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ABSTRACT 

This dissertation examines the impact of shifting climatic conditions on the accuracy and 

reliability of drought characterization in the contiguous United States using the Standardized 

Precipitation Index (SPI). Each chapter employs climate divisional precipitation data from the 

U.S. Climate Divisional Database to investigate the dynamics of drought and pluvial events using 

various 30- to 60-year climatological reference periods. 

Chapter 2 investigates discrepancies found in NOAA's Climate Divisional SPI Dataset, revealing 

significant over- and underestimations of drought frequency, suggesting the presence of bias 

towards drought or pluvial conditions in certain regions. Chapter 3 explores how the choice of 

climatological reference period influences the SPI's characterization of drought and pluvial 

occurrence and severity, highlighting the sensitivity of drought indices to their underlying 

climatological reference periods. 

Chapter 4 expands on the operational drought monitoring implications of transitioning between 

reference periods with differing precipitation regimes. Through comprehensive analyses and 

comparisons against various climatological reference periods, this dissertation uncovers critical 

insights into the SPI's performance and its dependence on precipitation regimes. The results of 

this dissertation emphasize the need for adaptive strategies in drought monitoring against the 

backdrop of a changing climate. 
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CHAPTER 1: INTRODUCTION 

Droughts are among the most damaging and costly natural disasters, posing a major threat to 

agricultural industries, socio-economic development, and the environment. Drought vulnerability 

in the United States is increasing due to numerous factors such as population growth and shifting 

populations to water scarce regions, land-use changes, increased water demand, and a changing 

global climate (Wilhite et al., 2014). Further, droughts are among the most complex of natural 

hazards, because unlike other natural hazards such as hurricanes or tornadoes, droughts do not 

have a definitive onset or ending, their emergence and recession tend to be very slow, their 

effects manifest in a multitude of ways that impact every aspect of the hydrologic cycle, and they 

are regionally subjective. A drought in the northeastern U.S. would likely still yield above 

average precipitation values in the desert southwest, for example. Thus, despite the seemingly 

straightforward nature of drought, its complexities render the phenomenon as one of the most 

difficult natural hazards to monitor, notably as it pertains to operational drought monitoring.  

The complexity of drought is further illustrated by the vast network of indicators, indices, and 

monitoring systems currently used to evaluate its effects on key components of the hydrologic 

cycle. For instance, not only are there over 150 conceptual definitions of drought identified in the 

scientific literature (Wilhite and Gantz, 1985), but the World Meteorological Organization 

(WMO) and Global Water Partnership’s (GWP) handbook describing “some of the most 

commonly used” operational drought monitoring indices and indicators in use today provides an 

overview of 50 different monitoring tools (WMO and GWP, 2016). Further, Niemeyer (2008) 

identified over 150 drought indices in use, and Zargar et al. (2011) reviewed 74 drought indices 

to provide researchers with a comprehensive description of select drought monitoring tools. 

Undoubtedly, drought indices are indispensable both operationally and in the research setting as 
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they provide quantitative measures of drought onset, recession, and severity, but should the list 

of indices be this extensive? Is it helpful to have such a large selection of tools that are all geared 

toward the common goal of quantifying differing characteristics of drought? The complexity of 

drought as well as the wide range of economic sectors impacted partially explains the many 

quantitative measures of drought (Heim, 2002). Nonetheless, a percentage of indices published 

in scientific literature appear more closely aligned with academic pursuit rather than with the 

practitioner in mind. 

Niemeyer (2008) argues that the “market of drought indices is slowly saturating”, stating that 

most progress in the development of new indices is related to the emerging availability of novel 

remote sensing information such as development of single new sensors and the combination of 

different sensors. Zargar et al. (2011) came to a similar conclusion, attributing the ever-

increasing number of published drought indices to technological development, notably in the 

field of remote sensing. Nonetheless, attempting to develop or identify a universal drought index 

is as fruitless as attempting to develop a universal conceptual definition of drought. 

Heim’s review of twentieth century drought indices suggests that the count of indices has 

increased both with the availability of new data sources and in response to an improved 

understanding of drought (Heim, 2002). As it pertains to the latter, the continued development of 

new drought indices is logical. However, the present study argues that, rather than investing 

resources in the continued development of additional drought indices as new datasets become 

available, the drought monitoring and research community should instead focus on improving 

the most pervasive operational drought indices in accordance with our improved understanding 

of drought and our climate system. For example, Wells et al. (2004) improved upon the Palmer 
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Drought Severity Index (PDSI) by replacing the empirical constants in the PDSI’s computation 

with dynamically calculated values, thereby making the index (named the self-calibrating PDSI 

or sc-PDSI) spatially comparable. Vicente-Serrano et al. (2010) offered an improvement in the 

sc-PDSI in their development of the Standardized Precipitation Evapotranspiration Index (SPEI). 

Like the sc-PDSI, the SPEI also involves a climatic water balance, however unlike the sc-PDSI, 

the SPEI is multi-scalar which is imperative in operational drought monitoring.    

More recently, studies have begun to contend with the issue of stationarity, or the lack thereof, in 

the realm of drought monitoring. Stationarity is the assumption that environmental variables 

fluctuate within a static envelope of variability and can be modeled with a time-invariant 

probability density function that is estimated from the instrumental record (Milly et al., 2008). 

The assumption of stationarity is readily apparent in indices such as the Standardized 

Precipitation Index (SPI), which is a key tool used for operational drought monitoring (Svoboda 

et al., 2002; NOAA NCEI, 2024) and one which references a pre-defined and climatically 

representative base period.  

The SPI was developed by McKee et al. (1993) and is based on the probability of accumulating a 

given amount of precipitation over a specified timeframe, relative to the base period. The SPI is 

essentially a z-score, thus moisture anomalies are defined in terms of the number of standard 

deviations either above or below the base period’s average – an SPI value of zero signifies the 

average precipitation amount, and the index becomes more negative (positive) as drought 

(pluvial) conditions become more severe. Since its development in the early 1990s, the SPI has 

been adopted as a key tool for operational drought monitoring (Svoboda et al., 2002; NOAA 

NCEI, 2024). 



4  

The SPI is well established not only as an operational tool but also in the research setting. From 

investigating the effect of timescale on the spatial patterns of drought frequency and duration 

(Kangas and Brown, 2007), to constructing a global drought frequency dataset (Spinoni et al., 

2014) or exploring the spatiotemporal variabilities of drought severity (Livada and 

Assimakopoulos, 2007), the SPI has proven to be a statistically robust research tool. Wu et al. 

(2007) investigated how regional climatologies impact the underlying statistics of the SPI, while 

Wu et al. (2005) investigated whether the length of record of the underlying base period impacts 

the SPI. Guttman (1999) and Quiring (2009) investigated the effect that the probability density function 

used for normalizing precipitation has on the SPI. 

In the context of climate non-stationarity, the impact that the underlying base period has on the 

characterization of drought according to the SPI has been investigated. Thomas et al. (2023) 

found that updating the base period from 1981-2010 to 1991-2020 resulted in fewer but more 

severe precipitation extremes. Cammalleri et al. (2022) evaluated the impact of transitioning 

from the 1981-2010 base period to the 1991-2020 base period on the value of the SPI, finding 

that drought classification changed in accordance with changing the base period. 

Other studies have addressed the impact of a nonstationary climate on drought monitoring 

through adjusting the computational approach of the SPI. Stagge and Sung (2022), for example, 

used Bayesian splines to develop a nonstationary SPI model that could measure drought relative 

to a changing climate. However, novel approaches such as that suggested by Stagge and Sung 

(2022) would necessitate a significant change in the established drought monitoring practices. 

For this reason, other studies have advocated for the continued use of the 30-year moving 

window approach as it simultaneously captures climate non-stationarity while also leveraging the 
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existing infrastructure for drought monitoring (Hoylman et al., 2022). 

This study investigates the dynamic nature of drought monitoring with the SPI within the context 

of nonstationary precipitation regimes. Specific research questions in this study include the 

following: 

• How do operational SPI databases, such as those maintained by the National Centers for 

Environmental Information (NCEI), compare to research SPI databases? 

• Does the choice of base period alter the severity and frequency of drought and pluvial 

events captured by the SPI? 

• How does transitioning between base periods with overlapping precipitation data impact 

contemporary drought characterization? 

The SPI is calculated using monthly average precipitation data at the climate division scale from 

the U.S. Climate Divisional Dataset. This dataset was selected because it offers a long-term, 

serially complete record of precipitation data for the contiguous U.S., with data spanning from 

1895 – present. The nClimDiv dataset is also spatially coherent, making it an optimal tool to 

study large scale features such as drought. Chapter 2 provides a comprehensive overview of the 

SPI computational procedure and explores inconsistencies uncovered in the NOAA/NCEI SPI 

database. Chapter 3 delves into the effect that a changing climate has on the SPI by leveraging a 

series of 30-year moving windows to characterize modern-day drought conditions. The 

precipitation regimes for the six regions of the contiguous United States are deconstructed in 

order to elaborate on the base period’s impact on the characterization of drought by the SPI. 

Chapter 4 investigates the operational impacts of transitioning between base periods with 

differing precipitation regimes. The study concludes in Chapter 5 with a summary of key 
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findings, a discussion of this study’s limitations, and recommendations for future work and best 

practices based on the results of this study. 
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CHAPTER 2: MAJOR OVER- AND UNDERESTIMATION OF DROUGHT FOUND IN NOAA’S 
CLIMATE DIVISIONAL SPI DATASET 

 
Abstract: Evaluation of the standardized precipitation index (SPI) dataset published monthly in 
the National Oceanic and Atmospheric Administration/National Centers for Environmental 
Information (NOAA/NCEI) climate divisional database revealed that drought frequency is being 
mischaracterized in climate divisions across the United States. The 3- and 6-month September 
SPI values were downloaded from the database for all years between 1931 and 2019; the SPI was 
also calculated for the same time scales and span of years following the SPI method laid out by 
NOAA/NCEI. Drought frequency is characterized as the total number of years that the SPI fell 
below 21. SPI values across 1931–90, the calibration period cited by NOAA/NCEI, showed 
regional patterns in climate divisions that are biased toward or away from drought, according to 
the average values of the SPI. For both time scales examined, the majority of the climate 
divisions in the central, Midwest, and northeastern United States showed negative averages, 
indicating bias toward drought, whereas climate divisions in the western United States, the 
northern Midwest, and parts of the Southeast and Texas had positive averages, indicating bias 
away from drought. The standard deviation of the SPI also differed from the expected value of 1. 
These regional patterns in the NCEI’s SPI values are the result of a different (sliding) calibration 
period, 1895–2019, instead of the cited standardized period of 1931–90. The authors recommend 
that the NCEI modify its SPI computational procedure to reflect the best practices identified in 
the benchmark papers, namely, a fixed baseline period. 
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2.1 Introduction 
a. Overview 

The standardized precipitation index (SPI) is a probability-based moisture index designed to 

measure whether moisture conditions are normal, abnormally dry, or abnormally wet, relative to 

a predefined calibration, or base, period. The SPI was developed by McKee et al. (1993) to 

address the need for a drought index that had few data requirements and that accommodated for 

the fact that our key usable water sources (soil moisture, groundwater, snowpack, streamflow, 

and reservoir storage) respond to moisture deficits and the eventual arrival of precipitation on a 

distinct time scale. The SPI is based on the probability of accumulating a given amount of 

precipitation in a specified period of time, ranging from 1 to 24 months, relative to a predefined 

base period. The acquired cumulative probability values associated with each precipitation value 

are converted to the standard normal random variable Z, which allows for the estimation of both 

dry and wet conditions. Because the SPI is based on the standard normal distribution, an SPI 

value of zero signifies the average precipitation amount, relative to the base period, and the index 

becomes more negative or positive as dry or wet conditions, respectively, become more severe 

(Svoboda et al. 2012). 

Despite its computation, the SPI can be nonnormally distributed. For example, the SPI becomes 

lower bounded and therefore nonnormally distributed when there is a high frequency of no 

precipitation (i.e., values of zero) because this reduces the size of the dataset used to construct 

the SPI (Wu et al. 2007). The size of the dataset is a key limitation in the ability of the SPI to 

accurately portray drought/wet conditions because it is a probability-related index; the 

parameters of the SPI’s underlying probability distribution are sensitive to the length of record, 

particularly if the precipitation pattern changes between lengths of record (Guttman 1994; Wu et 

al. 2005). Hence, in arid climates or those climates with a distinct seasonality to the precipitation 
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regime, the SPI is prone to erroneous results and must be used with caution. Nonetheless, the SPI 

offers several advantages for operational use, including the fact that it requires only precipitation 

data to be computed, it can be calculated at various time scales, enabling it to capture both short 

and long-term drought and abnormal wetness, and it is normalized with respect to location, 

allowing it to be comparable across regions with different climates (Keyantash and NCAR Staff 

2018). For these reasons, the SPI is widely used operationally in the United States. For example, 

it is one of the key drought indicators used by the U.S. Drought Monitor (USDM), which is 

considered to be the standard for operational drought monitoring in the United States (Svoboda 

et al. 2002). Similarly, the National Centers for Environmental Information (NCEI), formerly 

called the National Climatic Data Center, releases monthly State of the Climate Reports that 

provide detailed drought discussions according to what is indicated by the climate divisional SPI 

and Palmer drought index, among other drought indicators, available through the NOAA/NCEI 

climate divisional database (nClimDiv; Vose et al. 2014a). Furthermore, in 2011 the SPI was 

recommended through the Lincoln Declaration on Drought as the internationally preferred index 

to be used by all national meteorological and hydrological services to characterize 

meteorological droughts (Hayes et al. 2011). Modest data requirements and temporal flexibility 

of the SPI make it also popular in a research setting. Kangas and Brown (2007) used the SPI at 

various accumulation periods to investigate the effect of time scale on the spatial patterns of 

drought frequency and duration. Spinoni et al. (2014) used the 12-month SPI to construct a 

global drought frequency dataset, with the 12-month accumulation period accommodating the 

various precipitation regimes around the world. Using the 3-, 6-, and 12-month SPI, Livada and 

Assimakopoulos (2007) explored the spatiotemporal variability of drought intensity and duration 

in Greece. Furthermore, the temporal flexibility of the SPI also helped Guttman (1999) clarify 
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the time scale associated with the Palmer drought index. The objectives of this study stem from 

an analysis of drought frequency according to the USDM dataset. During the analysis of the SPI, 

which is one of the drought indicators examined by the authors of the USDM to construct the 

weekly USDM maps, inconsistencies were identified between the theoretical drought frequency 

values for a normalized index and the drought frequency values obtained from the NCEI’s SPI 

dataset, prompting a careful examination of the dataset across its 1931–90 calibration period (see 

the NCEI document found online at ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/divisional-

readme.txt). Specifically, the objectives of this study are to demonstrate that the NCEI’s SPI 

dataset is not in agreement with the standard normal distribution across the calibration period 

according to the average and standard deviation of each climate division’s SPI value across that 

period. This was found to impact the characterization of drought frequency throughout the 

contiguous United States across the base period. Consultation with the point of contact for the 

NCEI’s drought datasets revealed that the NCEI’s SPI values do not align with the standard 

normal distribution because the NCEI uses a sliding calibration period, 1895–2019, instead of 

the cited standardized period of 1931–90. The following subsection provides background 

information on the SPI; sections 2 and 3 are dedicated to this study’s data and methods, 

respectively; section 4 provides the results and section 5 documents studies that have utilized the 

NOAA/NCEI SPI dataset in recent years. Section 6 provides a brief summary of the results and 

conclusions. 

b. Background on the SPI 

The SPI is a Z-score-like measurement of accumulated precipitation, identifying the number of 

standard deviations above or below the mean (precipitation) of the base period. Positive SPI 

values indicate greater than average precipitation and negative values indicate less than average 



13  

precipitation. Figure 1 illustrates the relationship of the SPI to the standard normal distribution 

and following the statistical theory of the normal distribution, it demonstrates that a location is 

expected to be on the dry end of the spectrum 16% of the time and on the wet end of the 

spectrum 16% of the time. Note that an SPI value between -1 and 1 is considered neutral; a value 

less than -1 is considered to be dry; a value greater than 1 is considered to be wet. 

[Figure 1] 

Because precipitation frequency distributions typically are not normally distributed, several 

statistical procedures are used to transform accumulated precipitation values to an SPI. The basic 

workflow first involves the selection of a precipitation accumulation period, which is directly 

relevant to the type of drought one is interested in identifying. For instance, the 3-month SPI is a 

viable accumulation period in the analysis of agricultural or soil moisture drought (Svoboda et al. 

2012). The 3-month SPI calculated for the month of May utilizes the total accumulated 

precipitation for March, April, and May. Next is the selection of a base period, which is a 

comparison period used to establish whether current conditions are normal, abnormally dry, or 

abnormally wet. The base period should ideally contain at least 30 years of continuous data that 

includes one long-term drought and one long-term wet period (Karl 1986; McKee et al. 1993; 

Edwards and McKee 1997). Guttman (1994) recommended that up to 80 years of data be used 

for reliable results in the estimation of extreme events. Following the selection of the 

accumulation and base periods, a probability density function is chosen that best fits the long-

term precipitation dataset. The cumulative probability of each precipitation value is calculated 

using the estimated parameters associated with the probability density function for each time 

scale of interest (1-, 3-, 6-month, etc.). Last, an equiprobability transformation is made in order 

to convert the cumulative probability to the standard normal random variable Z with a mean of 
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zero and standard deviation of 1, yielding the SPI. 

2.2 Data 
NCEI SPI and precipitation 

The contiguous United States consists of 344 climate divisions, with boundaries constructed 

through considerations of drainage basins, crop districts, climatic conditions, and county lines; 

each state contains between 3 and 10 climate divisions (Guttman and Quayle 1996). Divisional 

values of temperature and precipitation, from which the drought indices published in nClimDiv 

are derived, are estimated from area-weighted averages of grid point estimates that are 

interpolated from station data (Vose et al. 2014b). Climate divisional dataset files are available 

for download in ‘‘TXT,’’ ‘‘MAP,’’ and ‘‘KMZ’’ file formats.  

SPI datasets were downloaded at 3- and 6-month time scales for the 48 contiguous United States 

from nClimDiv for all years from 1931 to 2019. The 3- and 6-month SPI time scales were 

selected for their relevance in capturing the short- and medium-term drought conditions (i.e., 

agricultural and meteorological drought) that impact the United States, and also because they are 

among the time scales used by NOAA/NCEI (hereinafter NCEI) to issue monthly State of the 

Climate Reports. The SPI at each time scale was downloaded using September as the ending 

period for the moving-total precipitation. September was selected to investigate end-of-water-

year drought conditions. 

Precipitation data were downloaded for each climate division to calculate the 3- and 6-month 

September SPI. The NCEI cites a base period of 1931–90 for all drought data posted in the 

nClimDiv database and this base period is also used in the calculated SPI dataset for consistency. 

2.3 Methods 
a. SPI computational procedure 

The NCEI precipitation data are used to calculate the SPI. The NCEI fits monthly climate 
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division precipitation data to the Pearson type-III (PE3) probability density function for all 

precipitation values x > 0: 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥−𝜉𝜉)𝛼𝛼−1𝑒𝑒𝑥𝑥𝑒𝑒−(𝑥𝑥−𝜉𝜉)/𝛽𝛽
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

 (1) 

for 𝛾𝛾 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 ≤ 𝑥𝑥 < ∞      

and 

𝑓𝑓(𝑥𝑥) = (𝜉𝜉−𝑥𝑥)𝛼𝛼−1𝑒𝑒𝑥𝑥𝑒𝑒−(𝜉𝜉−𝑥𝑥)/𝛽𝛽
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

 (2) 

for 

𝛾𝛾 <  0 𝑎𝑎𝑎𝑎𝑎𝑎 −∞ < 𝑥𝑥 ≤ 𝜉𝜉      

where α, β, and ξ are the shape, scale, and location parameters, respectively, and are respectively 

given by  

𝛼𝛼 = 4
𝛾𝛾2

,   (3) 

𝛽𝛽 = 12𝜎𝜎|𝛾𝛾|   (4) 
 
and 
   
𝜉𝜉 = 𝜇𝜇 − 2𝜎𝜎/𝛾𝛾  (5) 
 

The Γ(α) in Eqs. (1) and (2) denotes the gamma function (GAM). The method of L-moments is 

used by the NCEI for estimation of the PE3’s location, shape, and scale parameters. The Fortran 

computer program SPICOMPUTE by N. Guttman outlines the computational procedure used to 

obtain the NCEI SPI values and can be found online 

(http://www1.ncdc.noaa.gov/pub/data/software/palmer/spi.f). Here, the same probability density 

function and SPI computational procedure outlined in SPICOMPUTE are applied. See appendix 

B for a thorough description of the SPI computational procedure using the PE3 distribution and 
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the method of L-moments for parameter estimation. 

While the SPI is unbounded in theory, Guttman (1999) recommends truncating the cumulative 

probabilities from 0.001 to 0.999, which bounds the SPI between ±3.09. The estimation of 

extreme probabilities based on sample sizes < 100 may not be reliable. These bounds are 

enforced in the SPICOMPUTE FORTRAN code and are also applied in this study’s method for 

consistency. 

The ability of the PE3 probability distribution to accurately model the precipitation time series 

was evaluated using a two-sample Kolmogorov–Smirnov test and Pearson’s chi-squared test, 

with a null hypothesis that the data comes from the normal probability distribution, at a 

significance level of 0.05. 

b. Evaluation of the NCEI SPI against the derived PE3 SPI 

To understand how the downloaded SPI values compared with the PE3-calculated SPI values 

based on the NCEI’s precipitation data, several different experiments were designed. 

1.) Comparison of the average and standard deviation of SPI 

At each time scale and for each climate division, the average and standard deviation of the 

downloaded and calculated SPI values are taken across the base period. These values are 

expected to come out to 0 and 1, respectively, in accordance with the standard normal 

distribution. These criteria are used to determine whether or not a climate division’s SPI time 

series agrees with the standard normal distribution. Average values below −0.01 are considered 

to be negatively biased, and values above 0.01 are considered to be positively biased. Likewise, a 

standard deviation below 0.99 represents a precipitation regime with a narrower distribution than 

the standard normal distribution, whereas a value above 1.01 is a wider distribution. This study 

compares the average and standard deviation of the NCEI SPI and the calculated SPI, based on 
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the PE3 distribution, for all climate divisions. Note that the expectation is that all means are 0 

and all standard deviations are 1. In addition, it is expected that the NCEI SPI and the PE3 SPI 

values be identical because of the reported NCEI SPI calculation method. 

The impact on drought detection of a climate division with a negative average SPI value across 

the base period is that the climate division is biased toward indicating drought conditions. In 

contrast, a positive average SPI value indicates the climate division is biased away from drought, 

meaning it is more difficult for the index to detect genuine drought in that climate division (Figs. 

2a, b, respectively). The impact on drought detection of a climate division with a wider 

distribution than the standard normal distribution (i.e., a standard deviation greater than 1) is that 

it is more difficult for the index to move between levels of drought than it would be if the 

distribution was truly normal (Fig. 2c). Likewise, the impact on drought detection of having a 

standard deviation below 1 is that it is overly easy for the index to move between levels of 

drought intensity (Fig. 2d). In statistical terminology, these adjustments to the distribution width 

represent changes to the kurtosis of the distribution. 

[Figure 2] 

2.) Comparison of NCEI SPI and PE3 SPI by climate division across time 

Three scatterplots were created using the 6-month NCEI SPI dataset plotted against the 

calculated 6-month SPI dataset. A scatterplot was created for a climate division with a negative 

average, a climate division with a positive average and a climate division with an average of 0 

across the base period. Each scatterplot consists of 120 points, 60 for each dataset. A regression 

analysis was performed with a significance level of 0.05 to determine a relationship between the 

two datasets. The purpose of this analysis was to determine how the NCEI dataset compares with 

the calculated dataset across the entire range of SPI values comprising the base period. For 
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brevity, these results focus on the 6-month SPI as the 3-month SPI results were effectively 

identical. 

From the standard normal distribution (Fig. 1), it is expected that approximately 9 drought years 

occur (16% of the time) across the 60-yr base period for each climate division. The same is 

expected for abnormally wet conditions. 

To quantify the differences between the SPI values downloaded from the nClimDiv database 

(hereinafter referred to as NCEI3 for the 3-month SPI and NCEI6 for the 6-month SPI) and the 

calculated SPI values (abbreviated Calc3 and Calc6), the difference is taken between the total 

number of dry or wet years among the two datasets: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁3–𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶3   (6) 

and 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁6–𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶6   (7) 

A negative or positive value respectively indicates that more dry or wet years were estimated by 

the Calc SPI dataset, and a value of zero indicates that there is no difference between the two 

datasets. 

2.4 Results 
a. Goodness of fit 

Goodness-of-fit tests were performed to confirm the normality of the Calc3 and Calc6 datasets. 

The goodness-of-fit tests were the Kolmogorov–Smirnov and Pearson’s chi-squared tests. 

Hypothesis tests for these two approaches produced p values of 1 for every climate division and 

in every time scale analyzed, indicating the PE3 probability distribution successfully transforms 

the original precipitation time series into a normal distribution. 

b. 1931–90 average and standard deviation of the SPI 

If the NCEI3 data behave as expected, average SPI values should equal 0 with a standard 
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deviation of 1 for each climate division. Instead, this study found that 114 (33.1%) of the 344 

climate divisions across the conterminous United States had a positive average SPI across the 

base period. The bulk of these climate divisions are concentrated across the western United 

States, with smaller groups of positive average values appearing along the Gulf Coast and 

Midwest (Fig. 3a). The same pattern is also shown by the NCEI6 data, although to a lesser 

extent, with 75 (21.8%) climate divisions showing a positive average (Fig. 3e). More climate 

divisions with negative averages were found across the base period [200 (56.1%) climate 

divisions in NCEI3 and 232 (67.4%) climate divisions in NCEI6]. The spatial pattern of negative 

averages is the same in both datasets—the majority of the climate divisions in the central and 

northeastern United States showed negative averages to varying extents. 

[Figure 3] 

The western United States shows the greatest grouping of positive averages whereas spatial 

grouping of negative averages is prevalent in the south-central, Midwest, and northeastern 

United States according to the NCEI3 and NCEI6 datasets. 

Although the Calc3 and Calc6 datasets also contain climate divisions with averages that are 

different from 0 (Figs. 3c and 3g, respectively), the spatial patterns seen in NCEI3 and NCEI6 

could not be replicated at either time scale. Rather, only 16 (4.7%) climate divisions with 

positive and 3 (0.9%) climate divisions with negative averages appear in the Calc3 dataset with 3 

(0.9%) and 7 (2.0%) in the Calc6 dataset, when following the PE3 methodology. The spatial 

distribution of the climate divisions with averages different from zero according to the Calc3 and 

Calc6 datasets appears to be random, with some grouping of positive averages for climate 

divisions in Northern California and eastern Oregon. 

Spatial grouping of standard deviations of the SPI values different from 1 across the base period 
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is also evident in the NCEI3 and NCEI6 datasets (Figs. 3b and 3f, respectively). In total, 107 

(31.1%) climate divisions have distributions wider than the standard normal distribution and 196 

(57.0%) have distributions narrower than the standard normal distribution according to the 

NCEI3 dataset. Similarly, 108 (31.4%) have distributions wider than the standard normal 

distribution and 201 (58.4%) climate divisions have distributions narrower than the standard 

normal distribution in the NCEI6 dataset. So, the two datasets exhibit very similar biases in the 

shapes of the SPI distributions, seemingly independent of the time scale. In both datasets, the 

standard deviation is above 1 in climate divisions in the western and midwestern United States. 

Interestingly, the northeastern United States switches between a standard deviation above 1 in 

the NCEI3 dataset to a value below 1 in the NCEI6 dataset, suggesting a seasonal component to 

the distributions. This is also seen in a group of climate divisions in Nevada, Utah, Idaho, and 

Oregon. Although not shown here, examination of the NCEI3 dataset for March and June also 

revealed a seasonal component in the spatial patterns of averages and standard deviations. This 

suggests that, according to the NCEI dataset, whether a climate division will be biased toward or 

away from drought is dependent on the ending period for the moving-total precipitation. 

For many climate divisions across the United States in the Calc3 and Calc6 datasets, the standard 

deviation of SPI values also differs from 1, although to a greater degree in the NCEI datasets 

(Figs. 3d and 3h, respectively). In total this study found 54 (15.7%) climate divisions with a 

standard deviation wider and 164 (47.7%) with a standard deviation narrower than the standard 

normal distribution in Calc3; this study found 53 (163) climate divisions with a standard 

deviation wider (narrower) than the standard normal distribution in Calc6. As was the case for 

the mean SPI computations, the proportion of standard deviations above and below the reference 

value (i.e., 1) were very similar across the 3- and 6-month SPI periods. Thus, it does not appear 
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that the averaging period is responsible for the fluctuations. This is addressed further in the 

appendix. Nonetheless, regional patterns in the standard deviations above or below 1 are not seen 

in the Calc3 or Calc6 results. 

c. Relationship between NCEI6 and Calc6, 1931–90 

Figure 4 plots NCEI6 against the Calc6 dataset for climate divisions that have a negative average 

(Fig. 4a), positive average (Fig. 4b) and an average of zero (Fig. 4c) according to the NCEI6 

dataset shown in Fig. 3a. The selected climate divisions are shown in bold in the map insets. 

[Figure 4] 

Figures 4a and 4b show disagreements between the NCEI6 and Calc6 datasets along the entire 

range of SPI values. There is a nearly 1:1 relationship between the two dataset values 

(correlation coefficient squared R2 = 0.99), but the intercept is below (Fig. 4a) and above (Fig. 

4b) zero with a slope less than 1. The fact that there is not a lot of variation along the regression 

lines indicates that the two SPI datasets were derived from the same underlying precipitation 

dataset, otherwise there would be more variation along the line. For the climate division in 

Nebraska (Fig. 4a), the intercept is −0.29 with a slope of 0.96, which is notably lower than 1. In 

terms of drought and wet events, this indicates that NCEI6 is underestimating the magnitude of 

precipitation events and overestimating the magnitude of drought events. For the climate division 

in Nevada (Fig. 4b), the intercept is 0.13 with a slope of 0.90, which is significantly lower than 1. 

In terms of drought and wet events, this indicates that NCEI6 is underestimating the magnitude 

of dry events and overestimating the magnitude of wet events. In contrast, the climate division in 

Oregon (Fig. 4c) shows a 1:1 relationship (R2 = 1) with a regression line centered over zero and a 

slope equal to 1, indicating that NCEI6 and Calc6 are estimating dry and wet events at the same 

magnitude. 
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d. 1931–90 total number of dry and wet years 

Climate divisions in the central, Midwest, and northeastern United States are dry biased with 

standard deviations greater than 1 according to the NCEI3 and NCEI6 datasets, making it more 

difficult for the SPI to detect wet conditions relative to the standard normal distribution. The 

effects of the dry bias in these regions are shown in Fig. 5a, which illustrates the total number of 

dry years that occurred across the 1931–90 base period according to the NCEI6 dataset. 

Unsurprisingly, each of the three regions exhibits a greater number of dry years than expected. 

[Figure 5] 

Climate divisions in the western, southeastern, and northern Midwest parts of the United States 

are biased away from drought (and toward wet conditions) with standard deviations less than 1 

according to the NCEI6 dataset, making it more difficult for the SPI to detect dry conditions 

relative to the standard normal distribution. The effects of the wet bias in these regions are 

shown in Fig. 5d, which shows the total number of wet years that occurred across the 1931–90 

base period according to the NCEI6 dataset. A greater number of wet years than would be 

expected is observed in many regions. 

Because the SPI is a standardized index, each climate division should theoretically contain the 

same number of dry or wet years. According to the statistical theory of the standard normal 

distribution, each climate division should be on the dry end of the spectrum 16% of the time and 

on the wet end of the spectrum 16% of the time. This was found to be the case for the majority of 

the climate divisions based on the Calc6 dataset across the 1931–90 time period (Figs. 5b,e), 

wherein 219 climate divisions across the United States experienced dry conditions for the 

expected total of 8–10 dry years and 221 climate divisions experienced wet conditions for the 

expected total of 8–10 wet years across the 60-yr period. Although not shown here, 199 and 220 
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climate divisions contained the expected total number of dry and wet years, respectively, 

according to the Calc3 dataset. Figures 5c and 5f elucidate spatial differences between the total 

number of dry and wet years estimated by the two datasets (NCEI6–Calc6), and these differences 

arise in climate divisions with averages different from zero shown in Fig. 3e. Climate divisions 

with negative average values, such as those in the Midwest and southeast United States, 

estimated far more dry years than the Calc6 dataset; the northern Great Plains in particular 

estimated between 7 and 9 additional dry years (Fig. 5c). The same regions estimated far fewer 

wet years than the Calc6 dataset (Fig. 5f). 

These results demonstrate the cumulative effect that the biased average and standard deviations 

in the NCEI6 dataset had on drought detection across the base period. 

2.5 Discussion 

Consultation with the point of contact for the nClimDiv database revealed that the NCEI’s SPI 

values are dry/wet biased in this study’s results because the dataset is in fact calibrated using the 

full period of record (here, 1895–2019) and not 1931–90. This moving-window approach to 

calibrating the data means that there is no fixed baseline associated with the dataset, the 

calibration period is updated every year. The lack of a baseline makes NCEI’s SPI data unusable 

as a research dataset because the baseline is updated continuously as new data become available; 

consequently, it is impossible to accurately compare across studies as they each may be 

comparing against different historical records. Therefore, it becomes impossible to use the 

dataset to identify changes in frequency of occurrence or intensity of drought. For example, 

studies typically compare present anomalies with an established baseline to assess change, such 

as departure from 20th-century average (e.g., IPCC, National Climate Assessment, and NCEI 

State of the Climate Report). 
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Another concern is that calculating the SPI in such a fashion violates the formulation originally 

proposed by McKee et al. (1993), who recommended a recent climatic history as the basis for 

comparison to derive the SPI. Further, a fixed base period was used by Edwards and McKee 

(1997), who recommend a fixed calibration period containing at least one dry spell and one wet 

spell. The NCEI’s approach does not follow this standard and users are not aware of the 

discrepancy because the online metadata associated with the product indicate that “all drought 

data are calibrated using the period 1931–1990.” Consequently, the 1931–90 period was used to 

compare against the NCEI’s SPI formulations in this study, which revealed the inconsistencies. 

However, other studies that did not conduct a validation of the NCEI dataset for the base period 

would be unaware that it lacks a fixed baseline. 

A review of the literature identified several studies that have used the NCEI SPI dataset in recent 

years. Cumbie-Ward and Boyles (2016) used the climate divisional NCEI SPI dataset at various 

time scales and for all months across a 10-yr period ending in 2015 to make an objective analysis 

of the performance of an experimental high-resolution SPI dataset. Lu et al. (2019) used the 

NCEI SPI (1-, 2-, 3-, 6-, 9-, and 12-month time scales) as well as the NCEI Palmer drought 

indices in the derivation of an experimental monthly agricultural drought index across the 1895–

2013 time period. In addition to product calibration and validation, the climate divisional SPI 

dataset has also been used in recent years to link groundwater levels with drought in the central 

United States (Whittemore et al. 2016; Leelaruban et al. 2017). Despite the fact that each of these 

studies downloaded the same datasets from the same data source, the authors are all analyzing a 

different set of SPI values because the calibration period is not fixed. For example, in 1934 

climate division 2503 in Nebraska has a 6-month September SPI value of −1.35 based on a 

1931–90 base period, −1.62 based on an 1895–2009 base period, and −1.58 based on an 1895–
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2019 period. Thus, the only way for various research studies to be comparable would be if the 

respective authors happened to publish simultaneously. 

2.6 Recommendations 

The authors recommend that the NCEI modify its SPI computational procedure to reflect the best 

practices identified by McKee et al. (1993) and Edwards and McKee (1997), namely, the use of a 

fixed baseline period. Further, the NCEI should go back through its SPI database and recompute 

the entire SPI archive using a fixed baseline period, presumably 1931–90. This will allow the 

authors of previous studies that have incorporated the NCEI SPI dataset to reevaluate their 

previous conclusions using the revised NCEI SPI dataset. 

2.7 Conclusion 

Because the SPI is based on the standard normal distribution, it should have a mean of zero and a 

standard deviation of 1 across the base period. Our results indicate inconsistencies between the 

NCEI’s divisional SPI datasets and the standard normal distribution. Examination of the NCEI’s 

3- and 6-month September SPI datasets across the cited 1931–90 base period indicates climate 

divisions in the western United States, parts of the southeastern United States, and the northern 

Midwest are biased away from drought; climate divisions throughout the central to northern 

plains, Midwest, Northeast, and parts of the Southwest were found to be biased toward drought 

(Fig. 3). Consultation with the NCEI dataset’s point of contact revealed that these biases 

appeared in the dataset over the 1931–90 time period because the dataset is in fact calibrated 

using a moving window, in contrast to what is stated in the online metadata associated with the 

product. 

The NCEI must make it clear that the dataset in its current form cannot be used to identify 

changes in frequency of occurrence or intensity of drought because the SPI values for any given 
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climate division evolve over time as the calibration period continually expands. Further, the 

current dataset should not be used in research settings, as results become impossible to reproduce 

given that the dataset values change over time. The authors strongly recommend that the NCEI 

modify its SPI computational procedure from a moving window to a fixed baseline approach and 

republish the entire SPI archive using this fixed baseline period. 

2.7.1 APPENDIX A 
Calc3 and Calc6 Average and Standard Deviation 

On the basis of the average of the Calc3 SPI values across the base period, 19 climate divisions 

have an SPI that does not follow a standard normal distribution (i.e., nonzero average). 

Seventeen of these climate divisions are in the western United States and, based on the Level III 

Ecoregion data provided by the EPA, all but four of these climate divisions reside in either a 

Mediterranean climate or desert climate (western Idaho, eastern Oregon, and southwest 

Wyoming). The remaining two climate divisions reside in non-arid climates. Likewise, according 

to the Calc6 average SPI across the base period, 10 climate divisions have an SPI that does not 

follow a standard normal distribution across the base period. Eight of these climate divisions are 

in the western United States, with the majority residing in either a Mediterranean or desert 

climate. The remaining two climate divisions reside in non-arid climates; see Table A1. Wu et al. 

(2007) demonstrated that the SPI can become nonnormally distributed whenever there is a high 

probability of zero values in the dataset and advised caution when applying the SPI to study 

drought in arid climates or climates with a distinct seasonality to the precipitation. Therefore, the 

nonzero averages in Calc3 and Calc6 in this study are attributed to the high probability of zero 

values in the datasets, because the climate divisions with SPI values not following the standard 

normal distribution reside in regions with a distinct seasonality in the precipitation regime. Thus, 

we should be cognizant that the nonzero averages of the SPI in these calculations may be an 
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indicator that the SPI is not fully valid for these climate divisions. 

[Table 1] 

The standard deviations differ from 1 in the Calc3 and Calc6 datasets. This study attributes this 

to the method of L-moments used to calculate the parameters of the PE3 distribution. L-moments 

are the expectations of linear combinations of order statistics, measuring the same aspects of a 

distribution as the central moments. Hosking (1990) gives a comprehensive description of the 

theory of L-moments, which are defined for continuous probability distributions, but in practice 

they often must be estimated from a finite sample (Hosking 1996). To verify the effect of L-

moments on the standard deviation of SPI values in the Calc3 and Calc6 datasets, the climate 

division precipitation data was fit to the two-parameter GAM (Thom 1958), which was used by 

McKee et al. (1993) in the original development of the SPI. For this analysis, the parameters 

were calculated via maximum likelihood estimation (Venables and Ripley 2002) instead of the 

method of L-moments. Following this approach, only 12 (3.5%) of the climate divisions were 

found to have standard deviations in disagreement with the standard normal distribution for the 

GAM-derived Calc3 and Calc6 datasets, respectively. 

2.7.2 APPENDIX B 
SPI Computational Procedure via Method of L-Moments 

Integrating Eqs. (1) and (2) from section 3a over the range of precipitation values yields the 

cumulative distribution function: 

𝐹𝐹(𝑥𝑥) = 𝐺𝐺 �𝛼𝛼, 𝑥𝑥−𝜉𝜉
𝛽𝛽
� Γ(𝛼𝛼)   (B1) 

for γ > 0 and 

𝐹𝐹(𝑥𝑥) = 1 − 𝐺𝐺(𝛼𝛼, 𝜉𝜉−𝑥𝑥
𝛽𝛽

)/Γ(𝛼𝛼)  (B2) 

for γ < 0, 
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where G(α, x) denotes the incomplete gamma function: 

𝐺𝐺(𝛼𝛼, 𝑥𝑥) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑎𝑎𝑡𝑡𝑥𝑥
0   (B3) 

The L-moments are the expectations of linear combinations of order statistics, measuring the 

same aspects of a distribution as the central moments. Hosking (1990) gives a comprehensive 

description of the theory of L-moments and L-moment ratios. The latter are computed for higher 

order L-moments (r ≥ 3): 

𝑡𝑡𝑡𝑡 = ℓ𝑡𝑡/ℓ2    (B4) 

where 

ℓ𝑡𝑡 = 𝑎𝑎−1 ∑ 𝑤𝑤𝑗𝑗:𝑛𝑛
(𝑟𝑟)𝑥𝑥𝑗𝑗:𝑛𝑛

𝑛𝑛
𝑗𝑗=1    (B5) 

wj:n
(1) = 1    (B6) 

wj:n
(2) = 2(j−1)

n−1
− 1   (B7) 

(𝑡𝑡 − 1)(𝑎𝑎 − 𝑡𝑡 + 1)𝑤𝑤𝑗𝑗:𝑛𝑛
(𝑟𝑟) = (2𝑡𝑡 − 3)(2𝑗𝑗 − 𝑎𝑎 − 1)𝑤𝑤𝑗𝑗:𝑛𝑛

(𝑟𝑟−1) − (𝑡𝑡 − 2)(𝑎𝑎 + 𝑡𝑡 − 2)𝑤𝑤𝑗𝑗:𝑛𝑛
(𝑟𝑟−2)  

for 𝑡𝑡 ≥ 3     (B8) 

Given the L-moments above, the parameters of the PE3 distribution are calculated following 

Hosking and Wallis (1997). If 0 <  |𝑡𝑡3|  <  1/3, then 𝑧𝑧 =  3𝜋𝜋𝑡𝑡32 

and 

𝑎𝑎 ≈ 1+0.2906𝑧𝑧
𝑧𝑧+0.1882𝑧𝑧2+0.0442𝑧𝑧3

   (B9) 

If 1/3 ≤  |𝑡𝑡3|  <  1, then 𝑧𝑧 =  1 −  |𝑡𝑡3| and 

𝑎𝑎 ≈ 0.36067𝑧𝑧 − 0.59567𝑧𝑧2 + 0.25361𝑧𝑧3

1 − 2.78861𝑧𝑧 + 2.56096𝑧𝑧2− 0.77045𝑧𝑧3
 (B10) 

Following the estimation of α, the parameters of the PE3 distribution are calculated as 

𝛾𝛾 = 2𝛼𝛼−1/2𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑡𝑡3)  

𝜎𝜎 = 𝑡𝑡2𝜋𝜋1/2𝛼𝛼1/2𝛤𝛤(𝛼𝛼)/𝛤𝛤(𝛼𝛼 + 1
2
)  
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and 

𝜇𝜇 = 𝑡𝑡1     (B11) 

Cumulative probability values are obtained after plugging the values of Eq. (B11) into Eqs. (B1) 

and (B2). 
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2.9 Figures and Tables 
 
 

 
Figure 1: Standard normal distribution with the SPI. 
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Figure 2: Standard normal distribution (red curve) overlaid (black curves) with (a) a negatively-
biased distribution, (b) a positively-biased distribution, (c) a distribution with a standard 
deviation greater than 1 (leptokirtic), and (d) a distribution with a standard deviation less than 
1(platykurtic). 
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Figure 3: The 1931–90 (left) average and (right) standard deviation of September SPI values 
according to the (a), (b) NCEI3, (c), (d) Calc3, (e), (f) NCEI6, and (g), (h) Calc6. 
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Figure 4: The 1931–90 September NCEI6 values plotted against the Calc6 values for (a) a 
climate division with a negative average value across that time period according to the NCEI6, 
(b) a climate division with a positive average value, and (c) a climate division with an average 
value of 0.
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Figure 5: Total number of (a), (b) dry and (d), (e) wet years across the 1931–90 time period 
according to the (left) NCEI6 and (center) Calc6 datasets, along with the difference in the total 
number of (c) dry and (f) wet years between the two datasets (i.e., NCEI6 − Calc6). 
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Table A1. Climate type associated with the climate divisions that had SPI values in 
disagreement with the standard normal distribution according to the Calc3 and Calc6 datasets. 
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CHAPTER 3: THE IMPACT OF CLIMATOLOGICAL BASE PERIOD ON DROUGHT 
AND PLUVIAL CHARACTERIZATION IN THE CONTIGUOUS UNITED STATES 

USING THE STANDARDIZED PRECIPITATION INDEX 

Abstract: This study investigates the impact of varying climatological base periods on the 
Standardized Precipitation Index (SPI) and its characterization of drought and pluvial conditions 
across the contiguous United States over the 2000-2020 time period. Using climate divisional 
precipitation data from the U.S. Climate Divisional (nClimDiv) database, the SPI is calculated at 
the 3-, 6-, and 12-month timescales using eight different climatological base periods. The results 
indicate that the choice of base period alters the value of drought and pluvial severity yielded by 
the SPI, and this is due to variability in the precipitation frequency distributions amongst base 
periods, including the median and mean value, standard deviation, and skewness of each 
distribution. The resultant variability in drought and pluvial values amongst base periods 
underscores the sensitivity of the SPI to its underlying base period. 
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3.1 Introduction 

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993) as a 

probability-based moisture index designed to determine whether moisture conditions are normal, 

abnormally dry, or abnormally wet, relative to a pre-defined base period. Since that time, the SPI 

has been recognized as the internationally preferred index for use by all national meteorological 

and hydrological services to characterize meteorological droughts (Hayes et al., 2011) due in 

large part to its minimal data requirements, simple computational procedure, and its ability to 

track precipitation deficiencies across various timescales. By comparing the accumulated 

precipitation for a particular timescale with the historical average at that timescale, the SPI 

captures precipitation anomalies on either end of the moisture spectrum. Further, because the 

index expresses precipitation magnitudes as a standardized departure from a probability 

distribution function, comparisons of SPI values across space and time are possible. 

The SPI characterizes the moisture status on a standardized scale and is therefore spatially and 

temporally invariant, thus its use as a tool to discern various characteristics of drought and even 

other drought monitoring products has been well established in the research literature. One of the 

more prominent of these studies by Guttman (1998) compared historical SPI timeseries with the 

corresponding Palmer Drought Severity Index (PDSI) timeseries to determine if the PDSI could 

also be considered spatially and temporally invariant. The author found that the PDSI was 

spatially variant and temporally fixed at 12-months. Since that time, the SPI has been used to 

develop regional drought climatologies (Lloyd-Hughes and Saunders, 2002), as a tool to evaluate 

global drought response to a changing climate (Jenkins and Warren, 2014), and as a foundational 

tool for other standardized drought metrics that standardize temperature as well as precipitation 

(Vicente-Serrano et al., 2010). 
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Despite its popularity, the SPI does have shortcomings that researchers must contend with, such 

as the sensitivity of the index to the normalization procedure used (Quiring et al., 2009) and the 

length of record used in standardizing the precipitation data, with a longer record length 

providing more data and therefore less uncertainty when deriving the underlying parameters 

associated with the SPI (Wu et al., 2005). More recently, however, studies have shown that 

another shortcoming of the SPI is its dependence on the climatologically representative base 

period because of the implicit assumption of a stationary climate (Stagge and Sung, 2022). For 

this reason, contemporary approaches to drought monitoring with the SPI have used either a 

quasi-stationary reference period (Hoylman et al., 2022), such as the 30-year periods used by the 

World Meteorological Organization or have opted to use the entire period of record as a base 

period (Vose et al., 2014a), however Hoylman et al. (2022) used empirical data to illustrate that 

long-term base periods introduced dry and wet biases in the SPI. Furthermore, Stagge and Sung 

(2022) point out that using the full period of record to calculate the SPI ignores climate 

nonstationarity as the implicit assumption is that all observations within the dataset can be 

characterized by the same distribution, thereby ignoring long-term trends. The authors went on to 

develop a more statistically complex solution to the issue of nonstationarity via the use of 

Bayesian splines (Stagge and Sung, 2022). In recognizing the complex nature of some of these 

more statistically robust solutions to nonstationarity, other studies have evaluated the ability of 

SPI values derived from static base periods to reproduce the values generated by non-stationary 

SPI values (Cammalleri et al., 2022), and Thomas et al. (2023) investigated the impact that 

switching between two consecutive 30-year base periods had on the value of percentile-based 

climate indices including the SPI. 

Regardless of the approach taken to account for climate variability in drought monitoring, non-
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stationarity presents a significant challenge, and if not accounted for by standardized drought 

indices such as the SPI, misleading results can occur. The purpose of this study is to determine 

the extent to which the severity and frequency of drought and pluvial occurrences are impacted 

by the underlying base period used as the reference climatology in the contiguous U.S. The 

analysis is performed using climate divisional precipitation data to compute the SPI over the 

2000 – 2020 time period using a series of eight different 30-year base periods. 

3.2 Data 

The SPI is calculated using monthly average precipitation data at the climate division scale from 

the U.S. Climate Divisional Dataset (nClimDiv). This dataset was selected because it offers a 

long-term, serially complete record of precipitation data for the contiguous U.S., with data 

spanning from 1895 – present. The nClimDiv dataset is also spatially coherent, making it an 

optimal tool to study large scale features such as drought. This study used data from 1920 to 

2020. 

There are a total of 344 climate divisions across the contiguous U.S., with each state subdivided 

into anywhere between 1 and 10 divisions, depending on the size of the state. Divisional 

boundaries within each state are reflective of various considerations, including climatic 

conditions, drainage basins, and crop and river districts (Guttman and Quayle, 1996). nClimDiv 

is maintained by the National Centers for Environmental Information (NCEI) and is utilized by 

the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center 

(NCDC) to issue monthly State of the Climate Reports that summarize recent and long-term 

trends in temperature and precipitation conditions (NOAA NCEI, 2023). Divisional temperature 

and precipitation data are derived from a 5kmx5km gridded instance of the Global Historical 

Climatology Network-Daily (GHCN- Daily) dataset. In total, there are 14,702 precipitation 
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stations and 10,325 temperature stations utilized in the construction of the grid point estimates. 

Vose et al. (2014b) provide a comprehensive overview of the climatologically aided 

interpolation technique employed to transform this station data into gridded values. 

3.3 Methods 

The SPI was developed by McKee et al., (1993) as a means of evaluating drought conditions at 

specific timescales. For this study, the 3-, 6-, and 12-month SPI is calculated for the contiguous 

United States using climate divisional precipitation data and for a study period of 2000 - 2020. 

At each timescale, the SPI is calculated for January, April, July, and October using eight distinct 

30-year climatological base periods (Table 1). 

[Table 1] 
 
Table 1 indicates that base periods beginning in 1950 or earlier are classified as antiquated and 

base periods beginning in 1960 or later are classified as contemporary.  

Fundamentally, the SPI is the transformation of a precipitation time series into the standard 

normal distribution, with a mean value of 0 and a standard deviation of 1 over the region’s 

climatically representative base period (Spade et al., 2020). The value of the SPI (which 

generally ranges between -3 and 3) indicates how many standard deviations a precipitation value 

is above or below the base period’s average value (McKee et al., 1993). The sections below 

summarize the process of retrieving SPI values from a precipitation time series at both the 

climate division and regional scale, respectively. 

3.3.1 SPI Computational Procedure 

The precipitation time series of the climate division’s base period is fit to the 2-parameter Gamma 

distribution, given by:     

𝑠𝑠(𝑥𝑥) = 1
𝛽𝛽𝛼𝛼𝛤𝛤(𝛼𝛼)

𝑥𝑥𝛼𝛼−1𝑒𝑒
−𝑥𝑥
𝛽𝛽  for x > 1   (1) 
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where: 

• x is the precipitation amount (x > 0) 

• α is the shape parameter (α > 0) 

• β is the scale parameter (β > 0), and 

Γ(α) is the gamma function, given by: 

Γ(α) =  ∫0
∞𝑥𝑥𝛼𝛼−1𝑒𝑒−𝑥𝑥𝑎𝑎𝑥𝑥     (2) 

The shape and scale parameters are estimated through the maximum likelihood estimation (MLE) 

method: 

𝛼𝛼 =  1
4𝐴𝐴
�1 +�1 + 4𝐴𝐴

3
�                  (3) 

𝛽𝛽 = �̅�𝑥
𝛼𝛼
        (4) 

𝐴𝐴 = ln(𝑥𝑥) −  ∑ ln (𝑥𝑥)
𝑛𝑛

      (5) 

where: 

• n = number of precipitation observations 

• �̅�𝑥 = the average precipitation value of the dataset 

The shape and scale parameters were calculated for each of the three timescales and months 

described above, yielding a total of 96 α and βrate values, respectively, for each climate division. 

Note that βrate is the rate parameter and is simply the inverse of the scale parameter. 

The cumulative probability of each precipitation value of interest was then calculated by 

integrating the precipitation time series over the complete range of precipitation values, using the 

α and β parameters associated with each base period: 

𝐺𝐺(𝑥𝑥) =  ∫ 𝑠𝑠(𝑥𝑥)𝑎𝑎𝑥𝑥𝑥𝑥
0 =  1

𝛽𝛽𝛼𝛼Γ(α)∫ 𝑥𝑥𝛼𝛼−1𝑒𝑒
−𝑥𝑥
𝛽𝛽 𝑎𝑎𝑥𝑥𝑥𝑥

0              (6) 
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𝐻𝐻(𝑥𝑥) = 𝑞𝑞 + (1 − 𝑞𝑞)𝐺𝐺(𝑥𝑥)    (7) 

Equation 6 is modified to account for the probability of zeros in the precipitation dataset, and this 

modification is given by Equation 7, where: 

• q = m/n 

• m = number of zeros in the dataset 

The cumulative probability of the 2000 – 2020 precipitation time series for all 344 climate 

divisions is calculated using the α and β parameters associated with each base period (Table 1). 

The inverse of the cumulative probability is taken, yielding the SPI with a mean of 0 and a 

standard deviation of 1 over the base period, in accordance with the standard normal distribution. 

The process outlined above is accomplished using the fitdistrplus package and its associated 

functions in R (Delignette-Muller and Dutang, 2015; R Core Team, 2022). 

3.3.2 Regional SPI 

In this study, the contiguous U.S. is divided into six regions: High Plains, Midwest, Northeast, 

Southeast, Southern, and Western, matching those used by the U.S. Drought Monitor (Figure 1). 

To calculate the SPI at the regional scale, each climate division’s precipitation value was scaled 

by area to yield the area-weighted precipitation. This was accomplished by first dividing the area 

of each climate division by the total area of its associated region. This value is then multiplied by 

that climate division’s precipitation values. The weighted values are then added together to 

retrieve a precipitation total for the region. Once these values are calculated, the procedure 

outlined in section 3.1 is applied at the regional scale. 

[Figure 1] 

3.3.3 Comparison of Base Periods 

The SPI values at each timescale are plotted for the 2000 – 2020 timeframe to visualize the range 
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of SPI values yielded by each base period. These plots are created for each accumulation period 

and ending month to determine if there is a seasonal component to the changes identified. To 

quantify the effect of differing base periods on the value of the SPI at each month and timescale 

over the study period, the range of SPI values yielded by all base periods was calculated 

annually. This involved taking the absolute value of the difference between the largest SPI value 

and the smallest SPI value yielded by the eight base periods for each year of the 2000-2020 study 

period, resulting in a total of 21 values per month. 

3.3.4 Drought and Pluvial Totals 

This study retrieved the total number of drought years captured by each base period at each 

month and timescale and for each region by getting the count of the number of times the SPI was 

less than or equal to -1 according to each base period. After these values were retrieved for each 

month and timescale, the average was taken over all the months so that the average number of 

drought events yielded by each base period could be retrieved for the three timescales. The same 

process was used to retrieve the total number of pluvial years after getting the count of the 

number of times the SPI was greater than or equal to +1 according to each base period. Note that 

values between -1 and +1 are considered neutral conditions (Edwards and McKee, 1997). 

3.4 Results 
3.4.1 Impact of Base Period on Characterization of Drought 

The non-stationary base periods yielded unique SPI values throughout the study period for each 

region considered. Depending on the region or climate division, timescale, and month, the 

antiquated base periods tended to yield higher absolute SPI values for pluvial and drought 

conditions, as well as during neutral conditions. This suggests that current day drought 

conditions (i.e., from 2000 to present) are perceived as less severe according to the antiquated 

base periods (base periods 1, 2, 3, and 4) and more severe according to the contemporary base 
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periods (base periods 5, 6, 7, and 8). In contrast, pluvial conditions are perceived as more (less) 

severe according to the antiquated (contemporary) base periods. Exceptions to this generalization 

were identified in certain regions and climate divisions, as detailed in the following subsections. 

Climate divisions discussed below were selected because they are representative of the results of 

the remaining climate divisions within the climate division’s region. 

3.4.11 High Plains 

A wide range of SPI values are apparent at all months and accumulation periods within the High 

Plains region, and in general, the value of this range increases as the accumulation period 

increases (Tables 2 and 3). For instance, in 2019 the 12-month July SPI has a range of 1.15 

(Table 3) while the 3-month July range for the same year was only 0.67 (not shown in the table). 

Nonetheless, a large range of values also occurred at the 3-month timescale, notably in 

October 2012 where base period 2 yielded an SPI of -1.59 (severely dry) and base period 7 

a value of -3.09 (extremely dry), yielding a range of 1.5 (Table 3). 

[Table 2] 
[Table 3] 

An average of 12.5 drought events occurred over the study period between all months and 

timescales in the High Plains; the greatest number of drought events were captured by base 

periods 6, 7 and 8 (Table 4). Conversely, an average of 18.5 pluvial events occurred over the 

study period between all months and timescales; the greatest number of pluvial events were 

captured by base periods 2 and 4 (Table 5). 

Climate divisions within the High Plains region also showed a large range in SPI values at each 

timescale. For instance, the 6-month July SPI for climate division 0501 in southeast Colorado 

was -2.74 (extremely dry) in 2012 according to base period 6 and -1.58 (severely dry) according 

to base period 8 (Figure 2). Similarly, climate division 1405 in central Kansas was assigned an 
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SPI of -0.56 (neutral conditions) according to base period 2 and an SPI of -1.53 (severely dry) 

according to base period 8 (Figure 2). 

[Figure 2] 

The increase in the range of SPI values with increasing accumulation period seen at the regional 

scale was not consistently shown at the climate division scale. For example, climate divisions 

sampled in Colorado, Kansas, and South Dakota (not shown) indicated a general increase in the 

range of SPI from the 3- to 12-month timescale, although this was not the case for climate 

divisions sampled in Wyoming or North Dakota (not shown). 

[Table 4] 
[Table 5] 
 
3.4.12 Midwest 

With a few exceptions, the results of the Midwest region indicate that the antiquated base periods 

yielded higher absolute SPI values than the contemporary base periods during times of drought 

and pluvial conditions, as illustrated in Figure 3 which provides the 6-month results. In 2012, for 

instance, the 6-month October SPI has a value of -2.00 (extreme drought) according to base 

period 8 and -0.70 (neutral) according to base period 2. Similarly, in 2004 the 3-month July SPI 

was 2.20 (extreme pluvial) according to base period 4 and 0.50 (neutral) according to base period 

8 (not shown). 

[Figure 3] 

Out of all six regions, the fewest number of drought events occurred in the Midwest and 

Northeast regions, with an average count of 6.3 between all months, timescales, and base periods 

(Table 4). In the Midwest region, the greatest number of drought events were captured by base 

period 8 and the fewest number of drought events were captured by base periods 1 and 2 (Table 

4). Conversely, an average of 28.3 pluvial events were observed over the study period between 



48  

all months and timescales; the greatest number of pluvial events were captured by base periods 3 

and 4 and the fewest number of pluvial events were captured by base period 8 (Table 5). Similar 

to the High Plains region, the range of SPI values increases as the accumulation period increases 

for all months except July, which had a similar range in values at each timescale (Table 3). 

Climate divisional results mirrored those at the regional scale with respect to the increasing range 

of SPI values with increasing timescale, however the results of the antiquated and contemporary 

base periods are more dynamic than the regional results. For instance, at the 6-month timescale 

climate division 1503 in northern Kentucky diverges from the regional results for all months 

except January and October where the antiquated base periods consistently yielded higher SPI 

values than contemporary base periods for drought, pluvial, and neutral conditions. In contrast, 

the April and July results indicate that base periods 5, 6, and 7 had the highest SPI values for 

each of the 4 (7) pluvial years in April (July; Figure 4). Similarly, the 6-month April SPI for 

climate division 2102 in northern Minnesota indicates base periods 4 and 5 had the lowest SPI 

values for each of the 6 drought events; likewise base periods 7 and 8 consistently had the highest 

SPI values during the 6 pluvial events. The 6-month October SPI for the same climate division 

more closely mirrors the regional results with the antiquated base periods consistently yielding 

higher SPI values than the contemporary base periods for drought, pluvial, and neutral conditions 

(Figure 4). 

[Figure 4] 

3.4.13 Northeast 
 
In the Northeast region, the greatest number of drought events were captured by base period 8 

and the fewest number of drought events were captured by base period 3 (Table 4). Out of all six 

regions, the Northeast region captured the greatest number of pluvial events, with an average of 
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28.8 events between all months, timescales, and base periods; the greatest number of pluvial 

events were captured by base periods 1 and 3 and the fewest number of pluvial events were 

captured by base period 8 (Table 5). 

Regardless of the moisture status, the antiquated base periods consistently yielded higher 

absolute SPI values than those associated with the contemporary base periods, and in many 

instances the difference in values are impactful to the characterization of drought. In 2001, for 

example, the 12-month October SPI was -1.18 (moderate drought) according to base period 3 and 

-2.09 (extreme drought) according to base period 8. Similarly, in 2006 the SPI was 2.58 

(extremely wet) according to base period 1 and 1.10 (moderately wet) according to base period 

8. F u r t h e r ,  an increasing range of SPI values was also seen as the accumulation period 

increased (not shown). For instance, the maximum difference in SPI values for the April 3-month 

timescale was 0.86, while at the 12-month timescale this difference was 1.48. 

Climate divisions sampled in the Northeast region had results similar to the regional scale’s 

results, notably in terms of the ratio of the number of pluvial events to drought events. Climate 

divisions 3605 (central PA) and 4602 (central WV), however, deviated from the pattern of larger 

SPI values yielded by the antiquated base periods compared with the contemporary base periods. 

In Pennsylvania, the 6-month July SPI had four drought events over the study period and base 

period 3 yielded the lowest SPI value for each of these events (Figure 5). Similarly in West 

Virginia, the 6-month January SPI had four pluvial events over the study period and the 

contemporary base periods yielded the highest SPI values for each of these events (Figure 5). 

[Figure 5] 

3.4.14 Southeast 

The results of the Southeast region deviate from the other regions in two ways. First, the size of 
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the range in SPI values is similar across all timescales (Tables 2 and 3). Second, the antiquated 

base periods frequently yielded the lowest SPI values during times of drought and the highest 

absolute SPI values during pluvial years, as shown by the 6-month results (Figure 6). Further, out 

of all six regions, the Southeast experienced the greatest number of drought events, with an 

average of 18.25 events captured over the study period between all months, timescales, and base 

periods. The greatest number of drought events were captured by base periods 3, 5, and 8 and the 

fewest were captured by base period 7 (Table 4). Conversely, an average of 18.2 pluvial events 

were observed over the study period between all months, timescales, and base periods; the 

greatest number of pluvial events were captured by base periods 2, 3, and 5 and the fewest 

number of pluvial events were captured by base periods 6 and 8 (Table 5). Note that at every July 

timescale and the 6- and 12-month April timescales, the antiquated base periods yielded the 

lowest values during drought events and the highest values during pluvial events (Tables 4 and 

5). 

[Figure 6] 

For climate divisions sampled in central Florida (0804) and central Georgia (0905), the results 

were similar to what was seen at the regional scale, with the antiquated base periods yielding 

lower SPI values during times of drought and the contemporary base periods yielding higher SPI 

values during pluvial conditions (Figure 7). In contrast, climate divisions sampled in North and 

South Carolina (3107 and 3806, respectively) and Alabama (0107) only reflected the regional 

results for the month of July (not shown). 

[Figure 7] 

3.4.15 Southern 

An average of 12.83 drought events occurred over the study period between all months, 



51  

timescales, and base periods in the Southern region; the greatest number of drought events were 

captured by base periods 7 and 8 and the fewest number by base periods 2, 3, and 4 (Table 4). 

Conversely, an average of 20 pluvial events occurred over the study period between all months, 

timescales, and base periods; the greatest number of pluvial events were captured by base periods 

2, 3, and 4 and the fewest number were captured by base period 8 (Table 5). 

With a few exceptions, the antiquated base periods yielded higher absolute values during drought 

and pluvial events throughout most months and timescales considered. A clear distinction in the 

values yielded by the contemporary and antiquated base periods is clear during the four drought 

events of the 12-month January timescale, for example. A similar distinction is seen for the 

pluvial events of the 12-month April timescale. Nonetheless, certain antiquated base periods 

yielded lower SPI values for drought and pluvial events at the 3-month April, 6-month July and 

October, and the 12-month October timescales. Similar to other regions, the range of SPI values 

increased as the accumulation period increased in the Southern region (Tables 2 and 3). 

Climate divisions sampled in the Southern region showed mixed results. In climate division 1609 

(southern Louisiana), the antiquated base periods yielded lower SPI values during drought years, 

notably in April and July (Figure 8), however in central Mississippi, the Oklahoma Panhandle, 

and central Tennessee, the opposite is true (not shown). Results for climate divisions in north and 

south Texas (divisions 4103 and 4109, respectively) were variable. In north Texas, the antiquated 

base periods generally yielded higher SPI values during drought and pluvial events, however 

there were exceptions in July and October. In south Texas, some of the antiquated base periods 

yielded lower SPI values during drought and higher absolute values during pluvial years, similar 

to the results of the Southeast region. In April, base period 1 yielded lower SPI values than all 

other base periods throughout the majority of the study period (Figure 9). 
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[Figure 8] 
[Figure 9] 

3.4.16 Western 

An average of 17.08 drought events occurred over the study period between all months, 

timescales, and base periods in the Western region; the greatest number of drought events were 

captured by base periods 3 and 6 and the fewest number by base periods 1 and 8 (Table 4). 

Conversely, an average of 11.25 pluvial events occurred over the study period between all 

months, timescales, and base periods; the greatest number of pluvial events were captured by 

base periods 1 and 2 and the fewest number were captured by base periods 5 and 6 (Table 5). 

With a few exceptions, the Western region’s results tended to mirror the results of the Southeast 

region wherein the antiquated base periods yielded higher SPI values during pluvial years and 

lower SPI values during drought years, as shown by the 6-month results in Figure 10. For 

instance, the 3-month April and 6-month July results reflect what was shown in the High Plains, 

Midwest, Northeast, and Southern regions, wherein the antiquated base periods yielded higher 

SPI values than the contemporary base periods for both drought and pluvial events. In contrast, 

at the 3-month July, 6-month April and October, and 12-month January through October 

timescales, the antiquated base periods yielded higher SPI values during pluvial years and lower 

SPI values during drought years than what was yielded by the contemporary base periods. The 6- 

and 12-month October results show lower SPI values yielded by the antiquated base periods than 

the contemporary base periods during the drought years of the early 2000s. Similarly, the 6- and 

12-month April results show higher SPI values yielded by the antiquated base periods than the 

contemporary base periods during the 2017 pluvial event. 

[Figure 10] 

Similar to the regional results, at the climate divisional scale the results are variable. For 
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instance, in division 4508 (eastern Washington), the antiquated base periods yielded higher SPI 

values for drought and pluvial events in April and July but the reverse was true in October 

(Figure 11). In contrast, in climate division 2906 (central New Mexico), the antiquated base 

periods yielded higher SPI values for drought and pluvial years at every month (Figure 11). In 

northern California (division 402), the antiquated base periods yielded higher absolute values 

during pluvial years and lower values during drought years (Figure 12). 

[Figure 11] 
[Figure 12] 

3.5.1 Changing Precipitation Regimes 

A large (small) range of SPI values yielded by the same precipitation event is the result of 

differing (similar) underlying precipitation frequency distributions amongst base periods, which 

in turn have differing (similar) cumulative probabilities assigned to precipitation events. Because 

the SPI is simply a z-score, or the inverse of the cumulative probability, each precipitation event 

from 2000-2020 was assigned a range of SPI values in accordance with the distinct cumulative 

probabilities yielded by each base period. This concept is demonstrated in Figures 13 and 14, 

which illustrate the 3- and 12-month July precipitation regimes, respectively, for the Southern 

region at each base period. The precipitation regimes are illustrated by the precipitation 

frequency distributions (Figure 13A and 14A), each regime’s fitted gamma curve (Figures 13B 

and 14B), and each regime’s CDF (Figure 13C and 14C). At the 3-month timescale, the Southern 

region’s SPI results were similar amongst base periods (Tables 2 and 3) and Figure 13A indicates 

that the small range of values is attributed to the similar precipitation regimes of each base 

period. The median precipitation value of each base period hovers between 10.46 and 11.57 

inches and the skew of each distribution is positive, indicating an asymmetric distribution 

extending toward larger precipitation values.  
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In contrast, Figure 14A illustrates a higher degree of variability amongst the precipitation regimes 

associated with each base period. The median precipitation value of each base period ranges 

between 35.85 and 39.72 inches and the skewness of each distribution oscillates between 

positive and negative values. The variability in the sign of each base period’s skew value 

indicates that the precipitation regimes are not consistently skewed toward larger or smaller 

precipitation values, as was the case at the 3-month timescale, but rather switch between the two. 

While base periods 1, 7, and 8 are skewed toward smaller precipitation values, base periods 4, 5, 

and 6 are skewed toward larger precipitation values. In contrast, base periods 2 and 3 have a 

skew of nearly 0, indicating a higher degree of symmetry in the distribution. 

[Figure 13] 
[Figure 14] 

 
Despite the similarities in the 3-month accumulated precipitation regimes of each base period, 

there are key differences illustrated by Figure 13B and 13C. Figure 13B shows that from base 

period 1 to base period 8, the distribution has flattened, becoming slightly wider, with the 

standard deviation increasing from 1.80 at base period 1 to 2.34 at base period 8. Figure 13A 

illustrates that the wider range of values is associated with more data in the tails of the 

distribution, suggesting a higher occurrence of precipitation extremes on both ends of the 

moisture spectrum. Further, Figure 13C indicates a shift toward greater precipitation values when 

transitioning from antiquated to contemporary base periods. For instance, the 50th percentile of 

base period 1 is 10.7 inches compared with 11.3 inches for base period 8. Similar differences are 

shown in Figure 14B and 14C. Figure 14B illustrates that from base period 1 to base period 8, the 

precipitation distribution also flattened, becoming wider. The standard deviation increased from 

4.27 for base period 1 to 5.55 for base period 8. Similar to the 3-month results, Figure 14A 
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indicates that the wider range of values is associated with more data in the tails of the 

distribution, indicative of a higher occurrence of precipitation extremes. Figure 14C shows a 

distinct shift to the right toward larger precipitation values when moving from antiquated to 

contemporary base periods. The 50th percentile of base period 1 is 37.4 inches compared with 

39.4 inches for base period 8. Thus, both the 3- and 12-month July precipitation regimes shifted 

toward greater precipitation values for the contemporary base periods compared with the 

antiquated base periods, although the shift was more pronounced at the larger timescale. 

Additionally, both timescales demonstrated an increase in the frequency of precipitation 

extremes, both on the dry and wet end of the moisture spectrum.  

Table 6 summarizes the 6-month median, standard deviation and the 25th and 75th percentile 

values of base periods 1 and 8 for each region. The base period with the largest values of each 

statistic is shown in bold, and regions with mixed results between the two base periods are 

shown in grey. As shown in Table 6, the results of the Northeast region indicate that base period 

8 has the larger median, standard deviation, and percentile values for each month while the other 

regions show mixed results between base periods. 

Shown in Table 6 is that in January and April, the Western region became drier from base period 

1 to base period 8 at the 6-month timescale, and in July, the Southeast region became drier from 

base period 1 to base period 8 at the 6-month timescale. These results are in contrast to the 

results of the other regions shown in Table 6, which became wetter from base period 1 to base 

period 8. The impact of a changing precipitation regime on the characterization of drought and 

pluvial events by the SPI is evident when reviewing Figures 3, 6, and 10. In Figure 3, the 2000-

2020 6-month SPI timeseries shown for the Midwest region shows that the contemporary base 

periods depict drought events as more severe and pluvial events as less severe, relative to the 
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antiquated base periods. As shown in Table 6, the precipitation regime of the Midwest region is 

becoming wetter as the base periods move closer to present day. In contrast, regions that are 

becoming drier as the base periods transition closer to the present day depict drought events as 

less severe, relative to the antiquated base periods, as shown in the Southeast region’s 6-month 

July results (Figure 6) and the Western region’s 6-month April and October results (Figure 10).      

[Table 6] 

3.5.2 Impact of Base Period on Drought and Pluvial Totals 

Apart from in the Southeast, each region’s results indicated that the antiquated base periods 

generally yielded fewer (more) drought (pluvial) events than the contemporary base periods, as 

illustrated in Figure 15. In Figure 15, each timescale’s average drought and pluvial count per 

base period are shown. As discussed in the previous subsection, the larger number of drought 

events detected by the contemporary base periods is attributed to the higher average precipitation 

values of the contemporary base periods compared to the antiquated base periods, as 

demonstrated at the 6-month timescale in Table 6 and which was also observed at the 3- and 12-

month timescales (not shown). Additionally, the antiquated base periods’ lower average 

precipitation values accounts for the higher occurrence of pluvial events during those periods 

compared to the contemporary periods. 

[Figure 15] 

In contrast, the Southeast region’s average precipitation did not consistently trend toward 

increasing values for the contemporary base periods, as was the case for other regions. Rather the 

Southeast region’s 30-year average precipitation fluctuated between trending upward and 

trending toward to lower values when progressing from antiquated to contemporary base periods, 

depending on the month and timescale. For instance, the Southeast region’s 30-year average 
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precipitation trended toward decreasing values during the contemporary base periods at the 3-

month April and July timescale, respectively, as well as at the 6-month July timescale. Figure 6 

illustrates that the antiquated base periods yielded the lowest SPI values during drought periods 

in these months. Further, a declining 30-year average precipitation was observed from base 

period 6 to base period 7 throughout the entire 12-month timescale, and the antiquated base 

periods yielded the lowest SPI values during times of drought at this timescale (not shown). 

In the Western region, the 30-year average precipitation has increased overall from the start of 

base period 1 to the start of base period 8, hence the higher (lower) drought (pluvial) count by 

the contemporary base periods. Nonetheless, the region’s 30-year average precipitation has been 

on a decreasing trend from about 1970 to 2020 at most months and timescales (not shown), and 

based on the results of this study, this suggests that the drought count will likely begin to decrease 

for future 30-year base periods as the region’s climate continues to trend toward lower values. 

This paradoxical outcome would technically be accurate based on the underlying computational 

procedure of the SPI. 

3.5 Discussion 

The results of each region examined in this study oscillated between small and large ranges of 

SPI values yielded by each of the eight base periods, and as illustrated by Figures 13 and 14, a 

large (small) range of SPI values is the result of differing (similar) precipitation regimes amongst 

base periods, which in turn yield differing (similar) gamma distributions. Wu et al., (2005) came 

to the same conclusion in their study investigating the impact of base period length on the value 

of the SPI using data derived from weather stations in Nebraska. The authors emphasized the 

role of the gamma distribution’s underlying shape and scale parameters, noting that if the 

precipitation regimes amongst base period lengths are similar (different), then the shape 
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parameters, scale parameters, and, by extension, the gamma distributions, are also similar 

(different) and will yield similar (differing) SPI values. 

Further, the results of this study indicated that the range of SPI values yielded by each base 

period generally increased as the accumulation period increased, regardless of region or month 

(Tables 2 and 3), suggesting that the impact of differing base periods on the SPI is more 

pronounced for larger accumulation periods. This was also found to be the case in a study by 

Cammalleri et al., (2022), wherein the effect of transitioning from one base period to another on 

the temporal consistency of the SPI was quantified in a few different ways. One approach was to 

extract the precipitation value from the earlier base period that yielded an SPI of -1; using this 

precipitation value, they computed the SPI according to the later base period. The authors then 

took the difference between the SPI value yielded by the later base period and the initial value of 

-1, allowing them to quantify the impact of the change in base period on that dryness level via 

the mean absolute deviation and the mean bias deviation. The authors found that the shorter-term 

SPI values (i.e., 1-month SPI) were only marginally impacted by the change in base period 

whereas the differences in the longer-term values (i.e., 12-month SPI) were more pronounced.  

Further, the results of this study indicate that as the average precipitation decreases, drought 

events will decrease as well because the SPI is less likely to detect drought. Thomas et al., (2023) 

came to a similar conclusion in their study investigating the impact of updating the base period 

from 1981- 2010 to 1991-2020 on the quantification of climate extremes such as drought in the 

U.S. The authors found that because the latter base period was warmer than the first base period, 

fewer warm extremes were detected, and more cold extremes detected when using the latter 

period. Additionally, the authors found that there were fewer but heavier precipitation extremes 

using the latter base period. 
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Based on the findings of Thomas et al. (2023), it is reasonable to deduce that incorporating the 

entire period of record as the base period rather than a moving 30-year window addresses the 

issue of differing SPI values yielded depending on the base period. However, this approach 

introduces new complexities to the issue, namely that present day SPI values would be 

influenced by climate regimes that are no longer representative of the present climate. For 

instance, Hoylman et al. (2022) conducted a study of the SPI across the U.S. and found 

substantial differences in the SPI values calculated using the most recent 30 years of data versus 

those calculated using the period of record (70+ years of data). The authors found that the period 

of record SPI values indicated a dry bias in the southwestern and southeastern U.S., meaning that 

drought conditions were characterized as more severe than what is realistic for modern-day 

precipitation regimes. Likewise, the authors found wet biases introduced in the Pacific Northwest 

and Midwest, wherein drought was characterized as less severe than what is realistic for modern-

day precipitation regimes in the area. Thus, there is a trade-off that must be contended with. That 

is, one can opt to calculate the SPI using the entire period of record, which would result in 

consistent SPI values, although these values may be unrealistic for the present-day climate. 

Crucial to dataset consistency, however, the period of record must have a definitive ending year 

rather than taking the sliding scale approach used by the NCEI (see Chapter 2). Alternatively, 

one can calculate the SPI using a 30-year moving window approach, as demonstrated in the 

present study. This approach results in SPI values that are representative of modern climate 

regimes, however the SPI values will differ depending on the base period, which is symptomatic 

of a changing precipitation regime.    

3.6 Conclusion 

This study investigated the impact of base period on the value of the SPI at various timescales in 



60  

the contiguous U.S. at the climate divisional and regional scale over the 2000-2020 time period. 

The purpose of the study was to determine the extent to which drought and pluvial severity and 

total occurrences of each differed depending on the base period used as the reference 

climatology. 

Results indicated that the base period impacts the characterization of drought and pluvial 

conditions in accordance with the distinct precipitation regimes associated with each base period. 

Additionally, the range of SPI values yielded by each base period generally increased as the 

accumulation period increased. In every region except for the Southeast, the antiquated base 

periods yielded more pluvial events and fewer drought events than the contemporary base 

periods, reflective of the drier climate conditions associated with the antiquated base periods. This 

study also found that the 30-year precipitation averages are on a decreasing trend when 

transitioning from antiquated to contemporary base periods within the Western and Southeast 

regions, suggesting that the number and severity of drought events captured by the SPI in these 

regions will likely begin to decrease in accordance with the drying climate. 
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3.8 Figures and Tables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Table 1: Base periods and the associated classifications 
 

Base Period  Year Range Classification 
1  1920 – 1950 Antiquated 

2  1930 – 1960 Antiquated 

3  1940 – 1970 Antiquated 

4  1950 – 1980 Antiquated 

5  1960 – 1990 Contemporary 

6  1970 – 2000 Contemporary 

7  1980 – 2010 Contemporary 

8  1990 – 2020 Contemporary 

 

Figure 1: The 344 climate divisions of the contiguous United States were subdivided into six 
regions: the High Plains, Midwest, Northeast, Southeast, Southern, and Western regions. 
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Table 2: Maximum range of January and April SPI values yielded by the eight base periods at 
each timescale for each region. Note that in columns 2 (3) and 6 (7) provide the maximum 
(minimum) SPI values yielded by the base periods listed next to those values (denoted by mW). 
For example, in the first row of column 2, the maximum SPI value is 1.96 and this value was 
yielded by base period 2. The same row in column 3 shows that the minimum SPI value is 1.17 
and this value was yielded by base period 6. Columns 4 and 8 provide the absolute value of the 
difference between the maximum and minimum SPI values, and columns 5 and 9 provide the 
year associated with the maximum range in values.    
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Table 3: Maximum range of July and October SPI values yielded by the eight base periods at 
each timescale for each region. Note that in columns 2 (3) and 6 (7) provide the maximum 
(minimum) SPI values yielded by the base periods listed next to those values (denoted by mW). 
For example, in the first row of column 2, the maximum SPI value is 2.37 and this value was 
yielded by base period 1. The same row in column 3 shows that the minimum SPI value is 1.61 
and this value was yielded by base period 8. Columns 4 and 8 provide the absolute value of the 
difference between the maximum and minimum SPI values, and columns 5 and 9 provide the 
year associated with the maximum range in value.   
  

 

3-month July 3-month October 
Region Max SPI | mW Min SPI | mW Range Year Max SPI | mW Min SPI | mW Range Year 

HP 2.37 | mW1 1.61 | mW8 0.75 2015 -1.59 | mW2 -3.09 | mW7 1.5 2012 

MW 3.09 | mW4 1.55 | mW8 1.53 2015 -0.30 | mW2 -1.39 | mW7 1.08 2011 

NE 2.51 | mW1, 2, 4 1.60 | mW8 0.91 2006 2.88 | mW1 1.62 | mW8 1.25 2018 

SE -1.29 | mW7 -2.75 | mW3 1.46 2007 -0.84 | mW4 -1.49 |mW8 0.65 2007 

S 2.88 | mW1 2.05 | mW8 0.82 2015 -0.99 | mW2 -1.94 | mW5 0.95 2000 

W -1.87 | mW1 -2.74 | mW4, 5 0.88 2003 -1.25 | mW2 -2.05 | mW5 0.80 2003 
6-month July 6-month October 

Region Max SPI | mW Min SPI | mW Range Year Max SPI | mW Min SPI | mW Range Year 

HP -2.14 | mW2 -3.09 | mW5, 6 0.95 2003 -0.80 | mW2 -1.73 | mW7 0.94 2020 

MW 3.09 | mW4 1.43 | mW8 1.66 2011 -0.71 | mW2 -1.91 | mW8 1.12 2012 

NE 2.58 | mW1 1.52 | mW8 1.05 2011 3.09 | mW1 1.52 | mW8 1.57 2003 

SE -1.33 | mW7 -2.88 | mW3 1.54 2006 2.58 | mW5 1.80 | mW8 0.78 2003 

S -1.91 | mW4 -2.51 | mW7 0.60 2011 -1.60 | mW2 -3.09 | mW5-7 1.50 2011 

W 2.07 | mW4 1.24 | mW6 0.83 2011 -2.07 | mW1, 8 -3.09 | mW6 1.02 2003 
12-month July 12-month October 

Region Max SPI | mW Min SPI | mW Range Year Max SPI | mW Min SPI | mW Range Year 

HP 2.51 | mW4 1.36 | mW8 1.15 2019 -1.60 | mW2 -2.75 | mW6 1.15 2012 

MW -0.35 | mW2 -1.81 | mW8 1.46 2000 -0.32 | mW2 -1.75 | mW8 1.43 2003 

NE 2.66 | mW1 1.16 | mW8 1.50 2004 3.09 | mW1 1.48 | mW8 1.61 2019 

SE 3.09 | mW1-4 2.07 | mW7 1.02 2003 2.46 | mW2 1.99 | mW8 0.46 2020 

S 3.09 | mW1-3 2.17 | mW8 0.92 2019 -1.17 | mW2 -2.51 | mW7 1.34 2000 

W 2.58 | mW3 1.45 | mW6 1.13 2017 -2.01 | mW1 -3.09 | mW3 1.08 2001 
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Figure 2: 6-month SPI timeseries associated with climate division 0501 (CO) and 1405 (KS) for 
January, April, July, and October over the 2000-2020 timeframe. 
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Figure 3: 6-month SPI timeseries in the Midwest region for January, April, July, and October 
over the 2000-2020 timeframe.  
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Figure 4: 6-month SPI timeseries associated with climate division 1503 (KY) and 2102 (MN) 
for January, April, July, and October over the 2000-2020 timeframe. 
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Figure 5: 6-month SPI timeseries associated with climate division 3605 (PA) and 4602 (WV) 
for January, April, July, and October over the 2000-2020 timeframe. 
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Figure 6: 6-month SPI timeseries in the Southeast region for January, April, July, and October 
over the 2000-2020 timeframe. 
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Figure 7: 6-month SPI timeseries associated with climate division 0804 (FL) and 0905 (GA) for 
January, April, July, and October over the 2000-2020 timeframe. 
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Figure 8: 6-month SPI timeseries associated with climate division 1609 (LA) for January, April, 
July, and October over the 2000-2020 timeframe. 
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Figure 9: 6-month SPI timeseries associated with climate division 4103 (North TX) and 4109 
(South TX) for January, April, July, and October over the 2000-2020 timeframe. 
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Figure 10: 6-month SPI timeseries in the Western region for January, April, July, and October 
over the 2000-2020 timeframe.  
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Figure 11: 6-month SPI timeseries associated with climate division 4508 (WA) and 2906 (NM) 
for January, April, July, and October over the 2000-2020 timeframe. 
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Figure 12: 6-month SPI timeseries associated with climate division 402 (CA) for January, April, 
July, and October over the 2000-2020 timeframe. 
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Figure 13: Precipitation frequency distribution (A), fitted Gamma curves (B), and cumulative 
distribution functions (C) associated with each base period at the 3-month July timescale for the 
Southern region.  
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Figure 14: Precipitation frequency distribution (A), fitted Gamma curves (B), and cumulative 
distribution functions (C) associated with each base period at the 12-month July timescale for 
the Southern region.  
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Table 6: Median, standard deviation, and percentile values for base periods 1 and 8 at the 6-
month time scale.  
 

Region Base Period Median Standard 
Deviation 

Percentiles (25, 75) 

 January 
 
High Plains 
 

1 7.78 1.28 6.61, 8.43 

8 8.52 1.33 7.37, 9.23 

 
Midwest 
 

1 15.91 2.85 13.91, 17.71 

8 16.52 2.21 15.58, 18.55 

 
Northeast  
 

1 20.45 2.75 18.92, 21,77 

8 22.39 3.46 20.69, 24.73 

 
Southeast 
 

1 22.23 3.80 20.74, 26.62 

8 24.14 3.95 22.39, 26.93 

 
Southern 
 

1 18.48 2.97 15.24, 19.46 

8 18.51 3.52 17.06, 21.26 

 
Western 
 

1 10.12 1.58 9.05, 11.54 

8 9.98 1.88 9.08, 11.97 

 April 
 
High Plains 
 

1 6.29 1.14 5.63, 7.58 

8 6.55 1.10 5.94, 7.56 

 
Midwest 
 

1 14.00 2.26 11.70, 15.67 

8 14.78 1.91 13.75, 15.84 

 
Northeast  
 

1 18.81 2.25 17.56, 20.62 

8 20.41 2.67 18.22, 22.27 

 
Southeast 
 

1 22.54 3.69 19.57, 24.97 

8 23.21 4.48 19.38, 26.74 

 
Southern 
 

1 18.56 3.06 16.39, 20.00 

8 18.91 3.16 16.54, 20.92 
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Western 
 

 

1 

 

11.90 

 

1.82 

 

10.44, 12.92 

8 11.56 2.21 11.05, 14.29 

 July 
 
High Plains 
 

1 11.72 1.95 10.50, 13.10 

8 12.69 2.04 11.81, 13.55 

 
Midwest 
 

1 18.96 3.09 16.56, 20.62 

8 21.21 2.56 19.86, 23.07 

 
Northeast  
 

1 21.34 2.21 19.91, 22.86 

8 22.82 2.92 21.15, 25.15 

 
Southeast 
 

1 27.13 3.55 25.19, 29.50 

8 25.36 4.42 23.57, 28.69 

 
Southern 
 

1 19.86 3.22 17.77, 22.68 

8 20.54 3.35 19.20, 23.27 

 
Western 
 

1 8.87 1.51 7.99, 9.84 

8 9.01 1.58 8.28, 10.38 

 October 
 
High Plains 
 

1 13.19 2.13 11.53, 14.02 

8 14.56 2.29 12.80, 15.62 

 
Midwest 
 

1 20.99 2.43 19.34, 22.06 

8 23.29 2.62 21.70, 25.20 

 
Northeast  
 

1 22.59 2.42 20.94, 24.02 

8 24.88 3.69 22.23, 27.72 

 
Southeast 
 

1 27.72 3.48 25.36, 30.21 

8 27.86 3.90 25.91, 31.51 

 

 
 
Southern 
 

 

1 

 

19.48 

 

3.28 

 

16.68, 21.74 

8 21.12 3.10 19.25, 23.99 

 
 
Western 
 

 

1 

 

7.08 

 

1.18 

 

6.67, 7.96 
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8 7.44 1.15 6.64, 8.27 
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Figure 15: Average number of drought and pluvial events, respectively, per base period and 
accumulation period.  
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CHAPTER 4: THE EFFECTS OF NONSTATIONARY PRECIPITATION REGIMES ON 
THE CHARACTERIZATION OF PRECIPITATION EXTREMES BY THE 

STANDARDIZED PRECIPITATION INDEX 
 
Abstract: With climate change introducing nonstationarity in climatic variables such as 
precipitation, traditional drought monitoring tools like the Standardized Precipitation Index 
(SPI), which rely on fixed, climatically representative base periods for reference, may not 
accurately reflect current precipitation extremes. In this study, climate divisional monthly 
precipitation data is used to calculate the 3- and 12-month SPI using a series of base periods to 
evaluate the extent to which the value of the SPI is influenced by its underlying base period. 
Results indicate that the choice of base period influences the characterization of drought and 
pluvial values yielded by the SPI, with the more recent base periods showing a shift towards drier 
conditions in the West, Southwest, and parts of the Southern U.S., and wetter conditions in the 
Northeast. Additionally, updating the base period from 1980- 2010 to 1990-2020 resulted in 
changes in drought and pluvial severity levels across climate divisions, indicating a shift toward 
drier or wetter conditions depending on the region. 
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4.1 Introduction 

The concept of drought is a simple one, occurring when a region’s precipitation falls below 

average for a sustained period of time, yet droughts are among the most complex of natural 

hazards, notably when it comes to operational drought monitoring. Unlike other natural hazards 

such as hurricanes, wildfires, or tornadoes, droughts do not have a definitive onset or ending, 

they are slow to progress, their effects manifest in a multitude of ways (soil moisture deficits, 

decrease in water level, etc.), and they are regionally dependent – a drought in the northeastern 

U.S. would likely be considered above average precipitation in the desert southwest. Hence, 

drought occurrence and severity are dependent on the local climatology, which is often 

condensed into a climatologically representative base period for monitoring purposes. The 

Standardized Precipitation Index (SPI) capitalizes on the concept of representative base periods 

by measuring meteorological drought severity relative to a reference climate, and since its 

inception in the early 1990s, the SPI has become one of the most widely used operational 

drought monitoring tools (Svoboda et al., 2002; NOAA NCEI, 2023). 

Because the SPI is so widely used, several studies have investigated factors that impact the SPI 

and its reliability, such as the climatology of the region being studied (Wu et al., 2007), the 

length of record of the underlying base period (Wu et al., 2005, Spade et al., 2020), and the effect 

that the probability density function used for normalizing precipitation has on the SPI (Guttman, 

1999; Quiring, 2009). More recently, the impact that the underlying base period has on the 

characterization of drought has been investigated. Thomas et al. (2023) found that updating the 

base period from 1981-2010 to 1991-2020 resulted in fewer but more severe precipitation 

extremes in the southern and central United States. Cammalleri et al. (2022) evaluated the impact 

of transitioning between the two most recent base periods used by the World Meteorological 
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Organization on the SPI, finding that the effect was more pronounced at longer accumulation 

periods (9- and 12-month) than for shorter accumulation periods. The authors also found that 

changing base periods resulted in drought classification shifting from extremely dry to 

moderately dry. 

Other studies have addressed the impact of a nonstationary climate on drought monitoring 

through adjusting the computational approach of the SPI. Stagge and Sung (2022), for example, 

used Bayesian splines to develop a nonstationary SPI model that could measure drought relative 

to a changing climate. The authors found that the model was able to reproduce nonstationary 

climate patterns identified in other studies, emphasizing that the nonlinear model improved upon 

other SPI models by reducing uncertainties in several key areas. However, as noted by Hoylman 

et al. (2022), novel approaches such as that suggested by Stagge and Sung (2022) present a 

challenge in that they would necessitate a significant change in the established drought 

monitoring practices. Hoylman et al (2022) instead favor the 30-year moving window approach 

as it simultaneously captures climate non-stationarity while also leveraging the existing 

infrastructure for drought monitoring.  

In recognizing the prevalence of the 30-year moving window approach for operational drought 

monitoring, the objective of this study is to evaluate how transitioning between base periods 

impacts present-day drought characterization according to the 3- and 12-month SPI. The purpose 

of this analysis is to determine the differential impacts on operational drought monitoring of 

transitioning between base periods for areas that are trending toward drier or wetter conditions. 

The analysis is performed at the climate divisional scale over the contiguous U.S., and present-

day is represented by the 2021-2023 time period. This study’s Data and Methods are detailed in 

Sections 2 and 3, respectively. The Results, Discussion and Conclusions are provided in Sections 
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4 through 6. 

4.2 Data 
4.2.1 Climate Divisional Precipitation 
 
For this study, the SPI is calculated at the 3- and 12-month timescales using climate divisional 

monthly precipitation data for each of the 344 climate divisions in the contiguous U.S. The 

divisional precipitation data is available for download through the U.S. Climate Divisional 

database (nClimDiv; Vose et al., 2014a). Divisional values of precipitation are derived from 

area-weighted averages of grid-point estimates interpolated from station data (Vose et al., 

2014b). These datasets are available for download in TXT, MAP and KMZ file formats. 

4.2.2 U.S. Drought Monitor 

The U.S. Drought Monitor (USDM) consists of a weekly map of the U.S. displaying the severity 

of drought conditions using a scale ranging from D1 (moderate drought) to D4 (exceptional 

drought). A fifth category, D0, indicates abnormally dry conditions, which commonly either 

precede a drought or depict lingering impacts after a drought. As shown by Table 1, each of the 

USDM’s drought severity categories are associated with a specific range of SPI values. 

[Table 1] 
 
The USDM is jointly produced by the National Drought Mitigation Center at the University of 

Nebraska-Lincoln, the United States Department of Agriculture, and the National Oceanic and 

Atmospheric Administration (NOAA). The product became operational in 1999 and has since 

become the standard for operational drought monitoring, due in large part to the product 

providing a weekly snapshot of both short- and long-term drought conditions across the U.S. in a 

single map. This is accomplished through blending the results of several drought indicators and 

indices, including soil moisture, hydrological inputs, climatological inputs, modelled inputs, and 

remotely sensed inputs (Svoboda et al., 2016). The 2021 – 2023 USDM dataset is used as a 
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reference in this study because it depicts the operationally established drought conditions.  

Weekly USDM data over the product’s entire period of record are available for download 

in KMZ, Shapefile, GML, WMS, GeoJSON, and IMG format. For this study, USDM data 

for January, April, July, and October of 2021 – 2023 were downloaded in shapefile format. 

4.3 Methods 
4.3.1 Location and Period of Interest 

This study’s analysis and results focus on January, April, July, and October of 2021 through 

2023 in the contiguous U.S. This region was selected for study because of the wide array of 

precipitation regimes available for study as well as the prevalence of long- term, freely available, 

and serially complete precipitation datasets such as the climate divisional precipitation dataset. 

The 2021 through 2023 study period was selected so that the ability of each base period to 

capture modern day drought and pluvial conditions could be analyzed for a set of years not 

incorporated in any of the base periods used in this study. 

4.3.2 Statistical Analysis 
 
This study fits the 2-parameter Gamma probability distribution (Edwards and McKee, 1997) to a 

precipitation time series that is aggregated over 3- and 12-months, respectively, using four 

different months of interest (January, April, July, and October). These months and aggregation 

periods were selected so that both short- and long-term drought and pluvial events could be 

assessed across all seasons. This study uses the fitdistrplus package and the associated functions 

in R to fit the Gamma probability distribution to the eight precipitation time series associated 

with each base period studied (Table 2; Delignette-Muller and Dutang, 2015; R Core Team, 

2023). 

[Table 2] 

Each base period shown in Table 2 is associated with a unique set of Gamma distribution 
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parameters, the shape and rate parameters, which are retrieved after the precipitation time series 

has been fitted to the Gamma probability distribution. The shape parameter controls the 

skewness of the distribution, with lower values indicating a more skewed distribution and higher 

absolute values indicating a more symmetrical distribution. A distribution with a positive skew 

indicates that there are more frequent low precipitation events and fewer but more intense high 

precipitation events, while a distribution with a negative skew suggests that high precipitation 

events are more frequent than low ones. In contrast, a distribution with a skew value equal to or 

approaching zero is symmetrical, reflective of a climate with more consistent rainfall patterns. 

Previous studies by Guo (2022) and Shen et al. (2016) provide additional insights on the 

relationship between skewness and other higher order statistics with precipitation frequency 

distributions. 

The rate parameter influences the peak of the distribution, with higher absolute values indicating 

a narrower, more peaked distribution and lower values indicating a wider, and therefore more flat 

distribution. Changes in the shape and rate parameters amongst base periods are reflective of 

differing precipitation regimes amongst base periods, which in turn result in differing SPI values 

yielded by each. 

4.3.3 Differential Drought Severity 

This study explores the impact of variable precipitation regimes on the characterization drought 

and pluvial events in two ways: First, after calculating the SPI for the 2021 – 2023 study period, 

the values were categorized into the same drought severity levels used by the USDM (Table 1). 

Note that the same severity levels were applied to positive values of the SPI in order to 

categorize the pluvial values (Table 1). This process was repeated for each study period year and 

month of interest. The USDM maps associated with the same month and year of interest were 
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used as a reference, although this was done with caution, as the USDM product depicts both 

short- and long-term drought and uses several indicators to characterize drought beyond just the 

SPI. 

Second, the effect of transitioning from base period 7 to base period 8 (Table 2) on drought and 

pluvial severity was analyzed by identifying climate divisions whose SPI values changed by 

showing a decrease in severity or switching from drought (pluvial) to neutral conditions, 

increased in severity or switched from neutral to drought (pluvial) conditions, or were equivalent 

between the two base periods. For the purposes of this study, SPI values that fell within the same 

drought or pluvial severity group shown in Table 1 were considered equivalent. This analysis was 

performed for both the 3- and 12- month SPI values for 2021 – 2023. 

4.4 Results 
4.4.1 Statistical Analysis 

4.4.11 Changes in Precipitation Frequency Distributions 
 
Figures 1 – 3 illustrate the 3- and 12-month July precipitation frequency distributions for climate 

divisions in California (Figure 1A and 1C), Texas (Figure 1B and 1D; Figure 2A and 2C), New 

York (Figure 2B and 2D), South Dakota (Figure 3A and 3C), and Ohio (Figure 3B and 3D). The 

vertical lines in each figure mark the average value of each distribution. The associated 3- and 

12-month skew, standard deviation, and median values of each distribution are shown in Tables 3 

and 4, respectively. These climate divisions were selected because the changes observed in their 

precipitation regimes amongst base periods and the resultant impact on drought and pluvial 

characterization (discussed below) are representative of the changes observed for other climate 

divisions across the U.S. 

[Figure 1] 
[Figure 2] 
[Figure 3] 
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Distinct differences in the precipitation regimes associated with each base period are illustrated 

in Figures 1 – 3. For instance, in central California (Figure 1C) the 12-month results indicate that 

the frequency of above average precipitation has decreased from base period 1 to base period 8, 

and Table 4 shows that the median precipitation value has decreased as well (note that the 

vertical black lines in the figure denote the average value rather than the median). Additionally, 

the skew of each base period’s distribution has steadily increased from base period 1 to base 

period 8, indicating that the frequency distributions are becoming increasingly more asymmetric 

(Table 4). In comparing the distribution of base period 8 with that of base period 1, it is apparent 

that the frequency of precipitation extremes on either end of the moisture spectrum have 

increased. This is also apparent at the 3-month scale (Figure 1A). Also evident at the 3-month 

scale is that the median precipitation magnitude has decreased from base period 1 to base period 

8 (Table 3) while the skew has increased in accordance with the longer tail on the right side of the 

latter base periods. These longer tails to the right of the average value are indicative of a higher 

frequency of large magnitude precipitation events. Unlike at the 12-month scale, however, the 

frequency of the smallest precipitation magnitudes decreased for the latter base periods. 

[Table 3] 
[Table 4] 

In the Texas Panhandle (Figure 1D) the 12-month results indicate that median precipitation value 

oscillates between 16.40 inches and 18.13 inches, and the skew of each distribution also varies 

amongst base periods, ranging between 0.71 and 0.15 (Table 4). In the context of precipitation 

extremes, distributions with a larger positive skew are more asymmetric in accordance with the 

longer tail on the right side, which is indicative of a higher frequency of large magnitude 

precipitation events. Still, base period 8 shows an increase in the frequency of the smallest 
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magnitude precipitation values. At the 3- month scale (Figure 1B), the frequency of below 

average precipitation magnitudes increased from base period 1 to base period 8, and the median 

value also decreased (Table 3). In contrast, the frequency of large magnitude precipitation events 

increased from base period 1 to base period 8, indicating that although the precipitation is 

decreasing overall, the occurrence of heavy precipitation events has increased. 

In eastern Texas and Southeastern New York (Figure 2), the skewness of each distribution 

oscillates between negative and positive values amongst base periods (Table 4). For instance, at 

the 12-month scale base period 1 in New York has a skew of 0.87 while the skew of base period 

8 is -0.11. This indicates that base period 1 had a higher frequency of small magnitude 

precipitation events and a lower frequency of large magnitude precipitation events relative to 

base period 8. This is also reflected by the larger median value of precipitation for base period 8 

compared with base period 1, which increased from 40.65 to 46.52 inches (Table 4). Further, the 

negative skew of base period 8’s distribution is indicative of a higher frequency of large 

magnitude precipitation events. At the 3-month scale the median precipitation magnitude has also 

increased from base period 1 to base period 8 (Table 3) and Figure 2B illustrates that the 

frequency of large magnitude precipitation events increased as well. In contrast, the frequency of 

the lowest magnitude precipitation events has decreased for the latter base periods. 

In South Dakota, the distributions have widened for the latter base periods at both timescales, as 

is evident from the increase in standard deviation (Tables 3 and 4). At the 12-month timescale, 

the median precipitation increased from base period 1 to base period 8 and the distribution itself 

has become more symmetrical for the latter base periods (Figure 3C), indicative of more 

consistent rainfall patterns rather than a higher frequency of extremes on either end of the 

moisture spectrum. At the 3-month timescale, less variability is seen in the median precipitation 
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value from base period 1 to base period 8 (Table 3), although the latter base periods have become 

increasingly asymmetric over time and the frequency of both large and small precipitation 

magnitudes have increased (Figure 3A). 

In central Ohio at the 12-month scale, a slight decrease in the median precipitation magnitude 

occurs from base period 1 to base period 8, the distribution has narrowed and has become more 

asymmetric as is evident by the changes in standard deviation and skewness values (Table 4). 

Figure 3D shows that the frequency of the largest magnitude precipitation events increased in 

base period 8 and the frequency of the lowest magnitude precipitation events decreased. At the 3-

month timescale, the distribution has widened from base period 1 to base period 8 and the median 

precipitation magnitude has increased (Table 3). The increasingly negative skew values 

associated with the latter base periods are indicative of a higher frequency of large magnitude 

precipitation events and lower frequency of small magnitude precipitation events. This suggests 

a shift toward wetter conditions with fewer dry periods (Figure 3B). 

4.4.12 Changes in Gamma Parameters 

Tables 3 and 4 also provide the alpha and rate parameters associated with the precipitation 

frequency distributions shown in Figures 1 – 3. While the skew, standard deviation, and median 

values discussed above describe the shape of the precipitation frequency distributions, the alpha 

(also referred to as shape) and rate parameters describe the shape of each distribution after they 

have been fitted to the Gamma distribution. 

Variability in the shape and rate parameters is therefore more directly relevant to the value of the 

SPI because the cumulative probability derived from the fitted Gamma distribution is what is 

transformed to the standard normal random variable (equivalent to the SPI). 

[Figure 4] 
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Figure 4 illustrates the Gamma curves fit to the 3- and 12-month July precipitation frequency 

distributions, respectively, for climate division in 405 in central California and 3002 in southeast 

New York. Curves are plotted for all eight base periods. In California (Figure 4A and 4C) the 

fitted distributions have widened from base period 1 to base period 8 at both the 3- and 12-month 

timescale. Figure 4C illustrates a shift to the left from base period 1 to base period 8, indicating a 

shift toward lower precipitation values. In New York (Figure 4B and 4D), the distributions at 

both timescales also widened from base period 1 to 8. In contrast to the California curves, the 

latter base periods in New York shift to the right, indicating a shift toward higher precipitation 

values. 

Figure 5 illustrates the Gamma curves fit to the 3- and 12-month July precipitation frequency 

distributions, respectively, for climate division 3905 in southwest South Dakota and 4101 in the 

Texas Panhandle. Curves are plotted for all eight base periods. In South Dakota at the 12-month 

timescale (Figure 5C), the fitted curve widened and shifted to the right when moving from base 

period 1 to base period 8, indicative of a shift toward larger precipitation values. At the 3-month 

timescale (Figure 5A), the distribution widened from base period 1 to base period 8 and shifted 

to the right, although to a lesser degree than what was seen at the 12-month timescale. In Texas 

(Figure 5B and 5D), the fitted Gamma curves maintained their shape from base period 1 to 8 at 

both timescales, although there is a shift to the left toward lower precipitation values when 

moving from base period 1 to 8 at both timescales. 

[Figure 5] 
 
4.4.2 Differential Drought Severity 
 
4.4.21 Drought and Pluvial Severity by Base Period 
 
Figure 6 illustrates the 3-month July drought and pluvial severity results yielded by each base 
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period for 2021 precipitation values. Also shown in Figure 6 is the July 2021 USDM drought 

map. Figure 6 shows that climate divisions in the Pacific Northwest have a lower drought 

severity for the later base periods, for instance from base period 6 to 8. In California, climate 

divisions yield a lower drought severity from base period 7 to 8. Drought severity increased in 

the eastern Dakotas for the later base periods. In the Southeast, pluvial severity decreased from 

base period 1 to 8. In comparing the drought severity maps yielded by base periods 7 and 8 with 

the USDM map for July 2021, areas of disagreement are seen in New Mexico, Arizona, and 

southern California wherein base periods 7 and 8 indicate above average precipitation where the 

USDM indicates extreme and exceptional drought. This is likely due to shorter term precipitation 

events ameliorating the longer-term drought conditions depicted by the USDM. Other areas of 

disagreement in terms of differing drought severities are seen in Minnesota, the eastern Dakotas, 

southern Nevada, western Colorado, and Utah. 

[Figure 6] 
 
Figure 7 illustrates the 12-month July drought and pluvial severity results yielded by each base 

period for 2021 precipitation values. Also shown in Figure 7 is the July 2021 USDM drought 

map. Base period 8 shows higher drought severities in the northern Midwest and High Plains as 

well as the New England area. Lower drought severities are seen in the results of base period 8 in 

southern California, Arizona, New Mexico, Colorado, and Texas. In comparing the drought 

severity maps yielded by base periods 7 and 8 with the USDM map for July 2021, areas of 

disagreement in terms of severity are seen in Arizona, the eastern Dakotas, western Minnesota, 

and northern Montana for base period 8. For base period 7, disagreement is seen in southwest 

New Mexico southern and eastern Montana, the eastern Dakotas, Minnesota, and northern Iowa. 
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[Figure 7] 
 
4.4.22 Differing Drought and Pluvial Severity 

Figures 8 and 9 illustrate changes in drought and pluvial severity levels when transitioning from 

the SPI results yielded by base period 7 to the results yielded by base period 8. Figure 8 provides 

the 3-month timescale results and Figure 9 the 12-month timescale results. Figure 8 shows that at 

the 3-month timescale in January and October, many climate divisions in the western U.S. 

transitioned from either neutral to pluvial conditions or transitioned to a higher pluvial severity 

value when switching from base period 7 to base period 8. This means that for these areas, the 3-

month precipitation regimes of base period 8 were shifted toward smaller precipitation 

magnitudes as was demonstrated for representative climate division 405 in central California 

(Figure 1). Furthermore, in April, many climate divisions in the western and southwest part of the 

country transitioned either from drought to neutral or to lower severity drought values when 

transitioning from base period 7 to base period 8, which is also indicative of a shift toward lower 

precipitation magnitudes. 

Also evident from Figure 8 is that in January, April, and July, many climate divisions in the High 

Plains either moved from neutral to drought conditions or transitioned to higher severity drought 

values when transitioning from base period 7 to base period 8. This suggests that these areas have 

precipitation regimes that shifted toward wetter conditions. 

Representative climate division 3905 in southwest South Dakota (Figure 3A and 3C; Tables 3 

and 4) demonstrated changes in the precipitation frequency supporting the results of Figure 8 

such as the increase in median precipitation value for the latter base periods and a widening of 

the distribution. 

[Figure 8] 
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In April and July, climate divisions in parts of the Northeast, Midwest, and Southeast indicated a 

shift toward either lower severity pluvial or pluvial to neutral conditions. This suggests that these 

divisions shifted toward wetter conditions from base period 7 to base period 8. Representative 

climate division 3002 in southeast New York (Figure 2B and 2D; Tables 3 and 4) demonstrated 

changes in the precipitation frequency supporting the results of Figure 8 such as the increase in 

median precipitation value for the latter base periods, the negative skew value for the latter base 

periods, and the decreasing frequency of the lowest magnitude precipitation events. 

[Figure 9] 

At the 12-month timescale (Figure 9), the results for July and October indicate that many climate 

divisions in the western part of the country transitioned either from drought to neutral conditions 

or decreased in drought severity. This is indicative of drier conditions in base period 8 relative to 

base period 7. For April, July, and October, climate divisions in the High Plains, Midwest, and 

parts of the southeast transitioned either from neutral to drought or to higher severity drought 

conditions from base period 7 to base period 8. This is indicative of wetter conditions in base 

period 8 relative to base period 7 for these climate divisions. Also for these months, climate 

divisions in the Northeast shifted toward either lower severity pluvial or from pluvial to neutral 

conditions, indicating that the 12- month precipitation frequency distributions of these areas were 

wetter in base period 8 than in base period 7. 

4.5 Discussion 
 
The results of this study revealed that the variability in the precipitation regimes amongst the 

eight 30-year base periods analyzed had an impact on modern-day drought and pluvial values, 

despite each of these base periods having 20 years of precipitation data in common. In the parts 

of the country that became drier (wetter) from base period 7 to base period 8, drought was 
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characterized as less (more) severe. These results are supported by similar studies investigating 

the impact of base period selection on the quantification of precipitation extremes. For instance, 

Thomas et al. (2023) found that updating the base period from 1981-2010 to 1991-2020 resulted 

in the detection of fewer very wet days in the southwestern U.S. Likewise in Europe, Cammalleri 

et al. (2022) found that the 1981 – 2010 base period yielded differing drought classifications than 

those yielded by the 1991 – 2020 base period.    

These findings call into question the reliability of the SPI for drought assessment in the context 

of a changing climate.   

4.6 Conclusion 
 
In the operational drought monitoring setting, the current practice of accounting for 

nonstationarity in our climate is the use of 30-year moving windows that are updated every 10 

years. In recognizing the prevalence of this approach, this study evaluated the extent to which the 

assessment of modern-day drought and pluvial conditions in the U.S. are impacted by the choice 

of base period used in calculating the SPI at the climate divisional scale. The approach involved 

using a series of eight 30-year moving windows as base periods, ranging from 1920-1950 to 

1990 – 2020 to calculate the SPI over the 2021 – 2023 timeframe. It was found that climate 

divisions in the West, Southwest, and parts of the Southern U.S. have shifted toward drier 

conditions, divisions in the northeast toward wetter conditions. These changes were observed by 

analyzing the underlying precipitation frequency distributions and the associated median values, 

standard deviations, and skew values. Changes in the underlying frequency distributions were 

found to impact modern-day drought characterization by evaluating differences in 

drought/pluvial severity values yielded by base period 7 and base period 8. Results indicated that 

when transitioning from base period 7 to 8, drought in the western, southwestern, and parts of the 
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Midwest was characterized as either lower severity drought or even neutral conditions. 

Climate divisions in parts of the Northeast, Midwest, and Southeast indicated a shift toward 

either lower severity pluvial conditions or from pluvial conditions to neutral conditions. Climate 

divisions in the High Plains, Midwest, and parts of the southeast transitioned either from neutral 

to drought or to higher severity drought conditions from base period 7 to base period 8. Climate 

divisions in the Northeast shifted toward either lower severity pluvial conditions or from pluvial 

conditions to neutral conditions. 
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4.8 Figures and Tables 
 

  

Table 2: Base periods used in calculating the SPI. 
 

Base Period Year Range 
1 1920-1950 
2 1930-1960 
3 1940-1970 
4 1950-1980 
5 1960-1990 
6 1970-2000 
7 1980-2010 
8 1990-2020 

 

Table 1: U.S. Drought Monitor severity levels and associated SPI values. Note that P0 through 
P4 are not utilized by the Drought Monitor and these pluvial categories were created for the 
purposes of this study. 
 

USDM Category Values for SPI 
D0 -0.5 to -0.79 
D1 -0.8 to -1.29 
D2 -1.3 to -1.59 
D3 -1.6 to -1.99 
D4 -2.0 or less 
P0 0.5 to 0.79 
P1 0.8 to 1.29 
P2 1.3 to 1.59 
P3 1.6 to 1.99 
P4 2.0 or greater 
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Figure 1: 3- and 12-month July precipitation frequency distributions for climate divisions 0405 
and 4101.  
 

 
 



103  

Figure 2: 3- and 12-month July precipitation frequency distributions for climate divisions 4104 
and 3002.  
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Figure 3: 3- and 12-month July precipitation frequency distributions for climate divisions 4803 
and 3305.  
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Table 3: Table of 3-month skew, standard deviation, median, alpha and rate parameters 
associated with the precipitation frequency distributions shown in Figures 1 – 3. 

3-month Central CA (405) 
Base Period Skew Standard 

Deviation 
Median alpha rate 

1 0.01 0.55 1.01 2.55 2.49 
2 0.77 0.63 1.12 2.64 2.43 
3 1.2 0.61 0.88 2.95 2.91 
4 1.25 0.69 0.71 2.53 2.52 
5 1.38 0.56 0.71 3.19 3.6 
      
6 1.7 0.85 0.81 2.42 2.15 
7 1.7 0.83 0.91 2.65 2.24 
8 1.17 0.95 0.86 2.14 1.65 

3-month East TX (4104) 
1 -0.2 3.37 13.01 11.71 0.97 
2 0.09 3.3 11.32 12.44 1.05 
3 0.37 3.26 11.74 13.9 1.16 
4 0.51 3.49 10.47 11.84 1.02 
5 0.58 4.17 11.74 9.32 0.76 
6 0.16 4.06 12.68 8.3 0.67 
7 0.38 4.1 12.6 8.56 0.68 
8 0.02 3.75 12.49 9.35 0.75 

3-month Southwest SD (3905) 
1 -0.24 2.43 8.48 9.6 1.2 
2 -0.01 2.16 7.6 11.32 1.51 
3 0.4 2.38 8.49 12.93 1.52 
4 0.77 2.33 7.79 12.99 1.61 
5 0.58 2.51 8.28 10.77 1.33 
6 0.23 2.49 8.3 10.91 1.32 
7 0.06 2.8 8.39 8.2 0.99 
8 0.24 3.1 8.74 7.91 0.89 

3-month TX Panhandle (4101) 
1 1.13 2.76 7.52 8.81 1.15 
2 0.99 2.75 7.52 8.39 1.11 
3 0.63 2.77 8.35 8.38 1.06 
4 -0.2 2.25 8.39 10.75 1.4 
5 -0.23 2.22 8.66 11.15 1.44 
6 -0.23 2.26 8.07 10.25 1.34 
7 -0.09 2.09 7.81 12.22 1.61 
8 0.32 2.54 7.25 6.72 0.94 

3-month East NY (3002) 
1 -0.01 2.79 11.86 18.88 1.53 
2 -0.02 2.83 11.86 17.33 1.45 
3 0.04 2.85 11.33 16.17 1.39 
4 -0.02 2.67 11.23 17.34 1.54 
5 0.02 2.85 11.5 16.88 1.42 
6 0.18 3.09 11.5 16.15 1.31 
7 0.29 3.3 12.03 14.83 1.18 
8 -0.01 3.29 13.23 15.23 1.17 

3-month Central OH (3305) 
1 -0.62 2.84 12.27 15.27 1.28 
2 0 3.01 11.7 14.51 1.23 
3 0.53 2.8 11.7 19.21 1.61 
4 0.77 2.71 10.87 20.36 1.74 
5 0.51 2.96 11.84 17.57 1.46 
6 0.01 3.11 12.58 15.39 1.24 
7 -0.3 3.36 13.19 13.36 1.04 
8 -0.52 3.26 13.72 14.57 1.1 
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Table 4: Table of 12-month skew, standard deviation, median, alpha and rate parameters for the 
precipitation frequency distributions shown in Figures 1 – 3. 

12-month Central CA (405) 
Base Period Skew Standard 

Deviation 
Median alpha rate 

1 0.33 5.05 18.65 14.73 0.77 
2 0.43 5.53 17.33 13.48 0.68 
3 0.77 5.81 17.79 13.17 0.66 
4 0.59 6.59 17.79 9.67 0.49 
5 0.86 7.37 17.79 8.25 0.41 
6 0.7 7.49 19.32 8.43 0.41 
7 0.84 7.17 17.65 9.5 0.46 
8 0.7 7 16.98 8.78 0.44 

12-month East TX (4104) 
1 -0.26 7.92 48.04 32.86 0.7 
2 0.45 7.65 44.03 37.25 0.82 
3 0.38 8.3 43.99 31.51 0.69 
4 0.37 8.65 43.99 28.5 0.63 
5 0.46 7.73 44.11 37.46 0.81 
6 0.05 8.71 46.12 30.38 0.64 
7 -0.16 7.76 48.42 38.24 0.79 
8 -0.29 9.76 49.13 23.97 0.49 

12-month Southwest SD (3905) 
1 0.21 3.43 16.54 22.89 1.39 
2 0.43 3.07 15.4 26.45 1.69 
3 0.84 2.91 16.4 35.39 2.14 
4 0.5 2.58 15.82 41.55 2.57 
5 0.02 3.08 16.4 28.4 1.72 
6 0.39 3.8 17.51 21.97 1.25 
7 -0.02 4.26 17.75 16.65 0.94 
8 0.03 4.21 18.74 19.24 1.03 

12-month TX Panhandle (4101) 
1 0.71 4.16 18.13 22.62 1.2 
2 0.61 4.33 16.4 17.78 1.01 
3 0.37 4.41 17.91 17.07 0.95 
4 0.15 4.13 17.57 17.87 1.02 
5 0.25 4.34 17.92 18.96 1.01 
6 0.38 4.53 17.55 18.44 0.97 
7 0.53 4.41 17.88 20.66 1.07 
8 0.25 4.65 17.35 15.72 0.85 

12-month East NY (3002) 
1 0.87 4.12 40.65 107.79 2.58 
2 0.61 4.53 40.91 92.38 2.19 
3 0.15 5.49 40.36 56.34 1.38 
4 0 6.11 42.27 47.89 1.13 
5 -0.03 6.05 41.2 47.62 1.14 
6 -0.06 5.66 43.21 59.65 1.37 
7 -0.01 6.15 42.94 51.44 1.17 
8 -0.11 6.32 46.52 53.23 1.16 

12-month Central OH (3305) 
1 0.03 5.88 40.47 44.98 1.15 
2 -0.27 5.13 39.09 53.6 1.42 
3 -0.45 4.1 37.66 81.46 2.19 
4 0.1 4.41 37.93 74.87 1.99 
5 0.33 4.6 37.43 70.57 1.86 
6 -0.05 4.74 38.73 66.97 1.73 
7 0.05 4.99 39.18 63.27 1.6 
8 0.63 4.95 39.97 73.33 1.78 
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Figure 4: 3- and 12-month July probability density distributions for climate divisions 0405 and 
3002.  
 

 



108  

  

Figure 5: 3- and 12-month July probability density distributions for climate divisions 3905 and 
4101.  
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Figure 6: 3-month July drought severity maps for each base period for July 2021. The 
lowermost panel illustrates the July 2021 USDM map. 
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  Figure 7: 12-month July drought severity maps for each base period for July 2021. The 
lowermost panel illustrates the July 2021 USDM map. 
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Figure 8: Differential drought severity between base period 7 and base period 8 according to the 
3-month SPI. 
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Figure 9: Differential drought severity between base period 7 and base period 8 according to the 
12-month SPI. 
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CHAPTER 5: CONCLUSION 

The regional subjectivity of drought is perhaps one of its most complicating factors, and is a 

driving force behind the vast array of indices used to monitor its onset and severity. However, as 

discussed in Chapter 1, rather than continuing to develop new indices to monitor different 

aspects of drought, the scientific community should instead focus on improving the monitoring 

tools already in circulation. The SPI is one of the most prevalent drought indices in circulation 

both operationally and in the research setting because it requires only precipitation data to be 

computed, it can be calculated at various time scales, and it is normalized with respect to 

location, allowing it to be comparable across regions with different climates. Further, the index 

only requires precipitation data to be computed and the computational procedure is far less 

complex than other common drought indices such as the Palmer Drought Severity Index (PDSI) 

or the Standardized Precipitation Evapotranspiration Index (SPEI). Nonetheless, the results of 

this dissertation shed light on a major weakness of the SPI, especially in the context of a 

changing climate, and that is its sensitivity to the base period used as a climatologically 

representative reference frame. The occurrence and apparent severity of a drought event 

according to the SPI is dependent on this reference frame.       

One major factor that the drought monitoring community must contend with is the issue of 

stationarity, or the lack thereof, in our global climate. Stationarity is the assumption that 

environmental variables fluctuate within a static envelope of variability and can be modeled with 

a time-invariant probability density function estimated from the instrumental record. This 

assumption is pervasive in drought monitoring. Thus, in the context of a changing climate, 

drought monitoring specialists must use careful consideration when selecting the base period to 

use as reference. This concept is an emerging area of research in the contemporary drought 
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monitoring community, as its implications are relevant not only to the field of climatology, but 

also to water managers, community planners, and to the broader scientific community. The 

impact of base period selection on the SPI’s ability to capture drought occurrence and severity 

was explored throughout this dissertation through addressing three research questions: 

1. How do operational SPI databases, such as those used by the NCEI, compare to research 

databases? 

2. Does the choice of base period impact the severity and frequency of drought events 

according to the SPI?  

3. How does transitioning between base periods impact contemporary drought 

characterization? 

Question 1 is explored in Chapter 2 of this dissertation. The metadata associated with the NCEI-

maintained SPI database cites a static base period of 1931 – 1990. A major benefit of the SPI is 

that its statistical framework serves as a predictor for the anticipated drought frequency over the 

base period selected for reference. Recalling that the SPI is based on a transformation of the 

probability distribution function modelling the precipitation regime to the standard normal 

distribution, abnormally dry and wet conditions are expected roughly 16% of the base period, 

respectively, and average conditions roughly 68% of the base period. However, the results of 

Chapter 2 illustrated that the NCEI’s SPI database is over-representing drought in certain parts of 

the U.S. and under-representing drought in other parts of the country. Consultation with the 

database’s point of contact revealed that the reason for the apparent dry and wet biases over the 

base period was due to a miscommunication in the metadata file. That is, the base period 

associated with the database is in fact the full period of record, which expands on an annual 

basis.  
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This sliding scale approach to calculating the SPI means that there is no fixed baseline associated 

with the dataset because it is updated every year. The lack of a standard baseline renders the 

NCEI SPI database unusable as a research tool because the baseline expands annually as new 

precipitation data is collected; consequently, it is impossible to accurately compare across studies 

as they each may be comparing against different historical records. Further, it becomes 

impossible to use the dataset to identify changes in frequency of occurrence or intensity of 

drought because that necessitates comparing present anomalies with an established baseline to 

assess change, such as departure from 20th-century average (e.g., IPCC, National Climate 

Assessment, and NCEI State of the Climate Report).  

Based on the analysis of Chapter 2, the NCEI SPI database is not recommended for assessing 

changes in drought frequency or severity, nor is it recommended for use in research because the 

SPI values change yearly as their underlying base period is updated. For example, in 1934 

climate division 2503 in Nebraska has a 6-month September SPI value of −1.35 based on a 

1931–90 base period, −1.62 based on an 1895–2009 base period, and −1.58 based on an 1895–

2019 period. Thus, the only way for different studies using this data to be comparable would be 

if the respective authors happened to download the dataset in the same year. Further, this 

database is not recommended for operational drought monitoring because the SPI values are 

being influenced by precipitation regimes from 1895 to present, and in the context of a 

nonstationary climate, time periods in the late 19th and earlier 20th centuries are not 

representative of modern-day climate. For example, the values of the SPI might indicate a higher 

drought severity than what is being experienced by the region impacted. Alternatively, the index 

might underestimate drought severity, which could result in the impacted region neglecting to 

take precautions such as water restrictions.     
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This concept was explored further in Chapter 3 through an evaluation of drought frequency and 

severity according to eight different SPI timeseries, each associated with a distinct 30-year base 

period, ranging from 1920 – 1950 to 1990 – 2020. This moving 30-year window approach to 

investigating the sensitivity of the SPI to its underlying base period illustrated why the SPI’s 

sensitivity to its underlying base period is a distinct weakness of the index. For instance, in the 

High Plains, Midwest, Northeast, and Southern regions of the U.S., the older base periods tended 

to yield SPI values that are less severe than the newer base periods during times of drought. In 

contrast, in the Western and Southeast regions, the older base periods tended to yield SPI values 

more severe than the newer base periods during times of drought. The results of this chapter 

further complicate the task of operational drought monitoring because they call into question the 

appropriate selection of reference frame to use. For instance, a biologist investigating the 

relationship between land cover change and drought must consider which reference frame is 

appropriate to use. Unfortunately, the answer to this question based on the results of Chapter 3 is 

that it depends. If the object of the study is to establish a relationship between recent drought 

events and land cover change, then a base period coinciding with the current Climate Normal 

might be ideal. However, if the goal is to investigate land cover changes associated with historic 

drought events such as the Dust Bowl, this would necessitate a base period incorporating 

precipitation data from the 1930s. If the goal is to compare land cover changes associated 

historic drought events to land cover change associated with modern day drought, this would 

necessitate a longer base period that incorporates both historic and modern precipitation data. 

However, based on the results of Chapter 3, the modern-day drought severity would either be 

over- or under-estimated, depending on the region.  

Another item for consideration when using the SPI as a research tool is that the ability of the 
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index to capture drought occurrence is also dependent on the base period selected. In the 

Midwest region, for example, the climate was found to be trending toward wetter conditions 

when moving from earlier to more recent base periods, and in this region the lattermost base 

period analyzed (1990 – 2020) captured 14 drought events at the 12-month SPI timescale over 

the 2000 – 2020 time period whereas the earliest base period analyzed (1920 – 1950) did not 

capture any drought events over that time period. In contrast, the climate of the Southeast region 

is trending toward drier conditions when moving from earlier to more recent base periods. In the 

Southeast region, one of the newer base periods (1980 – 2010) captured 10 drought events over 

the 2000 – 2020 time period whereas the 1920 – 1950 base period captured 18 drought events 

over the same period.  

Fundamentally, the results of Chapter 3 demonstrated that in regions where the climate is 

trending toward drier conditions, the index is less likely to detect drought and in regions where 

the climate is trending toward wetter conditions, the SPI is more likely to detect drought. 

Precipitation trends are at the core of any discrepancies observed among SPI values derived 

using different base periods, and the third and final research question of this dissertation built off 

of these findings by investigating the impact on drought characterization when transitioning 

between the two most recent base periods in order to investigate how contemporary precipitation 

trends are impacting operational drought monitoring. Results demonstrated that drought 

characterization changes even when transitioning between base periods sharing 20 years of 

precipitation data, that is base periods 1980 – 2010 and 1990 – 2020. The impact of transitioning 

to the latter base period on drought and pluvial severity was analyzed by identifying climate 

divisions whose SPI values changed in any of the following three ways:  

• Climate division showed a decrease in severity or switched from drought/pluvial to 
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neutral conditions.  

• Climate division showed an increase in severity or switched from neutral to 

drought/pluvial conditions.  

• Climate division showed equivalent values between the two base periods. 

Results indicated that in the Western U.S., a region becoming drier, climate divisions either 

transitioned to a lower drought severity level or to neutral. In contrast, climate divisions in the 

northern High Plains and eastern U.S., regions which have become wetter, climate divisions 

either transitioned to a higher drought severity level or switched from neutral to drought. Thus, 

even with 20 years of overlapping precipitation data, the SPI’s characterization of drought 

changes considerably between base periods.   

Based on the results of the research questions explored in this dissertation, the following 

questions warrant further discussion in the drought monitoring literature: 

1. What base period is recommended for operational drought monitoring? Does this 

differ from the base period recommended for researching climate change? 

2. What update frequency between base periods is recommended? 

3. Given the sensitivity of the SPI to the base period selected, should it continue to be 

used for operational drought monitoring? 

Given that the primary goal of operational drought monitoring is to identify drought severity, or 

the departure from “normal conditions”, a base period coinciding with the current Climate 

Normal is recommended for operational drought monitoring. As demonstrated in Chapters 2 and 

3, long-term trends can affect baseline “normal” weather conditions. Furthermore, emergency 

drought recovery programs offered to farmers and ranchers through the U.S. Department of 

Agriculture are automatically triggered once a certain level of drought severity according to the 
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U.S. Drought Monitor (USDM) is maintained for a certain number of weeks. Although the 

USDM incorporates a blend of multiple drought indices, including the SPI, the point stands that 

the accurate portrayal of drought severity is paramount.  

The purpose of using 30-year normals is to understand present-day conditions rather than long-

term trends. In contrast to operational drought monitoring, when studying long-term changes in 

climate, longer periods are recommended, such as a twentieth century benchmark. Further, using 

a twentieth century base period offers consistency as conditions change over time and the 

findings are not subject to updates every 10 years.  

Regarding the update frequency between base periods, the findings of Chapter 4 demonstrated 

that a 10-year update frequency does not keep pace with the rate at which precipitation regimes 

are changing across the U.S. That is, values of the SPI show a steep change when updating 

between base periods, including switching from neutral to drought/pluvial and vice versa or 

increasing/decreasing in severity levels used by the U.S. Drought Monitor. Based on these 

findings, a 5-year update frequency is recommended in order to mitigate the impacts of non-

stationary precipitation regimes.  

The results of this dissertation demonstrate that “normal” is nonstationary, and this influences the 

characterization of drought by the SPI. Should the scientific community continue using the SPI, 

or should we consider moving away from this tool?  

Undoubtedly, the SPI has limitations that require careful consideration before opting to use this 

index as a tool for research or operational drought monitoring. For instance, the SPI does not 

account for temperature or evapotranspiration, both of which impact drought occurrence and 

severity. Given that temperature trends are also changing across the U.S., this shortcoming 

presents a major blind spot of the SPI in that it is only considering one piece of the puzzle. The 
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sensitivity of the index to its underlying base period is also a noteworthy shortcoming of the SPI, 

as this further complicates the nature of drought. Nonetheless, the SPI has several benefits that 

support its continued use despite its shortcomings, as long as these are taken into consideration. 

The SPI offers modest data requirements, it is multiscaler, regionally comparative, and it 

succinctly classifies moisture conditions on a standardized scale. Thus, the overall 

recommendation based on the findings of this dissertation is that the SPI continue to be used 

operationally and as a research tool, however a clear understanding of the underlying base period 

used for reference is critical, as this period controls contemporary drought characterization.  
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