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Abstract  

Most studies on tickborne diseases in the U.S. have been concentrated in suburban and rural 

areas. This has led to a lack of understanding about the risks of such diseases in urban settings, 

where environmental conditions vary, and human-tick interactions differ significantly. Several 

previous studies, including a recent study in Oklahoma City in 2017-2018, have investigated 

how microhabitat conditions within sampling locations can impact tick abundance. However, 

microhabitat conditions only capture a limited spatiotemporal range, typically confined to the 

immediate sampling site and period. Monitoring macro-environmental conditions via Earth 

observations could enhance our understanding of tick ecology on a larger scale. Here, we 

hypothesize that integrated monitoring of micro- and macro-habitat conditions can better capture 

tick abundance in urban parks. Specifically, we hypothesize that tick abundance in urban parks is 

influenced by microclimate factors like higher humidity levels or deeper leaf litter, and by 

macro-environmental conditions such as habitat type and spatial arrangement. We collected ticks 

from 13 parks in the Oklahoma City Metropolitan area using CO2 traps and flagging techniques. 

At sampling transects, we gathered micro-environmental data, including temperature, humidity, 

wind speed, and vegetation types, and assessed macro-environmental conditions such as land 

cover, incorporating landscape metrics. Our analysis identified key factors influencing tick 

abundance in urban parks, revealing that solar radiation negatively affects tick abundance, while 

soil pH, woody vegetation, and forest cover have positive effects. For adult ticks, leaf litter depth 

and solar radiation are negative predictors, while woody vegetation and forest percentage 

positively influence their abundance. Nymph tick abundance increases with lower solar radiation 

and relative humidity and is positively correlated with soil pH. Overall, both micro-

environmental variables and landscape metrics are crucial in predicting tick abundance across 

different life stages. The results underscore the complex interplay between environmental factors 

and tick distribution, with implications for public health strategies in urban planning and park 

management.  
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Introduction  
Ticks transmit more pathogen species (bacteria, parasites, and viruses) than any other 

group of blood-feeding arthropods worldwide, which poses significant threats to public and 

veterinary health (Durden, 2006). In the US, common tick species such as Amblyomma 

americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis have 

contributed to the rise in tick-borne diseases over the past two decades. These diseases include 

spotted fever group rickettsiosis, anaplasmosis, ehrlichiosis, alpha-gal syndrome, Powassan 

virus, and Lyme disease (R. J. Eisen & Paddock, 2021; Paddock & Goddard, 2015; Rosenberg, 

2018; Sonenshine, 2018). 

The abundance and distribution of ticks are shaped by various concurrent factors, 

including abiotic factors, habitat types, and host populations (R. J. Eisen et al., 2016; Ostfeld et 

al., 1995; Randolph, 2004; Wilson et al., 1984). Microclimate conditions have been found to 

significantly affect ticks, as they inhabit the interface of soil and vegetation where they undergo 

development, seek shelter between questing events, and replenish body water lost during 

questing (Schulze & Jordan, 2005). Ticks require blood meals from hosts, which can range from 

small mammals to livestock, birds, reptiles, and humans, for their development through all life 

stages (larvae, nymphs, and adults), often acquiring pathogens in the process. Thus, the 

population, distribution, and movements of wildlife hosts are also known to affect the abundance 

of ticks and the prevalence of the pathogens they carry (Allan et al.,2010; Levi et al., 2012; 

Patrick & Hair, 1977). Furthermore, habitat physiognomy, referring to the physical attributes of 

habitats, such as plant diversity and composition, plays an important role in influencing 

microclimate, host abundance, and movement, thereby affecting tick survival and feeding 

success and ultimately shaping their abundance and spatial distributions (Semtner & Hair, 1973). 
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Most studies on tickborne diseases in the U.S. have been concentrated in suburban and 

rural areas (LaDeau et al., 2015). This has led to a lack of understanding about the risks of such 

diseases in urban settings, where environmental conditions vary, and human-tick interactions 

differ significantly. Urban parks are vital in the ecology of ticks and the transmission of tick-

borne diseases, serving as potential hotspots for tick populations by providing suitable habitats 

for ticks and their wildlife hosts. Green spaces also facilitate increased human contact with 

nature, thereby heightening the potential for exposure to ticks and the pathogens they carry 

(Mackenstedt et al., 2015; Mathews-Martin et al., 2020). Kowalec et al., (2017) found Ixodes 

ricinus tick population and disease risks in urban parks in Poland are similar to those in natural 

forest settings with peak densities occurring in the spring-early summer in both areas, which 

suggest that urban parks also offer conditions conducive to tick proliferation. Therefore, 

understanding the ecology of ticks in urban parks is essential for developing strategies to 

mitigate the risk of tick-borne diseases in urban residents. 

Previous research has shown that microenvironment conditions such as microclimate and 

vegetation significantly affect tick abundance and activities in urban parks. Buczek et al. (2014) 

found that microclimate conditions within urban heat islands can affect the abundance and 

activity of Ixodes ricinus nymphs and females. In Europe, whether ticks display unimodal (one 

peak) or bimodal (two peaks) activity), depends on microclimate conditions (Buczek et al., 

2014). Noden et al. (2023) observed that tick abundance is influenced by factors such as 

microclimates, urbanization, fine-scale vegetation, and deer presence. However, 

microenvironment conditions only capture limited spatiotemporal range, often confined to the 

specific sampling site and period. Monitoring macro-environmental conditions through Earth 
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observations at a larger scale and over regular intervals could provide a broader understanding of 

tick ecology. 

Macroenvironment in urban parks, especially landscape structure including landscape 

composition and configuration, affects tick abundance in multifaceted ways. Ticks have evolved 

to be adaptable, yet many tick species have specific habitat preferences and even specific plant 

communities (Allan, Dutra, et al., 2010; L. Eisen et al., 2006; Estrada-PeñA, 2001). Particularly, 

fragmented forest areas with the higher amount of forest edge habitat are often correlated with 

higher tick density, most likely due to more optimal environmental conditions and higher density 

and activity of wildlife hosts (Simpson et al., 2019; Walsh, 2013). Urban areas exhibit 

pronounced habitat fragmentation, which can greatly restrict the movement of wildlife. However, 

human infrastructures such as buildings, roads, and canals can sometimes facilitate wildlife 

movement in urban environments and spatial distributions of tick populations in urban settings 

(Tack et al., 2011). For instance, VanAcker et al (2019) demonstrated that forested parks with 

better connectivity have higher densities of nymphal ticks and that the level of park connectivity 

strongly impacts the prevalence of Borrelia burgdorferi infection in nymphs. 

As urbanization progresses and green spaces become more fragmented, understanding 

how landscape structure impacts tick abundance and distributions becomes increasingly 

important. In an urban-focused study, Gregory et al. (2022) found that canopy cover around 

yards strongly predicts the presence of I. scapularis and A. americanum ticks, fencing offers 

protection against these species, and log and brush piles leads to increased detection of ticks. A 

study in North Central Florida's recreational greenspaces showed that habitat type (natural or 

manicured) and the surrounding landscape significantly affected A. americanum and I. scapularis 

tick abundance, with more ticks found in natural than in manicured habitats (Bhosale et al., 
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2023). Despite studies on ticks being conducted across the United States, few studies have 

investigated urban tick ecology from a comprehensive combination of micro- and macro-lens. 

Research specifically focusing on tick abundance and its influencing factors is notably scarce in 

the central United States, particularly in the Great Plains region (Noden et al., 2023).  

Here, we collected ticks using flagging and CO2 trapping methods in 13 parks across the 

Oklahoma City Metropolitan area and investigated the drivers of tick abundance in urban parks. 

We hypothesize that integrated monitoring of micro- and macro-habitat conditions can better 

capture tick abundance in urban parks. We hypothesize that tick abundance in urban parks 

increases with microclimatic conditions that include higher humidity levels and deeper leaf litter. 

Additionally, we predict that macro-environmental factors such as the type and spatial 

arrangement of habitats also positively influence tick abundance. Specifically, more forest 

habitats that are fragmented within the park are expected to support higher tick populations due 

to their favorable microclimates and sheltering capabilities. 
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Methods 
Study Area 

Oklahoma is in the south-central region of the United States. The Oklahoma City 

Metropolitan area is comprised of seven Oklahoma counties: Canadian, Cleveland, Grady, 

Lincoln, Logan, McClain, and Oklahoma. According to the U.S. Census Bureau, this combined 

centralized region of Oklahoma covers 6,359 square miles and is home to more than 1.4 million 

residents (Oklahoma Employment Security Commission, 2023). The Oklahoma City 

Metropolitan area is characterized by cross timbers and southern tallgrass prairie ecoregion 

(Omernik, 2004). The climate in Oklahoma varies from humid subtropical in the eastern regions 

to semi-arid in the western parts. The average annual temperature in the metropolitan area is 

60°F / 16°C with an average rainfall between 30 inches/76.2 centimeters to 40 inches/101.6 

centimeters. Elevation in the metropolitan area varies from 1,000 feet to 1,400 feet (Oklahoma 

Climatological Survey). Summers in Oklahoma City are hot and muggy, with temperatures 

typically ranging from 29.4°C /85°F to33.9°C/ 93°F and high humidity levels. The season 

extends from early June to mid-September, characterized by clear skies and occasional 

thunderstorms, particularly in May, the wettest month (Weather Spark). 

Although only a small percentage of ticks carry disease-causing bacteria, viruses, or 

protozoa, numerous cases of tickborne illnesses are reported annually across the United States. 

Lyme disease has become notably more prevalent in the last decade. In Oklahoma specifically, 

some of the most frequently reported diseases include Rocky Mountain spotted fever, 

ehrlichiosis, tularemia, and anaplasmosis. These observations highlight both the local and 

national impact of tickborne diseases (L. Eisen & Eisen, 2023; Osikowicz et al., 2024; Small & 

Brennan, 2021).  
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We selected 13 urban parks for our field sites, with eleven being the same as those 

studied by Roselli (2019) and the addition of one new park in Norman (Figure 1). Furthermore, 

due to safety concerns, Dolese Park included in Roselli's (2019) study was substituted with 

Saxon Park in Norman, Oklahoma. It is worth noting that some sites mentioned in Roselli (2019) 

are located outside of park boundaries. However, as our focus is specifically on urban parks, we 

confined all sampling activities within park boundaries. We conducted tick collections with the 

permits issued by the Parks and Recreation Departments of the City of Oklahoma City, the City 

of Norman, and the City of Edmond.  
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Figure 1. Tick sampling was conducted in thirteen urban parks in Oklahoma City and Norman, 
OK, USA, from May to July 2022. The main map displays the polygons representing each park, 
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which vary in size and shape (ESRI 2024, Redlands CA, USA) Park polygons were downloaded 
from data portals from the City of Norman, Oklahoma City, and City of Edmond. The inset map 
emphasizes the Oklahoma City Metropolitan area, encompassing seven different counties. 

Tick Collection 
In each park, we randomly generated six 50-meter transects per visit using the "Create 

Random Points" and "Bearing Distance to Line" geoprocessing tools in ArcGIS Pro 3.1.1 (ESRI 

Inc., Redland, CA). Adjustments were made to some transects to accommodate inaccessible 

areas within the parks. Despite these modifications, the transects were distributed in a way that 

ensured a random and representative sampling of the diverse vegetation types and provided 

comprehensive spatial coverage of the parks.  This approach was aimed at providing an accurate 

presentation of tick distribution across vegetation types and park areas.  We conducted two tick 

collection surveys in each park, establishing six transects per visit, from May 30 to July 31, 

2023, during which we collected both adult and nymph ticks. The timing of these surveys was 

dependent on inclement weather conditions, and the second sampling effort was conducted 2-3 

weeks after the initial survey (Table 1).All tick collections were conducted by the same four field 

personnel. We used two methods for tick surveillance, flagging and CO2 traps. Ticks are highly 

sensitive to carbon dioxide (CO2) emissions, especially from warm-blooded animals such as 

humans and other mammals, as they rely on CO2 to locate hosts for feeding. CO2 traps simulate 

this natural mechanism by releasing CO2, thereby attracting ticks toward the trap, which can be 

effective for collecting larvae, nymphs, and adult ticks. We positioned one CO2 trap at a distinct 

random location along each of the 50-meter transects. Traps were constructed with a plastic 

container of dry ice (solid CO2) placed at the center of a plywood board, which was lined with 

wide masking tape (Noden et al., 2017). We left the CO2 traps active for approximately one hour 

and documented the opening and closing times. Ticks discovered on the tape or board were 

gathered into a 50ml tube (CELLTREAT Scientific Products, Pepperell, MA, USA) filled with 
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10ml of 70% ethanol for preservation. The second method employed for tick collection involved 

flagging each transect using a light-color 1m² cotton flannel fabric (Jo-Ann Stores, Hudson, OH, 

USA) attached to a wooden dowel. Flagging is one of the commonly used methods to sample 

questing ticks (Sonenshine & Roe, 2014). These ticks are usually found perched on vegetation, 

with their legs extended, awaiting a passing host to which they can attach. During the flagging, 

the flannel fabric was inspected for ticks every 15 meters or every 30 seconds, and any ticks 

found attached to the flag were placed in a 50ml tube containing 10ml of 70% ethanol for 

preservation. All ticks collected through both methods were identified to species, life stage, and 

sex using a Zeiss Stemi SV-11 stereomicroscope and established pictorial keys (Dubie et al., 

2017; Keirans & Litwak, 1989). 

Microclimate Data 
Ticks are ectothermic, relying on the external environment to regulate their body 

temperature. As such, they are often found in areas that provide the right balance of humidity and 

temperature to support their survival (Needham & Teel, 1991). Air temperature (°C), relative 

humidity, wind speed (m/s), and solar radiation (W m-2) was recorded using a ClimaVUE™50 - 

Compact Digital Weather Sensor (Campbell Scientific, Inc. Logan, UT, USA)(Table 1.) During 

the sampling event of each transect, we placed the ClimaVUE™50 next to the CO2 trap to collect 

microclimate conditions for ticks. The ClimaVUE™50 was securely mounted on a stable wood 

stand that was 1ft or 0.3048 m in height to ensure the microclimate weather conditions are 

measured at surface level. To consider potential seasonal variations and their influences on tick 

ecology during the study period, we also included 'Month' as a categorical variable in our models 

(Table 1).  
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Vegetation Sampling 
At each 50m transect, four random points were generated to measure leaf litter depth, soil 

pH, percent ground cover, and sky-view factor (SVF). We measured the depth of the leaf litter by 

inserting a solid ruler into the litter until it encountered resistance from the soil (Roselli, 2019). 

We used a soil tester to measure soil pH (SOILPHU, Amazon Inc, Seattle, WA, USA). We 

assessed the percentage of ground cover by employing a 1x1 meter square sampling frame made 

from polyvinyl chloride (PVC) pipes and visually estimating the coverage percentage of various 

elements, including bare ground, leaf litter, coarse woody debris (such as fallen dead trees and 

branches), and graminaceous, herbaceous, and woody vegetation (Roselli, 2019). We used a 

Canon EOS 6D (Canon U.S.A., Inc, Melville, NY, USA) and Rokinon 8mm F3.5-HD Fisheye 

lens (Rokinon, Samyang Optics, Masan, South Korea) to capture the canopy or the sky 

hemisphere. The camera was placed in the center of the square sampling frame to take each 

image. The SVF quantifies the visible sky at a specific location, providing a simple way to 

represent the three-dimensional structure of the built environment as a two-dimensional metric. 

The SVF percentage for each image was determined using Photoshop software. The images were 

converted to grayscale, and a threshold was then applied to transform the images into binary 

photos. The threshold level, which varied for each image, distinguished between sky (white) and 

obstructions (black). The number of white pixels represents the visible sky area. The SVF was 

calculated as the ratio of sky pixels to total pixels, multiplied by 100, i.e., (sky pixels / total 

pixels) * 100. 
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Table 1. Description of environmental variables 

Variable Measurement range Description Accuracy 
Relative humidity 0 to 100% Average relative humidity ±3% 

Solar radiation 0 to 1750 W m-2 Measures the total amount of 
solar radiation received in a 

given area 

±5% 

Wind speed 0 to 30 m/s (0-67 mph) Measure of the speed at which 
air is moving horizontally past 

a fixed point 

0.3 m/s or 3% 

Air temperature  -50 to 60 °C Average air temperature ±0.6 °C 

Woody vegetation 0 to 100% The proportion of woody 
vegetation includes trees, 

shrubs, and other plants with 
woody stems seen within the 

PVC 

 

Leaf litter depth  0 to 15 cm Depth of leaf litter depth in 
cm using a ruler 

 

Bare ground 0 to 100% The proportion of areas 
without vegetation seen 

within the PVC 

 

Coarse woody debris  0 to 100% The proportion of dead woody 
material, such as fallen trees, 
branches seen within the PVC 
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Leaf litter 0 to 100% The proportion of leaf litter 
seen within the PVC 

 

Graminaecous  0 to 100% The proportion of grasses or 
grass-like plants seen within 

the PVC 

 

Herbaceous  0 to 100% The proportion covered by 
plants that have non-woody 
stems, such as grasses, ferns, 
and wildflowers. Within the 

PVC 

 

Sky View Factor  0 to 100% Quantitative measure that 
represents the fraction of the 
sky visible from a specific 

point 

 

Month May-July Categorical measure of the 
month during which data were 
collected, reflecting seasonal 

variations 
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Landscape Metrics 
The Google Earth Engine (GEE) JavaScript API was used to process and visualize 

satellite imagery from the USDA National Agriculture Imagery Program (NAIP) dataset. A 

random forest (RF) is a machine learning algorithm that combines multiple decision trees to 

improve predictive accuracy and prevent overfitting. It employs techniques such as bootstrap 

sampling and random feature selection to create a diverse ensemble of trees, whose collective 

predictions offer robust and accurate results (Breiman, 2001; Cutler et al., 2007). We utilized the 

Random Forest algorithm to classify land cover at a 1-meter resolution, employing NAIP 

imagery from May to August 2021, with the red (R), green (G), blue (B), and near-infrared (N) 

spectral bands serving as predictors for the classification process. To create a single composite 

image, we calculated the mean of all images within this timeframe. Training data was generated 

using geometries representing five different classes: (1) forest, (2) open water, (3) urban, (4) 

grass, and (5) barren, with each class containing approximately 200-300 data points (Figure 2.). 

We applied the RF algorithm with 300 trees to our training data. To evaluate the performance of 

our RF model, we generated a confusion matrix and calculated various accuracy metrics, 

including overall accuracy, producer’s accuracy, consumer’s accuracy, and the kappa coefficient, 

by using the random forest predictions based on the same data for training and evaluation. Our 

model demonstrated high classification accuracy, with an overall accuracy of 99.20% and a 

kappa coefficient of 0.99 (Table 2.) 
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Table 2.Confusion matrix for land cover classification in 13 urban parks in Oklahoma City 
Metropolitan area 

Landcover 
Classes Forest Open water Urban Grass Barren Total User’s accuracy 

Forest 260 0 0 3 0 263 0.99 

Open water 0 377 0 0 0 377 1 

Urban  1 0 386 2 0 389 1 

Grass 2 0 0 516 0 517 0.99 

Barren  0 0 0 1 212 213 1 

Total  263 377 386 522 212 1,759 

 
Producers’ accuracy 0.99 1.0 0.99 1.0 1.0 

Overall accuracy: 99.4% and Kappa: 99.3% 
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Figure 2. Landcover classification for all 13 urban parks in Oklahoma City Metropolitan Area, 
OK, USA. Inset map zooms in on Bluff Creek Park and its landscape is differentiated into five 
distinct land cover classes: forest, open water, urban, grass, and barren areas. The classification 
was generated using a random forest algorithm within Google Earth Engine.
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In this study, we utilized a suite of landscape metrics to assess the composition and 

configuration of forest habitats within buffers of 25-, 50-, and 75-m radii around each transect 

(N=114) (Gregory et al., 2022). Due to the proximity of some transects to park boundaries, 

certain buffers extended beyond the park limits, incorporating surrounding land cover which 

could influence the metrics. The metrics were calculated using the "landscapemetrics" package in 

R 4.3.0 (R Core Team, 2023; Hesselbarth et al., 2019), included percent land cover, total edge 

(TE), number of patches (NP), Shannon's diversity index (SHDI), and Euclidean nearest 

neighbor distance distribution (ENN; Table 3). These metrics were chosen based on their 

relevance to forest habitats and their potential influence on tick populations, as supported by 

previous studies (Diuk-Wasser et al., 2012; Ferrell & Brinkerhoff, 2018). These measures 

provided insights into the extent, complexity, fragmentation, diversity, and spatial arrangement of 

forested areas in the landscape. All data were projected to Universal Transverse Mercator 14N 

World Geodetic System 1984, ensuring consistency in spatial analysis. 
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Table 3. Description of landcover metrics used. 

Landscape Metrics Level Description  
Percent land cover 
(PLAND) 

Class Percentage of forested pixels within 
specified buffer area 

Total edge (TE) Class Summing the lengths of all edges that 
delineate forest areas. 

Number of patches (NP) Patch  Counts the total number of distinct forest 
patches  

Shannon’s diversity index 
(SHDI)  

Landscape Quantifies the diversity of land cover types 
within a landscape. It considers both the 
richness (number of different classes) and 
evenness (distribution of area among 
classes) of land cover types. 

Euclidean nearest neighbor 
distance distribution (ENN)  

Patch  Measures the average distance from each 
forest patch to its nearest neighboring forest 
patch. It provides an indication of the 
isolation and clustering of forest patches 
within the landscape. 
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Statistical Analysis 
To identify the most predictive buffer size for landscape metrics in describing 

macrohabitat conditions for all ticks, adults, and nymphs, we conducted a univariate analysis for 

each landscape metric at three buffer sizes (25m, 50m, and 75m). We selected the buffer size that 

yielded the lowest Akaike information criterion (AIC)for the majority of landscape metrics. The 

model results for this optimal buffer size are presented in a later section, while results for the 

other buffer sizes are provided in the Supplementary section. All analyses were performed using 

R version 4.3.0 (R Core Team, 2023). 

We conducted generalized linear mixed-effect models (GLMMs) to analyze the influence 

of environmental factors, encompassing both macro- and micro-habitat characteristics, on tick 

abundance across all 13 parks within the study area (Noden et al., 2023). Despite the differences 

in flagging and trapping methods aimed at capturing ticks at various questing stages (active and 

passive, respectively), the model results did not show a notable difference in model fit between 

analyses that combined data from both flagged and trapped ticks and those that included data 

from only flagged or only trapped ticks. Therefore, we analyzed the data and reported the results, 

encompassing the total number of ticks, number of adults, number of nymphs, obtained through 

both flagging and trapping techniques.  

We examined the relationship between tick populations and a range of micro-

meteorological, vegetation, and landscape factors at the transect scale (50-meter segments). We 

consolidated counts of adult ticks, nymphs, and the total tick population at the transect level, 

aggregating data from all collection periods. To standardize the micro-meteorological, 

vegetation, and landscape data, we applied scaling by deducting the mean and then dividing by 
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the standard deviation, to facilitate better comparisons between predictors and to address issues 

of dispersion in the models. To address collinearity among these variables, we employed the 

'cor()' function to evaluate correlation coefficients. For variables with coefficients exceeding 0.7, 

indicating high correlation, we selected between them based on the AICc (Dormann et al., 2007). 

To determine the statistical distribution of our data for GLMMs, we utilized the 

likelihood ratio test (LRT) to compare the Poisson and negative binomial distribution. 

Additionally, we also used LRT and AIC model comparison to determine whether zero-inflation 

needed to be considered in our analyses (Supplements, Table A2). We found that the negative 

binomial distribution significantly outperformed the Poisson distribution across all categories: all 

ticks (χ2 = 1347.96, p < 0.001), adults (χ2 = 515.17, p < 0.001), and nymphs (χ2 = 936.94, p < 

0.001). However, comparisons between the negative binomial model and the zero-inflated 

negative binomial model showed no significant differences for all ticks (χ2 = 0.0005, p = 0.98), 

adults (χ2 = 0.001, p = 0.97), and nymphs (χ2 = 0.0002, p = 0.99). Thus, we used the standard 

negative binomial models for analyses.  

Tick counts for all life stages (including adults and nymphs) were treated as the response 

variables, while vegetation, landscape, and micro-meteorological variables were considered as 

fixed effects. To account for the spatial non-independence of transects within the same park, 

parks (N=13) were treated as a random effect. We generated all additive combinations of variates 

and assessed the performance of the fitted models using the AICc. The AICc, or Corrected 

Akaike Information Criterion, extends the AIC by incorporating a penalty for the number of 

parameters relative to the sample size. This adjustment is crucial for small sample sizes, as it 

helps prevent overfitting by penalizing model complexity more stringently, ensuring more 

reliable model selection (Burnham & Anderson, 2002). Models were regarded as statistically 
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indistinguishable if the AICc differences from the top model were less than 2. To test the 

hypothesis that combining macrohabitat conditions with microhabitat metrics can more 

effectively capture tick abundance in urban parks, we compared the performance of our best-

selected model that includes landscape metrics to a baseline model that excludes these metrics. 

All our models were run using the ‘glmer.nb()’ from the ‘Ime4’ package (Bates et al., 2015). 

Further, we tested the residuals of the best-performing models to identify any non-linear patterns 

that our GLMM approach might have missed. However, no significant non-linear patterns were 

detected for all ticks, adults, and nymphs. We also tested for interaction effects between 

month and relative humidity on the abundance of different tick stages (all ticks, adults, and 

nymphs), given that periodical rainy season occurs in July in Oklahoma City. Interaction 

terms in a statistical model assess whether the effect of one variable on the outcome 

depends on the level of another variable. 

Results  

Tick Surveillance 
 
In this study, a total of 616 ticks were collected across various parks from May to July 2023 

(Table 4). The collected ticks comprised 321 adults and 291 nymphs. The abundance of ticks 

varied significantly among the parks, with the highest number of ticks (205) collected from Bluff 

Creek Park and the lowest (3) from Sutton Park. The identified species included Amblyomma. 

americanum and A. maculatum. A. americanum was the most prevalent species, accounting for 

97.9% (313 out of 321) of the adult ticks and 100% (291 out of 291) of the nymphs. A. 

maculatum adults constituted 2.8% (9 out of 321) of the adult ticks. Variations in the mean 

number of adult and nymph ticks collected are evident across the parks and throughout the study 

period, reflecting both spatial and seasonal differences in tick abundance, as shown in Figure 1A. 
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Buffer selection for analyses 
A 75m buffer size was the most predictive for the overall tick population, consistently 

yielding the lowest AIC values for most of the key metrics such as total edge of forest (positive 

effect) and number of forest patches (negative effect) (Table A1). For adult ticks, a 50m buffer 

size proved to be the most suitable, with several metrics like percent of forest landcover (positive 

effect) and SHDI (negative effect) all demonstrating the lowest AIC values at this scale (Table 

A1). In contrast, abundance of nymph ticks was more accurately described by metrics at a 25m 

buffer size, emphasizing the significance of finer-scale habitat features, since most landscape 

metrics such as the total edge of forest (negative effect) and SHDI (negative effect) for this life 

stage (Table A1). We only reported the model results of best buffer size for all ticks, adult ticks, 

and nymphs in the main text. However, for a comprehensive analysis, additional models were 

explored for each buffer size (25m, 50m, and 75m) and for distinct tick categories: all ticks, adult 

ticks, and nymphs. The detailed results of these additional models can be found in the 

supplementary materials section. 

Factors impacting abundance of all ticks, adults, and nymphs 
Given that ten of our competing models were within two ΔAICc of the top model, we 

therefore selected the most parsimonious model (Model 1.2) to describe the influence of micro- 

and macro-habitat factors on the overall abundance of ticks (Figure 3). This model identified 

solar radiation, soil pH, woody vegetation, and the percentage of forest cover as significant 

predictors on tick abundance. Specifically, solar radiation demonstrated a substantial negative 

effect (β: -0.52 ± 0.14, P < 0.001), while soil pH (β: 0.34 ± 0.15, P=0.02), woody vegetation (β: 

0.39 ± 0.12, P=0.002), and percent of forest cover (β: 0.48 ± 0.18, P=0.007) showed positive 

correlations with tick abundance. 
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Similarly, for adult ticks, we selected Model 2.0 as the best model, which is more 

parsimonious compared to its competing model, Model 2.1,with a ΔAICc of 0.2 (Figure 3). This 

model included solar radiation, leaf litter depth, woody vegetation, and forest percentage 

(PLAND). Average woody vegetation (β: 0.32 ± 0.12, P = 0.008) and forest percentage (β: 0.53 

± 0.17, P = 0.002) exhibited positive relationships with adult tick abundance at the transect level. 

In other words, areas with more woody vegetation and a higher percentage of forest cover are 

likely to have more adult ticks. Conversely, both leaf litter depth (β: -0.43 ± 0.18, P = 0.017) and 

solar radiation (β: -0.38 ± 0.15, P = 0.01) demonstrated negative correlations with adult tick 

abundance. This indicates that areas receiving more sunlight and those with deeper leaf litter are 

likely to have fewer ticks. 

To demonstrate the effects of different drivers on the abundance of nymph ticks at the 

transect level, we selected the most parsimonious model (Model 3.5) among six competing 

models (ΔAICc< 2). This model, with a (ΔAICc of 1.7 comparing to the top model with lowest 

ΔAICc value, demonstrated that lower solar radiation (β: -1.11 ± 0.24, P < 0.001) and lower 

relative humidity (β: -0.71 ± 0.27, P = 0.01) are associated with an increase in nymph tick 

observations. Additionally, soil pH was positively correlated with nymph abundance (β: 0.77 ± 

0.24, P = 0.001; Figure 3), meaning higher soil pH levels result in more ticks.  

Impacts of landscape metrics 

Our results indicated that models incorporating both micro-environmental variables and 

landscape metrics more effectively captured the abundance of various tick life stages across 

different buffer sizes. Specifically, models integrating both micro- and macro-habitat conditions 

outperformed those focusing solely on micro-habitat in predicting the abundance of all ticks and 
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adult ticks at all spatial scale (Table 6; Table A3). However, those landscape metrics did not 

impact the abundance of nymph ticks (Table 6; Table A3, Table A4). 
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Table 4.Overall abundance of ticks by life stages collected from 13 Urban Parks in the Oklahoma City Metropolitan Area, OK, USA, 
May-July 2023. Variation in sampling effort across parks is attributed to missing meteorological data. 

Park 

Sampling 
efforts 
(total 

transect 
lengths 

in 
meters) Ticks Adults Nymphs 

A. 
americanum 

Adults 

A. 
maculatum  

Adults 

A. 
Americanum 

nymphs 

Bluff Creek 300 205 102 103 102 0 103 

Doubletree 600 100 58 40 58 0 46 

E.C Hafer 600 23 9 14 9 0 14 

J.B Black 300 4 3 1 3 0 1 

L.D Lacy 600 12 10 2 10 0 2 

Ray Trent  300 14 6 8 6 0 8 

Ruby Grant  600 30 30 0 26 4 0 

Saxon 300 84 20 64 20 0 64 

Spring 
Creek 300 54 22 32 19 3 32 

Stars and 
Stripes 600 20 16 4 15 1 4 

Stinchcomb 300 39 21 18 21 0 18 
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Sutton 600 3 2 1 1 1 1 

Trosper 300 28 24 4 24 0 4 

Total 5700 620 323 297 314 9 297 
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Figure 3. The effect sizes of environmental and spatial variables on tick abundance, segmented by life stage. Each 
point represents the estimated effect of a variable, with the lines extending from each point depicting the 95% 
confidence intervals. Red, green, and blue markers correspond to the best-fit models for all ticks, adult ticks, and 
nymph ticks, respectively, at buffer distances of 75m, 50m, and 25m. Significance levels are denoted with 
asterisks, where three asterisks represent a p-value less than 0.001, highlighting highly statistically significant 
effects.  
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Table 5. Top ten best-fitting models with low AICc values, analyzing the relationship between various 
environmental predictors and the abundance of all ticks, adult ticks, and nymphs at different buffer sizes. The 
columns are as follows: 1) Model No: Each unique model number; 2) Variables: Predictor variables included 
in each model; 3) AICc is the corrected Akaike Information Criterion value for each model, with lower 
values indicating a superior fit. This criterion adjusts for small sample sizes.; 4) k: The number of parameters 
used; 5) ΔAICc is the difference in AICc values between each model and the best model; 6) Akaike weights 
gauge each model's chance of being the best in a given set. The most parsimonious model, selected as the 
best model, is highlighted in bold. The data was collected across 13 parks in the Oklahoma City Metropolitan 
Area, OK, USA, from May to July 2023. 

Model 
No Variables AICc k ΔAICc Weight 

Models assessing the factors affecting tick abundance within a 75m buffer. 
1.0  Solar radiation + relative humidity + soil 

pH + woody vegetation + PLAND 
 

514.7 5 0.0 
 

0.21 

 1.1  Solar radiation + relative humidity + soil 
pH + woody vegetation +  PLAND + TE 

515.7 6 1.0 0.13 

1.2 Solar radiation + soil pH + woody 
vegetation +  PLAND 

515.7 4 1.0 0.13 

1.3 Solar radiation + relative humidity + soil 
pH + woody vegetation +  PLAND + 

SHDI 

515.9 6 1.2 0.12 

1.4 Solar radiation + soil pH + woody 
vegetation + graminaceous+  PLAND 

516.0 6 1.3 0.11 

 1.5  Solar radiation + relative humidity + soil 
pH + woody vegetation +  PLAND + TE 

+ SHDI 

516.1 7 1.4 
 

0.10 
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1.6 Solar radiation + soil pH + woody 
vegetation + PLAND + SHDI 

516.6 6 1.9 0.08 

1.7 Solar radiation + soil pH + woody 
vegetation + coarse woody debris+  

PLAND 

517.3 6 2.6 0.06 

1.8 Solar radiation + woody vegetation + 
PLAND 

518.4 6 3.7 0.03 

1.9 Solar radiation + soil pH + woody 
vegetation + SVF 

519.6 6 4.9 0.02 

Models assessing the factors affecting adult abundance within a 50m buffer.  

2.0 Solar radiation + leaf litter depth +  
woody vegetation + PLAND 

427.3 4 0.0 0.22 

2.1 Solar radiation + leaf litter depth + 
woody vegetation + PLAND + ENN 

427.5 5 0.2 0.20 

2.2 Solar radiation + leaf litter depth + air 
temperature+ woody vegetation + 

PLAND 

428.4 5 1.1 0.13 

2.3 Solar radiation + leaf litter depth +  
graminaceous+ woody vegetation + 

PLAND 

428.8 5 1.5 0.10 

2.4 Solar radiation + leaf litter depth +  
woody vegetation + SVF 

429.0 4 1.7 0.09 

2.5 Solar radiation + leaf litter depth +   
coarse woody debris + woody vegetation 

+ PLAND 

429.4 5 2.1 0.08 

2.6 Solar radiation + leaf litter depth +  
relative humidity+  woody vegetation + 

SVF 

429.6 5 2.3 0.07 

2.7 Solar radiation + woody vegetation + 
PLAND 

430.5 3 3.2 0.04 
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 2.8 Solar radiation + soil pH + woody 
vegetation + PLAND 

430.9 4 3.6 0.04 

2.9 Solar radiation + soil pH + woody 
vegetation + PLAND + ENN 

431.8 5 4.5 0.02 

Models assessing the factors affecting nymph abundance within a 25m buffer.  

3.0 Solar radiation + relative humidity+ soil 
pH +  graminaceous 

325.3 4 0.0 0.18 

3.1 Solar radiation + relative humidity+ soil 
pH +  coarse woody debris +PLAND 

325.5 5 0.2 0.16 

3.2 Solar radiation + relative humidity+ soil 
pH + woody vegetation+ PLAND 

325.8 5 0.5 0.14 

3.3 Solar radiation + relative humidity+ soil 
pH + PLAND 

326 4 0.7 0.12 

3.4 Solar radiation + relative humidity+ soil 
pH + woody vegetation 

326.2 4 0.9 0.11 

3.5 Solar radiation + relative humidity+ 
soil pH 

327 3 1.7 0.07 

3.6 Solar radiation + relative humidity+ soil 
pH + PLAND+ENN 

327.3 5 2.0 0.06 

3.7 Solar radiation + relative humidity+ soil 
pH + TE 

327.5 4 2.2 0.06 

3.8 Solar radiation + relative humidity+ soil 
pH + woody vegetation+ PLAND+ENN 

327.8 6 2.5 0.05 

3.9 Solar radiation + relative humidity+ soil 
pH +  coarse woody debris 

327.9 4 2.6 0.05 
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Table 6. Comparison of the most parsimonious models for estimating tick abundance, with and 
without landscape metrics, across various life stages and transect buffer sizes. The columns are 
as follows: 1) Model No: Each unique model number; 2) Variables: Predictor variables included 
in each model; 3) AICc is the corrected Akaike Information Criterion value for each model, with 
lower values indicating a superior fit. This criterion adjusts for small sample sizes; 4) k: the 
number of parameters used; 5) ΔAICc is the difference in AIC values between each model and 
the best model; 6) Akaike weights gauge each model's chance of being the best in a given set. 
Ticks and microclimate data were collected across 13 parks in the Oklahoma City Metropolitan 
Area, OK, USA May-July 2023. 

Model No. Variables AICc k ΔAICc Weights 
Models assessing the abundance of all ticks within a 75-meter buffer. 

1.2     Solar radiation + soil pH + 
 woody vegetation + PLAND 

515.7 4 1.0 0.13 

1.11 Solar radiation + soil pH + woody vegetation 520.7  3 6.0  0.01 
 Models assessing the abundance of all adult ticks within a 50-meter buffer.  

2.0 Solar radiation + leaf litter depth + woody 
vegetation + PLAND 

427.3 4 0.0            0.22 

2.10 Solar radiation + leaf litter depth + woody 
vegetation 

434.3 3 7.0 0.01 

Models assessing the abundance of all nymph ticks within a 25-meter buffer.  

3.3 Solar radiation + relative humidity 
+ soil pH + PLAND 

326 4 0.7 0.12 

3.5 Solar radiation + relative humidity+ soil pH 327 3 1.7 0.07 
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Discussion  
In this study, we examined tick abundance across 13 urban parks in the Oklahoma City 

Metropolitan area, exploring the impact of both micro- and macrohabitat factors on tick 

populations. Our findings reveal that tick abundance in urban parks is shaped by a complex 

interplay of micro- and macrohabitat influences, with distinct patterns emerging for different tick 

life stages. These insights offer a comprehensive understanding of the ecological dynamics that 

govern tick distribution and abundance in urban green spaces in the Southern Great Plains, 

providing valuable information for the management of tickborne diseases in urban parks. 

The effects of microhabitat variables (microclimate and vegetation types) on tick abundance 
Our findings indicate that tick abundance, including adults and nymphs, is significantly 

influenced by microhabitat factors such as solar radiation, relative humidity, and leaf litter depth. 

Solar radiation consistently had a negative effect on tick abundance across life stages, 

emphasizing the importance of shade in tick habitats to prevent desiccation (Del Fabbro et al., 

2015; Schulze et al., 2001). This negative impact underscores the role of solar radiation in tick 

ecology, as ticks prefer less exposed habitats to maintain moisture levels. Interestingly, while 

solar radiation reduces overall abundance, it can positively influence tick questing behavior, 

which may increase with longer daylight and higher temperatures (Kiewra et al., 2014). 

Additionally, we included month as a variable to account for potential seasonal variations in tick 

activity and abundance. Despite expectations based on some of the existing literature (Jackson et 

al., 1996), the monthly variations did not significantly impact the models, suggesting that the 

specific microhabitat variables we examined may overshadow broader seasonal effects in 

determining tick abundance (Hroobi et al., 2021). This finding prompts a reevaluation of the 

relative impact of immediate environmental conditions versus broader temporal factors in the 

ecology of ticks. 
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We also discovered that soil pH positively influenced the abundance of all tick stages and 

nymphs. The composition of soil, such as the balance between organic and inorganic matter, and 

soil humidity, influenced by elements like snowpack, rainfall, wind, sunlight, and vegetation, 

affect tick distribution patterns (Burtis et al., 2019). Being one of the temporary edaphic species, 

the early developmental stages of ticks (eggs and larvae) survive within the soil. Furthermore, 

nymphs are commonly observed resting in the upper layer of soil. Hence, the soil environment 

can significantly impact tick abundance. Macko et al. (2016) reported a high density of Ixodes 

Ricinus in areas with slightly acidic soil reactions. In our study sites, soil pH ranged from 6 to 7, 

with most ticks found in areas within this range. However, there were some sites with soil pH 

below 4 where ticks were not observed, which explains the positive correlation.  

Our results indicated that areas with denser woody vegetation had higher tick 

populations, supporting the well-established notion that ticks prefer shaded microhabitats to 

avoid dehydration. (Gleim et al., 2014; Ostfeld & Keesing, 2000). Additionally, A.americanum, 

the major species observed in our study, is considered a generalist that can inhabit various 

environments but tends to avoid overly grassy areas (Springer et al., 2015). Though other studies 

suggest that A.americanum is minimally influence by vegetation variables (Fryxell et al., 2015; 

Noden et al., 2023), Gilliam et al. (2018) indicate that different life stages of A. americanum may 

respond differently to vegetation types, with larval ticks showing a weak negative correlation to 

bare ground, and fewer adults found in areas with abundant leaf litter and coarse woody debris. 

On the other hand, A. maculatum, or the Gulf Coast tick, is typically associated with grass 

prairies and coastal uplands (Hertz & Kaufman, 2014), yet there are small number of them found 

in our study, which indicate that the pattern might be primarily dominated by A.americanum.  
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Interestingly, we found a negative correlation between relative humidity and tick 

abundance in the models for nymph ticks. This contradicts previous studies suggesting higher 

tick activity with increased humidity (Cupp, 1991; Schulze et al., 2001). Additionally, deeper leaf 

litter was associated with a decrease in tick abundance in model of adult ticks, which also 

contrasts with the understanding that leaf litter provides a protective microhabitat aiding in tick 

survival (Schulze et al., 2001; Vail & Smith, 1998). The discrepancies between our findings and 

previous research could be due to several factors. For example, the randomization and variation 

in the placement of our transects could have introduced variability in the microclimatic 

conditions experienced by the ticks. Moreover, the presence of inaccessible forested areas within 

some parks may have led to an underrepresentation of ticks in these ideal microhabitats within 

our samples. Specifically, Brayden Black Park, the smallest park with a mix of grassy and 

densely forested areas, had less than half of the transects along the forest edges, with the 

remainder in open, grassy areas that were more exposed to sunlight. Roselli (2019) also reported 

limited accessibility in this park, placing only eight transects to represent major vegetation cover 

types. Such variability in microhabitat conditions, coupled with sampling accessibility 

limitations, may have influenced the observed relationship between humidity, leaf litter depth, 

and tick abundance. In addition, since nymph abundance was not in�luenced by seasonality 

or its interaction with relative humidity, it suggests that seasonal variation is not the 

primary factor explaining the discrepancies in humidity. 

The effects of macrohabitat variables (landscape metrics) on tick abundance 
Our findings suggested that the landscape composition of the park, especially the 

percentage of forest cover, significantly affects tick abundance with a positive relationship. This 

finding aligns with previous research (Ferrell & Brinkerhoff, 2018), which suggests that forest 



34 
 

areas may provide suitable habitats for ticks. Forested areas are known to provide suitable 

habitats for both ticks and their hosts, including deer, which are primary hosts for adult ticks of 

many species, including the black-legged tick (I. scapularis) responsible for the transmission of 

Lyme disease (Diuk-Wasser et al., 2021), as well as small mammals such as rodents, rabbit, and 

birds, which often serve as blood meal for larvae and nymph ticks. 

A fragmented landscape typically features a large number of edge areas, which increase 

interactions between adjacent ecosystems and cause more biotic and abiotic changes across 

boundaries (Murcia, 1995).  Such environments often have different microclimatic conditions 

compared to forest interiors or open areas, with transitional zones potentially having higher 

humidity levels and temperature fluctuations, attracting a diverse array of hosts conducive to tick 

survival and activity. However, in our urban-focused study, the landscape configuration of the 

park did not seem to significantly impact tick abundance, although various studies highlight the 

complex relationship between habitat fragmentation, edge effects, and tick abundance in more 

varied spatial contexts. For instance, Stein et al. (2008) study demonstrates a preference for 

forest edges among adult and nymph stages of A. americanum in rural settings. Similarly, 

Simpson et al. (2019) observed that in more forested and fragmented areas, there is higher 

prevalence of tick-borne pathogens and more dynamic tick populations. Interestingly, they also 

noted lower tick turnover in less fragmented areas, suggesting that landscape configuration 

influences tick stability (Simpson et al., 2019). Furthermore, the increase in edge habitats due to 

urbanization has been shown to enhance interactions among I. scapularis ticks, their hosts, and 

humans, thereby intensifying tick population dynamics (Diuk-Wasser et al., 2021).  While rural 

studies show clear impacts of landscape features on tick populations, the influence in urban 

settings might be modified or less pronounced.  
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Additionally, landscape metrics did not significantly affect nymph tick abundance in our 

study area, despite some positive relationships suggested in previous work. The discrepancies 

between our findings and previous studies could be due to our focus on urban parks, which are 

predominantly community or neighborhood parks, with Stinchcomb being an exception. These 

parks are often relatively small and have similar design and planning strategies, typically 

featuring playgrounds, trails, and open grass areas, which might lead to limited variations in the 

spatial arrangement of forested areas within these parks. 

Limitations 
Our study has several limitations that warrant consideration. Firstly, in our vegetation 

sampling approach, we aggregated plant species into broad categories such as graminaceous and 

herbaceous. However, the different life stages of A. americanum, the species we primarily 

collected, may exhibit varying responses to specific vegetation types. (Gilliam et al., 2018). A 

more detailed analysis of vegetation, including the examination of invasive plant species, could 

potentially provide a clearer understanding of the relationship between vegetation variables and 

tick abundance (Allan, Goessling, et al., 2010; Noden et al., 2021; Williams et al., 2017). 

Invasive species, in particular, may alter habitats in ways that increase the presence of host 

animals, thereby indirectly influencing tick abundance. Secondly, our field collections during 

June and July of 2023 overlapped with a period of high precipitation in Oklahoma City, marked 

by frequent and substantial rainfall events, particularly in July. These weather conditions 

considerably affected our field design and may have constrained our sample size. The extended 

moisture in vegetation within dense forest areas, persisting for several days post-heavy rainfall, 

impeded our efficiency in collecting ticks. Future research should build on these results through 

longitudinal studies that account for seasonal and yearly fluctuations in tick dynamics, offering a 

more detailed insight into tick ecology in urban settings. Thirdly, our study's conclusions are 
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somewhat constrained by the absence of data on the abundance and composition of potential 

urban hosts, such as birds and coyotes. While the inclusion of macrohabitat variables, i.e., 

landscape metrics, may serve as a proxy for host abundance due to their impact on host species, a 

more thorough understanding of these hosts' roles in tick ecology is essential. Future studies 

should incorporate assessments of host abundance and composition in urban parks to enhance 

our understanding of the factors that influence tick populations and improve the management of 

tick-borne diseases in urban settings (Ferreira et al., 2023; Hamer et al., 2012; Levi et al., 2012). 

Conclusion 
Our study on tick abundance in urban parks within the Oklahoma City Metropolitan area 

underscores the complex interplay between microhabitat and macrohabitat factors. Our key 

findings indicate that microhabitat elements such as solar radiation, relative humidity, and leaf 

litter depth significantly impact tick populations. Notably, parks with lower solar radiation, more 

woody vegetation, and slightly acidic soil pH hosted more ticks. Furthermore, macrohabitat 

factors like forest cover percentage also play essential roles in influencing tick dynamics, with 

parks having more forest cover showing higher tick abundance. We also found a negative 

relationship between relative humidity and nymph tick abundance. This study provides valuable 

insights for park managers and residents to develop effective tick management strategies and 

raise awareness about ticks and tick-borne diseases. It also informs the public about preventive 

measures to reduce tick exposure in urban parks. Additionally, the research helps identify areas 

with high tick abundance in urban parks, allowing pet owners to exercise caution and monitor 

their pets closely in those areas to avoid tick-infested zones.  
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Appendix  

 
Figure A1. Mean number of adult and nymph ticks collected from transects (n = 114) across 
different dates per park (May 30- July 28, 2023). Dates with no recorded data, indicative of 
non-visit days, are represented by gaps in the chart. 

 
 

Table A1. Spatial scales of buffer zones utilized in modeling the abundance of life stages—
ticks in general, adult ticks, and nymph ticks—across three buffer sizes: 25m, 50m, and 
75m, gathered from 13 parks in Oklahoma City Metropolitan Area, OK, USA, May-July 
20 

Landscape 
metric 

Coefficient 
estimate P value Buffer size, m AIC ΔAIC 

Ticks: 
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Percent of 
forest 
landcover 
(PLAND) 
 
 

0.7416 
0.7484 
0.7220 

<0.001 
<0.001 
<0.001 

 
 
 

25 
50 
75 

 
 

525.4 
528.1 
531.8 

 
 
 

- 
2.7 
6.4 

 Adults:  
 0.6597 

0.7437 
0.7733 

 
 

<0.001 
<0.001 
<0.001 

 
 

25 
50 
75 

 
 

437.3 
435.7 
437.4 

 

1.6 
- 

1.7 
 Nymphs: 

 0.70317 
0.68286 

0.515827 

0.00318 
0.0119 
0.0745 

 

25 
50 
75 

 

340.6 
342.5 
345.5 

 

- 
1.9 
4.9 

 

Total edge of 
forest (TE)  

Ticks: 
0.02367 
0.08224 
0.1112 

0.895449 
0.679043 
0.591213 

 

25 
50 
75 

 

544.3 
544.2 

544 
 

0.3 
0.2 

- 
 
 

Adults: 
0.2455  
0.1973 
0.1461 

 

0.1570 
0.301 

0.4666 
 

25 
50 
75 

 

449.3 
450.2 
450.8 

 

- 
0.9 
1.5 

 Nymphs: 
-0.17747 

-0.004076 
0.11318 

0.514 
0.989 
0.691 

25 
50 
75 

348.2 
348.6 
348.4 

- 
0.4 
0.2 

 

Number of 
forest patches 
(NP)  

Ticks: 
-0.2750 
-0.1129 
-0.4716 

 

0.04478 
0.447474 
0.01210 

 

25 
50 
75 

 

540.5 
543.8 
538.5 

 

2.0 
5.3 

- 
 Adults:  

 -0.0899 
-0.1367 
-0.3291 

 

0.5051 
0.4141 
0.0726 

 

25 
50 
75 

 

450.9 
450.6 
448.2 

 

2.7 
2.4 

- 
 Nymphs: 

 -0.44505 
0.03718 

-0.504876 
 

0.0143 
0.864 

0.0765 
 

25 
50 
75 

 

343.7 
348.5 
345.7 

 

- 
4.8 

2 
 

ENN of forest 
(ENN)  

Ticks: 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

-0.1030 
-0.3356 
-0.1523 

 

0.492043 
0.03724 

0.432605 
 

25 
50 
75 

 

543.8 
540.3 
543.7 

 

3.5 
- 

3.4 
 Adults: 

 -0.02646 
-0.1879 
-0.1257 

 

0.874 
0.2371 
0.4940 

 

25 
50 
75 

 

451.3 
449.9 
450.8 

 

0.5 
- 

0.9 
 Nymphs: 
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-0.15876 
-0.54042 
-0.33003 

 

0.433 
0.022 
0.207 

 

25 
50 
75 

 

348.0 
344.0 
347.1 

 

4.0 
- 

3.1 
 

SHDI (SHDI) 

Ticks: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.3847 
-0.2892 
-0.1357 

 

0.024501 
0.089347 
0.47103 

 

25 
50 
75 

 

539.2 
541.4 
543.8 

 

- 
2.2 
4.6 

Adults:  
 -0.2938 

-0.3043 
-0.1952 

 

0.0999 
0.0875 
0.2974 

 

25 
50 
75 

 

448.6 
448.4 
450.2 

 

0.2 
- 

1.8 
 Nymphs: 

 -0.35727 
-0.22854 
-0.08132 

 

0.129 
0.318 
0.753 

 

25 
50 
75 

 

346.3 
347.6 
348.5 

 

- 
1.3 
2.2 
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Table A2 Results of likelihood ratio test for model comparisons and distribution determination. 

Model Loglikelihood 𝜒𝜒2 P value 
All ticks 

Poisson -956.05   

NB -282.07 1347.96 <0.001 

Zero-inflated NB -282.07 0.0005 0.98 

Adults 

Poisson -488.46   

NB -230.88 515.17 <0.001 

Zero-inflated NB -230.88 0.001 0.97 

Nymphs 

Poisson -651.19   

NB -182.72 936.94 <0.001 

Zero-inflated NB -182.72 0.0002 0.99 
 Notes: NB indicates Negative Binomial.   
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Figure A2 Coefficient estimates from top selected models demonstrate the effects of microclimate variables and landscape 
metrics on tick abundance within different buffer zones. Each plot corresponds to a distinct model and buffer size: Model 
4.1 for all ticks within a 25m, Model 5.5 for adult ticks within a  25m, Model 6.0 for all ticks within a 50m, Model 7.4 for 
nymphs within a 50m, Model 8.0 for adult ticks within a  75m, and Model 9.3 for nymphs within a  75m. Predictors such 
as relative humidity, wind speed, solar radiation, vegetation characteristics, and landscape metrics are plotted, with error 
bars denoting 95% confidence intervals and asterisks signaling statistical significance. The data were collected from 13 

parks in the Oklahoma City Metropolitan Area, Oklahoma, USA, from May to July 2023. 
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Table A3.Top ten model selection results for examining the relationships between microclimate 
variables, landscape metrics, and the abundance of field-collected ticks across different buffer 
zones (25m, 50m, 75m), including all life stages, adults, and nymphs. The columns are as 
follows: 1) Model No: Each unique model number; 2) Variables: Predictor variables included in 
each model; 3) AICc is the corrected Akaike Information Criterion value for each model, with 
lower values indicating a superior fit. This criterion adjusts for small sample sizes.; 4) k: the 
number of parameters used; 5) ΔAICc is the difference in AICc values between each model and 
the best model; 6) Akaike weights gauge each model's chance of being the best in a given set. 

Model 
No 

Variables  AICc k ΔAICc Weights 

Models assessing the abundance of all ticks within a 25 m buffer. 

4.0 Solar radiation+ relative humidity 
+ leaf litter+    

    woody vegetation + PLAND  
 

513.5 5 0.0 0.208 

4.1 Solar radiation + leaf litter+    
    woody vegetation + PLAND  

513.9 4 0.4 0.171 

4.2 Solar radiation + leaf litter + soil 
pH    

    woody vegetation + PLAND 

514.0 5 0.5 0.162 

4.3 Solar radiation + leaf litter + 
    woody vegetation + relative 

humidity 

515.3 4 1.8 0.085 

4.4 Solar radiation+ air temperature + 
leaf litter+    

    woody vegetation + PLAND 

515.5 5 2.0 
 

0.077 

4.5 Solar radiation + herbaceous + 
leaf litter+    

    woody vegetation + 
PLAND+ENN 

515.5 5 2.0 0.077 

4.6 Solar radiation + leaf litter+   
graminaceous +  

    woody vegetation + PLAND 

516.0 5 2.5 0.060 

4.7 Solar radiation + leaf litter+    
    woody vegetation + PLAND + 

TE 

516.0 5 2.5 0.060 
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4.8 Solar radiation + leaf litter+    
    woody vegetation + 

PLAND+ENN 

516.1 5 2.6 0.060 

4.9 Solar radiation + leaf litter+    
    woody vegetation 

516.6 3 3.1 0.044 

Models  assessing the abundance of adults within a 25 m buffer  

5.0 Solar radiation+ relative humidity 
+ leaf litter depth + PLAND + 

ENN 

427.7 5 0.0 0.275 

5.1 Solar radiation + leaf litter 
depth+    

    PLAND+ENN+TE 
 

428.9 5 1.2 0.151 

5.2 
 

Solar radiation+ SVF + relative 
humidity + leaf litter depth+    

   ENN 
 

429.5 5 1.8 0.112 

5.3 Solar radiation+  SVF  + relative 
humidity + leaf litter depth+    

    woody vegetation 

429.6 5 1.5 0.106 

5.4 Solar radiation+ air temperature + 
leaf litter depth + PLAND + ENN 

429.8 5 2.1 0.096 

5.5 Solar radiation + leaf litter 
depth+    

    PLAND+ENN 
 

429.9 4 2.2 0.092 

5.6 Solar radiation+ SVF + relative 
humidity + leaf litter depth+    
    woody vegetation + ENN 

 

430.7 6 3.0 0.061 

5.7 Solar radiation + leaf litter depth+ 
graminaceous +    
    PLAND+ENN 

431.5 5 3.8 0.041 

5.8 Solar radiation+  SVF  + relative 
humidity + leaf litter 

depth+  graminaceous +  
    woody vegetation + ENN 

 

431.8 7 4.1 0.035 

5.9 Solar radiation + leaf litter depth+ 
coarse.woody.debris+ 

    PLAND+ENN 

432.2 5 4.5 0.029 

Models  assessing the abundance of all ticks within a 50 m buffer  
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6.0 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + PLAND  
 

513.2 5 0.0 0.194 

6.1 Solar radiation + relative 
humidity +soil pH+ woody 
vegetation + PLAND + TE 

 

513.7  6 0.5 0.151 

6.2 Solar radiation + air temperature 
+soil pH+ woody vegetation + 

PLAND  
 

514.1 5 0.9 0.124 

6.3 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + Graminaceous  + 
PLAND 

514.2 6 1.0 0.118 

6.4 Solar radiation + relative 
humidity +soil pH+ woody 
vegetation + NP + PLAND 

514.6 6 1.4 0.096 

6.5 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + PLAND + TE+ENN 

514.8  7 1.6 0.087 

6.6 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + 
coarse.woody.debris+ PLAND 

515.0 6 1.8 0.079 

6.7 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + PLAND + ENN  

515.5 6 2.3 0.061 

6.8 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + svf 

515.9 5 2.7 0.050 

6.9 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + PLAND + TE + 
SHDI +ENN 

516.4  6 3.2 0.039 

Models  assessing the abundance of nymphs within 50 m buffer  

7.0 Solar radiation+ soil pH + relative 
humidity + woody vegetation 

326.2 4 0.0 0.152 

7.1 Solar radiation+ soil pH + relative 
humidity + woody vegetation  + 

NP 
  

326.5 5 0.3 0.131 
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7.2 Solar radiation+ soil pH + relative 
humidity + woody vegetation + 

PLAND + NP 
 

326.6 6 0.4 0.124 

7.3 Solar radiation+ soil pH + relative 
humidity+ NP 

 

326.6 4 0.4 0.124 

7.4 Solar radiation+ soil pH + 
relative humidity 

327 3 0.8 0.102 

7.5 Solar radiation+ soil pH + relative 
humidity +woody vegetation + 

PLAND 

327.2 
 

5 1.0 0.092 

7.6 Solar radiation+ soil pH + relative 
humidity + graminaceous + 

PLAND 

327.4 5 1.2 0.083 

7.7 Solar radiation+ soil pH + relative 
humidity + ENN 

327.4 5 1.2 0.083 

7.8 Solar radiation+ soil pH + relative 
humidity + PLAND 

327.8 4 1.6 0.068 

7.9 Solar radiation+ soil pH +air 
temperature 

328.8 3 2.6 0.041 

Models  assessing the abundance of adults within a 75 m buffer  

8.0 Solar radiation+ woody 
vegetation+   leaf litter depth+ 

PLAND 
 

427.8 4 0.0 0.237 

8.1 Solar radiation+ woody 
vegetation+   leaf litter depth+ 

Graminaceous+ PLAND 

428.8 5 1.0 0.144 
 

8.2 Solar radiation+ leaf litter depth+ 
PLAND 

 

429.5  3 1.7 0.101 

8.3 Solar radiation+ relative humidity 
+ woody vegetation+  leaf litter 

depth+ PLAND 

429.5 4 1.7 0.101 

8.4 Solar radiation+ SVF + woody 
vegetation+   leaf litter depth+ 

PLAND +ENN 

429.6 6 1.8 0.096 

8.5 Solar radiation+ woody 
vegetation+   leaf litter depth+ 
coarse woody debris + PLAND 

429.8 5 2.0 0.087 
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8.6 Solar radiation+ woody 
vegetation+   leaf litter depth+ 

PLAND +NP 

429.9 5 2.1 0.083 

8.7 Solar radiation+ woody 
vegetation+   PLAND 

430.4 3 2.6 0.065 

8.8 Solar radiation+ woody 
vegetation+   soil pH + PLAND 

430.6 4 2.8 0.058 

8.9 Woody vegetation +   leaf litter 
depth+ PLAND 
 

432.2 3 4.4 0.026 

Models  assessing the abundance of nymphs within a 75 m buffer  

9.0 Solar radiation+ relative 
humidity+ soil pH +  

graminaceous 

325.3 4 0.0 0.271 

9.1 Solar radiation+ relative 
humidity+ soil pH + woody 

vegetation 
 

326.2 4 0.9 
 

0.173 

9.2 Solar radiation+ relative 
humidity+ soil pH + woody 

vegetation + wind speed 
 

326.8 5 1.5 0.128 

9.3 Solar radiation+ relative 
humidity+ soil pH 

327 3 1.7 0.116 

9.4 Solar radiation+ relative 
humidity+ soil pH +   coarse 

woody debris 

327.9 4 2.6 0.074 

9.5 Solar radiation+ relative 
humidity+ soil pH + NP 

328.1 4 2.8 0.067 

9.6 Solar radiation+ relative 
humidity+ soil pH + woody 

vegetation + wind speed  + TE 

328.8 6 3.5 0.047 

9.7 Solar radiation+ relative 
humidity+ soil pH +   TE 

328.9 5 3.6 0.045 

9.8 Solar radiation+ relative 
humidity+ soil pH +   PLAND 

329 4 3.7 0.043 

9.9 Solar radiation+ relative 
humidity+ soil pH +   ENN 

329.3 4 4.0 0.037 
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Table A4. Comparison of the most parsimonious models for estimating tick abundance, with and 
without landscape metrics, across various life stages and transect buffer sizes. The columns are 
as follows: 1) Model No: Each unique model number; 2) Variables: Predictor variables included 
in each model; 3) AICc is the corrected Akaike Information Criterion value for each model, with 
lower values indicating a superior fit. This criterion adjusts for small sample sizes.; 4) k 
representing the number of parameters used; 5) ΔAICc is the difference in AICc values between 
each model and the best model; 6) Akaike weights gauge each model's chance of being the best 
in a given set. Ticks and microclimate data were collected across 13 parks in the Oklahoma City 
Metropolitan Area, OK, USA May-July 2023. 

Model  
No Variables AICc k ΔAICc Weights 
Models  assessing the abundance of all ticks within a 25m buffer 

4.1 Solar radiation + leaf litter+    
    woody vegetation + PLAND  

513.9 4 0.4 0.171 

4.9 Solar radiation + leaf litter+    
    woody vegetation 

516.6 3 3.1 0.044 

Models  assessing the abundance of adults within a 25 m Buffer 

5.5 Solar radiation + leaf litter 
depth+    

    PLAND+ENN 
 

429.9  4 2.2 0.092 

5.10 Solar radiation + leaf litter depth 
 

441.8 3 14.1 0.000 

Models  assessing the abundance of adults within a 50 m Buffer 

6.0 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation + PLAND  
 

513.2 5 0.0 0.194 

6.10 Solar radiation + relative 
humidity +soil pH+ woody 

vegetation 

517.9 4 4.7 0.018 

Models  assessing the abundance of nymphs within a 50 m buffer 

7.0 Solar radiation+ soil pH + 
relative humidity + NP  

326.6 4 0.4 0.124 

7.3 Solar radiation+ soil pH + 
relative humidity 

 

327 3 0.8 0.102 

Models  assessing the abundance of adults within a 75 m buffer  
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8.0 Solar radiation+ woody 
vegetation+   leaf litter depth+ 

PLAND 
 

427.8 4 0.0 0.237 

8.10 Solar radiation+ woody 
vegetation+   leaf litter depth 

435.4 6 7.6 0.005 

Models  assessing the abundance of nymphs within a 75 m buffer 

9.3 Solar radiation+ relative 
humidity+ soil pH 

327 3 1.7 
 

0.116 

9.5 Solar radiation+ relative 
humidity+ soil pH + NP 

328.1 4 2.8 0.067 
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