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ABSTRACT 

 

Tornado climatologies represent an important tool for understanding the genesis, 

behavior, and dissipation of tornados and tornadic storms. The current tornado record is 

imperfect, but nevertheless useful. I undertook a study to construct a tornado climatology for the 

state of Alabama in order to test theories about the influence of surface heterogeneities on 

tornadogenesis as well as human-caused bias. Support was found for the notion that tornados 

may occur atop higher elevations more frequently in Alabama, but other orographic effects were 

more difficult to discern. The most strongly correlated variable tested was road proximity, 

suggesting that accessibility to surveyors has an outsized influence on where tornadogenesis 

points are recorded. In an effort to explore additional ways of detecting tornadic damage, a 

second study was undertaken to explore the utility of Sentinel-2 derived disturbance index 

imagery. The disturbance index was shown to be positively correlated with damage intensity 

across all land cover types. Actual values of disturbance index for a given damage intensity were 

highly variable, even within a land cover classification. The lower threshold of detectability was 

somewhere between higher end EF1 and lower end EF2 events. While this does not represent an 

improvement in detectability threshold over previous studies, the methodology presented, in 

conjunction with the use of Sentinel-2, has several advantages such as only requiring a single 

post-event image for analysis and increased spatial detail in the output compared to previous 

studies. The results were summarized across land cover type and damage intensity and predictive 

performance was much better in the types of forested areas for which the DI was designed. 

Although this is a limitation overall, the strengths of the methodology counterbalance the 

weaknesses of traditional ground-based survey methods. 

  



 

1 

 

Introduction 

  For well over one hundred years, tornado climatologies have formed an important part of 

the pursuit for understanding how tornados and tornadic storms form, behave, and dissipate 

(Finley 1884; Dixon et al. 2011). Studies have been undertaken using tornado climatologies in 

efforts to understand public risk perception (Johnson et al. 2021), forecast improvement and 

dynamical understanding (e.g., Kellner and Niyogi 2014; Hua and Chavas 2019), and for 

infrastructure and public safety planning (e.g., Ramsdell et al. 2007). Despite the importance of a 

robust understanding of tornado climatology, a variety of data quality issues have long been 

known and discussed in the literature (Doswell and Burgess 1988). Over time, definitions and 

thresholds have been updated (McDonald and Mehta 2006), and analysis techniques have been 

developed to mitigate some issues and draw more meaningful conclusions from these imperfect 

data (Brooks et al. 2003; Verbout et al. 2006), but the ongoing record continues to rely on ground 

based surveys conducted by in-situ personnel. This thesis identifies some of the inherent 

limitations of this method and the effects that it can have on the historical record as well as 

exploring a potential supplementary detection method using satellite remote sensing. 

One of the many applications of tornado climatologies is planning in advance of major 

field campaigns that seek to observe tornados. Combining an understanding of tornado 

occurrence probabilities with the necessary conditions for the various instruments involved 

allows for a more thorough plan of operations and allows for more logistics to be worked out in 

advance. One such project, Propagation and Evolution of Rotation in Linear Storms (PERiLS), 

occurred in the late winter and early spring of 2022 and 2023. PERiLS involved the deployment 

of over 100 in-situ and ground based remote sensing instruments from over a dozen institutions 

to characterize the environment in and around tornadic, linear storms as the occurred in the 
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Southeastern United States and Mississippi Delta regions (NSSL). In 2019, I was asked to do a 

brief analysis of the tornado climatologies in potential operating areas for PERiLS to support 

planning and decision making.  

From that tornado climatology analysis, I was given the additional task of assessing any 

patterns relating to surface heterogeneities and the locations of tornadic initiation.  Recent 

literature has variously suggested that transitions in land cover type (Kellner and Niyogi 2014; 

Frazier et al. 2019), positively and negatively sloping terrain (Schneider 2009; Hua and Chavas 

2019), higher elevation, and valley flows (Lyza and Knupp 2018) could all serve to enhance 

tornadogenesis potential. While assessing these hypotheses in the state of Alabama, I noticed 

that, visually, a far stronger correlation appeared to exist between tornadogenesis locations and 

roadways. Chapter one reports a study of elevation, surface roughness, and road proximity 

alongside population density, which is known to be a bias in the tornado record. Road proximity 

is shown to demonstrate the strongest relationship with tornadogenesis locations. This is 

explainable by the limitations of ground-based survey methods, especially in areas where access 

and visibility can be poor, such as in the varied terrains of rural Alabama. 

Given the importance of a robust tornado climatology, it is clear that additional survey 

methods are desirable, both to reduce the burden of surveys on the operational NWS personnel 

that conduct them and to reduce the effects of biases inherent to ground survey methods. 

Previous work has demonstrated the utility of satellite remote sensing for this purpose (e.g., 

Molthan et al. 2014; Kingfield and de Beurs 2017). Landsat imagery has been able to detect the 

damage swaths from tornados down to lower end EF2 events using a tasseled cap-derived 

disturbance index. Since that study was conducted, tasseled cap indices have become available 

for the higher resolution imagery captured by Sentinel-2. In order to see if the improved 
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resolution could yield a lower damage threshold for detection, we selected fourteen scenes 

containing a total of fifty tornados and representing a broad cross-section of damage intensity, 

path width, landcover type, geographic region, and seasonality. The remote sensing techniques 

explored here are found to work best in forested areas and wetlands, which are typically the same 

kinds of low population density, low visibility, and low accessibility areas where traditional 

ground-based surveys would struggle to reach. By integrating new techniques with traditional 

approaches, it is hoped that more robust tornado climatologies can be developed that will lead to 

better predictability for future events.  
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Tornado Initiation Locations Relative to Surface Heterogeneities 

and Human Biases 

Abstract 

 The process of tornadogenesis remains poorly understood, and recent literature has put 

forth a variety of hypotheses for the way that interactions with the heterogeneous land surface 

could enhance tornadogenesis potential. To examine these hypotheses alongside potential human 

biases in tornado observations, we retrieved the initiation location for the 452 tornados that 

occurred in the state of Alabama between 2010 and 2017 from the National Weather Service 

(NWS) Storm Prediction Center (SPC) SVRGIS database. For each point, we retrieved the 

underlying elevation, terrain gradients, surface roughness, surface roughness gradients, 

population density, and road proximity. That distribution was then compared with the same 

number of random points using Kolmogorov-Smirnov (K-S) tests and logistic regression. All of 

the variables tested except surface roughness gradients showed statistically significant 

correlation with tornado locations, but road proximity had the highest K-S score by a wide 

margin over surface roughness and population density. As a further check, all eight factors were 

tested as the independent variables of a logistic regression which yielded similar results, with the 

exception of the fact that surface roughness was not found to be significant in that multivariate 

context. Although population density is a well-known and significant human bias in the tornado 

record, these results demonstrate that survey accessibility may be even more important. 
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Introduction 

 Tornados are relatively unique among meteorological hazards in that they are constantly 

in contact with both the cloud base and the Earth’s surface. While great strides have been made 

in the understanding of tornado dynamics and forecast skill in the preceding decades, the 

influence of surface characteristics remains unclear, particularly as they relate to tornadogenesis. 

A greater understanding of those influences is important for improving model performance and 

producing more accurate forecasts.  Parsing these extremely complex interactions is further 

complicated by the need to understand them separately from potential human-induced biases in 

the historical record that arise from both the reliance on human observation of the storm to report 

it and the inherent subjectivity of the current rating system. 

Laboratory modeling efforts examining the effects of surface obstacles on tornado like 

vortices date back at least five decades (Dessens 1972), and numerical modelling in 

computational space continues (Markowski and Dotzek 2011; Lewellen 2012). These studies 

provide some insight into how topography may affect tornados, but they tend to rely on large 

eddy simulations with somewhat high result variability and, more crucially, tend to focus on 

vortices that are already in progress and in contact with the surface. Observational case studies 

are somewhat prevalent (e.g., Bosart et al. 2006; Bluestein 2000), but are usually limited to a 

single event. Some studies have attempted to bring together a large number of events to draw 

conclusions on the particular ways in which tornados are being influenced by terrain and their 

relative prevalence (Hua and Chavas 2019; Lyza and Knupp 2018). Schneider provides 

individual examples from the Tennessee Valley for some potential terrain influence mechanisms: 

(1) valley channeled flow contributing to backing of near-surface winds and locally enhanced 

storm-relative helicity, (2) vertical stretching of vorticity as storms move over descending terrain, 
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and (3) upslope flow leading to enhanced updraft strength (Schneider 2009). Intensive 

observations from the Southern Cumberland Plateau System in Alabama during the VORTEX-

SE field project support the notion of orographically enhanced backing and document the 

presence of lower Lifting Condensation Level (LCL) heights relative to the surface atop the 

plateau, which can also enhance tornadogenesis potential (Lyza et al. 2020). 

In parallel with efforts to understand the influences of underlying terrain, there has 

recently also been an effort to investigate how surface landcover type could potentially affect 

tornadic evolution. Changes in landcover type, and the resultant change in surface friction, can 

be significant sources of horizontal vorticity near the surface that is potentially available to be 

tilted into the vertical leading to enhanced tornadogenesis potential. There exist numerous 

theories for the mechanism by which the tilting occurs based on storm environment parameters 

that are largely outside the scope of this paper (Muncy 2021). Numerical modelling studies have 

produced mixed results for how vortices encountering obstacles may respond, but seem to 

indicate that the vortex generation mechanism, strength of the vortex, and location within the 

vortex all affect whether the obstacle enhances or hinders the strength of the flow (Wang et al. 

2017; Lewellen 2012).  

Results from observational studies have been similarly mixed. Two recent studies have 

reported statistically significant relationships between tornado characteristics and surface 

heterogeneity, but with variations of sign and magnitude in the relationship between either 

individual cases or geographic subdomain (Houser et al. 2020; Frazier et al. 2019). More recent 

studies suggest that there is a positive relationship between tornadogenesis and higher roughness 

values (Muncy 2021). Interestingly, a climatology of tornadoes in Indiana revealed some 

correlation between land surface type and tornadogenesis locations, based on high occurrences 
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within 1 km of either urban or forested areas (64% and 42%, respectively); however, the same 

study noted a marked relation between tornado occurrence locations and population density, 

highlighting the well documented population density bias in tornado occurrence information 

(Kellner and Niyogi 2014; Anderson et al. 2007). 

Human induced biases in the tornado climatology have been known for decades, and they 

can arise from a number of factors such as underreporting, the subjectivity of the current rating 

guidance, and some omission in the very early years of record keeping (Doswell and Burgess 

1988; Edwards et al. 2021). The population density bias is one of a number of known human 

induced biases in tornado climatology, and one that is very well documented in the literature (e.g. 

Doswell and Burgess 1988; Anderson et al. 2007; Agee and Childs 2014). Because tornados are 

rated based on damage rather than an empirical measurement, there will always be some 

ambiguity, but the damage indicators under the Enhanced Fujita scale attempt to create a uniform 

standard for damage surveys (McDonald and Mehta 2006). Nonetheless, this system still relies 

on the ability to survey tornado damage, or at least for damage to be noticed in a timely fashion 

and reported to the local forecast office. As the popularity of storm-chasing as a hobby has 

increased and survey methods and radar coverage have improved (Edwards et al. 2021), 

underreporting has decreased, but for operational forecasters conducting official surveys, there 

are still limitations due to line of sight and time constraints, even when afforded the opportunity 

to survey outside of populated areas. This leads to the question: are tornado reports biased by 

accessibility? Most surveys without a specific destination or report are conducted by car, with 

potential follow-up on foot if damage is sighted. This leads to the possibility of road access as a 

limiting factor to survey-ability and therefore a bias in the record. This would be especially 

problematic in rural areas of complex terrain like the highly vulnerable southeastern US (Dixon 
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et al. 2011). Complicating matters is the fact that roadways tend to follow breaks or contours in 

topography and land usage.  

Parsing all of these competing explanations for distribution of tornado occurrence is a 

complex and difficult task that is beyond the ability of any one paper. To contribute to that goal, 

an analysis of Alabama’s tornado climatology over eight years is presented here with respect to 

elevation, elevation slope and aspect, surface roughness, and slope and aspect of surface 

roughness, as well as population and road access. The distribution for each variable is compared 

against spatially random distributions to test the potential validity of its underlying hypothesis.  

 
Figure 1: Three panel map of the state of Alabama showing the tornados included in the study alongside elevation 

and road proximity 

Data & Study Area 

 The state of Alabama is characterized by a diverse mix of land uses and terrain and is 

situated in the heart of the secondary maximum of tornado occurrence in the United States 

(Dixon et al. 2011). There are large urban centers in Huntsville, Montgomery, and Birmingham, 

interspersed with tracks of agriculture and wooded areas. The transition from coastal plain in the 

south to the Cumberland Plateau in the northeast provides a mix of topographies (Figure 1). 

These characteristics made it an ideal candidate for this study. 



 

9 

 

 Tornado initiation locations were derived from the National Weather Service’s severe 

weather database (SPC 2018). Relatively recent events were selected to minimize potential 

biases from survey methodology changes related to the introduction of the Enhanced Fujita Scale 

in 2007 (McDonald and Mehta 2006). At the time of undertaking the analysis the most recent 

year for which data was available was 2017. To achieve a sufficient sample size, tornado 

locations from between 2010 and 2017 were retrieved, yielding 452 individual tornados 

initiations. 

 Elevation data were retrieved from the US Geological Survey’s National Elevation 

Dataset 30m resolution (USGS). This resolution was selected to match that of the National Land 

Cover Dataset (NLCD) that was also used and necessitated mosaicking the individual county 

levels together. From the statewide raster, slope and aspect were calculated. 

 Road data was collected from the US Census Bureau’s 2019 TIGER/Line files for all the 

counties of Alabama (USCB 2019a). Based on the types of vehicles commonly available to 

ground survey teams and the definitions from the Census Bureau, the following road types were 

selected as accessible for the purposes of this study: 1100, Primary Road; 1200, Secondary Road; 

and 1400, Local Neighborhood Road, Rural Road, City Street (USCB 2019b). These road types 

were selected as the types of roads that would be passable for the typical fleet vehicles available 

to surveyors. From this road network, a Euclidean distance raster was created at 30m resolution. 

The spatial resolution was chosen for consistency with NLCD data. 

 Population densities represent block level 2010 census data from the US Census Bureau 

that have been interpolated to a 60m raster by the USGS (Falcone 2016). This dataset was chosen 

because its resolution is the closest match to the spatial resolution of the NLCD data of official, 

available rasterizations.  
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Table 1: The NLCD class numbers and names and their respective roughness lengths 

NLCD 

Class 

Number 

NLCD Class Name 

Roughness 

Length 

(m) 

24 Developed, High Intensity 1.2 

23 Developed, Medium Intensity 0.8 

22 Developed, Low Intensity 0.1 

21 Developed, Open Space 0.03 

82 Cultivated Crops 0.05 

81 Pasture/Hay 0.03 

71 Grassland/Herbaceous 0.03 

41 Deciduous Forest 1.0 

42 Evergreen Forest 1.0 

43 Mixed Forest 1.0 

52 Shrub/Scrub 0.35 

90 Woody Wetlands 1.0 

95 
Emergent Herbaceous 

Wetlands 
0.03 

31 
Barren Land 

(Rock/Sand/Clay) 
0.015 

11 Open Water 0.001 
 

 Based on the years of imagery used, the 2011 NLCD release was selected as most 

representative (Yang et al. 2018). The NLCD data were converted to surface roughness values 

based on Hirth’s values for C-CAP land cover data and NOAA conversion tables (Hirth et al. 

2012; NOAA). NLCD classes and their respective surface roughness values are presented in 

Table 1. Slope and aspect were also calculated for the surface roughness field. 

Methods 

 After preprocessing, eight raster layers were retained, each representing a potential 

influence on the distribution of tornadogenesis locations: Elevation (Z), Z Slope, Z Aspect, 

Roughness Length (Z0), Z0 Slope, Z0 Aspect, Population Density, and Road Distance. For the 

purposes of this study, slope represents the rate of change of a field at a point, and aspect is the 

compass direction of that change. Each layer is sampled for all of the tornado initiation locations, 
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yielding a distribution for each of the eight variables (n=452). For comparison, fifty spatially 

random point distributions (each with m=452) were sampled for each variable as well. A 

correlation between a particular variable and tornadogenesis should be reflected by that 

variable’s distribution at tornado initiation points differing from a distribution of that variable 

across spatially random points. This gives the general form hypotheses: 

 𝐻1: ℙ𝑇𝑜𝑟𝑛𝑠(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ≠  ℙ𝑅𝑎𝑛𝑑(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝐻0: ℙ𝑇𝑜𝑟𝑛𝑠(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) =  ℙ𝑅𝑎𝑛𝑑(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

The significance of any differences between the tornado and random datasets were assessed 

using two-tailed Kolmogorov-Smirnov tests where the critical value D for a confidence level      

c = (1 – α) is given by: 

𝐷(𝛼) = 𝑐(𝛼)√
𝑛 + 𝑚

𝑛 ∗ 𝑚
 

where c is a constant with regards to α and n and m are the sizes of the two samples (Hodges 

1958). For α = 0.01, c = 1.628, which yields a critical value D=0.108292949133 for the sample 

sizes used (Hodges 1958). The K-S tests were conducted for each variable comparing each 

random sample to the tornado sample, and subsequently the mean values were calculated across 

all fifty runs, yielding a single K-S score and p-value for each variable. 

As an additional check on the single variable K-S tests and to provide a quantitative 

measure of directionality of the effects, all eight independent variables were also used as factors 

in a multivariate logistic regression model. 
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 Table 2: A summary of K-S test means and significance values for all eight variables tested. 

Variable Mean K-S Score K-S Confidence Level 

Elevation 0.14075218 0.0037 

Surface Roughness 0.26738944 <0.0001 

SR Aspect 0.07995564 0.1361 

SR Slope 0.0801327 0.1254 

Elev Aspect 0.07146014 0.2735 

Elev Slope 0.13331858 0.0096 

Population Density 0.19402652 <0.0001 

Road Distance 0.41221234 <0.0001 

 

Results 

Table 2 illustrates the mean K-S scores for each of the variables tested across the 50 

different test runs along with the confidence levels that those scores represent. Five variables met 

the threshold for statistical significance, all at p < 0.01: elevation, elevation slope, surface 

roughness, population density, and road distance. Neither the aspect of elevation, aspect of 

surface roughness, nor the slope of surface roughness met the threshold for rejecting H0 at 

significance levels of 0.1 or better. The largest deviation between two distributions (Figure 2) 

was found in road distance, followed by surface roughness, population density, elevation, and 

elevation slope. 

Table 3: A summary of logistic regression coefficients and their significance values 

 
Estimated Coefficient P-Value 

Intercept -3.721000 < 2.0E-16 

Elevation 0.002355 7.86E-06 

Surface Roughness -0.002313 0.477 

SR Aspect -0.000635 0.245 

SR Slope 0.001605 0.477 

Elev Aspect -0.000457 0.357 

Elev Slope -0.124200 5.20E-06 

Population Density 0.000598 4.53E-13 

Road Distance -0.000704 < 2.0E-16 
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The results of the logistic regression (Table 3) were largely consistent with those of the 

K-S tests. The notable exception was that none of the roughness length variables were found to 

be significant in the multivariate analysis. Because the independent variables were not 

standardized prior to calculating the logistic regression, the relative magnitudes of the 

coefficients are not meaningful, but road proximity did exhibit the highest degree of statistical 

certainty in its correlation with tornado initiation locations. 

Discussion 

 With regards to the elevation variables, four theories for potential terrain influence on 

tornadogenesis can be examined using the methodology presented here: (1) valley channeled 

flow contributing to backing of near-surface winds and locally enhanced storm-relative helicity, 

(2) vertical stretching of vorticity as storms move over descending terrain, (3) upslope flow 

leading to enhanced updraft strength, and (4) lower ground-relative LCL heights atop terrain 

minimizing inhibition (Schneider 2009; Lyza et al. 2020). Of these theories, 1 - 3 relate to how 

the local variation in topography alters local flows, so it would be expected they would present in 

this methodology as a statistically significant signal for the slope and/or aspect of elevation 

affecting tornadogenesis. This is the case for slope, but not for aspect, though it is worth noting 

that for theories 2 & 3, the direction of storm motion, which was not examined here, would 

highly affect the potential for aspect to play a role. Theory four relies on a function of the value 

of elevation itself and would present as a significant signal in that variable, which was found to 

be true. Further, a visual analysis of the distributions (Figure 2) shows that the significant trend is 

for tornadogenesis to occur at higher altitudes. This provides evidence that the lower ground-



 

14 

 

relative LCLs atop Alabama’s peaks and plateaus could play a key role in tornadogenesis as 

previously described (Lyza et al. 2020).  

Figure 2: Comparison of the CDFs for all eight variables tested.  

 

 Theories related to surface roughness’s potential impact on tornadogenesis hinge on the 

creation of locally higher values horizontal vorticity (and its eventual tilting into the vertical) as 

storms move across or parallel to gradients in surface roughness (Muncy 2021). This would 

present as a correlation between the slope and aspect of surface roughness relative to 

tornadogenesis. That pattern is not evident in this dataset. Instead, there is a statistically 

significant association with the values of surface roughness themselves, suggesting that certain 
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land cover types (and therefore roughness values) are more likely to present as damaged and be 

rated. That said, the analysis of surface roughness effects is subject to the same limitation of 

omitting storm motion that was true for the elevation gradient analyses, and the notion of surface 

roughness impacts could benefit from further study in that area. 

 As expected, the known population bias in the historical tornado record is further 

demonstrated in the analysis by a statistically significant correlation between population density 

and tornadogenesis locations (Anderson et al. 2007). Critically however, the road distance metric 

was far and away the most strongly correlated metric relative to tornadogenesis locations not 

only among the human-bias variables, but out of the entire study. While it bears repeating that 

the relative magnitudes of K-S scores are not necessarily directly proportional representations of 

influence, it is also extremely noteworthy that the road distance metric introduced here has more 

than double the K-S score of the benchmark known bias, population density. In visual 

examination it is also the most starkly different distribution with tornados initiating 

overwhelmingly more closely to roads than random chance would predict.  

The results of the logistic regression model largely support the conclusion that road 

proximity is a large potential bias in tornado climatology. Further, the magnitude and direction of 

the elevation and elevation slope coefficients lend support to the ideas that tornados are 

potentially (1) more likely to form atop higher terrain or (2) in areas of descending terrain due to 

lower ground relative LCL heights and enhanced vertical stretching of vorticity, respectively. The 

lack of statistical significance in the surface roughness factors in the multivariate analysis as 

compared with the same signal in the univariate analysis is consistent with the idea that the 

univariate signal was a byproduct of interdependence between surface roughness and another 

independent variable. This could be for a number of reasons, such as the use of shelterbelts 
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between types of land use (e.g. between the edge of a field and a road), the difficulty of certain 

types of development in more complex terrain, or the fact that roads tend to follow contours of 

human development as well as terrain. The fact that the other factors such as elevation, elevation 

slope, population density, and road proximity remain significant under multivariate scrutiny 

while surface roughness does not however, demonstrates that those other factors are more likely 

to be the true drivers. 

Conclusion 

The results of this study with regards to terrain and land cover influences underscore the 

importance of incorporating storm direction into future discussions on orographic and frictional 

effects, and especially the need for studies that do this with large sample sizes. Recent extensive 

field work in the Southeastern United States, such as PERiLS, should also prove fertile ground 

for further validation of the lowered ground-relative LCLs atop various terrain features across 

different storm environments.  

The results of the K-S testing for human-induced biases suggests that in an age of 

increasing documentation of tornados, proximity during the event is much less a factor in the 

bias of the dataset (and therefore our assumptions about the tornadogenesis process) than the 

ability to see and reach the site of tornadogenesis after the fact. Fortunately, technologies such as 

UAS imagery and commercial satellite imagery at higher spatial and temporal resolutions are 

increasingly available to expand the ability of surveyors to see and document damage in areas far 

removed from roads (Kingfield and de Beurs 2017; Wagner et al. 2019). Further research on 

corrective factors for accessibility bias in the vein of the work already done on population bias 

(Anderson et al. 2007) or methodological changes (Edwards et al. 2021) would also be 

beneficial.  The interconnected nature of the road networks and the topography underlying 
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prevailing theories about surface effects may have broad implications for the production of 

robust tornado climatologies and understandings of tornadogenesis going forward. 
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Tornadic Damage Detection Using a Sentinel-2 Derived Disturbance 

Index 

Abstract 

 Recording the historic occurrences of tornados provides important data for understanding 

of tornadic processes and ultimately benefits public safety, infrastructure resilience, and 

forecasting. This information is typically gathered by National Weather Service (NWS) 

personnel through extensive ground surveys of the affected areas. This process is constrained by 

operational budgets and staffing requirements and is subject to potential observation bias and the 

contamination or removal of debris fields in short time frames post-event. In order to improve 

the accuracy of the tornado record, we assessed the viability of using Sentinel-2 derived 

disturbance index imagery for detecting tornado damage. We retrieved surveyed location and 

intensity data for fifty tornados that occurred within 14 scenes that totaled approximately 

560,000 sq km. The mean disturbance index (DI) was calculated for each scene as a whole and 

individually for the different landcover types within each scene. The mean of these DI values 

was compared to their underlying EF damage rating using a Spearman rank correlation. 

Additionally, we constructed receiver-operator curves for each combination of landcover and EF 

rating to examine the predictive value of DI in a variety of situations. The results demonstrate 

that while DI is useful for detecting swaths of tornadic damage, its utility is highly landcover 

dependent. Wooded areas and wetlands performed best, which is in line with the design of DI as 

an indicator of forest disturbance. Additionally, we found that Sentinel-2 does not provide an 

appreciably lower intensity threshold for damage detection than previously described (e.g., 

Molthan et al. 2014; Kingfield and de Beurs 2017), but does have operational benefits, such as 

increased revisit frequency and higher resolvable detail in damage areas. 
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Introduction 

 In order to develop and maintain a record of tornado occurrence, the National Weather 

Service traditionally conducts ground surveys in the immediate aftermath of tornadic events 

alongside aerial surveys for some larger scale events (Kingfield and de Beurs 2017). These 

surveys generate the tornado climatology, which is the historical record of where and when 

tornados have occurred and with what intensity. This information informs our understanding of 

tornadic processes and by extension: infrastructure and ecosystem resilience (Kingfield and de 

Beurs 2017; Wagner et al. 2012), public safety and risk management (Walsh and Tezak 2013; 

Ramsdell et al. 2007), and forecast validation (Speheger et al. 2002; Witt et al. 1998). It is 

therefore in the best interests of science and the broader public that as many tornados as possible 

are surveyed as thoroughly and as accurately as possible. To help achieve this goal, we 

developed and evaluated a novel technique for detecting tornado damage swaths based on 

satellite remote sensing.  

Unfortunately, time sensitive damage indicators, budgetary and personnel constraints 

(Doswell and Burgess 1988; Doswell et al. 2009), and underreporting (Shikhov and 

Chernokulsky 2018; Anderson et al. 2007) combine to mean that many tornado surveys are either 

incomplete or never conducted at all. The current system relies on NWS personnel being 

available to perform survey duties without affecting staffing in such a way that would 

compromise the ongoing forecast mission. They have a short window of time in which to work 

before potential damage indicators will be changed or removed altogether. Frequently, this means 

that they are required to prioritize areas with known damage, which can introduce bias in areas 

where damage may go unnoticed until the survey period is over. The result is a climatology that 

is, somewhat understandably, biased towards the areas of peak intensity that define a tornado’s 
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rating and the human developments that a given tornado impacts (Shikhov and Chernokulsky 

2018; Kingfield and de Beurs 2017). To help reduce this bias, additional data on tornado damage 

collected over broader spatial extents is needed. 

 Spaceborne remote sensing has been put forward as a potential remedy for some of the 

gaps in more traditional survey methods. Earth-observing satellites collect gridded data 

consisting of surface reflectance in the visual and infrared wavelengths. Many satellite missions 

are global in scope with revisit times of days to weeks, which facilitates the rapid acquisition of 

data following tornado events (Claverie et al. 2017). Previous studies have utilized a variety of 

sensors and methodologies to detect damage from severe thunderstorms (Bell 2019). Most have 

utilized the Normalized Difference Vegetation Index (NDVI), which is a spectral index based on 

the red and near infrared wavelengths that is used to diagnose vegetation health. With the 

combined use of the MODIS  and Landsat ETM+ sensors, this approach has produced robust 

results, detecting tornados down to the EF1 level depending on landcover (Molthan et al. 2014), 

even outside of vegetated environments (Jedlovec et al. 2006; Shikhov and Chernokulsky 2018). 

Analysis using NDVI is limited by the fact that it can be highly sensitive ground moisture 

content, which is understandably variable between pre and post storm environments. Previous 

applications of NDVI for tornado damage assessment have also used a change detection 

approach, in which post-storm conditions must be evaluated relative to a before-storm baseline 

NDVI, which requires cloud free satellite overpasses in relatively close succession before and 

after the event (Singh 1989; Kingfield and de Beurs 2017).  

More recently, researchers have sought to employ a different set of spectral indices 

known as Tasseled Cap (TC) indices (Crist 1984). TC indices are a robust and computationally 

efficient way to monitor vegetative health and broader landcover change and can be thought of as 
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broadly similar to the physical concepts of albedo (brightness), photosynthetic activity 

(greenness), and surface moisture (wetness) (Shi and Xu 2019; Dwomoh and Wimberly 2017). 

TC indices represent a significant improvement over NDVI for the purposes of disturbance 

detection because they are able to give a more complete picture by utilizing a combination of six 

visual, near infrared, and shortwave infrared bands rather than two that are used in NDVI. The 

disturbance index compares each of the tasseled cap indices to undisturbed reference values of 

that index of the same land cover type throughout a single image (Healey et al. 2005). In this 

way, it is possible to generate a meaningful disturbance metric from a single post-event image 

(Karstens et al. 2013; Kingfield and de Beurs 2017). Previous studies were limited to the 30m 

resolution of Landsat ETM+ imagery which has since been surpassed by the 10-20 m spatial 

resolution by Sentinel-2. The recent derivation of tasseled cap transform coefficients for 

Sentinel-2 means that it is possible to assess the effects of that increased spatial resolution on the 

detectability of tornado damage using the disturbance index technique (Shi and Xu 2019).  

This study seeks to evaluate the ability of high-resolution Sentinel 2 imagery to detect 

tornadic damage signatures as well as explore the possibility of utilizing that imagery to classify 

damage across a variety of land cover. The specific objectives are to: 1) calculate Sentinel-2 

disturbance index values for tornado impacted areas including a wide variety of intensities, path 

widths, and landcover types; and 2) compare the disturbance index with traditional survey data to 

determine the applications and limitations of remotely sensed tornado damage detection. 
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Data & Study Area

 
Figure 3: Study location map showing all fourteen scene boundaries and the path extent of the fifty tornados. A wide 

variety of landcover types, geographic locations, path characteristics, and event timings are represented. 

 

 In order to assess the diagnostic utility of high-resolution Disturbance Index (DI) imagery 

for tornado damage, fourteen cases were selected, each of which was used to construct a scene 

centered on a path of interest and containing at least one surveyed tornado path. To be eligible 

for selection, the survey must have recorded the varying intensities as nested polygons within the 

overall path rather than the alternative method that applies the maximum intensity to the whole 

extent of the path. The cases were selected using a combination of the National Weather Service 

(NWS) Damage Assessment Toolkit (DAT) and the NWS Storm Prediction Center’s (SPC) 

SVRGIS tornado path dataset (NOAA; SPC 2018). The tornados also needed to have occurred 
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after 23 June 2015, as that is the first date for Sentinel 2 Top of Atmosphere Reflectance data in 

the Google Earth Engine catalog. From there, cases were subjectively chosen to present a diverse 

range of path widths, geographic locations, and traversed land cover types. For each of the 

selected fourteen cases, a scene was constructed in a 200 km x 200 km square centered on the 

midpoint of the associated path. All other tornados occurring on the same UTC date were also 

included, yielding a total of fifty tornados. The nested intensity features bring the total number of 

intensity patches across all fourteen scenes to 258. The total area for each intensity level is 

displayed in Table 4.  

Table 4: List of sampled cases sorted by date and including the scene centroid and the distribution of tornado-

disturbed area by damage class 

Date 
Central 

Latitude 

Central 

Longitude 

Tornado Damaged Area (Square Kilometers) 

EF0 EF1 EF2 EF3 EF4 Total 

2 April 2017 31.755 -92.159 11.95 64.09 0.70 0 0 76.73 

13 April 2018 32.530 -93.683 47.54 10.42 0.02  0 0 57.97 

21 May 2019 35.403 -97.021 6.24 0.38 0.01 0 0 6.63 

12 April 2020 32.492 -92.106 3.42 3.41 0.73 0.11  0 7.67 

12 April 2020 31.742 -89.557 149.65 207.82 93.67 30.52 2.17 483.84 

25 March 2021 33.310 -86.804 120.99 136.67 51.57 2.89 0 312.12 

10 December 2021 36.467 -88.246 186.03 257.68 180.93 22.21 2.98 649.84 

3 February 2022 32.746 -87.786 33.56 23.31 5.71 0 0 62.58 

17 February 2022 33.490 -86.593 3.01 2.47 0 0 0 5.48 

22 March 2022 32.501 -90.520 9.09 3.96 0.12 0  0 13.17 

30 March 2022 32.928 -86.991 33.35 16.45 7.62 1.52 0 58.93 

4 May 2022 35.251 -96.668 9.32 2.96 0.23 0 0 12.51 

5 May 2022 31.988 -94.684 6.67 9.50 1.07 0  0 17.24 

8 June 2022 39.981 -84.233 6.97 3.57 0 0 0 10.54 

Total     627.79 742.68 342.36 57.25 5.15 1775.24 

 

Methods 

 For each case, Sentinel-2 top of atmosphere imagery was collected and processed using 

Google Earth Engine (Gorelick et al. 2017). The Sentinel-2 program consists of a constellation of 
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two satellites, each carrying a Multi-Spectral Instrument (MSI) payload recording imagery across 

13 spectral bands (see Table 5) and a revisit time of ten days for each satellite or five days for the 

constellation. Harmonized, top-of-atmosphere imagery was retrieved for a period of 37 days 

post-event. The individual images were filtered to include only those with cloud percentage less 

than 5% and the remaining clouds were masked using the cloud data provided with the imagery. 

Where there were multiple images at the same point, median pixel values for each band were 

used to derive a single image. 

Table 5: Sentinel band summary with central wavelength, bandwidth, and spatial resolution 

Band 

Number 

Band 

Descriptor 

Central Wavelength (nm) Bandwidth (nm) Pixel 

Size (m) Sentinel 2A Sentinel 2B Sentinel 2A Sentinel 2B 

1 Aerosols 442.7 442.3 20 20 60 

2 Blue 492.7 492.3 65 65 10 

3 Green 559.8 558.9 35 35 10 

4 Red 664.6 664.9 30 31 10 

5 Red Edge 1 704.1 703.8 14 15 20 

6 Red Edge 2 740.5 739.1 14 13 20 

7 Red Edge 3 782.8 779.7 19 19 20 

8 NIR 832.8 832.9 105 104 10 

8A Red Edge 4 864.7 864 21 21 20 

9 Water vapor 945.1 943.2 19 20 60 

10 Cirrus 1373.5 1376.9 29 29 60 

11 SWIR 1 1613.7 1610.4 90 94 20 

12 SWIR 2 2202.4 2185.7 174 184 20 

 

Once the images were processed, we utilized the transforms derived in Shi et al., 2019 to 

calculate the Tasseled Cap (TC) indices of Brightness, Greenness, and Wetness, from bands 2, 3, 

4, 8, 11, and 12, handling resolution differences within the Google Earth Engine with nearest 

neighbor resampling. The utility of TC indices is extended by computing the Disturbance Index, 

which allows for the assessment of forest disturbance from a singular image by rescaling the TC 

indices for a given pixel to the image wide mean and standard deviation for that pixel’s given 
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landcover type and then combining the three rescaled values into a single index (Healey et al. 

2005). For example, to compute the TC brightness Br  is 

(1) 𝐵𝑟 =
𝐵−𝐵𝜇

𝐵𝜎
 

where B is the brightness at the pixel, Bμ is the mean brightness for that pixel’s landcover type, 

and Bσ is the standard deviation of brightness across that landcover type. Having repeated that 

process to compute the TC greenness, Gr , and TC wetness, Wr , the DI can be computed as 

(2) 𝐷𝐼 = 𝐵𝑟 − (𝐺𝑟 + 𝑊𝑟) 

 The mean Disturbance Index for each intensity level (EF-0 through EF-4) was calculated 

for each scene from a sample of 2000 pixels per class for each image (or all where <2000 were 

available) as well as for the areas with no tornado damage (designated intensity level -1). In 

addition to the whole scene, the same analysis was conducted after applying a mask to the water 

pixels, and separately for each of five general land cover categories: open water; barren or 

developed land; grasses, shrubs, and agriculture; forests; and wetlands. These general 

classifications were derived from the NLCD classes (see Table 6) and are intended to discern 

possible performance differences related to the vegetation-focused nature of the DI (Homer and 

Dewitz 2018). An example of the DI in relation to two tornado tracks that occurred in 2017 in 

nearby but dissimilar landcovers is shown in Figure 4. Tornado A is an EF2 that occurred west of 

Cooley in an area of wetland and evergreen forests. Tornado B is an EF2 with a similar path size 

to the one that occurred in the suburbs of Alexandria. Tornado A is very clearly defined for most 

of its track through decay whereas Tornado B is very poorly resolved for any of its track. 
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Table 6: Summary of the reclassification scheme that was used to generate the simplified landcover types. It is 

intended to group classes by their expected response to the DI. 

NLCD Class Descriptor NLCD 

Class 

No. 

Simplfied 

Class 

Number 

Simplfied Descriptor 

Open Water 11 0 Water 

Developed, Open Space 21 1 Developed or barren 

Developed, Low Intensity 22 1 Developed or barren 

Developed, Medium Intensity 23 1 Developed or barren 

Developed High Intensity 24 1 Developed or barren 

Barren Land (Rock/Sand/Clay) 31 1 Developed or barren 

Deciduous Forest 41 3 Forest 

Evergreen Forest 42 3 Forest 

Mixed Forest 43 3 Forest 

Shrub/Scrub 52 3 Forest 

Grassland/Herbaceous 71 2 Grass, shrub, and 

agriculture 

Pasture/Hay 81 2 Grass, shrub, and 

agriculture 

Cultivated Crops 82 2 Grass, shrub, and 

agriculture 

Woody Wetlands 90 4 Wetlands 

Emergent Herbaceous Wetlands 95 4 Wetlands 

 
Figure 4: A map showing two tornados that occurred very closely in time and space but are resolved very differently 

by the disturbance index. 
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The strength of the association between the DI and the ordinal levels of tornadic damage 

was assessed by calculating Spearman rank correlation coefficients between the DI and levels of 

intensity. Additionally, receiver operating characteristic (ROC) curves were generated to 

characterize the discriminatory power of the DI for binary classification of tornadoes at each 

intensity level. These curves plot the proportion of true and false positives all possible values of 

DI. The ROC analysis was performed for the complete dataset, the water masked dataset, and for 

each of the aforementioned simplified landcover classes. 

Table 7: Spearman rank correlation coefficients of the 

relationship between EF rating and disturbance index 

for each landcover class and the overall dataset with 

and without water mask. 

Landcover Class Spearman's ρ 

Overall 0.31744 

Overall, Excluding Water 0.32101 

Open Water 0.01907 

Barren & Developed Land 0.20391 

Grasses, Shrubs, and Agriculture 0.15361 

Forests 0.38241 

Wetlands 0.33637 
 

Table 8: A summary of the results generated across the entire dataset for each landcover type and damage intensity 

pair as well as for intensity across all landcover types.  

 Overall 
Overall, Excl. 

Water 
Open Water 

Barren & 

Developed Land 

Grasses, Shrubs, and 

Agriculture 
Forests Wetlands 

 Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) 

Background -0.0362 (2.32) -0.0524 (2.3) 0.0374 (1.81) -0.0365 (2.52) -0.0314 (2.4) -0.0104 (2.29) -0.0432 (1.94) 

EF0 0.0753 (2.35) 0.0475 (2.35) 0.223 (1.92) 0.193 (2.46) -0.292 (2.36) 0.274 (2.31) 0.298 (2.24) 

EF1 0.518 (2.52) 0.508 (2.51) 0.194 (1.85) 0.472 (2.5) 0.118 (2.35) 0.778 (2.48) 1.01 (2.62) 

EF2 1.75 (2.68) 1.78 (2.68) 0.164 (1.71) 1.39 (2.38) 0.664 (2.33) 2.12 (2.71) 2.19 (2.96) 

EF3 2.96 (2.62) 2.98 (2.67) 0.372 (2.01) 2.04 (2.59) 1.41 (2.39) 3.53 (2.64) 4.39 (2.58) 

EF4 2.84 (3.27) 2.8 (3.28) 3.36 (1.49) 0.705 (2.64) 1.84 (2.58) 4.74 (2.97) 6.59 (1.99) 

 

 

 



 

28 

 

Results & Discussion 

 Overall, the results of our study indicate that there is some utility in disturbance index 

information derived from higher resolution satellites for the purposes of tornado damage 

detection, but that the results are highly dependent on land cover type. This is to be expected 

given the specialized applications for which the disturbance index was developed (Healey et al. 

2005). All categories demonstrated a positive correlation between the DI and tornado rating, 

although to varying degrees (Tables 6 and 7, Figure 5).   

 
Figure 5: A bar chart showing the mean DIs for each landcover type at each intensity level. Moving left to right 

across categories and within categories across intensities, the mean DIs tend to increase 

As expected, open water areas had the weakest correlation with a Spearman statistic very near 

zero. Any appreciable relationship is likely due to the changes in water levels. Barren or 
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developed land, and the overall dataset both had higher average DI values in areas of EF3 rather 

than EF4 damage, possibly suggesting a threshold at which increasing damage is either less 

likely or becomes less detectable in those environments. Wetland and forest landcover types both 

exhibited expected behavior with regards to having relatively high detectability with the DI and 

relatively consistent transitions through each damage regime. Notably, with the exception of 

open water, the standard deviation was high relative to the actual values of DI for all land cover 

types and damage intensities when the data were analyzed at the pixel scale. The standard 

deviation tends to be between 2 and 3, and that trend is consistent at other subsample sizes. 

Table 9: The area under the receiver operator curve (AUROC) values for the overall dataset with and without water 

masking, and for the individual landcover types. Values higher than 0.5 represent outcomes better than random 

chance. 

 
Overall 

Water 

Masked 
Open Water 

Barren & 

Developed 
Grass, Shrub 

& Ag 
Forests Wetlands 

≥ EF0 0.612 0.611 0.512 0.585 0.532 0.647 0.643 

≥ EF1 0.653 0.656 0.505 0.606 0.588 0.689 0.686 

≥ EF2 0.731 0.734 0.521 0.667 0.641 0.775 0.761 

≥ EF3 0.761 0.761 0.501 0.670 0.686 0.825 0.880 

  

Similar trends are present in the area under the receiver operator curve (AUROC) analyses 

(Table 9). An AUROC value greater than 0.5 represents predictive value better than random 

chance. Appropriately, open water which should not exhibit tornado damage, has values very 

close to 0.5. The detectability for the other landcover types appears to be largely the same as in 

the means-based analysis. Across all landcover types except wetlands, AUROC values generally 

have the largest increase between EF1 and EF2, suggesting that the lower bound on detectability 

lies in that range of damage intensities.  

 High-resolution satellite imagery appears useful for the problem of tornado damage 

detection, but its utility is situation based on landcover type and the sensitivity appears to be 

limited by high variability regardless of resolution. This is consistent with the inherent 
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shortcomings of applying a particular index in a ‘one-size-fits-all’ manner, and it is consistent 

with previous works that have described similar limitations in minimum threshold of 

detectability.  For instance, Jedlovec et al., 2006 were able to detect tornados down to F2 from 

examining the 250-meter resolution visual and NIR bands of MODIS imagery from before and 

after a storm in forested areas and could detect additional features when using a 16-day 

composite NDVI. When increasing resolution to the 15-m and 30-m data from ASTER and 

Landsat, respectively, they found that they could detect some F1 tornado damage, but that it was 

highly variable based on swath size, landcover, and seasonality.  

Our results saw that the largest jump in discriminatory skill came between the EF1 and 

EF2 classifications. These results are similar to those presented in Molthan et al. 2014, where 

single day NDVI derived from 30 m Landsat imagery yielded a detection success rate of 32.4% 

across all intensities, but 65.6% when only tornados ≥EF2 were considered. The similarity 

between our results and results from previous studies using lower resolution imagery suggests 

that an increase in spatial resolution does not necessarily yield a decrease in minimum detection 

threshold. The relatively high standard deviations across all tests indicate that the additional 

resolution may actually be introducing more noise than useful information to the analysis. Figure 

6 is a box and whisker plot with outlying points removed that demonstrates the large intra-class 

variability and considerable overlap between damage intensities. Although the minimum 

threshold for detection appears to be relatively unchanged by moving to higher resolution 

imagery, the increase in spatial detail of the damage swaths that are detected can still provide 

useful insight into the variability of damage among similar damage indicators and different parts 

of the storm.  
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Figure 6: A box and whisker plot with outliers removed for DI values sorted by EF scale intensity. The significant 

overlap between damage classes even within the center quartiles is a key challenge for damage detection is 

represents a major obstacle for classification 

 Another major issue that simple DI analyses presents for detecting tornadic damage is 

that it is highly dependent on the landcover that is being damaged. Figure 4 shows two tornados 

that occurred over completely different types of land cover, but on the same day in very close 

proximity to each other. The difference between how well they are resolved by the DI is much 

larger than the difference of their one EF grade separation would suggest. Even in areas that are 

rated the same, the EF0 and EF1 portions of each track, tornado A, which occurred over a mix of 

evergreen forest and wetlands, is much more well defined than tornado B that occurred in the 

developed area around Alexandria. Even within landcover classes, the variance in responsiveness 

to DI can vary greatly. This is especially true in the ‘developed and barren’ and ‘grass, shrub, and 

agriculture’ classes as the percent of tree cover can vary widely in those classes.  This is not 

wholly discouraging for the use of DI as a supplemental tool for tornado surveys however, 

because the tornados most frequently underreported are in less populated and more difficult to 

access areas (Anderson et al. 2007; Shikhov and Chernokulsky 2018). Because the underlying 

spectral indices are geared towards vegetation, the DI method works very well in just the kinds 
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of areas that traditional surveys have difficulty with like deep forest and wetlands. This is 

partially demonstrated by tornado A, where the dissipating portion of the track appears to be 

more well resolved in the DI based assessment than the ground survey polygons. 

Disturbance index works best in forested landcovers by design, by taking advantage of 

the fact that brightness levels tend to increase while wetness and greenness levels tend to 

decrease when a forest is disturbed. In figure 7, the component indices can be seen to 

demonstrate this where two tornados crossed through the Oakmulgee Wildlife Management Area 

near Centreville, AL on March 25, 2021. Brightness increases rather significantly along both 

tracks while greenness and wetness decrease sharply.  

Figure 7: Before and after plots for each of the three tasseled cap index components for two tornados that occurred 

on March 25, 2021, in a managed forest near Centreville, AL. The images show values that have already been 

normalized to the background values for their landcover type, and are the values directly ingested into the DI 

formula. 
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This focus on a specific spectral response is also why extending the DI to other land classes 

yields relatively poor results. The goal of this research was to evaluate the utility of this specific 

disturbance index for the problem of tornado damage detection, but previous work has 

demonstrated how the DI can be adapted to other landcover types by examining their spectral 

response to disturbance (de Beurs et al. 2016).   

Figure 8: Histograms comparing the distribution of values for each component TC index and the DI for areas 

impacted by tornado damage rated EF-2 or greater. 

Figure 8 explores the spectral response for pixels impacted at intensity EF-2 or greater 

across the non-water landcover classifications used in this study. The main cause of poor 

performance (i.e. minimal difference before to after the storm) in the barren and grass categories 

appears to be the low sensitivity of wetness. The disparity between pre- and post-event values in 

greenness is also smaller in those areas, but there is much less overlap in the distributions than 

for wetness. Brightness tends to increase in barren and developed areas and forests, while it tends 

to remain close to the same in grassland, shrubland, and agricultural areas and in wetlands. With 

the exception of brightness, these broadly match the trends presented in previous work applying 
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a DI to grasslands (de Beurs et al. 2016). The difference in brightness behavior could be a 

function of soil properties, which were not evaluated here.  

Examining change cause by disturbance has been shown to improve the performance of 

an adapted DI in fire severity assessment (DaSilva et al. 2021). In order to explore whether a 

differencing approach could alleviate the persistent high values present in urban areas to improve 

detection in the Alexandria example (Figure 4), we subtracted the DI computed based on images 

in a 37 day post event window from the DI calculated for a the window extending up to 37 days 

prior to the event. 

 

Figure 9: The difference between post-storm and pre-storm DI for two tornados near Alexandria on 2 April 2017. 
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The differencing technique had the desired effect of reducing most of the persistent high 

signals in the urban areas of Alexandria, but unfortunately there was not enough damage signal 

remaining to be visible (Figure 9). While this technique may improve resolvability around 

smaller obstacles in an already defined path, it seems that a more tailored DI for urban areas 

based on their spectral response would be required to significantly improve performance. 

 As more imagery with higher spatial and temporal resolution becomes available to 

surveyors and technologies like machine learning progress in their ability to discriminate damage 

indicators in it, these topics should be revisited. Because the underlying damage scale is tied to 

individual damage indicators, a classification scheme that involves identifying degradation of 

particular indicators could be feasible at higher resolutions and with adequate data on the 

locations and types of damage indicators in a given area. More feasible in the short term may be 

the development of additional indices for use human-made or barren land covers that have little 

or no photosynthetic activity to try to improve tornado detectability in these land cover types. 

Additionally, more accurate comparisons could likely be made across vegetated or partially 

vegetated areas by including tree cover as part of the classification to reduce intra-class variance 

in DI responsiveness. Teaming these approaches with an edge detection method would likely 

reduce the large intra-class variability and would be ideal for determining outer track boundaries. 
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Conclusion 

 Recent literature has suggested several ways that surface heterogeneities may enhance 

tornadogenesis potential including enhanced low level convergence at the boundaries between 

land cover type (Kellner and Niyogi 2014; Frazier et al. 2019), enhanced updrafts along upward 

sloping terrain and vertical stretching of vorticity along negatively sloping terrain (Schneider 

2009; Hua and Chavas 2019), lower ground relative LCL heights at higher elevations, and 

increased backing near the surface due to valley channeled flow (Lyza and Knupp 2018). To 

evaluate these hypotheses I conducted K-S tests and logistic regression analysis between 

tornadogenesis locations and spatially random points for the following variables: elevation, 

elevation slope and aspect, surface roughness, and slope and aspect of surface roughness. Two 

additional variables were also tested: population density, a known human-induced bias in the 

dataset (Anderson et al. 2007), and road proximity, a metric representing the accessibility of 

damage locations to surveyors. Road distance was by far the most strongly correlated variable 

with the location of tornadogenesis (KS score = 0.41221234), followed by surface roughness 

(0.26738944), population density (0.19402652), and elevation (0.14075218). Visual examination 

of the CDFs for each variable reveals that the trend is for higher elevations, medium-high 

population densities, lower surface roughness, and lower road distance. In the multivariate 

logistic regression, the results were much the same with the exception that surface roughness 

dropped out as a statistically significant factor, suggesting that its significance in the univariate 

analysis was an artifact of codependence with another factor. The strength of association with 

road proximity suggests that accessibility to damaged areas is a key driver in the recorded 

locations of tornadogenesis. 
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 Given the importance of a robust tornado climatology for understanding public risk 

perception (Johnson et al. 2021), improving forecasts and dynamic understanding (e.g., Kellner 

and Niyogi 2014; Hua and Chavas 2019), and public safety and infrastructure planning 

(Ramsdell et al. 2007), it is valuable to explore additional tools to augment the existing ground 

survey methods. The tasseled cap derived disturbance index is useful for this purpose because it 

is able to provide useful information beyond simple visual inspection from single post storm 

images. Recently, tasseled cap transforms for Sentinel-2 were published (Shi and Xu 2019), 

enabling this approach to be used with higher resolution imagery that the previous Landsat 

derived applications (Kingfield and de Beurs 2017). I selected fourteen scenes totaling 50 

tornados to analyze covering a variety of strengths, widths, seasonalities, land cover classes, and 

geographic locations. The DI were summarized by general land cover type and damage intensity 

rating. Using a Spearman ranked correlation coefficient, the DI was shown to be positively 

correlated with EF damage intensity for all landcover types.  

The predictive skill of the DI was assessed by calculating the area under the receiver 

operator characteristic curve (AUROC) for each combination of landcover type and damage 

intensity. The largest increase in predictive skill was between EF1 and EF2 for all land cover 

types, suggesting a lower threshold for detectability somewhere in the upper end of EF1 to lower 

end of EF2 damage. This is similar to the value reported in other studies using coarser resolution 

satellites (Jedlovec et al. 2006; Molthan et al. 2014). The ability of the disturbance index to 

characterize tornadic damage was also highly dependent on the land cover type, performing best 

in the forested areas that it was designed for and most poorly in barren, developed, shrubby, 

grassy, or cultivated areas. This is also true of other studies that have used DI (Kingfield and de 

Beurs 2017) and those that have used other vegetation based spectral indices (Jedlovec et al. 
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2006; Molthan et al. 2014). There is also large uncertainty due to high levels of intra-class 

variation, especially with regard to tree cover in urban or barren areas. While the increased 

spatial resolution does not appear to lower the minimum damage threshold for detectability, it 

does yield a more spatially detailed picture of the damage field, which is useful for 

understanding tornadic behavior. 

It is clear that remote sensing will have to play a role in further improving tornado 

surveys. While survey personnel will remain crucial to the process for the foreseeable future, our 

results demonstrate that satellite remote sensing can be a useful tool for filling in the blind spots 

of traditional survey methods. The techniques demonstrated here take advantage of relatively 

high temporal resolution data and perform best in areas where traditional ground-based surveys 

are most difficult such as forests and wetlands. The utility of satellite remote sensing can be 

further enhanced by the incorporation of more sophisticated object detection and additional 

spectral indices tailored to the underlying landcover type. Additional streamlining in the form of 

tasked, high-resolution imagery and targeted analysis based on radar velocity signatures could 

further optimize the process. As the process of identifying damage swaths in imagery becomes 

more refined, retrospective analysis on older data could also be used to augment traditional 

surveys for previous events where surveyors may not have had the opportunity to investigate all 

of the potential tracks. The operationalizing of these techniques will improve our understanding 

of tornadic processes with the goal of improving forecasting ability. 
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