cyclic prefix no data is lost
and the symbol is perfectly reconstructed. The top shows the region that is blanked
and the bottom shows the true signal and the reconstructed signal match perfectly.
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data loss, the orthogonality of the subcarriers is not changed. Without any demodula-

tion loss, the estimate of the signal allows for complete extraction of the interference.

Figure 6.7 shows the result of blanking only the cyclic prefix.

Although total reconstruction of the signal is a desired result, confining a system’s

pulses to the cyclic prefix is not feasible. The LTE and 5G standards define differ-

ent cyclic prefix durations with some having non-uniform cyclic prefix duration from

symbol-to-symbol over a slot [36], [37]. Within a single 10 millisecond frame, some

configurations use a longer cyclic prefix on the first symbol and a short cyclic prefix

on the remaining six symbols. This would apply a significant constraint on the PRF

and pulse duration that may not be compatible with the mission of the radar system.

Additionally, if multiple communication channels are present in-band of the radar

system, their respective cyclic prefixes may not be aligned, especially if they are from

two different networks. All considerations combined, it is impracticable to confine the

radar pulse to the cyclic prefix.

Second, when the receiver blanking occurs during the symbol, the estimated signal

has a reduced power compared to the actual signal. Since all subcarriers are present

at all time, when some of the body of the symbol is blanked then energy is lost in

all symbols. Here is where the change in the sinc shape begins to impact the symbol

demodulation. The energy loss combined with the increase in BER from the cross

subcarrier interaction mean that a perfect reconstruction is no longer possible.

When remodulating with data loss in the middle of the symbol, the reduced power

and subcarrier interaction create a signal that varies from the true reference, resulting

in some interference residue left over in the radar return. The residual energy can cause

a loss of stationarity in fast time. For example if a PRI captures multiple complete

symbols and a partial symbol, full symbols yield better estimates than partial symbols.
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Figure 6.8: When the system channel causes data loss in the middle of the symbol,
the BER rate is increased because of the change in the subcarrier orthogonality,

however the effect is minimal. The top shows the region that is lost to the system
channel and the bottom shows the true signal and the reconstructed signal.
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From a CFAR detector’s perspective, this is a change in noise power with respect

to range. Meaning that the noise and interference statistics are not stationary over fast

time which will affect the probability of false alarm over the transition period between

the symbols.

Figure 6.8 shows the result of blanking in the middle of the symbol. The top

plot shows the true symbol and the region that is lost to the system channel, while

the bottom figure shows the true signal and the reconstructed symbol. It is notable

that the reconstructed signal is estimated with much lower power in the region where

the receiver was blanked. This low power region does not impact the interference

cancellation performance because there are not any radar returns of interest in that

region as the data vector actually doesn’t have data in that region at all.

Additionally, the loss in power can be seen in the peaks of the true and recon-

structed signal. The reconstructed signal does not meet the peak heights of the true

signal with some peaks being flattened all together. It is these peak losses that cause

residual power to be left behind during subtraction.

Finally, the worst case occurs when the system channel causes a loss in the last

NCP samples of the symbol. When considering just the symbol, the reconstruction

performance is the same. However, the cyclic prefix reconstruction is significantly

degraded. As before, the blanked samples are reconstructed at much lower power, in

this case, the last samples.

Because the last samples are used to generate the cyclic prefix, if those samples

are lost, then the samples that result from remodulation will be significantly lower

power. In the previous two cases, it doesn’t matter how good the lost samples are

reconstructed because they aren’t needed to extract the interference as no data was

actually collected in that time. However, the loss in reconstruction at the end of the
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Figure 6.9: The left plot shows the blank location on the true signal and the right
shows the reconstruction performance relative to the true signal.
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symbol still have a significant impact.

Figure 6.9 shows the reconstructed symbol when the last 512 samples are lost to

the system channel. Note the top shows the region of the symbol that is lost while the

bottom shows that the end of the symbol and the cyclic prefix fail to be reconstructed

correctly.

The consequences of losing these last samples can be seen in the range-Doppler

map that is generated after interference mitigation. Figure 6.10 shows a range-Doppler

plot, without any targets present, where one of the pulses falls within the last NCP

samples of one of the symbols. The cyclic prefix interference can be seen clearly

from 5 to 6 km. This type of interference cancellation is especially concerning when

detection is considered. The cyclic prefix for this simulation includes 144 samples, but

depending on the number of cyclic prefix samples and the size of the guard window

used with the CFAR detector, the entire cyclic prefix region may be detected as targets.

For a solid region like the one shown here, the false alarm rate would be significantly

impacted by such a large number of false detections.

6.1.3 Cyclic Prefix Stacking

The cyclic prefix which is causing such a problem can also serve as the solution.

If the end of the symbol is lost and the cyclic prefix is not lost, then the cyclic prefix

samples can fill the lost samples at the end of the symbols. They are effectively stack-

ing the cyclic prefix onto the back of the symbol when the back of the symbol is lost.

The cyclic prefix filling allows for a better estimate of the symbol, especially the end

of the symbol, which means that the cyclic prefix can be successfully canceled.

In the case that the cyclic prefix and the end of the symbol are lost, cyclic prefix

stacking is not possible, but it is also not necessary. If the cyclic prefix is lost, then
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Figure 6.10: Range-Doppler map with cyclic prefix interference clearly visible while
the other parts of the symbol are extracted [74]. ©IEEE

no residual interference, like that seen in 6.10, will be present. Figure 6.11 shows a

range-Doppler plot using the same pulse locations and symbol train as in Figure 6.10;

however, cyclic prefix stacking successfully removes the high energy region that was

caused by the loss of the end of the symbol.

There are some issues that can occur with cyclic prefix stacking that will need

consideration later in this chapter. The cyclic prefix serves as a guard interval between

symbols in time. When the symbol is transmitted it is convolved with the environment

which can smear residue from the symbol in time. The cyclic prefix prevents the

smearing from the preceding symbol from contaminating the symbol it was attached
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Figure 6.11: Range-Doppler map with cyclic prefix stacking used to estimate and
extract the cyclic prefix even when the end of the symbol is lost [74]. ©IEEE

to. Without the cyclic prefix, the two symbols would smear together to create inter-

symbol interference (ISI). Accordingly, by stacking the cyclic prefix into the back of

the symbol, some of the previous symbol information comes with it.

6.1.4 Radar Detection Performance

The previous sections have shown that the technique provides an interference

power reduction and cyclic prefix stacking has been introduced to remove outlier

high-power regions that may result from the technique. This section examines the

performance from a radar’s perspective. Once the interference power has been re-
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duced matched filtering and FFT Doppler processing is applied to the data.

The improvement in radar performance is examined in terms of detection perfor-

mance and false alarm performance. To measure this, three targets were generated at

random ranges with a uniform distribution. The only constraint on target range is that

the radar return must be fully captured to provide a full match with the matched filter.

Similarly, the velocity of each target is selected randomly selected from a uniform

random distribution that allows for a target velocity to be up to 90 percent of the total

unambiguous velocity based on the PRF.

For this simulation, the output SIR is set using the precancellation ISR, which

is the relationship between the fast time interference power and the peak of the tar-

get in the range-Doppler map. For example, a 0 dB precancellation ISR means the

interference signal’s average power is set to the same level as the target peak in the

range-Doppler map. From here, noise is generated to provide 25 dB of INR.

The simulation was run with 5000 iterations for each combination of precancella-

tion ISR and duty cycle with a 10 kHz PRF. A CFAR detector is used with a guard

interval of 32 bins and a training window of 16 bins, and the false alarm rate was set to

1 × 10−6. Each detection registered by the CFAR detector is classified as a detection

or false alarm. If any of the bins adjacent to the true target bin contained a detection,

then the target was considered detected. The immediate bins around the true target bin

were considered to account for any range straddling effects. Because the targets were

randomly generated, they did not fall exactly on the grid points. Similarly, after all

of the true target locations were checked, all of the remaining detections in the range-

Doppler map were counted as false alarms. This means that sidelobes of targets that

are well above the noise and interference would have any sidelobe detections count as

a false alarm.
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Figure 6.12: Detection performance of detection after interference is canceled as a
function of the ISR before cancellation with a 10 kHz[74]. ©IEEE

Figure 6.12 shows the detection performance as a function of the precancellation

ISR. The baseline detection performance, that is, the performance without any can-

cellation, is shown with the dashed lines. As expected, the baseline detection perfor-

mance is the same for all duty cycles where the target peaks need to be well above the

interference power to be detected.

The detection performance mirrors the results shown in Figure 6.4. By using the

demodulation/remodulation estimation and extraction method, the targets can be de-

tected even if they are 15 dB below the interference when using short pulses relative to

the PRI. The demod/Remod technique provides up to a 20 dB performance improve-

ment over the baseline performance.

Figure 6.13 shows range-Doppler processing applied to a CPI of data with 0 dB

90



-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Doppler (Hz)

4000

4050

4100

4150

4200

R
an

ge
 (m

)

-60

-50

-40

-30

-20

-10

0

Figure 6.13: Range-Doppler map generated without interference cancellation with an
ISR of 0 dB [74]. ©IEEE
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Figure 6.14: Range-Doppler map generated after interference cancellation with an
precancellation ISR of 0 dB [74]. ©IEEE
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precancellation ISR. Here, the targets are completely obscured and cannot be detected

by a CFAR detector. After applying the interference cancellation, the range-Doppler

map in Figure 6.14 is produced, and the two targets at 4.06 km and 4.13 km are easily

identifiable and, importantly, are detected by CFAR.

The interference mitigation does have a negative impact on the detector’s false

alarm performance. The false alarm rate for the CFAR detector was set aggressively to

1×10−6; it is expected that the total number of false alarms divided by the total number

of bins tested should approach this value. For the baseline case when interference

cancellation was not used, the false alarm rate was approximately 1× 10−6 as desired.

After interference cancellation, the average false alarm rate increased to 5 × 10−5,

which is an order of magnitude increase.

6.2 Increasing Model Fidelity

The previous model showed that using demodulation/remodulation estimation and

extraction is feasible even when the receiver is blanked, and some of the symbols are

lost. The section provided an analysis of performance and the source of estimation

errors in the simple case when there is no channel or Doppler offset and the receiver

is assumed to be time aligned with the symbol boundaries.

This section will expand the model to include a complex channel, large Doppler

offset, and random time offsets relative to the receiver. Each of these parameters must

be estimated, removed from the symbol, and reapplied to the reconstructed estimate

of the communication signal before the estimate can be subtracted from the received

data vector.

With each new piece of the model this section will introduce a technique for es-

timating each of the above parameters. Once all parameters are estimated the section
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will conclude section with a technique to mitigate errors that result from misestima-

tion. The only parameters that are assumed to be known are the subcarrier spacing,

cyclic prefix length, and modulation order.

Work has been done that estimates the subcarrier spacing using order statistics

[76], various clustering techniques [77], and likelihood ratio tests [78]. However, this

work assumes knowledge of subcarrier spacing and the modulation. Previous work in

passive radar has shown that it is possible to extract basic parameters from the network

with a subscribed side channel device [72].

6.2.1 Symbol Boundary Estimation

The first step to demodulating an incoming OFDM signal is to identify symbol

boundaries. Detecting the first symbol boundary helps to locate the first full symbol

and provides time alignment to the symbol data stream. As discussed in Section 2.3,

traditional LTE and 5G networks utilize primary and secondary synchronization se-

quences placed throughout a frame to provide coarse and fine timing synchronization,

respectively.

Using the PSS and SSS signal has significant drawbacks when considering it for

use as the timing synchronization mechanism for demod/remod. First, these signals

only occur twice in each ten millisecond OFDM frame. Both instances of the synchro-

nization sequence must be captured to be effective. This constraint means that if the

transmission of either pair of sequences arrives at the radar system while the receiver

is blanked, then time alignment would not be possible.

Second, if the PSS and SSS were used then the minimum CPI duration would need

to 15 milliseconds or longer to ensure that two PSS and SSS sequences are captured.

This work declines to use any mechanisms or techniques that would enforce minimum

93



or maximum constraints on the radar system. Since the synchronization signals are not

going to be used another structure of OFDM needs to be exploited.

The cyclic prefix provides a repeating structure in every symbol. The cyclic prefix

is a copy of the last samples in the symbol appended to the front. Therefore, an auto-

correlation technique can be used [79]. By correlating a pair of vectors with length

NCP that are spaced a symbol apart, a peak will be formed when the two vectors are

aligned with the symbol.

Figure 6.15 shows the two regions that are correlated as they are dragged across

the received data. At each time step, the two regions are correlated to produce a test

statistic for that sample. The correlation operation can be defined as [79]

γ[n] =

n+NCP∑
i=n

xiRX [i]x
∗
iRX [i+NSC ] , (6.5)

where NCP is the number of samples in the cyclic prefix and NSC is the number of

subcarriers that make up the symbol. When applying (6.5) to the zero inserted receive

data, a peak will be produced when the two regions align with the symbol boundary at

index n.

The correlation term alone does not express the maximum likelihood (ML) esti-

mate of the time offset. In order to calculate the maximum likelihood estimate an

additional energy term is needed on that takes the form of [79]

Φ[n] =
1

2

n+NCP∑
i=n

|xiRX [i]|2 + |xiRX [i+NSC ]|2 . (6.6)

The ML estimate is then expressed as [79]

γML[n] = |γ[n]| − ρΦ[n] , (6.7)
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Figure 6.15: An OFDM timeline with two correlation regions shown as they move
across the data.

where

ρ =
SNR

SNR + 1
. (6.8)

Figure 6.16 shows the γ and γML values relative to the true symbol boundaries.

Both the correlation-only technique and the ML estimate produce a peak at the bound-

ary of each of the symbols. However, the ML estimate provides a larger dynamic range

by pushing down the off-boundary estimates.

Multiple symbols will be present in each CPI vector of data. Even if k symbols

can fit within a CPI and k symbols are expected, the maximum k samples will not

yield the appropriate offsets as one single rounded boundary peak may contain many

of the largest values of γML values. To find the appropriate peak values, test regions

are created that are length NSC +NCP . The regions chosen here are smaller than the

test regions used in [79]. Here, the start of the CPI is used as the beginning point of

the first region, and the symbol offset must exist within one symbol length of the start

of the CPI. Therefore, the offset found in each test region, relative to the test region

starting point, provides the global boundary offset.

An estimate for each symbol boundary can be found by simply taking the max-

imum value in each of these test regions. However, because of the system channel
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Figure 6.16: Correlation compared to maximum likelihood estimate of the boundary
shown with the true symbol boundary.

effects, taking an average across all offset values is insufficient for finding the true

symbol offset. If the radar pulse blanks any of the cyclic prefixes or last samples of

the symbol, the correlation peak will be reduced. Figure 6.17 shows two test regions

where the first test region fails to make a peak because some of the cyclic prefix is lost

to a pulse. In this case, the value chosen in a test region is selected from the rising

slope of the peak caused by a boundary peak that lands in the proceeding test region.

To avoid erroneous values from poorly behaved test regions, the result values from

the test regions are reduced. The test region starts with a number of values equal to

the number of symbols that fit in the CPI. Each pulse has the potential to corrupt a test

region. So, the smallestN samples are removed from the possible values, one for each

pulse. An additional two of the smallest values are removed from the set to account
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Figure 6.17: This figure shows two test regions for where the first test region’s test
statistic is lost due to the system channel. Instead of creating a peak at the symbol
boundary, the largest value is the rising edge of the boundary peak in test region 2.

for effects caused by the beginning and end of the CPI.

The remaining values are representative of the true symbol offset and can be aver-

aged together to be used as the true offset. The culling carried out on these values has

the effect of removing outliers from the data, where the pulses occur less often than

the number of symbols. In testing, using median absolute deviation tests for outlier

removal provided the same results.

The performance of this boundary estimation technique was carried out by simu-

lating a PRI of symbols that each have a random time offset such that a symbol does

not begin at the start of the data vector. For each of the 1,000 trials, OFDM symbols

were generated, a channel was added with a Doppler offset, and the noise was added
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25 dB below the mean OFDM signal power. Using the ML estimate of the boundary

provided an average error of 4.105 samples. Other techniques have been proposed

that utilize the pilot subcarriers present in OFDM [80] [81]. However, the described

timing estimator is used since it can be utilized directly from the zero-padded vector

without pilot information.

6.2.2 Frequency Offset Estimation

The frequency offset between the transmitter and receiver usually just describes

the difference in system oscillators. However, in OFDM, this can also include the

Doppler frequency offset caused by the transmitter and receiver moving relative to

one another. Traditionally, OFDM communications networks assume that the motion

of the user, and therefore the Doppler offset, is small relative to the subcarrier spacing.

A maximum Doppler of 300 hertz is considered for a multi-tap channel and 1500 hertz

for the high-speed train single-tap channel [40].

As described in previous sections, a Doppler shift or frequency offset can be ex-

pressed as a progressive phase shift in the time domain. The phase shift for a frequency

or Doppler offset of fD hertz takes the form ej2πFDt.

The cyclic prefix can again be exploited as a way to measure the center frequency

offset. Since the cyclic prefix and the last samples are the same at transmit, then they

should only have a phase difference related to the Doppler frequency. In the previous

subsection, an ML estimator for symbol boundary estimation was presented.

The peak values of γML that were identified as valid boundary estimates also con-

tain phase information that can be used for the relative center frequency offset using

[79]

ϵ̂ = − 1

2π
∠γ(n̂ML) (6.9)
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where ∠ is the argument of a complex number and n̂ML is the index of the ML bound-

ary estimate. The estimate ϵ̂ yields a value between -0.5 and 0.5, which is the fre-

quency offset relative to the subcarrier spacing. Because of the relationship between

the symbol’s time duration and subcarrier spacing, the resolution of the frequency off-

set estimate is −∆f
2

≤ fd <
∆f
2

. If the frequency offset is outside of the resolvable

range, the phase rotation across the symbol aliases, making one or more trips around

the unit circle.

For large Doppler shifts that approach the ∆f
2

, even small errors can cause a sign

change in the estimated phase, which results in large incorrect estimates. Again, the

use of multiple estimates from the culled set used in boundary estimation can be used.

The sign of the phase term of each valid estimate is considered, and a majority vote

is used to decide which sign should be used. After the majority vote provides the

appropriate sign of the Doppler offset, the absolute value of all of the valid estimates

are averaged together to collect the final estimate. As with the boundary estimate,

1000 trials were carried out, each with a stream of symbols that had a random offset

and a Doppler shift of 1500 hertz. The trials resulted in a mean error of 10.16 hertz.

Additional timing and frequency offset estimators have been proposed for various

modifications to the OFDM symbol structure. Constant modulus OFDM is particu-

larly sensitive to timing and frequency offset, and therefore, a more robust estimator

that takes advantage of a training symbol [82]. If control over the network is possible,

additional robustness in the estimates can be achieved by adding null subcarriers into

the symbols [83].

Many options for timing and frequency offset estimation are available in the lit-

erature under different assumptions. The presented techniques were selected because

of their low complexity and the minimal number of assumptions. Additionally, there
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is room for future expansion with this technique using many parallel correlation op-

erations with different boundary widths and region spacing to help deduce the cyclic

prefix and symbol duration based on the largest correlation result.

6.2.3 Channel Estimation

Once the time and frequency offset information are gathered, the Doppler compo-

nent is removed by applying a phase shift in the opposite direction of the phase shift

caused by the frequency offset. A single Doppler estimate is used because, as with

radar processing, the velocity of targets in the scene or the platform have a constant

velocity over time.

If the source is a cell user moving relative to a stationary radar, the CPI is short

enough to extend the assumption that their motion is constant over the CPI. Addition-

ally, if the interference originates from a stationary tower and the platform is moving,

the CPI will be short enough to assume that the platform’s motion relative to the inter-

ference source is constant.

After the Doppler component is removed, the vector is broken apart on the symbol

boundaries and each symbol is processed separately. First, each the cyclic prefix is

removed from each symbol and an FFT is applied to the remaining points. The re-

sulting grid, XdRX , is k × NSC with the number of columns equal to the number of

subcarriers and the number of rows is equal to the number of symbols.

Some symbols in the communications stream have pilots that are known at the

receiver. These pilots are inserted at uniform intervals throughout the symbol. Each

of the pilot subcarriers can be used to estimate the free space channel effects on the

symbols. In the time domain, the free space propagation channel is represented as a

set of complex-valued multipath taps. This creates a flat fading response for each of
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the subcarriers and is slowly changing across subcarriers [84]. The channel is then

modeled in the frequency domain as

XdRX(f) = XdTX(f)⊙H(f) , (6.10)

where ⊙ is the Hadamard product. The dTX notation indicates the transmitted subcar-

rier grid and dRX is the received subcarrier grid. For pilot subcarriers, the transmitted

symbol is known by the receiver and therefore a technique called zero-forcing can be

used to extract the channel value at each of the pilot locations [41]. For the subcarriers

at the pilot values, the channel can be extracted by simply reformulating (6.10) as

H(fp) = XdRX(fp)⊘XdTX(fp) , (6.11)

where fp are the pilot containing subcarriers and ⊘ is an element wise divide. The

extracted values are evenly spaced across the occupied subcarriers, and interpolation

can be used to estimate the channel values for all other points. For this work, spline

interpolation was used to estimate the channel effects for the data-carrying subcarriers.

Using the full channel estimate, Ĥi(F ), the estimate fo transmitted symbols can be

derived as

X̂TX(f) = XRX(f)⊘ Ĥi(f) . (6.12)

Not every symbol has pilots that can be used to extract the channel response. LTE

and 5G communications networks assume that the channel is constant over long time

periods of up to 10 milliseconds [36]. However, with the presence of the system

channel vector, the channel has to be estimated more locally.

For this work, symbols that contain pilots use their own channel estimate only.

Symbols that do not contain pilots will average the channel estimates from the ad-
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jacent symbols except when one of the symbols occurs in a symbol corrupted by a

pulse. Channel estimates derived from a contaminated symbol can only be used on

that symbol to ensure that the system channel does not reduce the effectiveness of

channel estimation.

6.3 Expanded Demodulation/Remodulation Estimation

Now that techniques for estimating symbol time, frequency offset, and free space

channel have been described, an updated processing flow can be established. Fig-

ure 6.18 shows the enhanced processing chain that enables estimation of the new

unknowns that were added in the previous section. Many of the blocks in the new

processing flow are familiar. Collect data, insert zeros, demod/remod, and estimate

subtraction are all described in the initial investigation of section 6.1. Additionally,

the cyclic prefix stacking described in section 6.1.3 has been added to the total pro-

cessing flow after the time and frequency alignment steps and before the free space

channel estimation that were described in the previous subsections.

An additional step has been added to the processing flow that was not previously

discussed. Before subtracting the reconstructed signal from the radar data, the free

space channel estimate and frequency offset estimate are reapplied to the remodu-

lated signal. Although demod/remod provides an estimate of the exact packet that was

transmitted by the interfering emitter, what actually needs to be subtracted from the

radar data is the interference as it appeared when it arrived at the aperture. Therefore,

the free space channel and Doppler frequency offset need to be added back to the re-

modulated signal so that an accurate representation of the received signal is subtracted

from the radar data.

Similar to the work carried out in section 6.1, a simulation was developed to test
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Figure 6.18: Enhanced Processing flow with boundary, frequency, and channel
estimation steps included.

the effectiveness of the enhanced processing chain and the robustness of parameter

estimation. Initial performance analysis is carried out on a single PRI of fast time data

to see the total fast time performance. For fast time analysis, a 1.5 kHz PRF was used

to generate data with a 49 microsecond LFM pulse generated such that the return has

a matched filter peak response of 0 dB. The communications interference is generated

as a continuous stream of OFDM symbols with the parameters described in Table 2.2.

Noise is generated 25 dB below the average power of the OFDM interference signal.

The nine tap vehicular validation free space channel model is applied to the stream

of OFDM symbols with a random time offset relative to the PRI [40]. Instead of the

70 Hz Doppler that is generally used with the vehicular channel model, a 1500 Hz

Doppler shift was used to provide a more difficult interference scenario and robustly

test the estimation techniques. At a 5 GHz center frequency, 1500 Hz represents a

target motion of 45 meters per second. Figure 6.19 shows the signal components with

a 0 dB INR with the interference generated with a mean power of 0 dB.

Each of the three signals are blanked according to the appropriate radar timeline
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Figure 6.19: Simulated signals shown separately with the interference generated at 0
dB mean power, noise at -25 dB mean power and radar return generated so that the

matched filtered, Doppler processed peak is at 0 dB in the range-Doppler map.

and then combined together to form the total received vector with zeros already ap-

propriately inserted. When each of the simulated signal components are matched fil-

tered with the transmitted LFM waveform the noise and interference maintain approx-

imately the same power level with the radar return formed into a peak. Figure 6.20

shows the result of each of the individual components being matched filtered, which

results in the radar peak still falling below the interference but above the noise com-

ponent.

It should be noted that although the target response peak is approximately 0 dB, it

does not reach 0 dB because of range straddling effects. When the target delay is not
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Figure 6.20: Each signal component after matched filtering. The radar return creates
a peak at approximately 0 dB and the mean noise and interference power remain the

0 dB and -25 dB respectively.

an integer multiple of the sample rate, the energy is split between the two samples that

the target return straddles. These targets are considered to be off of the range grid.

The combined signals are processed through the more robust processing chain and

the reconstructed signal is subtracted from the receive data vector. Figure 6.21 shows

a signal that is left over after the subtraction with the true symbol boundaries marked.

In addition to the regions of higher power at near and far ranges that were observed in

Section 6.1, there are regions of higher power near each of the symbol boundaries.

Figure 6.22 provides a closer look at one of the symbol boundaries where signif-

icant amounts of interference residue is left behind. On closer inspection, the large
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Figure 6.21: The interference residue left behind using a demod/remod estimate
using time, frequency, and channel estimation.

interference residue strictly follows the symbol boundary, which indicates that the

residue exists within the cyclic prefix. The residue is caused by the phenomenon that

the cyclic prefix is designed to capture. When the stream of OFDM symbols is con-

volved with the free space channel, some of the leading symbol is smeared into the

symbol that trails, creating inter symbol interference (ISI). The cyclic prefix captures

the ISI which protects the data symbol. However, the radar system captures the cyclic

prefix interference and so it must also be estimated to effectively cancel it.

The channel is estimated using zero-forcing to provide a estimate for each subcar-

rier in the frequency domain. Subsequently, the channel is added back to the symbol

in the frequency domain before the subcarrier grid is modulated. Consequently, the
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Figure 6.22: A closer look at the extra residue that exists around the symbol
boundaries.

cyclic prefix has the channel applied but does not contain any ISI that is present in the

receive data.

To accurately capture ISI within the cyclic prefix, a time domain estimate of the

channel would be needed. When attempting to convert a frequency domain channel

estimate to the time domain, determining the length of the channel is critical. When

convolving the symbol stream with the time domain signal, which is required to get

ISI, the length of the time domain determines how deep the ISI penetrates into the

cyclic prefix.

Techniques have been developed that estimate the length of the free space channel

[85]. However, as seen in Figure 6.22, the estimate subtraction is very sensitive to
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the length of the ISI. Even with the ISI interference residue left behind, the problem

has been made significantly easier because the duty cycle of the interference has been

significantly reduced.

6.3.1 The Median Filter

Reducing the effective duty cycle from 100% provides the opportunity to exam-

ine and apply an existing interference subtraction technique. A class of interference

identification and cancellation techniques that have been explored extensively is the

median filter [86]. The median filter identifies inference by using the median value

across slow time to create a threshold for each range bin [87].

These detectors are energy detectors that require some information about the null

hypothesis to get information for a threshold requires some data points that contain no

interference. The power distribution of the null hypothesis yields a Rayleigh distribu-

tion [88]. Traditional techniques consider each range bin independently. However, the

quality of the null distribution estimate can be improved by increasing the number of

values used for the estimate.

In this case, the estimate is derived from the median value across slow time at each

range bin. The ratio of the cell power and the slow time median provides the baseline

test statistic for each cell. Averaging together power-to-median ratios from adjacent

range bins improves the estimate, allowing the same probability of false alarm to be

achieved with a lower threshold [89]. This work uses the two-dimensional median

filtering technique presented in [89], taking advantage of the increased detection per-

formance.

Just like the previous steps in the demod/remod processing chain, median filtering

will be applied before any pulse compression or radar processing takes place. First, the
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slow time median is calculated for each range bin. Next, the power-to-median ratio

is calculated for each bin in the range-pulse plot. Finally, for each value, the mean

across range cells adjacent to the cell under test is taken, and the value is compared to

the threshold to determine if it is an outlier.

Each of the cells that result in an outlier is flagged as containing interference and

needs to be corrected. For this work, a simple interpolation will be carried out in a

short time to replace the values that are flagged as containing interference. However,

the interpolation in this case needs to consider both magnitude and phase. First, an

interpolation in magnitude is carried out using a linear interpolation. Next, the un-

wrapped phase is linearly interpolated across slow time, and then the wrapped phase

is applied to the corresponding magnitude value, resulting in a replacement value for

the flagged interference bin.

A higher probability of false alarm of 10−4 is used for this application. Because

the work considers interferers that are on the order of the target’s range-Doppler peak

response, it will be much greater than the target return before pulse compression,

which makes it unlikely to rise even above the noise as shown in Figure 6.20. Because

the pulse return will be so low, it is unlikely that a false alarm will act negatively

on the pulse return. Additionally, because the pulses are long in range before pulse

compression, they will align across slow time, even in instances of range migration,

and contribute to all values, not just values above the mean, allowing for the use of

higher false alarm probability settings.

The median filter’s performance, when applied to the data, can be seen in the

range-pulse plots in Figure 6.23. The top range-pulse plot shows the data after the

demod/remod estimate has been subtracted from the received data, and the ISI residue

is clearly visible, appearing in every pulse. The median filter cleans up the ISI residue
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with the added benefit of softening and shortening the residue in the near and far

ranges.

The impact on fast time is of the most interest to provide a comparison to the

output of the subtraction algorithm shown in Figure 6.22. Figure 6.24 shows the first

PRI at the output of the median filter. As shown in the range-pulse plots, the first

PRI shows the successful removal of the ISI residue that was present after symbol

subtraction. Additionally, at near and far ranges, the residual interference is caused by

system channel-induced symbol misestimation.

Next, Figure 6.25 shows the result of applying the matched filter to the first PRI

after the median filter. Applying the matched filter reveals the target peak at the correct

location. Additionally, the matched filter also helps smooth the transition from higher

residue in the near and far ranges to the rest of the range extent.

Although the median filter successfully removes the impulsive interference, it is

important to verify that the target will still focus in the range-Doppler map after the in-

terpolation in amplitude and phase. Basic FFT-Doppler processing was applied across

32 PRIs after demod/remod extraction, and median filtering was applied. The target

was generated such that the peak in the range-Doppler plot was the same magnitude

as the mean input interference power.

Figure 6.26 shows the resulting range-Doppler plot showing successful interfer-

ence mitigation and a strongly focused target in the correct range and Doppler bin.

Ultimately, the median filter was shown to perform well at removing the interference

left over by ISI reside while still allowing the target to focus in both range and Doppler.

Therefore, the median filter is added to the final processing chain after the remodula-

tion estimate is removed from the received signal but before any radar processing is

applied.
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Figure 6.23: The range-pulse plot before (top) and after the median filter (bottom).
Before the residue caused by ISI is clearly visible and is successfully detected and

removed by the median filter.
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Figure 6.24: The first PRI at the output of the median filter. The ISI residual
interference has been removed and the near and far range residue from caused by

misestimation of the symbol in the presence of the system channel.

Finally, Figure 6.27 shows the final processing chain that is used to cancel the

continuous stream of OFDM symbols. Starting with a full CPI of received data in

a vector, zeros are padded to get an accurate time vector. The symbol boundaries

are estimated, and the Doppler offset is removed based on the estimated value. Any

residual Doppler can be removed by the channel estimation.

The time align vector is divided into a matrix, with each row containing one sym-

bol, and cyclic prefix filling is used to repair the end of any malformed symbols. Each

symbol has its cyclic prefix removed, and an FFT transforms the symbol into the mod-

ulation domain. A channel estimate is taken using the zero-forcing technique. The
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Figure 6.25: Applying the matched filter to the output of the median filter shows a
strong peak target response and even further smoothing of the near and far range

residue.

estimated channel is removed, and each subcarrier is demodulated down to bits.

The demodulated stream of bits is then used to remodulate each subcarrier, and

the channel estimate is applied before the IFFT is used to return the time domain and

cyclic prefixes are reapplied. The symbol matrix is vectorized, and the time offset and

Doppler frequency are reapplied. Finally, the vector is subtracted from the received

data vector, and the median filter is applied to the remaining signal, which contains

radar returns, noise, and interference residue.
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Figure 6.26: The range-Doppler plot shows that after median filtering the target can
still be focused successfully at the correct range and Doppler.

6.4 Performance Analysis

Now that a complete demod/remod processing chain has been established to con-

sider the more complex OFDM signal model, the performance can be tested and ana-

lyzed. First the fast time power reduction is examined. Additionally, radar parameters

such as target peak loss, probability of detection, and probability of false alarm are

provided as the key metrics.

A Monte Carlo simulation was set up to capture a robust set of performance metrics

that inform a detailed performance analysis. First, the radar PRF was set to 1.5 kHz

utilizing a CPI of 32 pulses. Again the pulse duration was varied as a function of duty
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Figure 6.27: The complete processing flow for demod/remod interference estimation
and extraction with a complex signal model.

cycle examining 1, 5, and 10 percent duty cycles. For each CPI one target was placed

at a random range selected from a uniform distribution of all fully matched ranges and

a random velocity selected from uniform distribution of all unambiguous ranges.

Each of the radar returns is generated such that the target peak in each range-

Doppler map is 0 dB, and then the interference is generated to create a mean power to

achieve some ISR. Additionally, noise is generated below the interference signal, so

as the ISR decreases, the SNR increases. For each generated stream of interference, a

uniform random sequence of bits is modulated onto each symbol using the parameters

in Table 2.2. Once the interference stream has been generated, a random time offset

is applied relative to the start of the CPI. Finally, the vehicular free space channel

is added to the OFDM symbol through convolution, and a 1500 Hz Doppler shift is

added.

The system channel is applied to each of the three signal components, and they

are added together to create the total received signal. One thousand CPIs of data are

generated for each duty cycle and ISR. For each trial, information is gathered about the
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probability of detection and probability of false alarm before and after demod/remod

interference estimation,and subtraction is applied using a false alarm rate of 10−5.

Two different LFM waveforms are used for experimentation. The first is an 8 MHz

waveform that is contained completely within the 18 MHz of the active subcarriers in

the interference waveform. The second is 25 MHz, which provides 7 MHz of band-

width on each side of the interference that only contains roll-off from the interference.

First, the total energy reduction is examined to understand how the interference

and noise reduction performs in the fast time. The average received energy over the

duration of the CPI is measured and compared with the mean energy of the remaining

residue signal after the median filter. Comparing these two values captures the total

energy reduction in the signal, providing a starting point for the performance analysis.

Figure 6.28 shows the total power reduction achieved by the demod/remod inter-

ference cancellation technique. It is notable how close the performance is when the

interference is the dominant signal. This shows that the channel estimation has little

impact on the waveform as long as the waveform is a very small component.

When the radar signal becomes a very large component, the 25 MHz waveform

has better performance because it hinders the channel estimate uniformly as a constant

offset. The 8 MHz waveform, on the other hand, causes the free space channel to be

misestimated in just the middle of the waveform leading to slightly lower performance

when the radar signal is dominant over the interference.

Since we can see that the channel estimate is being affected by the waveform, it

is important to examine the target’s peak loss to determine if any of the radar returns

are being suppressed by the interference cancellation. To truly consider peak loss,

the range and Doppler straddling must be accounted for to get an accurate measure.

To account for this, on each CPI, a reference range-Doppler map is created without
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Figure 6.28: Total power reduction achieved by the demod/remod technique shown
with 8 MHz LFM contained completely in the interfere and a 25 MHz LFM centered

with the interference.

interference or noise, and the peak magnitude in the appropriate range bin is measured

as the reference. The difference is then taken between this reference peak and the peak

achieved in the range-Doppler map generated after interference removal.

Figure 6.29 shows the peak loss, with the top plot providing the loss from an 8

MHz waveform and the bottom plot showing the 25 MHz waveform loss performance.

Three distinct regions emerge when considering peak loss performance.

First, when the radar signal is well below the interference, from 13 dB to 25 dB

of ISR, the 8 MHZ and 25 MHz cases behave similarly. In this region, the signal is

barely detectable even after interference cancellation. Values that show a peak gain
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Figure 6.29: The peak loss exhibited in the range-Doppler plot when using an 8 MHz
waveform (top) and 25 MHz waveform (bottom).

118



show an incidentally detected target or a target peak that has significant energy from

noise variance. In the high ISR case, not all traces in the plot are complete, as only

CPIs that registered a detection in the correct range bin were counted. At the extreme

end, there were ISRs with zero detection.

The second region is from -13 dB and 13 dB ISR where the signal is generally

undetectable without interference cancellation and detectable after. Here we see a

similar peak loss around 5 dB from both waveforms with a slight increase in the 8 MHz

case. Finally, in the low ISR case where the radar signal is a dominant component of

the signal.

The peak loss at the upper end of the ISR remains flat for the 25 MHz case where

the waveform has an even effect on the channel estimate. However, the 8 MHz wave-

form has a significant rise in peak loss as it begins to dominate the signal. The 8 MHz

signal impacts less than half of the used subcarriers in the OFDM signal and becomes

a dominant part of the channel estimate and is able to be partially canceled.

With a high peak loss for the radar dominate case it is worth considering the need

for interference cancellation. When the target is easily visible above interference, it

may not be necessary to apply demod/remod subtraction. However if the interference

is detectable above the noise floor, there is always a possibility that it is masking a

target that would otherwise be visible.

Looking at the peak loss and fast time reduction together shows that there is still

a performance increase even when the radar signal is dominant. The interference is

still being pulled down an additional 10 dB further below the target peak for the 8

MHz cases and up to 20 dB when the radar signal is well below the communications

signal. This result shows that strong targets will be impacted more by the interference

subtraction while the weak signals will not. This means that when both types of targets
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are present, strong and weak, they will both be resolved as long as both could be

independently uncovered from the interference.

The most important and representative metric for the performance of this technique

is the radar detection improvement. Increasing the detectable signal level provides a

direct performance that can be measured in magnitude. Figure 6.30 shows the proba-

bility of detection curves using both 8 MHz (top) and 25 MHz (bottom) waveforms.

With respect to the probability of detection, the results perform remarkably similar.

This should not be a surprise given that the transition from detection to not detected

occurs over the region that shared similar peak loss and fast time energy reduction.

Both waveforms are slightly slower, rising between 90 and 100 percent compared to

the nominal curve. This slower transition at the high end of the probability curve is

caused by the higher residue regions in the very close and far range. The increased

residue makes the targets harder to detect and means that it takes longer to detect all

of the targets as they are uniformly distributed over the range.

Looking at the total amount that the probability curves are pushed to the right

gives the most meaningful measure of performance. In this case, the change in de-

tection performance was measured where the curves crossed 50 percent probability of

detection. For the 8 MHz case the baseline reference curve crossed the 50 percent at

-11.02 dB precancellation ISR and provides a 19.38 dB increase in performance in the

best case. Similarly, the baseline for 50 percent detection rate for the 25 MHz case is

-9.45 dB providing a maximum improvement of 18.98 dB.

Table 6.1 shows the calculated results at a 50 percent probability of detection. Each

of the values measuring performance coincides very closely across all duty cycles and

bandwidths. Together, the total performance of the technique can be squarely placed

at 19 dB improvement, allowing the radar to uncover targets that fall nearly two orders

120



-20 -10 0 10 20

Precancellation ISR (dB)

0

10

20

30

40

50

60

70

80

90

100

P
ro

b
ab

ili
ty

 o
f 

D
et

ec
ti

o
n

 (
%

)

Duty Cyle: 1% After Cancellation
Duty Cyle: 1% No Cancellation
Duty Cyle: 5% After Cancellation
Duty Cyle: 10% After Cancellation

-20 -10 0 10 20

Precancellation Output ISR (dB)

0

10

20

30

40

50

60

70

80

90

100

P
ro

b
ab

ili
ty

 o
f 

D
et

ec
ti

o
n

 (
%

)

Duty Cycle: 1% After Cancellation
Duty Cycle: 1% No Cancellation
Duty Cycle: 5% After Cancellation
Duty Cycle: 10% After Cancellation

Figure 6.30: The probability of detection exhibited after interference cancellation
when using an 8 MHz waveform (top) and 25 MHz waveform (bottom) relative to the

before cancellation probability of detection.
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of magnitude below the input interference level.

Table 6.1: Probability of detection improvement achieved by full demod/remod
interference cancellation processing chain when using a 8 MHz and 25 MHz

waveforms.

Baseline 1% Improvement 5% 10%
8 MHz -11.02 dB 19.38 dB 19.18 dB 18.97 dB
25 MHz 9.45 dB 18.89 dB 18.98 dB 18.84 dB

Again, the probability of detection cannot be considered alone. The probability of

false alarm should also be considered, especially given the increase that was observed

in section 6.1.4. Figure 6.31 shows the probability of false alarm before and after

interference cancellation has been carried out.

Again, the performance between the 25 MHz case and 8 MHz case are very similar

until the radar return dominates the received signal. From 0 dB to 25 dB ISR, the

probability of false alarm in both the 8 MHz and 25 MHz cases are flat and fall right

around the 10−5 rate that was set for the CFAR algorithm.

ISRs below 0 dB start to have an increase in the probability of false alarm. But the

rise in false alarm is not because of the processing directly but because of the way that

false alarms are counted. The target response in the range-Doppler plot are not perfect

thumbtacks and exhibit sidelobes in both range and Doppler. Below 0 dB ISR, the

cancellation is performance is good enough that even sidelobes are being uncovered

from the interference.

A detection is marked when it lands in the correct range-Doppler bin and those on

either side in each dimension. Therefore, a detection on a sidelobe near the true target

on the same range or Doppler axis are registered as false alarm even though they are

caused by the target. So, the increased false alarm rate exhibited in the simple case is

not present where the complete channel model and full processing chain are used.
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Figure 6.31: The probability of false alarm exhibited before and after interference
cancellation with an 8 MHz waveform (top) and 25 MHz waveform (bottom).
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The median filter contributes heavily to resolving the issues with the probability of

false alarm. In addition to removing the large residues that are caused by the ISI, the

median filter also removes any sample points that far exceed the median. This removal

smooths the distribution of the output vector back to what is expected by the CFAR

assumptions. While, the range distribution is still not stationary, it tapers more slowly

so that it is quasi-stationary within the training interval of CFAR.

Ultimately, this chapter has provided a technique for active interference cancel-

lation that uses demodulation/remodulation estimation and extraction, which provide

19 dB increased detection performance. The chapter opened with a simple model to

test the feasibility of the technique for non-STAR radar systems. The second part of

the chapter expanded the technique to consider a more robust model and developed a

suite of tools to overcome the challenge of estimating OFDM with real-world consid-

erations. A robust look at performance and the operation of each step in the processing

chain was presented, providing an end-to-end approach to OFDM communications in-

terference mitigation.

6.5 A Comparison: Adaptive Pulse Compression

Now that a direct estimation approach has been developed in this chapter, a look

at other adaptive approaches for canceling continuous interference is warranted. One

adaptive radar processing technique is adaptive pulse compression (APC), which uti-

lizes a reiterative minimum mean square estimate (RMMSE) to reduce the sidelobes

of the target response [90]. The RMMSE techniques have expanded rapidly into other

domains, including beamforming [91] and RCS extraction [33].

First, APC starts by defining the matched filter of the received data as
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z[l] = AHyr[l] + v[n] , (6.13)

where A is the delay shift matrix of the transmitted waveform x(t) as defined in (3.4)

and v is the noise vector. From this formulation, a cost function can be defined as [92]

JMMSE = E
{
|yI [l]− u[l]y[l]|2

}
, (6.14)

where yI [l] is the impulse response of the radar channel andE{·} is the expected value

operation. Here, the difference between the impulse response and the filter response

of the channel is going to be sidelobes and noise. Minimizing this quantity results in

reduced sidelobes that approach the noise floor.

A gradient decent algorithm can be used to find the optimal solution [93]. In ad-

dition to the optimized result, the gain of the optimized filter should be constrained

so that the target response maintains the appropriate magnitude. The gain constraint

can be achieved by using a minimum variance distortionless response (MVDR) frame-

work, common in the beamforming literature [94], to create a filter solution which can

be defined as [95]

u[l] =
Q[l]−1sr
sHr Q

−1sr
, (6.15)

where Q is defined as

Q[l] =
(
SrP[l]Sr

H
)
⊙ I +Rn , (6.16)

Sr is the steering vector matrix of delay shift transmit waveforms, sr is the delayed

vector of the transmit waveform for a target return in the lth range bin, P is the covari-

ance matrix from the matched filtered received data, I is the identity matrix, and Rn is

the noise covariance. The covariance matrix of the received matched filtered data can
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be calculated as

P = z(t)zH(t). (6.17)

On each iteration this matrix P is updated with the covariance matrix derived from the

output of the previous iteration’s filter bank.

Here, L is defined as the number of fast time samples and K is the number of

samples in the matched filtered range extent. Accordingly, Sr is an L ×K matrix, P

is a K ×K matrix, I is an L× L identity matrix, and Rn is an L× L matrix.

Recently, APC has been demonstrated as a technique for suppressing interference

that is present in the sidelobe of the receive beam [73]. To cancel interference, the

covariance matrix of the interference is added to the noise covariance to yield [73]

Q[l] =
(
SrP[l]Sr

H
)
⊙ I +Rcanc +Rn , (6.18)

where Rcanc is the interference covariance matrix. For a direct estimate of the inter-

ference, the interference covariance can be calculated similar to (6.17) as

Rcanc = ŷc(t)ŷ
H
c (t), (6.19)

where ŷc(t) is the estimate of the communication interference received by the system.

Using a phased array radar, when the interference is emitted from a different direc-

tion than the radar is scanning, the interference can be separated from the radar return

by beamforming in the radar and interference direction individually. Beamforming

acts as a spatial filter that allows the interference to be isolated from the radar returns.

When the interference estimate is derived from a spatial filter using a STAR radar sys-

tem, the estimate is free of any system effects. If the emitter is well spatially separated

from the radar direction, the APC robustly cancels the interference to isolate the target
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as shown in [73]. However, this work considers interference that occurs on the main

beam of the radar, that is, in the same direction as the radar is scanning. In this case,

beamforming cannot be used to isolate the communications interference, and other

methods must be examined.

There are many implementation options for APC that help combat the high com-

putational complexity. Traditionally, as described above, APC requires an inversion

of the matrix Q at full rank. However, work has been carried out to reduce the rank

of the matrix that must be inverted [96] [97]. This work will utilize a block APC ap-

proach that requires just one large matrix inversion per iteration, similar to the spatial

RMMSE algorithm called reiterative super-resolution (RISR) [73] [91].

Using block APC, the filter equation becomes

uk =
Q−1sr,k

sHr,kQ
−1sr,k

, (6.20)

where each of the kth columns of the filter matrix uses the same full rank inverted Q

matrix and the corresponding steering vector sr,k. By reusing the same Q matrix, the

matrix inverse only needs to be calculated once for each iteration.

The full rank matrix is used to capture the long range covariance structure that

may exist in the interference. Without interference, the maximum range effects of the

covariance are from the length of the waveform, which allows for blocking regions to

be used. However, here no assumptions are made about the interference covariance

structure.

6.5.1 Ground Truth Performance

The investigation of APC’s performance begins by verifying the behavior when

using the ground truth interference data to create the interference covariance matrix.
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Figure 6.32: The normalized covariance derived from the ground truth interference
data.
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Figure 6.33: APC filter output after 10 iterations using the source truth covariance
matrix.
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The same simulation from the previous sections is used to generate radar and interfer-

ence data with a 0 dB precancellation ISR. The ground truth interference data is used

to create a covariance matrix according to (6.19).

Figure 6.32 shows the source interference covariance that has been normalized

using the Frobenius norm. As expected with a single snapshot, the covariance matrix

does not have any structure, and there are very long-range covariance values. However,

because the covariance matrix is defined from the truth data, APC performs very well.

Figure 6.33 shows the result of applying the APC filter to the received data after

ten APC iterations are run. Here, the target is easily uncovered from the interference

with an incredibly smooth and flat range profile. The only real shape seen here are

the convolutional tails on each end of the range profile, which are expected and do not

impact performance.

Using a phased array, sidelobe interference can be well canceled because the inter-

ference can be spatially separated and provides ground truth like data as shown in [73].

Because sources are well separated, beamforming has very little impact on the shape

of the collected data. Therefore, for a STAR system, the reference signal derived from

a sidelobe beam would be very close to the truth data of what was actually received.

6.5.2 Alternative Estimates

This work considers interference that exists in the mainlobe of the radar and cannot

be spatially separated from the radar returns. Without a domain to separate the radar

and interference, a pure interference covariance cannot be generated. Therefore, an-

other avenue of estimating the interference covariance needs to be established. First,

the demod/remod estimate of the signal is considered. When crafting the demod/re-

mod estimate, the goal is to recreate the interference signal that was received at the
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Figure 6.34: The normalized covariance derived from the demod/remod interference
estimate.
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Figure 6.35: APC filter output after 10 iterations using the covariance matrix derived
from the demod/remod estimate.
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radar system separate from the radar return. This goal means that the demod/remod

estimate should provide a reasonable starting point for constructing a useful interfer-

ence covariance matrix.

Figure 6.34 shows the Frobenius normalized covariance matrix calculated from the

robust demod/remod estimate described in the previous section. Again, this covariance

is derived from a single snapshot of data; therefore, there is not any visible structure,

and there are long-range covariance values populated. The demod/remod covariance is

an estimate that shares some similarity with the truth covariance in scale and structure.

Figure 6.35 shows the output of the filter after ten iterations of APC. Several fa-

miliar characteristics are represented in the filter output. First, the target response is

successfully focused in the correct location and approximate magnitude. Next, in-

creased residual interference is present in the near and far ranges. This residue is

similar to the interference residue that was left after demod/remod subtraction in sec-

tion 6.2.

Additionally, the residue is gathered on the symbol boundaries near samples 4,000

and 6,500. Some of the residue present maintains much of the original interference

power and is not reduced at all. Residue at the symbol boundary was also seen in

section 6.2, causing ISI in the cyclic prefix that was not captured by the demod/remod

estimate. Here, the model mismatches that were present in the previous section, much

of which was alleviated by the addition of the median filter, are now impacting the

performance of the APC algorithm in very significant ways.

The difference in these demod/remod covariance estimates relative to the ground

truth covariance can be captured by looking at the difference in the normalized covari-

ance. Figure 6.36 shows the difference in the covariance matrix derived from ground

truth compared to the demod/remod estimate.
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Figure 6.36: Difference in the normalized ground truth covariance matrix and the
demod/remod estimate covariance matrix.

Here, the major differences at the near and far ranges exhibit the strongest differ-

ence, with smaller differences existing at the symbol boundaries. From this image the

square sub-regions can be seen that correspond to the size of the symbols, bounded

by small rows with a larger difference. The covariance behavior exhibits exactly the

behavior that would be expected given the characteristics seen in the filter output.

The regions of residual interference left behind by APC are larger in both range

and magnitude compared to the direct subtraction technique. Although the residue is

present in many of the same locations as the demod/remod technique, the APC residue

takes a wildly different shape. Ultimately, APC proves to be far more sensitive to

misestimation of the interference source than the direct subtraction technique.

Finally, the notional sample covariance matrix can be used as a possible alternative

to supply APC with an interference covariance matrix. When creating a sample co-
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variance matrix, the goal is to capture the actual structure of the data as opposed to the

single sample variances that have no structure, as seen above in Figures 6.32 and 6.34.

In order to capture a sample covariance that minimizes loss to within 3 dB, 2N − 3

snapshots are needed for the covariance matrix, where N is the number of elements in

the set [98].

Accordingly, for a fast time range extent of 8,735 samples, 17,470 snapshots of

interference data need to be generated. So each snapshot was generated with uniform

random data, a timing offset, frequency offset, and free space channel estimates de-

rived from the demod/remod process were applied to each, providing the same struc-

tural changes to each OFDM as was received. Figure 6.37 shows the sample covari-

ance matrix created using 17,470 snapshots and a closer look at the channel effects on

the covariance matrix.

There are many interesting features present in the sample covariance matrix. First,

the strong diagonal through the matrix represents a Gaussian component that comes

from the fact that OFDM symbol bodies appear Gaussian to any unsynchronized re-

ceiver over a short enough interval. Each symbol can be easily distinguished when

looking down the matrix diagonal.

On each symbol around the diagonal, the cyclic prefix is easily visible, caused by

the relationship between that prefix and the last samples of the symbols. Additionally,

every other symbol has pilots attached. The pilots in the symbol result in a set of

super diagonals above and below the main diagonal. The number of super diagonals

on each side of the main diagonal is directly related to the spacing between pilots. For

this work, the pilot spacing is five, resulting in five super diagonals above and below

the main diagonal. The sample covariance also shows different levels of correlation

with one another, represented by the different baseline energy levels in the off-diagonal
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Figure 6.37: The sample covariance generated using OFDM snapshots with random
data, that shares symbol structure and channel effects with the interference signal

with a zoomed in look at the channel effects on one of the structures.
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Figure 6.38: The APC filter response after ten iterations using the sample covariance
of the interference.

grids representing the correlation between symbols.

For the biggest chance of success, the channel estimate was built into the inter-

ference snapshots that were used to make the sample covariance. The effect of the

channel on the covariance is clearly visible when looking closely at one of the cyclic

prefix structures. Just like the channel starts with large multipath taps and fades lower,

the covariance matrix demonstrates a correlation between adjacent symbols and tapers

off, creating a smeared grid of each structure.

Figure 6.38 shows the APC filter output that is generated after ten iterations using

the sample covariance matrix. Here, the target is resolved at the correct location and

approximate magnitude, with less interference residue demonstrated across the range

extent. However, there is impulsive residue left behind with a narrow target-like re-
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sponse in range; a detector would register the peaks as target detections, drastically

increasing false alarms. The use of the sample covariance provides a middle ground

between the performance of the ground truth covariance and the demod/remod covari-

ance. Although it is a significant improvement over the demod/remod performance, it

still performs worse than the robust demod/remod estimation and extraction technique

provided above.

Ultimately, the APC technique requires a very good estimate in order to properly

cancel the interference and is very sensitive to the quality of the estimate. This sen-

sitivity, held in tandem with the computational complexity of the APC, makes it less

desirable than the demod/remod estimate approach.

6.6 Summary

This chapter provided a wide-ranging exploration of demod/remod interference

estimation both as a method of direct subtraction and as a method for informing a more

advanced adaptive interference cancellation technique. This chapter used a simple

model to verify that the demod/remod estimation and extraction approach would be

effective when data is lost due to receiver blanking. After verifying the efficacy of the

technique, the model was expanded to include a more robust real-world model.

Several techniques were introduced from the literature to help estimate and coun-

teract the effects of time and frequency offsets and the free space channel. Each of

these techniques were presented and added to a total design flow. Finally, median

filtering was introduced as the last step of the processing chain to help clean up the

residual interference left behind due to misestimation.

The performance of the full processing chain was examined using absolute inter-

ference reduction, target peak loss, and radar detection metrics. Altogether, these met-
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rics properly present the trade space of the technique’s performance across a range of

duty cycles and ISR values. The results show a final net 19 dB performance improve-

ment in target detection, uncovering targets that are buried well below the interference

with minimal increase in false alarm rate.

Finally, the chapter concluded by examining the performance of an RMMSE based

technique call APC. The interference can be perfectly canceled when APC is provided

with a perfect estimate of the interference. However, the technique struggles when

applying an estimate or sample covariance in place of truth data. Ultimately, APC fails

to provide results comparable to the demod/remod estimation and extraction approach

developed earlier in the chapter.
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Chapter 7

Conclusion and Future Work

This work has looked at a pair of problems across two separate domains in order

to provide a solution to a singular problem: How can a radar system ensure continual

operation as a secondary user in congested spectrum?

First, Chapter 1 presents an introduction to the congested spectrum problem and

existing cognitive radar and spectrum sharing techniques were presented. The HO-

CAE algorithm was presented to motivate the discussion of dynamic spectrum access

and frequency and bandwidth agility. Additionally, Chapter 2 provides an overview of

traditional range-Doppler processing, CFAR detection, and OFDM communications

for LTE, 5G, and WiFi were presented to set the baseline of discussion.

As a first step, this work considers the case when spectrum is available, but the

radar system must hop around, changing both frequency and bandwidth on a pulse-

to-pulse basis in order get access to the spectrum. The hopping radar problem is

examined in two parts. First, chapter 3 presents the case when the center frequency of

the radar system stays fixed over the course of a CPI but the bandwidth used by the

radar changes on each pulse.

Sidelobe misalignment of the matched filter response was identified as the main

contribution to the range-sidelobe modulation that was spread across range and Doppler.
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As a result, section 3.1 presented the mismatched filter as a method for creating a

common pulse compression response across all pulses in the CPI. Further, section

3.2 investigates the different common responses that can be generated by the mis-

matched filter, with section 3.3 identifying the super-resolution response as an appro-

priate trade-off between resolution and RSM.

After the mismatched filter was investigated, Chapter 4, the bandwidth is held

constant but the center frequency of the pulse changes on each pulse. When changing

the center frequency, the slow time phase history is distorted. Section 4.1 analyses the

phase history and identifies a range dependent phase correction term to re-align the

phase history. However, because the correction term is range dependent and the target

changes range over the course of the CPI, the correction cannot be applied directly as

even minor changes can result in an increased phase error over the CPI.

Since every range-Doppler cell represents a target with a different velocity, re-

sulting in a different change in position over the CPI, each cell needs its own set of

correction. Section 4.2 presented a modified backprojection algorithm that can focus

each range-Doppler cell independently, each with its own set of corrections. Section

4.4 verifies the performance of the modified backprojection algorithm using real data

from an outdoor radar experiment.

Because of the complimentary nature of the mismatched filter and the modified

backprojection algorithm, both can be applied together. Chapter 5 looks at the perfor-

mance of combining the techniques to process a CPI were each pulse changes in both

bandwidth and center frequency. The full agile processing chain is demonstrated on a

real-world, outdoor data.

With a technique developed to process frequency and bandwidth agile pulses, the

focus then turned to the second mode of operation. When spectrum is not available to
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support a mission critical radar task, the radar will need to accept interference from

other users of the spectrum. Chapter 6 presented the demodulation/remodulation es-

timation and extraction technique that can be used to actively cancel OFDM interfer-

ence.

Starting in section 6.1 a simple model was used to measure initial performance

before the model was expanded in section 6.2. Techniques were presented from the

literature to overcome new complexity introduced by the more robust model. Median

filtering was presented in 6.3.1 as a method for removing the low duty cycle residue

that was left behind due to misestimation of the received OFDM. The full performance

of the technique was analyzed in section 6.4 and identified a 19 dB performance im-

provement in CFAR detection.

Section 6.5 investigated an alternative reiterative technique called adaptive pulse

compression. APC uses the interference covariance to reject the interference. Sec-

tion 6.5.2 showed that APC is incredibly sensitive to misestimation of the covariance

matrix including that the demod/remod estimate and a sample covariance of a stream

of OFDM symbols were insufficient to fully cancel the interference. Ultimately, the

chapter concluded by identify the demod/remod estimation and extraction technique

as a more performant and computationally efficient technique.

7.1 Conclusion

This work provides a set of signal processing techniques that enable a radar system

to operate in congested spectrum. When changing bandwidth and center frequency

on a pulse-to-pulse basis cause targets to smear in both range and Doppler, usually

completely scattering the target energy in Doppler so that there is no longer a target

peak. Separately, if there is not any available bandwidth and interference is present in
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the received signal, the targets may be completely masked by interference.

This work presented the mismatched filter to correct range sidelobe modulation

caused by changing the bandwidth on a pulse to pulse basis. Mismatched filtering had

traditionally been applied to unify the response of phase attached waveforms. Here

the mismatched filter is used to coerce a common pulse compression response to align

the mainlobe and sidelobes across pulse and reduce RSM.

Second, a modified backprojection technique was developed that corrected the

range dependent phase term that contaminates the slow time phase history when the

center frequency changes on a pulse-to-pulse basis. The modified backprojection tech-

nique was able to correctly focus targets when applied to both simulated and real-

world experimental data.

Because mismatched filtering and the modified backprojection algorithm operate

across different domains, they fit well together to provide a robust solution to CPIs of

data were the center frequency and bandwidth change on every pulse. The combined

processing chain was applied and verified on real data captured on a COTS SDR.

When there is not enough spectrum to hop to an available band, interference is ac-

cepted at the radio. When interference is present, targets may be completely masked.

This work developed a robust OFDM interference cancellation technique that esti-

mates the demodulates the OFDM signals down to an estimate of the bits, while also

estimating time offset, Doppler frequency, and free space channel that is present as

part of the interference. Using all of these parameters an estimate of the interference

signal is generated by remodulating the data onto OFDM symbols and reapplying all

of the estimated channel effects.

The remod signal is subtracted from the real data. After subtraction some interfer-

ence residue persisted at the symbol boundaries because of ISI. However, the effective
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duty cycle of the interference was reduced down from 100%, enabling a median filter

to be applied to the data.

Using the full processing chain developed in this work, interference can be effec-

tively reduced to unmask targets. Using the demod/remod estimation and extraction

technique yields a 19 dB increase in CFAR detection performance. Additionally, the

demod/remod processing chain provided better interference cancellation performance

compared to an the computationally intensive APC.

APC is very successful at canceling interference when the interference covariance

is well known. However, the technique is very sensitive to covariance mismatch and

failed to outperform demod/remod when the using an estimate covariance or sample

covariance.

In conclusion, this work developed a wide range of tools to allow radar systems to

operate in congested spectrum. When utilizing real time spectrum sensing, modified

backprojection technique and mismatched filter can be utilized to focus targets from a

set of non-coherent pulses that are changing bandwidth and frequency over a CPI.

Alternatively, when there is not sufficient spectrum to enable hopping, the demod-

ulation/remodulation estimation and extraction can be used to successfully remove

OFDM interference and uncover targets. Both of these techniques together will en-

sure that a mission critical radar system can always produce useful data products, even

in the presence of a congested spectrum.

7.2 Future Work

With the development of techniques to enable frequency agile radar brings addi-

tional challenges that have not been considered in this work. As the center frequency

changes significantly, the returned energy of the target can change dramatically as
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the primary scattering surface of a target can change relative to the transmitted wave-

length. Future work should consider these effects in tandem with the results presented

here to inform a cost function to make more intelligent decisions about dynamic spec-

trum sensing.

Further, sidelobes of the pulse compression response carry the phase history of

the target peak. When applying the modified backprojection technique, these side-

lobes create an phase error when collecting energy for the adjacent range bins, so the

sidelobe energy is distributed across Doppler instead of focused to form an x-shape

as would traditionally be effected. Future work could be carried out to create a phase

sensitive mismatch filter that could carry the appropriate phase shift out along the side-

lobes to so that even the sidelobes will be focused.

When accepting communication interference, more work can be carried out to

identify shortcomings in the sample covariance matrix to provide more robust can-

cellation from APC. When considering the sample covariance matrix, it would be

worthwhile to investigate structures that could be added to the OFDM signal model

that would enable easier cancellation. Further, can radar waveforms be developed that

provide additional separation between that APC can leverage to enable better sample

covariance performance.

Overall, many new and exciting directions of investigation are available that would

further enrich the tools that were developed here.

143



References

[1] J. G. Metcalf, “An examination of the spectral utility of radar,” in 2022 IEEE
Radar Conference (RadarConf22), 2022, pp. 1–6.

[2] B. H. Kirk, R. M. Narayanan, K. A. Gallagher, A. F. Martone, and K. D. Sher-
bondy, “Avoidance of time-varying radio frequency interference with software-
defined cognitive radar,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 55, pp. 1090–1107, 6 2019.

[3] S. Bhattarai, J. M. Park, B. Gao, K. Bian, and W. Lehr, “An overview of dy-
namic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for fu-
ture research,” IEEE Transactions on Cognitive Communications and Network-
ing, vol. 2, pp. 110–128, 6 2016.

[4] J. H. Reed, A. W. Clegg, A. V. Padaki, T. Yang, R. Nealy, C. Dietrich, C. R. An-
derson, and D. M. Mearns, “On the co-existence of td-lte and radar over 3.5 ghz
band: An experimental study,” IEEE Wireless Communications Letters, vol. 5,
pp. 368–371, 8 2016.

[5] P. Stinco, M. Greco, F. Gini, and B. Himed, “Cognitive radars in spectrally dense
environments,” IEEE Aerospace and Electronic Systems Magazine, vol. 31,
no. 10, pp. 20–27, 2016.

[6] P. Stinco, M. S. Greco, and F. Gini, “Spectrum sensing and sharing for cognitive
radars,” IET Radar, Sonar & Navigation, vol. 10, no. 3, pp. 595–602, 2016.

[7] M. S. Greco, F. Gini, P. Stinco, and K. Bell, “Cognitive radars: On the road to
reality: Progress thus far and possibilities for the future,” IEEE Signal Processing
Magazine, vol. 35, no. 4, pp. 112–125, 2018.

[8] A. F. Martone et al., “Closing the loop on cognitive radar for spectrum sharing,”
IEEE Aerospace and Electronic Systems Magazine, vol. 36, pp. 44–55, 9 2021.

[9] J. M. Peha, “Sharing spectrum through spectrum policy reform and cognitive
radio,” Proceedings of the IEEE, vol. 97, pp. 708–719, 2009.

144



[10] L. Kulacz, P. Kryszkiewicz, A. Kliks, H. Bogucka, J. Ojaniemi, J. Paavola,
J. Kalliovaara, and H. Kokkinen, “Coordinated spectrum allocation and coex-
istence management in cbrs-sas wireless networks,” IEEE Access, vol. 7, pp.
139 294–139 316, 2019.

[11] A. W. Clegg, S. A. Seguin, R. J. Marks, and C. Baylis, “Radar sharing in the u.s.
3 ghz band,” in 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–5.

[12] E. Lagunas, C. G. Tsinos, S. K. Sharma, and S. Chatzinotas, “5g cellular and
fixed satellite service spectrum coexistence in c-band,” IEEE Access, vol. 8, pp.
72 078–72 094, 2020.

[13] J. Jeon, H. Niu, Q. Li, A. Papathanassiou, and G. Wu, “Lte with listen-before-talk
in unlicensed spectrum,” in 2015 IEEE International Conference on Communi-
cation Workshop (ICCW), 6 2015, pp. 2320–2324, corrected.

[14] A. F. Martone, K. I. Ranney, K. Sherbondy, K. A. Gallagher, and S. D. Blunt,
“Spectrum allocation for noncooperative radar coexistence,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 54, pp. 90–105, 2 2018, corrected.

[15] R. G. Mattingly and J. G. Metcalf, “Hardware optimized cell averaging estima-
tion (ho-cae) for threshold based signal detection,” in 2022 IEEE Radar Confer-
ence (RadarConf22). IEEE, 3 2022, pp. 1–6.

[16] R. G. Mattingly and J. G. Metcalf, “Fast adaptive spectrum sensing using hard-
ware optimized, cell averaging estimation for cognitive radio and radar applica-
tions,” IEEE Transactions on Aerospace and Electronic Systems, 2023.

[17] H. Griffiths, L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, and S. Blunt,
“Radar spectrum engineering and management: Technical and regulatory is-
sues,” Proceedings of the IEEE, vol. 103, no. 1, pp. 85–102, Jan. 2015.

[18] F. Sanders, R. Sole, B. Bedford, D. Franc, and T. Pawlowitz, “Effects of rf inter-
ference on radar receivers, ntia report tr-06-444,” US Department of Commerce,
Tech. Rep, 2006.

[19] F. H. Sanders, R. L. Sole, J. E. Carroll, G. S. Secrest, and T. L. Allmon, Analy-
sis and resolution of RF interference to radars operating in the band 2700-2900
MHz from broadband communication transmitters. US Department of Com-
merce, National Telecommunications and Information . . . , 2012.

[20] D. P. Zilz and M. R. Bell, “Statistical modeling of wireless communications inter-
ference and its effects on adaptive-threshold radar detection,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 890–911, 2018.

145



[21] J. G. Metcalf and S. Flandermeyer, “On spectrum sharing for pulse-doppler radar
and ofdm communications,” in 2020 IEEE Radar Conference (RadarConf20),
2020, pp. 1–6.

[22] M. A. Richards, Fundamentals of Radar Signal Processing. McGraw-Hill Ed-
ucation, 2014.

[23] D. J. Rabideau, “Nonlinear synthetic wideband waveforms,” IEEE National
Radar Conference - Proceedings, pp. 212–219, 2002.

[24] N. Levanon and E. Mozeson, “Nullifying acf grating lobes in stepped-frequency
train of lfm pulses,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 39, pp. 694–703, 4 2003.

[25] N. Neuberger and R. Vehmas, “Range sidelobe level reduction with a train of
diverse lfm pulses,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 58, pp. 1480–1486, 4 2022.

[26] R. Calderbank, S. D. Howard, and B. Moran, “Waveform diversity in radar signal
processing: A focus on the use and control of degrees of freedom,” IEEE Signal
Processing Magazine, vol. 26, pp. 32–41, 2009.

[27] T. Higgins, K. Gerlach, A. K. Shackelford, and S. D. Blunt, “Aspects of non-
identical multiple pulse compression,” IEEE National Radar Conference - Pro-
ceedings, pp. 895–900, 2011.

[28] T. Higgins, S. D. Blunt, and A. K. Shackelford, “Time-range adaptive processing
for pulse agile radar,” 2010 International Waveform Diversity and Design Con-
ference, WDD 2010, pp. 115–120, 2010.

[29] B. H. Kirk, A. F. Martone, K. A. Gallagher, R. M. Narayanan, and K. D. Sher-
bondy, “Mitigation of clutter modulation in cognitive radar for spectrum sharing
applications,” IEEE Transactions on Radar Systems, pp. 1–1, 6 2023.

[30] J. E. Carroll, “Case study: Investigation of interference into 5 ghz weather radars
from unlicensed national information infrastructure devices, part 3,” Institute for
Telecommunication Sciences, Tech. Rep., 2012.

[31] M. I. Skolnik, “Introduction to radar systems,” New York, 1980.

[32] C. Munnell, R. Mattingly, S. Flandermeyer, and J. G. Metcalf, “On the practical
use and experimentation of lte signals for radar-communications.” IEEE, 3
2022, pp. 1–6.

146



[33] R. E. Jarvis, J. G. Metcalf, and J. W. McDaniel, “Application of adaptive pulse
compression in cluttered radar cross section measurements,” IEEE Transactions
on Instrumentation and Measurement, vol. 71, pp. 1–8, 2022.

[34] J. G. Proakis, Digital signal processing: principles, algorithms, and applica-
tions, 4/E. Pearson Education India, 2007.

[35] T. F. Collins, R. Getz, D. Pu, and A. M. Wyglinski, Software-Defined Radio for
Engineers. Artech House, 2018.

[36] A. Mukherjee, 5G New Radio: Beyond Mobile Broadband. Artech House,
2019.

[37] T. Innovations, “Lte in a nutshell,” White paper, 2010.

[38] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on ieee
802.11ax high efficiency wlans,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 197–216, Firstquarter 2019.

[39] P. Mogensen, W. Na, I. Z. Kovacs, F. Frederiksen, A. Pokhariyal, K. I. Pedersen,
T. Kolding, K. Hugl, and M. Kuusela, “Lte capacity compared to the shannon
bound,” in 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring,
April 2007, pp. 1234–1238.

[40] 3GPP, “Base station (bs) radio transmission and reception,” 3rd Generation Part-
nership Project; Evolved Universal Terrestrial Radio Access (E-UTRA), Tech.
Rep. TR 36.104 V8.2.0 (2008-05), 2006.

[41] Y. Liu, Z. Tan, H. Hu, L. J. Cimini, and G. Y. Li, “Channel estimation for ofdm,”
IEEE Communications Surveys and Tutorials, vol. 16, pp. 1891–1908, 4 2014.

[42] 3GPP, “Multiplexing and channel coding,” 3rd Generation Partnership Project;
Evolved Universal Terrestrial Radio Access (E-UTRA), Tech. Rep. TS 36.212,
2006.

[43] S. M. Dudley et al., “Practical issues for spectrum management with cognitive
radios,” Proceedings of the IEEE, vol. 102, pp. 242–264, 2014.

[44] A. E. Mitchell, G. E. Smith, K. L. Bell, A. J. Duly, and M. Rangaswamy, “Hi-
erarchical fully adaptive radar,” IET Radar, Sonar & Navigation, vol. 12, pp.
1371–1379, 12 2018.

[45] A. E. Mitchell, G. E. Smith, K. L. Bell, A. Duly, and M. Rangaswamy, “Fully
adaptive radar cost function design,” 2018 IEEE Radar Conference, RadarConf
2018, pp. 1301–1306, 6 2018.

147



[46] K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, and M. Rangaswamy, “Cogni-
tive radar framework for target detection and tracking,” IEEE Journal on Selected
Topics in Signal Processing, vol. 9, pp. 1427–1439, 12 2015.

[47] J. A. Kovarskiy, B. H. Kirk, A. F. Martone, R. M. Narayanan, and K. D. Sher-
bondy, “Evaluation of real-time predictive spectrum sharing for cognitive radar,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 690–
705, Feb 2021.

[48] J. A. Devault, R. M. Narayanan, and A. F. Martone, “Tdd mode identification for
spectrum sharing applications,” IEEE Transactions on Aerospace and Electronic
Systems, pp. 1–11, 2024.

[49] J. A. Kovarskiy, R. M. Narayanan, A. F. Martone, and K. D. Sherbondy, “A
stochastic model for prediction and avoidance of rf interference to cognitive
radars,” 2019 IEEE Radar Conference, RadarConf 2019, 4 2019.

[50] B. H. Kirk, M. A. Kozy, K. A. Gallagher, R. M. Narayanan, R. M. Buehrer, A. F.
Martone, and K. D. Sherbondy, “Cognitive software-defined radar: Evaluation
of target detection with rfi avoidance,” 4 2019, pp. 1–6, corrected.

[51] R. G. Mattingly, “Implementation and analysis of adaptive spectrum sensing,”
Master’s thesis, University of Oklahoma, 2021.

[52] R. G. Mattingly, A. F. Martone, and J. G. Metcalf, “Techniques for mitigating
the impact of intra-cpi waveform agility,” IEEE Transactions on Radar Systems,
vol. 2, pp. 24–40, 2024.

[53] F. Harris, “On the use of windows for harmonic analysis with the discrete fourier
transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978.

[54] M. H. Ackroyd and F. Ghani, “Optimum mismatched filters for sidelobe sup-
pression,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-9,
pp. 214–218, 1973.

[55] C. Sahin, J. G. Metcalf, and S. D. Blunt, “Filter design to address range sidelobe
modulation in transmit-encoded radar-embedded communications,” 2017 IEEE
Radar Conference, RadarConf 2017, pp. 1509–1514, 6 2017.

[56] L. A. Harnett and S. D. Blunt, “Least-squares optimal mismatched doppler pro-
cessing,” 2019 IEEE Radar Conference, RadarConf 2019, 4 2019.

[57] D. Henke, P. McCormick, S. D. Blunt, and T. Higgins, “Practical aspects of
optimal mismatch filtering and adaptive pulse compression for fm waveforms,”
2015 IEEE Radar Conference (RadarCon), pp. 1149–1155, 5 2015.

148



[58] S. D. Blunt and E. L. Mokole, “Overview of radar waveform diversity,” IEEE
Aerospace and Electronic Systems Magazine, vol. 31, no. 11, pp. 2–42, 2016.

[59] R. G. Mattingly, A. F. Martone, and J. G. Metcalf, “Enabling intra-cpi frequency
agility via backprojection based range-doppler processing,” 2023 International
Radar Conference (RADAR), pp. 1–6, 2023.

[60] R. P. Perry, R. C. DiPietro, and R. L. Fante, “Sar imaging of moving targets,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp. 188–200,
1999.

[61] F. Uysal and N. Goodman, “The effect of moving target on range-doppler
map and backprojection algorithm for focusing,” 2016 IEEE Radar Conference,
RadarConf 2016, 6 2016.

[62] M. B. Heintzelman, J. W. Owen, S. D. Blunt, B. Maio, and E. D. Steinbach,
“Practical considerations for optimal mismatched filtering of nonrepeating wave-
forms,” in 2023 IEEE Radar Conference (RadarConf), 2023, pp. 1–6.

[63] J. W. Owen, B. Ravenscroft, and S. D. Blunt, “Devoid clutter capture and filling
(deccaf) to compensate for intra-cpi spectral notch variation,” 2019 International
Radar Conference, RADAR 2019, 9 2019.

[64] B. Ravenscroft, J. W. Owen, B. H. Kirk, S. D. Blunt, A. F. Martone, K. D. Sher-
bondy, and R. M. Narayanan, “Experimental assessment of joint range-doppler
processing to address clutter modulation from dynamic radar spectrum sharing,”
2020 IEEE International Radar Conference, RADAR 2020, pp. 448–453, 4 2020.

[65] B. H. Kirk, A. F. Martone, K. D. Sherbondy, and R. M. Narayanan, “Mitiga-
tion of target distortion in pulse-agile sensors via richardson-lucy deconvolu-
tion,” Electronics Letters, vol. 55, pp. 1249–1252, 11 2019.

[66] Y. Cao, S. Guo, S. Jiang, X. Zhou, X. Wang, Y. Luo, Z. Yu, Z. Zhang, and
Y. Deng, “Parallel optimisation and implementation of a real-time back projec-
tion (bp) algorithm for sar based on fpga,” Sensors, vol. 22, no. 6, 2022.

[67] J. Price, “The intersection of radar and communications: A study on spectrum
management for addressing rf interference,” Master’s thesis, The University of
Oklahoma, May 2023.

[68] H. Kuschel, D. Cristallini, and K. E. Olsen, “Tutorial: Passive radar tutorial,”
IEEE Aerospace and Electronic Systems Magazine, vol. 34, pp. 2–19, 2 2019.

[69] M. Malanowski, Signal processing for passive bistatic radar. Artech House,
2019.

149



[70] M. Edrich, S. Lutz, and F. Hoffmann, “Passive radar at hensoldt: A review to
the last decade,” Proceedings International Radar Symposium, vol. 2019-June, 6
2019.

[71] W. Klembowski, A. Kawalec, and W. Wizner, “Critical views on present passive
radars performance as compared with that of active radars,” in 2013 14th Inter-
national Radar Symposium (IRS), vol. 1, 2013, pp. 131–135.

[72] A. Ksiezyk, M. Plotka, K. Abratkiewicz, R. Maksymiuk, J. Wszolek, P. Sam-
czynski, and T. P. Zielinski, “Opportunities and limitations in radar sensing based
on 5g broadband cellular networks,” IEEE Aerospace and Electronic Systems
Magazine, 2023.

[73] L. A. Harnett, “Mismatched processing for radar interference cancellation,”
Ph.D. dissertation, University of Kansas, August 2022.

[74] R. Mattingly, N. Goodman, and J. Metcalf, “Performance analysis of ofdm inter-
ference mitigation via demodulation/remodulation estimation and extraction,” in
2024 IEEE Radar Conference (RadarConf24), 2024, pp. 1–6.

[75] S.-J. Lee, M. Goel, Y. Zhu, J.-F. Ren, and Y. Sun, “Forward error correction
decoding for wimax and 3gpp lte modems,” in 2008 42nd Asilomar Conference
on Signals, Systems and Computers, Oct 2008, pp. 1143–1147.

[76] L. Han, F. Gao, Z. Li, and O. A. Dobre, “Low complexity automatic modulation
classification based on order-statistics,” IEEE Transactions on Wireless Commu-
nications, vol. 16, no. 1, pp. 400–411, Jan 2017.

[77] J. P. Mouton, M. Ferreira, and A. S. Helberg, “A comparison of clustering al-
gorithms for automatic modulation classification,” Expert Systems with Applica-
tions, vol. 151, p. 113317, 2020.

[78] F. Hameed, O. A. Dobre, and D. C. Popescu, “On the likelihood-based approach
to modulation classification,” IEEE Transactions on Wireless Communications,
vol. 8, no. 12, pp. 5884–5892, December 2009.

[79] J. J. Van De Beek, M. Sandell, and P. O. Börjesson, “Ml estimation of time and
frequency offset in ofdm systems,” IEEE Transactions on Signal Processing,
vol. 45, pp. 1800–1805, 1997.

[80] A. Baghaki and B. Champagne, “Joint frequency offset, time offset, and chan-
nel estimation for ofdm/oqam systems,” Eurasip Journal on Advances in Signal
Processing, vol. 2018, pp. 1–19, 12 2018.

150



[81] A. Filippi and S. Serbetli, “Ofdm symbol synchronization using frequency do-
main pilots in time domain,” IEEE Transactions on Wireless Communications,
vol. 8, pp. 3240–3248, 6 2009.

[82] Z. Zhang, K. Long, M. Zhao, and Y. Liu, “Joint frame synchronization and fre-
quency offset estimationin ofdm systems,” IEEE Transactions on Broadcasting,
vol. 51, pp. 389–394, 9 2005.

[83] Q. Huang, M. Ghogho, J. Wei, and P. Ciblat, “Practical timing and frequency
synchronization for ofdm-based cooperative systems,” IEEE Transactions on
Signal Processing, vol. 58, pp. 3706–3716, 7 2010.

[84] M. K. Ozdemir and H. Arslan, “Channel estimation for wireless ofdm systems,”
IEEE Communications Surveys and Tutorials, vol. 9, pp. 18–48, 6 2007.

[85] N. Van Duc, H. P. Kuchenbecker, and M. Pätzold, “Estimation of the channel
impulse response length and the noise variance for ofdm systems,” IEEE Vehic-
ular Technology Conference, vol. 61, pp. 429–433, 2005.

[86] M. Juhola, J. Katajainen, and T. Raita, “Comparison of algorithms for standard
median filtering,” IEEE Transactions on Signal Processing, vol. 39, no. 1, pp.
204–208, 1991.

[87] J. L. Lake, M. Yeary, and C. D. Curtis, “Adaptive radio frequency interference
mitigation techniques at the national weather radar testbed: First results,” in 2014
IEEE Radar Conference, 2014, pp. 0840–0845.

[88] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proceedings
of the IEEE, vol. 55, no. 4, pp. 523–531, April 1967.

[89] J. Y. Cho, “A new radio frequency interference filter for weather radars,” Journal
of Atmospheric and Oceanic Technology, vol. 34, pp. 1393–1406, 7 2017.

[90] S. Blunt and K. Gerlach, “Adaptive pulse compression via mmse estimation,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp.
572–584, April 2006.

[91] S. D. Blunt, T. Chan, and K. Gerlach, “Robust doa estimation: The reiterative su-
perresolution (risr) algorithm,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 1, pp. 332–346, January 2011.

[92] S. Blunt and K. Gerlach, “Adaptive pulse compression,” in Proceedings of the
2004 IEEE Radar Conference (IEEE Cat. No.04CH37509), April 2004, pp. 271–
276.

[93] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2002.

151



[94] H. Van Trees, Optimum array processing: Part IV of detection, estimation, and
modulation theory. John Wiley & Sons, 2004.

[95] T. Higgins, S. D. Blunt, and K. Gerlach, “Gain-constrained adaptive pulse com-
pression via an mvdr framework,” in 2009 IEEE Radar Conference, May 2009,
pp. 1–6.

[96] S. D. Blunt and T. Higgins, “Dimensionality reduction techniques for efficient
adaptive pulse compression,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 46, no. 1, pp. 349–362, Jan 2010.

[97] S. D. Blunt and T. Higgins, “Achieving real-time efficiency for adaptive radar
pulse compression,” in 2007 IEEE Radar Conference, April 2007, pp. 116–121.

[98] I. Reed, J. Mallett, and L. Brennan, “Rapid convergence rate in adaptive arrays,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 6,
pp. 853–863, Nov 1974.

152


	List of Tables
	List of Figures
	Abstract
	Introduction
	Objectives
	Outline

	Background
	The Pulse-Doppler Radar Model
	Simulation
	Experimental Testbed

	CFAR Detection
	OFDM Communications
	Capacity
	Pilots and Structure

	Spectrum Sharing

	Intra-CPI Bandwidth Agility
	Mismatched Filtering
	Formulation

	Common Matched Responses
	Quantitative Results
	Experimental Results

	Intra-CPI Frequency Agility
	Phase Analysis
	Phase Correction

	Modified Backprojection Algorithm
	Backprojection
	Modified Backprojection
	Range Migration

	Why Backprojection?
	Experimental Results

	Fully Agile Pulse Processing
	Computational Complexity

	Communications Interference Mitigation
	Demodulation//Remodulation Estimation: The Ideal Model
	Initial Performance
	Blanking Location
	Cyclic Prefix Stacking
	Radar Detection Performance

	Increasing Model Fidelity
	Symbol Boundary Estimation
	Frequency Offset Estimation
	Channel Estimation

	Expanded Demodulation/Remodulation Estimation
	The Median Filter

	Performance Analysis
	A Comparison: Adaptive Pulse Compression
	Ground Truth Performance
	Alternative Estimates

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References

