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Abstract

Frontal boundaries drive many high-impact weather events around the globe. Iden-

tifying fronts through various thermodynamic fields increases predictability of haz-

ardous weather phenomena. Frontal analysis is still primarily done by human fore-

casters, often implementing their own subjectivity rules and criteria for determining

frontal positions and types. Subjective placements of fronts can result in various solu-

tions by different forecasters when given identical sets of data. Numerous studies have

attempted to make frontal analysis more consistent through numerical frontal analy-

sis, using sets of rules and thresholds with thermodynamic fields to locate and classify

fronts. In recent years, machine learning algorithms have gained more popularity in

meteorology due to their ability to learn complex relationships within large quantities

of atmospheric data. We present a novel machine learning algorithm that predicts five

different types of frontal boundaries - cold, warm, stationary, and occluded fronts and

drylines. The algorithm was able to locate 76-86% and 70-81% of fronts over CONUS

and NOAA’s Unified Surface Analysis domain, respectively, on an independent testing

dataset. We applied two Explainable Artificial Intelligence methods to the model -

permutation studies and saliency maps. Permutation studies allowed us to determine

variable importance for each frontal type. Saliency maps for the selected case study

gave us insight as to how the model output can change as the ambient environment

is modified. While more work needs to be done to improve the algorithm, we have

demonstrated that machine learning can be used to develop an accurate and efficient

model for detecting frontal boundaries.
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Chapter 1

Introduction

Fronts are boundaries and density contrasts that separate two air masses (Bjerknes,

1919; Thomas and Schultz, 2019) and influence the weather experienced around the

globe daily. For example, fronts are the leading cause of extreme precipitation events

in the United States (Kunkel et al., 2012) and can influence tornado development

(Childs and Schumacher, 2019; Maddox et al., 1980). These hazards drive forecasters

to identify these boundaries with a reasonable level of accuracy to better prepare the

public for future weather events that pose threats to life and property.

Forecasters at the National Weather Service (NWS) draw fronts every three hours

over North America and every six hours over the Unified Surface Analysis Domain

(USAD) which stretches from 130°E eastward to 10°E and from the equator northward

to 80°N. Even among trained forecasters, the subjective nature of drawing fronts leads

to a wide variety of solutions for the same data, a well-illustrated example of which was

presented by Uccellini et al. (1992). Subjective interpretation can create inconsistencies

between contiguous analyses, affecting the quality of the archived frontal data. There

is also a significant workload associated with drawing fronts over the entire USAD.

In this thesis, we present a novel machine learning (ML) algorithm to efficiently

locate five types of frontal boundaries - cold, warm, stationary, and occluded fronts

and drylines. We discuss prior work with automated frontal detection, applications of

ML in frontal detection, and highlight how our algorithm improves upon previous work.

Explainable Artificial Intelligence (XAI) methods are applied to our new algorithm to

1



understand what variables are important in detecting different frontal types and how

model predictions change as functions of the inputs.

Our contributions to objective frontal analysis methods include developing two

different models trained to detect cold, warm, stationary, and occluded fronts over

NOAA’s Unified Surface Analysis domain (USAD). Both models use a deep learning

approach based on the UNET3+ architectures (Huang et al., 2020), which will be

described in greater detail in Section 3.1.

In our original work (Justin et al., 2023), three sets of models were trained - one

predicted cold and warm fronts (CFWF), another predicted stationary and occluded

fronts (SFOF), while the third set applied the same label to the four aforementioned

frontal types and performed binary classification (front / no front, FNF). Data used in

this previous study covered the period 2008-2020. We used 12 variables at the surface,

1000, 950, 900, and 850 hPa sourced and/or derived from ERA5 reanalysis data (Hers-

bach et al., 2018). Frontal positions are hand-drawn by NWS forecasters and treated

as ground truth for the models. These were obtained from the NWS and contained

fronts drawn over North America every three hours and over USAD every six hours.

The models were trained by randomly selecting 128×128 grid point (32°×32° on the

ERA5 lat/lon grid) patches over our pre-defined CONUS domain (USAD and CONUS

domains can be seen in Figure 3.3) and passing them into the models. Outside of slic-

ing the data and performing min-max normalization, no preprocessing or augmentation

was applied to the training data. The same process was applied to the validation data

after every training epoch. Nine years of data were chosen for training, two years were

used for validation, and the two remaining years were used for testing.

Overall, the original models showed good skill at detecting all frontal types over

CONUS and CSI scores were similar to those achieved by Niebler et al. (2022, here-

after N22), though direct comparisons should be made with caution as our testing
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dataset covered a different period than N22. We hypothesized that cold fronts would

be the best-performing front type, which ended up being the case for both CONUS

and USAD. Warm fronts were the worst performing front type, consistent with findings

from Lagerquist et al. (2019) and N22. An exceptionally high FAR with stationary

fronts was found over USAD, which we eventually attributed to the models falsely iden-

tifying the Intertropical Convergence Zone (ITCZ) as a large stationary front due to

the wind convergence. We also performed permutation studies to determine which vari-

ables and levels were important to the models’ predictions (Breiman, 2001; McGovern

et al., 2019).

In this thesis, we address some of the notable flaws with our previous model. First,

the models were exceptionally large, some exceeding 233 million parameters. Second,

the models had a fixed input shape, meaning that input images larger than 128×128

pixels could not be passed into the models. This forced us to resort to image stitching,

where multiple 128×128 images would be stitched together over a larger domain to

generate a final prediction. The image stitching combined with the excessively large

models meant that the models would be computationally intensive and would likely not

be very efficient when deployed in operational environments. Finally, the separation

of cold and warm fronts from stationary and occluded fronts prevented the CFWF

and SFOF models from knowing about each other’s frontal types (e.g., CFWF models

were given no information about the existence of stationary and occluded fronts). In

practice, this could result in the CFWF models predicting a 70% chance of a cold front

at a location where the SFOF models predict a 70% chance of a stationary front. This

situation makes no mathematical or physical sense and is the main driver of motivating

us to develop a new, single algorithm that predicts cold, warm, stationary, and occluded

fronts. We did not continue to pursue a new FNF algorithm as binary classification

turned out to not be useful for Weather Prediction Center (WPC) forecasters who
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preferred having models that classified fronts by type. We also explored the idea of

adding drylines into our algorithm, as they possess characteristics that are unique

from the other frontal types (e.g., drylines are defined by their often extreme moisture

gradients, see Pietrycha and Rasmussen, 2004; Hoch and Markowski, 2005).

This thesis details further contributions to automated frontal detection through the

use of a new machine learning algorithm. With the inclusion of five frontal types in

a single model, we expected to see the new model perform better than our previous

model system outside of CONUS with lower FAR scores for all frontal types, especially

stationary fronts. We expected that dryline performance would be comparable to cold

fronts given their unique thermodynamic properties. We applied two XAI methods to

our algorithm, exploring case studies to give deeper insight into how the model behaves

and responds to changes in the environment. The overarching goal of this work is to

present an efficient and accurate frontal detection algorithm that can assist forecasters

in the labor-intensive process of frontal analysis.
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Chapter 2

Literature Review

Fronts encompass the transition zone and density contrast between two air masses with

differing thermodynamic characteristics. Depending on the specific characteristics of

the air masses and the direction of movement of the front, the front can be classified in

multiple ways. Cold fronts mark the leading edge of a moving cold and often dry air

mass. Following the passage of a cold front, a sharp drop in temperature and moisture

content and a sudden shift in the wind direction can often be noted (Schultz, 2005).

The translation of a cold front forces warm, moist air ahead of the boundary to rise,

which under certain conditions can encourage convection (Smith and Reeder, 1988;

Hobbs et al., 1990; Catto and Pfahl, 2013) and secondary frontal cyclogenesis (Zhang

et al., 1999).

Warm fronts separate a moving warm air mass from a colder air mass. Warm fronts

are usually associated with weaker wind shifts and thermal gradients than cold fronts,

making them more difficult to locate on a surface chart. While warm fronts often

have more subtle vertical slopes, they can influence hazardous weather and may even

encourage tornadogenesis (Maddox et al., 1980).

Stationary fronts are the equatorward edges of slow-moving density discontinuities

(National Weather Service, 2013). Stationary fronts are often characterized by parallel

or convergent flow on either side of the boundaries. Despite the name, stationary

fronts are not necessarily stationary, but rather are labeled stationary when they are

moving slower than a specified threshold (usually 10 knots, see National Weather
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Service, 2013), leading many to prefer the term “quasi-stationary” instead. Stationary

fronts most commonly reside near terrain features (see Figure 4.5). Enhanced relative

vorticity along stationary boundaries can encourage landspout tornado formation in

developing thunderstorms (Childs and Schumacher, 2019).

Occluded fronts form when an extratropical cyclone has reached peak maturity and

a thermal ridge above the surface starts to elongate and wrap around the cyclone center

(Martin, 1999; Schultz and Vaughan, 2011). Like cold and warm fronts, occluded fronts

are commonly associated with temperature gradients and wind shifts. Occluded fronts

are commonly associated with enhanced precipitation (Schultz and Vaughan, 2011).

Drylines mark the transition between a hot, dry air mass and a cooler, moist air

mass. They are commonly defined by sloped terrain, and the moisture gradients across

drylines can be rather extreme (Schaefer, 1986; Pietrycha and Rasmussen, 2004; Hoch

and Markowski, 2005). NWS forecasters usually look for a 14-17°C change in the

dewpoint across the boundary to label it as a dryline (National Weather Service, 2013).

Sharp changes in mixing ratio or specific humidity can also indicate the presence of a

dryline.

Numerous studies have attempted to automate the frontal analysis process to im-

prove accuracy and consistency in the depicted positions of fronts. Strengths and

weaknesses of aforementioned non-ML-based methods can be found in Table 2.1. Re-

nard and Clarke (1965, hereafter RC65) found that front positions could vary by up to

300 nautical miles (555.6 km) among various analysts and forecast centers. RC65 used

potential temperature (θ) and its derivatives to locate frontal boundaries, eventually

settling on a parameter that would later become known as the thermal front parameter

[TFP; Equation (2.1)]:

TFP = −∇|∇τ | · ∇τ

|∇τ |
, (2.1)
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where τ is any thermodynamic variable with first and second order derivatives. Since

RC65 define fronts as the warm air boundaries in synoptic-scale baroclinic zones, fronts

are drawn along TFP ridges with this method. Limited comparisons to surface analyses

resulted in RC65 performing analyses at the 850 hPa level, and the sloped nature of

fronts (e.g., Smith and Reeder, 1988) means that the front analyzed at 850 hPa will not

always be aligned with the front analyzed at the surface. Building on the TFP, Clarke

and Renard (1966) developed the MinimumMaximium Locator [MML; Equation (2.2)]:

MML = ∇τ · ∇(TFP (τ))

|∇(TFP (τ))|
, (2.2)

where τ is any thermodynamic variable with first, second, and third order derivatives.

Using temperature (T ) at 850 hPa, MML was concluded by Hewson (1998, hereafter

H98) to perform worse than TFP (τ = θ) at locating fronts, receiving relative accuracy

ratings of “Fair” and “Fair/Poor”, respectively; however it should be noted that the

ratings assigned by H98 are subjective. Regardless, the use of second and third order

derivatives in these parameters has the downside of producing noisy results, especially

with high-resolution weather data. As is discussed later in this section, this is one

of the motivations behind ML-based frontal detection; some ML methods are robust

when working with noisy data (Krause et al., 2016). To illustrate this issue, TFP

and MML were applied to ERA5 reanalysis data over USAD for 2100 UTC May 20

2019 (Figure 2.1). Both parameters resulted in noisy outputs but were able to detect

some prominent fronts, though could not differentiate their types. H98 argued that an

ideal frontal plotting technique should be entirely automatic as this would remove the

human-driven subjectivity from frontal analysis, though the techniques are still partly

subjective, as humans are choosing the parameters to use and how they are applied to

thermodynamic fields.

7



Figure 2.1: a) 850-hPa Thermal Front Parameter (using θ field) and b) 850-hPa Mini-

mum Maximum Locator (using T field) over USAD when applied to ERA5 reanalysis

data for 2100 UTC May 20 2019.
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Building upon findings from H98, Berry et al. (2011, hereafter B11) performed

a 44-year climatology of fronts across the entire globe. While B11 determined that

most thermodynamic variables yielded TFP fields that were well correlated with the

manual frontal analyses used in their climatology, they decided to use θw at 850 hPa as

input to TFP as it most closely resembled the frontal analyses. TFP values less than

−8× 10−12K/m2 were masked out in order to remove weaker frontal zones. B11 then

separated the fronts into cold, warm, and quasi-stationary categories based on each

front’s movement speed perpendicular to the orientation of their θw contours, using a

frontal speed parameter from H98 (Vfront; Equation (2.3)):

Vfront =

−→
V · ∇|∇θw|
|∇|∇θw||

(2.3)

where
−→
V is the 2-D wind field. Fronts with Vfront exceeding 1.5 m/s were classified as

warm fronts, while fronts with Vfront less than -1.5 m/s (speed still exceeding 1.5 m/s)

were classified as cold fronts. Quasi-stationary boundaries were defined as fronts having

speeds less than 1.5 m/s. In H98, negative (positive) Vfront values were associated with

cold (warm) fronts. B11 found that their methodology of categorizing cold, warm,

and quasi-stationary fronts produced similar results to subjective analyses and front

frequencies matched conceptual models of mid-latitude cyclones.

Simmonds et al. (2012, hereafter S12) created a climatology of fronts in the Southern

Hemisphere using temporal changes in the meridional component of the wind (v-wind).

Fronts were identified in pixels that experienced a northwest-to-southwest wind shift

with a 2 m/s increase of 10 m v-wind over the course of six hours. They concluded that

their wind shift method allowed them to locate nearby fronts with reasonable accuracy;

however, since they used ERA-interim data (Dee et al., 2011) with a grid resolution of

1.5°, it is unknown if the wind shift method is a viable option for detecting fronts on

higher-resolution data such as ERA5 reanalysis (Hersbach et al., 2018), which is on a
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0.25° grid. This appears to be an issue with other front detection methods originally

applied on low-resolution data (e.g., TFP and MML) that produce noisy outputs when

applied to ERA5 reanalysis data (see Figure 2.1).

In a case study that aimed to identify fronts in Southwestern Australia, Hope et al.

(2014) compared the wind method from S12 and B11’s method that used θw at 850 hPa.

They also used a self-organizing map (SOM; Kohonen, 1982), a type of unsupervised

ML method, to organize fields of three variables (mean sea level pressure, 500 hPa

geopotential height, thickness) into 20 groups, with each group having characteristics

determined by the SOM to be distinct from the other groups. Hope et al. (2014) found

that the SOM and both methods from S12 and B11 had lower interannual variability

than manual hand analyses. Methods from B11 and S12 tended to identify more

fronts than the manual analyses, while the SOM identified fewer fronts. The three

methods all identified more fronts on days with rain than days without, however the

SOM identified fewer fronts than the other two methods and was less correlated with

the manual analyses. It was noted that the SOM sometimes struggled to differentiate

between fronts and other synoptic features (e.g., cutoff lows), a likely source of the low

correlation with the manual analyses.

Schemm et al. (2015, hereafter S15) used two methods to identify fronts, one being

a thermal (TH) method and the other being a wind (WND) method. Implement-

ing the TFP developed by Renard and Clarke (1965), S15 settled on using equivalent

potential temperature (θe) at 850 hPa as the thermodynamic variable for TFP calcu-

lations in the TH method due to its conservation properties and inclusion of moisture

content. θe gradients smaller than 4 K (100 km)−1 were masked out to remove weak

thermal gradients that may not be representative of frontal zones. S15 drew fronts

where TFP = 0, whereas B11 drew fronts where ∇TFP = 0. S15 found that their TH

method typically placed fronts in the middle of surface precipitation patterns, while the

10



method from B11 generally placed fronts on the leading edge of precipitation patterns

and frontal zones. The WND method used by S15 was very similar to Simmonds et al.

(2012); the only difference being S15 looked for southwest-to-northwest wind shifts as

opposed to northwest-to-southwest wind shifts since they were analyzing the Northern

Hemisphere. They found that the WND method was able to identify cold fronts and

performed well with weaker baroclinic zones, while the TH method was good at de-

tecting both cold and warm fronts with strong thermal gradients. However, S15 notes

that these methods should be used with caution given the large number of user-selected

parameters and thresholds. While the parameters can be tuned for specific applica-

tions and regional climatologies, such fine-tuning can introduce the risk of overfitting

the methods to unique situations that cannot be applied to other geographical regions

where frontal structures may differ.

The methods described above remove subjectivity from frontal analysis by pro-

viding objective criteria for detecting fronts, however the criteria for these methods

are still subjectively chosen by humans and therefore are subjective in nature. The

decades-old problem of subjective frontal analysis has spurred motivation to research

the potential for applying ML algorithms in the frontal analysis process. ML is a

broad term encompassing a range of algorithms whose parameters update automat-

ically when given more data (Janiesch et al., 2021). In recent years, the use of ML

in meteorological applications has grown exponentially (Chase et al., 2022), including

for frontal analysis (e.g., Biard and Kunkel, 2019; Bochenek et al., 2021; Clark et al.,

2015; Dagon et al., 2022; Justin et al., 2023; Lagerquist et al., 2019; Matsuoka et al.,

2019; Niebler et al., 2022). Automated front detection with ML provides the benefit

of having an algorithm(s) whose parameters update without human intervention after

the training process begins, making for an objective frontal detection method. Unlike
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the traditional automated methods mentioned above, ML algorithms can learn the var-

ious structures associated with different frontal types using data covering multi-year

periods.
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Method Strengths Weaknesses

Renard and Clarke (1965) • Fronts are commonly located in troughs • Noisy outputs on high-resolution data

• Locates fronts within 0.4° of manual anal-

yses over US

• Overpredicts compared to manual anal-

yses

Clarke and Renard (1966) • Locates two-thirds of fronts within 2° of

ground truth

• Low correlation with manual hand anal-

yses

• High false alarm rate

• Noisy outputs on high-resolution data

Berry et al., (2011) • Utilizes thermal gradients and wind

shifts

• Coarse dataset (2.5° ERA-40 reanalysis;

Uppala et al., 2005)

• Fronts are found close to troughs and

cloud features

• Prediction of front type not overly reli-

able

• Can discern between cold, warm, and sta-

tionary fronts

• Applied to entire globe

Simmonds et al., (2012) • Tracking algorithm predicts front loca-

tions 6 hours in advance

• Limited to Southern Hemisphere

• Can determine the length, intensity, and

meridional slopes of fronts

• No thermal gradients explicitly used

• Cannot determine front type

Hope et al., (2014) • Can discern between cold, warm, and sta-

tionary fronts

• Limited to Southwest Western Australia

• Identifies fronts that bring precipitation • Coarse dataset (2.5° NCAR-NCEP re-

analyses; Kalnay et al., 2018)

• May also detect prefrontal troughs • No compelling evidence for using wind or

thermal method only

Clark et al., (2015) • Only objective dryline algorithm in liter-

ature (to our best knowledge)

• High false alarm rate

• 90% of drylines detected within 15 km • Labels some cold fronts and outflow

boundaries as drylines

Schemm et al., (2015) • Thermal method corresponded with pre-

cipitation patterns

• Wind method is sensitive to parameter

choices

• Good performance with weak and strong

baroclinic zones

• Methods may overfit to local regions with

parameter choices

Table 2.1: Strengths and weaknesses of non-ML-based automated frontal detection

methods discussed in this literature review. 13



One popular ML algorithm used to detect frontal boundaries is the UNET (Ron-

neberger et al., 2015, hereafter R15), a type of convolutional neural network (CNN;

LeCun et al., 1989) designed for image segmentation and object recognition (Denker

and Burges, 1995). CNNs perform convolution operations on input images using kernels

or filters (terms used interchangeably) to extract features that can be used to identify

objects within the images. The features are then passed through an activation function

to enable the model to learn relationships between features and variables. Non-linear

activation functions enable the model to learn non-linear relationships, and the absence

of non-linear activation functions will restrict the model to learning linear relationships

(Lederer, 2021). The UNET has an “encoder” and “decoder” in the architecture. The

encoder extracts features with convolutions, passes the features through a user-defined

activation function, then max pooling operations shrink the features down so more

low-level features can be learned by the model (see ?? for max pooling illustration).

This process is usually repeated until the features are a sufficiently small size, however

this size is subjectively chosen. The decoder enlarges low-level features via upsampling

and retrieves features from the encoder nodes through “skip connections”. Skip con-

nections help to maintain spatial information within an image that would otherwise

be lost through the max pooling operations in the encoder portion of the UNET. The

UNET outputs pixel-wise probabilities between 0 and 1 (non-inclusive ends) for each

class, enabling the UNET to be used for object detection problems. Identifying frontal

boundaries can be interpreted as an object detection problem; many fronts of various

types can be in close proximity to one another, making the UNET a good candidate

for frontal detection.

Strengths and weaknesses of ML-based frontal detection methods discussed in this

section can be found in Table 2.2. Clark et al. (2015, hereafter C15) used two algo-

rithms to identify drylines - one algorithm was not ML-based, while the other was a
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Figure 2.2: 2×2 max pooling operation performed on an image (left). The output

(right) has its dimensions reduced by a factor equal to the sizes of the pooling filter

dimensions. In this case, each dimension is divided by 2. Numbers on the right

represent the maximum values contained within each respective filter.
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Figure 2.3: 2D convolution operation with a 3×3 kernel (yellow) applied to a 5×5

image (green) with zero padding. The convolved feature (red) has the same shape as

the input, in this case 5×5. If zero-padding was not used, the convolved feature would

have a shape of 3×3, represented by the non-boldface numbers in the convolved feature.

Boldface numbers on the convolved feature represent feature elements introduced by

zero-padding.
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random forest (RF Breiman, 2001), a type of ML model. RFs consist of numerous

randomly-generated, interlaced decision trees that work together to make predictions.

The algorithms were compared against 1451 manually identified drylines from Apr-June

2007-2012. The non-ML-based algorithm involved transforming smoothed fields of 2 m

dewpoint and specific humidity to objectively locate drylines. When only considering

drylines detected by the algorithm that come within 30 km of a manually identified

dryline, 75 and 90 percent of the objective drylines fall within 10 and 15 km of manually

identified drylines, respectively. However, when considering all objective drylines, the

algorithm identifies many more drylines than indicated by the manual analyses used

for comparison. The false alarm rate (FAR) was 60-70% with a 40 km neighborhood.

The highest objective dryline frequencies match up well with those of manually identi-

fied drylines, as can be seen in Figure 6 from C15. FAR dropped below 30% with the

introduction of a random forest that assisted the algorithm, albeit with the tradeoff of

a 5-10% decrease in POD. While the RF decreased the FAR, the performance from the

non-ML-based model suggests that ML may not be needed to produce an algorithm

that can effectively locate drylines.

Lagerquist et al. (2019, hereafter L19) trained multiple CNNs to identify cold and

warm fronts over North America. Combinations of fields of 1000-hPa temperature,

specific humidity, θw, geopotential height, u-wind, v-wind were used as inputs and the

CNNs output probabilities of no front, cold front, and warm front at a single grid

point. The fields were sourced from the North American Regional Reanalysis (NARR;

Mesinger et al., 2006) and laid out on a grid with 32 km spacing. They avoided using

data at higher resolutions due to spatial and temporal inconsistencies within the ground

truth labels (see their Figure 5). Ground truth front labels were sourced from the

NWS’ Coded Surface Bulletin (CSB; National Weather Service, 2019), whose spatial

1Incorrectly stated as 135 drylines in C15.
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and temporal extents are covered by the NARR domain. Grid cells with less than

100 analyzed fronts were not included in the training, validation, or testing datasets.

The CNN architecture is shown in their Figure 2 and is summarized as follows. Each

CNN contained two or three convolution “blocks” (depending on the image size used

for training), with each block containing five layers: two groups of 3×3 convolution

and rectified linear unit (ReLU) activation function layers (more on ReLU in Section

2.2), followed by a 2×2 max pooling layer. The features are then collapsed into vectors

before the CNN makes its prediction for the target pixel. L19 found that CNNs which

ingested larger images performed better than those with smaller images, likely due to

more spatial information being given to the model. It was also noted that the two best

performing CNNs did not have θw included in the list of predictor variables, which

is noteworthy considering previous studies have used θw in objective algorithms for

identifying fronts (e.g., Berry et al., 2011; Catto and Pfahl, 2013; Hewson, 1998). In

terms of critical success index (see Section 2.4), the best CNN from L19 significantly

outperforms traditional numerical frontal analysis (NFA) methods with 100 and 250

km neighborhoods, showing that CNNs are a viable option for ML architecture when

constructing an algorithm to detect frontal boundaries. They also found that the

CNNs handled noisy data much better than the traditional NFA methods, particularly

with data in lower levels of the troposphere.Lagerquist et al. (2020) developed a new

CNN that ingested temperature, specific humidity, u-wind, and v-wind at the surface

and 850 hPa. The CNN from Lagerquist et al. (2020) was used to generate a 40-year

climatology of cold and warm fronts across North America and outperformed the CNN

used in L19.

Matsuoka et al. (2019, hereafter M19) used UNET architectures to detect stationary

fronts over and around Japan. Retrieving analysis data from the Japan Meteorolog-

ical Association’s GPV-MSM model, M19 used multiple fields to train the UNETs,
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including precipitation, sea level pressure, relative humidity, water vapor content2,

temperature, and wind velocity at 1000, 925, 850, and 700 hPa. Gradients of tem-

perature, θe, and wind direction were also calculated at the same pressure levels and

used to train the UNETs. They found that temperature and wind velocity at 1000

hPa yielded better results than at other pressure levels. The UNETs did not have

significant performance improvements when more variables were added to the inputs,

suggesting that either few variables are needed to detect stationary fronts or that more

data is needed for the UNET to properly learn relationships between all the variables.

M19 also noted that the UNET performance was lower when a typhoon was nearby and

attributed this to typhoons disrupting thermodynamic fields used to train the UNETs.

Biard and Kunkel (2019, hereafter BK19) trained a 2D CNN to detect cold, warm,

stationary, and occluded fronts. This algorithm will be referred to as DL-FRONT to

be consistent with their study. Aside from predicting stationary and occluded fronts

in addition to cold and warm fronts, DL-FRONT had a couple characteristics distinct

from other model architectures discussed in this chapter. First, DL-FRONT imple-

mented dropout layers after the convolutional layers (with the exception of the final

convolutional layer). Dropout randomly omits a user-defined fraction of units within

a layer(s) during training to prevent the model from overfitting (Hinton et al., 2012).

The units chosen to be omitted change throughout the training process. Overfitting is

weakened with dropout as the absence of a fraction of the units encourages the model to

learn relationships with less information and prevents large models from learning noise

in the input data. BK19 chose to omit 50% of the units in each dropout layer. Second,

DL-FRONT did not implement any max pooling like the architecture from L19. The

output of DL-FRONT was an image with the same spatial shape as the input image.

Using zero-padding in the convolutional layers, the shapes of all layers in the model

2M19 does not mention what variable “water vapor” is referring to.
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are the same (with the exception of the softmax layer). Inputs to DL-FRONT were

fields of sea level pressure, 2m temperature and specific humidity, and 10m u-wind

and v-wind sourced from the MERRA-2 dataset (Gelaro et al., 2017). The ground

truth labels were sourced from the NWS’ CSB. Performing three-fold cross-validation

(Refaeilzadeh et al., 2009), BK19 found that DL-FRONT achieved an Area Under the

Curve (AUC) score of 0.90. The seasonal front climatologies from the CNNs and the

CSB were very similar, showing that the model predictions were representative of the

underlying labels used to the train DL-FRONT. It was also found that the algorithm

was able to predict many fronts highlighted by Kunkel et al. (2012) as producers of

extreme precipitation.

Bochenek et al. (2021) used an RF algorithm to detect fronts over Central Europe.

They used over one dozen variables at five different levels from ERA5 reanalysis as the

inputs (Hersbach et al., 2018), and the ground truth front labels were taken from the

Deutscher Wetterdienst (DWD). Cold, warm, and occluded fronts were all assigned

the same label, so the random forest was not predicting the type of front present but

rather whether any existed at a particular location. The training datasets consisted

of only one to six months of data, however Bochenek et al. (2021) was still able to

achieve probability of detection (POD) scores of ∼40% with false alarm rates (FAR)

under 50%. They also determined that rain water content and total precipitation

contributed most to the algorithm’s predictions.

Niebler et al. (2022, hereafter N22) trained UNET architectures to detect cold,

warm, stationary, and occluded fronts over much of the Northern Hemisphere. Inputs

to the UNETs were sourced from ERA5 reanalysis and include temperature, specific

humidity, u-wind, v-wind, vertical velocity, at nine pressure levels between the surface

and 700 hPa, along with surface pressure and the longitudinal distance between grid

points. The UNETs architecture implemented by N22 had a few differences from the
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original architecture used in R15. First, the inputs to the models initially undergo

convolutions with kernels of size 1×1 rather than using the same kernel size through-

out the entirety of the UNET encoder (5×5 in the case of N22). The outputs from

these convolutions are passed through a ReLU activation function layer before a batch

normalization layer (Ioffe and Szegedy, 2015), which normalizes inputs to the layer

such that the inputs have a mean of 0 and a variance of 1. This can provide numerical

stability in the model during the training process by preventing exploding or vanishing

gradients (Philipp et al., 2018). Second, dropout is also implemented before the main

encoder portion of the UNETs with 20% of units randomly omitted with each batch

during training. As mentioned earlier, dropout helps to prevent overfitting models

to the training data, especially with deep networks containing very large numbers of

parameters. Lastly, instead of max pooling, the UNETs implemented average pooling

and dropout to down-sample features in the model. 20% of units were omitted with

dropout during the down-sampling operations. Whether these characteristics of N22’s

UNETs improve upon the original architecture from R15 is unclear. They also aug-

mented the training dataset, applying random flips along the longitude and latitude

dimensions of the images to increase the number of training samples. Data augmenta-

tion is the process of generating modified copies of training data and has been shown

to yield better model performance when compared to models trained on unmodified

datasets (Yang et al., 2023). N22 also stated that flipping the data might lead to bet-

ter representation of frontal systems in the Southern Hemisphere. Three models were

trained - one with front labels from NWS over North America, another with labels

from DWD over Europe, and a third that was trained over both the aforementioned

regions. N22 found that the UNETs performed best on the regions they were trained

on (e.g., UNET trained on NWS region performed best over NWS region). They also

found that the UNET trained over both regions at once nearly exceeded performance
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of the other two UNETs over their respective training domains, highlighting the im-

portance of including more training data to improve the a model’s ability to generate

accurate predictions. Warm fronts were the most difficult front type to detect with

the UNETs, likely due to the weaker thermal gradients associated with them, while

the UNETs performed best with cold fronts. Overall, the UNETs from N22 showed

excellent performance over both NWS and DWD regions and drastically outperformed

their baseline methods used as comparisons. The UNETs also had better correlation

with the NWS and DWD front climatologies than the objective baseline methods.

The downfalls of previous objective methods and improvements in ML architectures

motivated us to explore applying modern ML methods to frontal detection.
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Method Strengths Weaknesses

Clark et al., (2015) • Only ML-based dryline algorithm in lit-

erature (to our best knowledge)

• POD lower than non-ML based algo-

rithm

• False alarm rate lower than non-ML-

based method

Biard and Kunkel (2019) • Can discern between cold, warm, station-

ary, and occluded fronts

• Inputs only include surface variables

• Cross-validation prevents overfitting • Undercounts warm fronts

• 97% of predictions within 200 km of

fronts

Lagerquist et al., (2019) • Outperforms baseline experiments • No vertical structures accounted for

• Highly optimized pixelwise predictions • Computationally inefficient

• Only applied to North America

Matsuoka et al., (2019) • Includes precipitation as input • Only detects stationary fronts

• Identified seasonal rain-producing fronts • Only applied around Japan

Lagerquist et al., (2020) • CNNs trained with two vertical levels • Computationally inefficient

• Small frontal regions removed to reduce

noise

• Only applied to North America

Bochenek et al., (2021) • Multiple vertical levels in inputs • Only applied to Europe

• Discerns between cold, warm, and oc-

cluded fronts

• Limited training period

Niebler et al., (2022) • Trained over multiple domains • Struggles to detect weak warm fronts

• Multiple vertical levels in inputs

• Can discern between cold, warm, station-

ary, and occluded fronts

Justin et al., (2023) • Good performance outside training do-

main in Northern Hemisphere

• Computationally inefficient

• Processes 3-D features and resolves ver-

tical structures with 3-D convolutions

• Cold and warm fronts trained separately

from stationary and occluded

• Detects cold, warm, stationary, and oc-

cluded fronts

• High warm and stationary front false

alarm rates

• Only trained over CONUS

Table 2.2: Strengths and weaknesses of ML-based automated frontal detection methods

discussed in this literature review.
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Chapter 3

Data and Methods

3.1 UNET3+ Architecture

The UNET3+ is a convolutional neural network (CNN) designed for image segmenta-

tion (Huang et al., 2020), improving upon the original UNET from Ronneberger et al.

(2015) by adding “full-scale skip connections” and “aggregated feature maps” (more

on this later in the section). Image segmentation is the process of labeling various

parts of an image as different classes. In this case, the UNET3+ is assigning a class

(front type) to every pixel of the model output. The architecture for our new UNET3+

model is shown in Figure 3.1. We will refer to this new architecture as the “five-class

model” (abbreviated FCM) throughout this text, with the name stemming from the

fact that the model predicts the locations of five types of frontal boundaries.

FCM ingests 4D images as input, with the dimensions representing longitude, lat-

itude, vertical level, and the predictor variables used in the model. In other words,

multiple 3D variable maps are input to the model, with the variable maps stacked

along the fourth dimension of the input images. Unlike our previous three-model sys-

tem (J23), the longitude and latitude dimensions of FCM are not fixed, and these

dimensions of the input images can be changed under the condition that the lengths of

the dimensions are evenly divisible by 8. In each encoder and decoder node of FCM, the

images/features pass through two convolution “modules”, with each module consisting

of a 5×5×5 convolution operation, a batch normalization layer (Ioffe and Szegedy,
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5x5x5 Conv*, BN, GELU  (x2)
Conventional skip connection

2x2x1 max pool

Full-scale skip connection

Aggregated feature map
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Concatenation

*with zero-padding

[144, 64, 5, 16]

[288, 128, 5, 16]

[144, 64, 5, 32]

[72, 32, 5, 32]

[72, 32, 5, 64]

[36, 16, 5, 64] [36, 16, 5, 128]

[72, 32, 5, 64]

[288, 128, 5, 64] [288, 128, 5, 64]

[144, 64, 5, 64]

[72, 32, 5, 64]

[144, 64, 5, 64]

UNET3+ Architecture
Input image

[288, 128, 5, 10]

z

Encoder node

Decoder node

Figure 3.1: Architecture of the UNET3+ model used to predict cold, warm, stationary,

and occluded fronts and drylines. This example shows an input size of 288×128×5×10,

where the third (vertical) dimension is unmodified until just prior to deep supervision.

Note that the bottom node is both an encoder and decoder node.

2015), and a Gaussian Error Linear Unit [GELU; Hendrycks and Gimpel (2023)] acti-

vation function layer. All 5×5×5 convolution operations throughout FCM implement

zero padding, a process in which layers of zeros are added around an image so that

the output of the convolution operation has the same shape as the input (O’Shea and

Nash, 2015). Batch normalization layers normalize inputs such that the outputs have

a mean of 0 and a variance of 1, which can provide numerical stability to the model

(Ioffe and Szegedy, 2015). GELU was chosen as the activation function as it has been
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shown to provide superior performance over numerous other activation functions (Lee,

2023). In our previous three-model system, we used the Rectified Linear Unit (ReLU)

activation function. ReLU and GELU are defined in Equations (3.1) and (3.2) and

plotted in Figure 3.2. ReLU outputs zero for all negative inputs, thus the gradient or

derivative for all negative inputs is also zero:

ReLU(x) =


x, if x ≥ 0

0, otherwise.

(3.1)

If the inputs into a ReLU neuron are repeatedly negative, there is no gradient, rendering

the neuron “dead” as its weights cannot be updated. This is known as the dying ReLU

problem (Lu, 2020) and is one of the motivations of using GELU in place of ReLU.

GELU is a smoother activation function that does not block out all negative inputs

and allows gradients to flow smoothly through the model:

GELU(x) = x · 1
2
[1 + erf(x/

√
2)] ≈ x · 1

2
(1 + tanh[

√
2/π(x+ 0.044715x3)]). (3.2)

Max pooling operations connect two encoder nodes. As described in Chapter 1,

max pooling is a downsampling method that reduces the dimensions of an image using

a pre-defined pool size, allowing UNET architectures to convert higher-resolution data

into broader features that can be used by the model to further improve its perfor-

mance. Since the FCM ingests 3D spatial images, the max pooling operations must

be performed with 3D pool sizes. However, the vertical dimension of our input images

only has a size of 5, so shrinking the size of the vertical dimension with max pooling

in our architecture is not feasible. We preserve the size of the vertical dimension while

still reducing horizontal dimensions by using a pool size of 2×2×1 in our max pooling

operations. We connect encoder and decoder nodes on the same level of the FCM with
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Figure 3.2: a) ReLU and GELU activation functions, and b) derivatives of the ReLU

and GELU activation functions.

a conventional skip connection, which takes the output of an encoder node and passes

it through one convolution module before connecting it to the decoder node. Full-scale

skip connections transport data from a high resolution encoder node to a lower resolu-

tion decoder node; images undergo a 3D max pooling operation before passing through

a convolution module and being transported to the decoder node. The pool size in

each full-scale skip connection is determined by the resolutions of the images that are

processed by each of the nodes attached to the connection. For example, if a full-scale

skip connection sends images with dimensions 288×128×5 to a decoder node that pro-

cesses images with dimensions 72×32×5, then the pool size must be 4×4×1. On the
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decoder/upsampling side of the UNET3+, nodes are connected by connections con-

taining aggregated feature maps. Aggregated feature maps are low resolution images

that have undergone 3D upsampling operations and passed through one convolution

module before reaching the target decoder node.

The decoder nodes create concatenated features from all incoming connections

before passing the features through a convolution module and performing deep su-

pervision. In the FCM, deep supervision in the decoder nodes (and the bottom en-

coder/decoder node) starts with features undergoing 5×5×5 convolutions with zero-

padding, followed by 1×1×5 convolutions without zero-padding. The absence of zero-

padding means that the 1×1×5 convolutions shrink the vertical dimension from size 5

to size 1. We then “squeeze out” the vertical dimension since it has a size of 1, resulting

in 2D feature maps with longitude and latitude dimensions. With the exception of the

final decoder node, the 2D feature maps are upsampled with pool sizes that result in

shapes matching the longitude and latitude dimensions of the original input image of

the FCM. After upsampling, the features go through a Softmax function (Bridle, 1989)

and turn into probabilities for all the frontal types in the FCM.

3.2 Datasets and Preprocessing

Datasets were made with predictor variables sourced from ERA5 data (Hersbach et al.,

2018) and front positions as analyzed by NOAA forecasters at 3-hour intervals (NOAA,

2023) for the period 2008-2020. ERA5 data was chosen given its high spatial resolution

(0.25°, 25 km) and global coverage with data at numerous pressure levels available

every 3 hours. ERA5 reanalysis has a fixed model state, so the data assimilation

process is consistent with time. While the reanalysis data is quality-controlled, it

may have spatial biases in boundary positions and be unable to capture some extreme
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Variable Heights/Levels

Dewpoint temperature 2-m AGL, 1000-, 950-, 900-, 850 hPa

Geopotential height 1000-, 950-, 900-, 850 hPa

Mixing ratio 2-m AGL, 1000-, 950-, 900-, 850 hPa

Relative humidity 10-m AGL, 1000-, 950-, 900-, 850 hPa

Specific humidity 2-m AGL, 1000-, 950-, 900-, 850 hPa

Surface pressure surface

Temperature 2-m AGL, 1000-, 950-, 900-, 850 hPa

Theta-E 2-m AGL, 1000-, 950-, 900-, 850 hPa

U-wind 10-m AGL, 1000-, 950-, 900-, 850 hPa

V-wind 10-m AGL, 1000-, 950-, 900-, 850 hPa

Virtual temperature 2-m AGL, 1000-, 950-, 900-, 850 hPa

Table 3.1: Predictor variables used as input to FCM. Variables or levels in boldface

were derived from variables directly retrieved from ERA5, which are not in boldface.

mesoscale thermodynamic gradients, like those seen with some drylines (Pietrycha

and Rasmussen, 2004; Hoch and Markowski, 2005). Ten predictor variables at five

vertical levels were used as input (Table 3.1), while the labels were front positions

interpolated every one kilometer and transformed to a uniform 0.25° grid to match

the ERA5 resolution. This differs from our previous three-model system as wet-bulb

temperature and wet-bulb potential temperature (θw) are not included in the list of

predictors since our permutation studies in J23 suggested that these variables have

little influence on the model predictions, and L19 found that front-detecting CNNs with
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Dataset (Years) Image pairs CF WF SF OF DL

Training (2008-2017, 2020) 34,766 1.751% 0.523% 1.491% 0.222% 0.0624%

Validation (2018) 3,232 1.954% 0.608% 1.81% 0.193% 0.075%

Testing - CONUS (2019) 2,920 2.027% 0.65% 1.67% 0.238% 0.0478%

Testing - USAD (2019) 1,460 1.009% 0.377% 0.772% 0.291% 0.0056%

Table 3.2: Fraction of pixels containing each front type in the training, validation,

and testing datasets. The extents of the CONUS and USAD domains can be found in

Figure 3.3. CF = cold front, WF = warm front, SF = stationary front, OF = occluded

front, DL = dryline.

θw included as input performed worse than those not including θw. The front labels

were also expanded by one pixel (0.25° or roughly 25 km) in all directions in order

to account for positional biases that may exist between the reanalysis and observed

boundaries. The data were split into three datasets - training, validation, and testing.

The training dataset encompassed years 2008-2017 and 2020, while the validation and

testing datasets contained data for 2018 and 2019 respectively. The discontinuity in the

years used for the training set is intentional; 2020 had the highest sample of drylines

throughout our entire dataset, so it was included in the training data to maximize

dryline sample sizes. The training and validation datasets only cover our CONUS

domain. Note that the testing dataset for USAD only contains 6-hourly timesteps (0z,

6z, 12z, 18z) as full analyses over USAD are only performed every six hours. The

extents of the CONUS and USAD domains are shown in Figure 3.3.

Timesteps used in the training and validation datasets were selected with a two-step

process. First, each 3-hourly timestep in the years within each dataset is checked for

the presence of at least one of each front type over the CONUS domain. If at least one
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of each type is present, the timestep is retained in the dataset. Otherwise, a 50 percent

chance determines whether or not the timestep is retained. Filtering is necessary

to compensate for the large variation in sample sizes between the different frontal

types. Nine pairs of images evenly spaced along the longitude are extracted from each

timestep; the shape of the inputs was 128×128×5×10 (longitude × latitude × vertical

level× variable), while the labels containing fronts have shape 128×128×6 (longitude×

latitude × front type, one of the frontal types is labeled ”no front), with each horizontal

dimension of the pairs of images having a 25 percent chance of being flipped. In other

words, 43.75 percent of all images had at least one horizontal dimension flipped. This

was done to increase the number of images in the datasets while maintaining sample size

benefits from the timestep selection process, as well as to prevent prevalent horizontal

structures from having too great of an influence on FCM’s predictions. Rotating the

images prevents the model from learning spatial correlations that exist with some

frontal types (e.g., the north-south orientation of drylines in the Great Plains with dry

air to the west and moist air to the east of the boundary). The process of generating

modified copies of images to create a larger dataset is known as data augmentation,

which has been shown to improve the performance of deep learning models applied to

object recognition tasks (Yang et al., 2023). Note that the data were not augmented

based on correlations between the input variables, which could have implications for

results stemming from our permutation studies. For example, as moisture content

increases, several variables will have their values increased (e.g., relative humidity,

specific humidity, mixing ratio, dewpoint temperature, etc.). Correlations between

the variables may not assign importance based on their true predictive abilities (e.g.,

splitting importance up between two closely linked variables, like specific humidity and

mixing ratio). Variables were normalized with min-max normalization at each vertical
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level to ensure predictor variables are in a common range of [0, 1] and provide numerical

stability to the model.

Figure 3.3: CONUS domain (red) and NOAA’s USAD (blue). The bounds of the

CONUS domain are 132°W, 60.25°W, 25°N, 56.75°N (288×128 pixels on the 0.25°

ERA5 grid), while the USAD has bounds of 130°E, 10°E, 0°N, 80°N (960×320 pixels

after 1-pixel truncation along each dimension).

3.3 Training and Hyperparameters

FCM was trained in parallel across four NVIDIA A100 GPUs (40 GB variant) over the

course of 181
2
hours. The hyperparameter choices are summarized in Table 3.3.

The loss function is a key part of the training process and serves as an error metric

for the model and optimizes model parameters (Terven et al., 2023). We used a simple

manipulation of the fractions skill score [FSS; Roberts (2008)] as the loss function for

FCM. FSS is a spatial verification metric that does not penalize predictions that are

displaced from the ground truth by a prefined number of pixels, where an FSS of 1 (0)

is the best (worst) possible forecast. In the case of FCM, predictions within one pixel

(0.25° or roughly 25 km) of a ground truth front are considered hits. The formula for
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Hyperparameter Value

Batch size 64

Early stopping 55 epochs

Learning rate 10−4

Loss function Fractions Skill Score (Roberts, 2008)

Optimizer Adam (Kingma and Ba, 2014)

Steps per epoch Training: 10, Validation: 51

Table 3.3: Hyperparameter choices for FCM.

our loss function FSSloss is shown in Equation (3.3) below, with FSSloss equal to 0

(1) for the best (worst) possible forecast.

FSSloss = 1− FSS (3.3)

Adam (Kingma and Ba, 2014) was used as the optimizer, with an initial learning rate of

10−4 and using the default exponential decay rates from Kingma and Ba (2014). The

batch size for both training and validation was 64, performing 10 steps for training

and 51 steps for validation in each epoch. In our case, an epoch is defined by one pass

over a small subset of the data (10 passes/steps over batches of 64 images). Validation

is performed every epoch, and 51 steps ensure that the model sees all images in the

validation dataset every time that validation is performed.

Early stopping was used to prevent the model from overfitting to the training

dataset. This method of regularization involves stopping the training process early

when model error fails to decrease, the exact conditions of which are often subjective

and determined prior to model training (see Shen et al. (2022) for more details). Train-

ing for FCM was stopped after the validation loss failed to improve for 55 successive
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epochs. This rule was set to ensure that the model completed a full iteration over

the training dataset without improvements before training was suspended. The model

achieved the lowest validation loss at epoch 644, with training being terminated after

epoch 699 following 55 consecutive epochs of no improvements in the validation loss.

3.4 Evaluation

To evaluate the performance of FCM over the CONUS and USAD domains, we gen-

erated model predictions with images from the respective testing sets for each domain

(see Table 3.2) and calculated the critical success index (CSI) using 50, 100, 150, 200,

and 250 km neighborhoods (assuming 25 km between grid spaces). Similar to FSS,

CSI evaluation using a neighborhood allows for predictions slightly displaced from the

ground truth to be counted as hits (e.g., see Clark et al., 2015; Justin et al., 2023;

Lagerquist et al., 2019, 2020; Niebler et al., 2022). CSI is calculated at probability

thresholds from 0.01 to 1 (0.01, 0.02, 0.03, ..., 1) and is defined in Equation (3.4)

below:

CSI =
TP

TP + FP + FN
=

1
1

POD
+ 1

1−FAR
− 1

, (3.4)

where TP, FP, and FN are the numbers of true positives, false positives, and false

negatives respectively, POD is the probability of detection [Equation (3.5)], and FAR

is the false alarm ratio [Equation (3.6)]:

POD =
TP

TP + FN
, (3.5)

FAR =
FP

TP + FP
. (3.6)
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Frequency bias (FB) was also calculated in order to gauge the model’s tendency to

overpredict or underpredict certain types. FB is defined in Equation (3.7) below.

FB =
TP + FP

TP + FN
(3.7)

When FB is greater (less) than 1, the model tends to overpredict (underpredict)

events, so a value of 1 is preferred. Confidence intervals at the 95% level were calcu-

lated for bulk performance statistics using bootstrapping, iterating over the statistics

1,000 times and retaining statistics for 2,920 (1,460) timesteps each iteration when

bootstrapping over the CONUS (USAD) domain.

3.4.1 Permutation Studies

Variable and pressure level importance was determined through single-pass permuta-

tions (Breiman, 2001; McGovern et al., 2019). Single-pass permutations involve shuf-

fling values of a particular predictor to see how model performance changes. In our

case, we shuffled each variable and/or pressure level in all images within the testing

datasets and reevaluated the model across the new datasets containing the shuffled

data. 65 permutations were performed for each front type: 50 for single variables at

individual pressure levels, 10 for single variables over all pressure levels, and five for

all variables at individual pressure levels. The change in POD was used as a metric

for importance. The decision to use POD over CSI for importance was made because

fronts with exceptionally small sample sizes (e.g., drylines) can see the CSI actually

increase during permutation studies due to model probabilities decreasing across the

pixels without any targets (in the case of drylines, >99.95% of pixels in the CONUS

testing set are empty). This can cause a misleading result whereby parameter impor-

tance is understated due to a large drop in the number of false positives. Using POD
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prevents this issue and only focuses on pixels containing the frontal types of interest. A

decrease in POD indicates that a predictor is important and vice versa for an increase

in POD. The change in POD was pixel-based and used the dilated front labels as the

targets without any neighborhood approaches like those used in our CSI calculations.

3.4.2 Saliency Maps

Since AI models are effectively black boxes whose predictions cannot be easily ex-

plained (McGovern et al., 2019), a method for seeing what parts of an input image

a model is focusing on can help better understand how the model makes its predic-

tions. One useful XAI method for understanding model behavior is the generation of

saliency maps (Simonyan et al., 2014), which are maps that represent the sensitivity

of some unit or neuron in a model with respect to the model’s inputs. In our case,

we wanted to understand how FCM predictions for the five frontal types could change

when input variables were perturbed from their original values. It should be noted

that saliency or sensitivity is not necessarily analogous to importance (i.e., high sensi-

tivity ̸= high importance) but can still give insight as to how the ambient environment

could be modified to improve model predictions. Saliency map generation started with

performing one back-propagation pass through FCM, computing a derivative for each

variable and front type in each pixel on the 3D input grid (10 variables * 5 frontal

types = 50 individual derivatives at each grid point). The maximum derivative across

the 10 variables was retained such that each pixel had one saliency value for each front

type. These saliency values at each pixel comprise the final saliency maps for each

front type at each vertical level. We did not calculate bulk statistics for saliency maps

across all timesteps, however we were still able to draw some conclusions from the case

study highlighted in Section 3.2.
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Chapter 4

Results and Discussion

CONUS

Front Type CSI POD % FAR % FB

Cold 0.507, 0.627, 0.682 70.9, 80.2, 86.3 36.1, 25.9, 23.6 1.110, 1.083, 1.130

Warm 0.311, 0.426, 0.505 54.8, 67.3, 78.1 58.2, 46.4, 41.2 1.310, 1.255, 1.329

Stationary 0.361, 0.458, 0.510 61.7, 74.0, 82.3 53.5, 45.4, 42.7 1.327, 1.354, 1.435

Occluded 0.386, 0.491, 0.541 61.2, 71.3, 76.2 48.9, 38.7, 34.9 1.199, 1.164, 1.170

Dryline 0.487, 0.624, 0.662 69.1, 78.6, 82.7 37.7, 24.8, 23.1 1.110, 1.046, 1.075

USAD

Front Type CSI POD % FAR % FB

Cold 0.466, 0.586, 0.645 66.8, 75.9, 80.9 39.3, 28.0, 23.9 1.102, 1.055, 1.062

Warm 0.313, 0.417, 0.480 54.0, 66.4, 75.1 57.3, 47.2, 42.9 1.264, 1.258, 1.315

Stationary 0.263, 0.339, 0.385 50.3, 61.8, 69.7 64.5, 57.1, 53.8 1.417, 1.440, 1.509

Occluded 0.353, 0.469, 0.540 56.0, 68.4, 74.6 51.2, 40.1, 33.8 1.148, 1.141, 1.128

Dryline 0.349, 0.457, 0.525 60.0, 69.9, 78.6 54.5, 43.0, 38.7 1.318, 1.226, 1.282

Table 4.1: FCM performance over CONUS (top) and USAD (bottom). The three

values in each cell represent scores using 50, 100, and 250 km neighborhoods.

The FCM performance and permutation studies for each of the five frontal types

were evaluated with the testing dataset (2019) over CONUS and USAD (Table 4.1

37



and figs. 4.1 to 4.4, 4.6 to 4.11 and 4.13 to 4.22). The reliability diagrams (panel (b)

in the figures previously mentioned) show that the FCM experienced an underforecast

bias with all frontal types over both domains, with the exception of stationary fronts

over the full domain. Such an underforecast bias did not show up in our previous

TMS, however we think the FCM has this bias because of the fact that it predicts five

frontal types, and it can be difficult to get the model to be confident in its predictions

(i.e., generate high probabilities) without copious amounts of high-quality training

data. Reliability will worsen with larger neighborhoods as more true positives (hits)

are introduced, which increases the observed relative frequency of the fronts.

Over CONUS, cold fronts achieved the best performance of all frontal types with a

250 km CSI score of 0.682, successfully hitting 86.3% of pixels containing cold fronts

with a 23.6% FAR, outperforming our three-model system from Justin et al. (2023)

that achieved a CSI of 0.55 for cold fronts over CONUS. The cold front results from

FCM are consistent with findings from J23 and Niebler et al. (2022): both studies

found that cold fronts were the best performing boundary type over multiple domains,

excluding the binary front type. Cold front performance is weaker over multiple areas,

including the Rocky Mountains and areas north of 60°N (Figures 4.1 and 4.2, panel d).

The number of cold fronts predicted by the model was slightly higher than the number

of ground truth fronts in the test dataset, leading to FB scores between 1.05 and 1.10

over USAD. By comparison, cold front FB scores in J23 over USAD were between 1.10

and 1.27, suggesting that simplification of the model architecture reduced the tendency

to overpredict cold fronts. Terrain and the lack of input data at higher altitudes likely

complicate cold front detection over the Rocky Mountains. For example, mountains

can complicate frontal structures by blocking and diverting flows, and cold air can sink

into valleys and clash with existing air masses. The lower frequency of cold fronts

at higher latitudes (see J23 and L19) and the fact that distance between longitudes
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decreases with northern extent could be an explanation for lower performance over

higher latitudes. In the midlatitudes, there is little difference in cold front performance

between CONUS and the Atlantic and Pacific Ocean basins, which indicates that

FCM is able to generalize oceanic cold fronts despite the training data only covering

a very small portion of these basins. The cold front permutation studies shown in

Figures 4.3 and 4.4 indicate that v-wind, temperature, and virtual temperature are

the most important variables for cold front detection. This is not a surprising result

since cold fronts are characterized by temperature contrasts and often wind shifts and

moisture gradients (Schultz, 2005). One interesting result was that surface pressure

and geopotential heights had much lower importance over USAD versus CONUS. We

believe this is related to surface friction; overhanging noses of denser air ahead of surface

boundaries have been documented in several studies (e.g., Simpson, 1972; Young and

Johnson, 1984; Mitchell and Hovermale, 1977), with Simpson (1972) attributing the

overhanging nose to a no-slip lower boundary condition. Since USAD covers much

of the Pacific and Atlantic Oceans, we think that the higher importance for surface

pressure and geopotential heights over CONUS is the result of overhanging noses caused

by friction with land surfaces.
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Five-class model: Cold fronts over CONUS domain

Figure 4.1: Cold front results over CONUS; a) CSI diagram (dashed lines = frequency

bias), b) reliability diagram (dashed line = perfect reliability), c) data table with

upper and lower performance bounds indicated with superscripts and subscripts, and

d) spatial CSI diagram using a 100 km neighborhood. CSI scores lower than 0.1 are

not shown on the spatial diagram.
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Figure 4.2: Same as Figure 4.1 but for cold fronts over USAD.
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b) Grouped levels

Surface 1000mb 950mb 900mb 850mb

Air temperature 23 (0.130) 9 (0.439) 4 (0.672) 5 (0.666) 16 (0.232)

Dewpoint 38 (-0.009) 21 (0.158) 39 (-0.042) 47 (-0.211) 35 (0.025)

Virtual temperature 43 (-0.106) 25 (0.119) 12 (0.366) 8 (0.503) 13 (0.348)

U-wind 6 (0.544) 24 (0.120) 34 (0.025) 31 (0.054) 28 (0.082)

V-wind 2 (1.195) 1 (1.518) 3 (0.830) 15 (0.289) 42 (-0.094)

Mixing ratio 40 (-0.088) 41 (-0.092) 45 (-0.144) 46 (-0.181) 48 (-0.238)

Specific humidity 36 (0.020) 29 (0.078) 32 (0.044) 49 (-0.243) 50 (-0.356)

Relative humidity 20 (0.169) 18 (0.215) 19 (0.179) 37 (0.007) 27 (0.086)

Pressure/heights 33 (0.040) 22 (0.131) 7 (0.512) 10 (0.436) 30 (0.057)

Theta-E 44 (-0.113) 26 (0.103) 14 (0.336) 11 (0.388) 17 (0.219)

c) Variables on single levels

Cold front permutations: CONUS

Figure 4.3: Cold front permutation results over the CONUS domain for a) grouped

variables, b) grouped vertical levels, and c) variables on single variables ranked from

1-60 with 1 (60) being the most (least) important variable and level combination.
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b) Grouped levels

Surface 1000mb 950mb 900mb 850mb

Air temperature 28 (0.147) 9 (0.513) 4 (0.818) 5 (0.696) 29 (0.142)

Dewpoint 34 (0.073) 16 (0.303) 33 (0.109) 44 (-0.059) 27 (0.182)

Virtual temperature 41 (-0.038) 26 (0.184) 11 (0.463) 8 (0.513) 18 (0.260)

U-wind 2 (1.406) 12 (0.453) 49 (-0.368) 48 (-0.353) 22 (0.213)

V-wind 3 (1.184) 1 (1.779) 6 (0.685) 32 (0.112) 38 (-0.010)

Mixing ratio 37 (0.009) 36 (0.013) 43 (-0.056) 46 (-0.164) 45 (-0.125)

Specific humidity 30 (0.134) 19 (0.252) 23 (0.208) 47 (-0.185) 50 (-0.370)

Relative humidity 17 (0.274) 15 (0.313) 24 (0.194) 35 (0.066) 20 (0.251)

Pressure/heights 39 (-0.017) 31 (0.122) 13 (0.428) 21 (0.226) 42 (-0.052)

Theta-E 40 (-0.020) 25 (0.185) 10 (0.494) 7 (0.578) 14 (0.325)

c) Variables on single levels

Cold front permutations: Unified Surface Analysis Domain

Figure 4.4: Same as Figure 4.3 but for cold fronts over USAD.

43



FCM performance for warm fronts was similar across the CONUS and USAD do-

mains with 250 km CSI scores of 0.505 and 0.48, respectively, a significant improvement

over the three-model system in J23 that achieved CSI scores of 0.36 and 0.37. FCM

found 75.1% of the warm fronts within 250 km of the ground truth warm fronts as

analyzed by forecasters with a FAR of 42.9% over USAD. FB scores for warm fronts

over USAD ranged from 1.26 to 1.32 with FCM and 1.26 to 1.49 with the three-model

system in J23, indicating a smaller fraction of warm front false positives from the new

algorithm. CSI scores are slightly higher over water, in particular the Atlantic and

Pacific ocean basins, than over land (Figures 4.6 and 4.7, panel d). This could be

attributed to differences in the intensity of warm fronts over water versus land; Hines

and Mechoso (1993) analyzed the evolution of frontal structures during numerical sim-

ulations of cyclogenesis and found that simulations with low surface drag exhibited

enhanced warm frontogenesis due to the higher wind speeds from low surface drag

allowing for more robust warm air advection into the warm frontal zones.

Warm fronts are rarely analyzed over the Rocky Mountains (Figure 4.5b), which

implies that sample size is the likely driver of lower CSI scores over the mountainous

terrain. The simplified model architecture used in the present study that includes all

frontal types likely helped FCM to better differentiate between warm and stationary

fronts, both of which experienced high FAR in J23. The warm front permutation

studies over USAD shown in Figures 4.8 and 4.9 echoed findings of an observation of

a warm front over the Northeast Atlantic by Wakimoto and Bosart (2001, hereafter

W01). They found that the observed warm front was more defined aloft with a stronger

equivalent potential temperature (θE) gradient and intense vertical wind shear. W01

also noted that the warm front at the surface had little θE or mixing ratio gradient.

Our permutation studies showed that the 850 and 900 hPa levels had greater relative

importance than the surface, 1000, and 950 hPa. The results shown in Figure 4.9c show
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Figure 4.5: Frequency of a) cold fronts, b) warm fronts, c) stationary fronts, d) occluded

fronts, and e) drylines drawn by NWS forecasters over USAD for the period 2008-2022

at synoptic hours. Non-synoptic hours are not shown as WPC only draws over North

America for these timesteps and frequencies are significantly higher over the WPC

domain (see Fig. 2 from Justin et al., 2023)

θE has the greatest importance at 950, 900, and 850 hPa, with the surface θE having

negative relative importance (i.e., hurting warm front predictability). Figure 4.9a show

that v-wind and u-wind were the most important variables in detecting warm fronts

over USAD, which is supported by the observation of intense vertical wind shear along

the oceanic warm front analyzed by W01. The permutation studies suggest that sur-

face pressure is not important to detecting warm fronts, however this may be due to

emphasis on geopotential heights of pressure levels above the surface.
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Five-class model: Warm fronts over CONUS domain

Figure 4.6: Same as Figure 4.1 but for warm fronts over CONUS.
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Figure 4.7: Same as Figure 4.2 but for warm fronts over USAD.

47



0 1 2 3 4
Relative importance

Dewpoint

Relative humidity

Mixing ratio

Specific humidity

Virtual temperature

Theta-E

Air temperature

U-wind

Pressure/heights

V-wind

-0.209

-0.1

-0.076

0.435

0.49

0.512

0.752

1.508

2.263

3.582

a) Grouped variables

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Relative importance

1000mb

950mb

Surface

900mb

850mb

-0.831

-0.704

0.054

0.798

1.668

b) Grouped levels

Surface 1000mb 950mb 900mb 850mb

Air temperature 12 (0.106) 11 (0.154) 20 (0.015) 41 (-0.156) 35 (-0.080)

Dewpoint 29 (-0.056) 47 (-0.235) 50 (-0.287) 31 (-0.068) 28 (-0.054)

Virtual temperature 26 (-0.041) 18 (0.028) 21 (0.006) 36 (-0.084) 37 (-0.089)

U-wind 8 (0.299) 10 (0.161) 16 (0.032) 13 (0.084) 30 (-0.057)

V-wind 5 (0.435) 2 (0.566) 4 (0.480) 1 (0.601) 6 (0.380)

Mixing ratio 42 (-0.165) 32 (-0.071) 39 (-0.138) 49 (-0.267) 45 (-0.207)

Specific humidity 34 (-0.077) 17 (0.029) 27 (-0.045) 23 (-0.034) 14 (0.081)

Relative humidity 33 (-0.071) 40 (-0.140) 48 (-0.242) 43 (-0.190) 22 (-0.009)

Pressure/heights 46 (-0.211) 7 (0.309) 3 (0.516) 9 (0.216) 24 (-0.038)
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c) Variables on single levels

Warm front permutations: CONUS

Figure 4.8: Same as Figure 4.3 but for warm fronts over CONUS.
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c) Variables on single levels

Warm front permutations: Unified Surface Analysis Domain

Figure 4.9: Same as Figure 4.4 but for warm fronts over USAD.
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Stationary front performance is among FCM’s weaknesses, with the model only

achieving CSI scores of 0.51 and 0.385 over CONUS and USAD respectively using a

250 km neighborhood (Table 4.1). However, these scores are a significant improvement

over J23, where CSI scores were 0.44 and 0.27. A local maximum in CSI can be noted

along the Rocky Mountains in Alberta and British Columbia (Figures 4.10 and 4.11,

panel d), coincident with a higher frequency of stationary fronts (Figure 4.5c). While

stationary front performance greatly improved over J23, stationary fronts still have the

highest FAR of any front type in FCM.We discovered that FCM tends to falsely identify

parts of the Intertropical Convergence Zone (ITCZ) as a stationary front, likely due to

convergence along the zone (see Figure 4.12) The ITCZ is not included in the training

data, so the model is not properly trained to deal with the persistent convergence

along the ITCZ. Stationary fronts seem to be one of the more subjective parts of

surface analysis and the transition of a cold or warm front to a stationary front is not

always definitive. This implies a potential issue with other quasi-permanent boundary

features and the approach to training on individual timesteps, both of which could be

sources of the high FAR for stationary fronts. The model only ingests data for one

timestep, so the model has no information on previous positions of fronts and is unable

to base predictions on the movement of the fronts. The stationary front permutation

studies Figures 4.13 and 4.14 indicate that air temperature is the most important

variable for stationary front detection. V-wind has a strong negative relationship with

FCM’s stationary front performance, however the reason for this is not clear. U-

wind has stronger importance over the CONUS domain compared to USAD, which

we suspect to be linked to the predominantly North-South orientation of stationary

fronts frequently observed along and over the Rocky Mountains (Figure 4.5c). We also

expected greater importance over CONUS for pressure levels at greater elevation due
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to the elevated and complex terrain over the Rocky Mountains, however only the 950

hPa level had notably higher importance over CONUS.
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Five-class model: Stationary fronts over CONUS domain

Figure 4.10: Same as Figure 4.1 but for stationary fronts over CONUS.
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Figure 4.11: Same as Figure 4.2 but for stationary fronts over USAD.

Data: ERA5 reanalysis 2019-01-02-18z
Predictions valid: 2019-01-02-18z Five-class Model Predictions

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
(c

al
ib

ra
te

d 
- 1

00
 k

m
)

Cold front Warm front Stationary front Occluded front Dryline
Front type

Figure 4.12: FCM predictions for 1800 UTC Jan 2 2019 over USAD.

52



0.5 0.0 0.5 1.0 1.5 2.0 2.5
Relative importance

V-wind

Relative humidity

Dewpoint

Mixing ratio

Specific humidity

Theta-E

Virtual temperature

U-wind

Pressure/heights

Air temperature

-0.504

0.111

0.512

0.894

0.907

1.147

1.263

1.533

2.048

2.494

a) Grouped variables

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Relative importance

950mb

900mb

Surface

850mb

1000mb

0.874

1.821

2.281

2.553

3.157
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Mixing ratio 33 (0.008) 18 (0.153) 13 (0.184) 20 (0.126) 21 (0.116)
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c) Variables on single levels

Stationary front permutations: CONUS

Figure 4.13: Same as Figure 4.3 but for stationary fronts over CONUS.
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c) Variables on single levels

Stationary front permutations: Unified Surface Analysis Domain

Figure 4.14: Same as Figure 4.4 but for stationary fronts over USAD.
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Occluded front performance was nearly the same across CONUS and USAD; 250

km CSI scores were about 0.54 over both domains. The spatial CSI plots in Fig-

ures 4.15 and 4.16 (panel d) show a CSI maximum over the Central US east of the

Rocky Mountains, with broader areas of high performance over much of the Pacific

and Atlantic Ocean basins north of 30°N. The model appears to resolve the occlusion

process for Norwegian model-like cyclones (Bjerknes and Solberg, 1922), with occluded

fronts wrapping around cyclones during the occlusion process (see the Case Study

section for an example), in contrast to the Shapiro-Keyser cyclone model where an oc-

cluded front does not occur and the ”wrap-up” process is associated with the bent-back

warm front (Shapiro and Keyser, 1990). However, the intersections of the cold, warm,

and occluded fronts (commonly referred to as “triple points”) predicted by the model

are not always colocated with the triple points shown in NOAA’s surface analyses.

This could be due to the fact that most occlusions are warm-type occlusions, which

occur when air behind former cold fronts is warmer than air ahead of the warm fronts

(Schultz and Mass, 1993; Schultz et al., 2014) and perhaps FCM interprets portions of

the warm-type occlusions as warm fronts. The occluded front permutation studies in

Figures 4.17 and 4.18 show that wind and pressure variables were most important for

occluded front detection, similar to our findings in J23 with the three-model system.

This is supported by multiple studies showing wind shifts coincident with occluded

fronts (e.g., Market and Moore, 1998; Steenburgh et al., 1997; Schultz and Mass, 1993;

Shafer et al., 2006). In addition, the wind components are important in the “wrap-

up” process, where an occluded front becomes elongated and wraps around the low

pressure center cyclonically. This wrap-up is influenced by deformation of the thermal

ridge that is created after the cold and warm fronts collide (Schultz and Vaughan,

2011; Martin, 1999), however it is unclear how much this contributed to the relative
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importance assigned to u-wind and v-wind as FCM appears to struggle with identify-

ing wrapped occlusions (discussed more in the Case Study section). Similar to cold

fronts, occluded fronts are often associated with pressure troughs and thus sharp rises

in pressure can be observed upon their passage (e.g., Shafer et al., 2006). The unique

nature of occluded fronts being in close proximity to low pressure centers also likely

contributes to greater relative importance for pressure variables. The most important

vertical levels included the surface, 1000, and 950 hPa, which are the lowest vertical

levels in our datasets and the first levels at which an occluded front will form following

the collision of a cold front with a warm front. Since the features at 950 hPa are aloft,

analysts may use different data sources when drawing occluded fronts (e.g., satellite

imagery), while we are simply training the model on thermodynamic fields.
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Five-class model: Occluded fronts over CONUS domain

Figure 4.15: Same as Figure 4.1 but for occluded fronts over CONUS.
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Figure 4.16: Same as Figure 4.2 but for occluded fronts over USAD.
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Mixing ratio 35 (-0.047) 43 (-0.109) 45 (-0.124) 37 (-0.063) 26 (0.002)
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Relative humidity 13 (0.211) 14 (0.210) 16 (0.125) 18 (0.080) 12 (0.271)

Pressure/heights 38 (-0.063) 5 (0.730) 1 (1.473) 4 (0.846) 21 (0.039)

Theta-E 40 (-0.077) 39 (-0.070) 32 (-0.035) 24 (0.019) 30 (-0.025)

c) Variables on single levels

Occluded front permutations: CONUS

Figure 4.17: Same as Figure 4.3 but for occluded fronts over CONUS.
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Virtual temperature 47 (-0.066) 46 (-0.051) 22 (0.135) 31 (0.081) 49 (-0.143)
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Relative humidity 15 (0.193) 16 (0.187) 27 (0.114) 28 (0.101) 12 (0.225)

Pressure/heights 40 (0.018) 4 (0.890) 3 (1.549) 6 (0.765) 29 (0.087)

Theta-E 42 (0.011) 45 (-0.000) 35 (0.065) 17 (0.174) 26 (0.119)

c) Variables on single levels

Occluded front permutations: Unified Surface Analysis Domain

Figure 4.18: Same as Figure 4.4 but for occluded fronts over USAD.
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Drylines over the Great Plains of the United States were detected well by the

FCM. Using a 100 km neighborhood, 78.6% of drylines were located with a 24.8% FAR,

yielding a 100 km CSI of 0.624 over the CONUS domain (Figure 4.19). Performance was

lower over USAD as the FCM often predicts drylines in areas of Mexico where drylines

are not frequently drawn, leading to a higher FAR (Figure 4.20). Recent evidence

has suggested that some of the false alarms from the FCM may be due to changes in

forecasters’ drawing habits and that drylines were previously under-drawn by analysts

(Hosek, 2024). Our dryline permutation studies (Figures 4.21 and 4.22) show that

mixing ratio, v-wind, and specific humidity were the most important variables for

dryline detection. Drylines were the only front type predicted by the FCM to have a

moisture variable as its most important predictor (mixing ratio), which is physically

consistent with the fact that drylines are defined by sloped terrain and their often

extreme moisture gradients (Schaefer, 1986; Pietrycha and Rasmussen, 2004; Hoch

and Markowski, 2005). Specific humidity also had high importance, likely due to its

similar conservation properties compared to those of mixing ratio (both are conserved

following dry adiabatic motion and unaffected by changes in pressure or temperature).

However, given that specific humidity and mixing ratio have very similar properties,

it seems plausible that the model could predict drylines just as well with only one of

these variables, making mixing ratio or specific humidity far more important than the

permutation studies suggest. The high importance assigned to v-wind was a surprising

find, however we believe this can be tied to the nocturnal low-level jet’s southerly

component that accelerates on the moist side of the dryline as the dryline begins its

westward regression during the nocturnal hours (Parsons et al., 1991, 2000). Surface

pressure also had elevated importance; observations by Parsons et al. (1991); Ziegler

and Hane (1993) showed that high (low) pressure exists on the dry (moist) side of the

dryline. 900 and 850 hPa were determined to be the most important pressure levels for
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dryline detection, followed by the surface level. While we are unsure as to why higher

pressure levels (in terms of elevation) were preferred over lower levels, we think this

may be a result of diurnal heating effects that control the progression and regression

of the dryline (Schaefer, 1973) and the nocturnal low-level jet having a presence above

the 900 hPa level as found by Parsons et al. (1991).
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Five-class model: Drylines over CONUS domain

Figure 4.19: Same as Figure 4.1 but for drylines over CONUS.
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Figure 4.20: Same as Figure 4.2 but for drylines over USAD.
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c) Variables on single levels

Dryline permutations: CONUS

Figure 4.21: Same as Figure 4.3 but for drylines over CONUS.
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c) Variables on single levels

Dryline permutations: Unified Surface Analysis Domain

Figure 4.22: Same as Figure 4.4 but for drylines over USAD.
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4.1 Case Study: 2023 Christmas Winter Storm

With the goal of better understanding FCM’s strengths and weaknesses, we analyzed

FCM model output (Figure 4.23), mid-level water vapor satellite imagery (Figure 4.24),

WPC surface analyses (Figure 4.25), and observations at the surface and 850 hPa

(Figure 4.26, Figure 4.27) for four timesteps - 0000 and 1200 UTC on Dec 26 and

Dec 27, 2023. From Dec 24-27, 2023, a cyclone situated over the Midwest region of

the United States brought upwards of 12 inches (30.5 cm) of snow and 1.5 inches (3.8

cm) of ice across areas in South Dakota and Nebraska1. This precipitation was driven

by an occluded front that was wrapped around its parent surface cyclone, with the

precipitation occurring in the northwest quadrant of the cyclone. This is commonplace

for winter precipitation as the northwest quadrants of surface cyclones are coincident

with rising motion in frontogenetical circulations (Ganetis et al., 2018).

Starting with 0000 UTC Dec 26 2023, WPC surface analysis indicated an occlud-

ing cyclone over the Upper Midwest with a nearby cold frontal zone extending from

Southern Minnesota to Quebec (Figure 4.25a). The occluded front extends north of a

triple point where a cold front is overtaking a warm front to the east as suggested by

the WPC analysis and FCM predictions. This occlusion was well-defined with sharp

temperature gradients at the surface and 850 hPa and a notable wind shift and pressure

trough at the surface. The FCM had no issue finding the occluded front as calibrated

probabilities exceeded 80% along most of the frontal zone (Figure 4.23). The frontal

zone that extended from Southern Minnesota to Quebec was analyzed by WPC as a

stationary front in Minnesota and a cold front along the rest of its extent. Notably,

the FCM was able to highlight the transition from the stationary portion to the cold

portion of the frontal zone, though the transition is displaced from that indicated in

1https://www.weather.gov/abr/2023ChristmasStorm
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Figure 4.23: FCM predictions over CONUS using GFS model data: a) 0000 UTC Dec

26 2023, b) 1200 UTC Dec 26 2023, c) 0000 UTC Dec 27 2023, d) 1200 UTC Dec 27

2023. Note that all predictions use forecast hour 0 for the respective initialization times

and are calibrated to a 100 km neighborhood with filled contours at 10% intervals. (blue

= cold front, red = warm front, green = stationary front, purple = occluded front)

WPC’s surface analysis. FCM had lower probabilities along the stationary portion of

the zone closest to the center of the cyclone. FCM also identified a broad cold frontal

region in the Southeastern US attached to the southern end of the occluded front.

The model was likely less confident in this region due to a more diffuse temperature

gradient, weaker wind shift, and the lack of a prominent pressure trough. In fact, this

cold front has almost no presence at 850 hPa, though a weak moisture gradient can be

noted where WPC analyzed a cold front. Satellite imagery shows the cyclone in the

Upper Midwest with an attendant high pressure system off the New England coast.
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Figure 4.24: GOES-16 mid-level water vapor imagery (band 9) showing a cyclone over

CONUS: a) 0001 UTC Dec 26 2023, b) 1201 UTC Dec 26 2023, c) 0001 UTC Dec 27

2023, d) 1201 UTC Dec 27 2023.

Higher mid-level water vapor levels can be noted along and ahead of the occluded front,

where precipitation is ongoing.

At 0300 UTC Dec 26 (not shown), WPC analyzed the previous occluded front as a

cold front, likely due to air behind the front being much colder than air out ahead of it.

Since this air was north of an analyzed warm front, this suggests that the occluded front

analyzed three hours prior may have been a rare instance of a cold-type occlusion, which

occurs when air behind the former cold front undercuts warmer air ahead of the warm

front (Schultz et al., 2014). Confirming this hypothesis will require an in-depth analysis

of vertical cross sections along the occlusion, which is beyond the scope of this thesis.

This front (now analyzed as a cold front) collided with a stationary boundary sitting in

Southern Minnesota, at which point a new occlusion was noted in the 0600 UTC Dec 26
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Figure 4.25: WPC surface analyses over CONUS: a) 0000 UTC Dec 26 2023, b) 1200

UTC Dec 26 2023, c) 0000 UTC Dec 27 2023, d) 1200 UTC Dec 27 2023.

WPC surface analysis (not shown). At 1200 UTC on Dec 26, WPC’s surface analysis

shows a triple point in Western Wisconsin, with the a stationary front extending to the

ENE, a cold front extending down to the Florida panhandle, and an occluded front that

has started to wrap cyclonically around the low pressure center. The extension of the

occluded front around the cyclone is likely due to deformation of the thermal ridge as

described in Schultz and Vaughan (2011); Martin (1999). The occluded front is highly

visible on satellite in Minnesota and South Dakota with precipitation north and west of

the front, highlighted by the mid-level water vapor imagery. FCM was able to resolve

the beginning of the wrap-up process, placing calibrated probabilities exceeding 70%

around the northwest side of the low and identifying the occluded front responsible for

68



Figure 4.26: Objectively analyzed surface maps from the Storm Prediction Center: a)

0000 UTC Dec 26 2023, b) 1200 UTC Dec 26 2023, c) 0000 UTC Dec 27 2023, d) 1200

UTC Dec 27 2023.

heavy winter precipitation in the Upper Midwest. Observations at the surface and 850

hPa show a wind shift and sharp temperature gradient along the occluded front, and

a pressure trough is noted in the WPC surface analysis. The cold front across Ontario

and Quebec had lower probabilities from FCM, likely due to the front transitioning into

a quasi-stationary state as suggested by the 1200 UTC surface analysis from WPC.

This frontal zone was accompanied by a temperature gradient and strong convergence

of v-wind, consistent with our cold front permutation studies (see Figures 4.3 and 4.4).

The cold front extending down to the Florida panhandle also exhibited a temperature

gradient and wind shift and was detected by FCM with probabilities exceeding 80% in

areas along the front. The model was less confident in its predictions closer to the Gulf
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Figure 4.27: Objectively analyzed 850 hPa maps from the Storm Prediction Center:

a) 0000 UTC Dec 26 2023, b) 1200 UTC Dec 26 2023, c) 0000 UTC Dec 27 2023, d)

1200 UTC Dec 27 2023.

of Mexico as a secondary surface low with multiple fronts had developed in the state

of Georgia. The warm front analyzed by WPC extending east of this secondary low

was not detected, even though we believe the surface observations corroborate WPC’s

analysis of the warm front. We believe that a combination of the weak temperature

gradient along the warm front and the presence of other boundaries in close proximity

limited FCM’s ability to detect this warm front.

By 0000 UTC Dec 27, the occluded front was wrapped three-quarters of the way

around the cyclone, as evident by mid-level water vapor imagery. The dark corridor in

70



the mid-level water vapor imagery behind the occluded front is representative of the

dry conveyor belt, also known as the dry intrusion, which is a region of air that de-

scends from the upper troposphere (Browning, 1997). WPC analyzed this front along

the transition between the dry conveyor belt and high mid-level water vapor concentra-

tions coincident with winter precipitation. The occluded front had almost completely

disappeared from FCM model output, with the exceptions of small corridors over the

Upper Peninsula of Michigan and the Midwest, with the corridor in the Midwest being

immediately south of the surface low and attached to a newly-developed cold front in

the Southern Plains. Surface and 850 hPa analyses show that the temperature gradient

along the occluded front has weakened significantly, though some wind convergence is

still present along the occluded front in the Great Lakes region. FCM had a mix of

stationary, occluded, and cold front probabilities along the northernmost section of

the analyzed occluded front, likely due to the wind convergence being accompanied by

weak thermal gradients. The highest occluded front probabilities along this section of

the analyzed occluded front were located near the triple point over Michigan, but FCM

still determined much of this frontal zone to be of the stationary type. FCM output did

not exhibit any notable changes between 0000 UTC and 1200 UTC on Dec 27, however

the occluded front probabilities near the triple point disappeared. At 1200 UTC Dec

27 the occluded front is still visible on mid-level water vapor imagery and completely

wrapped around the low pressure center. While a subtle temperature gradient still ex-

ists at the surface and 850 hPa, there is no wind convergence that clearly demarcates

the weakening occlusion. We believe that including satellite imagery as input to a

future UNET3+ architecture will help with occluded front detection. Satellite imagery

could also help with the detection of other frontal types, as we learned that forecasters

often use satellite imagery to locate fronts where surface observations are few and far

between (e.g., oceans).
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4.2 Case Study: Saliency Maps

Saliency maps for our chosen case study of 0000 UTC Feb 4 2019 are shown in Fig-

ures 4.28 to 4.32, while the WPC fronts for this timestep are visualized in Figure 4.33.

Cold front predictions in Figure 4.28a show high probabilities for a cold front in the

Central US, with multiple cold fronts elsewhere across the domain. The Central US

cold front probabilities were nearly maxed out with very little saliency at all vertical

levels. This suggests that FCM is confident in its predictions of strong cold fronts,

meaning that small changes to the input variables would not impact the model’s in-

terpretation of the data. Our cold front permutation studies (Figures 4.1 and 4.4)

show that while v-wind and air temperature are the most important variables for cold

front detection, several other input variables are contributing to cold front detection.

We believe this is why strong cold fronts appear to have lower saliency than weaker

cold fronts. Another cold front was located off the coast of Southern California with

lower probabilities than the Central US cold front. This cold front was associated with

the highest saliency values seen across the whole domain at the time. Saliency was

very small along the axis of the cold front, suggesting that the model was confident

in the central location of the front, however the saliency jumps outside of the highest

probabilities. The model appears to be uncertain about the full extent of the cold

front, which is something we have noticed with low-probability cold fronts. Saliency

surrounding this front was highest at 1000 and 950 hPa, the two most important levels

for cold front detection according to our permutation studies.
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Figure 4.28: FCM cold front predictions over CONUS contoured at 10% intervals (a)

and saliency maps at b) the surface, c) 1000 hPa, d) 950 hPa, e) 900 hPa, and f) 850

hPa at 1800 UTC Feb 2 2019.
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Warm front predictions and saliency maps can be found in Figure 4.29. The model

identified a zonally-oriented warm front over the Great Lakes region, closely matching

the WPC surface analysis (Figure 4.33). The highest saliency values were at 1000 hPa

and north of the warm front. We believe this is because the model is uncertain about

how far north to extend the warm front due to weaker thermal gradients and wind

shifts often associated with warm fronts, especially over land. As mentioned earlier,

FCM warm front performance was higher over water than land, which we attributed to

less surface friction over water. This could be an explanation for why the warm front

in the Western Atlantic shown in Figure 4.29 has lower saliency than the warm front

over the Great Lakes; FCM could be more certain on its placement of oceanic warm

fronts since they tend to be stronger and more defined when surface friction is weak

(Hines and Mechoso, 1993). Like cold fronts, local minimums in saliency were observed

along the axes of oceanic warm fronts, and saliency was greater near the fronts where

probabilities were lower.

Stationary fronts exhibited some interesting characteristics with saliency. The pre-

dictions and saliency maps are shown in Figure 4.30. Stationary fronts with high

probabilities, especially those over the Rocky Mountains, were associated with low

saliency. This behavior was also observed with strong cold fronts and oceanic warm

fronts. The low saliency is likely a result of multiple variables working together. In

other words, a change to a particular variable may not substantially influence the

model’s interpretation of the data because there are several other variables being used

to generate high probabilities. FCM identified a possible stationary front in the Great

Lakes region, covering an area also highlighted as possibly containing a warm front (see

Figure 4.29a). High saliency was observed at various points along this region where

FCM produced conflicting probabilities. We found that saliency increased dramati-

cally in regions where stationary fronts were transitioning to cold or warm fronts. For
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Figure 4.29: Same as Figure 4.28 but for warm fronts.

example, as stationary front probabilities decrease with eastern extent in Maine, the

saliency increases along with the cold front probabilities shown in Figure 4.28. This

suggests there are features that greatly influence FCM’s interpretation of transitions

between frontal zones, and small changes to the surrounding environment could result

in the model favoring one front type over the others. In the Pacific Northwest, high

saliency can be noted where stationary front probabilities are lower than those to the
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northwest and southeast. This is another transition zone where FCM suggests a sta-

tionary front is turning into a cold front, which is a likely source for the high saliency.

The Pacific Northwest is a region where FCM has relatively poor cold front perfor-

mance when compared to the rest of the CONUS domain, likely due to oceanic cold

fronts moving onto land in the region, which could also make the model more sensitive

to environmental changes in this region.

Figure 4.30: Same as Figure 4.28 but for stationary fronts.
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Occluded front probabilities and saliency maps for the case study are visualized in

Figure 4.31. This case study only has one occluded front, however through analyses

of other case studies not shown in this thesis we were still able to come across some

intriguing results. A feature we have seen in many occluded fronts we have analyzed is a

maximum in saliency centered right over the triple point - the intersection between the

cold, warm, and occluded fronts associated with midlatitude cyclones. This “hot spot”

in occluded front saliency is where FCM cold, warm, and occluded front probabilities

all decrease close to the triple point. While this is not a surprising find, it does show

that FCM is behaving in a way that can be related to real processes observed in the

atmosphere. The saliency hot spot on the triple point is also where the cold front is

actively overrunning the warm front, extending the occluded front further south with

time. In other words, a small change to the environment near the triple point, such

as letting the cold front overrun a greater portion of the warm front, will likely result

in a sharp increase in occluded front probabilities where saliency at the triple point is

greatest. The vertical level with the highest saliency on the triple point was 950 hPa,

where geopotential height had the greatest importance across all 50 variable and level

combinations. This makes sense given that warm occlusions, the most common type

of occlusion, result in the occluded front being forced above the surface (Schultz and

Mass, 1993; Schultz et al., 2014).

Dryline predictions and saliency maps can be found in Figure 4.32. FCM identified

no drylines in this case study, however WPC analyzed a dryline in Texas (Figure 4.33).

Along the axis of the WPC dryline, saliency was relatively low, while saliency was

higher surrounding the dryline. As described above, this behavior was also noted with

cold fronts identified by FCM, however there was no dryline predicted by FCM. We

are unsure as to why saliency is low along the WPC dryline. The WPC analysis for

this case study (not shown) shows convergence along the dryline near its intersection
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Figure 4.31: Same as Figure 4.28 but for occluded fronts.

with the cold front in Northern Texas and Southern Oklahoma, however the moisture

gradients appear relatively weak, with surface dewpoints only changing by∼10°F across

the dryline analyzed by WPC. No prominent temperature gradients were present. We

believe that this result may reflect the ∼25 km resolution of the ERA5 data not being

sufficient to capture the convergence along the small portion of the dryline near the

Red River. We think that the high saliency surrounding the dryline is likely related
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to the weak moisture gradients - perhaps increasing the magnitude of the moisture

gradient along the dryline could increase FCM dryline probabilities in the region.

Figure 4.32: Same as Figure 4.28 but for drylines.
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Figure 4.33: Cold, warm, stationary, and occluded front and dryline positions in the

WPC analysis for 1800 UTC Feb 4 2019.
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Chapter 5

Conclusions and Future Work

Results within this thesis have shown that this new “five-class” model (FCM) can ef-

fectively detect cold, warm, stationary, and occluded fronts and drylines over CONUS

and NOAA’s Unified Surface Analysis domain. This model is a significant improve-

ment over our three-model system (TMS) highlighted in J23, with greater fractions of

fronts detected and lower false alarm rates. FCM outperforms TMS with cold, warm,

stationary, and occluded fronts at the five neighborhoods assessed (50, 100, 150, 200,

250 km), and all performance improvements were statistically significant at the 95%

confidence level. In terms of trainable parameters, FCM is 25 times smaller than each

of the models in TMS, which shows that more parameters do not always result in better

performance. Combining all frontal types into a single model and the addition of dry-

lines is likely a contributing factor to the performance improvements; FCM is able to

learn relationships and discern between all the frontal types, whereas TMS was unable

to directly discern between certain frontal types because cold and warm fronts were

separated from stationary and occluded fronts into their own models. Unfortunately,

stationary front false alarm rates are still very high and the Intertropical Convergence

Zone (ITCZ) is still being identified by FCM as a stationary front, which we may be

able to resolve by including the ITCZ inside the training domain. Wet-bulb tempera-

ture and θw were not included in the list of predictors for FCM as permutation studies

for TMS showed that these variables contributed very little to model performance,

however since FCM is just one model it is unclear if the exclusion of these variables
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had any impact on FCM’s performance. Assessing the true effect of wet-bulb temper-

ature and θw on FCM’s ability to detect fronts will require the training of a separate

UNET3+ architecture. Permutation studies performed on FCM were consistent with

those performed on TMS and showed that wind, temperature, and pressure and mois-

ture variables contributed to FCM’s performance, however some differences were noted,

particularly with stationary fronts. FCM permutation studies indicated that v-wind

negatively impacted stationary front performance, whereas TMS permutation studies

from the model predicting stationary and occluded fronts suggested that v-wind was an

important predictor for stationary fronts. The cause(s) behind this discrepancy are not

known, however we believe that results from permutation studies conducted on FCM

are more representative of variables’ true contributions to front detection since FCM

is able to directly learn relationships between the five frontal types it was trained to

predict. We think that accounting for correlations between the input variables through

greater data augmentation could improve the performance of future model architec-

tures. Analysis of FCM predictions with saliency maps shows that model behavior can

be directly related to physical processes observed in the real atmosphere. While the

saliency maps cannot explain all model behaviors, combining them with permutation

studies gave some insight as to what regions of the domain could greatly affect FCM’s

interpretation of the underlying frontal types.

We achieved our goal of operationalizing FCM as it is now used operationally at

WPC. Over the coming months we hope to get constructive feedback on how effectively

forecasters are able to use our new algorithm to improve identification and classifica-

tion of frontal boundaries. This feedback will help us make important decisions about

how we structure and train future algorithms for identifying fronts. We are also collab-

orating with forecasters at The Weather Company (TWC) to assist them in drawing

fronts globally out to 120 hours lead-time, a labor-intensive process that motivated
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TWC to adopt our FCM algorithm and use real-time Global Forecast System (GFS)

and European Centre for Medium-Range Weather Forecasts (ECMWF) model data

as input to FCM to highlight frontal zones across the globe. While no performance

statistics have been calculated globally due to the lack of available ground truth front

labels, initial impressions of performance in the Southern Hemisphere are poor, sug-

gesting that we need a larger domain of training data in order to resolve fronts outside

of USAD. We hope to eventually develop an algorithm that is able to resolve fronts

across the globe with spatially-uniform performance; such could enable us to perform

long-term climatologies of different types of frontal boundaries across the globe.

Our future work will include training new model architectures on high-resolution

model data such as the North American Mesoscale Model (NAM), High Resolution

Rapid Refresh (HRRR) model, and the Rapid Refresh Forecast System (RRFS) model

that is currently under development. HRRR and RRFS are convective-allowing models

on 3-km grids, so small-scale convective feedbacks will likely complicate the training

of future algorithms with HRRR and RRFS data as input. However, a front detection

algorithm trained on high-resolution data could have benefits over ERA5 reanalysis,

such as being able to precisely locate boundaries that can influence storm-scale pro-

cesses like tornadogenesis (e.g., Maddox et al., 1980; Markowski et al., 1998; Sills et al.,

2004; Childs and Schumacher, 2019). With the exponential growth of machine learn-

ing in meteorological research (Chase et al., 2022), future high-resolution deep learning

models could also be used to train other model architectures to predict fronts as many

recently developed machine learning algorithms have been able to outperform tradi-

tional Numerical Weather Prediction (NWP) at forecasting precipitation and variables

such as temperature, specific humidity, wind speed, and geopotential (e.g., Sønderby

et al., 2020; Bi et al., 2022; Andrychowicz et al., 2023; Zhang et al., 2023). Permutation

studies like those performed in this thesis could be used to increase our understanding
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of fronts and improve existing NWP models, eventually providing the basis for better

reanalysis datasets that can be used to train future machine learning models.

ERA5 data on single and pressure levels was downloaded from the Copernicus

Climate Change Service (C3S) Climate Data Store, and can be found via Hersbach

et al. (2018). Frontal data derived from the WPC analyses can be found via NOAA

(2023). Python code used in this project is available in our GitHub repository at

https://github.com/ai2es/fronts.
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