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Abstract 

One way to investigate how humans interact with their environment is by studying how they 

visually search and gather relevant information in order to make decisions. Visual search can be 

analyzed through visual scan paths, the time ordered sequence of eye fixations and saccadic 

movements. To create visual scan paths, researchers often use eye fixation detection algorithms, 

many of which rely on threshold parameters set by the researcher, to automatically identify eye 

fixations from data collected by eye tracking devices. 

However, the choice of threshold parameters used by eye movement detection algorithms is crucial, 

as many different factors, such as the participant population and the task to be completed, might 

affect what threshold values can accurately identify eye fixations. Inaccurate thresholds might 

result in visual scan paths that do not resemble the visual scan path carried out by an individual 

(i.e., the ideal visual scan path). For example, an inaccurate threshold might fail to identify eye 

fixations that took place, or combine multiple consecutive eye fixations together into a single eye 

fixation and place it somewhere in the environment that the individual never actually observed. As 

such, using inaccurate thresholds might affect our ability to understand and interpret an 

individual’s visual search (e.g., what information was observed, as well the order it was observed 

in) and decision-making process.  

In this dissertation, novel procedures and algorithms are introduced to facilitate the identification 

and selection of accurate thresholds. First, an automated procedure was developed to automatically 

select accurate thresholds based on the impact of threshold values on eye movement metrics (e.g., 

number of eye fixation), expanding upon prior research efforts by automating a process that was 

previously largely manual. Second, two approaches are proposed to approximate the trend of 

similarities between ideal visual scan paths and visual scan paths created at different thresholds, 
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used in prior studies to determine accurate thresholds, without the need to know or use ideal visual 

scan paths. Using ideal visual scan paths is not always feasible, as one needs to know the expected 

eye movements of individuals a head of time or needs to engage in the arduous and time consuming 

process of manually defining the ideal visual scan paths from the data collected. Third, and lastly, 

a classification framework was developed to identify similar visual scan paths that might showcase 

variations of a common visual scanning strategy using multiple similarity metrics.
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Chapter 1 – Introduction 

In many tasks, our ability to visually search the environment to gather information plays a crucial 

role. Every year, healthcare professionals visually search and interpret millions of medical images 

and records, such as mammograms (Mello-Thoms et al., 2005; Gandomkar & Mello-Thoms, 

2019), air traffic controllers inspect radars and runways to search for hazards in order to ensure 

that over 16 million flights (Federal Aviation Administration, 2023) arrive safely at their 

destination, and transportation security officers at airports inspect over 1.9 billion carry-on items 

(Transportation Security Administration, 2024). Therefore, understanding how we visually search 

our environment, such as what information we observe and the order we observe it, while 

completing a task, might help us identify opportunities to adapt the task to the user’s capabilities 

and needs, and in turn, making the task less demanding. 

One way to study how we visually search our environment is by collecting and analyzing eye 

movements. To determine whether a target is present in the environment, such as an aircraft in a 

potential conflict or a tumor on a mammogram, we must direct our attention to the target in order 

to identify it (Wolfe, 2010). If multiple items are present in the environment, each item might need 

to be inspected until the target is found (Wolfe, 2020). Throughout this search process, as our eyes 

move across the environment, we create what is known as a visual scan path (Josephson & Holmes, 

2002) (Figure 1), the time-ordered sequence of eye fixations (when we stop to inspect an item) and 

saccades (when we move between items).  
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In order to create visual scan paths, researchers often use eye movement detection algorithms to 

automatically identify eye fixations and saccadic movements. Manual identification of eye 

fixations and saccades from the eye movement data collected by an eye tracker is possible but 

considered to be both very time consuming and tedious (Blignaut & Beelders, 2009; Hooge et al., 

2018; Navarro et al., 2021). Instead, researchers apply eye movement detection algorithms such 

as the Velocity-Threshold Identification (I-VT) and the Dispersion-Threshold Identification (I-DT) 

algorithms (Salvucci & Goldberg, 2000), two of the most commonly used algorithms by 

researchers (Strohmaier et al., 2020; Hahn & Klein, 2022; Birawo & Kasprowski, 2022). These 

algorithms rely on threshold parameters set by the researcher, such as the gaze velocity threshold 

for the I-VT algorithm or the dispersion threshold for the I-DT algorithm, in order to identify and 

classify eye fixations and saccades from the eye movement data collected. 

However, the choice of threshold values set by the researcher is crucial to create accurate visual 

scan paths. Prior studies have described how eye movement metrics calculated from the same eye 

movement data, such as the number of eye fixations and eye fixation durations, might be different 

depending upon the threshold value selected (Shic, Scassellati, & Chawarska, 2008; Komogortsev 

Figure 1. Representative examples of a visual scan path, highlighting one eye fixation and one 

saccadic movement. 

 

Note. The yellow circles denote an eye fixation, and the inscribed letter indicates the order the eye 

fixations took place in. The black line between each eye fixation represents a saccadic movement. 
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et al., 2010; Kosel et al., 2023). Thus, due to the different number of eye fixations identified, 

different thresholds might also create different visual scan path from the same eye movement data 

(Yoo, Jeong, & Jang, 2021), where an inaccurate threshold might result in a visual scan path that 

is very different from the one that actually took place. 

As a result, our ability to analyze the visual search carried out by a participant while completing a 

task might be affected by our choice of threshold value. Consider the example of the visual scan 

path showcased in Figure 2(a) carried out by a fictitious radiologist examining an x-ray for an 

abnormality. One can observe that the radiologist checked all areas of interest (AOIs) in the 

environment, denoted by squares colored red, blue, yellow, and pink, which represent the location 

of potential abnormalities in the x-ray. The visual scan paths created using inaccurate thresholds 

of an eye movement detection algorithm can be observed in Figures 2(b) and Figures 2(c). In this 

case, on the other hand, actual eye fixations carried out by the radiologist on AOIs do not appear 

in the visual scan path, indicating to us, erroneously, that they did not fixate on those areas while 

searching. Yet, the visual scan path created with a more accurate threshold, Figure 2(d), indicates 

that the radiologist fixated on all the AOIs on the same order (red, blue, yellow, pink, yellow) as 

done in the actual visual scan path, although not all eye fixations were identified. Overall, different 

thresholds might result in different visual scan paths, some of which may be poor representations 

of the actual eye movements that took place during search. 

In addition, how we might be able to interpret the visual scan path is also impacted by the choice 

of threshold. Assuming that the pink AOI represents the location of the abnormality in the x-ray 

image, the visual scan paths shown in Figure 2(b) and Figure 2(c) indicate that the radiologist 

committed a search or sampling error (Nodine & Kundel, 1987; Waite et al., 2017), as the 

radiologist did not inspect the location of the lesion. However, as shown in actual visual scan path  
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Figure 2. Simplified example highlighting the impact of inaccurate and accurate thresholds on 

visual scan paths (b-d) compared to an actual visual scan path (a).  

 

                                (a)                                     (b)                               (c)                                  (d) 

Note. The red, blue, yellow, and pink squares represent areas of interest (AOIs) in the environment 

that the visual scan path inspected. 
 

carried out by the radiologist in Figure 2(a), as well as the visual scan path created at a more 

accurate threshold shown in Figure 2(d), the radiologist did inspect the location of the lesion, and 

thus, could not have committed a search or sampling error. Thus, our ability to interpret the visual 

scan path of the radiologist can be very different based upon whether an accurate threshold or an 

inaccurate threshold is used. 

Multiple different factors can influence the threshold values that should be selected, requiring 

researchers to identify and select accurate thresholds for their respective application. Prior studies 

have discussed how factors ranging from the participant population investigated, such as older 

participants (Blignaut & Beelders, 2009), the task to be completed (van der Lans et al., 2011), the 

device in which the task is completed, such as a computer or a mobile device (Trabulsi et al., 2021), 

as well the eye tracker used to collect the eye movement data, which can have different sampling 

frequencies (Olsen & Matos, 2012), might impact which threshold values are accurate. As a result, 
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threshold values that create accurate visual scan paths in one study might not be as accurate in a 

separate study. 

However, current proposed approaches to determine accurate thresholds for eye movement 

detection algorithms might be challenging for researchers to implement in practice. For example, 

a literature review of Strohmaier et al (2020) of 161 eye-tracking studies focused on mathematics 

education found that only 61% of studies reported the eye movement detection algorithm used and 

among those, only 21% reported the thresholds that were applied (Strohmaier et al., 2020). 

One proposed approach to determine accurate thresholds is to compare how similar the visual scan 

path created at a given threshold is to an ideal visual scan path, such as the expected or pre-

determined sequence of a participants’ eye movements (Komogortsev et al. 2010). Nonetheless, 

an ideal visual scan path might not always be readily available, limiting the feasibility of this 

procedure to specific experimental designs and applications (Startsev & Zemblys, 2023). Another 

proposed approach is to evaluate how the values of eye movement metrics, such as the number of 

eye fixations, change across threshold values (Blignaut, 2009). Yet current implementations of this 

approach rely on the researcher’s subjective judgement to identify accurate thresholds.  

In addition, once accurate thresholds have been identified, analyzing accurate visual scan paths 

enable us to investigate how operators search their environment in multiple different domains, 

ranging from aircraft piloting (Naeeri, Kang, & Palma Fraga, 2022) and air traffic control (Kang 

& Landry, 2014; McClung & Kang, 2016; Palma Fraga, 2021), to reading websites (Josephson & 

Holmes, 2002), automobile driving (Jeong, Kang, and Liu, 2019; Navarro et al., 2021), education 

(Tang et al., 2016; Špakov et al., 2017). Although there exist multiple ways to analyze and compare 

visual scan paths, two common approaches to compare visual scan paths are to evaluate them based 

on the similarity information observed (i.e., the AOIs in common between two visual scan paths) 
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or to evaluate them based on the order said information was observed in (i.e., to evaluate them 

based upon whether they inspected the AOIs in the same order) (Privitera & Stark, 2000).  

However, analyzing and comparing visual scan paths by only considering one similarity metric 

might not be sufficient to identify visual scan paths that represent variations of an underlying 

similar scanning behaviors. In complex and dynamic environments operators might need to vary 

their visual scan paths while carrying out their tasks. In the case of air traffic control, prior research 

has described how controllers might gather the same information in a different order or from a 

different sources in the environment (Meyer et al., 2021). Furthermore, the same controller might 

gather the same information every time they issue a clearance but do might do so in a different 

order to save time during periods of high workload (Svensson, 2015). Therefore, using solely one 

similarity metric to compare visual scan paths may not fully account for the potential variations 

that might exist between participants applying a similar scanning behavior. 

Research contributions 

The present dissertation contains three major contributions to address two gaps highlighted in the 

introduction: (1) identifying accurate thresholds for eye movement detection algorithms; (2) 

identifying similar visual scan paths when variations of a common visual scanning behavior may 

exist. 

The first contribution (Chapter 3) introduces an automated procedure to identify a range of accurate 

thresholds based on eye movement metric trends across threshold values, expanding upon the work 

of Blignaut (2009). The procedure defines a minimum and a maximum threshold across eye 

movement metrics given a set of eye movement data through a three-step procedure: (1) identify 

whether the eye movement metric trend contains any changes in direction (increasing or decreasing) 



7 
 

as well as concavity (convex or concave). If so, split the trend to account for said changes; (2) 

determine the thresholds that take place at elbow or knee points in each trend using the Kneedle 

algorithm (Satopaa et al., 2011), and if needed, the splits of each trend that account for changes in 

concavity and direction; (3) calculate a common minimum and maximum threshold among the 

thresholds identified between all eye movement metric trends. The procedure might enable 

researchers to select accurate thresholds for their respective application automatically based on the 

data they collect. 

The second contribution (Chapter 4) consists of two methods, referred to as between-participant 

and within-participant comparisons, to identify accurate threshold values by quantifying the 

impact of threshold values on visual scan paths similarities. More specifically, the between-

participant method compares how threshold values impact the similarity between the visual scan 

paths of participants, while the within-participant method evaluates how threshold values impact 

the similarity of a single participant’s visual scan path created at different thresholds. Quantifying 

the impact of threshold values on visual scan paths can enable researchers to select more accurate 

thresholds without the need of ideal visual scan paths. 

The third contribution (Chapter 5) introduces a classification framework to identify similar visual 

scan paths when potential variations might exist between individuals by applying multiple 

measures to quantify the similarity of visual scan paths across two different dimensions: (1) the 

AOIs inspected; (2) the order said AOIs were inspected in. Similar visual scan paths are 

empirically identified based upon their above-average values among participants across both 

similarity metrics, while those visual scan paths that might be potential variations are considered 

to be those with an above-average value in at least one similarity metric. On the other hand, 
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different visual scan paths are considered to be those that had less than average values for both 

similarity metrics. 

The remaining two chapters, Chapter 2 and 6, provide readers with additional background 

information on the motivation and methods used to develop the contributions discussed in the 

present work (Chapter 2), as well as a summary of the conclusions regarding the contributions in 

addition to future avenues of research (Chapter 6). 

Chapter 2 – Background 

How threshold selection might impact the accuracy of visual scan 

paths 

In this section, thresholds can influence and impact the accuracy of visual scan paths is explained. 

First, we introduce the Velocity-Threshold Identification (I-VT) algorithm, focusing on how 

threshold values are used by the algorithm to identify and classify eye fixations and saccadic 

movements from gaze data. Second, the factors that can influence the accuracy of threshold values, 

such as the participant population or the device used to complete the task, are described. Third, 

and lastly, we describe how selecting inaccurate thresholds values can impact the accuracy of 

visual scan paths. 

The role of thresholds in the Velocity-Threshold Identification (I-VT) algorithm 

The I-VT algorithm belongs to the family of eye movement detection algorithms that identifies 

eye fixations and saccadic movements from gaze data based on the velocity of eye movements 

(Salvucci & Goldberg, 2000). Eye fixations and saccadic movements possess two distinct 

distributions of velocities, where saccadic movements are much faster than eye fixations (Salvucci 

& Goldberg, 2000). More specifically, Salvucci & Goldberg (2000) describe that eye fixations tend 
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to take place at velocities smaller than 100 degrees per second, while saccadic movements tend to 

occur at velocities higher than 300 degrees per second. Consider the example showcasing gaze 

movements of a participant collected by an eye tracker shown in Figure 3 below. Here, the blue 

dots represent gaze movements, while the length of the arrow represents the velocity between gaze 

movements. Gaze movements belonging to eye fixations tend to be in close proximity of each 

other, possessing small velocities between consecutive gazes (i.e., shorter arrows), while those 

belonging to saccadic movements tend to be much farther apart, separated by larger velocities (i.e., 

larger arrows). At its core, the I-VT algorithm leverages that different velocity profiles exist for 

eye fixations and saccadic movements, represented by larger or smaller arrows in our example, in 

order to identify them. 

Figure 3. Simplified visualization showcasing gaze movements (blue dots) of a participant that 

have low gaze velocities (small arrows) and high gaze velocities (large arrows). 
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As a result, vast amounts of collected gaze data can be rapidly classified as belonging to an eye 

fixation or a saccade based on a fixed gaze velocity threshold value (Salvucci & Goldberg, 2000; 

Andersson et al., 2017). If the velocity between two gaze points is less than a fixed gaze velocity 

threshold, they are classified as belonging to an eye fixation, otherwise, they are classified as 

belonging to a saccadic movement. Continuing the example shown in Figure 3, Figure 4 showcases 

how the gaze movements of a participant can be classified into three separate eye fixations. The 

gazes with velocities smaller than the fixed threshold are classified as belonging to an eye fixation 

and grouped together (i.e., grey dashed circles), while gazes with velocities larger than the 

threshold are used to separate eye fixations each eye fixation. 

Figure 4. Simplified visualization showcasing how gaze movements of a participant are grouped 

together into eye fixations using a fixed velocity threshold. 
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Note. Blue dots indicate the gaze movements of a participant, the arrows the gaze velocity between 

gaze movements, where larger arrows indicate higher velocities, and the gray dashed circles 

indicate an eye fixation. 
 

Furthermore, researchers have defined additional thresholds beyond the gaze velocity thresholds 

to increase the accuracy of eye movement detection algorithms. Thresholds such as a minimum 

eye fixation duration threshold (Komogortsev et al., 2010), a minimum saccade duration threshold 

(Salvucci & Goldberg, 2000) among others have been used. For example, a minimum eye fixation 

duration is used to discard eye fixations that are considered to be too short in duration for a human 

to gather and process any meaningful information from the environment (Olsen, 2012). 

Factors that influence the accuracy of thresholds 

As mentioned in the introduction, multiple different factors such as the participant population 

(Blignaut & Beelders, 2009), the device in which the task is completed (Trabulsi et al., 2021), the 

eye tracker used (Olsen & Matos, 2012), among others, might affect the threshold values that can 

accurately identify eye fixations and saccadic movements. 

The participant population might affect the choice of threshold due to individual differences in eye 

movement characteristics. The work of Blignaut & Beelders (2009) explored how gaze stability 

can vary between individuals, due to factors such as age, the presence of ocular tremors 

(involuntary movements of the eye), among others. In their work, they describe how different 

individuals can show different distributions of point-to-point gaze velocities. As a result, a 

threshold value that might be accurate for one participant might not be as accurate for another 

participant. Consider the examples highlighted in Figure 5(a-b). The gaze movements shown in 

Figure 5(a) are more stable, resulting in smaller velocities (i.e., smaller arrows) between gaze 

movements that belong to eye fixations and much larger velocities between those movements 

belonging to saccades. On the other hand, Figure 5(b) contains the gaze movements of a participant 
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with a less stable gaze, resulting in larger movements between gazes and therefore larger gaze 

velocities (i.e., larger arrows). As a result, a threshold that might accurately identify eye fixations 

for Figure 5(a) might not have the same accuracy for Figure 5(b) due to the larger gave velocities 

between gazes belonging to eye fixations, which might be classified as saccades instead. 

Figure 5. Simplified visualization highlighting how gaze stability between two different 

participants, one possessing high gaze stability (a) and one with poor gaze stability (b), may 

influence threshold accuracy. 

             

(a) (b) 

Note. Poor gaze stability might increase the gaze velocities between gaze movements, resulting 

in threshold values that might accurately identify all eye fixations in (a) to perform poorly in (b). 
 

In addition, the device used by participants to carry out a task might also affect what threshold 

values the researcher should select (Trabulsi et al, 2021). In their work, Trabulsi et al (2021) discuss 

how stimulus presentation on a mobile screen might influence the gaze velocities of eye 

movements compared to computer screens. More specifically, that a smaller screen closer to a 

participant might induce smaller velocities between gaze movements than a larger screen, as shown 

in Figure 6(a-b). Figure 6(a) showcases the gaze movements of a participant on a mobile device, 

while Figure 6(b) contains the gaze movements of another participant on a computer screen. Due 
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to the larger size difference between the two stimuli presentations, the gaze velocities between eye 

movements on the larger computer screen might be larger (i.e., larger arrows) than those in the 

mobile device (i.e., smaller arrows). As a result, the threshold values that result in the accurate 

classification of eye fixations and saccadic movements in one device might not be the same in 

another device. 

Figure 6. Simplified visualization highlighting how the device used to complete a task, such as a 

mobile device (a) or a computer screen (b), may influence threshold accuracy. 

                    

                      (a)                                                                   (b) 

Note. Smaller screens may influence the gaze velocities of participants to be lower than those on 

a computer screen due to the smaller screen size. 
 

Another factor that might influence the accuracy of thresholds is the eye tracker used to collect 

gaze data (Olsen & Matos, 2012). Prior studies have suggested that gaze data sampled at lower 

frequencies might require higher thresholds for the I-VT algorithm, particularly in cases where the 

data is noisy (Holmqvist, 2016). Different eye trackers can collect data at vastly different 

frequencies, with some eye trackers capable of collecting gaze movements as frequently as 2000 

Hz (Holmqvist et al., 2011). For example, the EyeLink 1000 Plus can collect data at either 1000 

Hz or 2000 Hz, while the Tobii Pro Glasses II can collect data at either 50 Hz or 100 Hz. In other 
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words, the EyeLink 1000 Plus is capable of collecting gaze movements every millisecond (1000 

Hz) or every 0.5 millisecond (2000 Hz), while the Tobii Pro glasses II can collect gaze data every 

20 milliseconds (50 Hz) or every 10 milliseconds (100 Hz).  

Overall, when identifying eye fixations and saccadic movements by applying the I-VT algorithm, 

researchers need to identify and select thresholds that can accurately classify eye movements in 

their respective application. 

Inaccurate gaze velocity thresholds impact visual scan path accuracy 

Inaccurate gaze velocity thresholds can be classified into two categories (Olsen 2012, Trabulsi et 

al., 2021) based upon how they impact visual scanpaths: (1) gaze velocity thresholds that are higher 

than the values they ought to be, which may begin to classify saccadic movements as eye fixations; 

(2) gaze velocity thresholds that are smaller than the value they should be, which can fail to identify 

eye fixations.  

Consider the simplified example of a visual scan path carried out by a participant in Figure 7(a), 

where the participant fixated on 9 locations on the screen (A-I) in a specific order. 

Using a gaze velocity threshold too high may misclassify saccadic movements as belonging to an 

eye fixation. As a result, multiple eye fixations separated by saccadic movements could be 

erroneously combined into a singular eye fixation that did not actually take place in the visual scan 

path. Furthermore, the combined eye fixation may also be placed at a location that the participant 

never actually observed (Blignaut, 2009), as the centroid of an eye fixation is defined as the 

average of the x and y coordinates of the consecutive gazes classified as an eye fixation (Salvucci 

& Goldberg, 2000). Consider the example provided in Figure 7(b, right). A threshold too high 

combined multiple separate eye fixations together, such as eye fixations B and C into C, eye 

fixations E and D into E, and eye fixations F and G into F. Further, the combination of multiple 
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eye fixations impacted their positions, placing them at locations that the participant never actually 

observed. 

Figure 7. Simplified example showcasing the impact of thresholds values on visual scan paths. 

 

(a) 

 

(b) 

Using a gaze velocity threshold too high may misclassify saccadic movements as belonging to an 

eye fixation. As a result, multiple eye fixations separated by saccadic movements could be 

erroneously combined into a singular eye fixation that did not actually take place in the visual scan 

path. Furthermore, the combined eye fixation may also be placed at a location that the participant 
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never actually observed (Blignaut, 2009), as the centroid of an eye fixation is defined as the 

average of the x and y coordinates of the consecutive gazes classified as an eye fixation (Salvucci 

& Goldberg, 2000). Consider the example provided in Figure 7(b, right). A threshold too high 

combined multiple separate eye fixations together, such as eye fixations B and C into C, eye 

fixations E and D into E, and eye fixations F and G into F. Further, the combination of multiple 

eye fixations impacted their positions, placing them at locations that the participant never actually 

observed. 

On the other hand, if a gaze velocity threshold too low was selected, gaze samples belonging to 

eye fixations may be misclassified as saccadic movements, which can lead to, for example, an eye 

fixation being erroneously split into multiple separate eye fixations (Salvucci & Goldberg, 2000). 

At the extreme, a threshold too low might classify all the gaze samples belonging to an eye fixation 

as a saccadic movements, completely failing to identify that eye fixation. In other words, a 

threshold too low might separate a singular eye fixation into multiple eye fixations or even fail to 

identify that the eye fixation took place at all. Consider the example presented in Figure 2(7, left). 

Using a threshold too low identified the eye fixations C, D, F, and H carried out by the participant 

to be saccadic movements, resulting in the scan path sequence ABEGI. The scan path sequence 

created with a threshold too low is not only missing eye fixations, but it also indicates that the 

participant carried out eye movement transitions that never took place, such as fixation B followed 

by fixation E. 

In-between the thresholds that are too high and too low, as shown in Figure 7(b, center) exists a 

range of thresholds that lead to acceptable performance – those threshold values can most 

accurately identify the eye fixations and saccadic movements that were carried out. 
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Current approaches to determine thresholds that create accurate 

visual scan paths 

The present section introduces two current approaches used in prior literature to identify accurate 

visual scan paths, as well as the limitations these approaches have, which are addressed in this 

dissertation. The first approach discussed revolves around comparisons to an ideal visual scan path, 

the expected eye movements of a participant, as they complete a task. The ideal visual scan path 

can be used to determine which threshold results in a visual scan path that best represents the ideal 

one. The second approach discussed investigates how eye movement metrics are impacted across 

thresholds in order to determine thresholds that result in eye movement metric values that match 

those expected by the researcher. 

Comparing to an ideal visual scan path 

One way to identify how accurately a threshold can classify the eye movements is to compare the 

eye movements identified by the threshold to the eye movements the participant carried out. 

Consider the actual visual scan path, as well as the various visual scan paths created at thresholds 

too low and too high, showcased in Figure 7. In this case, through visual observation, we can 

identify that the visual scan path shown in Figure 7(b, center) is much more accurate than the 

visual scan paths shown in Figure 7(left, right), as it is most closely approximates the visual scan 

path carried out by the participant in Figure 7(a).  In other words, when the visual scan path of the 

participant is known (i.e., the ideal visual scan path), the most accurate threshold is the one that 

returns a visual scan path that most closely resembles the eye movements of the participant 

(Komogortsev et al., 2010; Komogortsev & Karpov, 2013).  

An example of this procedure can be observed in the work of Komogortsev et al (2010). In their 

study, the authors instructed participants to fixate on a target bullseye on a computer monitor that 
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changed positions in a pre-determined manner coded by the authors. Using this information, the 

authors were able to define characteristics of the ideal visual scan path, such as the number of eye 

fixations (there were a total of 10 targets, an accurate threshold would calculate 10 eye fixations), 

the average eye fixation duration (each target was present for 1 second, an accurate threshold 

would return an average eye fixation duration of 1 second), among others. Therefore, the threshold 

of the eye movement detection algorithm that best matched the expected eye movements of a 

participant would be considered as the most accurate threshold for their particular application. 

Note that other metrics can be used to compare visual scan paths created at thresholds and the ideal 

visual scan path. For example, another metric used in prior literature is the string-edit similarity 

(Blignaut & Beelders, 2009; Hareżlak & Kasprowski, 2014), a metric popular in eye tracking 

research (Privitera & Stark, 2000; Eraslan, Yesilada & Harper, 2016). Briefly, the string-edit 

similarity, explained in more detail below, calculates the number of operations needed to convert 

one visual scan path into another visual scan path, allowing us to determine how similar two visual 

scan paths are without having to define specific characteristics (e.g., average eye fixation durations 

expected). In this approach, the most accurate threshold would be considered to be the one that 

creates a visual scan path that most closely resembles the ideal visual scan path carried out by the 

participant. 

Furthermore, prior literature suggests that there is a relationship between the string-edit similarity 

comparison of an ideal scan path visual scan path and the visual scan paths created at a range of 

threshold values appears (Blignaut & Beelders, 2009; Hareżlak & Kasprowski, 2014). More 

specifically, the trend appears to increase sharply at low thresholds, remain stable for a range of 

thresholds, after which it begins to decrease, as can be observed in Figure 8 below. In other words, 
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there might exist a potential range of thresholds that can lead to accurate and acceptable visual 

scan paths when comparing to an ideal visual scan path. 

Figure 8. Example visualization of the theoretical relationship between threshold values and 

string-edit similarity to an ideal scan path sequence observed in prior research studies. 

 

Nonetheless, comparing to an ideal visual scan path might not be feasible in many applications. 

First, it requires the researcher to define the ideal visual scan path of a participant ahead of time 

(Startsev & Zemblys, 2023), which might not be possible without a carefully managed study (as 

in the work of Komogortsev et al., 2010). Alternatively, one may choose manually to re-create the 

visual scan path from the raw gaze data collected, although it can be very time consuming 

(Blignaut & Beelders, 2009; Navarro et al., 2021). For example, identifying the visual scan path 

of a participant whose eye movements were collected using the Tobii Pro Glasses II eye tracker 

(which collects gaze data every 10 milliseconds as mentioned previously). For a short 5 second 

duration experiment, the researcher would have to manually process 5000 gaze points (assuming 

no missing data) in order to re-crate the visual scan path of the participant. 

One of the major contributions of the present dissertation, discussed further in Chapter 2, 

introduces a novel procedure to address the challenge of identifying accurate thresholds using 

string-edit similarity without the need of an ideal visual scan path. 
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Comparing to eye movement metrics trends 

In many cases, such as in complex and dynamic environments, it may be difficult for a researcher 

to know ahead of time what the visual scan path of a participant is, making the method defined in 

the previous section not feasible. Nonetheless, the need to identify accurate thresholds for eye 

movement detection algorithms remains. 

One approach to identify accurate thresholds when ideal visual scan paths are not known is to 

explore how threshold values impact eye movement metrics, such as the number of eye fixations, 

and evaluating them against a set of criteria (Blignaut, 2009; Llanes-Jurado et al., 2020). More 

specifically, the method determines the range of thresholds that, simultaneously, result in the 

highest average number of eye fixation, the highest percentage of gazes included in eye fixations, 

as well as a high and stable number of eye fixations in AOIs, among other metrics selected by the 

researcher (Blignaut, 2009; Llanes-Jurado et al., 2020).  

These metrics and their criteria (i.e., selecting the highest number of eye fixations) serve as 

heuristics to determine accurate thresholds. For example, Blignaut (2009) considered that the 

highest number of eye fixations might better match the actual participants’ eye fixations than larger 

thresholds with fewer eye fixations. They describe that, a higher number of shorter eye fixations 

may take place at the locations inspected by the participants, while at larger thresholds, in which 

eye fixations may begin to merge, the position of eye fixations may change (Blignaut, 2009). 

Therefore, they state that it is preferrable to select a smaller threshold with more eye fixations than 

a higher threshold with fewer eye fixations at locations that may have not been observed. Another 

example is selecting the threshold that results in high and stable number of eye fixations in AOIs 

(Llanes-Jurado et al., 2020). In their work, Llanes-Jurado et al (2020) used his measure as a way 

to capture information regarding the spatial-temporal behavior of the participants’ eye movements. 
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If participants are expected to primarily fixate in AOIs as part of an application or experiment, 

thresholds that result in an unstable number of eye fixations in AOIs, or in very few eye fixations 

in AOIs, may be an indication that the threshold is not an accurate model of visual attention 

(Llanes-Jurado et al., 2020). 

Overall, understanding how different thresholds impact eye movement metrics can facilitate 

threshold selection, even in the absence of an ideal visual scan path, as a researcher can avoid 

using thresholds in eye movement detection algorithms that do not appear to have reasonable 

performance (Startsev & Zemblys, 2023) for the eye movement metrics chosen. 

However, the application of this procedure may be challenging in practice, as it relies on the 

researcher’s subjective judgement to identify potential thresholds. In prior applications, 

researchers have visually observed an eye movement metric trend in order to identify specific 

points in a trend (and the threshold at which it takes place), such as the point at which an increasing 

trend begins to slow down (Blignaut, 2009; Llanes-Jurado et al., 2020). Prior research has 

described how, when tasked with visually determining the points at which a trend changed, 

participants may vary in terms of how many points they select as well as where those points take 

place in the trend. Furthermore, the task of visually identifying a specific point in a trend can be 

difficult, especially when trends are smooth, as it may be hard to differentiate a specific point in 

the trend from all surrounding points (Shi et al., 2021).  

One of the major contributions of the present dissertation, discussed further in Chapter 4, is the 

development of an automated procedure to identify thresholds based on this approach, allowing 

researchers to identify thresholds without relying on their subjective judgement. 
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Quantifying similarity in visual scan paths 

The present section describes two approaches used in eye tracking literature to analyze and 

compare visual scan paths based on the order information was observed or based on what 

information was observed (Privitera & Stark, 2000). In this dissertation, within Chapter 5, these 

approaches are combined to develop a classification framework to identify similar visual scan 

paths, particularly in cases in which visual scan paths can have minor variations due to the task 

environment. The two similarity metrics explored are the Jaccard coefficient similarity, which 

measures the similarity in terms of common AOIs explored between two visual scan paths, as well 

as the string-edit similarity, which considers the order in which AOIs were explored. 

Jaccard coefficient similarity 

One approach to evaluate the similarity between visual scan paths based on the AOIs present in 

both scan paths is through the Jaccard similarity coefficient (Jaccard, 1901; Fletcher & Islam, 

2018). The Jaccard coefficient similarity has previously been used in multiple different domains, 

such as machine learning (Ferdous, 2009; Huang, 2009) and computational biology (Besta et al., 

2020), as well as eye tracking (Kumar et al., 2019; Burch et al., 2019). Within the context of visual 

scan paths, the Jaccard coefficient similarity is defined as the number of AOIs common between 

two visual scan paths (i.e., the intersection of AOIs) divided by the total number of AOIs present 

in both visual scan paths (i.e., the union of AOIs) as can be observed in equation (2.1).  

Here, 𝐴 represents the set of AOIs present in one scan path sequence, and 𝐵 the set of AOIs present 

in another scan path sequence, 𝐴 ∩ 𝐵 contains the number of AOIs in common between the two 

scan path sequences, and 𝐴 ∪ 𝐵 includes the number of AOIs present in both scan path sequences. 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (2.1) 
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Consider the scan path sequence A = PLH and the scan path sequence B = POL. Here, the value 

of 𝐴 ∩ 𝐵 would be 2, as there are 2 AOIs in common between the two scan path sequences (i.e., 

PL), while 𝐴 ∪ 𝐵 would be 4, as there are 4 AOIs in total present between the two scanpath 

sequences (i.e., O and H in addition to PL). Therefore, the Jaccard coefficient similarity between 

these two scan path sequences would be 𝐽(𝐴, 𝐵) =  2
5⁄ = 0.4 – in other words, the two visual 

scan paths (PLH and POL) are 40% similar. 

String-edit similarity 

To calculate the similarity between visual scan paths by considering the order that information was 

inspected in (i.e., AOIs), a common metric used in the literature is the string-edit similarity 

(Privitera & Stark, 2000; Duchowski et al., 2010, Fahimi & Bruce, 2021). As mentioned briefly in 

this chapter, the string-edit distance computes the number of operations (insertions, deletions, and 

substitutions) required to transform one visual scan path into another (Levenshtein, 1966).  

Furthermore, one can compute the normalized string-edit similarity (Privitera & Stark, 2000), 

where the string-edit distance is converted into similarity by subtracting one from the string-edit 

distance value calculated and normalize the string-edit similarity by dividing by the length of the 

longest scan path sequence. Such an approach allows us to directly compare multiple visual scan 

paths, and their similarity values, while accounting for the length (i.e., how many AOIs were 

observed) in the visual scan path. One or two differences in the order AOIs were inspected in 

between two short visual scan paths might result in very low similarity, while the same one or two 

differences in very large visual scan paths might not impact the similarity value. The equation to 

calculate the string-edit normalized similarity can be observed in as can be observed in equation 

(2.2) below. 
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In this equation, 𝐴 represents one scan path sequence while 𝐵 another scan path sequence. The 

variables 𝑖, 𝑑, and 𝑠 indicate the number of insertions, deletions, and substitutions, respectively, 

needed to convert the scan path sequence 𝐴 into 𝐵. Lastly, 𝑛 represents the length of the largest 

scan path sequence between A and B. Consider as an example the scan path sequence 𝐴 = EFD 

and the scan path sequence 𝐵 = EFCD. To convert the scan path sequence 𝐴 into the sequence 𝐵, 

one must insert the AOI C into scan path sequence 𝐴. Thus, only one insertion operation is needed. 

Given the length of the largest scan path sequence is 4, the normalized string-edit similarity would 

be 𝑆(𝐴, 𝐵) = 1 − (
1

4
) = 0.75.  

  

𝑆(𝐴, 𝐵) = 1 − (
𝑖 + 𝑑 + 𝑠

𝑛
) (2.2) 
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Chapter 3 – Identifying accurate thresholds by analyzing eye 

movement metric trends automatically 

In this chapter, we introduce an automated procedure to identify accurate thresholds based on the 

impact of threshold values on eye movement metric trends, more precisely: (1) the number of eye 

fixations; (2) the percentage of gaze samples in eye fixations; (3) the percentage of eye fixations 

in AOIs. 

The chapter is structured in the following manner. First, we introduce the proposed approach as 

well as explain the calculations that take place at each step. Second, we apply the proposed 

approach to the random saccade task (RAN) in the open-source Gazebase dataset (Griffith et al., 

2021). Third, and lastly, we discuss the results and derived insights from the application of the 

proposed approach, focusing on the accurate thresholds identified by the proposed approach. 

Proposed approach 

The proposed procedure expands upon prior research efforts in four ways: (1) computes inflection 

points in eye movement metric trends – points at which changes in concavity take place. Such 

points are used to partition the eye movement metric trend into multiple trends to account for their 

concavity and slope direction when using elbow-detection algorithms; (2) adapts the Kneedle 

elbow-detection algorithm (Satopaa et al., 2011) to automatically detect thresholds at elbow points 

in each eye movement metric trend; (3) identifies minimum and maximum thresholds by 

determining two sets of elbow (or knee) points; (4) creates aggregate visual scanpaths that simplify 

visual scanpaths and highlight the impact of thresholds on the overall shape of visual scanpaths and 

the position of eye fixations. In addition, it provides information to the researcher on what AOIs 

inspected are missing across thresholds. 
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The proposed approach consists of 5 major steps, each explained in more detail below: (1) 

processing the eye movement data; (2) calculating the eye movement metrics, concavity, and slope 

directions; (3) detecting elbow (or knee) points in eye movement metrics; (4) identifying minimum 

and maximum recommended thresholds; (5) plotting visual scan paths at the recommended 

thresholds. 

Step 1. Process eye movement data 

The proposed procedure processes the eye movement data collected, which consists of the 

following sub-steps: (1) Selecting the eye movement metrics to evaluate; (2) Selecting an eye 

movement detection algorithm (e.g., I-VT) and the threshold range to be explored by choosing a 

maximum threshold ( 𝑡𝑚𝑎𝑥 ) and step increase ( ∆) ; (3) Setting the size of the AOIs in the 

environment and mapping eye fixations to AOIs. 

First, the researcher selects the eye movement metrics with which to select and evaluate thresholds. 

Prior studies have selected eye movement metrics such as (e.g., Blignaut 2009; Llanes-Jurado et 

al., 2020): (1) the number of eye fixations; (2) the percentage of gaze samples in eye fixations; (3) 

the percentage of eye fixations in AOIs. The intuition behind these metrics is to identify the range 

of thresholds in the eye movement that (Llanes-Jurado et al., 2020): (1) classify most gaze samples 

as eye fixations rather than saccades; (2) lead to a high number of eye fixations; (3) ensure that a 

sufficient amount of eye fixations identified take place on the AOIs created by the researcher. 

Thresholds that satisfy such criteria are considered to be thresholds with good performance. 

Second, the eye fixations and saccadic movements must be identified from the collected eye 

movement data. Multiple eye movement detection algorithms exist, such as the I-VT and 

Dispersion-Threshold Identification (I-DT) algorithms (Salvucci & Goldberg, 2000), two of the 

most commonly implemented algorithms in eye tracking research (e.g., Strohmaier et al., 2020; 
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threshold (e.g., Komogortsev et al., 2010). Such a modification is done for two reasons: (1) Eye 

fixations lower than the minimum eye fixation duration threshold are considered to be too short to 

represent any meaningful user behavior (Olsen, 2012); (2) Enables comparisons with other eye 

movement detection algorithms that already contain a minimum eye fixation duration threshold 

(e.g., I-DT) (Komogortsev et al., 2010). Prior studies have used a minimum eye fixation duration 

threshold ranging from 60 ms (Olsen, 2012) to 100 ms (Komogortsev et al., 2010). 

In addition, the researcher selects a maximum threshold ( 𝑡𝑚𝑎𝑥 ) and step increase ( ∆)  to 

systematically explore and evaluate thresholds, a process known as creating a “gridsearch” (e.g., 

Syarif et al., 2016). The maximum threshold and step increase are used to define the set of 

thresholds 𝑇 = {𝑡0 = ∆ , 𝑡1 = 𝑡0 + ∆, 𝑡2 =  𝑡0 + 2∆, … , 𝑡𝑖, … , 𝑡𝑚𝑎𝑥}. For example, setting ∆ = 5 

°/s results and 𝑡𝑚𝑎𝑥 = 200 °/s would create the set of thresholds 𝑇 = {5, 10, 15, … , 200}. Prior 

studies using the I-VT algorithm have created different threshold ranges (Komogortsev et al., 

2010; Larsson, 2010), with the highest velocity threshold used being 400 °/s, alongside step 

increases of either 5 °/s or 8 °/s. For the I-DT algorithm, prior studies (Komogortsev et al., 2010; 

Llanes-Jurado et al., 2020) have used a maximum threshold of 2.5°, using step increases of either 

0.1° or 0.33°. Selecting a large increment step is a commonly used strategy when implementing a 

“gridsearch” for two reasons (Hsu et al., 2003). First, it is much less time-consuming to compute, 

which can be particularly important when using eye trackers that collect eye movements at high 

rates, some of which can be 1000 Hz or higher (Hosp et al., 2020). Second, if needed, the increment 

steps can always be decreased later for a more granular and exhaustive search (Hsu et al., 2003). 

Third, each eye fixation is aligned temporally and spatially with the AOIs in the environment in 

order to determine if the eye fixation occurred within any AOI, a process known as “mapping” 
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(Kang et al., 2016). For this process, the researcher sets the maximum spatial distance (𝑠𝑚𝑎𝑥) 

between an eye fixation and an AOI.  

During the mapping process, the eye fixations and the AOIs are compared based on their 

timestamps (i.e., if the eye fixation took place when the AOI was visible) and their positions (i.e., 

if the eye fixation took place within the bounds of the AOI) in order to determine if the eye fixation 

occurred within the AOI. First, eye fixations and AOIs can be aligned by their timestamps by 

identifying which eye fixations took place within the timeframe AOI was present in the 

environment. Second, an eye fixation can be considered to be within an AOI if it falls within the 

bounds defined by the AOI. For example, in the case of a circular AOI, if the Euclidean distance 

between the centroid of the eye fixation, and the center of the AOI, was less than or equal to 𝑠𝑚𝑎𝑥 

(i.e., the radius of the AOI a circular AOI), then the eye fixation is considered to have taken place 

on the AOI. Such a process can be observed in equation (3.1), where (𝑎𝑗 , 𝑏𝑗) represents coordinates 

of the eye fixation in the environment, while (𝑎𝑠, 𝑏𝑠) the coordinates of the circular AOI in the 

environment.  

The 𝑠𝑚𝑎𝑥 values must be large enough to account for the potential discrepancy between the actual 

gaze location of the participant and the gaze location reported by the eye tracker, also known as 

the visual angle error (e.g., Kang et al., 2016; Mandal & Kang, 2015). For example, the EyeLink 

1000 Hz (SR Research, Ottawa, Ontario, Canada) has an average visual angle error of 0.5 (Griffith 

et al., 2021), and thus, the AOI size must be large enough to account for it. In addition, prior 

research has estimated the visual angle error by instructing participants to fixate on specific sets 

of validation points (e.g., Griffith et al., 2021). In this procedure, the Euclidean distance between 

√(𝑎𝑗 − 𝑎𝑠)2 + (𝑏𝑗 − 𝑏𝑠)2   ≤ 𝑠𝑚𝑎𝑥 
(3.1) 
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the gaze reported by the eye tracker and a validation point that participants were instructed to fixate 

on is calculated, and can be used to define 𝑠𝑚𝑎𝑥 . Lastly, note that other AOI shapes such as 

rectangular or convex can be used, and the selection may depend upon the shape of the stimuli 

presented (Kang et al., 2016). 

Step 2. Calculate eye movement metric values, slope direction, and concavity 

At this step, the proposed procedure is implemented: (1) calculate the average values across 

participants for each eye movement metric (e.g., number of eye fixations; percentage of eye 

fixations in AOIs, percentage of gaze samples in eye fixations); (2) Afterwards, we apply a 

Savitzky-Golay filter (Savitzky & Golay, 1984) in order to smooth the data by fitting a polynomial 

function and calculates the first and second derivatives of the trend. The first and second 

derivatives are used to determine the concavity and slope direction. 

More specifically, the Savitzky-Golay filter (Savitzky & Golay, 1984) fits the average eye 

movement metric value to a polynomial function, allowing us to smooth the eye movement metric 

trend, as well as to calculate the first and second derivatives of the (fitted) trend, which are used 

to determine the concavity and slope direction. The Savitzky-Golay filter (Savitzky & Golay, 

1984) has been used previously in prior eye tracking research (Ouzts & Duchowski, 2012; 

Duchowski et al., 2016), to determine, for example, the velocity and acceleration of eye 

movements by calculating the first and second derivatives of gaze positions (Nyström & 

Holmqvist, 2010). The Savitzky-Golay filter determines the best fitting polynomial function that 

describes a trend via least squares minimization (Ouzts & Duchowski, 2012). In other words, the 

filter “finds the best polynomial function that describes the raw data” (Nyström & Holmqvist, 

2010). Equation (3.2) showcases the application of the Savitzky-Golay filter to smooth average 
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values of an eye movement metric trend (𝑐𝑡̅𝑖
), calculate the first derivative (𝑐𝑡̅𝑖

′) and the second 

derivative of the trend (𝑐𝑡̅𝑖
′’). 

Here, 𝑆𝐺 represents the function of Savitzky-Golay filter, which includes an optional parameter to 

determine which (if any) derivative to calculate (0 if no derivative (𝑆𝐺0), 1 if the first derivative 

(𝑆𝐺1), and 2 if the second derivative (𝑆𝐺2)), 𝑥𝑡𝑖𝑗  the eye movement metric value at the 𝑡𝑖 th 

threshold in the set 𝑇 for the 𝑗th participant, and 𝑝 the total number of participants present in the 

data set. In other words, the input values into the Savitzky-Golay filter at the average values of the 

eye movement metric at each threshold (i.e., the trend) between participants. 

Furthermore, in existing publications, there are three representative trends that can be observed for 

the impact of eye movement metric trends across threshold values: concave or concave down with 

an increasing slope, concave or concave down with a decreasing, as well as a combination of 

concave down or concave up and increasing or decreasing slopes. A portion of those papers 

showcased how minor fluctuations in the trend can exist in the trend, which could influence what 

elbow points are detected, and thus, the recommended minimum and maximum thresholds 

identified in equations (3.7) and (3.8). To prevent those minor fluctuations to be identified as 

𝑐𝑡̅𝑖
= 𝑆𝐺0 (

1

𝑝
 ∑ 𝑥𝑡𝑖𝑗  

𝑝

𝑗=1

 ∀ 𝑡𝑖 ∈ 𝑇) (3.2) 

𝑐𝑡̅𝑖
′ = 𝑆𝐺1 (

1

𝑝
 ∑ 𝑥𝑡𝑖𝑗  

𝑝

𝑗=1

 ∀ 𝑡𝑖 ∈ 𝑇)  

𝑐𝑡̅𝑖
′′ = 𝑆𝐺2 (

1

𝑝
 ∑ 𝑥𝑡𝑖𝑗  

𝑝

𝑗=1

 ∀ 𝑡𝑖 ∈ 𝑇)  
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inflection points, the Savizky-Golay filter was used to smooth the data by fitting the trend to a 

polynomial function. 

Determining the concavity and slope direction of the trend is important, as it dictates whether an 

elbow or knee needs to be detected on the trend (Satopaa et al., 2011; Onumanyi et al., 2022); 

however, some eye movement metrics can change both their concavity and slope direction 

throughout the trend due to the impact of thresholds. For example, prior literature has shown that 

the number of eye fixations tend to increase rapidly up until a specific threshold after which they 

remain stable for a period of time and begin to decrease (Komogortsev et al., 2010). A similar 

trend can be observed for the number of eye fixations in AOIs (Llanes-Jurado et al., 2020). On the 

other hand, other eye movement variables, such as the number of gaze samples in eye fixations, 

appear to maintain the same concavity and slope direction as visualized in prior research studies 

(Blignaut, 2009; Llanes-Jurado et al., 2020). As a result, the proposed procedure must be able to 

determine when these changes in concavity and slope direction take place in order to calculate the 

correct elbow or knee point. 

Afterwards, we can determine the concavity (𝑣𝑡𝑖
) and direction of the slope (𝑙𝑡𝑖

) at each threshold 

value as shown in equation (3.3). The concavity of a function is determined by the sign of the 

second derivative (𝑐𝑡̅𝑖
′′), calculated via the Savitzky-Golay filter, which if positive (𝑐𝑡̅𝑖

′′ > 0) can 

be considered as concave up, and if negative (𝑐𝑡̅𝑖
′′ < 0), concave down. Similarly, the direction of 

the slope can be determined by the sign of the first derivative (𝑐𝑡̅𝑖
′), calculated via the Savitzky-

Golay filter, which is increasing if positive (i.e., 𝑐𝑡̅𝑖
′ > 0) , and decreasing if negative (𝑐𝑡̅𝑖

′ < 0) 

(e.g., Stewart et al., 2015; Jones et al., 2019). 
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Lastly, at this step, the proposed procedure defines four characteristics for each eye movement 

metric: {(𝑡𝑖, 𝑐𝑡̅𝑖
, 𝑣𝑡𝑖

, 𝑙𝑡𝑖
)| 𝑡𝑖 ∈ 𝑇} , where 𝑡𝑖  represents ith threshold value, 𝑐𝑡̅𝑖

 the average eye 

movement metric value from the polynomial function fit via the Savitzky-Golay filter at each 

threshold, and 𝑣𝑡𝑖
 and 𝑙𝑡𝑖

 contain the concavity and slope direction at each threshold value. 

Step 3. Detect elbow (or knee) points between inflection points for each eye 

movement metric 

In the present step, the proposed procedure: (1) identifies any inflection points in the eye movement 

metric (i.e., points at which changes in concavity take place) and partitions the eye movement 

metric into multiple trends between inflection points; (2) applies the Kneedle algorithm (Satopaa 

et al., 2011) to detect thresholds at elbow (or knee) points in the eye movement metric trend. 

First, the proposed procedure identifies the thresholds at which inflection points – points at which 

concavity changes (e.g., Jones, 2019) – occur in the eye movement metric. An inflection point 

(𝑓𝑘−1) is defined when the curvature at threshold 𝑡𝑖−1 (i.e.,  𝑣𝑡𝑖−1
) has a different value than the 

curvature at 𝑡𝑖 (i.e., 𝑣𝑡𝑖
). The proposed procedure creates the set 𝐹 that contains all thresholds at 

which inflection points take place (i.e., 𝑓1, … , 𝑓𝑘−1, 𝑓𝑘), if any, in the eye movement metric trend 

(3.4).  

Afterwards, the eye movement metric is partitioned into multiple trends between the inflection 

points to account for changes in the trend due to the impact of thresholds. For example, assume that 

the starting threshold (𝑓0 = 𝑡0) and final threshold (𝑓𝑘 = 𝑡𝑚𝑎𝑥) are added to the set 𝐹 such that 𝐹 

𝑣𝑡𝑖
= {

0 𝑖𝑓𝑐𝑡̅𝑖
′′ > 0

1 𝑖𝑓𝑐𝑡̅𝑖
′′ < 0

  and 𝑙𝑡𝑖
= {

0 𝑖𝑓𝑐𝑡̅𝑖
′ > 0

1 𝑖𝑓𝑐𝑡̅𝑖
′ < 0

 (3.3) 

𝐹 = (𝑓1, … , 𝑓𝑘−1, 𝑓𝑘) where 𝑓𝑘 = 𝑡𝑖−1 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑣𝑡𝑖−1
≠  𝑣𝑡𝑖

 (3.4) 
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= (𝑓0, 𝑓1, … , 𝑓𝑘−1, 𝑓𝑘). In this case, if one inflection point was found, the proposed procedure would 

partition the eye movement metric trend into two trends: one beginning from 𝑓0 (i.e., the starting 

threshold 𝑡0) to 𝑓𝑘−1 (i.e., the threshold where the inflection point found), while the other trend 

starts from 𝑓𝑘−1  (i.e., the inflection point found) to 𝑓𝑘  (i.e., the maximum threshold 𝑡𝑚𝑎𝑥 ). 

However, if no inflection points are found, only one elbow (or knee) point is found for the entire 

eye movement metric. This process can be observed in in equation (3.5), where 𝑅1, 𝑅2, … , 𝑅𝑘 

represent portions of the 𝑘th eye movement metric trends between inflection points identified (e.g., 

𝑅1 contains the threshold values (𝑡𝑖) and eye movement metric values by the Savizky-Golay filter 

(𝑐𝑡̅𝑖
) between the thresholds 𝑓0 and 𝑓1). In addition, the process can be visualized in Figure 9 below. 

Figure 9. Application of equation (3.5) to split the eye movement metric trend values based on the 

thresholds identified inflection points. 

 

𝑅1 = {(𝑡𝑖, 𝑐𝑡̅𝑖
)} ∀ 𝑡𝑖 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑓0 ≤ 𝑡𝑖 ≤ 𝑓1} (3.5) 

𝑅2 = {(𝑡𝑖, 𝑐𝑡̅𝑖
)} ∀ 𝑡𝑖 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑓1 ≤ 𝑡𝑖 ≤ 𝑓2} 

… 

 

𝑅𝑘 = {(𝑡𝑖, 𝑐𝑡̅𝑖
)} ∀ 𝑡𝑖 ∈ 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑓𝑘−1 ≤ 𝑡𝑖 ≤ 𝑓𝑘}  
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Second, the proposed approach applies the Kneedle algorithm (Satopaa et al., 2011) to each trend 

between inflection as implemented in (Arvai, 2020) to detect elbow (or knee) points based on the 

concavity and slope direction detected. A trend is considered to have an increasing slope if the 

initial value of the slope direction (i.e.,  𝑙𝑓𝑖−1
) in the trend is 0 and decreasing if the initial value is 

1. Similarly, the trend is considered to be concave down if the value of concavity is 1 (i.e., 𝑣𝑓𝑖−1
), 

while it is concave up if the value is 0. 

In more detail, the intuition behind the Kneedle algorithm is to detect the knee in a trend by 

identifying the point with the largest vertical distance from a straight line formed by the start and 

end points of the trend (Satopaa et al., 2011). The following summarized steps of the Kneedle 

algorithm (Satopaa et al., 2011) describe the implementation in (Arvai, 2020) as used in the 

proposed procedure: (1) The eye movement metric trend is smoothed using linear interpolation; (2) 

Both the eye movement metric values and the threshold values are normalized to be between [0,1] 

based on their corresponding minimum and maximum values; (3) The Kneedle algorithm assumes 

that the trend is concave down and increasing to identify a knee point (Satopaa et al., 2011; Arvai, 

2020). If the shape of the eye movement metric trend was determined to be something other than 

concave down and increasing, it must be transformed (Satopaa et al., 2011; Arvai, 2020) prior to 

calculating the difference trend; (4) Calculate the difference trend by subtracting the normalized 

eye movement metric values minus the normalized threshold values; (5) The local maxima points 

are identified in the difference trend. A local maxima is the point in the difference trend where the 

points before and after have a smaller value than the local maxima point; (6) The elbow (or knee) 

point of an eye movement metric trend is considered to be the first local maxima point identified in 

the difference trend. The sensitivity parameter described in (Satopaa et al., 2011), used when 
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identifying knees in an ’online’ setting (i.e., when additional points are added to the original trend 

over time) was not utilized as no additional points are added to the trend (Satopaa et al., 2011). 

The detected threshold at the elbow (or knee) point (𝑒𝑘) for the eye movement metric at a given 

inflection point is computed (3.6). Where 𝐾 represents the application of the Kneedle algorithm for 

the trend split (𝑅𝑘) while accounting for the concavity (𝑣𝑓𝑘−1
) and slope direction (𝑙𝑓𝑘−1

). As the 

Kneedle algorithm detects the local maxima point in the difference trend, the proposed procedure 

identifies the threshold at which the local maxima point takes place. 

Note that multiple inflection points and elbow (or knee) points can be detected, the proposed 

procedure only considers at most two elbow points to calculate a recommended minimum and 

maximum threshold. The set of all first elbow points identified is used to identify the minimum 

threshold, while the set of second elbow points identified is used to detect the maximum threshold.  

Step 4. Identifying minimum and maximum recommended thresholds 

The proposed procedure identifies the minimum and maximum thresholds based on the elbow 

points detected by applying the following heuristics: (1) set the minimum recommended threshold 

to be the maximum threshold among the first set of elbow points detected; (2) set the maximum 

recommended threshold as the minimum threshold among the second set of elbow points detected.  

When selecting a minimum threshold, prior research has described that it is “less critical to err with 

a threshold that is too large than to have it be too small” (Blignaut, 2009), as a threshold too low 

will erroneously classify gaze samples belonging to eye fixations as saccadic movements. To 

facilitate the selection of a minimum threshold, the proposed procedure identifies a minimum 

threshold between all m eye movement metrics investigated through a formulation of the heuristic 

𝑒𝑘 = arg max 𝐾(𝑅𝑘| 𝑣𝑓𝑘−1
,  𝑙𝑓𝑘−1

) ∀ 𝑘 (3.6) 
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described by (Blignaut, 2009), which can be observe in equation (3.7). The minimum recommended 

threshold (𝑧𝑚𝑖𝑛) is defined as the maximum threshold between the first set (i.e., from the eye 

movement metric partitioned to start from 𝑡0 to 𝑓1) of elbow (or knee) points identified among all 

𝑚 eye movement metrics (i.e., 𝑒0, … , 𝑒𝑚). For example, assume that three eye movement metrics 

are investigated, number of eye fixations, the percentage of eye fixations in AOIs, and the 

percentage of gaze samples in eye fixations – all with at least one elbow point. In this case, 𝑒0 

would be the threshold at first elbow point identified for metric the number of eye fixations, 𝑒1 

would be the first elbow point identified for the percentage of eye fixations in AOIs, and 𝑒3 would 

be the first elbow point identified for the percentage of gaze samples in eye fixations.  

To select a maximum recommended threshold, the proposed procedure extends the heuristic used 

to select a minimum recommended threshold (Blignaut, 2009). Prior studies have described how 

selecting a threshold too large may lead to gaze samples belonging to saccadic eye movements to 

be classified erroneously as eye fixations (e.g., Salvucci & Goldberg, 2000), which can affect the 

visual scanpath created (Blignaut, 2009). However, what constitutes a threshold “too high” may 

vary between applications. To address, the proposed procedure identifies a maximum through the 

heuristic described in (3.8), extending the minimum threshold heuristic discussed by (Blignaut, 

2009). The maximum recommended threshold (𝑧𝑚𝑎𝑥) is defined as the minimum threshold between 

the second set (i.e., from the eye movement metric partitioned to start from the first inflection point 

to the second inflection point or 𝑡, if there is no second inflection point) of elbow (or knee) points 

identified among all k eye movement metrics investigated (i.e., 𝑒12
, … , 𝑒𝑘2

). If the eye movement 

metric has no second elbow point, the eye movement metric was not considered for the calculation 

of the maximum recommended threshold. 

𝑧𝑚𝑖𝑛 = max {𝑒0, … , 𝑒𝑚} (3.7) 
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Step 5. Plot aggregated visual scan paths at the recommended thresholds 

Visual scanpaths can be complex in nature, particularly in applications where eye movements are 

investigated for extended periods of time (e.g., Kang & Landry, 2014), which can make their visual 

representation challenging. To address this, the proposed procedure creates aggregated visual 

scanpaths by grouping consecutive eye fixations landing on the same AOI (Salvucci & Goldberg, 

2000; Goldberg & Helfman, 2010a; Kang & Landry, 2014). Consider the expected visual scanpath 

shown in Figure 1(A). The eye fixations A and B can be grouped together into a singular eye fixation 

D as they both take place consecutively within the same AOI. Similarly, the eye fixations E, H, I, 

J, and G also take place consecutively within the same AOI, and can be grouped into an eye fixation 

F. As such, the visual scanpath shown in Figure 1(A), represented as the sequence ABCEHIJG, can 

be aggregated into the sequence DCF. Note that the visual scanpaths can be created not only over 

a period of time, but also for a specific number of eye fixations. 

Although prior research has visualized aggregated visual scanpaths using the known location of the 

AOIs they landed on (e.g., Goldberg & Helfman, 2010b), the proposed procedure uses the 

aggregated position of the eye fixations. Considering the position of the eye fixations when 

visualizing may facilitate threshold selection in two ways. First, the aggregated eye fixation position 

highlights where in the AOI participants were fixating on, which can be particularly important when 

participants are instructed or expected to fixate on a specific portion of the AOI. Second, the shift 

in eye fixation positions as the thresholds increases can be observed. Higher thresholds classify 

more gaze samples as eye fixations, which can change the location of the eye fixations (Blignaut, 

2009). Thus, using the average position of consecutive eye fixations can provide additional 

𝑧𝑚𝑎𝑥 = min {𝑒0, … , 𝑒𝑤} (3.8) 
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information regarding the visual scanpath of the participant and how it is impacted by the 

thresholds. 

Lastly, the proposed procedure investigates and compares aggregated visual scanpaths at the 

minimum and maximum thresholds for a sample of participants. Every threshold within the 

minimum and maximum threshold is considered to be an adequate threshold option. As such, only 

the impact at the minimum and maximum threshold needs to be visually and compared. Aggregated 

visual scanpaths are compared by identifying differences in the shape of the visual scanpath through 

visual observation, as well as by determining if any AOIs are missing between the visual scanpath. 

Experiment 

The proposed procedure was applied to the Random Saccade (RAN) task in the GazeBase dataset 

(Griffith et al., 2021). In this task, participants fixate and follow a bullseye target as it changes 

positions on the environment. Because the position of the bullseye target is recorded, and 

participants were instructed to follow the bullseye target, each participant has an expected visual 

scanpath that can be used to evaluate the accuracy of the minimum and maximum thresholds 

identified by the proposed procedure. The expected visual scanpaths, and the aggregated visual 

scanpaths created at the minimum, maximum, and two baseline thresholds were visually observed 

and compared. In addition, the normalized string-edit similarity between the expected visual 

scanpath and the aggregated visual scanpaths created at the minimum, maximum, and baseline 

thresholds were calculated. 

The section is structured in the following manner. First, key elements of the Gazebase dataset, 

summarized from the work of (Griffith et al., 2021) are explained. Second, the eye movement data 

processing steps are described. Third, the procedure and metrics used to evaluate the performance 
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of the proposed procedure are introduced. Fourth, and lastly, the data analysis procedures are 

described.  

Random saccade task 

A total of 322 college students (171 self-identify as male, 151 as female; average 21.99 years of 

age, SD: 4.22) participated in the RAN task. A representative example of the task can be observed 

in Figure 10. Participants were instructed to fixate and follow a bullseye target. Each target 

appeared on the screen for 1 second, after which it would change position. A total of 100 targets 

were presented to the participants. The bullseye targets were placed at a random locations in the 

environment. As such, the expected visual scanpath of each participant is different. Two 

exceptions were the start and final bullseyes, which were both placed at the center of the screen. 

During the task, monocular eye movements of the left eye were collected using the EyeLink 1000 

(SR Research, Ottawa, Ontario, Canada) at a sample rate of 1000 Hz. Participants were seated 550 

mm away from a 1680x1050 pixels (474 x 297 mm) computer monitor. The participants’ heads 

were stabilized using a chin and forehead rest. Prior to the task, the eye tracker was calibrated to 

the participants eye movements following a 9-point calibration procedure. The collected gaze 

samples and target bullseye positions were converted to degrees of visual angle (dva).  
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Figure 10. Representative example of the RAN task conducted in the Gazebase dataset (Griffith 

et al., 2021). 

 

Note. Participants were instructed to fixate and follow a bullseye target (white target) that appeared 

on the screen for 1 second prior to changing position. A total of 100 targets were presented to the 

participants. The position of each target, with the exception of the first and last targets at the center 

of the screen, was random. As such, each participant has a different expected visual scanpath. 

Processing eye movement data 

A total of 312 participants out of 322 participants were included in the data analysis. Participants 

with more than 10% of gaze samples missing were not included in the analysis. In the GazeBase 

dataset, the authors describe that gaze samples may be missing as a result of the participant 

blinking or partial occlusions of the eye (Griffith et al., 2021). Only 10 participants exceeded the 

10% missing samples criteria.  

To classify eye movements, the I-VT algorithm with a minimum eye fixation duration of 60 ms 

was set, used in prior implementations of the I-VT algorithm (Olsen, 2012). The threshold range 

was set at a maximum threshold (i.e., 𝑡) of 400 °/s in increments of 10 °/s (i.e., 𝑡𝑠𝑡𝑒𝑝). 

In order to create visual scanpaths and calculate the eye movement metrics (i.e., percentage of eye 

fixations in AOIs) each bullseye target present in the task was considered as an AOI. A total of 
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100 unique AOIs were created as each of the targets appears in the environment once at a random 

location. The shape of the AOIs were defined as circle in order to match the shape of the bullseye 

targets. To account for the average visual angle error (0.5) reported for the eye tracker by the 

manufacturer (Griffith et al., 2021), as well as the highest median visual angle error error (1.6 dva) 

reported in the GazeBase dataset (Griffith et al., 2021), the size of the AOI (i.e., 𝑠𝑚𝑎𝑥) was set at 

a 2 dva radius. Increasing the size of the AOIs higher than the stimuli is a common approach to 

account for the visual angle error (e.g., Mandal & Kang, 2015; Kang et al, 2016). 

Data analysis 

The proposed procedure was implemented to identify the minimum and maximum thresholds 

recommended for the RAN task in the GazeBase dataset. The three-eye movement metric trends 

used to identify the minimum and maximum thresholds (the average number of eye fixations, the 

average percentage of eye fixations in AOIs, the average percentage of gaze samples in eye 

fixations) were visualized across the entire threshold range (i.e., 10 °/s to 400 °/s) and compared 

to their evaluation criteria. In addition, the Savitzky-Golay filter was used to fit the average eye 

movement metric trends to a 2nd degree polynomial using a window length of 10 samples, values 

used in prior eye tracking research (Nyström & Holmqvist, 2010; Ouzts & Duchowski, 2012). 

The outputs of the proposed procedure, the aggregated visual scanpaths of a sample of two 

participants were plotted and compared when considering the first 15 AOIs and all AOIs. In 

addition, the string-edit similarity between the aggregated and expected visual scanpaths at each 

threshold was calculated, as well as the average number of missing AOIs in the aggregated visual 

scanpaths. In addition, participants were assigned into one of the following categories based on 

their string-edit similarities to the expected visual scanpath: (1) [0%, 40%]; (2) (40%, 60%]; (3) 

(60%, 90%]; (4) (80%,100%]. The threshold with the highest average string-edit similarity and 
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lowest average number of AOIs to the expected visual scanpath when considering all AOIs was 

identified. 

For each of these analysis, the recommended thresholds were compared to two baseline thresholds: 

30 °/s and 350 °/s. The 30 °/s threshold has been set as the default threshold in prior 

implementations of the I-VT algorithm (e.g., Olsen, 2012), while 350 °/s is a threshold closer to 

the distribution of gaze velocities of saccadic movements (>300 °/s) (Salvucci & Goldberg, 2000), 

which would result in more saccadic movements classified as eye fixations. 

Note that comparisons to the expected visual scanpaths are possible in this analysis procedure due 

to the controlled experimental task instructing participants to fixate on a specific stimulus. 

Results 

Figure 11 visualizes the average and participant eye movement metric trends across the range of 

thresholds evaluated 10 °/s to 400 °/s, and showcases the recommended minimum (50 °/s) and 

maximum (120 °/s) thresholds identified through the proposed procedure. The recommended 

thresholds contained (1) A high average number of eye fixations in AOIs (78.39% at the minimum 

threshold and 74.9% at the maximum threshold. The highest value achieved was 78.59%); (2) 

Most gaze samples classified as eye fixations (86.31% at the minimum threshold, 93.41% at the 

maximum threshold); (3) Led to a high average number of eye fixations (249.44 at the minimum 

threshold and 176.21 at the maximum threshold. The highest value achieved was 261.70). In 

addition, the eye movement metrics of participants are closely distributed around the average 

number of eye fixations and the average percentage of gaze samples in eye fixations. On the other 

hand, the distribution of participants for the percentage of eye fixations in AOIs eye movement 

metric had the most observable variation. 
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Figure 11. Average and participant eye movement metric trends: (1) number of eye fixation (a 

and d); the percentage of eye fixations in AOIs (b and e); (3) the percentage of gaze samples in 

eye fixations (c and f) across the range of threshold values evaluated. 

 

                      (a)                                                         (b)                                              (c) 

 

                      (d)                                                        (e)                                                        (f) 

Note. The range of recommended thresholds identified by the proposed procedure, the minimum 

(50 °/s) and maximum (120 °/s) thresholds, is highlighted across figures d-f. 
 

Figure 12 contains a representative example of the aggregation procedure of the first 15 AOIs in 

the visual scanpath of a participant at the recommended minimum threshold (50 °/s). In addition, 

the expected visual scanpath is included as reference. The visual scanpath contains all 58 eye 

fixations carried out by the participant, which the aggregation procedure simplifies into a total of 

14 eye fixations. The coordinates eye fixations shared between the aggregated visual scan path and 

the expected visual scan path are very similar. Consider the eye fixations 1 and 13 highlighted in 

Figure 12. Eye fixation 1 was positioned at (-10.77, -8.25) in the aggregated visual scanpath, while 

its expected position was (-11.46,-8.18), while eye fixation 13 was positioned at (10.24, 3.57) and 
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its expected location was (10.3, 4.71). Overall, the aggregated visual scanpath at the recommended 

minimum threshold value of 50 °/s closely approximates the shape and positions of the expected 

visual scanpath by placing the eye fixations in proximity. 

Figure 12. Representative example of a visual scanpath created at the minimum eye fixation 

threshold (red circles) transformed into an aggregated visual scanpath (green circles) alongside the 

expected visual scanpath carried out by the participant (yellow circles). 

 

Note. Only the first 15 AOIs were considered in this example. The number inscribed within each 

circle represents the order in which the eye fixations took place. The coordinates of AOI 1 and 

AOI 13 are highlighted for both the aggregated visual scanpath and the expected visual scanpath. 
 

To evaluate the recommended thresholds, Figure 13 showcases the aggregated visual scanpaths 

for two participants for the entire task at the minimum (50 °/s), maximum (120 °/s), and baseline 

thresholds (30 °/s and 350 °/s). The recommended thresholds had fewer AOIs missing than the 

baseline thresholds (Table 1) and maintained similar visual scanpath shapes.  
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Figure 13. Two representative examples (top and bottom rows) of the impact of threshold selection 

for all AOIs (green circles) at the minimum (50 °/s), maximum (120 °/s), and baseline thresholds 

(30 °/s and 350 °/s) for two participants (a). 

 

(a) 

 

Note. In addition, the expected visual scanpath for both examples are highlighted (b). The number 

inscribed within each circle represents the order in which the eye fixations took place. 
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Table 1. The number of AOIs missing and the string-edit similarity at the minimum (50 °/s), 

maximum (120 °/s), and baseline thresholds (30 °/s and 350 °/s) to the expected visual scanpath 

for the aggregated visual scanpath examples shown in Figure 13. 

 

 

 

 

 

 

 

Note. The visual scan paths of participant A are shown in the top row of Figure 13, while the visual 

scan paths of participant B are included in the bottom row of Figure 13. 
 

Across both representative examples, the recommended thresholds had fewer AOIs missing and 

more accurately represented the visual scan paths the participants were instructed to follow.  More 

specifically, for participant B (Figure 13(bottom row), the 30 °/s threshold created a visual 

scanpath that contained only 9 AOIs, while the 350 °/s had 32 AOIs missing. On the other hand, 

the recommended thresholds had either 3 AOIs missing, or did not have any AOIs missing at all. 

, similarly complex had more complete visual scan paths, as they missed fewer AOIs. For 

participant A, both recommended thresholds had AOIs missing (2 at 50 °/s and 3 at 120 °/s) but 

maintained similar visual scanpath shapes. The two baseline thresholds had a higher number of 

AOIs missing (33 AOIs), resulting in different visual scanpath shapes.  

To evaluate the performance of the thresholds to the entire participant population, the average 

number of AOIs missing and the string-edit similarity to the expected visual scanpath were 

Visual scanpath 

example 
Thresholds 

Number of AOIs 

missing                            

String-edit 

similarity 

Participant A 

30 °/s 33 AOIs 67% 

50 °/s 2 AOIs 98% 

120 °/s 1 AOIs 99% 

350 °/s 33 AOIs 67% 

Participant B 

30 °/s 91 AOIs 9% 

50 °/s 3 AOIs 97% 

120 °/s 0 AOIs 100% 

350 °/s 32 AOIs 68% 
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calculated for the aggregated visual scanpaths created at the minimum, maximum, and baseline 

thresholds for all 312 participants (Table 2).  

Table 2. Average number of AOIs missing and average string-edit similarity to the expected 

scanpath at the aggregated visual scanpaths for the minimum, maximum, and baseline thresholds 

across participants and all AOIs in the task. 

More specifically, the recommended minimum and maximum thresholds were able to achieve 

higher average string-edit similarities (94.68% at 50 °/s and 94.78% at 120 °/s), and thus missing 

fewer AOIs (5.32 AOIs at 50 °/s and 5.22 AOIs at 120 °/s) than the baseline thresholds (87.39% 

and 12.61 for 30 °/s; 68.04% and 31.96 AOIs for 350 °/s). In addition, at the 30 °/s threshold, 60 

participants (19.23%) had a string-edit similarity of 80% or less, while the recommended 

thresholds only had 18 (5.76%) and 25 (8.01%) participants with less than 80% similarity. At the 

30 °/s threshold, 24 participants (7.69%) had a string-edit similarity less than or equal to 40%, 

while at the recommended 50 °/s and 120 °/s thresholds, the number of participants was 2 (0.64%) 

and 3 (0.96%), respectively. At the 350 °/s, 214 participants (68.58%) had a string-edit similarity 

of 80% or less, while 39 participants (12.5%) had a similarity lower than or equal to 40%. 

   
Participants grouped by string-edit 

similarity to the expected visual scanpath 

Thresholds 

Avg. 

number of 

AOIs 

missing 

Avg. string-

edit 

similarity 

(%) 

[0%, 

40%] 

(40%, 

60%] 

(60%, 

80%] 

(80%, 

100%] 

30 °/s 12.61 87.39% 24 10 26 252 

50 °/s 5.32 94.68% 2 6 17 287 

120 °/s 5.22 94.78% 3 3 19 287 

350 °/s 31.96 68.04% 39 63 112 98 
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Discussion 

The proposed procedure was capable of automatically identifying and recommending a minimum 

and maximum thresholds (50 °/s and 120 °/s) that satisfied the evaluation criteria for the three eye 

movement metrics selected. More specifically, it classified most gaze samples as eye fixations and 

led to a high number of eye fixations that took place in AOIs. In addition, the visualization 

aggregation procedure created aggregated visual scanpath that maintained both the shape and 

position of the visual search carried out by participants during the RAN task of the GazeBase 

dataset. The accuracy of the aggregated visual scanpaths was evaluated through visual observation, 

as well as by calculating the sting-edit similarity to the expected visual scanpaths. The 

recommended thresholds (50 °/s and 120 °/s) had higher string-edit similarities on average, and 

thus fewer AOIs missing, than the baseline thresholds used for comparison (30 °/s and 350 °/s). 

Overall, these contributions may help both researchers and eye tracking practitioners to select 

better performing thresholds through an automated procedure that recommends thresholds and 

visualizes how they are impacted across thresholds in cases when an expected visual scanpath is 

not available. 

A reason behind the performance difference observed is that the baseline thresholds were ‘too 

high’ (i.e., 350 °/s) or ‘too low’ (i.e., 30 °/s), which may have led to a higher number of gaze 

samples being misclassified. More specifically, a threshold ‘too high’ may begin to misclassify 

gaze samples belonging to saccadic movements as eye fixations. The misclassification may lead 

to multiple eye fixations being combined into a singular eye fixation, which can potentially remove 

the resulting eye fixation from the bounds of the AOI. Such an effect can be observed in Figure 

13, where the number of eye fixations in AOIs in the visual scanpath goes from 100 at the 120 °/s 

threshold to 68 at the 350 °/s threshold. On the other hand, at a threshold ‘too low’, gaze samples 
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belonging to an eye fixation may be misclassified as an eye fixation, which would lead to fewer 

eye fixations in the visual scanpath, as observed in Figure 13. The number of eye fixations in AOIs 

in the visual scanpath increases from 9 at 30 °/s to a total of 100 at 50 °/s threshold. 

The baseline thresholds were selected from available literature employing the I-VT algorithm; 

however, the thresholds used in eye movement detection algorithms that can accurately classify 

eye movements can vary between studies based on a number of factors, such as due to individual 

differences between participants (e.g., Blignaut & Beelders, 2009). As shown in Table 2, the 

groups of participants based on their sting-edit similarity to the expected visual scanpath differed 

across the baseline and recommended thresholds. More specifically, at the 30 °/s threshold, 60 

participants (19.23%) had a string-edit similarity of 80% or less to their expected visual scanpath. 

Such low similarity values may affect the researchers’ interpretation of the visual search strategy 

carried out by the participant in the context of a task. However, through the application of the 

proposed procedure, the lowest recommended threshold identified was 50 °/s. The increase in 

threshold value from the 30 baseline °/s led to only 17 participants (5.44%) having a similarity 

lower of 80% or lower. As such, selecting a threshold based on the eye movement data collected 

from participants allowed us to identify a threshold that was capable of increasing the string-edit 

similarity of 35 participants (11.21%) past 80%. 

In addition, the proposed visual scanpath aggregation procedure highlighted how the visual 

scanpaths of participants can vary across thresholds in terms of shape and the eye fixation that are 

present or absent. Understanding the impact of thresholds selection can be crucial when 

investigating key metrics such as the time to first fixate on an AOI or the number of eye fixations 

in AOIs, important measures in healthcare research (e.g., Van der Gijp et al., 2017; Brunyé et al., 

2020). At the 30 °/s threshold, most of the eye fixations of Participant B in Figure 13 are not 
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included in the visual scan path, and one may erroneously consider that the participant never 

fixated on a specific area of the screen during the task. However, at the 50 °/s threshold, one can 

observe that the participant had a more thorough and complex visual scan path that covered a much 

larger area. Thus, arriving at a very different interpretation of the visual search strategy of the 

participant due to the impact of the threshold selected. Visually observing the visual search 

strategies of participants can help researchers make better decisions regarding what thresholds to 

select. 

Overall, our results agree with Orquin & Holmqvist (2018) idea of ‘hidden defaults’, in which 

using parameters from an experimental design available in the literature, such as the thresholds 

applied, without any validation in place may lead to suboptimal results (Orquin & Holmqvist, 

2018). In the present study, this can be seen as the selection of thresholds for the I-VT algorithm 

from comparative literature led (i.e., 30 °/s) to suboptimal results. However, when applying the 

proposed procedure to automatically identify thresholds that satisfy the evaluation criteria, we 

were able to identify thresholds that led to much more accurate visual scanpaths. The proposed 

computational procedure may help researchers select thresholds that are a better match to their 

experimental design (e.g., participant population, task design, etc) when expected visual scanpaths 

are not available.  
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Chapter 4 – Algorithms to determine accurate eye fixations 

when the ideal visual scan path is known vs. unknown 
 

In this chapter, we introduce two methods, namely between-participant and within-participant 

similarity, that were designed to approximate the relationship between thresholds and string-edit 

similarity shown in Figure 8.  

The chapter is structured in the following manner. First, we introduce both methods, including 

their underlying rationale alongside worked out examples to showcase how they are calculated. 

Second, we apply both methods to two eye movement data sets, one containing a simple task in 

which participants followed a dot changing locations on a computer screen from open-source 

Gazebase dataset (Griffith et al., 2021), and the other containing a much more complex task 

involving air traffic controllers issuing clear to take off clearances in a high-fidelity simulator. 

Third, and lastly, we discuss the insights derived from the application of both methods and their 

feasibility to determine accurate thresholds for eye movement detection algorithms. 

Proposed approach 

Between-participant similarity 

A group of participants with similar characteristics, such as expertise (Underwood, 2007), may 

carry out a visual search of the environment that may be very similar to each other under controlled 

experimental conditions, such as when they are given the same task and set of instructions 

(DeAngelus & Pelz, 2008; Borji & Itti, 2014). One of the first studies to highlight this behavior 

among participants was the work of Yarbus (1967), who found that participants viewing the same 

painting but given a different set of instructions, such as “give the ages of the people” and 

“remember the clothes worn by the people”, showed different visual scan paths over the same 
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stimulus. In other words, the visual scan paths of participants were dependent upon the instructions 

given, suggesting that eye movements may be influenced by top-down task demands(DeAngelus 

& Pelz, 2008; Borji & Itti, 2014). 

Under such circumstances, it might be possible that potential differences in the visual scan path 

sequences between participants to may be attributed to inaccuracy the thresholds selected. 

Thresholds with accurate performance might lead to higher similarities between scan path 

sequences of participants, as they accurately represent the eye movements of participants, while 

thresholds too low or too high may have lower similarities, primarily due to missing eye fixations 

and/or the presence of unlikely transitions in scan path sequences. 

Based upon this assumption that we may be able to quantify the impact of threshold selection by 

comparing visual scan paths between participants, we adapt the between-participant scan path 

similarity metric to evaluate the string-edit similarity between participants. Comparing the 

similarity between participants is a common practice in eye tracking research (Duchowski et al., 

2010, Anderson et al., 2015). In addition, other approaches to evaluate threshold performance, 

such as when comparing visual scan path sequence similarity to an ideal visual scan path of each 

participant, and then averaged similarity values between participants (Blignaut & Beelders, 2009). 

However, in our implementation, the between-participant similarity is calculated by comparing the 

visual scan paths created between participants across all thresholds evaluated in order to 

approximate the relationship between string-edit similarity and threshold values. 

The calculation of between-participant similarity at each threshold is as follows. Let 𝑋𝑖 =

{𝑥1, 𝑥2, … , 𝑥𝑗  | 1 ≤ 𝑗 ≤ 𝑝, 𝑗 ∈ ℕ}, where 𝑋𝑖  contains the set of scan path sequences at the 𝑖 th 

threshold for all 𝑝 participants and 𝑥𝑗  represents the scan path sequence of the 𝑗th participant. 

From the set 𝑋𝑖, one can define all 𝑚 two-scan path sequence combinations between participants 
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at the 𝑖 th threshold as 𝑊𝑖 = (
𝑋𝑖

2
) = {(𝑥𝑗 , 𝑥𝑘)| 1 ≤ 𝑗 < 𝑘 ≤ 𝑝, 𝑗 ∈ ℕ, 𝑘 ∈ ℕ} . For all 

combinations, the average string-edit similarity ℎ̅𝑖 at the threshold 𝑖th between all participants can 

then be calculated using equation (4.1). 

ℎ̅𝑖 =
1

𝑚
∑ 𝑆(𝑥𝑗 , 𝑥𝑘)

(𝑥𝑗,𝑥𝑘) ∈ 𝑊𝑖

    ∀ 𝑖 ∈ {1,2 … , 𝑡} (4.1) 

Figure 14(a) showcases an example of the between-participant similarity calculated for the 

scanpath sequences created at two thresholds (1 and 2) carried out by three participants (P1, P2, 

and P3). Equation (2.2) is applied in Figure 14(b) to compare all possible combinations of 2 scan 

path sequences between participants. The results indicate that the threshold with the highest 

average string-edit similarity between participants would be threshold B (0.716 at threshold B vs 

0.666 at threshold A). As such, based on these results, one ought to select threshold B as it is the 

most accurate threshold. 

Figure 14. Example of between-participant method calculations for three participants who were 

instructed to follow the movement of a blue dot on a display. 
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                                                (a)                                                                               (b) 

Within-participant similarity 

An alternative to quantify the impact of thresholds on the visual scan paths of participants, 

particularly when these may be very different from each other in more complex environments or 

tasks, might be to compare the scan path sequences of one participant created at a threshold to 

every other threshold. As mentioned previously, scan path sequences created at threshold too low 

or too high might have missing eye fixations, as well as contain transitions between eye fixations 

that might not have taken place. On the other hand, scan path sequences created at an acceptable 

threshold are not as impacted by either missing eye fixations or unlikely eye movement transitions. 

Therefore, one might expect that the similarity between the scan path sequences created at an 

acceptable threshold, and one created at threshold too low, or too high, to be lower than the 

similarity between scan path sequences created at acceptable thresholds. 

Based on this assumption, we propose a novel within-participant similarity metric that calculates 

the average string-edit similarity of the scan path sequence of one threshold to the scan path 

sequences created at every other threshold. The calculation of the proposed within-participant 

similarity for a single participant is as follows. For a single participant, let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑖 | 1 ≤

𝑖 ≤ 𝑡, 𝑖 ∈ ℕ}  represent the set of scan paths sequences created at each threshold, where 𝑓𝑖 

represents the scan path sequence created at the 𝑖th threshold, and 𝑡 the total number of thresholds. 

The average string-edit similarity 𝑣𝑖  of the scanpath sequence at threshold 𝑖  to the scan path 

sequence at every other threshold can be calculated using equation (4.2). 

𝑣𝑖 =
1

𝑡 − 1
∑ 𝑆(𝑓𝑖, 𝑓𝑗)

𝑡

𝑗=1;𝑖≠𝑗

       ∀ 𝑖 ∈ {1,2 … , 𝑡} (4.2) 
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Here, 𝑆 represents the string-edit similarity function (explained in detailed below in the methods 

section), 𝑓𝑖 and 𝑓𝑗 the scan path sequences at thresholds 𝑖 and 𝑗 in the set 𝐹. Note that the average 

is calculated by subtracting 𝑡 − 1 , instead of simply 𝑡 , as there is a total of 𝑡 − 1  similarity 

calculations (the similarity between one scan path sequence to itself is never calculated (i.e., 𝑖 ≠

𝑗)). The outputs of equation (4.2) can be averaged across participants to identify the threshold that 

creates the most similar scan path sequence for all participants. Let 𝑉 = {𝑣𝑖𝑗 | 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤

𝑝, 𝑖 ∈ ℕ, 𝑗 ∈ ℕ}  contain the set of average string-edit similarities at each threshold for each 

participant, where 𝑣𝑖𝑗 represents the average string-edit similarity at the 𝑖th threshold for the 𝑗th 

participant, and 𝑝 the total number of participants. The average string-edit similarity 𝑣̅𝑖 of the scan 

path sequence at threshold 𝑖  to the scan path sequences created every other threshold across 

participants can be calculated using equation (4.3) below. 

𝑣̅𝑖 =
1

𝑝
∑ 𝑣𝑖𝑗

𝑝

𝑗=1

       ∀ 𝑖 ∈ {1,2 … , 𝑡} (4.3) 

Figure 15(a) shows an example of the within-participant similarity being calculated for the scan 

path sequences at three thresholds (A, B, and C) carried out by two participants (P1 and P2). 

Equation (2.2) is applied in Figure 15(b and c) to calculate the threshold that creates the scan path 

sequence most similar to the scan path sequences at every other threshold for each participant. 

Lastly, equation (2) is applied in Figure 15(d), showcasing that the threshold with the highest 

average similarity to every other scan path sequence across the two participants would be threshold 

B (0.59 at threshold B vs 0.565 at threshold A and 0.525 at threshold C). As such, based on this 

example, the researcher should select threshold B. 
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Figure 15. Representative example of the calculation of the average string-edit similarity at each 

threshold across two participants who were instructed to follow the movement of a blue dot on a 

display. 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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Experiments 

In this section, we describe the two eye movement datasets analyzed to showcase the two methods 

introduced in the previous section: the Random Saccade Task (RAN) from the Gazebase dataset 

and an air traffic control task collected by the authors. The first dataset was selected as it contains 

a task with an ideal visual scan path, as participants were instructed to fixate and follow a dot 

changing positions on a computer display in a pre-determined manner. The second dataset was 

selected as it contains the eye movements of air traffic controllers in a more complex and dynamic 

environment, where the eye movements between participants might be different. 

Experiment 1 – Random Saccade Task 

The participant and eye movement processing steps are the same as those described in Chapter 3, 

as the random saccade task (RAN) available in the open source Gazebase dataset (Griffith et al., 

2021) is used again. Thus, we start this section by discussing the data analysis. 

Data analysis 

The between-participant and within-participant scan path sequence methods were calculated for 

all participants at each gaze velocity threshold ranging from 10 °/s and 400 °/s in increments of 10 

°/s. The string-edit similarity between the scan path sequence at each gaze velocity threshold to 

the ideal scan path sequence participants were instructed to follow was calculated for each 

participant. 

Spearman’s rank correlations (𝑟𝑠 ) were calculated to evaluate the strength of the association 

between the string-edit similarity values at each proposed method, and the string-edit similarity 

values to the ideal scan path sequence. A significance level of α = 0.05 was used for the statistical 

test to evaluate whether the correlations were statistically significant. 



59 
 

Accurate thresholds were identified by visually observing visualizations of the string-edit 

similarity values created for the two methods, as well as the comparisons to the ideal visual scan 

path sequence, over the range of thresholds investigated. More specifically, the thresholds were 

identified by visually observing a high and stable region of similarity values, which both 

researchers agreed upon. The upper and lower bounds of the range of acceptable thresholds 

identified by each method were compared to those found for the ideal scan path sequence.  

Results 

The average string-edit similarity values for both the between-participants (𝑟𝑠 = 0.99, p-value < 

0.01) and within-participants (𝑟𝑠 = 0.77, p-value < 0.01) similarity trends were highly correlated 

with the ideal similarity values (Figure 16(b)). In addition, both methods were highly correlated 

with each other (𝑟𝑠 = 0.77, p-value < 0.01). 

Figure 16(a) showcases the trends of average string-edit similarity for each method and the ideal 

similarity values followed similar trends across threshold values. Across these trends, one can 

observe a sharp increase in the similarity scores at low thresholds values, followed by a period of 

high and stable similarity values, after which the similarity values continuously decrease. More 

specifically, the ideal trend increased sharply until approximately threshold 50 °/s (0.946) and 

began to rapidly decrease at 200 °/s (0.926), the between-participant trend quickly increased until 

threshold 50 °/s (0.898) and began to decrease at around 180 °/s (0.875), and lastly, the within-

participant trend rapidly increased until approximately threshold 50 °/s (0.828) and remained stable 

until the threshold 230 °/s (0.839).  
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Figure 16. Plot of the string-edit similarity over the range of thresholds evaluated (10 °/s to 400 

°/s) for each method and the ideal scan path sequence string-edit similarities, as well as the 

Spearman correlations between the trends. 

 

                              (a)                                                                           (b) 

Figure 17 showcases the accurate threshold ranges identified from the between-participant trend, 

the within-participant trend, as well as the trend comparing to the ideal visual scan path.  The 

accurate threshold range selected for the between-participant method was from 50 °/s to 180 °/s, 

the within-participant threshold range was from 50 °/s to 230 °/s, and the threshold range for the 

ideal similarity values was between 50 °/s to 200 °/s. Note that the threshold range identified via 

the within-participant method was 30 °/s larger than the range identified when comparing to the 

ideal scan path sequence trend. The threshold ranges identified using both methods largely overlap 

with the thresholds determined for the ideal visual scan path. 
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Figure 17. Plot of the string-edit similarity over the range of thresholds values evaluated (10 °/s 

to 400 °/s) for each method. The accurate threshold ranges identified for each method are 

highlighted in gray. 

 

In addition, the threshold ranges identified with the between-participant and within-participant 

methods had an average similarity score of 90% or higher on the ideal visual scan path trend (Table 

3). In more detail, the thresholds range identified by the within-participant had 0.946 (50 °/s) and 

0.907 (230 °/s) average similarity scores to the ideal scan path sequence. For the between-

participants method, the average similarity values at the bounds of the threshold range identified 

were 0.946 (50 °/s) and 0.934 (180 °/s). 

Table 3. String-edit similarity values when comparing to the ideal scan path sequences at the lower 

and upper bounds of the threshold range identified through the within-participants and between-

participants method. 

Method Lower bound 

threshold (ideal 

scan path sequence 

similarity) 

Upper bound 

threshold (ideal scan 

path sequence 

similarity) 

Between-participants 50 °/s (0.946) 180 °/s (0.934) 

Within-participants 50 °/s (0.946) 230 °/s (0.907) 
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Experiment 2 – Local air traffic controllers clear to take off clearances 

The two proposed approaches were applied to identify a threshold capable of creating accurate 

scan path sequences to an air traffic control task in a high-fidelity tower cabin simulator. Due to 

the complexity of the task, ideal scan path sequences for each participant are not readily available, 

and thus were created manually. Furthermore, the visual scan path of each participant can be 

different due to the effects of the task and environment, unlike in the previous experiment, where 

participants were instructed to follow the stimulus presented that appeared in a pre-determined 

order. 

Participant and apparatus 

A total of 14 retired local controllers, employed (at the time of the experiment) as instructors by 

the Federal Aviation Administration’s (FAA) Academy in Oklahoma City, Oklahoma, with an 

average of 26 years of experience (range between 10 and 42 years) participated in the experiment. 

The controllers managed simulated landing and departing air traffic on a high-fidelity Adacel 

tower simulator used at the FAA’s Civil Aeronautical Medical Institute (CAMI) in Oklahoma City, 

Oklahoma. Twelve 55” HD (1080p) monitors, wrapped greater than 180° around the participant, 

were used to simulate the out the window view of tower cabin. The simulators included flight 

strips of the aircraft in the scenarios, as well as working Bright Radar Indicator Terminal 

Equipment (BRITE) and Airport Surface Detection (ASDE) radar displays. The participants issued 

verbal clearances to the simulated aircraft using a headset. 

The Tobii Pro Glasses II (100 Hz) were used to capture participant eye movements (equipped with 

prescription lenses as necessary). In addition, the Tobii Pro Lab software was used to visually 

observe the recorded video from the participant’s point of view that contained the raw gaze data 
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overlaid in order to identify ideal scan path sequences. In addition, the Tobii Pro Lab software was 

used to apply the I-VT algorithm in order to identify eye fixations and saccadic movements. 

Task and scenario 

Participants were tasked with managing landing and departing air traffic as local controllers during 

a scenario that lasted approximately 22 minutes. The scenario had high visibility conditions during 

daylight hours. The airport layout consisted of two parallel active runways (28L/10R and 

28R/10L), as well as one crossing active runway (34/16) (Figure 18). The scenario contained 19 

arriving aircraft and 14 departing aircraft, totaling 33 aircraft. Due to the dynamic nature of the 

environment and the use of a high-fidelity simulator, the order and time at which participants 

issued clearances to aircraft might be different. The scenario stopped once the 22-minute mark was 

reached, which might have occurred prior to all aircraft being issued a clearance. 

Figure 18. Diagram of airport layout managed by the participants. 

 

Note. Three active runways were present in the experiment: two parallel runways (28L/10R and 

28R/10L) and one crossing runway (34/16). The blue square represents the approximate location 

of the tower in the simulated environment. Two runways and two taxiways are highlighted. 
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AOIs in the airport environment (Figure 19) were identified and created in collaboration with 

subject matter experts based on their operational significance. The AOIs consisted of known 

hotspots in tower air traffic control (Crutchfield et al., 2021), such as the ends of an active runway 

(Touchdown AOI and Departure/End Intersection AOI). In addition to the active runways 

themselves (Runway AOI), the ASDE (ASDE AOI) and BRITE (BRITE AOI) radars. 

Furthermore, other AOIs considered were the arrival corridor that aircraft must fly through during 

their approach to the airport (Final AOI), the downwind area that arrival aircraft must cross prior 

to their final approach (Downwind Midfield), as well as the departure corridor (Departure Corridor 

AOI), where aircraft must fly through when they take off from airport. Lastly, gazes on the flight 

strips, which contain information regarding the aircraft present in the scenario (e.g., callsign 

arriving or departing from airport, etc), as well as gazes on notes written by participants on a 

notepad (e.g., writing the sequence of aircraft departing) were manually mapped using the Tobii 

Pro Lab software to the upper left corner (Strips AOI) of the image. 

Figure 19. The high-fidelity tower control simulator used in the experiment with the areas-of-

interest (AOIs) highlighted (gray squares). 

 

Note. Gazes that took place on information available to the participants not included in the 

snapshot, such as the flight strips or a notepad the participant used to write down aircraft 

information were manually mapped to the upper-left corner of the image (i.e., Strips AOI). 

Because such information (i.e., flight strips) were not present in the snapshot, the Tobii Pro Lab 

Software could not automatically the gazes to the AOI. 
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Processing eye movement data 

The eye movements of the controllers were analyzed during the time period they issued a clear to 

take off clearance, as prior research has suggested that that is the time where controllers are more 

likely to show focused attention (Manske & Schier, 2015). The period of time to issue the clear to 

take off clearance was defined as the time from when the aircraft states that it is ready for departure 

to when the controller finishes issuing the verbal clear to take off clearance to the aircraft. On 

average, the time to issue the clear to take off clearance was approximately 24.8 seconds across 

participants. 

The ideal scan path sequence of each participant while issuing the clear to take off clearance was 

manually identified, created, and agreed upon by the researchers by visually observing the 

recorded video of the participant’s point-of-view with their gaze overlaid. In other words, the ideal 

scan path sequences were obtained by observing each raw gaze data point collected by the eye 

tracker (Navarro et al., 2021). For example, if the participant observed the Touchdown AOI, 

followed by Runway AOI, the Touchdown AOI again, and lastly the Final AOI, all while they are 

issuing the clear to take off clearance, then the ideal scan path sequence would be Touchdown -> 

Runway -> Touchdown -> Final. 

The I-VT algorithm implemented in Tobii Pro Lab was used to identify eye fixations and saccadic 

movements in order to create scan path sequences. All settings of the algorithm were left at their 

default values (e.g., minimum eye fixation duration of 60 ms) (Olsen, 2012) with the exception of 

the gaze velocity threshold, which was varied every between 10 °/s and 400 °/s in increments of 

10 °/s as done for Experiment 1.  

The eye fixations identified at each threshold value were used to create the scan path sequences of 

participants. AOIs were included in the participant’s scan path sequence if at least one eye fixation 
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took place within the AOI. An eye fixation was determined to take place within an AOI through 

the automated mapping feature of Tobii Pro Lab. In cases of an incorrect mapping (i.e., where the 

gaze automated mapping indicates that the gaze took place on AOI A when it actually took place 

in AOI B) or missing mapping (i.e., where the gaze is not mapped to any AOI due to a failure in 

the automated mapping process), the researchers manually manual mapped the gaze to the 

corresponding AOI observed by the participant.  

Data analysis 

The analysis carried out for Experiment 2 was identical to the one carried out for Experiment 1. 

Results 

The average string-edit similarity values for the between-participants (𝑟𝑠 = 0.36, p-value < 0.05) 

had a low positive correlation with the ideal similarity trend, while the average similarity values 

of the within-participants (𝑟𝑠 = 0.64, p-value < 0.01) method had a positive moderate correlation 

with the ideal similarity trend (Figure 20(b)). The two methods did not have a statistically 

significant correlation (𝑟𝑠 = -0.18, p-value > 0.05). 

Figure 20(a) showcases the trends of average string-edit similarity for the between-participant, the 

within-participant method, and the ideal similarity trend values. The within-participant and the 

ideal trend followed similar shapes across threshold values, while the between-participant trend 

remained stable throughout all threshold values. Across the within-participants and ideal scan path 

sequence trends, one can observe a rapid increase in the similarity values at low thresholds values, 

followed by a wide period of high and stable similarity values followed by a slow decrease at 

larger thresholds. On the other hand, the between-participant method not only had much smaller 

similarity values (all values less than 0.35), it also had a much smaller increase in similarity values 

at low thresholds (0.287 at 10 °/s to 0.322 at 40 °/s) than the within-participant method (0.632 at 



67 
 

10 °/s to 0.818 at 40 °/s) or the ideal scan path comparisons (0.612 at 10 °/s to 0.809 at 40 °/s) 

across all threshold values. Furthermore, the ideal trend began to decrease at approximately 310 

°/s (0.806) while the within-participant began to decrease at around 300 °/s (0.886). In the case of 

the between-participants trend, no clear decrease could be identified. 

Figure 20. Plot of the string-edit similarity over the range of thresholds evaluated (10 °/s to 400 

°/s) for each method and the ideal scan path sequence string-edit similarities, as well as the 

Spearman correlations between the trends. 

 

                              (a)                                                                           (b) 

Figure 21 shows the threshold ranges identified from the between-participant, within-participant, 

and ideal trends. The threshold range selected for the within-participant threshold range was from 

50 °/s to 300 °/s, for the between-participant method was from 40 °/s to 400 °/s, and the threshold 

range for the ideal similarity values was between 40 °/s to 310 °/s. The threshold range for the 

between-participant method was 90 °/s larger than the threshold range identified from the ideal 

trend. 
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Figure 21. Plot of the string-edit similarity over the range of thresholds values evaluated (10 °/s 

to 400 °/s) for each method. The accurate threshold ranges identified for each method are 

highlighted in gray. 

 

Lastly, the threshold ranges identified with the between-participant and within-participant methods 

had a similarity score of 80% or higher on the ideal trend (Table 4). In more detail, the thresholds 

range identified by the within-participant had 0.800 (50 °/s) and 0.806 (300 °/s) average similarity 

scores in the ideal scan path sequence trend, while for the between-participants method, the 

average similarity values at the bounds of the threshold range identified were 0.809 (40 °/s) and 

0.781 (400 °/s) in the ideal scan path sequence trend. 

Table 4. String-edit similarity values when comparing to the ideal scan path sequences at the lower 

and upper bounds of the threshold range identified through the within-participants and between-

participants method. 

Method Lower bound 

threshold 

(similarity) 

Upper bound 

threshold (similarity) 

Between-participants 40 °/s (0.809) 400 °/s (0.781) 

Within-participants 50 °/s (0.800) 230 °/s (0.811) 
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Discussion 

We were able to identify and select a range of threshold values for the I-VT algorithm capable of 

creating accurate scan path sequences for a simple bullseye-target tracking task and a complex 

local air traffic control task. More specifically, the within-participants and between-participants 

methods calculated string-edit similarity values at different gaze velocity thresholds of the I-VT 

algorithm that closely approximated the string-edit similarity values that result from comparisons 

to ideal scan path sequences. The contribution of these two methods, the novel within-participants 

method and the expanded between-participants method, might help researchers and practitioners 

using eye tracking to identify and select threshold values for the I-VT algorithm that can create 

accurate scan path sequences in their respective applications. 

Impact of thresholds on scan path sequence similarity 

Our results show that the impact of thresholds values on scan path sequence similarity to an ideal 

scan path sequence appear to follow a similar trend in both simple and complex environments and 

task, which match those found in prior research studies. In more detail, prior research using a dot-

tracking task on a computer screen (Hareżlak & Kasprowski, 2014) and a chess-board memory 

recall task on a computer screen (Blignaut & Beelders, 2009) have shown that the relationship 

between threshold values of the Dispertion-Threshold Identification (I-DT) eye movement 

detection algorithm and similarity values to an ideal scan path sequence tend to increase sharply 

at low threshold values, after which they remain stable for a period of time prior to decreasing. 

Therefore, our results expand upon these prior research efforts by identifying a similar trend using 

the I-VT algorithm on both a simple (bullseye-target tracking task) and complex task (local air 

traffic control task in a high-fidelity simulator). 
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The fact that the impact of threshold values on scan path sequence similarity appears to follow a 

general trend across multiple tasks and environments is important, as these different tasks and 

environments elicit different eye movements from participants. For example, the bullseye-target 

tasked used in Experiment 1 contained AOIs that were observed only once by the participant in 

rapid succession as each AOI only appear once in the environment for 1 second (e.g., the first 

bullseye-target observed). On the other hand, Experiment 2 contained AOIs that did not change 

positions in the environment and that participants visited multiple times (e.g., the BRITE radar 

AOI) or even had multiple transitions between them in order to complete their task. In other words, 

the two tasks and environments required participants to visually observe the environment 

differently. Therefore, it might be possible that a similar trend of threshold impact of scan path 

sequence similarity could be observed in other tasks and environments. 

Approximating the impact of thresholds on scan path sequence similarity 

The within-participants and between-participants methods approximated the general trend 

between thresholds values and scan path sequence similarity values when comparing to an ideal 

scan path sequence. More specifically, the two methods achieved statistically significant very-

high-to-high correlations (𝑟𝑠 = 0.77 for within-participants and 𝑟𝑠 = 0.99 for between-participants) 

for the simple bullseye-target tracking task in the Gazebase dataset used in experiment 1, while 

achieving statistically significant moderate-to-low correlations (𝑟𝑠 = 0.64 for within-participants 

and 𝑟𝑠 = 0.36 for between-participants) in the complex local controller air traffic control task used 

in experiment 2. To the author’s knowledge, these results are present the first effort in the literature 

to approximate the relationship between threshold values an eye movement detection algorithm 

and the scan path sequence similarity values. 
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Although both methods achieved high correlations in the simple task described in Experiment 1, 

the within-participant method had a much higher correlation and closer similarity values to the 

ideal scan path similarity trend than the between-participant method in the more complex task used 

for Experiment 2. The reason behind this result is that the between-participant method compares 

the scan path sequences of different participants, and thus, it is affected by potential differences 

that might exist between the scan path sequences of participants. On the other hand, the within-

participant method only compares the scan path sequence of a single participant at multiple 

different thresholds, meaning that is not impacted by the differences in the scan path sequences of 

participants. Thus, when the scan path sequences carried out by participants might be different 

from one another, as might be the case in an air traffic control task or other complex tasks and 

environments, the trend created by the between-participants method might not result in a good 

approximation of the ideal scan path sequence trend.   

Therefore, if a researcher expects the scan path sequences between participants to be different from 

each other, it might be a better option to apply the within-participants method rather than the 

between-participants method. On the other hand, if the scan path sequences between participants 

are likely to be very similar to each other, such as in the bulls-eye target task, then the between-

participants method may approximate the ideal scan path sequence trend better than the within-

participants method. As shown in the present study, using the appropriate method, we were able 

to identify and select thresholds capable of creating accurate visual scan paths without the need to 

manually create nor compare to an ideal visual scan path. 
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Chapter 5 –  Classification framework to identify similar 

visual scan paths using multiple similarity metrics 

In this chapter, we introduce a classification framework using multiple similarity metrics to 

identify similar visual scan paths that might contain minor variations, such as slight differences in 

the order information were observed or what information was observed, but share a common 

underlying visual scanning strategy.  

The chapter is structured in the following manner. First, the proposed classification framework is 

explained alongside worked examples that highlight how similar visual scan paths with minor 

variations between them can be identified. Second, the proposed classification framework is 

applied to the visual scan paths collected from local air traffic controllers issuing clear to take off 

clearance in a high fidelity simulator. Third, results from the application of the classification 

framework are presented and discussed. 

Proposed approach 

The framework applies multiple similarity metrics, the string-edit similarity and the Jaccard 

coefficient similarity (explained in Chapter 2), in order to quantify how similar two visual scan 

paths are across multiple dimensions (i.e., what information was observed, in the case of the 

Jaccard coefficient similarity, or the order information was observed, in the case of the string-edit 

similarity) and classify them into one of the categories shown in the matrix depicted in Figure 22: 

(1) similar visual scanning behavior (high string-edit similarity and high Jaccard coefficient 

similarity); (2) visual scanning behavior with fewer common AOIs (high string edit similarity and 

low Jaccard coefficient similarity); (3) visual scanning behavior with fewer common patterns (low 

string-edit similarity and high Jaccard coefficient similarity); (4) different visual scanning behavior 

(low string edit similarity and low Jaccard coefficient similarity). 
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Figure 22. Classification of scan path sequences based on Jaccard coefficient similarity and string-

edit similarity values. 

 

Visual scan path sequences that contain high values on both similarity metrics are considered to 

represent similar visual scanning strategies, while those that possess low similarity across both 

similarity metrics are considered to be different visual scanning strategies. When the two similarity 

metrics differ, two visual scan paths might represent variations of a similar underlying visual 

scanning behavior. In the case of high Jaccard coefficient similarity and low string-edit similarity, 

the visual scan path might contain multiple AOIs in common but had uncommon patterns when 

inspecting the AOIs. When the Jaccard coefficient similarity is low and the string-edit similarity is 

high, the visual scan path might contain fewer AOIs in common but used common patterns when 

inspecting the few AOIs in common. 

To visualize the application of the proposed classification framework, and its ability to identify 

similar visual scan paths with slight variations between them, consider the following example 

visual scan paths contained in Figures 24, 25, 26, and 27 that might be applied by controllers to 

the airport layout in Figure 23 below. 
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Figure 23. The layout of AOIs in the airport (AOIs A-D) and tower cabin (AOIs E-G), which 

resembles the Midway International airport. 

 

Note. AOIs were drawn on hotspots in the active runway (Crutchfield et al., 2021), including the 

beginning and end of the runway (AOIs A and D), as well as intersecting runways (AOIs B and 

D). In addition, AOIs E and F were drawn to represent radar screens present in the tower 

environment, while AOI G represents the flight strips, which contain information (e.g., destination 

airport) regarding the aircraft. 
 

Figure 24 showcases how two controllers inspected all of the same AOIs but in reverse order. Thus, 

the Jaccard coefficient similarity between these two visual scan paths is high (1), as they inspected 

all the same AOIs in the airport, but the string-edit similarity is low (0.143), due to the different 

order in which the AOIs were inspected. 



75 
 

Figure 24. Simplified example of impact two visual scan paths (b) and (c) classified as having 

high string edit similarity but low Jaccard coefficient similarity. 

 

                                                  (a)                                                                               (b) 

Note. Figure 24(b) highlights the visual scan path of one controller, creating the scan path sequence 

ABCDEFG; Figure 24(c) showcases a similar visual scan path of another controller but in the 

opposite order, creating the scan path sequence GFEDCBA.  The yellow circles denote AOIs 

inspected, and the inscribed numbers the order the AOIs were inspected in. The red lines represent 

the movement of participants between AOIs. 
 

Figure 25 contains two visual scan paths where controllers inspected different AOIs (B and G in 

Figure 25(a) and C, E, and F in Figure 25(b)) but had similar patterns among the AOIs they had in 

common (multiple movements between AOI A and D), resulting in a high string-edit similarity 

(0.555) but low Jaccard coefficient similarity (0.285). 
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Figure 25. Simplified example of two visual scan paths (a) and (b) classified as having high string-

edit similarity and low Jaccard coefficient similarity. 

 

                             (a)                                                                                (b) 

Note. The yellow circles denote AOIs inspected, and the inscribed numbers the order the AOIs 

were inspected in. The red lines represent the movement of participants between AOIs. 
 

Figure 26 includes two controllers applying different visual scanning strategies, where one 

controller (Figure 26(a)) focused primarily on the radars (AOIs E and F) and flight strip (AOI G), 

while the other controller scanned the runway hotspots (AOIs A-D) and only one of the radar 

screens (AOI E). As a result, these two visual scanning strategies have low string-edit similarity 

(0.166) and low Jaccard coefficient similarity (0.285). 
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Figure 26. Simplified example of two visual scan paths (a) and (b) classified as having low string-

edit similarity and low Jaccard coefficient similarity. 

 

                            (a)                                                                               (b) 

Note. The yellow circles denote AOIs inspected, and the inscribed numbers the order the AOIs 

were inspected in. The red lines represent the movement of participants between AOIs. 
 

Figure 27 includes two controllers applying similar visual scanning strategies. Both controllers 

follow a nearly identical order when scanning the active runway hotspots (AOIs A-D), followed 

by scanning the radars (AOIs E and F) and the flight strips (G). As a result, these two visual 

scanning strategies have high string-edit similarity (0.714) and high Jaccard coefficient similarity 

(1). 
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Figure 27. Simplified example of two visual scan paths (a) and (b) classified as having high string-

edit similarity and high Jaccard coefficient similarity. 

 

                         (a)                                                                                (b) 

Note. The yellow circles denote AOIs inspected, and the inscribed numbers the order the AOIs 

were inspected in. The red lines represent the movement of participants between AOIs. 
 

To identify similar visual scan paths, our proposed framework uses the average Jaccard coefficient 

similarity and average string-edit similarity values between all visual scan paths as thresh-olds to 

classify visual scan paths as having “high” and “low” similarity. More specifically, if a visual scan 

path contains an average string-edit similarity higher than the average string-edit similarity 

between all participants, then the visual scan path is considered to have a “high” string-edit 

similarity. On the other hand, a visual scan path with an average Jaccard coefficient similarity 

lower than the average Jaccard coefficient similarity between all participants is classified as having 

a “low” Jaccard coefficient similarity. Thus, we can define “high” and “low” similarities based on 
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the visual scanning behavior contained in each person’s visual scan path, without requiring the 

researcher to define “high” and “low” similarity thresholds based on their subjective judgement.  

As an example, consider the following application of the proposed framework to the visual scan 

paths 4A and 4B represented in Figure 26(a-b) (i.e., 4A is the visual scan path shown in Figure 

26(a)) as well as the visual scan paths 5A and 5B showcased in Figure 27(a-b) (i.e., 5A is the visual 

scan path shown in Figure 27(a)). The string-edit similarity and Jaccard similarity coefficient 

values between all visual scan path comparisons can be found in Figure 28(a-b) below, as well as 

the average values for each visual scan path. The average string-edit similarity between all visual 

scan paths was 0.408, while the average Jaccard similarity coefficient was 0.642. Thus, using the 

classification matrix shown in Figure 1 above, we can classify the visual scan paths as shown in 

Figure 28(c). 

Figure 28. Example application of the proposed framework to the visual scan paths 25A and 25B 

shown in Figure 25(a-b) and the visual scan paths 26A and 26B showcased in Figure 26(a-b). 

 

                                           (a)                                                                         (b) 
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            (c) 

Note. (a) contains the similarity matrix for the string-edit distance between all the visual scan paths 

as well as the average for each visual scan path; (b) contains the similarity matrix for the Jaccard 

coefficient similarity between all the visual scan paths as well as the average for each visual scan 

path; (c) contains the classification matrix with each visual scan path classified into one of the four 

categories based upon its average string-edit similarity and Jaccard coefficient similarity and the 

average values of the two metrics between all participants. 

Experiment 

Note that the following contents, such as the participants, apparatus, among others overlap the 

experiment described in Chapter 4, experiment 2, as they both belong to the same experiment. 

Nonetheless, key differences exist between the two, such as the number of participants and 

additional information regarding the specific clearance issued, are highlighted in this section. 

Participant and apparatus 

A total of 14 retired local controllers with an average of 26 years of experience (range between 10 

and 42 years) participated in the experiment. However, data from 5 participants was not included 

in the present work due to low eye tracking data quality, where eye movements carried out by the 

participants were not collected by the eye tracker. As a result, only data from 9 participants was 

analyzed in the present work. 

The controllers managed simulated landing and departing air traffic on a high-fidelity Adacel 

tower simulator used at the FAA’s Civil Aeronautical Medical Institute (CAMI) in Oklahoma City, 
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Oklahoma. Twelve 55” HD (1080p) monitors, wrapped greater than 180° around the participant, 

were used to simulate the out the window view of tower cabin. The simulators included flight 

strips of the aircraft in the scenarios, as well as working Bright Radar Indicator Terminal 

Equipment (BRITE) and Airport Surface Detection (ASDE) radar displays. The participants issued 

verbal clearances to the aircraft using a standard communication headset. 

The Tobii Pro Glasses II (100 Hz) were used to capture participant eye movements (equipped with 

prescription lenses as necessary). In addition, the Tobii Pro Lab software was used to visually 

observe the recorded video from the participant’s point of view that contained the raw gaze data 

overlaid in order to identify ideal scan path sequences. In addition, the Tobii Pro Lab software was 

used to apply the I-VT algorithm in order to identify eye fixations and saccadic movements. 

Task and scenario 

The participants were tasked with managing landing and departing air traffic during a scenario that 

lasted approximately 22 minutes. The scenario had high visibility and sunny weather conditions 

and took place during daylight hours. Furthermore, the scenario contained a total of 33 aircraft, 

with 19 arriving aircraft and 14 departing aircraft. The scenario ended once the 22-minute mark 

was reached, which might occur prior to all aircraft present in the environment being issued a 

clearance. 

The present study focuses on the first clear to take off clearance issued by all the participants to 

account for potential factors that might impact the similarity between controllers (e.g., location of 

aircraft on the airport). The location of aircraft in the environment can be observed in Figure 29. 

In the airspace, there are two aircraft present (orange aircraft), one that has already been issued a 

clear to land clearance by the controller, and a second aircraft that is approaching the airport. On 

the ground, there are also two aircraft present, one that recently landed and is currently (or close 
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to) exiting runway 28R (orange aircraft), while another aircraft (blue aircraft) is waiting to be 

issued a clear to take off clearance by the controller. Note that other aircraft are present in the 

airport environment, such as those taxiing towards a runway for departure that are under the control 

of the ground controller. 

Figure 29. Visualization of the environmental conditions of the airspace and airport while the clear 

to take off clearance analyzed was issued. 

 

Note. The aircraft that will be issued the clear to take off clearance is highlighted in blue, while a 

total of three aircraft of interest to the participant are highlighted in orange. Two of the aircraft of 

interest in the airspace are arriving at the airport in the next few minutes, with one aircraft already 

issued a clear to land clearance to runway 28L. The other aircraft of interest has already landed 

and is exiting the runway momentarily. 

Processing eye movement data 

The eye movements of participants were analyzed while issuing a single a clear to take off 

clearance to one aircraft, where controllers are more likely to show focused attention (Manske & 

Schier, 2015). In this study, the time to issue the clearance began from the moment the aircraft 

reports to the tower controller that it is ready for departure up until the point when the controller 

finishes issuing the clearance. Among all 9 participants, the average time to issue the clear to take 
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off was approximately 25.1 seconds, with the lowest time being 15.7 seconds while the longest 

was 32.2 seconds. 

The I-VT algorithm implemented in Tobii Pro Lab was used to identify eye fixations and saccadic 

movements. The gaze velocity threshold of the I-VT algorithm was set at 90 °/s, while all other 

settings were left at their default values (e.g., minimum eye fixation duration of 60 ms) (Olsen, 

2012). The 90 °/s gaze velocity threshold was selected through the application of the automated 

procedure explained in Chapter 2 to the four eye movement metrics collected from the 9 

participants: (1) number of eye fixations; (2) percentage of eye fixations in AOIs; (3) percentage 

of gazes in eye fixations; (4) within-participant similarity (metric described in Chapter 3). The eye 

fixations and saccades were exported from the Tobii Pro Lab software and used to create the scan 

path sequences of participants. Lastly, note that the 90 °/s gaze velocity threshold value is close to 

one of the default gaze velocity threshold values (i.e., 100 °/s) included in the Tobii Pro Lab 

software. 

AOIs in the tower cabin environment were identified and created in collaboration with subject 

matter experts based on their operational significance, as done in Chapter 4.  

Data analysis 

The string-edit similarity and Jaccard coefficient similarity between the participants’ visual scan 

paths controller were calculated, as well as the average values between all participants. The 

average Jaccard coefficient and string-edit similarity values between all scan path sequence 

comparisons were used to define “high” and “low” similarity values for both similarity metrics. 

Afterwards the average similarity values of each participant were compared to the average 

similarity values between all participants were used to classify the visual scan paths following the 

classification matrix shown in Figure 22. Lastly, the visual scan paths of participants were 
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visualized by groups based on their assigned classification and compared to identify common and 

uncommon visual scanning behaviors. 

Results 

Figure 30 contains the Jaccard coefficient similarity and the string-edit similarity values calculated 

between the visual scan paths of controllers. On average, the Jaccard coefficient similarity values 

between participants (0.742) were higher than the average string-edit similarity values (0.322). 

The highest Jaccard coefficient similarity value achieved between two visual scan paths was 1 

while the lowest value was 0.444, while for the string-edit similarity, the highest value calculated 

was 0.462 and the lowest value was 0.143. 

Figure 30. Individual and average (a) string-edit similarity values and the (b) Jaccard coefficient 

similarity values calculated. 

 

                                                                                (a) 
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(b) 

Figure 31 showcases the classification of visual scan paths based on the average string-edit and 

Jaccard coefficient similarity values between participants. Most visual scan paths of controllers 

were classified as highly similar in at least one similarity metric. More specifically, four visual 

scan paths were classified as highly similar across both similarity metrics, one visual scan path 

was classified as having high string-edit similarity but low Jaccard coefficient similarity, and the 

remaining two visual scan paths were classified as having low string-edit similarity but high 

Jaccard coefficient similarity. On the other hand, two visual scan paths were classified as having 

low similarity across both similarity metrics. 
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Figure 31. Classification matrix of the 9 visual scan paths of expert tower controllers while issuing 

a clear to take off clearance based on their average string-edit and Jaccard coefficient similarity 

values. 

 

 

The visual scan paths classified as highly similar across both similarity metrics can be observed in 

Figure 32. All visual scan paths inspected the two runway hotspots AOIs (T and I), as well as the 

flight strips AOI (S) and both the BRITE radar (L) and the ASDE radar (A). Two of the four visual 

scan paths contained the runway AOI (R), while three of the four visual scan paths contained the 

Final (F) AOI. Furthermore, the scan path sequences showcase common patterns between the 

controllers. More specifically, two visual scan paths (S5 and S3) had the same pattern TITS to 

inspect the runways and the flight strips, while the remaining two controllers had a very similar 

variations, such as TIT (S2) and ITS (S8). Similarly, all visual scan paths contain common patterns 

between the radar AOIs, such as LA or AL, as well as with the flight strips AOI, such as AS or 

SA. 
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Figure 32. Visualization of four visual scan paths (a-d) classified as highly similar across both 

string-edit and Jaccard coefficient similarities overlaid the AOIs in the airport environment, 

alongside their scan path sequences. 

 

                                                                         (a) 

 

(b) 
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      (c) 

 

(d) 

Note. The yellow circles denote eye fixations, and the inscribed numbers the order the said eye 

fixations took place. The yellow lines represent the saccadic movement of participants between 

eye fixations. 
 

Figure 33 visualizes the sole visual scan path classified as having high string-edit similarity but 

low Jaccard coefficient similarity. The visual scan path did not contain two commonly inspected 

AOIs, the Final AOI (F) as well as the Intersection AOI (I). Furthermore, it is the only visual scan 

path that fixated on the Departure Corridor AOI (C). On the other hand, the visual scan path 

contained multiple commonly used patterns between the BRITE radar (L), the ASDE radar (A), 

and the flight strips (S) AOIs, such as SAL, SA, and AS, that can be observed in other visual scan 

paths (e.g., S2, S8, and S5). In addition, it also contained the pattern TS between the touchdown 

AOI (T) and the flight strips (S) AOI present in S3, S5, and S8. 
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Figure 33. Visualization of the visual scan path classified as having high string-edit similarity but 

low Jaccard coefficient similarities overlaid the AOIs in the airport environment. 

 

Note. The yellow circles denote eye fixations, and the inscribed numbers the order the said eye 

fixations took place. The yellow lines represent the saccadic movement of participants between 

eye fixations. 
 

Figure 34 showcases the two visual scan paths classified as having low string-edit similarity but 

high Jaccard coefficient similarity. Although the visual scan paths contain the Intersection AOI (I) 

and the Touchdown AOI (T), as well as both radar AOIs (L and A) and the flight strips AOI (s), 

they were inspected in less common patterns. For example, S1 was the only visual scan path to 

use the pattern AIR, which was applied twice. S9 was the only participant to apply the pattern ITI 

when inspecting the runways. 

Figure 34. Visualization of the two visual scan paths (a-b) classified as having low string-edit 

similarity but high Jaccard coefficient similarities overlaid the AOIs in the airport environment. 
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(a) 

 

(b) 

Note. The yellow circles denote eye fixations, and the inscribed numbers the order the said eye 

fixations took place. The yellow lines represent the saccadic movement of participants between 

eye fixations. 
 

Figure 35 visualizes the two visual scan paths classified as having low similarity across both string-

edit similarity and Jaccard coefficient similarity metrics. Both visual scan paths do not contain 

commonly inspected AOIs, such as the flight strips AOI (S) in the case of S7, as well as the 

Runway AOI (R) and the Final AOI (F) in the case of S4. In addition, S7 was the visual scan path 

to fixate on the Downwind Midfield AOI (M). Furthermore, neither visual scan path contains 

common AOI patterns or variations between the ASDE radar (A), the flight strips (S), and the 

BRITE radar (L), such as SAL or LSA, observed in other visual scan paths. On the other hand, 

they apply uncommon patterns, such as IAI, only applied by S4, as well as RIR, which can only 

be observed in S7. 
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Figure 35. Visualization of the two visual scan paths (a-b) classified as having low similarity 

across both similarity metrics overlaid the AOIs in the airport environment. 

 

(a) 

 

(b) 

Note. The yellow circles denote eye fixations, and the inscribed numbers the order the said eye 

fixations took place. The yellow lines represent the saccadic movement of participants between 

eye fixations. 

Discussion 

We were able to identify similar visual scan paths carried out by expert tower controllers while 

issuing clear to take off clearances using our proposed framework. More specifically, our proposed 

approach classified the visual scan paths of tower controllers based upon their average Jaccard 

coefficient similarity, which accounts for the areas inspected by the controllers, as well as by their 
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average string-edit similarity, which considers the order in which the controllers inspected the 

areas. The contribution of the proposed framework might help researchers and practitioners 

interested in identifying similar visual scanning behaviors, particularly in cases where multiple 

variations of a similar behavior may exist. 

Identifying similar visual scanning strategies when multiple variations are 

possible 

The use of two complimentary similarity metrics allowed us to identify participants with similar 

visual scan paths that would otherwise be classified different by using only one metric. For 

example, had we only applied the string-edit similarity, we might have interpreted that S9 had a 

different visual scanning behavior even though they have a higher-than-average Jaccard coefficient 

similarity. In other words, throughout the visual scan path, the controller inspected many of the 

same AOIs as other the other participants but applied a different order. In addition, if we had only 

used the Jaccard coefficient similarity, we might have erroneously considered S6 to have a 

different visual scanning behavior even though they share many similar patterns between AOIs 

with other participants, as shown by their higher-than-average string-edit similarity. Therefore, by 

combining multiple similarity metrics that complement each other we were able to correctly 

identify similar visual scan paths while accounting for potential variations that might exist between 

them. 

In addition, average Jaccard coefficient similarity and string-edit similarity values calculated 

between the expert tower controllers were higher than those reported in other tasks and 

environments. More specifically, we calculated an average Jaccard coefficient similarity of 0.742 

and a string-edit similarity of 0.322. On the other hand, in a prior study in which participants 

observed images, such as paintings, reported a string-edit similarity of 0.28 between participants, 
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as well as an average similarity value of 0.54 based upon the common AOIs that were observed 

by participants (Priviteva & Stark, 200). Another study where participants were instructed to 

visually fixate on letters or numbers in a pre-determined order reported an average string-edit 

similarity of 0.23 and an average similarity value of 0.47 based upon the common AOIs that were 

observed by participants  (Duchowski et al., 2010). One potential reason behind these differences 

was briefly discussed by Duchowski et al (2010), which we also share, is that the task participants 

are assigned with completing might impact how they carry out their eye movements, and as a 

result, the similarity values that can be calculated. Nonetheless, we also believe that the expertise 

of tower controllers in our experiment might have contributed to larger similarity values. The 

expert controllers, due to their years of experience and familiarity with the tower cabin 

environment, know what information they need prior to issuing an aircraft to take off, as well as 

where that information is located in the environment. Note that these prior studies did not 

specifically use the Jaccard coefficient similarity, however, they did calculate the similarity of 

visual scan paths based upon the AOIs they share, and thus, the resulting values should be very 

closely related. 

Overall, researchers might need to account for and consider how Jaccard coefficient similarity and 

string-edit similarity values might be impacted by the task, environment, as well as the 

participants’ expertise when comparing similar visual scanning patterns in order to identify similar 

ones. Furthermore, using multiple similarity metrics simultaneously might be particularly useful 

in tasks where participants can have multiple variations of similar visual scanning behaviors. 

Similarities in the visual scan paths of tower controllers when issuing clear to take 

off clearances 

 



94 
 

In our small sample, most of the visual scan paths of tower controllers (6 out of 9 visual scan paths) 

had an above average Jaccard coefficient similarity. All visual scan paths contained both radar 

AOIs (A and L), runway AOIs (T, R, and I), some of the most commonly inspected AOIs reported 

in prior research. For example, Manske & Schier (2015) found that, on average, AOIs in the tower 

cabin environment such as the flight strips, radar displays, and runways have a higher probability 

of being observed by tower controllers while issuing a clear to take off than other AOIs such as 

the departure corridor AOI. Nonetheless, these results might not be unexpected, as controllers have 

to ensure that there are no hazards on the runway while issuing a clear to take off to, for example, 

avoid runway incursions (Federal Aviation Administration, 2022). To ensure there are no hazards 

on the runway would be to inspect AOIs associated with the runways, such as the intersection AOI 

(I) and the touchdown (T), as well as the ASDE radar AOI (A).  

Controllers in our study gathered the information required to issue a clear to take off from multiple 

AOIs that provided the same or similar information. Prior studies have described that, depending 

on the situation, controllers might look directly at the runway or the ground radar while issuing a 

clear to land clearance (Svensson, 2015). In other words, two areas of the tower cabin environment 

that provide the same information (i.e., the runway is clear) to the controller. A similar behavior 

might be applied by controllers when issuing a clear to take off clearance. For example, one visual 

scan paths did not contain the flight strips AOI (S7) and another visual scan path did not contain 

the runway intersection AOI (S6), two of the most commonly observed AOIs by the controllers. 

However, these controllers were able to gather the information required to issue the clearance by 

observing other AOIs, such as the ASDE radar (A), which contains the callsign of the aircraft that 

was ready for departure, rather than looking at the flight strips, as well as to determine that there 

were no hazards present on the runway for the aircraft. Furthermore, participants observed AOIs 
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that contained the same information multiple times, such as the runway hotspot AOIs (T and I) as 

well as the ground radar AOI (A). 

In addition, some controllers (5 out of 9 controllers) applied similar visual search patterns when 

gathering information from the tower environment to issue a clear to take off clearance (i.e. had 

an above average string-edit similarity). One of the common patterns applied by these controllers 

was to inspect the radar AOIs (L and A) one after the other (i.e., AL or LA), after which they 

scanned scan the hotspot AOIs (T and I) back and forth (i.e., TIT). These can be seen particularly 

in the case of S5 and S3, where S5 contains the sequence “LATITS” while S3 contains the 

sequence “LALFTITS”, which have a string-edit similarity of 0.75 between each other. The other 

controllers had similar variations of these patterns, with S8 applying “LAITS” and S2 using the 

pattern “ALFTIT”.  

Although future research is needed, one potential reason behind these patterns might be that 

inspecting radar AOIs first, followed by runway hotspot AOIs might serve as a way for controllers 

to build “the picture” (i.e., their situational awareness) (Niessen & Eyferth, 2001) of the airport 

environment, and immediately validating the picture with new sources of information. Thus, it 

might be possible that in some circumstances the order the expert inspects AOIs might not be as 

important as long as the required information is gathered in a timely manner. Furthermore, if any 

mismatch exists were to occur between the mental picture built by the controller and the 

information they are gathering to validate it, the controller has an opportunity to quickly instruct 

the pilots to disregard the clearance without affecting the movement or safety of aircraft. 

Further future research could include identifying and using commonly applied visual search 

strategies exhibited by expert tower controllers, who can generally identify and extract information 

from the environment faster than novices (Cokely et al., 2018), as a potential aid to the training of 
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novice tower controllers. Prior studies in en-route air traffic control have described how showing 

the visual scan paths of experts to novices as an intervention can lead to improved performance on 

an en-route air traffic control task (Kang & Landry, 2014). Furthermore, other research has shown 

that eye movement modeling examples (EMMEs), such as when the eye movement of an expert 

are shown alongside their explanation and rationale regarding how they completed the task, might 

lead to positive effects on learning and task performance (Emhardt et al., 2022). Thus, novices the 

visual search strategies of experts while they verbally describe their decision-making process as 

they complete the task might help novices learn the decision-making process applied by experts. 

The verbal input provided by the experts might highlight portions of their heuristic deliberation, a 

driver of superior-decision making in Skilled Decision Theory (Cokely et al, 2018), while the 

visual scan paths could showcase what informed their heuristic deliberation. 
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Chapter 6 – Conclusions 

The present dissertation set out to address two challenges that researchers encounter when 

conducting eye tracking research: (1) identifying and selecting accurate thresholds for eye 

movement detection algorithms; (2) identifying similar visual scan paths when variations of a 

common underlying visual scanning behavior exist.  

First, identifying and selecting accurate thresholds is crucial when using eye movement detection 

algorithms, as thresholds with poor performance may fail to identify eye fixations that took place 

or even combine multiple eye fixations into a singular eye fixation that never took place. As 

mentioned previously, current approaches to determine accurate thresholds require the researcher 

to know the eye movements of participants ahead of time, limiting their applicability to certain 

experimental designs or environments, or are largely manually laborious tasks that can be time 

consuming. 

Chapters 3 and 4 introduced new approaches to tackle this challenge and aid researchers in 

identifying and selecting accurate thresholds automatically for their respective applications. 

Chapter 3 presented an automated procedure that analyzes how threshold values impact eye 

movement trends in order to determine and suggest a range of thresholds to the researcher – 

extending upon the original work of Blignaut (2009). The automated procedure identified 

elbow/knee points using the Kneedle algorithm in eye movement metric trends by determining 

changes in concavity and slope direction that occur as a result of the impact of threshold values 

without user intervention. Our results showed that the proposed automated procedure identified 

accurate thresholds. More specifically, the number of participants with string-edit similarity to the 

ideal visual scan path above 80% from 252 at 30 °/s, one of the default recommended values in 

Tobii Pro Lab, to 287 at both recommended thresholds (50 °/s and 120 °/s). In other words, the 
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automated procedure identified thresholds that increased the performance above 80% for 12.5% 

of participants. Furthermore, 24 participants had a string-edit similarity of 40% or less at 30 °/s, 

while only 2 participants had a string-edit similarity of 40 % or less at 50 °/s, and only 3 participants 

at 120 °/s. 

Chapter 4 introduced two approaches, within-participant and between-participant comparisons, to 

quantify the impact of thresholds on string-edit similarity. The within-participant method 

compared the visual scan path at one threshold to the visual scan paths created at every other 

threshold, while the between-participant methods compared the visual scan paths of participants 

at each threshold to each other. These two methods were capable of approximating the relationship 

between string-edit similarity values of an ideal visual scan path and thresholds reported in prior 

literature. As a result, we were able to use these two procedures to identify accurate thresholds for 

eye movements of participants in two different experiments, one involving a simple task where 

participants followed the movement of a bullseye target as instructed, and the other a more 

complex air traffic control task in a high-fidelity simulator. For the first experiment, the between-

participant comparisons were a closer approximation of the relationship between string-edit 

similarity values of an ideal visual scan path, allowing us to determine a threshold range between 

50 °/s and 180 °/s with an average similarity above 90%. For the second experiment, the within-

participant comparisons were a closer approximation, allowing us to identify a threshold range 

between 50 °/s and 230 °/s with an average similarity above 80%. 

Second, identifying similar visual scan paths using solely one similarity metric might not be 

sufficient, as participants applying variations of a common visual scanning behavior could appear 

to be more different than they really are. Participants may change the order in which they observe 

the same information, or observe different sources of information in the environment but follow 
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very similar patterns between the few sources of information they had in common. All these 

potential variations influence the resulting similarity scores when using metrics such as string-edit 

similarity and the Jaccard coefficient similarity. 

Chapter 5 addresses this challenge by introducing a classification framework that combines 

multiple similarity metrics in order to identify similar visual scan paths, as well as potential 

variations that may exist. More specifically, the framework used the average string-edit similarity 

and Jaccard coefficient similarity values between all participants to classify participants into high 

and/or low similarity values. The classification framework was applied to an experiment in which 

air traffic controllers in a high fidelity tower simulator were managing air traffic and issuing clear 

to take off clearances. Using multiple similarity metrics allowed us to identify 3 controllers that 

had an above average similarity to other controllers in at least one metric (i.e., they observed the 

same information or used very similar patterns) that would have been considered as different if 

only one similarity metric was used.  

Limitations & future research 

Given the importance of analyzing and comparing visual scan paths, multiple similarity metrics 

have been proposed and employed in eye tracking research that address some limitations faced by 

string-edit similarity and Jaccard coefficient similarity. For example, metrics such as MultiMatch 

(Jarodzka, Holqmvist, & Nyström, 2010) or ScanMatch (Cristino et al., 2010) consider the 

duration or shape of the visual scan path when comparing two visual scan paths. Incorporating 

these metrics into the procedures and approaches introduced in the present dissertation could 

potentially provide additional information with which to identify similar visual scan paths in our 

classification framework (Chapter 5) or enable new within-participant or between-participant 

comparisons across different similarity metrics (Chapter 4). 
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Furthermore, the present dissertation focused on the I-VT algorithm and the gaze velocity 

threshold it uses to identify eye fixations and saccadic movements from eye movement data 

collected by an eye tracker. Nonetheless, eye movement detection algorithms tend to use multiple 

thresholds simultaneously – in this dissertation, we used 60 ms as the threshold for the minimum 

eye fixation duration. Future research should seek to expand the approaches discussed in both 

Chapter 3 and Chapter 4 to consider multiple thresholds simultaneously, providing researchers 

with all the thresholds needed to accurate model visual scan paths in their respective applications, 

as well as different eye movement detection algorithms, such as I-DT. In addition, other algorithms 

are capable of identifying eye movements beyond eye fixations and saccadic movements, such as 

smooth pursuits (Komogortsev & Karpov, 2013), which could be investigated in future research. 
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