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Abstract

Wireless signals, ubiquitous and capable of penetrating obstacles, are increasingly

exploited to infer personal information such as vital signs, human activities, and

crowd counts. This surge in wireless sensing techniques benefits society but also

poses significant security threats. Adversaries could potentially use these signals

for wireless inference attacks, determining a target’s activities with little regard

for privacy or security. This dissertation mainly includes two studies on deception

in existing wireless networks and systems. On one hand, it proposes proactive

measures to send deceptive signals to mislead eavesdroppers, thus convincing

them their attempts are successful when, in fact, they are failing. On the other

hand, it identifies vulnerabilities in wireless liveness detection systems, where an

attacker can use such wireless deceptive techniques to compromise these systems.

The first study proposes proactive defenses against all existing Channel State

Information (CSI)-based vital signs and crowd counting inference attacks by es-

tablishing ambush locations and then transmitting deceptive signals designed to

mimic vital signs or person count, albeit falsely, thereby protecting the user’s

true vital signs or person count data. Experimental results on software-defined

radio (SDR) platforms demonstrate that these defensive strategies can effectively

mislead eavesdroppers, who then receive falsified breathing rates or person counts.

Conversely, the second study demonstrates how attackers exploit these wire-

vi



less deceptive techniques to compromise wireless liveness detection systems. Ma-

licious attackers are capable of crafting fake wireless signals synchronized with

spoofed video or audio streams to deceive systems into accepting fraudulent ac-

tivities as legitimate. We refer to such attacks as phantom-CSI attacks. Ex-

perimental results on SDR platforms verify that these phantom-CSI attacks can

significantly reduce the accuracy of spoof detection in wireless liveness systems.
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Chapter 1

Introduction

In recent years, the utilization of wireless signals for inferring various personal

information, such as vital signs [68], postures [66], and keystrokes [178], has gar-

nered increasing interest. While the proliferation of wireless sensing techniques

has offered significant societal benefits, it also introduces substantial security

concerns. Specifically, adversaries may exploit these techniques to determine a

target user’s activities by collecting corresponding wireless signals and conduct-

ing inference attacks. For instance, [98] demonstrates a technique by which an

attacker could infer the vital signs of the target user, such as breathing rate and

heartbeat, potentially resulting in privacy leakage.

However, there is little attention paid to the security and privacy issues in

wireless sensing. This gap is particularly alarming given the pervasive reliance

on wireless technologies in various aspects of daily life and industry. To mitigate

the misuse of wireless techniques, we propose proactive measures against wire-

less eavesdropping attacks. These measures deceive eavesdroppers with fake but

seemingly meaningful wireless signals, obscuring the fact that their eavesdrop-
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ping attempts have failed. Consequently, this may prompt the eavesdropper to

exert further efforts to break into the wireless communication [51,67].

Moreover, due to the fact that wireless signals are ubiquitous, invisible, and

able to penetrate through obstacles, wireless signals are widely used as second-

factor authentication in wireless liveness detection systems to enhance the owner’s

privacy. Such systems, which monitor human behavior in real-time, are inher-

ently susceptible to spoofing attacks. However, the nature of wireless signals that

facilitates their use in authentication also renders them vulnerable to spoofing.

Adversaries can generate counterfeit wireless signals synchronized with spoofed

video or audio streams, significantly complicating the task of distinguishing gen-

uine human activity from fraudulent activities.

This dissertation proposes a deception strategy in wireless communication,

which serves as a double-edged sword: it can be employed by defenders to mis-

lead attackers and protect personal health information from being leaked; it can

also be utilized by attackers targeting wireless liveness detection systems to by-

pass them successfully. The dissertation mainly introduces two studies. In the

first study, new proactive countermeasures against all existing Channel State

Information (CSI)-based vital signs and crowd counting inference methods are

introduced. Specifically, we establish ambush locations with carefully designed

wireless signals, enabling eavesdroppers to deduce a false breathing rate and per-

son count as specified by the transmitter, thereby safeguarding the breathing

rates and true person counts. In the second study, we demonstrate how an ad-

versary can easily generate phantom wireless signals and synchronize them with

spoofed video/voice signals, making it challenging for legitimate users to differ-

entiate between real and fake human activity.

Chapter 2 summarizes the related work. The details of my two studies are
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presented in Chapters 3 and 4, respectively. Chapter 5 discusses future work.

In the following, I provide the motivations and background for each of the two

studies.

1.1 Counteractive Strategies for Wireless

Breath and Crowd Inference Attacks

Crowd counting and vital signs inference via wireless signals has drawn increasing

attention due to the widespread availability of wireless infrastructures and the

lack of need for direct contact with devices [4, 24, 62, 64, 73, 81, 98, 99, 102, 113,

119,154,160,172,173,179,184,185]. With such a technique, an eavesdropper can

stealthily set up a wireless receiver on one side of the user to passively collect

the signals emitted by a wireless Access Point (AP) which is on the other side

of the user. The presence of multiple moving people leads to a larger variation

in the channel state information (CSI) over time, which can be used to estimate

the number of people in a room for crowd counting. Similarly, the fluctuations in

the received signals caused by respiration-induced chest and stomach movements

can reveal sensitive vital signs, which can be analyzed by the eavesdropper for

vital signs inference.

The popularity of such techniques also brings privacy concerns. In detail,

attackers can extract personal information such as the number of individuals

present, their location, and even their vital signs, which can be exploited for ma-

licious purposes like stalking or theft. For example, an eavesdropper can track

occupancy in a home using a crowd inference attack, and then break in once

the target homes are vacant to reduce the chance of getting caught [21]. Fur-
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thermore, there are also extensive research efforts that detect breathing for user

presence identification [105,123,152,169], which can result in serious security is-

sues. On the other hand, vital signs often contain sensitive information related

to the state of personal essential body function [1, 53, 98, 102, 168]. Generally,

the normal breathing rate for an adult at rest is 12 to 20 breaths per minute

(bpm). Abnormal breathing may be a symptom of diseases, such as pulmonary

diseases [30], hypertension or hyperthyroidism [14], heart problems or drug over-

dose [44], asthma or pneumonia [147], and cardiovascular diseases like stroke [53].

The disclosure of such health information can cause serious consequences such as

employment discrimination based on health status [91], and a company’s stock

plummeting due to its CEO’s health concerns [37,39].

Though research is booming in crowd and vital signs inference through wire-

less signals, there are few research efforts discussing corresponding countermea-

sures. Traditional anti-eavesdropping methods usually take the following two

defenses: (1) Cryptographic key based: by encrypting transmitted messages be-

tween legitimate parties [48,135], an eavesdropper without the secret key cannot

successfully decode the received message; and (2) Friendly jamming based: an

ally jammer actively sends jamming signals (e.g., [59, 132]) which interrupt the

eavesdropping while the receiver can decode messages by canceling the impact

of the inference signals [157]. With either mechanism, the eavesdropper would

capture encrypted or disrupted signals, which are often random and meaningless.

Though the eavesdropper may not get the correct wireless signals, the unintel-

ligibility of those signals indicates to her that her eavesdropping fails. She may

thus make further efforts to break the wireless communication. For example, an

eavesdropper may attempt to steal the secret key via social engineering methods

(e.g., [89]) or side-channel attacks (e.g., [56]). Also, it has been shown that an
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attacker equipped with multiple antennas is able to separate the message from

the jamming signals [140]. Due to the importance of personal privacy, a more

effective defense strategy is thus much-needed to prevent wireless crowd and vital

signs eavesdropping.

Orthogonal frequency-division multiplexing (OFDM) is widely used in mod-

ern wireless communication systems (e.g., 802.11a/g/n/ac/ad) with multiple sub-

carrier frequencies to encode a packet. The minute wireless signal disturbance

caused by human motion can be captured by received signal strength (RSS) or

channel state information (CSI). RSS only provides the average power in a re-

ceived radio signal over the whole channel bandwidth, while CSI represents how

the wireless channel impacts the radio signal that propagates through it (e.g., am-

plitude attenuation and phase shift). CSI offers fine-grained channel information,

consisting of subcarrier-level information. As a result, CSI is more sensitive to

human activity and has shown the best performance in inferring human activity

compared with other wireless techniques [73].

What if we actively feed the eavesdropper with a meaningful but bogus person

count or breathing rate? When the eavesdropper is misled by the fake person

number or breathing rate, she would not take further methods to compromise the

true one. In this paper, we thus develop a novel scheme against CSI-based crowd

counting and vital signs inference techniques. Specifically, we set up an ambush

location, choose a fake person number or breathing rate, and convert it into a

fake CSI. The transmitter then delivers the specified CSI to the ambush location

by manipulating the transmitted wireless signals. As a result, the eavesdropper

at the ambush location would infer the fake person count or breathing rate with

the estimated CSI.

We first take the breathing inference system as an example, where the user
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Figure 1.1: Creating a fake (sensitive or insensitive) CSI.

remains static. We observe that various subcarriers exhibit varying degrees of

variance in the breathing rate. This variance is attributed to the effects of the

Fresnel Zone [154], a region of space between the transmitter and receiver where

the radio waves propagate. Generally, as the reflected and line-of-sight (LOS)

signals interfere constructively or destructively, a receiver may observe enhanced

or weakened signals. Such effects may vary for different subcarriers, which can be

categorized into two groups: sensitive and insensitive. With respiration-induced

body movements, sensitive subcarriers enable the receiver to observe large am-

plitudes (or variances) of CSI measurements, while insensitive subcarriers rarely

show correlated fluctuations. Thus, the breathing rate can be determined via

observations of sensitive subcarriers.

6



We give an example to illustrate our idea. Without loss of generality, we uti-

lize a single subcarrier for discussion. For OFDM systems, a transmitter sends a

publicly known pseudo-noise sequence Xi(t), and the receiver estimates the chan-

nel frequency response Hi(t) (i.e., subcarrier CSI) from the received, distorted

copy Yi(t), i.e., Hi(t) =
Yi(t)
Xi(t)

[31,45,47,49,58]. If no defense strategy is enforced,

as shown in Figure 1.2a, the eavesdropper (malicious receiver) can obtain the

real CSI for the sensitive ith subcarrier between itself and the AP, denoted with

Hs
i (t), which enables her to derive the breathing rate of the target user.

If there is no breathing activity, as shown in Figure 1.2b, the ith subcarrier

should be insensitive and the true CSI is denoted with H is
i (t). However, the AP

multiples the signal Xi(t) with a coefficient Hs
i (t)/H

is
i (t), and sends the resultant

signal, which also goes through the real wireless channel. Consequently, the

received signal becomes Xi(t) · Hs
i (t)/H

is
i (t) · H is

i (t) =Xi(t)H
s
i (t), and thus the

eavesdropper obtains an estimated subcarrier CSI Hs
i (t) (sensitive), with which

the breath rate specified by the transmitter can be extracted.

Now consider the scenario in Figure 1.2c: the transmitter aims to hide the

user’s true breathing rate. Therefore, it multiples the signal Xi(t) with a coeffi-

cient H is
i (t)/H

s
i (t). As a result, the eavesdropper obtains Xi(t) · H is

i (t)/H
s
i (t) ·

Hs
i (t)=Xi(t)H

is
i (t). The calculated subcarrier CSI then becomes H is

i (t), which

means that such subcarrier is insensitive, causing failure of inferring the true

breathing rate.

Unlike the breathing inference system where the user is stationary, people

move randomly in the crowd counting system. Based on the observation that

all subcarriers exhibit similar fluctuations due to the continuous movement and

changing positions of people, all subcarriers can be considered sensitive. There-

fore, we propose a defense scheme that manipulates the CSIs across all subcar-
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riers, as shown in Figure 1.2b. The specific CSI is extracted from a pre-built

profile consisting of collected CSI data for different numbers of moving people.

As a result, the transmitter provides false information to the attacker, leading

them to estimate incorrect crowd counts.

Our real-world experimental results show the proposed defenses can fool an

eavesdropper into believing any desired breathing rate with an error of less than

1.2 bpm when the user lies on a bed in a bedroom and 0.9 bpm when the user sits

in a chair in an office room. Furthermore, our proposed defense mechanisms can

deceive an attacker into believing that there are moving individuals in an empty

room with a probability of 100% and 100% for Support Vector Machine (SVM)

and Decision Tree (DT) classifiers, respectively.

1.2 Vulnerabilities in Wireless Liveness

Detection Systems

Liveness detection using wireless signals aims to detect whether human activity

is real (from a live person present at the point of capture) or fake (from a spoof

artifact or lifeless body part) by exploring the correlation between feeds of a

sensor capturing human motion and co-existing wireless signals. Wireless liveness

detection has proven successful in securing various practical systems [77, 78, 92,

110,123], such as

• Video liveness detection: By launching a video spoofing attack (e.g., [12]),

an adversary can hijack the camera feed to replay benign footage while steal-

ing valuables (e.g., contents of a vault) without getting caught. A security

guard can detect such attacks by observing mismatches between the live
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video feeds and the captured wireless signals [92].

• Voice liveness detection: Voice controllable systems are especially vul-

nerable to spoofing attacks (e.g., with pre-recorded voice [34]) due to the

inherent broadcast nature of voice transmissions. It can tell whether the

voice command is generated by a live user by comparing the features ex-

tracted from both voice and wireless signals [110].

• Human presence detection: Wireless signals can be utilized to detect

human presence by human breathing [98,154,169]. Wireless liveness detec-

tion can thus associate the detection of breathing with the user presence to

combat replay attacks against voice assistants [123].

Human activity usually causes subtle environmental impacts unique to that

human activity pattern, which can be observed by analyzing collected nearby

wireless signals. As a result, wireless signals can be utilized to detect human

activities and thus verify the authenticity of the captured data of another co-

existing sensor such as video or microphone.

Mainstream WiFi systems are based on the Orthogonal frequency-division

multiplexing (OFDM) technique, which utilizes multiple parallel narrowband sub-

carriers to encode a packet. Disturbances in wireless signals can be quantified by

the channel state information (CSI) measurement [58], which describes how the

wireless channel impacts the radio signal that propagates through the channel

(e.g., amplitude attenuation and phase shift). CSI can be considered as an aptly

initialed wireless analog to traditional “Crime Scene Investigation”, measuring

what has happened on a wireless channel [60]. Specifically, the variation of CSI

time series has been widely utilized to identify the motion changes of a target

user between a wireless transmitter and receiver pair.
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In this work, however, we design a new phantom-CSI attack against all exist-

ing liveness detection built on the correlation between recorded human activity

and co-existing CSI measurements. This attack accompanies traditional spoof-

ing of video or microphone recorders by creating measurable CSI which exhibits

corresponding spoofed human activity, bypassing the enforced wireless liveness

detection system.

To understand the phantom-CSI attack, we first explain the impact of human

activity on wireless signals. Generally, the presence of human and related body

motion will result in significant changes in both amplitude and phase of the re-

ceived wireless signals [97]. Accordingly, the received wireless signal (or CSI) at

the receiver can thus capture the timing information (e.g., start or end time) and

prominent frequency of occurrence of activities [92], and will exhibit a unique pat-

tern corresponding to each activity [110]. For example, the repetitive (rhythmic)

patterns of human breathing induce wave-like (sinusoidal-like) periodic change

patterns over time in the CSI amplitudes at subcarrier level [98,154,169]. To fool

a receiver to believe that an event occurs, the attacker needs to create a “virtual

channel” that can exhibit a pattern similar to the real wireless channel affected

by the event.

Figure 1.2 presents an example at the OFDM subcarrier level to illustrate how

the attacker can build such a channel. Figure 1.2a shows a real scenario without

an attack, where the transmitter sends a wireless signal and a human activity

(e.g., walking) occurs between the transmitter and the receiver during the period

from time t1 to t2. As a result, the received signal at the receiver would reflect

the corresponding interference during the activity period [t1, t2]. Figure 1.2b

shows an attack scenario, where there is no human activity happening between

the attacker (i.e., a compromised transmitter) and the receiver, but the attacker
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Figure 1.2: Crafting wireless signal affected by human activity.

aims to make the receiver detect some activities similar to that in Figure 1.2a. For

each transmitted signal at time t, the attacker multiplies it with a corresponding

coefficient, i.e., w0(t) when t ∈ [t0, t1) or t > t2, or w1(t) when t ∈ [t1, t2], to

mimic the distortion effect of the real subchannel in Figure 1.2a. Consequently,

the receiver observes a distinguishable time series in period [t1, t2] and incorrectly

deduces that it is caused by the activity performed in Figure 1.2a.

Beyond this example of spoofing human activity in its absence, an attacker

may have other goals, such as obscuring a particular human activity or portraying

a different fake activity. Performing this general attack requires two technical

solutions. First, the phantom motion must be encoded in the form of CSI for the

receiver to estimate and map to the intended motion. Accordingly, we design a

custom technique to convert an event into manipulated CSI of a wireless channel.

Second, the transmitted signal crafted by the adversary is affected by the real

wireless channel between herself and the receiver. Thus, the attacker requires a

method to cancel the effect of the real channel, so that the receiver only observes
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Figure 1.3: General structure of a wireless liveness detection system.

the phantom channel corresponding to spoofed activity. We address this challenge

by reverse-engineering existing channel estimation algorithms for OFDM systems

and pre-coding the original signal.

The discovered attack reveals that an attacker can create fake CSI data cor-

responding to spoofed voice or video signals. We conduct real-world experi-

mental evaluations on top of Universal Software Radio Peripheral (USRP) X300

platforms. The experimental results show that an attacker camouflaged via our

phantom CSI can inject spoofed video and voice to successfully bypass wireless

liveness detection systems with a probability of 95.6% and 100%.

1.3 Summary of Contributions

The contributions of this dissertation are summarized below:

• Counteractive strategies for wireless breath and crowd inference attacks:

To the best of our knowledge, we are the first to propose a deceptive strat-

egy to defend against wireless vital signs and crowd inference attacks. By
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reverse engineering existing techniques based on Channel State Informa-

tion (CSI) for breathing rate and crowd inference, we have designed a cus-

tomized scheme that transforms a selected breathing rate or crowd count

into a fabricated CSI. Additionally, we have developed methods that al-

low an eavesdropper to estimate this fake CSI, leading them to derive the

manipulated breathing rate or crowd count. We have implemented real-

world prototypes for both the existing CSI-based inference techniques and

our proposed defense mechanisms. Through experimentation with these

prototypes, we assess the effectiveness of our defenses.

• Phantom-CSI attacks and corresponding defenses: We are the first to iden-

tify the vulnerability in wireless liveness detection systems through phantom-

CSI attacks, which cause wireless signals and spoofed video/voice data to

present fake human semantic information that appears genuine. We have

developed a technique capable of crafting fake CSI based on human activi-

ties, which is then transmitted to the receiver via a realistic wireless chan-

nel. We have implemented real-world prototypes for both existing wireless

video/voice liveness detection systems and our proposed attack techniques,

validating the efficacy of the latter in compromising the former.
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Chapter 2

Related Work

In this chapter, we review all existing techniques related to wireless breathing

rate inference, crowd counting, human activity detection, and liveness detection.

2.1 Wireless Breathing Rate Inference

Techniques

Generally, existing wireless breathing rate inference techniques fall into the fol-

lowing categories:

Ultra-wideband (UWB) radar based: The expansion and contraction of the

chest cavity may create changes in the multipath profile of the transmitting sig-

nal, which can be captured with UWB impulse responses for breathing rate esti-

mation [73,127,143]. UWB transmissions, however, spread over a large frequency

bandwidth [52]. Also, the receiver structure for UWB is highly complex [93].

Doppler radar based: Doppler radar systems have been proposed to achieve

breathing detection [11,36,94,95,125]. According to the Doppler theory, a target
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with time-varying movement but zero net velocity will reflect the signal, whose

phase is modulated in proportion to the displacement of the target [17]. A sta-

tionary person’s chest and stomach can be thus regarded as a target. However,

such Doppler radar based techniques suffer from the null point problem, which

significantly degrades the measurement accuracy [61,95,181].

Frequency Modulated Continuous Wave (FMCW) radar based: An FMCW

radar has also been utilized for breathing rate inference [4,10,142]. The breathing-

induced body movement changes the signal reflection time. By analyzing such

changes, the breathing rate can be extracted. However, high resolution (i.e.,

the minimum measurable change) requires a large swept bandwidth B as the

resolution equals C
2B

[3], where C is the speed of light.

RSS-based: The changes in received signal strength (RSS) on wireless links

have been successful in estimating breathing rate [1, 86, 119, 120]. For example,

[1] puts a mobile device on the chest to collect RSS for inferring breathing rates.

However, those methods are workable only when the target user stays close to

the receiver. As an eavesdropper usually has a preference to be located far away

to avoid being discovered, such RSS-based methods are not optimal.

CSI-based:RSS represents coarse channel information while CSI represents

fine-grained channel information, consisting of subcarrier-level information. As

a result, CSI is more sensitive to detecting breathing activity and the CSI-based

approaches are able to capture breathing from a distance. Accordingly, CSI-based

breathing rate inference has drawn increasing attention [98,101,102,154,161,162,

187]. In particular, a recent empirical study [73] reveals CSI provides the most

robust estimates of breathing rate compared with UWB radar or RSS.
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2.2 Wireless Crowd Counting Techniques

Existing studies on crowd counting can be broadly categorized into the following

groups:

RSS-based: It observed that the RSS value will be stable if there is no person

present between a pair of transmitter and receiver. However, the RSS value ex-

hibits a larger variance when a person crosses the wireless link, with this variance

increasing as the number of people increases [113, 173, 184]. Correspondingly,

several studies [113, 173, 184] have explored this relationship further. In detail,

the study [113] derived a linear approximation formula to estimate crowd density

based on the relationship between the number of people and the average/variance

of RSS. SCPL [173] was the first to perform multi-subject counting and localiza-

tion based on coarse-grained RSS. Moreover, [184] introduced a novel Wireless

Sensor Network (WSN) application that uses RSS to estimate different crowd

densities in subareas, utilizing the K-means algorithm for precision. However,

these approaches require extensive deployment of sensor nodes and the construc-

tion of a fingerprint database, resulting in significantly high costs and substantial

training efforts.

CSI-based: CSI-based approaches are motivated by the observation that CSI

is highly sensitive to environmental variations. Therefore, a larger number of

moving people will result in a greater CSI variance in the target area [62, 64, 99,

172]. For example, FCC [172] theoretically found a stable monotonic function

to characterize the relationship between the number of moving people and the

variation in the wireless channel. To improve accuracy, WiSpy [64] analyzes

the CSI variation caused by human motion and identifies the number of moving

targets by using machine learning algorithms, including KNN, stochastic gradient
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descent (SGD), SVM, naive Bayes (NB), and decision tree (DT). Furthermore,

[62] provides a human dynamics monitoring system by estimating the number

of participants. It uses a semi-supervised learning approach based on non-linear

regression to reduce training efforts. Another study [99] proposes a deep learning

based approach to crowd counting using both CSI amplitude and phase.

2.3 Wireless Human Activity Detection

Due to the pervasive, low-cost, and non-intrusive sensing nature, wireless hu-

man activity sensing has drawn increasing attention [97]. The received signal

strength (RSS) or channel state information (CSI) obtained at the receiver may

vary with environmental human activity. RSS represents the average power in

a received wireless signal over the whole power bandwidth. Different from RSS,

which uses synthetic values, CSI offers fine-grained channel information by de-

composing the entire channel measurement into subcarriers and obtains better

human activity detection performance than other metrics (e.g., received signal

strength) [73]. CSI contains both subcarrier-level amplitude and phase informa-

tion. Extensive research efforts show that CSI amplitudes can capture various

human activities, such as walking [158, 164, 186], breathing [98], gestures [145],

and keystrokes [8,50,178]. Also, the work [163] exploits CSI phase difference data

to monitor vital signs. Moreover, CSI amplitude and phase information can be

employed together to achieve human activity detection [123, 124, 133, 185]. For

example, the study [185] points out that human respiration cannot be detectable

in all the locations when CSI amplitude or phase is used individually, and then

proposes to use both phase and amplitude that are complementary to remove

blind spots (where respiration detection experiences poor performance). Another
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study [123] presents that compared with using CSI amplitude alone, leveraging

CSI amplitude along with CSI phase improves the accuracy of breathing rate

estimation.

2.4 Liveness Detection

With the rapid advance in speech synthesis and video editing methods, it becomes

increasingly popular to replay tampered voices/videos [85, 88, 156]. Specifically,

in an audio replay attack, a recording of a target speaker’s voice is replayed to

a voice recognition system in place of genuine speech [88]; in a video spoofing

attack, an attack can play back a clip of footage to cover up a crime [85]. With

such spoofing techniques, attackers may bypass voice authentication or video

monitoring, and even stealthily inject illegal voice commands or conduct mali-

cious activities. To deal with these spoofing attacks, liveness detection is widely

applied to differentiate the alive and present data (originating from live users)

from forged data that are pre-recorded, concatenated, or synthesized by the at-

tacker. Liveness detection against those spoofing attacks mainly includes the

following three categories.

Intrinsic feature-based: Non-live representations often miss some intrinsic fea-

tures in the corresponding live source. For example, a smartphone’s loudspeaker

usually presents strongly attenuated frequency responses in the low part of the

spectrum [144], but it often has a high false acceptance rate to use this observa-

tion for liveness detection. Also, [191] uses the unique time-difference-of-arrival

(TDoA) dynamic (i.e., the TDoA changes in a sequence of phoneme sounds to

the phone’s two microphones) for liveness detection, as it does not exist under

replay attacks. Nevertheless, this method is not applicable to a device with only
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one microphone.

Another sensor-assisted: Liveness detection can also be achieved by combin-

ing a microphone/camera with other co-existing sensors [26, 76, 131, 190]. For

example, [76] correlates sound and breathing-induced chest motion (obtained via

a gyroscope) to build a liveness detection system; [131] uses earbuds to measure

the air pressure in the ear canal for voice liveness detection. These two meth-

ods, however, require the user to wear a chest-mounted gyroscope or earbuds.

[190] leverages a speaker to emit inaudible signals, and exerts a microphone to

record the reverberant signals to distinguish bone-conducted vibrations from air-

conducted voices for liveness detection. Unfortunately, not all loudspeakers can

emit ultrasound, which limits its practicality.

Wireless-based: There are emerging research efforts (e.g., [78, 92, 109, 110,

116, 123, 141, 193]) performing liveness detection leveraging wireless sensing due

to its non-invasive and device-free nature, as well as the ubiquitous deployment

of wireless infrastructures. In particular, [116] uses the ratio of the energy in

motion affected bands (35-60 Hz) over the entire mmWave radar spectrogram

as an indicator for liveness; [78, 92] develops techniques to detect video replay

or forgery attacks using CSI extracted from wireless signals near the camera

spot; [109] utilizes CSI to capture mouth motions, which can help distinguish

authentic voice command from a spoofed one; [123] exploits the synchronized

changes in voice and breathing to detect voice replay attacks. Our attack can

make the CSI convey the same event semantic information with the spoofed video

or voice signals, compromising those wireless liveness detection systems.
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Chapter 3

Proactive Ambush Tactic

Against Wireless Breath and

Crowd Inference

This chapter 1 introduces the existing attacks on wireless breathing rate infer-

ence and crowd inference. Aiming at these attacks, this chapter also proposes

corresponding proactive ambush tactics.

3.1 Preliminaries

In this section, we impart preliminary knowledge about the Fresnel Zone model

and the general method used by existing work using CSI to infer breathing rates.

1This chapter was published in He, Q., Yang, E., Fang, S., Zhao, S. (2023). HoneyBreath:
An Ambush Tactic Against Wireless Breath Inference. In: Longfei, S., Bodhi, P. (eds) Mobile
and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2022. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications En-
gineering, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-34776-4 12. Used with
permission.
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Figure 3.1: Demonstration of Fresnel Zones.

3.1.1 Fresnel Zone

In the context of wireless signal propagation, Fresnel Zones refer to concentric

ellipses with the transmitter (Tx) and receiver (Rx) at two focal points, and

denote regions of different wireless signal propagation strengths between the pair

of communicators, as shown in Figure 3.1. For a given radio wavelength λ, each

ellipse can be constructed by ensuring

|Tx, Un|+ |Rx, Un| − |Tx,Rx| = nλ/2, (3.1)

where Un is a point in the nth ellipse, and |u, v| denotes the Euclidean distance

between two points u and v. The innermost ellipse is the first Fresnel Zone,

representing the region where the LOS signals can pass through. The nth (when

n ≥2) Fresnel Zone is the region between the (n− 1)th and nth ellipses.

The received signal at Rx is a linear combination of reflected and LOS signals.

The distance difference ∆D (i.e., nλ/2) between the two paths generates a phase

difference of ∆D
λ

· 2π=nπ between the two signals. As the phase shift introduced

by the reflection is π [154], the total phase difference ∆ϕ between reflected and

LOS signals equals (n + 1)π. Thus, if n is even, we obtain ∆ϕ mod 2π = π,
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causing the two signals to arrive at Rx to have opposite phases and destructively

interfere with each other. In contrast, we have ∆ϕ mod 2π= 0 if n is odd, i.e.,

both signals have the same phase and constructively interfere with each other to

form a boosted signal. The Fresnel Zone model can thus help reveal the signal

change pattern (i.e., sensitive or insensitive) in each subcarrier (with different

waveforms) caused by respiration-induced body movement [154].

3.1.2 CSI-based Breathing Rate Inference

Existing CSI-based breathing rate inference schemes [73, 98, 154] usually utilize

three steps to infer breathing rates, namely, CSI pre-processing, subcarrier selec-

tion, and breathing cycle extraction. The first phase removes outliers and noise

from the CSI to improve its reliability. As discussed earlier, each subcarrier may

be sensitive or insensitive to respiration due to the constructive or destructive

interference effect of LOS and reflected signals. The second phase picks up sensi-

tive subcarriers for breathing rate inference. A sensitive subcarrier often exhibits

a sinusoidal-like periodic change pattern over time in the CSI amplitudes, which

corresponds to periodic breathing. In the third phase, the peak-to-peak time in-

terval of sinusoidal CSI amplitudes can be then extracted as the breathing cycle,

with which, the breathing rate can be calculated.

3.1.3 CSI-based Crowd Counting Inference

Existing studies on CSI-based crowd counting approaches [27,87,172] utilize ex-

isting WiFi infrastructure for crowd classification in indoor scenarios. The key

idea is that an increase in the number of moving people introduces larger multi-

path variations, resulting in greater CSI variation over time. In this way, based on
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the measurement of how CSI varies over time, the number of moving people can

be estimated. In general, there are three key phases: CSI pre-processing, feature

extraction, and crowd classification. To obtain the CSI measurements caused by

moving people, CSI pre-processing phase removes redundant components, such

as noise, from the CSI data. Based on such processed data, distinct features

(e.g., mean, standard deviation, maximum, and minimum of CSI amplitude) are

extracted and then fed into a classifier (e.g., SVM, DT) to output the estimated

number of moving people.

3.2 Attack Model and Assumptions

We consider a general scenario, where an attacker only uses a wireless receiver to

launch a breathing rate inference attack or crowd inference attack, as she has a

preference to take advantage of an existing wireless transmitter to make the attack

stealthier [98, 172]. The transmitter (i.e., defender) is benign and aims to hide

true breathing rates or person count and inject fake ones into the eavesdropper.

We assume that the receiver (i.e., attacker) attempts to find a position that

enables her to eavesdrop on the breathing rate or person count, which is a common

strategy [9]. We borrow the idea from a long-established military tactic – ambush:

set up one or multiple ambush locations where an attacker may appear and be

trapped. We further assume that the transmitter is able to obtain actual CSI

measurements between itself and an ambush location. This can be achieved by

estimating the CSI measurements from wireless signals emitted by a helper node

placed at the ambush location.
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3.3 Ambush Design for Breath Inference

Attacks

3.3.1 Overview

To lay an ambush, the transmitter first selects an ambush location and arbitrarily

specifies a fake breathing rate to fool the attacker entering the ambush. The

locations where an eavesdropper may appear with the highest probabilities can be

determined via eavesdropper tracking techniques (e.g., [23]) and ambush locations

can be then deployed along the eavesdropper’s possible route.

The transmitter then enters the planning phase, which consists of two par-

allel tasks: (1) determining sensitive subcarriers; and (2) converting a specified

breathing rate into an artificial CSI. We utilize a binary decision variable αi to

indicate the sensitivity of the ith subcarrier, with 1 denoting sensitive while 0

showing insensitive. The sensitivities of all N subcarriers can be represented by

a vector α = [α1, α2, · · · , αN ]
T . Since insensitive subcarriers do not contribute

to the breathing rate inference, there is no need to manipulate their CSIs.

The next phase is disturbance manipulation. For signals on sensitive subcar-

riers, the transmitter aims to make the attacker estimate the converted CSI. As

any transmitting signal has to go through the real wireless channel, the transmit-

ter then applies a module of desensitizing subcarriers to remove the real impact

of corresponding wireless sub-channels, and also crafts the artificial disturbance

on these originally sensitive subcarriers for the attacker to observe. Finally, the

transmitter combines the crafted signals on sensitive subcarriers with unchanged

signals on insensitive subcarriers and transmits the aggregated signal out.
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Figure 3.2: Flow chart of the proposed ambush tactic.

Consequently, the attacker infers breathing rate with estimated CSI by per-

forming the general breathing rate retrieval process. Figure 3.2 shows the flow

chart of the proposed ambush tactic.

3.3.2 Planning Phase

3.3.2.1 Obtaining Subcarrier Sensitivity

U

Tx dTA

dTU dUA

Ax

Figure 3.3: Selecting an ambush location.

As shown in Figure 3.3, Tx, U, and Ax denote the transmitter, the user, and

an ambush location, respectively. A wireless signal sent by Tx travels on two
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paths, the LOS path and the reflection one. The distance difference ∆d between

the two paths is ∆d = dTU + dUA − dTA.

Let λi denote the wavelength of the ith subcarrier with frequency fi, i.e.,

λi = c/fi, where c is the speed of light. Correspondingly, the phase difference

∆θi (between signals arrived at Ax through the two paths) equals the sum of

the respective phase shifts caused by ∆d and the reflection phenomenon, i.e.,

∆θi =
2π∆d
λi

+ π. We perform a modulus 2π operation on ∆θi and obtain a phase

difference ∆θ′i within the range of [0, 2π), i.e., ∆θ′i = ∆θi (mod 2π).

Based on the Fresnel Zone theory [154], if ∆θ′i is close to 0 or 2π, the ith sub-

carrier is sensitive, i.e., when ∆θ′i ∈ [0, π/2) ∪ (3π/2, 2π), we obtain the binary

decision variable αi = 1. On the other hand, if ∆θ′i approaches to π, this sub-

carrier becomes insensitive, i.e., αi = 0 for ∆θ′i ∈ [π/2, 3π/2]. The relationship

between αi and ∆θ′i can be then denoted as αi =
|∆θ′i−π|

π/2
, where x denotes the

floor function, representing the largest integer less than or equal to x.

3.3.2.2 Converting Breathing Rate to CSI

Breathing rate to CSI conversion is the process of translating a selected breathing

rate into a subcarrier CSI. It has been observed that periodic chest and stomach

movement caused by respiration would make the amplitude of CSI on a sensitive

subcarrier present a sinusoidal-like pattern over time [98, 102, 154]. We thus

model the respiration-induced CSI amplitude stream on a sensitive subcarrier as

a sinusoidal wave.

Let fb denote the specified respiration frequency (Hz), so the corresponding

breathing rate equals 60·fb (bpm). We then convert it into a subcarrier CSIWb(t),

which can be then denoted with |Wb(t)|ejφ(t), where |Wb(t)| and φ(t) represent

amplitude and phase, respectively. Since the phase could be distorted due to an
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unknown time lag caused by the non-synchronized transmitter and receiver [129],

most studies only use the amplitude to characterize the wireless channel [149] and

extract breathing rate [98,102,154]. We also explore CSI amplitude and refer to

it as just “CSI” in the following. In terms of φ(t), it has no impact on breathing

rate inference and we omit it for the sake of simplicity.

With the sinusoidal model, the CSI envelope at time t can be denoted by

|Wb(t)| = a · sin(2πfbt+ β) +m+N0, (3.2)

where a, β, m, and N0 are the amplitude, initial phase, constant shift (which

defines a mean level) of the sinusoidal wave, and the additive noise. In turn, with

such a CSI envelope, the attacker can infer the breathing rate as 60 · fb.

Formation of the Specified OFDM CSI: The specified CSI for an OFDM

system withN subcarriers can be denoted withW(t)=[W1(t),W2(t), · · · ,WN(t)].

Let S = {s1, s2, . . . , sK} and S̄ = {p1, p2, . . . , pK′} denote the sets formed by the

indexes of the sensitive and insensitive subcarriers, where K+K ′=N . For i ∈ S,

we enable Wi(t) = Wb(t); for i ∈ S̄, we have Wi(t) = Hi(t) (i.e., no manipulation

is required), where Hi(t) is the original CSI of the ith subcarrier.

3.3.3 Disturbance Manipulation

The transmitter can utilize a multiply-accumulate (MAC) process to generate

desired artificial disturbance, as shown in Figure 3.4. Specifically, the public

training sequence X(t) is encoded into N subcarrier signals by a serial-to-parallel

(S/P) converter module, represented with [X1(t), X2(t), · · · , XN(t)]
T . We use J

to represent anN×1 vector of all 1’s. Thus, after the signal separator, the original

N subcarrier signals will be divided into two groups: S(t) = diag(α) ·X(t) and
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Figure 3.4: An MAC process.

IS(t) = diag(J−α)·X(t), denoting signals on sensitive and insensitive subcarriers,

respectively, where diag(V) denotes a square diagonal matrix with the elements

of vector V on the main diagonal.

Signals on sensitive subcarriers would then go through two modules: subcar-

rier desensitization and CSI forgery. The former module with the coefficient vec-

tor C(t) = [C1(t), C2(t), · · · , CN(t)] aims to cancel the original channel impact,

so that the real respiration-induced channel disturbance (i.e., the real breathing

rate) can be hidden for the attacker. Accordingly, we have Ci(t)=H−1
i (t) if the

ith subcarrier is sensitive, i.e., i ∈ S, and set Ci(t) = 0 for i ∈ S̄. The latter

module with a coefficient vector D(t) = [D1(t), D2(t), · · · , DN(t)] would add the

effect of the artificial CSI for the attacker to estimate, where the forged subcarrier

CSI Di(t) = Wi(t) if i ∈S and we set Di(t) = 0 for i ∈S̄.

Finally, signals on originally sensitive and insensitive subcarriers are concate-

nated through a parallel-to-serial (P/S) converter module to form OFDM symbols

to send via the realistic wireless channel. The resulting transmitting signal Xm(t)
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can be represented by

Xm(t)=diag(D(t))·diag(C(t))·S(t)+ IS(t). (3.3)

Let H(t)=[H1(t),· · ·, HN(t)]
T denote the true OFDM CSI. The received signal at

the attacker thus becomes Rm(t) = diag(Xm(t)) ·H(t), where we omit the noise

term for the sake of simplicity. The attacker estimates CSI with the received

signal and the public training sequence, i.e., Rm(t) = diag(X(t)) · Ĥ(t), where

Ĥ(t)=[Ĥ1(t), · · · , ĤN(t)]
T represents the estimated CSI. Consequently, we have

Ĥi(t)=αi ·
Xi(t)Ci(t)Di(t)

Xi(t)
·Hi(t)+(1−αi)·Hi(t)

=αi ·Di(t)+(1−αi)·Hi(t)=Wi(t).

(3.4)

This demonstrates that with the disturbance manipulation, when the ith sub-

carrier is sensitive, the transmitter is able to make the attacker obtain a fake

subcarrier CSI Wi(t) specified by itself in the planning phase. Meanwhile, if the

ith subcarrier is insensitive, it is still observed as insensitive, i.e., the correspond-

ing estimated subcarrier CSI equals the real value Hi(t). This is because the

transmitter does not manipulate signals on insensitive subcarriers.

3.3.4 Breathing Rate Retrieval

3.3.4.1 CSI Pre-processing

CSI pre-processing, consisting of outlier removal and noise reduction, aims to

make the collected CSI reliable. The imperfect CSI can be caused by non-

respiratory environmental change or hardware imperfections.
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Figure 3.5: CSI pre-processing.

Hampel filter is a classical technique to remove outliers (i.e., samples that

significantly differ from neighboring ones) in a given series [33, 102]. As the

collected CSI may have abrupt changes that are not caused by respiration, a

Hampel filter is enforced to remove those outliers. It is observed that the CSI

variations caused by the chest and stomach movement usually lie at the low end of

the spectrum. Thus, we further adopt the moving average filter, which is optimal

for reducing high-frequency noise while retaining a sharp step response [137].

Figure 3.5 illustrates an example of CSI pre-processing. It can be seen that the

outliers and high-frequency noise are effectively removed.

3.3.4.2 Subcarrier Selection

Empirically, the CSI variance of a sensitive subcarrier is usually more than one

order of magnitude larger than that of an insensitive subcarrier. This observation

implies a threshold-based approach to distinguish the two types of subcarriers.

Specifically, when there is no breathing activity, the average CSI variance σ2

across all subcarriers can be measured, called reference variance, which will be
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Figure 3.6: Subcarrier sensitivity.

then utilized as the threshold to determine the sensitivity of each subcarrier.

Let v2i denote the CSI variance for the ith subcarrier. If log10(v
2
i /σ

2)< 1 holds,

we regard that the variance is caused by noise and the subcarrier is insensitive;

otherwise, this subcarrier is sensitive. If CSI variances on all subcarriers have

the same order as the reference variance, all subcarriers are insensitive (i.e., no

breathing activity is detected).

Figure 3.6 plots the CSIs observed on 4 different subcarriers. In this example,

we can see that subcarrier 24 has a quite flat CSI which rarely discloses any

useful information about the breathing activity, while the CSIs of the remaining

subcarriers show evident periodical fluctuations. Accordingly, we can determine

that subcarriers 9, 15, and 40 are sensitive, while subcarrier 24 is insensitive.

3.3.4.3 Breathing Cycle Identification

The CSI on a sensitive subcarrier often shows a sinusoidal pattern correlated

with breathing activities. To obtain a breathing cycle, we can thus compute the

inter-peak interval (i.e., the time between successive peaks) of the sinusoidal CSI.
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Figure 3.7: Local peaks.

Intuitively, the first derivative of a peak switches from positive to negative at

the peak maximum, which can be used to localize the occurrence time of each

peak. However, there may exist fake peaks caused by noise and consequently

false zero-crossings. Motivated by the fact that a person usually cannot breathe

beyond a certain frequency, a fake peak removal algorithm can be developed.

Specifically, if the calculated interval between the current peak with the previous

one is less than 60/Rmax (seconds), where Rmax (bpm) denotes the maximum

possible breathing rate, this peak will be labeled as a fake one and then removed.

Figure 3.7 shows all detected local peaks on 20 sensitive subcarriers during

25 seconds. The breathing rate is calculated as 12.7 bpm for this example.

3.3.4.4 Inferring Multi-user Breathing Rates

For the multi-user scenario, we use the power spectral density (PSD) [98] to iden-

tify the frequencies with strong signal power in the frequency domain. Normally,

each breathing signal from one person contributes to one evident peak in the ob-

tained PSD [152]. The PSD on the ith sensitive subcarrier with L samples can be
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Ground truth

Figure 3.8: Peaks in PSD.

obtained by PSDi = 10 log10
|FFT (Hi)|2

L
, where Hi is the vector of CSI amplitude

on the ith subcarrier.

When there are two users, the two strongest peaks in the PSD would indicate

their breathing rates, as in an example shown in Figure 3.8. The ground truths

of two users’ breathing rates are 6.0 and 17.3 bpm (corresponding to 0.10 ad 0.29

Hz); the estimated breathing rates based on the first two strongest peaks are 6.0

and 18.0 bpm (i.e., 0.10 and 0.30 Hz), showing that the estimation of two-user

breathing rates is accurate.

3.3.5 From Point Ambush to Area Ambush

With more deployed ambush locations, the probability that an eavesdropper hap-

pens to be at any of them would be higher. Meanwhile, it helps to defend against

multiple collaborative attackers, each of which searches for opportune eavesdrop-

ping locations.
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3.3.5.1 Setting up Two Ambush Locations

The transmitter with two antennas can set up two ambush locations. Let Hsr(t)

(s, r∈{1, 2}) denote the overall CSI between the sth transmit antenna and the rth

ambush location. The corresponding subcarrier sensitivity vector is represented

by αsr = [α1
sr, · · · , αN

sr], which can be pre-obtained with the method proposed in

Section 3.3.2.1. At each ambush location, the received signal is the superposition

of two signals, each from a different transmit antenna. If at least one of the two

subcarriers between the respective transmit antenna and the rth ambush loca-

tion is sensitive, we regard that this overall subcarrier between the transmitter

and the rth ambush location is sensitive. Mathematically, let αr = [α1
r , · · · , αN

r ]

denote the resultant subcarrier sensitivity vector of the transmitter for the rth

ambush location, and αi
r = αi

1r∨αi
2r. On the other hand, it may arouse suspicion

of two colluding eavesdroppers if the breathing rates they infer separately are

different. Thus, the transmitter should enable both ambush locations to observe

the same breathing rate, i.e., the manipulated CSIs at corresponding sensitive

subcarriers should be equal. If a subcarrier at either ambush location is sen-

sitive, we then regard that the overall subcarrier between the transmitter and

the two ambush locations is sensitive. Similarly, let α=[α1, · · · , αN ] denote the

subcarrier sensitivity vector of the transmitter for the two ambush locations, and

αi = αi
1 ∨ αi

2.

Let W (t) denote the fake CSI which is converted with a specified breathing

rate. The transmitter aims to make the estimated CSI on sensitive subcarriers

at each eavesdropper to be equal to W (t).

As discussed in Section 3.3.3, the transmitting signals on sensitive subcarriers

will be first desensitized and then multiplied with the forged CSI before being
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sent out. In this scenario, let H i
sr(t) denote the CSI on ith subcarrier between

the sth transmit antenna and the rth ambush location. Thus, in terms of the

coefficient vector Cs(t) = [C1
s (t), · · · , CN

s (t)] for subcarrier desensitization at the

sth transmit antenna, if αi = 0 (i.e., the ith subcarrier between the transmitter

and the two ambush locations is insensitive), we set Ci
s(t) = 0, otherwise, we

have Ci
1(t) =

Hi
21(t)−Hi

22(t)

ζi
and Ci

2(t) =
Hi

12(t)−Hi
11(t)

ζi
, where ζ i = H i

21(t)H
i
12(t) −

H i
22(t)H

i
11(t). Also, the coefficient vector for the CSI forgery module at each

transmit antenna is D(t) = [D1(t), · · · , DN(t)], where we set Di(t) = 0 if αi = 0

and have Di(t) = W (t) if αi = 1.

We rewrite Equation 3.3 and the transmitting signal Xm(t)= [X1(t),X2(t)]
T

after manipulation becomes

Xm(t)=

diag(D(t)) · diag(C1(t)) · S(t)+IS(t)

diag(D(t)) · diag(C2(t)) · S(t)+IS(t)

. (3.5)

The transmitting signal Xm(t) would go through the realistic wireless channel.

At the ambush location side, the received signal and the public training sequence

will be then utilized to estimate CSI. Let Ŵ1(t) and Ŵ2(t) denote the estimated

CSIs at the two ambush locations. We thus obtain

Ŵ i
r(t) = αi ·W (t) + (1− αi) · (H i

1r(t) +H i
2r(t)). (3.6)

This implies the success of setting up two ambush locations simultaneously.

3.3.5.2 General Scheme for Area Ambush

The transmitter can deploy κ ambush locations with κ antennas. We consider

colluding eavesdroppers and need to guarantee the breathing rate inferred by
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each eavesdropper at any ambush location stays the same.

The sensitivity of the ith subcarrier between the sth transmit antenna and the

rth ambush location can be represented by αi
sr (s, r ∈ {1, 2, · · · , κ}). Meanwhile,

let αi
r denote the overall sensitivity of the ith subcarrier between the transmitter

and the rth ambush location, i.e., αi
r = αi

1r ∨ αi
2r · · · ∨ αi

κr. Thus, in terms of the

subcarrier sensitivity vector α of the transmitter for all κ ambush locations, we

have αi = αi
1∨αi

2 · · ·∨αi
κ. LetX(t) = [X1(t), · · · ,Xκ(t)]

T denote the manipulated

signal sent by κ transmit antennas. The transmitter aims to make the estimated

CSI at each ambush location be equal to the specified fake CSI, i.e., Ŵr(t) =

W(t). Similarly, each transmit antenna utilizes the same coefficient vector D(t)

for the CSI forgery module.

Accordingly, we can then solve the manipulated signal Xm(t), and rewrite

Equation 3.5 as

Xm(t)=


diag(D(t))·diag(C1(t))·S(t)+IS(t)

...

diag(D(t))·diag(Cκ(t))·S(t)+IS(t)

, (3.7)

where Cs(t) is the coefficient vector for the subcarrier desensitization module at

the sth transmit antenna.

Equation 3.7 has κ unknowns (C1(t) to Cκ(t)). As the number of transmit

antennas equals the number of unknowns, the linear system formed by Equa-

tion 3.7 has a unique solution. It demonstrates when the transmitter is able

to set the coefficient vector for the subcarrier desensitization module at the sth

transmit antenna with the computed Cs(t), the goal of deploying κ simultaneous

ambush locations can be achieved.
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3.3.6 Security Analysis

The proposed scheme is known by the eavesdropper. One concern is whether the

eavesdropper can distinguish ambush locations or even indirectly compute the

real CSI of sensitive subcarriers (to infer the true breathing rate).

Ambush Indistinguishability: With the Fresnel Zone principle, CSI-based

breathing rate inference works at certain locations, while its performance may de-

teriorate greatly at other locations [24]. Thus, when the eavesdropper moves out

of the ambush location, though she cannot detect the breathing rate as when

she is at the ambush location, she is still unable to distinguish this case from

the normal one when the ambush scheme is not enforced. Such ambush indis-

tinguishability leaves the eavesdropper in a dilemma: if she believes the inferred

breathing rate, she will be deceived; instead, if she does not trust any inferred

breathing rate, her ability to eavesdropping breathing rate is lost.

Indirect Calculation: To calculate the real CSI, an eavesdropper must

compromise the phase of distribution manipulation. As shown in Section 3.3.3,

suppose that the ith subcarrier is sensitive, the transmitting signal on this sub-

carrier can be represented as Xm
i (t) = αiCi(t)Di(t)Xi(t) + (1 − αi)Xi(t). We

utilize Mi(t) = Ci(t)Di(t) to denote the total impact of disturbance manipula-

tion. Let Re
i denote the signal received by the eavesdropper on the ith subcarrier,

and He
i (t) denote the corresponding real subcarrier CSI between the transmitter

and eavesdropper. Thus, we have Re
i = Xm

i (t)He
i (t) = aiMi(t)Xi(t)H

e
i (t) + (1−

ai)Xi(t)H
e
i (t).

To learn Mi(t), the eavesdropper must learn both ai and He
i (t). However, this

imposes a strong requirement for the eavesdropper. On one hand, without the

knowledge of the accurate positions of the target user and the transmitter, the
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(c) Two persons in a room.
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(d) Three persons in a room.

Figure 3.9: CSI amplitudes at all subcarriers in different situations.

eavesdropper can hardly determine the subcarrier sensitivity except by guessing.

On the other hand, the transmitter can always hide its real CSI between itself

and the eavesdropper. Thus, He
i (t) is not available. Consequently, the eaves-

dropper would fail to obtain Mi(t) and cannot calculate the real CSIs of sensitive

subcarriers for inferring the true breathing rate.
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3.4 Ambush Design for Crowd Inference

Attacks

A crowd inference attack using CSI is a technique that leverages wireless signals

to estimate the number of people in an area of interest. The key idea of a crowd

inference attack is that as more people enter the given area, the wireless signals

will reflect off their bodies and change the channel characteristics. After extract-

ing the CSI features, machine learning algorithms can be used to analyze the CSI

data and estimate the number of people in the area accurately. To counteract

such a CSI-based crowd inference attack, we propose the corresponding defenses

called Ghost in the following.

We first explore the relationship between the CSI amplitude and the number

of moving people in the given area. Thus, we investigate the amplitude of CSI

measurements at each subcarrier within a certain time interval in several different

situations (i.e., empty, one person in a room, two persons in a room, three persons

in a room). As shown in Figure 3.9, we have the following observations: (1) differ-

ent subcarriers show similar fluctuations, which demonstrates they have similar

responses towards movement, and all subcarriers are sensitive due to the random

changes of position; (2) the CSI amplitude is not periodic or predictable due to

the random walking; (3) when the room is empty (i.e., no person is present),

the CSI amplitude is almost flat and stable; (4) the variation of CSI amplitude

becomes larger when the number of moving people increases. Based on these

observations, we can subsequently design our Ghost defense against the crowd

inference attack.
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3.4.1 Overview

To defend against the crowd inference attack, the transmitter first arbitrarily

specifies a fake person number to fool the attacker into entering the ambush.

Due to the fact that all subcarriers are sensitive to the random movements of

people in the given area, the ambush locations can be selected in hidden or

concealed areas. Additionally, the ambush locations can be determined based on

the locations where the eavesdropper is most likely to appear, and then deployed

along the eavesdropper’s possible route.

Different from HoneyBreath in Section 3.3.1, Ghost targets an empty room

and fools the receiver into estimating the wrong person number in the room.

The transmitter first proceeds to the planning phase, which consists of two tasks:

CSI profile construction and CSI retrieval. Based on observation (2), the CSI

amplitude is not periodic or predictable. Therefore, to map the specified person

number to the CSI measurements, the transmitter can construct the CSI profile

by collecting the CSI measurements corresponding to the different numbers of

individuals. Later, according to the fake person number selected by the trans-

mitter, the corresponding CSI stream can be retrieved from the built library and

then fed into the next phase, disturbance manipulation. Due to observation (1),

as all subcarriers are sensitive to movements, the transmitter is able to perform

the same operation on each subcarrier. Then, all crafted signals are aggregated

and sent out. Consequently, the attacker estimates the person number with the

estimated CSI by performing the general person number estimation process. Fig-

ure 3.10 illustrates the flow chart of the proposed Ghost defense.
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Figure 3.10: Flow chart of the proposed Ghost defense.

3.4.2 Planning Phase

In this phase, the following two steps are performed.

CSI Profile Construction: Different from the breathing inference attack

where the victim is static, the victims in the crowd counting system move ran-

domly. In this way, it is not possible to predict how the CSI varies with time.

To address this challenge, the CSI profile can be constructed by collecting sev-

eral CSI measurements when there are different numbers of moving people. Let

Sp(t) = {Sp
1(t),S

p
2(t), · · · ,S

p
k(t)} denote the CSI profile, where p = 0, 1, · · · , P

represents the person number and k = 0, 1, · · · , K means the trial number. For

each scenario with a different number of individuals, CSI measurements are col-

lected in multiple trials at different times.

CSI Retrieval: The transmitter plans to send specified CSI to the receiver,

from which the person number can be estimated. Thus, for the given person

number p that is used to fool the attacker, the corresponding CSI Sp
k(t) can be

extracted from the library as the specified CSI.
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3.4.3 Disturbance Manipulation

Different from Section 3.3.3, it is not required to perform different operations on

sensitive subcarriers and insensitive subcarriers, respectively. Since all subcar-

riers are sensitive to human movements during the walking period, CSI forgery

needs to be performed on each subcarrier. To achieve it, the multiply-accumulate

(MAC) process is exploited by the transmitter to generate the desired artificial

disturbance.

3.4.4 Person Number Estimation

In the person number estimation phase, a general scheme has the following three

steps:

CSI Pre-processing: After gathering the CSI measurements from the trans-

mitter, the receiver first performs the CSI estimation based on the original train-

ing sequence and the received data. Since the CSI data is considerably noisy due

to various factors such as interference, multipath fading, and hardware imperfec-

tions, it is necessary to remove the redundant components from the calculated

amplitude values. For this smoothing process, we apply two kinds of filters, one is

the Hampel filter for eliminating impulse noises, and the other is the moving av-

erage filter for removing high-frequency noise while preserving the low-frequency

components.

Feature Extraction: By leveraging the CSI amplitude from each subcarrier,

various statistical features [27,189] can be extracted for crowd counting as follows:

• Mean: the average value of amplitude.

• Standard deviation (STD): shows how individual amplitude values deviate
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from the mean amplitude value.

• Median Absolute Difference (MAD): a robust measure of dispersion that is

not affected by outliers.

• Maximum: the highest amplitude value.

• Minimum: the lowest amplitude value.

• Skewness: encompasses the asymmetric shape of the CSI subcarrier profile

and indicates a stronger or weaker signal on the left or right.

• Kurtosis: represents how tail-heavy the shape is compared to a normal

distribution (meaning more extreme values).

• Entropy: measures the amount of signal information.

After that, the CSI at each subcarrier corresponds to a 1× 8 feature vector,

which can be combined into a N × 8 feature matrix, where N represents the

number of subcarriers. Since these CSI amplitudes present similar variations and

describe the same human movement, the average value of each feature across all

subcarriers is calculated and regenerates the final 1 × 8 feature vector, which is

fed into the classifier later.

Classifier: Accordingly, based on these common statistical features, a feature

set can be created for each training sample to form a labeled dataset. Two widely

used classifiers are trained to divide inputs into different predefined classes and

then make decisions as follows:

• Support Vector Machine (SVM): used with one-versus-one (OvO) strate-

gies, finds the hyperplane that maximally separates the data points of dif-

ferent classes.
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• Decision Tree (DT): used with OvO strategies, recursively partitions the

data and selects the optimal boundaries that best separate the data points

of different classes.

Based on the trained classifier, the number of moving people can be estimated

from the collected CSI measurements.

3.5 Experimental Evaluation

We implement CSI-based breathing rate inference and our proposed ambush

schemes on top of Universal Software Radio Peripheral (USRP) X310s [43], which

are equipped with SBX-120 daughterboards [42] and run GNU Radio [57] – an

open-source software toolkit.

3.5.1 Evaluation Setup

The prototype system includes a transmitter Tx and an eavesdropper Eve (i.e.,

malicious receiver). Each node is a USRP X310. We recruited 5 participants

and asked each to act as the target user of the inference attacks over three

months.2 Also, each wore a Masimo MightySat Fingertip Pulse Oximeter [107]

with hospital-grade technology to obtain ground-truth breathing rate.

Testing Scenarios: We test two typical scenarios: (1) a bedroom, where

the user lies on a bed; and (2) an office room, where the user sits in a chair.

Figure 3.11 shows the ambush locations and the position of the transmitter. For

each scenario, we place Eve at 5 different ambush locations to infer the user’s

breathing rate, and the transmitter launches the proposed ambush scheme.

2The study has been approved by our institution’s IRB.
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Tx

(a) Bedroom (User lies down).

Tx

(b) Office (User sits).

Figure 3.11: Layout of the experimental environment.

To deploy a trap area, as shown in Figure 3.12a, we use a 5-antenna transmit-

ter, consisting of three USRP X310s, which are connected with a host computer

through an Ethernet switch and synchronized with OctoClock-G [40]. As shown

in Figure 3.12b, five collaborative eavesdroppers are placed at 5 specified ambush

points on the corridor outside of the office room: one in the center and the other

four in the circle with a radius (i.e., antenna-antenna distance) of 0.75 m.

Metrics: Let r̂ denote the estimated rate.We apply the following two metrics.

• Absolute estimation error ϵ: the difference between true and estimated

breathing rates, i.e., |rgt− r̂|, where rgt is the ground truth.
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(a) Five-antenna transmitter with USRPs.

P1

P2

P3

P4

P5

(b) Ambush area.

Figure 3.12: Setup for deploying an ambush area.

• Absolute ambush error η: the difference between estimated and specified

breathing rates, i.e., |ra−r̂|, where ra is the one specified by the transmitter.

3.5.2 Breathing Rate Inference Attacks

We first verify the effectiveness of using CSI to infer breathing rates. As shown

in Figure 3.11, Eve is put at each ambush location in both of the two scenarios

to estimate each participant’s breathing rate, with 100 trials performed for every

estimate. Figure 3.13 shows the obtained absolute estimation error when the

proposed ambush scheme is not launched.
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(a) In the bedroom.
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(b) In the office room.
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Figure 3.13: Values of ϵ and ϵ at Eve when no defense is enforced.
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Figure 3.13a shows that the inference technique always achieves high accuracy

with less than 1.6 bpm of error at all locations in the bedroom. The median abso-

lute estimation error ranges from 0.4 to 0.6 bpm across all locations. Meanwhile,

we see the value of ϵ on average is slightly larger at Location 2 than at other loca-

tions. This is because Location 2 is not in the LOS of the user and the resultant

signal fading degrades the inference performance. We have similar observations

from Figure 3.13b. Figure 3.13c depicts the mean absolute estimation errors for

different users (referred to as U1∼U5). We can observe that the mean absolute

estimation error is consistently low (i.e., below 0.8 bpm) across all users in both

environments. Also, the average absolute estimation error for each user in the

office room is larger than that in the bedroom. It can be explained by the fact

that the user has less body movement irrelevant to breathing activity when lying

on the bed than when sitting in a chair. These results demonstrate convincingly

that an eavesdropper could utilize passively collected CSI to accurately infer a

person’s breathing rate in different scenarios.

3.5.3 Example Defenses

We examine three example defenses, in which we deploy the ambush location at

Location 1 shown in Figure 3.11a and Location 3 shown in Figure 3.11b.

Example 1 - Making Breath Unobservable: We first show a defense

method by hiding breathing rates, i.e., when Eve appears at the ambush location,

she would obtain a breathing rate of 0 (i.e., no breathing activity is detected).

Figure 3.14 plots the real CSIs between the transmitter and the ambush lo-

cation, the estimated CSIs at the ambush location, as well as the subcarrier CSI

specified by the transmitter. In both environments, the transmitter can make
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Figure 3.14: Enabling Eve to obtain no breathing activity.

Eve observe a CSI on a sensitive subcarrier significantly near to the specified one

while both greatly deviate from the true one; with the estimated CSI, Eve obtains

a breathing rate of 0 though the respective true breathing rates are 15.1 and 20.8

bpm. The absolute estimation errors in the bedroom and the office room are thus

15.1 and 20.8 bpm, while the corresponding absolute ambush errors are both 0.

Besides, the CSI of the insensitive subcarrier keeps insensitive with the defense

(we thus only focus on sensitive subcarriers in the later evaluation).

Example 2 - Fabricating Nonexistent Breath: We aim to make Eve

obtain a fake breathing rate while there is no breathing activity in both scenarios.
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Figure 3.15: Fabricating normal breath.

We specify a fake breathing rate of 6 (16) bpm for the bedroom (office) room.

As shown in Figure 3.15, we see the true CSI is almost flat, as there is in

fact no breathing activity, and the estimated CSI is quite consistent with the CSI

specified by the transmitter. With the estimated CSI, Eve obtains a breathing

rate of 6.4 bpm in the bedroom and 16.1 bpm in the office room. The absolute

estimation errors in the two scenarios become 6.4 and 16.1 bpm, respectively; the

respective absolute ambush errors are as small as 0.4 bpm and 0.1 bpm.

Example 3 - Falsifying Breath: We aim to hide a normal breathing rate

by making Eve observe an abnormal one. We randomly specify an abnormal
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Figure 3.16: Making Eve obtain abnormal breath.

breathing rate of 40 bpm for the bedroom and 35 bpm for the office room.

Similar to the above examples, we observe from Figure 3.16 that the estimated

CSI is quite close to the specified CSI while it greatly differs from the true CSI in

both environments. The estimated breathing rate of Eve in the bedroom becomes

40.2 bpm, instead of the true one (i.e., 19.9 bpm) derived from the Masimo

Oximeter. In the office room, Eve obtains a breathing rate of 35.2 bpm, instead

of the ground truth (i.e., 17.0 bpm). Therefore, the absolute estimation errors

for the bedroom and the office room are 20.3 bpm and 18.2 bpm, respectively,

while the absolute ambush errors in these two scenarios are both just 0.2 bpm.
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Figure 3.17: CDFs of P (ϵ ≤ x) for D1.

3.5.4 Overall Defense Impact

We examine the overall impact of the three defenses (numbered according to their

respective cases): (1) a user is breathing while we aim to make Eve obtain no

breathing activity; (2) no breathing activity occurs while we aim to make Eve

obtain a fake breathing rate; (3) a user is breathing while we aim to make Eve

obtain a different non-zero breathing rate. Eve estimates the breathing rate at

every ambush location. For each estimate, we perform 100 trials.

D1: We test when the user has different breathing rates in the range of 6-

27 bpm. For all trials, we find that Eve always obtains an estimated breathing

rate of 0, indicating the consistent success of the defense. Let P (ϵbr ≤ x) and

P (ϵor ≤ x) denote the empirical cumulative distribution functions (CDFs) of

the absolute estimation error ϵbr for the bedroom and ϵor for the office room.

Figure 3.17 shows that ϵbr and ϵor lie in the ranges of [6.6, 26.5] and [7.5, 29.6]

with probability 100%. Both demonstrate that Eve always has a significant error

in the breathing rate estimation with the proposed defense.
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Figure 3.18: CDFs of P (ϵ ≤ x) and P (η ≤ x) for D2.

D2: We randomly specify a fake breathing rate within the range of 3-55 bpm

in each trial. Let P (ηbr ≤ x) and P (ηor ≤ x) denote the CDFs of the absolute

ambush errors ηbr for the bedroom and ηor for the office room. As shown in

Figure 3.18, we observe a small η and a high ϵ for both environments. For

example, ηbr is less than 1.5 bpm with a probability of 95.0%, while ϵbr ranges

from 3.0 to 54.8 bpm and is larger than 3.1 with a probability of 98.2%.

D3: Each participant has a normal breathing rate, and the transmitter

chooses a bogus breathing rate randomly in an abnormal range (31-56 bpm).

Figure 3.19 shows the CDFs of the corresponding ϵ and η. We can see that ϵbr

and ϵor are larger than 11 bpm with probabilities of 96.2% and 99.0%, respec-

tively. Meanwhile, ηbr is always less than 1.2 bpm, and ηor is always less than 0.9

bpm.

Figures 3.20a and 3.20b show the mean value of ϵ across all locations in both

environments when the proposed defenses are employed. We observe that ϵ stays

consistently high at all ambush locations for both environments. Compared with

no defense, all defenses can significantly increase ϵ at Eve.
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Figure 3.19: CDFs of P (ϵ ≤ x) and P (η ≤ x) for D3.

3.5.5 Two-user Scenario

First, we aim to make two persons’ breathing unobservable (referred to as D1).

We consider the scenario when two participants are in the office room simultane-

ously. As shown in Figure 3.21a, the estimated CSI is quite close to the specified

one while both deviate from the true CSI. Consequently, Eve obtains a breathing

rate of 0 though the true breathing rates of the two users are 6.0 and 10.0 bpm,

respectively. Second, we aim to make Eve observe two specified breathing rates

(16 and 22 bpm) when there is no breathing activity (referred to as D2). As

shown in Figure 3.21b, though the true CSI is almost flat, indicating no person

in the room, the estimated CSI and the specified one are alike, leading Eve to

obtain two-person breathing rates of 16.0 and 22.1 bpm.

We repeat the above two experiments 40 times. For comparison, we also

perform 40 attempts of inferring two-person breathing rates when no defense

is applied (this case is denoted with ND). Figure 3.21c presents the absolute

estimation errors (ϵ) for the cases with two real or fake users (U1 and U2).
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Figure 3.20: Mean absolute estimation errors (AEE).

Without the defenses, the mean value of ϵ is quite small (around 0.8 bpm); while

it is significantly increased (within the range of 12.6-17.2 bpm) with the proposed

defenses (D1 and D2). Also, for D1, the mean values of the absolute ambush error

η for the two users both equal about 0, while for D2, they are 0.1 and 0.4 bpm.

These results convincingly show the proposed scheme can successfully mislead

Eve with specified breathing rates for the two-user scenario.

3.5.6 Trap Area Evaluation

We aim to generate fake breath rates in the trap area consisting of five ambush

points (referred to as P1∼P5), as shown in Figure 3.12b. We choose a breathing

55



(a) Canceling two-user breath.
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(c) Comparison of ϵ.

Figure 3.21: Extending defenses in two-user scenario.
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(a) Absolute estimation error.

(b) Absolute ambush error.

Figure 3.22: Fabricating normal breath for a trap area.

rate of 20 bpm when the target room has no breathing activity. We perform 10

trials of deploying a trap area.

Figure 3.22a shows that the absolute estimation errors at all ambush points are

consistently large (close to 20 bpm). Figure 3.22b demonstrates that the absolute

ambush errors at all ambush points are quite small, with the mean value ranging

from 0.03 to 0.05 bpm across all ambush points. These results demonstrate that

the proposed scheme can simultaneously deploy multiple ambush points to mis-

lead collaborative eavesdroppers (or simply increase the probability of trapping

a single eavesdropper) with fake breathing rates.
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3.5.7 Ghost Defense against Crowd Inference Attacks

3.5.7.1 Experimental Setup

Similarly, we implemented CSI-based crowd inference and our proposed defense

schemes using USRP X310s [43], which were used as a transmitter (Tx) and an

eavesdropper (Eve, i.e., malicious receiver).

We asked 3 participants to randomly walk into a room. To build the CSI

profile, we collected CSI data in four scenarios: empty room, one person in a

room, two persons in a room, and three persons in a room. We performed 50

estimations for each scenario, resulting in a total of 50 × 4 = 200 estimations.

Each estimation lasted for one minute. We then split the dataset into training

(70%) and testing sets (30%). The training set was used to train the classifier,

while the testing set was used to evaluate its performance.

For the defense scheme, we first performed 20 trials in the empty room. After

that, we randomly selected one pre-collected CSI for each of the three defense

strategies (i.e., fabricating the presence of one person, two persons, or three

persons in an empty room). We conducted 20 trials for each defense strategy,

resulting in 20× (1 + 3) = 80 trials in total. We used the estimated CSI data to

test the trained classifiers and evaluate our defense scheme.

To evaluate the crowd inference attack and the proposed defense, we used a

confusion matrix to visualize the results. The accuracy was then calculated to

indicate the proportion of correct predictions out of the total number of predic-

tions.
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(a) SVM classifier. (b) DT classifier.

Figure 3.23: Confusion matrix for crowd inference attack.

3.5.7.2 Crowd Inference Attacks

We first verified the effectiveness of using CSI to estimate the number of people

present. Figure 3.23 shows the confusion matrix for two classifiers when the pro-

posed defense scheme is not employed. As observed, the SVM classifier achieves

an accuracy of 96.5%, while the DT classifier achieves an accuracy of 98.5%.

3.5.7.3 Example Defenses

We examine three example defenses, in which we deploy the proposed defense in

the empty room to fool the attacker to consider it as an occupied room.

We demonstrate a defense method that involves fabricating one, two, or three

moving people in an empty room when Eve attempts to launch a crowd inference

attack. Figure 3.24 plots the real CSIs between the transmitter and the ambush

location, the estimated CSIs at the ambush location, and the subcarrier CSI

specified by the transmitter. In an empty room, the transmitter can cause Eve

to observe a CSI on each subcarrier that is significantly close to the specified one,

while both are greatly different from the true one (since the CSI is almost flat
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Figure 3.24: Estimated CSI at Eve in an empty room when our defense is en-
forced.
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and stable in an empty room). It is noted that the specified CSI is extracted

from the built CSI profile, which consists of various collected true CSIs. In this

way, by obtaining these CSIs in Figures 3.24a, 3.24b, and 3.24c, respectively, the

attacker will estimate the corresponding person numbers as 1, 2, and 3, after

inputting such estimated CSI into the classifier.

3.5.7.4 Overall Defense Impact

We examined the overall impact of our defense strategies. Specifically, we consider

a scenario where the actual number of people in a room is zero (i.e., the true

label is 0). If Eve launches a crowd inference attack in this empty room, both the

trained SVM and DT classifiers can initially identify the empty room with 100%

accuracy. However, after each defense strategy is implemented, both classifiers

misclassify the empty room as containing one, two, or three people, also with

a 100% probability. Consequently, the accuracy of both classifiers dropped to

0%. These results demonstrate that Eve consistently makes significant errors

in estimating the crowd count when our defense strategies are applied, further

confirming the effectiveness of our defense scheme.
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Chapter 4

Phantom-CSI Attacks against

Wireless Liveness Detection

In this chapter 1, we identify vulnerabilities in existing wireless liveness detec-

tion systems and propose corresponding countermeasures to defend against such

Phantom-CSI attacks.

4.1 Preliminaries

In this section, we introduce the prevalent algorithm used to estimate CSI for

OFDM and the general method used by existing work employing CSI to achieve

liveness detection.

1This chapter was published in Qiuye He and Song Fang. 2023. Phantom-CSI Attacks
against Wireless Liveness Detection. In Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID ’23). Association for Computing Ma-
chinery, New York, NY, USA, 440-454. https://doi.org/10.1145/3607199.3607245. Used with
permission.
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4.1.1 CSI Estimation

As discussed earlier, the occurrence of human activities can induce disturbances

in the surrounding wireless signal and thus variation in the observed CSI at the

receiver.

The OFDM technique has been widely used in modern wireless commu-

nication systems, e.g., 802.11 a/g/n/ac/ad. The channel frequency responses

measured from all subcarriers form the CSI of OFDM. Let H(f, t) denote the

channel frequency response at time t for a particular subcarrier with a fre-

quency f . It is usually estimated by using a pseudo-noise sequence that is

publicly known [50, 58, 176]. Specifically, a transmitter sends a pseudo-noise se-

quence, denoted withX(f, t), over the wireless channel, and the receiver estimates

H(f, t) from X(f, t) and the received, distorted copy, denoted with Y (f, t), i.e.,

H(f, t) = Y (f,t)
X(f,t)

.

4.1.2 CSI-aided Liveness Detection

A myriad of recent studies have shown the success of using CSI to recognize sub-

tle human movements, including walking [158, 164], falling [118], breathing [98],

mouth movements [153], and activities of daily living [126]. Existing CSI-based

liveness detection techniques discover that CSI from widely available wireless

signals is able to perceive human existence or activities in the place of interest

in addition to surveillance cameras [78, 92] or a microphone [110, 123], and thus

spoofing attacks can be detected by catching dissimilarities between CSI and

video/voice signals.

These techniques normally use four steps to verify live users and detect spoof-

ing attacks, namely, data synchronization, data pre-processing, feature extrac-

63



CSI 
estimation

Decision: 
spoofing or not

Rx

Transmission manipulation

Video data
preprocessing

Event
detection

Feature
extraction

Artificial CSI 
generation

Tx
Winnowing 

sensitive subcarrier Desensitizing Creating artificial 
channel

CSI-aided liveness
detection

Video-based pipeline

Figure 4.1: Flow chart of the phantom-CSI attack.

tion, and consistency checking. The first phase synchronizes signals in both

modalities. The following phase pretreats video/voice feeds for activity detection

and removes noise from the CSI. Next, specific features are extracted from both

CSI and video/voice signals. They are then correlated and exploited to decide

whether a spoofing attack happens in the final phase. Figure 1.3 illustrates a

general flowchart of the CSI-aided liveness detection system.

4.2 Adversary Model

A general wireless liveness detection system utilizes wireless signals as a second-

factor authentication for human activity, which is detected via another co-existing

sensor. Without loss of generality, we consider a common surveillance scenario,

where a camera is used to monitor an open area, and a transmitter and receiver

pair is utilized to verify the authenticity of the video captured by the camera.

Specifically, the public transmitter constantly transmits the wireless signal; the

receiver estimates the CSI based on the received signal. We point out that such
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a public transmitter can be unreliable and can be exploited for launching the

proposed attack. If the detected human activities from wireless signals and the

camera match with each other, the video is authentic, otherwise the video spoof-

ing attack is detected.

To demonstrate the impact of our attack, we consider an attacker who can

craft a fake video and feed it to the camera (e.g., [12, 72]). This aligns with

existing liveness detection studies (e.g., [77, 78, 83, 92]). The attacker aims to

make the target system unable to detect the fake video. She may use the public

transmitter as an accomplice. Alternatively, if the defender secures the public

transmitter, the attacker can set up a hidden transmitter nearby. Similar to

other wireless attacks such as GPS spoofing [140], the attacker’s transmitter then

employs wireless jamming or spoofing techniques [182] to cancel the real signals

and let the receiver take the fake signals from the attacker as the real ones.

Toward the goal, the malicious transmitter attempts to mislead the receiver by

generating a phantom CSI that matches the forged video.

4.3 System Design

4.3.1 Attack Overview

Existing wireless liveness detection systems rely on wireless environmental fluc-

tuations to detect video- or voice-spoofing attacks. Our key idea of the proposed

attack is to manipulate the wireless environmental fluctuations so that both the

coexisting video/voice and CSI data have a consistent observation of human activ-

ities. Wireless liveness detection systems would thus be unaware of the spoofing

attacks. Without loss of generality, we assume that the attacker aims to launch
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video spoofing attacks.

In a typical video spoofing attack, the attacker replaces the live video frames

with fake ones (e.g., what are previously recorded) so that she can perform activ-

ities in the area monitored by the camera without being recorded. With a stream

of video frames, the data pre-processing phase first identifies body keypoints in

each video frame. Such keypoints input to the event detection phase, which de-

termines the ongoing event. After that, the feature extraction phase generates

semantic features from the processed video data, which are compared with that

extracted from the CSI to determine the authenticity of the captured video.

To make the receiver observe fake CSI, whose semantic features are consistent

with that extracted from the video data, the attacker first specifies such artificial

CSI, and then delivers it to the receiver by manipulating the transmitted signal.

Since the transmitted signal has to experience the distortion effect applied by

the real wireless channel, the attacker compensates for such distortion effect at

the transmitter side. Consequently, the receiver extracts the semantic features

of the ongoing event with estimated CSI. Figure 4.1 depicts the flow chart of the

proposed attack.

4.3.2 Video-based Pipeline

Traditional video-based monitoring system usually involves three steps, data pre-

processing, event detection, and feature (i.e., event parameter) extraction.

Data Pre-processing: OpenPose is the first open-source real-time video

processing tool for 2D pose detection, including tracking body, foot, hand, and

facial keypoints [20]. It is also widely used in existing wireless liveness studies

(e.g., [78, 92]). We also utilize OpenPose to process video frames, each of which
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Figure 4.2: Body keypoints extracted by OpenPose.

then generates X-Y coordinates of the 18 body keypoints. Figure 4.2 shows an

example of the body keypoints extracted from a video frame using OpenPose.

We see that there are 18 keypoints (labeled with 0-17) of the target person. The

displacement of those keypoints over time can then help infer occurrent events

(e.g., human activities).

Event Detection: The input of this step is the X-Y coordinates of the 18

body keypoints extracted from each video frame. Let P i
m denote the ith point in

the mth video frame, where i ∈ {1, 2, · · · , 18} and m ∈ {1, 2, · · · ,M}, where M

denotes the total amount of video frames. The Euclidean distance of each point

between the mth frame and the (m + 1)th can be denoted as Li
m =

∣∣P i
m−P i

m+1

∣∣.
We then add up all these Euclidean distances and obtain the sumDm =

∑18
i=1 L

i
m.

If Dm is larger than the predefined threshold D0, we regard that the motion is

detected; otherwise, there is no motion detected if Dm ≤ D0. We iterate over

all neighboring video frames with this scheme, separating dynamic scenes (with

motion) from static ones.

Feature Extraction: We need to select a set of distinctive semantic features
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of motion, so that we can use them to design corresponding phantom-CSI flows.

The start time and the end time of motion are often chosen as such features.

If the motion occurring in the video is periodic, the motion frequency is also

recorded as another. Particularly, to determine the frequency, we apply a metric

referred to as motion energy which captures the energy in the different frequency

bands of the body keypoints. With the FFT profile of the body keypoints, a

single frequency component that exhibits the maximum signal magnitude can be

extracted.

4.3.3 Artificial CSI Generation

The attacker would deliver specified CSI to the receiver, which matches events

occurring in the injected fake video. Let hT (t) = [hT1(t), hT2(t), · · · , hTN
(t)] de-

note the target CSI for N subcarriers. Intuitively, we may pre-record the CSI

corresponding to the events in the video as hT (t). However, this profiling process

of collecting CSI is laborsome and may place an extra burden on the attacker.

Instead, we propose a method that enables the attacker to generate such artificial

CSI.

In general, to craft hT (t), there are the following two cases: 1) the video

just contains static images and has no human activity in the video; 2) the video

contains human activity. For the first case, the target CSI hT (t) can be easily

crafted, denoting the random noise in the environment. For the latter case, we

then need to convert the human activities into hT (t).

Different human activities may cause different impacts on the environmen-

tal CSI. Specifically, the CSI amplitude on a sensitive subcarrier often shows a

strong correlation with human activities. As a non-synchronized transmitter and
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receiver pair may bring an unknown phase lag [129], the CSI amplitude is often

only chosen to characterize the wireless channel for human activity detection.

Correspondingly, this paper also focuses on wireless liveness detection using CSI

amplitudes.

It is widely observed that periodic movement usually makes the CSI amplitude

on a sensitive subcarrier present a sinusoidal-like pattern over time [154]. Let fa

denote the frequency (Hz) of the occurred event. We then convert the event into a

subcarrier CSI hTi
(t) = |hTi

(t)| ·ejθ(t)+Ni(t), where |hTi
(t)| represents amplitude.

We model the CSI envelope on a sensitive subcarrier as a sinusoidal-like wave,

i.e.,

|hTi
(t)| = a · sin(2πfat+ β) +Ni,when t ∈ [τs, τe], (4.1)

where a, β, and Ni are the amplitude, initial phase, and additive noise. When

t /∈ [τs, τe] (i.e., outside of the activity period), there is no need to craft specific

CSI and we then have |hTi
(t)| = 0. In turn, with such a CSI envelope, the receiver

can infer the start and end times of the activity, as well as the event frequency.

4.3.4 Transmission Manipulation

To invalidate wireless liveness detection, the transmitter (i.e., attacker) needs

to make the receiver believe the target CSI hTi
(t) on sensitive subcarriers. To

achieve this goal, the following three steps are required to craft the transmitted

signal.

4.3.4.1 Winnowing Sensitive Subcarrier

Due to the multipath effect, signals usually arrive at the receiver via different

paths, e.g., line-of-sight (LOS) and non-line-of-sight (NLOS). These signals may
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Figure 4.3: Subcarrier-level CSI wave morphing.

interfere constructively or destructively, leading the receiver to observe enhanced

or weakened signals. This phenomenon may vary for different subcarriers as they

have varying wavelengths. Consequently, all subcarriers can be divided into two

groups: sensitive and insensitive. Sensitive subcarriers show large amplitudes (or

variances), while insensitive subcarriers have imperceptible signal fluctuations.

Thus, observations on sensitive subcarriers are utilized to detect human activities.

We utilize a binary decision variable αi to indicate the subcarrier sensitivity,

with 1 denoting sensitive while 0 showing insensitive. Since insensitive subcarriers

are not involved in wireless liveness detection decisions, we only exploit sensitive

subcarriers for achieving CSI manipulation.

4.3.4.2 Desensitizing

Since the transmitted signal has to experience the real wireless channel, the trans-

mitter needs to cancel the actual distortion effect of the real channel. We call this

process desensitizing. Let hri(t) denote the real CSI of the ith sensitive subcar-

rier, and di(t) represent the corresponding coefficient of the desensitizing module.

di(t) would be the inverse of hri(t) to eliminate the impact of the real channel on

the transmitted signal x(t). We then have di(t) · hri(t)=1, i.e., di(t) = h−1
ri
(t).

Activity Removal in Dynamic Scenarios: Generally, to obtain the real
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CSI in environments with human motion, an attacker can utilize a CSI profiling

process. Particularly, rhythmic human activities (e.g., breathing) periodically

affect the CSI waveforms, and the resultant CSI often presents a sinusoidal-like

pattern, which can be then modeled by the attacker, as illustrated in Section 4.3.3.

Signal Annihilation in Realistic Settings: To cancel the real channel

effect, the attacker needs to know the real CSI via CSI profiling or modeling

ahead. In certain cases, human activity is complex and the real CSI is not

available. However, the attack impact still exists. Although the attacker cannot

control the CSI obtained at the receiver, she can then utilize a random coefficient

of the desensitizing model. This may not successfully cancel the real channel

effect, but it can make the target wireless liveness detection system obtain random

and incorrect decisions. In the following, we focus on the scenarios where the

attacker has knowledge of the real CSI due to the higher manipulability and

more misleading nature of such attacks.

4.3.4.3 Creating Artificial Channel

After canceling the real channel effect, the attacker also needs to create an artifi-

cial channel to make the receiver obtain the target CSI, crafted during the phase

of event-CSI conversion, as demonstrated in Section 4.3.3. Let hai(t) denote the

specified CSI of the artificial ith subchannel, and we thus obtain hai(t) = hTi
(t).

Figure 4.3 illustrates subcarrier-level transmission signal manipulation. We

use xai(t) to show the actual transmitted signal on the ith subchannel. After

the original signal x(t) goes through the two steps of desensitizing and artificial

channel, we have xai(t) = (1−α) ·x(t)+α ·x(t) ·h−1
ri
(t) ·hai(t). The received signal

at the receiver then becomes yai(t) = xai(t) ·hri(t) (where we omit the noise term

for the sake of simplicity). With yai(t) and the publicly known training sequence,
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the receiver can estimate the subcarrier CSI ĥi(t), i.e., yai(t) = x(t) · ĥi(t). As a

result, we have

ĥi(t) = α · hTi
(t) + (1− α) · hri(t). (4.2)

Consequently, for insensitive subcarriers (α = 0), we obtain ĥi(t) = hri(t), i.e.,

no manipulation is applied; while for sensitive subcarriers (α = 1), we have

ĥi(t) = hTi
(t), demonstrating that the proposed method is able to make the

receiver estimate the specified CSI via creating an artificial channel.

Synchronization for Real CSI Cancellation: CSI patterns (e.g., peaks

and valleys in sinusoidal waves) change with human motion, and CSI during the

motion period shows a larger variance than those happening out of the period.

We can thus utilize human motion and the corresponding CSI feature to achieve

synchronization, so that the real channel effect can be compensated.

4.3.5 CSI-aided Liveness Detection

With both the video and CSI signals, as discussed in Section 4.1.2, we apply the

general wireless liveness detection process in existing studies (e.g., [92]). Partic-

ularly, we first synchronize both signals and then process each. The video data

processing follows the procedures described in Section 4.3.2, while the CSI-based

monitoring pipeline is an inverse process of event-CSI conversion, including CSI

data preprocessing, event detection, and feature extraction. Finally, we cross-

check features extracted from the two sources to determine whether a spoofing

attack happens.
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Figure 4.4: Procedures of CSI data preprocessing.

73



4.3.5.1 CSI and Video Data Synchronization

Spoofing detection relies on the concurrent camera and wireless signals, thus

it is crucial to synchronize both. The out-of-sync data may result in different

semantic features, causing a high false alarming rate when they are used for

spoofing detection [78].

Suppose that fv denotes the frame per second (FPS) or frame rate of the

camera, and ∆v represents frame interval, i.e., the interval between two consec-

utive frames. The frame interval is normally constant and mathematically, we

have ∆v = 1/fv. The common frame rates for video are 24 FPS (standard),

30 FPS (close-second standard), and 60 FPS (for slow motion) [139]. Thus, the

corresponding frame intervals are 42 ms, 33 ms, and 17 ms. Meanwhile, let fw

represent the CSI sampling rate at the receiver, which is much larger than fv.

We use Nc to denote the number of CSI measurements that a frame interval cor-

responds to. Note that if there is no packet loss, Nc is constant and equals fw
fv
.

Due to packet loss, unlike video frames, CSI measurements may have variable

time intervals between them. As a result, each frame interval corresponds to a

varying number of CSI measurements, i.e., Nc varies.

To address the issue, we apply linear interpolation to resample CSI measure-

ments with a constant interval ∆c =
∆v

Nc
, so that each video frame corresponds to

a fixed amount of resampled CSI measurements.

4.3.5.2 CSI Data Preprocessing

The imperfect CSI can be caused by environmental noise, radio signal interfer-

ence, and hardware imperfection. CSI data preprocessing includes (1) outlier

removal and noise reduction, making CSI more accurately reflect the impact of
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human activities; (2) Principle Component Analysis (PCA) [136], reducing the

dimensionality of feature vectors to facilitate data analysis.

Outlier Removal and Noise Reduction: The collected CSI series may

have some abrupt changes that are not caused by human activities, and such

abnormal values should be corrected. Hampel filter is generally applied to identify

and replace outliers (which differ significantly from other samples) in a given

series [33, 121]. It uses a sliding window of configurable width to go over the

input data. For each window, the median η and the median absolute deviation

(MAD) λ can be calculated. The sample of the input is regarded as an outlier if

it lies outside of the range of [η − γ · λ, η + γ · λ], where γ is a pre-determined

scalar threshold. In this way, the Hampel filter is able to identify all outliers in

the CSI series and then replace them with the corresponding median.

Besides, CSI variations caused by human activities may occur at the low end

of the frequency range. We thus utilize the moving average filter [137] to smooth

the CSI series. This filter is simple to use and is optimal for retaining a sharp

step response [112]. It computes the arithmetic mean of M input points at a time

to produce each point of the output stream, where M is the pre-defined number

of points. Thus, the high-frequency noise in the raw CSI measurements can be

eliminated.

Figure 4.4a shows an example of applying outlier removal and noise reduction,

where we effectively reduce outlier peaks and the strong high-frequency noise.

Dimension Reduction: We apply the PCA technique to decrease com-

putational complexity by converting the received CSI into a set of orthogonal

components (i.e., the most representative or principal components), which are

influenced by human activity. Meanwhile, PCA also facilitates removing the un-

correlated noisy components. Figure 4.4b shows the CSI waveform after PCA,
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and we can clearly observe CSI fluctuations that correspond to human activity

and smooth waveform, indicating static periods within which there is no human

activity.

4.3.5.3 Event Detection

Generally, when there is no movement in the monitored area, the CSI fluctuation

is small and maintains stability in the time domain [170], while human activity

would bring distinguishable CSI fluctuations [165]. To segment CSI waveforms

corresponding to human activities, we need to determine the start and end points

of the CSI time series, which covers as much of the activity-disturbed waveform

as possible while minimizing the coverage of the non-activity portion.

We then calculate the moving variance σ2 of each window h={h1, h2, · · · , hJ},

where J is the pre-defined size of the window and hj is the jth CSI value in this

window. Mathematically, we have σ2 =
∑J

j=1(hj−µ)2

J−1
, where µ is the mean CSI

value of the window h. Empirically, the CSI segments during the human motion

period show a much larger variance than those happening out of the period.

Thus, we are only interested in the CSI segments with a variance larger than a

predetermined threshold while ignoring the segments with a variance under this

threshold. Later, those segments containing information about human activities

will be further processed to extract semantic features about human activities. As

shown in Figure 4.4c, by scanning the CSI variances, we can determine the start

and end points for each event (two are detected, occurring during [34.9 s, 67.1 s]

and [97.3 s, 130.7 s], respectively).
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4.3.5.4 Feature Extraction

With CSI segments during human activities, a set of distinctive semantic features

would be extracted and compared with those obtained from the video streams.

The time period of human activities intercepted by CSI waveforms and video

frames would usually match. Thus, the start and end times of each CSI segment,

corresponding to that of human activity, will be recorded as the features. The

frequency of CSI variations denotes the frequency of the event, which the video

frames can also generate. Accordingly, we use the inter-peak intervals (i.e., the

time period between successive peaks) to compute the frequency of occurred

events.

As the first derivative of a peak switches from positive to negative at the peak

maximum, it can be used to localize the occurrence time of each peak. However,

noise may occasionally bring fake peaks and consequently false zero-crossings.

Generally, the event usually cannot occur beyond a certain frequency. This ob-

servation enables us to develop a threshold-based fake peak removal algorithm.

Specifically, if the calculated interval between the current peak with the previous

one is less than 1/fmax (seconds), where fmax (Hz) denotes the maximum possible

event frequency, this peak will be labeled as a fake one and thus discarded.

Let pi denote the number of true peaks detected via an event-associated CSI

segment, and [t1, t2, · · · , tpi−1] denote the corresponding sequence of inter-peak

intervals. The event frequency f can be then estimated using the mean inter-peak

interval, i.e., f = pi−1∑pi−1
j=1 tj

.
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4.3.5.5 Consistency Checking

Given two tuples of features fv = [f v
1 , · · · , f v

n ] (from video) and f c = [f c
1 , · · · , f c

n]

(from CSI), where n is the number of extracted features, the multi-feature simi-

larity score S can be calculated by comparing the similarity of each corresponding

feature.

If the difference between the two features, each extracted from one of the two

sources, is within a predefined threshold, we regard that both sources show the

same feature. Mathematically, let sj denote the single-feature similarity score

and it can be obtained through

sj =

 1 if |f v
j − f c

j | ≤ Dj

0 otherwise
, j ∈ [1, · · · , n]. (4.3)

Dj is chosen empirically to achieve a high detection accuracy with a low false

positive rate. We set the optimal thresholds for both the start and end times as

1.5 seconds, and that for the event frequency as 0.08 Hz. As a result, we have

S(i) =
∑n

j=1 sj. If all features extracted from both sources are consistent, i.e.,

S(i) = n, we determine that there is no spoofing attack present; otherwise, the

video spoofing attack is detected.

4.4 Experimental Results

We implement an existing wireless liveness detection (e.g., [92, 92]) and our pro-

posed attack on top of a typical surveillance camera (CODi HD 1080p [28]) and

two USRP X300s [41], each equipped with an SBX-120 daughterboard [42].
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Figure 4.5: Layout of the experimental environment.

Figure 4.6: Three daily events.

4.4.1 Evaluation Setup

We perform the experiment in a laboratory office. For a good field of view,

the camera is mounted on a wall 2.2 meters above the floor to monitor human

activities in the office. It creates 1280×720 RGB images at 30 frames per second

(FPS). Meanwhile, a wireless transmitter and receiver pair is utilized to verify

the authenticity of the recorded video. Each node is a USRP X300.

The channel estimation algorithm runs at the receiver to extract the CSI for

liveness detection. The attacker launches the phantom-CSI attack by replacing

the original real-time video frames with pre-recorded fake ones (e.g., [12,72]) and
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simultaneously manipulating the transmitted signal, aiming to make both the

recorded video and the measured CSI at the receiver consistently show the same

human activities. Figure 4.5 shows the positions of the camera, the transmitter,

and the receiver.

We ask the user to perform the following three daily activities, as shown in

Figure 4.6, including E1: walking on the floor; E2: sitting on a chair and then

standing on the floor; E3: moving the arm up and down. We consider two typical

attack scenarios based on the goal of the attacker.

• Fabricating Event : when no event occurs in the monitored area, the attacker

feeds a video with a motion to the camera and synchronously makes the

CSI detect the same motion.

• Hiding Event : when motion appears in the area, the attacker feeds a static

shot to the camera and meanwhile makes CSI exhibit no motion.

Metrics: We use the following two evaluation metrics.

• True Positive Rate: this is the percentage of actual spoofing incidents that

are correctly detected, denoting the accuracy of the spoofing detection.

• False Positive Rate: this is the proportion of all negatives (i.e., when no

spoofing occurs) that are wrongly categorized as cases with spoofing.

4.4.2 Effectiveness of Channel Manipulation

In the section, we utilize examples to demonstrate the effectiveness of channel

manipulation in different environments, which aims to make the receiver obtain

the channel specified by the attacker.
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Figure 4.7: Channel manipulation in a static environment.

Static Environment: Figure 4.7 presents the true CSI between the trans-

mitter and the receiver, the CSI specified by the attacker, and the estimated CSI

at the receiver in a static environment (with no human activity). We can observe

that the estimated CSI is greatly similar to the specified one, while both signifi-

cantly deviate from the true CSI. The estimated CSI further causes the receiver

to believe that there are human activities during the periods from 34.2 s to 66.1

s, and from 96.3 s to 130.0 s. The activity repeats four and five times in the two

periods, respectively. When the attacker injects a fake video with such events

(e.g., waving arms) into the camera, the system would alert as the true CSI and

the video detect inconsistent results without our attack, whereas our attack can

successfully bypass the CSI-aided liveness detection system.

Dynamic Environment: Figure 4.8 presents the true CSI between the

transmitter and the receiver, the CSI specified by the attacker, and the estimated

CSI at the receiver in an environment with human activities present. Human ac-

tivities bring fluctuations in the CSI waveforms. Specifically, a walking activity

involves significant body movements and location changes. Thus, it causes signif-

icant CSI changes over time. However, an in-place activity, i.e., sitting/standing
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Figure 4.8: Channel manipulation in a dynamic environment.
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Figure 4.9: Video and the CSI signals when fabricating events.

and waving arms, only involves relatively smaller body movements and does not

cause significant CSI changes. Also, channel manipulation enables the receiver

to obtain an estimated CSI that is almost flat and close to the CSI specified by

the attacker, causing the receiver to believe that no event happened. Thus, when

the attacker injects a fake static video into the camera and meanwhile human

activities occur in the monitored area, the system may alert without our attack

due to the inconsistent detection results from the video and CSI, whereas our

attack can make the CSI present no event and succeed to defraud the CSI-aided

liveness detection system.

4.4.3 Two Attack Cases

Case I - Fabricating Nonexistent Events: The attacker makes the estimated

CSI at the receiver side change with the injected fake video containing scenes of

human activities, where the environment is in fact static.
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Table 4.1: Different human activity combinations.

Number of events Human activity combination

1 E1 only; E2 only; E3 only
2 E1+ E2; E2 + E3; E1 + E3
3 E1+E2+E3

Figure 4.9 compares the time series of the video and CSI when the fake video

contains different activities. As shown in Figures 4.9a and 4.9d, with the video

signal, the extracted feature tuple (including start time, end time, and frequency)

for walking equals (20.0 s, 53.2 s, 0.15 Hz); with the CSI data stream, the corre-

sponding tuple is (19.5 s, 53.5 s, 0.15 Hz). The absolute errors between features

from the two sources are thus 0.5 s, 0.3 s, and 0. As the optimal thresholds

for start time, end time, and event frequency are 1.5 s, 1.5 s, and 0.08 Hz, the

similarity score equals 3. We have similar observations for the cases of sitting/-

standing (Figures 4.9b and 4.9e) and waving arms (Figures 4.9c and 4.9f). In

all cases, our attack successfully bypasses wireless video liveness detection.

Case II - Hiding True Events: The attacker aims to make the CSI

disclose no human activities when feeding a fake video containing only static

scenes, though the user performs activities in the monitored area.

When the spoofed video contains no person, OpenPose extracts no keypoints

from it and thus shows the empty output. When the spoofed video of a static

scene contains a still user, the extracted keypoints have no movement, as shown

in Figure 4.10a. Figure 4.10b plots the corresponding CSI time series obtained

at the receiver side when the user performs events (e.g., walking). From the

video and CSI signals, the respective extracted features are consistent. Thus,

the wireless liveness detection system generates no alarm of spoofing detection,

verifying the success of the proposed attack.
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Figure 4.10: Video and CSI signal comparison when hiding events.

4.4.4 Overall Attack Impact

We test both static and dynamic environments. Each has two scenarios: (i) the

attacker launches a video spoofing only attack; (ii) the attacker launches the

proposed attack. For comparison, we also test the performance of the wireless

liveness detection system when there is no attack. The above three scenarios are

referred to as “video”, “csi”, and “no”, respectively. We consider the number of

actual or spoofed events ranging from 1 to 3, and test 7 different combinations of

the three daily events (E1, E2, and E3), as shown in Table 4.1, where “Ei + Ej”
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(i, j ∈ {1, 2, 3}) denotes that events Ei and Ej occur sequentially. For every

combination under each case, we perform 10 trials. Thus, in total, we perform

(2× 2× 7 + 7 + 1)× 10 = 360 attempts.

Event Feature Matching: Let ϵscets , ϵscete , and ϵscefr denote the measured

absolute estimation errors for start time, end time, and event frequency, in sce-

nario sce (sce ∈ no, video, csi). We show the empirical cumulative distribution

functions (CDFs) of ϵnots , ϵ
no
te , ϵ

video
ts , and ϵvideote in Figure 4.11a. Also, Figure 4.11b

shows the CDFs of ϵnofr and ϵvideofr . We see that the absolute errors for all three

features are always small with no attack. Specifically, ϵnots and ϵnote are less than

2.0 s with probabilities 92.9% and 98.6%, respectively; ϵnofr is always less than

0.045 Hz. Such results clearly show that without any attacks, the co-existing

video and CSI data are highly consistent, i.e., the false positive rate of wireless

liveness detection is low. On the other hand, for a video spoofing only attack,

the features extracted from the two sources show an apparent mismatch. We

observe that ϵvideots and ϵvideote are larger than 7.8 s and 23.8 s with probability

97.6%, respectively. Also, ϵvideofr ranges from 0.05 to 0.39 Hz, and is larger than

0.07 Hz with a probability of 97.6%. These results convincingly demonstrate that

the wireless liveness detection system can effectively detect video spoofing only

attacks.

Figure 4.12 presents CDFs of ϵcsits , ϵ
csi
te , and ϵcsifr . We observe that the absolute

estimation errors for all three features become consistently small. Particularly,

ϵcsits and ϵcsite are less than 1.5 s with probabilities 93.8% and 95.3%; ϵcsifr is less

than 0.042 Hz with probability 98.6%. These results show that our attack can

successfully synchronize the CSI and video signals observed at the receiver. With

consistent CSI and video data streams, the wireless liveness detection system

would fail to send out an alarm when video spoofing attacks happen.
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Figure 4.11: CDF of the extracted features in a normal situation and when a
video spoofing only attack happens.

Impact of Feature Count: By comparing extracted features from both

sources, it can determine whether the recorded video is spoofed or not. Table 4.2

presents TPRs and FPRs of the liveness detection system when the video spoofing

only attack happens and when our attack initiates. We see that if using two

features (start and end time), the overall TPR can be up to 1 when there is a video

spoofing only attack, while it is decreased to as small as 3.1% when the proposed

attack is launched. This implies that the CSI-aided liveness detection system can

reliably detect traditional video spoofing attacks, but becomes ineffective with
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Figure 4.12: CDF of the extracted features with our attack.

our attack (with just 9.1% accuracy). Besides, we observe that the proposed

attack rarely has an impact on FPR, which maintains a relatively low value.

Moreover, when using three features (start time, end time, and event frequency)

for event detection, we have similar observations. Specifically, compared with the

video spoofing only attack, the TPR of our attack is slightly increased but still

below 4.5%, again indicating the attack effectiveness against the wireless liveness

detection scheme.

Impact of Event Type: For different types of events in the spoofed video,

we construct respective phantom CSI to launch our attack. As shown in Table 4.3,

88



0

50

100

150

200

250

Ti
m

e 
Di

ffe
re

nc
e 

(s
)

User ID

No attack Video spoofing only attack Our attack

U1 U2 U3      U4      U5 U6       U7    U8      U9  U10

Figure 4.13: Event start time discrepancies.

Table 4.2: Wireless video liveness detection vs. feature count.

Count Two Three

Case video spoofing
only attack

our
attack

video spoofing
only attack

our
attack

TPR 1 3.1% 1 4.4%
FPR 4.4% 4.4% 13.3% 13.3%

the TPR of the liveness detection system is always 100% under video spoofing

only attacks regardless of event type, while it drops dramatically to 5.0%. 6.0%,

and 4.3% for E1, E2, and E3, respectively. Also, the FPRs across all event types

under both scenarios are no larger than 10%. These results demonstrate our

attack is robust against event type.
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Figure 4.14: Event end time discrepancies.

Table 4.3: Impact of different event types.

E1 E2 E3

Case Video* our
attack

Video our
attack

Video our
attack

TPR 1 5.0% 1 6.0% 1 4.3%
FPR 10.0% 10.0% 10.0% 10.0% 7.1% 7.1%

*Video: video spoofing only attack.

4.4.5 User Study

We recruited 10 volunteers (aged 18-35 years old; 5 self-identified as females and

the rest as males).2 Every participant was asked to perform each motion event

in Table 4.1 twice in a normal scenario (i.e., without any attacks). We also

recorded the corresponding videos and replayed them in the other two cases, i.e.,

the video spoofing only attack and the proposed attack. For each case, we test

2Our study has been approved by our institution’s IRB.
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Table 4.4: The list of voice commands we test.

ID Command Word #
C1 Please call 911 3
C2 Please play music 3
C3 Please open the door 4
C4 Please turn on the TV 5
C5 Please open the notification center 5

the performance of wireless video liveness detection for (3+4+1)× 2 = 16 trials

per participant.

Figures 4.13, 4.14, and 4.15 illustrate respective feature differences. We see

that all feature differences are consistently low with no attack. Specifically, for

the start/end time, the feature difference is less than 1.5 s while it is less than

0.03 for the frequency. With the video spoofing only attack, each feature discrep-

ancy of all users increases greatly, which becomes an effective indicator of the

existence of video spoofing. However, when the proposed attack is launched, all

feature differences become consistently small again, similar to that in the scenario
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of no attack. These results convincingly demonstrate that an attacker can effec-

tively bypass the wireless video liveness detection system with spoofed videos by

launching the phantom-CSI attack.

4.5 Attack Against Wireless Voice Liveness

Detection

Voice assistants, such as Amazon Alexa and Google Assistant, have been embed-

ded in a slew of digital devices (e.g., smartphones and smart TVs). Due to the

open nature of voice assistants’ input channels, a malicious attacker could easily

record people’s use of voice commands [5,54], and even build a model to synthe-

size a victim’s voice [111]. The attacker plays pre-recorded or synthesized voice

commands, which may spoof voice assistants, causing these devices to perform

operations against the desires of their owners [15,192]. Wireless voice liveness de-

tection cross-checks the consistency between simultaneously obtained audio and

wireless signals. Specifically, we preprocess audio signals using the spectral sub-

traction technique [16] to remove the background noise, where the average noise

spectrum is first estimated and then subtracted from the noisy speech spectrum.

By extracting semantic features (e.g., start time, end time, and word count) from

the audio and wireless signals, spoofing attacks via pre-recorded or synthesized

voice can be then detected [109,110,123,141,193]. Our attack can generate fake

CSI and make it synchronized with the voice signal played by a speaker.
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Figure 4.16: An example of a wireless-based voice liveness detection.

4.5.1 Implementation Setup

We implement wireless voice liveness detection and our attack in real-world en-

vironments. We utilize USRP X300 as a transceiver to collect CSI, and a mi-

crophone to collect voice signals. The transmitter and the receiver are placed

at opposite positions relative to the target speaker. We randomly select 5 com-

mands (C1-C5) from a list of the best Siri voice commands for a variety of daily

tasks [22], as shown in Table 4.4. The evaluation metrics are the same as those

for assessing the attack against wireless video liveness detection.

4.5.2 Case Study

We compare the following cases: (1) Normal Case: the user speaks command

C5 in Table 4.4; (2) Voice Replay Only : a speaker plays C5; (3) Our Attack.

Figure 4.16 plots corresponding voice and CSI signals.
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Figure 4.17: CDFs of start/end time for normal and voice spoofing attack only
cases.
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Figure 4.18: CDFs of word count for normal and voice spoofing attack only cases.

Normal Case: From the voice signal, the speaking interval is [9.6 s, 35.2 s]

and there are 5 separate segments full of fluctuations, corresponding to 5 words.

Meanwhile, the fluctuations of the CSI time series (referred to as “true CSI” in

Figure 4.16) happen with the occurrence of the command; accordingly, we get

the speaking interval [9.9 s, 35.3 s] and the word count 5 (as the sharp and rise

pattern appears 5 times, each caused by speaking a word). Thus, the errors

between corresponding features extracted from the voice and CSI signals are all

small, indicating that both signals are consistent.
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Figure 4.19: CDFs of start/end time when the proposed attack is launched.

Voice Replay Only: When an attacker launches a voice spoofing only attack

(with no mouth motion), the voice signal that the microphone captures maintain

almost unchanged. However, the CSI waveform (referred to “W/o our attack’ in

Figure 4.16) becomes flat, demonstrating that the CSI would detect no event. The

inconsistency of event detection via voice and CSI data facilitates the detection

of the voice spoofing attack.

Our Attack: The waveform of the estimated CSI is highly similar to the

true one. The correspondingly extracted features are 9.0 s, 34.4 s, and 5. By

comparing them with the features extracted from the voice signal, we obtain the

absolute errors as 0.6 s, 0.8 s, and 0, each of which is smaller than the respective

threshold, indicating the failure of the liveness detection.

4.5.3 Overall Performance

For each command in Table 4.4, we perform the proposed attack 10 times. We

synchronize the CSI and spoofed voice signals each time to bypass the wireless-

based liveness detection system. For comparison, we also record the performance

of the normal case with no attack, and the voice spoofing only attack. We refer
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Figure 4.20: Speaking start time differences.

to the above three scenarios as “csi”, “no”, and “voice”, respectively.

Speaking Activity Detection: Let ϵscets , ϵscete , and ϵscewc denote the absolute

estimation errors of start time, end time, and word count in scenario sce, where

sce ∈ {no, voice, csi}. Figure 4.17 shows CDFs of ϵnots , ϵ
no
te , ϵ

voice
ts and ϵvoicete . We

see that ϵnots is always less than 1.2 s and ϵnote is less than 1.5 s with probability

98.0%, while ϵvoicets and ϵnote are apparently larger. Meanwhile, ϵnowc equals 0 with

probability of 96.0%, whereas ϵvoicewc ranges from 3 to 6, as shown in Figure 4.18.

These results convincingly imply that the wireless liveness detection system can

effectively recognize voice spoofing attacks via feature differences. Figure 4.19

presents CDFs of ϵcsits and ϵcsite . We see that ϵcsits and ϵcsite are always less than 0.8

s and 1.1 s, respectively. Also, ϵcsiwc is always 0. Evidently, with our attack, the

extracted features from both voice and CSI signals are highly consistent, leading

to the failure of the liveness detection system.

Impact of Feature Count: Table 4.5 compares TPR and FPR for different

cases when utilizing two features (start and end time) or three features (start
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Figure 4.21: Speaking end time differences.

Table 4.5: Wireless voice liveness detection vs. feature count.

Two Three
Case no voice csi no voice csi
TPR N/A 1 0 N/A 1 0
FPR 6.0% 6.0% 6.0% 8.0% 8.0% 8.0%

time, end time, and word count) to detect spoofing attacks. We observe that

regardless of the feature count, the wireless voice liveness detection system can

achieve a TPR of 100% to recognize voice spoofing only attacks, while the TPR

plummets to 0 with the proposed attack, implying that a voice replay attack is

no longer to be correctly recognized. Meanwhile, we see that the FPR maintains

small and consistent in different cases, demonstrating that our attack does not

raise extra false alarms.

Impact of Number of Spoken Words: Aligned with existing work [110,

155, 171, 191], we also investigate the impact of the count of spoken words. As

shown in Table 4.6, for word count ranging from 3 to 5, the FPR of the liveness

detection system is always 100% without considering our attack, while it drops 0
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Figure 4.22: Mean word count differences.

Table 4.6: Wireless voice liveness detection vs. word count.

3 4 5
Case voice csi voice csi voice csi
TPR 1 0 1 0 1 0
FPR 10.0% 10.0% 10.0% 10.0% 5.0% 5.0%

under our attack. This verifies the robustness of our attack against word count.

Also, the FPRs across all word counts for two cases are no larger than 10%,

and the small fluctuation in FPR appears due to the minute changes in the

environment.

4.5.4 User Study

The 10 volunteers (as described in Section 4.4.5) were asked to speak each com-

mand in Table 4.4 twice in a normal scenario. We also recorded the voices and

replayed them in the other two cases with the voice spoofing only attack and our

proposed attack, respectively. Figures 4.20, 4.21, and 4.22 illustrate respective

feature discrepancies. We have the following observations. With no attack, the
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differences in both start time and end time are consistently low (less than 1.5 s)

across all users. Also, the mean difference in word count for each user is always

small (less than 0.1). However, for a voice spoofing only attack, the discrepancies

in all features for all users jump sharply. These results convincingly show that

the wireless liveness detection system can robustly detect voice spoofing only at-

tacks. With our attack, however, those feature discrepancies decrease to small

values, similar to that in the scenario of no attack, indicating that spoofed voice

can successfully bypass the wireless voice liveness detection system.

4.6 Discussions

4.6.1 Limitations

Cross-modality Sensing: Currently, the proposed attack targets compromising

wireless video/voice liveness detection systems. Thus, except for generating fake

CSI time series, it should also perform a video spoofing or voice replay attack

simultaneously. In general, phantom-CSI can be utilized alone to confuse any

CSI-based applications, such as keystroke recognition techniques [7, 50] or vital

signs inference methods [81,98].

Complex Human Activities: Our work currently just considers three pop-

ular daily activities (i.e., walking, sitting/standing, and waving arms), while a

person may perform more complex activities (e.g., playing games). It may thus

become difficult to construct phantom CSI associated with these activities. Ac-

cordingly, we expect that if the adversary could pre-collect CSI traces from such

activities, she can feed them to the wireless liveness detection system to launch

the proposed attack.
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Scenarios Where Real CSI is Unknown: The proposed work may fail

to make the receiver obtain the specific CSI in scenarios where real CSI is un-

available or cannot be correctly predicted. Machine learning-based approaches

have demonstrated success in achieving accurate CSI prediction (e.g., [104,183]).

They thus can be added to our technique to improve the attack effectiveness, and

we leave such integration to our future work.

Channels with Noise and Interference: Normally, if the real channel

has noise and interference, existing wireless liveness detection may not work,

and thus in this case, it is unnecessary to explore the feasibility of the proposed

attack. The directional antenna can be adopted to eliminate CSI noises and other

interferences.

4.6.2 Countermeasures

The proposed attack needs to compromise the transmitter and cancel the real

channel effect before injecting phantom CSI to mislead the target system. Intu-

itively, to defend against such attacks, we can utilize a trustful transmitter or a

protected frequency (on which the attacker is not allowed to inject signals). Such

methods, however, would incur extra costs. Alternatively, we can also directly

stop the attacker from obtaining the true wireless channel information by lever-

aging friendly jamming [46]. Specifically, an ally jamming sends out intentional

radio interference signals, i.e., jamming signals, to the wireless channel to prevent

the attacker from measuring the real CSI, while the receiver itself can eliminate

the impact of interference signals to guarantee that the wireless liveness detec-

tion system still works when the proposed attack is not launched. Similarly, this

defense brings additional overhand for jamming hardware.
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To validate the liveness detection result, another viable defense strategy is

to integrate extra sensors. For example, the work [138] uses thermal infrared

(IR) images to detect live signals; motion sensors can be employed to detect the

presence of humans from the radiation of their body heat [69–71]; by exploiting

the circular microphone array of the smart speaker, voice spoofing attacks can

be thwarted [108]. However, these extra sensors are not always available, and the

deployment of additional infrastructure requires authentication of the new sensor

data that may potentially introduce a new attack surface [92].
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Chapter 5

Future Work

This chapter 1 discusses three future trends for wireless human profile information

(HPI) inference.

To utilize existing wireless HPI inference techniques, we often need to first

establish a wireless environment. This involves setting up wireless transceivers or

commercial off-the-shelf WiFi devices or software-defined radio (SDR) systems-

around the target user. As IoT devices with wireless connectivity become in-

creasingly pervasive and crucial in various applications, they may handle sensitive

HPI that needs protection. Furthermore, the advancement of machine learning

techniques, complementing traditional signal processing methods, offers new pos-

sibilities for wireless HPI inference. Machine learning-based techniques can learn

from and adapt to the environment through experience [25]. Additionally, the use

of mmWave communication technology is growing in emerging wireless applica-

tions, such as virtual reality (VR) [38]. mmWave radar signals, with their shorter

1This chapter was published in Q. He, E. Yang and S. Fang, ”A Survey on Human Profile
Information Inference via Wireless Signals,” in IEEE Communications Surveys & Tutorials,
doi: 10.1109/COMST.2024.3373397. Used with Permission.
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Figure 5.1: Extensive applications of IoT.

wavelengths compared to WiFi signals, can be used to detect subtle movements.

In the following sections, we will discuss the future trends and challenges in

wireless HPI inference. These include the popularity of Internet-of-Things (IoT)

devices, integration with machine learning techniques, and increasing adoption

of millimeter wave (mmWave) communications.

5.1 Challenges with IoT Devices

IoT is a system of interrelated computing devices connected to a network and/or

to one another, exchanging data without necessarily requiring human-to-machine

interaction [29]. Due to their low-cost and low-power characteristics, IoT devices
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have been extensively deployed in various domains, including smart homes, trans-

portation, health care, and manufacturing, as shown in Figure 5.1. According to

a recent study about the global IoT market, it is expected that by 2025, there

will be approximately 27 billion connected IoT devices worldwide [65]. However,

the proliferation of IoT devices brings several key challenges:

Challenge 1: Ensuring the security and privacy of sensed data transmitted

wirelessly. IoT devices may monitor users’ private activities, and the data they

collect often carry a great potential for privacy risks regarding the use of the data

and its access [122, 175, 177]. Intuitively, the behaviors of various smart devices,

such as smart door locks, lighting control systems, and wireless security cameras

can be easily affected by human activity. For instance, in a smart home, the

lighting condition can be adjusted automatically according to whether the user

enters or walks out of the room, and the door will open if the identity is verified

for the user who wants to enter the room [84]. As wireless signals may carry

important information about these devices’ behavior, they can be captured and

analyzed to infer HPI.

Challenge 2: Keeping multiple IoT devices to be well-calibrated and synchro-

nized. A vast array of devices with their own set of capabilities are sourced from

different manufacturers. Therefore, inter-device data exchange for IoT devices is

challenging. First, IoT devices are often portable, and their high mobility may in-

troduce noise and interference, decreasing communication performance. Second,

synchronization among diverse IoT devices is crucial when data from multiple de-

vices need to be combined or compared, especially for multi-modal systems that

collect data from different sensors, such as capturing audio, video, temperature,

motion, and more. For instance, if a surveillance system captures both video and

audio [92], a sound should correspond accurately with the visual event causing
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it; otherwise, it may cause false alarms to make the security system unreliable.

Challenge 3: Addressing the heterogeneity among various IoT devices. On the

one hand, different IoT devices may support incompatible communication stan-

dards (e.g., WiFi, Bluetooth, and ZigBee) and have varying sensing modalities.

For example, a Zigbee smart bulb might struggle to relay its readings to a smart

home hub that exclusively supports WiFi or Bluetooth. On the other hand, data

quality may differ in different IoT devices. For example, a 4K security camera

might capture 4K video while a normal one may only capture 1080p. Such dis-

parities can lead to inconsistencies in data quality, which may deteriorate data

aggregation or data fusion.

Challenge 4: Designing new authentication method in emerging IoT devices.

Most emerging IoT devices lack a user interface (e.g., a touchscreen or keypad),

and traditional authentication methods using direct text entry become inappli-

cable. New secure and robust mechanisms are thus required to enable wireless

communication among IoT devices [63]. For example, the study [55] develops

a robust communicating system for a mobilizable IoT network. It exploits ul-

trasonic signals at a frequency corresponding to the target receiver, forcing the

inertial sensors to resonate, so as to convey information. Also, to authenticate

users of IoT devices, [96] presents a virtual sensing technique that allows IoT

devices to virtually sense user touches on the devices.

Challenge 5: Achieving real-time sensing while improving energy efficiency.

Furthermore, real-time processing and analysis of HPI within IoT devices have

become essential requirements for various applications, especially for health mon-

itoring, intruder detection, and fall detection systems. Responding promptly to

the new arrival of data and analyzing it without delay is crucial in these con-

texts. This presents several challenges, including resource constraints of IoT de-
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vices, data quality, environmental noise, and the need for robust and adaptable

models. Another critical aspect to consider is that devices continuously moni-

toring and transmitting data rapidly consume energy. To address these issues,

future research should focus on developing lightweight machine learning models,

efficient data pre-processing techniques, and adaptive learning mechanisms that

can operate within IoT device constraints while ensuring accurate and real-time

analysis.

5.2 ML for Wireless HPI Inference

Machine Learning (ML) plays an essential role in wireless HPI inference sys-

tems. ML approaches leverage wireless signals to sense our environment, detect

and monitor our activities, and localize and track the users. For example, the

work [159] proposes a Hidden Markov Model (HMM) for human activity recog-

nition; the study [7] trains k-Nearest Neighbour (kNN) classifiers for recognizing

keystrokes; the Support Vector Machine (SVM) model can be built to perfectly

classify the gestures [130]. Also, Convolutional Neural Network (CNN) classifiers

can be leveraged for sign language recognition [106], and another work [133] ex-

ploits a three-layer Deep Neural Network (DNN) for user authentication. These

ML approaches are widely used in past studies, providing high-accuracy perfor-

mance. However, the applications of ML in wireless HPI inference present a lot

of challenges.

Challenge 1: Ensuring Reliability of ML Approaches in HPI Inference. De-

spite the extensive use of ML techniques in wireless HPI inference and their

high-accuracy performance, ensuring consistent reliability across diverse scenarios

remains a challenge. Different activities and environments introduce significant
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variations in signal patterns, which may cause a single ML model to underperform

in certain situations. Ensemble learning methods offer a solution by combining

predictions from multiple models, thereby capturing a wider spectrum of data

patterns. For instance, WiARes [32] leverages ensemble learning, fusing pre-

dictions from a multiple layer perceptron (MLP), a random forest (RF), and a

support vector machine (SVM) to enhance human activity recognition accuracy.

Similarly, a recent study [174] presents an ensemble approach for cross-person

activity recognition, demonstrating increased reliability and more robust predic-

tions compared to standalone models.

Challenge 2: Integrating machine learning with multi-modal sensing. Inte-

grating machine learning techniques with wireless sensing technologies offers vast

opportunities for a range of applications, with most of these methods focused

on a single type of wireless measurement. However, an approach that combines

different types of signals (e.g., acoustic, CSI, mmWave, infrared, altrasound) can

provide more comprehensive and diverse information for enhanced HPI infer-

ence [35,100,103]. For instance, [35] fuses ultrasound (which is immune to ambi-

ent noise and provides additional information about the speaker) with acoustic

signals (which offer rich auditory data and are less susceptible to airflow) for

speech enhancement. If machine learning networks can learn from the combina-

tion of these wireless measurements, it can result in more robust HPI inference

techniques. Such techniques would be particularly beneficial in ubiquitous de-

ployments, especially in future smart homes with many IoT devices.

Challenge 3: Achieving scalability and adaptability. Existing WiFi sensing

techniques based on ML (deep learning) require a labor-intensive and time-

consuming process of collecting training data or fingerprints. The training data

need to be collected for each target subject or activity across diverse environ-
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ments. While feasible for a subset of users and typical environments, it becomes

impractical when expanding to new users or environments. These constraints

limit the applicability of such techniques in larger, more complex settings. There-

fore, there is an urgent need for innovative solutions that can reduce the extensive

data collection requirement, enabling more scalable and flexible WiFi sensing

applications. To address it, [188] applies transfer learning to effectively reuse

knowledge across different sites and tasks. In addition, [150] utilizes domain

adaptation, allowing the trained model to be applied to untrained domains (e.g.,

new cars, new drivers) for in-car activity recognition. Despite promising progress

in these areas, several challenges, such as ensuring model robustness and reliabil-

ity in new environments, still need to be addressed. Nonetheless, the potential

of these techniques to significantly enhance the scalability and usability of deep

learning models makes this an exciting area for future research.

Challenge 4: Mitigating security concerns in wireless ML. The usage of ma-

chine learning algorithms in the wireless domain also brings security concerns.

Specifically, adversarial machine learning is receiving increasing attention nowa-

days, which can effectively disrupt wireless communications [2]. It studies vul-

nerabilities of machine learning approaches in adversarial settings and develops

systems to make learning robust to adversarial manipulation [146]. An adver-

sary can carefully design inputs, then feed them to machine learning models in

the test or training phase to manipulate the behavior of a legitimate system by

launching adversarial attacks [90]. For example, [134] trains a generative adver-

sarial network (GAN) to spoof wireless signals. Hence, adversarial attacks and

countermeasures should be considered when applying machine learning tools in

achieving wireless HPI inference.

108



5.3 HPI Inference with mmWave

Millimeter wave (mmWave) communication has been witnessed as a promising

technology for next-generation wireless systems. Millimeter wave frequencies

range from 30 GHz to 300 GHz, which are much higher than those used by

traditional wireless technologies (e.g., WiFi). As the wavelength of a signal is

inversely proportional to its frequency, the wavelength at mmWave frequencies is

much shorter than at lower frequencies. Thus, the size of the electronic compo-

nents designed for transmitting and receiving these signals can be reduced [79],

and it is possible to design smaller, more compact, and more portable mmWave-

supported devices.

Nowadays, mmWave-supported devices are increasingly popular in everyday

life. For example, 5G smartphones are equipped with mmWave technology, which

allows them to connect to 5G networks and take advantage of the high speeds and

low latency [74]; some wireless routers use mmWave technology to provide high-

speed wireless Internet connectivity to devices at home or in an office [115]; au-

tonomous driving systems consisting of mmWave radars provide high-resolution

radar images for obstacle detection and avoidance [167]; mmWave frequencies are

also used in medical imaging devices, such as CT scanners and MRI machines,

to produce detailed images of the human body [6].

Besides, mmWave operates across a wide bandwidth, which results in greater

sensing resolution. In detail, the resolution can be computed as R = C
2B

, where C

is the speed of light and B is the sweeping bandwidth. Thus, mmWave technology

with a chirp bandwidth of a few GHz will have a range resolution in the order of

centimeters (e.g., a chirp bandwidth of 4 GHz translates to a range resolution of

3.75 cm) [79].
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The high resolution of mmWave enables it to sense minute human motion.

Recent studies show that mmWave systems have improved performance com-

pared with traditional wireless systems in terms of achieving various applications,

such as user localization [117], vital signs monitoring [151,180], activity recogni-

tion [82, 166], occupancy detection [128], user identification [80, 194], and speech

acquisition [13,75,148]. Those studies provide the initial foray into HPI inference

using mmWave, and we expect more such schemes will be designed targeting a

broader category of HPI with the increased adoption of mmWave techniques.

Challenge 1: Extending the effective range of mmWave sensing. Indeed,

millimeter-wave (mmWave) technology demonstrates significant potential for high-

precision, non-intrusive HPI inference applications. However, there are inherent

challenges that need to be addressed, including occlusion and signal attenuation.

mmWave signals are highly susceptible to obstruction by obstacles and suffer

from significant signal attenuation over long distances. It makes reliable HPI

inference in diverse environments challenging. Because signal attenuation tends

to increase with frequency, mmWave radar operating at a higher frequency may

have a shorter effective range. To address this problem, an intuitive approach is

to simply increase the transmitter power, but this solution is not energy-efficient

and may pose additional issues such as interference with other systems and po-

tential health concerns. Therefore, it is an important direction for the future to

investigate intelligent reflecting surfaces (IRS) [19] and reconfigurable intelligent

surfaces (RIS) [114], which are employed in the communications domain for signal

propagation and beam steering for a larger coverage area.

Challenge 2: Designing advanced integrated circuits and systems. High carrier

frequencies and bandwidths introduce design challenges for mmWave communi-

cation circuit components and antennas. The high transmit power and large
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bandwidth can cause nonlinear distortion in power amplifiers. RF integrated

circuits also face issues related with phase noise and IQ imbalance. On the

other hand, the implementing mmWave technology requires high-frequency and

high-speed components, demanding advanced system design and precise manu-

facturing techniques to produce these energy-efficient, compact, and cost-effective

components [79].

Challenge 3: Adopting mmWave techniques in multimodal sensing. Another

significant trend in the future is multimodal sensing. Combining mmWave sens-

ing with other sensing modalities (e.g., acoustic, infrared) could enhance the

accuracy and robustness of HPI inference systems. For example, the study [100]

integrates mmWave and acoustic signals from a microphone, thereby facilitat-

ing a noise-resistant, long-distance speech recognition application. Similarly,

the work [18] jointly analyzes mmWave and thermal camera signals, achieving

privacy-preserving temperature screening and human tracking. These studies

provide exciting opportunities for innovative interaction techniques, applications,

and use cases.

In summary, wireless HPI inference is a promising field with significant chal-

lenges, including privacy and security concerns, robustness in various environ-

ments, and scalability for large-scale deployments. As for future trends, mul-

timodal sensing is expected to gain prominence, as systems integrate different

sensing modalities to gather comprehensive data for more accurate and detailed

inference. The rise of edge computing and AI, coupled with the growth of the

IoT ecosystem, paves the way for real-time data processing and broader integra-

tion of wireless HPI sensing. This expansion opens up potential applications in

areas such as healthcare, retail, and smart homes. Considering these trends and

challenges, wireless HPI sensing is a promising area for future research.
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Chapter 6

Conclusion

This dissertation includes two studies about deception strategies in existing wire-

less networks and systems.

In the first work, wireless signal has demonstrated exceptional capability to

detect breathing activity and estimate person count, which introduces a new

threat to the security of personal information. To address this issue, we design

an ambush-based strategy by actively deploying ambush locations and feeding

eavesdroppers who move to those ambush locations with fake breathing rates or

person count. This scheme enables the transmitter to encode the specified fake

breathing rate or person count into CSI, and then utilize disturbance manip-

ulation to deliver it to the eavesdropper. We conduct an extensive real-world

evaluation on the USRP X310 platform. Experimental results in different sce-

narios consistently demonstrate the effectiveness of the proposed defenses.

In the second work, we have identified a new attack against liveness detec-

tion systems that use CSI to authenticate environmental human activities. Our

phantom-CSI attack can manipulate CSI to exhibit the same semantic informa-
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tion as that measured by a co-existing camera or microphone, allowing spoofed

video or voice signals to bypass the CSI-based liveness detection system. Our

attack implementation on USRPs running GNURadio validates the effectiveness

and robustness of the proposed attack, with experimental results showing that the

proposed attack drastically lowers the true positive rates (TPRs) of the wireless

liveness detection system from 100% to just 4.4% and 0% for detecting spoofed

video and voice, respectively.
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