
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

IMPACTS OF MULTISCALE PREDICTORS ON RANDOM FOREST BASED
PROBABILISTIC FORECASTS OF SEVERE WEATHER HAZARDS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By
Daniel Kubalek

Norman Oklahoma
2024



IMPACTS OF MULTISCALE PREDICTORS ON RANDOM FOREST BASED
PROBABILISTIC FORECASTS OF SEVERE WEATHER HAZARDS

A THESIS APPROVED FOR THE
SCHOOL OF METEOROLOGY

BY THE COMMITTEE CONSISTING OF

Dr. Aaron Johnson, Chair

Dr. Xuguang Wang

Dr. Zachary Lebo



© Copyright by DANIEL KUBALEK 2024
All Rights Reserved.



Acknowledgements

I would like to first and foremost thank my advisor Dr. Aaron Johnson, for everything
you have helped me with throughout the thesis and my masters. From your guidance to
mentoring I am forever grateful. To my co-advisor Dr. Xuguang Wang, for her guidance
and pushing me to new heights of expectations for myself and future work for which I am
thankful. To Dr. Zachary Lebo, for graciously accepting a position on my committee and
for suggestions to help bring this thesis together.

This project could not have been possible without funding. I would like to give credit to
the NOAA JTTI grant NA20OAR4590358 for making the opportunity to conduct research
possible, as well as giving me the opportunity to pursue my masters degree at the University
of Oklahoma.

I would also like to thank the University of Oklahoma Super Computing Center for
Education and Research (OSCER) for providing the computational resources and support
needed to conduct research. Lastly, I would like to thank my friends and family for supporting
me throughout my masters and this thesis.

iv



Contents

Acknowledgements iv

List of Figures ix

List of Tables x

Abstract xi

Introduction 1

Methodology 3
Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Predictor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Random Forests (RFs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pre-processing of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

a.) 80 km Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
b.) Multiscale Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Characteristic RF models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Forward predictor selection (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
RF Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
RF Physical Interpretation/TI Module . . . . . . . . . . . . . . . . . . . . . . . . 12

Results 13
RF Predictors Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CTLRF Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Qualitative Overview of Forecasts . . . . . . . . . . . . . . . . . . . . . . . . 15
Quantitative Overview of Forecasts . . . . . . . . . . . . . . . . . . . . . . . 16

EXPRF vs. CTLRF Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Case-Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

RF Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Predictor Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Representative Case-Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Summary and Discussion 32

Conclusion 33

v



List of Figures

1 Training/verification domain (grey shading) and 80 km grid points (blue dots) 3
2 Spatial frequency and distribution of severe weather reports for 80 km points,

for the 4 largest report samples. Size and color are based on size with an
interval of 0.75 for for visual aid. (a) any severe, (b) wind, (c) hail, and (d)
any sig. severe. Forecast domain (black line) for reference . . . . . . . . . . . 5

3 Schematic example of smoothing procedure for effective diameter = 240 km.
Black dots representative of 80 km gridpoints. Gridboxes representative of 80
km grid boxes. Grey filled boxes denote ±1. Smoothing radii r is equivalent
to number of grid boxes to smooth over × 80 km. Maroon filled boxes denote
actual gridboxes included in averaging making up effective diameter . . . . . 8

4 CTLRF forecasts for May 18th, 2019. Filled contours are continuous proba-
bilistic forecast values contoured at 0.2% intervals between 0 and ≥ 60%. Red
contour lines are region of 80 km storm reports. Left set of 4 panels are for
24hr forecasts for: (a) any severe, (b) wind, (c) hail forecasts, and (d) any sig.
severe. Right set of panels for 4hr forecasts for: (e) any severe, (f) wind, (g)
hail, and (h) any sig. severe . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Forecast domain-wide BSS for CTLRF-based probabilistic forecasts for 24hr
forecasts (dark green) and 4hr forecasts (light green) . . . . . . . . . . . . . 16

6 ROC curve plots for probability threshold every 3% with 24hr and 4hr AUC
values annotated adjacent to x-axis for a.) any severe hazard, b.) wind, c.)
hail, d.) tornado, e.) any significant severe, f.) significant wind, g.) significant
hail, h.) significant wind, and i.) significant tornado, 24hr forecasts (dark
green line, with dark green triangles marking each probability threshold) and
4h forecasts (same as 24hr except light green) . . . . . . . . . . . . . . . . . 17

7 Forecast domain-wide BSS (left) for 24hr CTLRF-based probabilities (dark
green bars) and 24hr EXPRF-based probabilities; 4hr CTLRF (light green)
and 4hr EXPRF (light blue). Two lines plotting the difference of BSS cal-
culated using Eq. (3) for 24hr (dark cyan) and 4hr (cyan). Difference of BS
(right) calculated using Eq. (3) for 24hr (dark cyan) and 4hr (cyan) prob-
abilistic forecasts. x-hatch mark denotes significance with a p-value ≤ 0.1.
Forward slash hatch denotes p-values greater than 0.1, but less than 0.2 . . 18

8 Decomposition of brier score components among all 8 severe hazards. (left)
each row corresponds to (top to bottom) brier score, reliability, resolution for
24hr and 4hr CTLRF and EXPRF probabilities (same color scheme as in BSS
figure). (Right) is the difference between EXPRF and CTLRF (brier score,
reliability, resolution, and uncertainty). X-hatch marks denote significance
difference at a p-value ≤0.1 and forward-slash indicate a p-value larger than
0.1, but smaller than 0.2. Last row, last column difference in climatology for
the same forecast period and hazard is zero. . . . . . . . . . . . . . . . . . . 19

vi



9 Attribute diagrams for (a) any severe weather, (b) wind, (c) hail, and (d)
any sig. severe. 24hr CTLRF (dark green; triangles correspond to proba-
bility bin), 24hr EXPRF (dark blue), 4hr CTLRF (light green; circles cor-
respond to probability bin), 4hr EXPRF (light blue). Probability bins are
[1%,[5-10%),[10-15%),...,100%] with plotted points representing midpoint of
probability bins. 5% intervals provided most smoothing all while persevering
important trends. Horizontal dashed line is climatological frequency, vertical
dashed line is climatological forecast probability, line that intersects these lines
is the no skill line. All points bounded by these values (grey area) indicative
larger resolution than magnitude of reliability, thus positive skill to BSS . . . 20

10 Performance diagrams for (a) any severe weather, (b) wind, (c) hail, and (d)
any sig. severe. 24hr CTLRF (dark green; triangles correspond to probability
bin), 24hr EXPRF (dark blue), 4hr CTLRF (light green; circles correspond
to probability bin), 4hr EXPRF (light blue). Probability bins are [1%,[3-
6%),[6-9%),...,99%] with plotted points representing midpoint of probability
bins. Black dashed spikes from origin are constant lines of bias; from top-left
to bottom-right: 16, 3, 2, 1, 0.5, 0.1, 0.0 . . . . . . . . . . . . . . . . . . . . 21

11 May 10th, 2018 12-12 UTC CTLRF probabilistic forecast map vs. difference
of EXPRF and CTLRF probabilistic forecast map. a.) Any severe weather
probabilistic forecast. Top panel: CTLRF probabilistic forecast. Filled con-
tours are probabilities every 2%, black dots are 80 km gridded reports, and
magenta contours outline 80 km reports for readability purposes. Bottom
panel: Probabilistic forecast difference (EXPRF - CTLRF) where red filled
contours are positive differences and blue filled contours are negative differ-
ences plotted every 0.03 units between -10 and 10 units Panel b.) same as a.)
except for 24hr wind. Panel c.) same as a.) except for 24hr hail. Panel d.)
same as a.) except for 24hr any sig. severe . . . . . . . . . . . . . . . . . . . 23

12 May 18th, 2019 12-12 UTC CTLRF probabilistic forecast map vs. difference
of EXPRF and CTLRF probabilistic forecast map. (a) Any severe weather
probabilistic forecast. Top panel: CTLRF probabilistic forecast. Filled con-
tours are probabilities every 2%, black dots are 80 km gridded reports, and
magenta contours outline 80 km reports for readability purposes. Bottom
panel: Probabilistic forecast difference (EXPRF - CTLRF) where red filled
contours are positive differences and blue filled contours are negative differ-
ences plotted every 0.03 units between -10 and 10 units Panel b.) same as a.)
except for 24hr wind. Panel c.) same as a.) except for 24hr hail. Panel d.)
same as a.) except for 24hr any sig. severe . . . . . . . . . . . . . . . . . . . 24

13 Aggregate of average contributions from all 20 test cases from all predictors
sorted into groups based off meteorological characteristics and spatial length
scale. Shown for no severe weather reports sample. Blocks are color coded by
predictor characteristic and spatial length scale from smallest spatial scales to
largest 12-12 UTC forecast period (left), 20-00 UTC forecast period (right).
Values within blocks are sum of average contributions from individual predic-
tors within respective group. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



14 Aggregate of average contributions from all 20 test cases from all predictors
sorted into groups based off meteorological characteristics and spatial length
scale. Shown for severe weather reports sample. Blocks are color coded by
predictor characteristic and spatial length scale from smallest spatial scales to
largest 12-12 UTC forecast period (left), 20-00 UTC forecast period (right).
Values within blocks are sum of average contributions from individual predic-
tors within respective group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 Example of 2-5km maximum updraft helicity with no smoothing (left) and
with 240 km smoothing (right). Notice the substantial drop in magnitude,
but key regions of max helicity are retained. Report contour (black line) and
80 km reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16 Example of increasing spatial average of surface based CAPE with no smooth-
ing (a) 240 km smoothing (b), 560 km smoothing (c), and 1520 km smoothing
(d). General shape of instability plume remains, but local features and gra-
dients are loss, especially by 1520 km smoothing. Report contour (black line)
and 80 km reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 May 10th, 2018 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown
for severe weather reports sample. Blocks are color coded by predictor char-
acteristic and spatial length scale from smallest spatial scales to largest 12-12
UTC forecast period (left), 20-00 UTC forecast period (right). Values within
blocks are sum of average contributions from individual predictors within re-
spective group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 May 10th, 2018 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown
for severe weather reports sample. Blocks are color coded by predictor char-
acteristic and spatial length scale from smallest spatial scales to largest 12-12
UTC forecast period (left), 20-00 UTC forecast period (right). Values within
blocks are sum of average contributions from individual predictors within re-
spective group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 Top 3 contributing storm-attribute predictors when locations had severe weather
May 10th, 2018. From pre-processed 10 member ensemble following steps for
pre-processing as described in methods. (a) 240 km smoothed 2-5 maximum
updraft helicity, (b) maximum 10m wind speed, (c) 240km smoothed column-
hail, (d) corresponding contributions to (a), (e) corresponding to (b), and (f)
corresponding to (c). Contribution levels every 0.01 units from -0.3,0.3 . . . 31

20 Top 3 contributing storm-attribute predictors when locations had severe wind
reports May 10th, 2018. From pre-processed 10 member ensemble following
steps for pre-processing as described in methods. (a) 560 km smoothed 0-3
maximum updraft helicity, (b) maximum 1km dBZ, (c) maximum 10m wind-
speed, (d) corresponding contributions to (a), (e) corresponding to (b), and
(f) corresponding to (c). Contribution levels every 0.01 units from -0.3,0.3 . 31

viii



21 May 18th, 2019 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown
for severe weather reports sample. Blocks are color coded by predictor char-
acteristic and spatial length scale from smallest spatial scales to largest 12-12
UTC forecast period (left) 20-00 UTC forecast period (right). Values within
blocks are sum of average contributions from individual predictors within re-
spective group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

22 Top contributing storm-attribute predictors and Top 2 contributing environ-
ment predictors when locations had severe weather May 18th, 2019. From
pre-processed 10 member ensemble following steps for pre-processing as de-
scribed in methods. (a) 240 km smoothed 2-5 maximum updraft helicity,
(b) 1520 km smoothed 90mb mixed layer CIN, (c) 1520km smoothed v10m
wind, (d) corresponding contributions to (a), (e) corresponding to (b), and
(f) corresponding to (c). Contribution levels every 0.01 units from -0.3,0.3 . 33

ix



List of Tables

1 OU MAP Lab Produced CAE Initialized Days. 25 days from 2018 and 25
days from 2019. Only 2018 has a day in June. All forecast initialization’s
were at 0000 UTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 80 km predictors available to train RF models. Superscripts denote ensem-
ble and temporal aggregation type. For example, a predictor type of 1 is a
mean-max, where the first aggregate denotes ensemble aggregation and second
denotes temporal aggregation. Predictor Types: 1 - mean-max single time, 2
- mean-min single time, 3 - mean-mean single time, 4 - 500mb Height special
case, 5 - max-max hourly max . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 24hr (left) and 4hr (right) CTLRF predictors selected from 45, 80 km pre-
dictors after each iteration during forward predictor selection (FPS). Each
predictor was attained based off the iterative model with the highest brier
skill score possessing said predictor. . . . . . . . . . . . . . . . . . . . . . . . 13

4 24hr and 4hr EXPRF predictors selected from 174, 80 km and multiscale
predictors after each iteration during forward predictor selection (FPS). Each
predictor was attained based off the iterative model with the highest brier
skill score possessing said predictor. . . . . . . . . . . . . . . . . . . . . . . . 14

x



Abstract

Machine learning (ML) algorithms utilized for post-processing of convection-allowing
model/ensemble (CAM/CAE) output has been a major area of research to handle limi-
tations with CAM/CAE forecasts. ML has been used to correct systematic biases, relate
observed variables to numerical output, and synthesize extremely large data into probabilistic
forecasts. In particular, numerous studies have shown random forests (RFs) to be successful
in severe weather forecasting applications utilizing predictors from global scale and/or CAE
output. However, predictors used in the RF models are typically fixed and treated indepen-
dently when training the RF models. This can consequently leave out important information
about the large-scale flow pattern that is necessary for assessing severe weather risk. This the-
sis develops a method for manifesting multiscale flow-dependence into RF models through
direct incorporation of CAE-based predictors that are pre-processed at increasing spatial
length scales. The different length scales account for different scales of motion with the goal
to improve probabilistic forecast skill for a variety of severe weather hazards for next-day
(12-12 UTC) - or 24hr and 4hr (20-00 UTC) forecasts. In order to verify the impacts of
the multiscale predictors on the skill of the RF models, a control (CTLRF) and experimen-
tal (EXPRF) set of RF models were created. The CTLRF models were trained with only
predictors pre-processed to 80 kilometers (km) and the EXPRF models were trained with
predictors pre-processed to 80 km in addition to larger, spatially smoothed 80 km predictors.
Both models were verified against the storm prediction center (SPC) reports quantitatively
and qualitatively. Results show that the EXPRF models had higher brier skill score’s (BSS)
than the CTLRF models for all sub-significant severe weather hazards for both forecast pe-
riods, but significantly higher BSS’s when forecasting any severe weather hazard (24hr and
4hr), wind (24hr), hail (24hr and 4hr), and significant winds (24hr). The EXPRF forecasts
generally had the best resolution component of the brier score (BS), of which some severe
weather hazards were significantly higher than CTLRF forecasts. Furthermore, both models
generally had small calibration error. However, the CTLRF 24hr and 4hr wind forecasts
had significantly lower calibration error compared to EXPRF. In general, neither model’s
probabilistic forecasts were consistently more reliable than the other. Predictor contribu-
tions determined via tree interpreter (TI) showed when severe weather did not occur, on
average, the meso-γ scale storm-attribute predictors contributed more to forecast skill than
the meso-β scale storm-attribute predictors for 24hr forecasts. Whereas the opposite was
true for the 4hr forecasts. When severe weather did occur, on average, the meso-β scale
storm-attribute predictors contributed the most to skill in general. Meanwhile, the meso-γ
scale environmental predictors dominated environment-related contributions to forecast skill,
but in general, most multiscale predictors still contributed to skill. Through case-studies, it
was found that the meso-β and meso-α scale storm-attribute predictors accounts for spatial
uncertainty of simulated storms similar to neighborhood-based CAM forecasts. Meanwhile
the environment predictors, in particular the convective environment predictors, had greater
sensitivity to smoothing and sometimes did not benefit from losing sharp gradients and local
extremes that can be associated with synoptically predictable features.

xi



Introduction

Severe weather forecasting has evolved substantially over the years due in part to more
sophisticated forecasting methods and computational resources. A large component of this
evolution is made up of convection allowing models or CAMs. Unlike global models with
coarser grids, CAMs have fine enough horizontal resolution (normally ≤∼ 4 km) to allow the
primary mesoscale circulations that facilitate the morphology, evolution, timing, initiation,
etc. of convection all while avoiding the need for convective-parameterization (Weisman
et al., 1997; Kain et al., 2006; Done et al., 2004). CAMs have undergone expansive im-
provements over the years for a myriad of reasons, such as improved initialization through
advanced convective scale data assimilation (Johnson et al., 2015, 2022; Johnson and Wang,
2017; Wang and Wang, 2017, 2020, 2021, 2023a,b; Degelia et al., 2019; Chipilski et al., 2020;
Gasperoni et al., 2022; Chandramouli et al., 2022; Yang and Wang, 2023b,a), improved model
physics (Flora et al., 2018; Beck et al., 2016), etc. Another important advancement of CAMs
is the generation of convection allowing ensembles or CAEs. Due to limited predictability
of forecasting the details of convection, errors can grow rapidly in CAM based deterministic
forecasts (Loken et al., 2017) that can translate to poor probabilistic forecasts. CAEs can
estimate forecast uncertainties using different initial conditions (ICs) (Johnson et al., 2014;
Johnson and Wang, 2024, 2016) and varied model physics (Roebber et al., 2004; Kain et al.,
2006, 2008; Johnson et al., 2011a,b; Duda et al., 2014, 2016, 2017; Gasperoni et al., 2020;
Johnson and Wang, 2020). As a result, a range of possible outcomes are accounted for which
can lead to better probabilistic forecasts that can be derived from a deterministic forecast.
CAEs play an important role in operational severe weather forecasting (Benjamin et al.,
2016; Dowell et al., 2022; Roberts et al., 2019)

Despite their advantages, CAMs/CAEs also have inherent limitations. Although they
have the ability to simulate key mesoscale structures of convection that can produce severe
weather, their severe weather hazards are not fully resolved. For the application interested
in severe weather, tornadoes, max-size hail cores, and max-wind gusts - or microbursts -
these are still not resolved at convection-allowing resolution (e.g., Loken et al., 2020; Clark
and Loken, 2022). The CAMs/CAEs can also contain bias (e.g., Herman and Schumacher,
2018b; Loken et al., 2019; Jasper Velthoen and Jongbloed, 2023). A full ensemble member
suite can be systematically biased such as convection initiates too late, too far east, and/or
magnitude of precipitation can be too low or high, etc. (Weisman et al., 2008; Davis et al.,
2006; Gagne et al., 2014). The spread of ensemble members can also be biased, typically
under dispersed, which can result in poorly calibrated forecast probabilities or missed outlier
events (Gebhardt et al., 2011; Romine et al., 2014; Novak et al., 2008). There is also large
data volume to synthesize (e.g., Roebber et al., 2004). Even for small ensembles (e.g. 10-20
members), it can become challenging for forecasters to parse through the data to interpret
and contextualize numerous forecast variables.

To address these limitations, usually one or more post-processing technique is often uti-
lized to derive the probabilities from the ensemble and to calibrate the probabilistic forecasts.
For example, neighborhood-based methods (e.g., Schwartz and Sobash, 2017; Blake et al.,
2018) and object-based probability methods (e.g., Johnson and Wang, 2012; Johnson et al.,
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2013; Johnson and Wang, 2020; Wilkins et al., 2021) have been used to produce convective
scale probability forecasts. There are numerous techniques that have been leveraged for this,
especially statistically driven techniques to calibrate or correct CAEs probability forecasts
(e.g., Johnson and Wang, 2012; Jasper Velthoen and Jongbloed, 2023). Recently, as one of
the statistically driven methods, machine learning (ML) has been used to calibrate CAE
forecasts (e.g., McGovern et al., 2017). As stated in Loken et al. (2020), ML algorithms
ingest historical data and find patterns in the data. These learned patterns can be utilized
to relate CAM/CAE resolved variables to severe weather reports (Loken et al., 2020), cor-
rect systematic biases (Loken et al., 2019; Zarei et al., 2021; Baez-Villanueva et al., 2020;
Jasper Velthoen and Jongbloed, 2023) and synthesize ensemble output that can be post-
processed as simple probabilistic forecasts (e.g., Gagne et al., 2014; Clark and Loken, 2022;
Herman and Schumacher, 2018b; Hill et al., 2020). In addition to this, ML models are
often nonlinear which makes them quite suitable for relating CAEs and severe weather haz-
ards. Some are also human-readable, facilitating the ability to investigate what relationships
the model has identified in relation to an event being forecasted (e.g., McGovern et al., 2017).

Among all ML methods, the random forest (RF) algorithm has become a popular ML
method for post-processing numerical weather prediction (NWP) output and has had success
in severe weather forecasting applications, using both CAM and global ensemble variables
(e.g., Clark and Loken, 2022; Hill et al., 2020; Loken et al., 2019, 2020) as predictors; as well
as for convective related hazards such as severe hail, damaging straight-line winds, heavy
precipitation, etc. (Gagne et al., 2014, 2017; McGovern et al., 2011; Herman and Schu-
macher, 2018b; Medina et al., 2019; Yao et al., 2020). For example, Loken et al. (2020)
obtained next-day (12-12 UTC) severe weather probabilistic forecasts utilizing RFs to relate
CAE forecast variables to severe weather reports. This technique was used to challenge
severe weather forecasts issued from the calibrated Storm-Scale Ensemble of Opportunity
(SSEO) 2–5 km updraft helicity (UH) forecast and storm prediction center (SPC) convec-
tive outlooks. Their results showed that the RF-based forecasts had consistently higher brier
skill scores (BSSs) for all severe hazards (any severe, wind, hail, tornadoes, and significant
counterparts) regardless of the evaluation domain. The most skillful RF forecasts, when
compared against the UH and SPC forecasts, were for wind and hail during the spring and
summer months (March-August). In addition, despite their relatively higher BSSs across
all severe hazards, they did find that the RF-based forecasts for all the severe hazards had
the best resolution, but not necessarily the best reliability. Still for most severe hazards,
the RF-based forecasts outperformed SPC and UH forecasts. RFs are also attractive due to
their physical interpretability as demonstrated in Loken et al. (2022). Using a python-based
module called tree interpreter (TI), they studied contributions made from all predictors for
the same hazards and found that the RF models emphasized different predictors for different
hazards in a physically meaningful way. For example, maximum updraft helicity (UH) 0-3
km was found to contribute more for tornado probabilities than for wind or hail.

Although RFs have shown skill in many facets of meteorology, in particular high-impact
severe weather forecasting applications (Gagne et al., 2017; Hill et al., 2020; McGovern et al.,
2017; Loken et al., 2020; Clark and Loken, 2022; Zeng et al., 2022; Medina et al., 2019), there
is always a need for improvements of these models and one of the problems lies within the

2



spatial mapping. In Liu et al. (2020); Snellman (1982) they explain that features on all re-
solved spatial scales contribute to severe weather risk. In addition, forecasting severe weather
requires information of the large-scale flow (Johns and Doswell III, 1992; Ostby, 1999) to
assess mesoscale evolution that ultimately governs convection. Furthermore, relationships
between CAM forecast variables and observed severe weather are likely to be flow-dependent
(e.g., Loken et al., 2020). However, since the RF models are only using predictors that are
pre-processed to fixed and/or small grids such as (30 km; Clark and Loken, 2022), (20km;
Loken et al., 2019), (80 km; Loken et al., 2020), and treated independently when training the
RF models, the RF models could be missing useful information about the large scale flow
and/or features. To address this issue, Shearer et al. (2023) separately trained RF models
for different classifications of large-scale flow pattern within the same season. However, past
studies have not yet accounted for the large-scale flow dependence of severe risk by directly
including CAE-based RF predictors that are based on the multiple scales of motion. This
study is aiming to answer if and how the incorporation of predictors that represent a broad
range of spatial scales improves RF model probability forecast performance and how these
predictors impact probabilistic forecast performance. In particular, this is accomplished
through direct inclusion of multiscale predictors. The goals of the study are to (1) determine
if the inclusion of multiscale predictors improves the probability forecast skill for a variety of
severe weather hazards and (2) contribute to physical understanding for how the multiscale
predictors affect the RF-based probability forecast performance.

The rest of this thesis is organized as the methodology detailing the datasets used for
pre-processing for the RF models and the experiment design for this study, followed by the
results with analysis of a couple of representative case studies, and closing out with the
discussion of the results and conclusions of this study with suggestions for future work.

Methodology

Datasets

Figure 1: Training/verification domain (grey shading) and 80 km grid points (blue dots)
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For this thesis, NWP output used for the RF-based forecasts came from the University
of Oklahoma (OU) Multiscale data Assimilation and Predictability (MAP) Lab 10-member
CAE produced during the 2018 and 2019 NOAA Hazardous Weather Testbed Spring Fore-
cast Experiments (Johnson et al., 2023). All OU MAP Lab CAE member forecasts are made
on a 3 km grid over a contiguous United States (CONUS) domain with 1620 x 1120 grid
points with a temporal resolution of 1hr. Furthermore, a regional masking was applied to
designate the training and verification domain. This domain spans approximately the central
most region of the CONUS yielding approximately 24 x 30 gridpoints (Fig. 1). The training

Month 2018 2019 Total

April 30 29-30 3
May 1-4, 7-11, 14-18, 21-25, 28-31 1-3,6-10, 14-18, 20-24, 27-31 46
June 1 - 1
Total 25 25 50

Table 1: OU MAP Lab Produced CAE Initialized Days. 25 days from 2018 and 25 days
from 2019. Only 2018 has a day in June. All forecast initialization’s were at 0000 UTC

and verification domain are chosen to focus on an interior region with reliable severe weather
reports (e.g., excluding oceans and international boundaries) and sufficient distance from the
computational domain boundary to enable smoothing over large distances. Forecasts were
initialized at 0000 UTC and ran for 36 hours with forecast lead time 12-36 hours (i.e., 12-12
UTC). Since not all days during these periods had severe weather forecasted, only 50 cases
were available (Table 1).

Severe weather observations used for verification and training of the RF models, were
pulled from the filtered SPC storm report database. The reports were then remapped to an
80 km grid and were encoded as a 1 (a report) or 0 (no report) depending on if there was a
report within the 80 km grid box during the forecast period. This is similar to SPC verifica-
tion that uses a 40 km radius from a given point. The storm reports consist of severe wind
(≥ 50 kt or 58 mph), significant winds (≥ 65 kt or 75 mph), severe hail (maximum hailstone
diameter ≥ 1.00 in), significant hail (maximum hailstone diameter ≥ 2.00 in), tornadoes,
and significant tornadoes (≥ EF2).

Report climatology (Fig. 2a-d) within the forecast-domain showed that any severe weather
reports had the largest spatial distribution with a majority of reports from the central/southern
plains and the midwest. Wind and hail reports made up most of the severe weather reports
with greater spatial distribution from wind reports over hail reports. Although there were
8 severe weather hazards forecasted in this study, only four were chosen to show since the
remaining hazards had similar distributions, but much less in frequency.

Predictor Fields

45 model forecast variables were made available to the RF models for training (Table 2).
The model variables were first re-gridded to 80 km before being used for training of the RF
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Figure 2: Spatial frequency and distribution of severe weather reports for 80 km points, for
the 4 largest report samples. Size and color are based on size with an interval of 0.75 for
for visual aid. (a) any severe, (b) wind, (c) hail, and (d) any sig. severe. Forecast domain
(black line) for reference

models. There are four groups of fields: storm-attribute, environmental, convective-related,
and other (encompassing latitude and longitude). For simplicity in the physical quantifi-
cation of the predictors, the convective-related predictors are grouped as environmental
predictors yielding only three groups for comparison.

Random Forests (RFs)

RFs are made up of an ensemble of decision trees and can either be used for regression
or classification (Breiman, 2001). For this study, RFs are used as a classification method
following past studies (e.g., Hill et al., 2020; Herman and Schumacher, 2018b; Zeng et al.,
2022; Medina et al., 2019; Ahijevych et al., 2016). This simplifies the relationship of the
resolved CAE variables to the severe weather reports. Furthermore, RFs were used for this
thesis since they are parallelizable, do not require standardized input, require less hyper-
parameters to tune, and have physical interpretability (Loken et al., 2019). These are what
makes them particularly attractive for this study. There have been numerous successful
studies implementing RFs as a means to post-process NWP outputs to produce probabilistic
forecasts (Clark and Loken, 2022; Gagne et al., 2014; Loken et al., 2019, 2020; McGovern
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80 km RF Predictors

Storm-Attribute
Fields5

Environment-related Fields3 Convective-related Fields Other3

Maximum Updraft He-
licity 2-5km (uh25)

2m - Temperature (T2m) 180mb ML CAPE1 (mlcape180) Latitude (lat)

Maximum Updraft He-
licity 0-3km (uh03)

2m - Dewpoint Temperature
(Td2m)

180mb ML CIN2 (mlcin180) Longitude
(lon)

Maximum dBZ 10c
(dbz10c)

10m - u-wind (u10) 90mb ML CAPE1 (mlcape90) -

Maximum dBZ 1km
(dbz1km)

10m - v-wind (v10) 90mb ML CIN2 (mlcin90) -

Maximum Hourly Pre-
cip (hrprecip)

mean sea level pressure (mslp) 225mb MUCAPE1 (mucape255) -

Maximum Windspeed
10m (wspd10m)

precipitable water (pw) 225mb MUCIN2 (mucin255) -

Column Hail (colhail) 850 mb - u-wind (u850) surface-based LCL (sblcl)3 -
- 850 mb - v-wind (v850) SBCAPE1 (sbcape) -
- 850 mb - Heights (z850) SBCIN2 (sbcin) -
- 850 mb - Temperature (T850) 0-1km Helicity3 (hlcy01) -
- 850 mb - Dewpoint Temperature

(Td850)
0-3km Helicity3 (hlcy03) -

- 700 mb - u-wind (u700) - -
- 700 mb - v-wind (v700) - -
- 700 mb - Heights (z700) - -
- 700 mb - Temperature (T700) - -
- 700 mb - Dewpoint Temperature

(Td700)
- -

- 500 mb - u-wind (u500) - -
- 500 mb - v-wind (v500) - -
- 500 mb - Heights4 (z500) - -
- 500 mb - Temperature (T500) - -
- 500 mb - Dewpoint Temperature

(Td500)
- -

- 250 mb - u-wind (u250) - -
- 250 mb - v-wind (v250) - -
- 250 mb - Heights (z250) - -

Table 2: 80 km predictors available to train RF models. Superscripts denote ensemble and
temporal aggregation type. For example, a predictor type of 1 is a mean-max, where the first
aggregate denotes ensemble aggregation and second denotes temporal aggregation. Predictor
Types: 1 - mean-max single time, 2 - mean-min single time, 3 - mean-mean single time, 4 -
500mb Height special case, 5 - max-max hourly max

et al., 2017). They are quite powerful in the sense they can ingest extremely large amounts
of data and find important patterns that can summarize information from CAEs quickly
and effectively. Since RFs can be trained using the resolved CAE variables as predictors
and severe weather reports as targets, relationships can be identified between them acting to
essentially resolve even smaller scale events. RFs require pre-processing of the global-scale
or CAE variables in order to be quick and effective. There are two steps that are employed
to reduce dimensionality of the variables, a temporal and a spatial step. Predictors are also
selected in some manner to use for training the model.

Building blocks of the RF algorithm begins with decision trees. A single decision tree
recursively splits a dataset based off the most optimized split of a node. Optimized is based
off a feature (i.e., predictor) and feature value that minimizes the impurity of a sample. Note
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every feature is considered in determining the optimal split. The splitting continues until all
leaf nodes are pure (i.e., only containing samples that are all true or false). However, decision
trees alone are deterministic and optimized to a given training data set thus heavily prone
to overfitting. RFs alleviate this issue with an ensemble of decision trees. The RF algorithm
works by growing numerous unique decision tress. From which, stochasticity makes them
unique. This is manifested in the decision trees in two ways. The subset of training samples
are determined by bootstrap resampling and the splitting of the nodes are determined by
random subsets of variables. Once all the decision trees have been split and, either all
terminal nodes are pure, or a certain criteria is met, a democratic processes follows. All
decision trees will have their own final classification for the training set and majority vote
rules. For example, if there are 500 decision trees and 300 of those classify something as
a 0, then the classification issued by the RF model will be a 0. Expanding upon this for
the probabilistic forecasts, each grid point uses the RF classifier that takes in a new sample
and runs it through every tree in the forest. Instead of a pure classification of a 0 or 1
being classified at that grid point, a probability is given that is based off the mean fraction
of training samples that are associated with a given class at the relevant leaf node across
all decision trees. Furthermore, RFs are also attractive due to their relative insensitivity
to parameters in terms of model performance (Herman and Schumacher, 2018a). For this
study, all RFs had a forest size of 1000 trees, maximum tree depth of 10, a minimum of
30 samples per leaf, square root of the total number of features for maximum number of
features considered at each branch, max samples 0.25 of the total for building each tree, and
splitting criterion set using entropy. All the hyperparameters were consistent for all RF’s.
These hyperparameters were based off sensitivity tests performed in Herman and Schumacher
(2018a) with the most deviant parameter being forest size from previous studies. However,
this does not impact skill. This was discussed in Herman and Schumacher (2018a), where
forest size skill increases with larger forests and asymptote’s at some level, but beyond this the
trees just become redundant and computationally expensive. The RFs and RF probabilities
were created using random forest classifiers from the Python module Scikit-Learn (Pedregosa
et al., 2011). Discussion of the pre-processing of predictors, experiment design, train/test
split, predictor selection, and differences among the experiments are explained further in the
next few sections.

Pre-processing of Data

a.) 80 km Predictors

For all 10 members of the CAE, the following forecast variables were pre-processed as fol-
lows. In order to conserve the environment-related and convective-related forecast variables,
they were remapped from the 3 km grid to the 80 km grid using nearest neighbor-averaging
(i.e. remapping) as explained in Accadia et al. (2003). For the storm-attribute output vari-
ables, they used a maximum output value from each 3 km grid point within the 80 km
grid. This effectively created 80 km predictors available to the RF as shown in Table 2.
Due to the high dimensionality of the CAE output, multiple steps are used to further re-
duce dimensionality of the dataset to make the RF computation feasible during training
(Loken et al., 2020). This is accomplished by aggregating all the ensemble members and
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the temporal dimension. For the environment-related variables, the temporal mean of the
ensemble mean was used as this was the representative value over the entire forecast period.
For the convective-related variables, the temporal maximum (or minimum) was taken of the
ensemble mean. This was representative of the ensemble prediction at time that was most
favorable for severe weather. Lastly, the storm-attribute predictors used the temporal max-
imum of the ensemble maximum representative as the ”worse-case” or most severe storm
within the ensemble during the forecast period. Though more of the ensemble distribution
or temporal distribution could’ve been utilized, the simplicity of the aggregations used here
reflect at least one or more aggregation other studies have used (e.g., Loken et al., 2017,
2019, 2020; Clark and Loken, 2022). Furthermore, to reduce complications of how different
aggregations could impact the RF skill for each predictor, thus deviating from the scope
of the smoothing of the predictors, these aggregations were representative enough for the
corresponding predictors.

b.) Multiscale Predictors

Obtaining the multiscale predictors required one more step increasing the spatial scales
of the original 80 km predictors via spatial smoothing. To start the smoothing process,
first ±0, 1, 3, and 9 80 km gridboxes were created around every 80 km gridbox to define
a larger spatial box. Note ±0 is the un-smoothed 80 km gridbox. For example, a ±1 80
km gridbox would yield a 240 km × 240 km box including the original 80 km gridpoint.

Figure 3: Schematic example of smooth-
ing procedure for effective diameter = 240
km. Black dots representative of 80 km
gridpoints. Gridboxes representative of
80 km grid boxes. Grey filled boxes de-
note ±1. Smoothing radii r is equivalent
to number of grid boxes to smooth over
× 80 km. Maroon filled boxes denote ac-
tual gridboxes included in averaging mak-
ing up effective diameter

Next, following similar procedure for creating a
neighborhood around a given point using the ge-
ometry of a circle as in (Schwartz and Sobash,
2017), smoothing radii (i.e. radius of influence)
were applied to all newly defined gridboxes from
the previous step corresponding to the number of
80 km gridboxes that makes up the larger spatial
box: r = 0, 1, 3, 9× 80 km where r is the number
of grid points away from a given 80 km gridbox
point. To clarify, the smoothing radius is equiva-
lent to r×80 km. In order to effectively represent
the spatial smoothing of each predictor, an ”ef-
fective diameter” is defined that is representative
of the number of 80 km gridboxes that are in-
cluded within the smoothing radii. For example
(Fig. 3), for a smoothing of ±1 80 km gridbox,
the width of 80 km gridboxes is 240 km whose
gridpoints are within the smoothing radius, thus
resulting in a smoothed predictor considered to
be at the 240 km scale. With this definition, the
categories of spatial scales are then defined as 80
km, 240 km, 560 km, and 1520 km. This proce-
dure is calculated for all model output variables,
length-scales, and gridpoints within the domain,
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effectively creating predictors that utilize increasingly larger spatial scales.

Characteristic RF models

A RF model is created for each severe weather hazard (8) and forecast period (2). In
addition to test and understand what impacts the multiscale predictors had on the forecast
skill of a RF model, two ”characteristic” RF models were also developed. Thus, 32 total RF
models were created. Characteristic is defined here as the nature of which predictor scheme
a given RF model is trained on. The first characteristic model, is the Control RF model
(CTLRF) which is trained with only the 80 km predictors. The second characteristic model,
is the experimental RF model (EXPRF) which is trained with 80 km, 240 km, 560 km, and
1520 km predictors.

Training and Testing

Training and testing of the RF models started out with 50 total cases from Table 1. Of
those 50, 30 were randomly selected for training to break any potential highly correlated
days that could follow subsequent severe weather events. The remaining 20 cases were used
for testing and verification of the RF models. Both CTLRF and EXPRF models are each
trained for forecasting any severe weather, wind, hail, and tornadoes as well as their signifi-
cant severe counterparts for a 24hr and 4hr period.

At this point, a distinction between this thesis and others’ work is the method of predictor
selection for training. Typically, predictors are chosen in a subjective way that matches
current knowledge of relationships between the predictand and predictors. However, for this
study the nature of the physical relationships of multiscale predictors to the predictand’s are
not necessarily known. The same variables, but at different scales as predictors are available
which could lead to redundancy. There is also a need to build a simple yet skillful RF model
for physical interpretation. For those reasons, use for an objective predictor selection method
was warranted.

Forward predictor selection (FPS)

An objective method for predictor selection called Forward predictor selection (FPS) (see
McGovern et al., 2019; Jasper Velthoen and Jongbloed, 2023) was used for this study. It is an
objective method that iteratively builds the RF models from a null RF model to an optimized
RF model. This is used since it’s been shown that including too many variables often leads
to a decrease in statistical efficiency and degrades model interpretability (Jasper Velthoen
and Jongbloed, 2023). Furthermore it reduces noisy and/or redundant predictors (Hall
et al., 2011; Ahijevych et al., 2016) and has been shown to attain the most optimal set of
predictors (Jasper Velthoen and Jongbloed, 2023). Thus, FPS can accomplish the task of
building simple yet skillful RF models. The procedure starts with a null RF model (e.g. 24-hr
CTLRF forecasting any severe weather hazard). Then a corresponding number of RF models
to available predictors are trained. Some verification metric is calculated, in this case BSS,
for all RF models trained. The RF model trained with the predictor that yields the highest

9



BSS is the first predictor selected for the null model. After designating the first predictor for
the null model, this becomes the ”single-predictor” model from which is then trained with
each remaining predictor (in addition to the predictor that was selected) once more. Now, in
the case of the predictors available to the CTLRF models, 45 RF models are retrained with
the retained predictor in the previous iteration. The predictor appended to the RF model
yielding the highest BSS is the next predictor selected now making a two-predictor model.
These iterations continue until some criteria is met. For this study, this criteria was the
difference in BSS between the ”current” iteration and the previous iteration being ≤ 0.001,
indicating a very marginal addition of skill or a drop in skill. Once this criteria is met, the
RF model is complete. This procedure is employed for all RF models created for each severe
weather hazard and forecast period. Another goal of using this method was to reduce the
computational cost associated with the EXPRF models using 174 possible predictors that
would likely be highly correlated since the additional predictors are smoothed variations of
the forty-five 80 km predictors.

RF Verification

In order to verify the performance of the RF models, summary metrics such as brier
skill score (BSS), brier score (BS) and the components of BS (Wilks, 2019): reliability
(REL), resolution (RES), and area under the relative operating charactersitic (ROC) curve
(AUC) as well as graphical devices such as performance diagrams (Roebber, 2009), attribute
diagrams (Hsu and Murphy, 1986; Wilks, 2019), and ROC curve diagrams were utilized
(Wilks, 2019). The brier score is a summary metric for the magnitude of probabilistic
forecast error for a given model (Loken et al., 2020). It is negatively oriented such that a 0
indicates perfect forecasts and 1 indicates no skill. The BS can be algebraically decomposed
into three components (Wilks, 2019): reliability, resolution, and uncertainty.

BS =
1

N

I∑
i=1

(pi − oi)
2 =

1

N

K∑
k=1

Nk(pk − ok)
2 − 1

N

K∑
k=1

Nk(ok − o)2 + o(1− o) (1)

where N is the total number of forecasts/observation pairs, pi is the forecast probability at
point i, oi is the binary observation (0 or 1) at point i, K is the number of forecast probability
bins, Nk is the number of forecasts in the kth probability bin, pk is the probability for the
kth bin, ok is the average relative frequency of observations (0 or 1) in probability bin k, and
finally o is the average observation frequency for all forecasts (i.e., climatology). The first
term is the reliability, second term resolution, and last term uncertainty. Reliability can be
thought of as the error between forecast probabilities and observed relative frequencies, res-
olution is the mean squared difference between observed relative frequency and climatology,
and uncertainty is essentially the brier score of climatological forecasts (Wilks, 2019). Relia-
bility is a good summary metric to assess forecast skill since it explains how well-calibrated
a forecast model is. It is negatively-oriented so the larger (smaller) reliability is the poorer
(better) the calibration of the model is. Resolution is also another good summary metric
in that it explains how well a forecast model is able to discern differences in probabilities
of events. It is positively oriented so higher (lower) resolution means greater (lower) differ-
entiation of forecast probabilities and events. Lastly, uncertainty reflects the climatological
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frequency of the event. Although, the brier score clues into how ”accurate” a forecast model
is, there is a need to compare forecast skill of the model to that of some reference forecast skill.

The BSS, defined in Eq. (2), is the fractional decrease in probabilistic forecast error
relative to some reference forecast (Wilks, 2019).

BSS =
BS −BSref

0−BSref

= 1− BS

BSref

(2)

Typically, this reference forecast is climatology. BSS is positively oriented where a 1 means
perfect forecasts. Unlike brier score, BSS can have negative values where values ≤ 0 indicates
no skill. This metric provides a valuable assessment for summarizing how well one forecast
model is relative to some reference forecast model. Furthermore, since trivial negatives
can impact brier score, the BSS results are considered much more heavily (Loken et al.,
2022; Wilks, 2019). In order to discern significant differences in forecast skill between the
two characteristic RF models, permutation resampling of the BS differences (Johnson et al.,
2013) was used to assess significance of skill between the RF models. Resampling verification
statistics are important for this case since independent sampling cannot be assumed.

BSSdiff = 1− BSexp

BSctl

(3)

In order to make a fair comparison of the EXPRF and CTLRF models, the difference in BS
that will be tested for significance is defined as the ratio of the EXPRF probabilistic forecast
error and CTLRF probabilistic forecast error as shown in Eq. (3). This method is applied to
test significance with 80% or more confidence (i.e. pvalue ≥ 0.2) of the difference in forecast
skill for all severe weather hazards and periods listed previously. In addition, the differences
in reliability and resolution were also tested for significance using a similar method as that
used for testing the BSS differences.

AUC is a summary metric for the ROC curve diagrams (Wilks, 2019). It is positively
oriented. AUC measures how well probability forecasts are able to discriminate a dichoto-
mous event. It is typically calculated using a trapezoidal approximation for calculating the
area under the ROC curve. 0.5 or less is considered an unskillful forecast whereas > 0.7 is
considered the lower limit of skillful forecasts (Buizza et al., 1999). Since the ROC curve
plots the probability of detection (POD) versus the probability of false detection (POFD) for
some probability threshold, the closer the data points are to the top-left corner the larger the
AUC. However, as discussed in (Loken et al., 2020) it is not uncommon for forecast models
to have AUC’s ≥ 0.9 due to POFD often times being reduced due to correct negatives when
forecasting severe weather events (especially when the events are rare).

Attribute diagrams are used for assessing quality of samples of probability forecasts for
depicting REL and RES (Hsu and Murphy, 1986). It plots the conditional relative frequency
of observations given each forecast probability against forecast probability. This was used
as a way to show how well the models are calibrated and how well models forecasts are able
to discern differences in forecast probabilities of events.
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Performance diagrams (Roebber, 2009) are a graphical device that compliment ROC
curve diagrams. They plot the success ratio (SR) versus POD for some probability threshold
making it much more sensitive to incorrect forecasts when an event didn’t occur. They also
include frequency bias spikes from the origin of the plot and contours indicating critical
success index (CSI). Values are optimized at 1 so values closer to the top-right corner yields
higher performance. Since POD is related to resolution and FAR is related to reliability,
lower or higher FAR or POD, respectively, would impact the BS which in turn would impact
the BSS. Thus, it is a very useful verification tool for further understanding BSS.

RF Physical Interpretation/TI Module

In order to perform physical diagnostics of the RF models for determining how the
multi-scale predictors impact the RF models, a similar method to that used in (Loken et al.,
2022) was employed using a python-based module called TreeInterpreter (TI). This module
facilitated the analysis for discerning predictor importance of the RF models as well as un-
derstanding what the RF models have learned.

Tree Interpreter (TI) is a python-based model that takes a given testing sample and runs
it through each decision tree in the forest, recording at each node how a predictor impacts
the training sample purity (or training climatology). From which the sum of the impacts (or
contributions) are made over all nodes in the forest and reports the mean contribution of a
predictor. More information and specifics can be found in (Loken et al., 2022). In summary,
TI features the ability to decompose the final RF probability into components of bias and
predictor contribution

Pr(RF ) = Bias +
N∑
i=1

Pi (4)

where Pr(RF ) is the final RF probability, Bias is the training sample climatology, Pi mean
probability contribution from ith predictor, and N is total number of predictors in RF model.
In addition to this decomposition, the components are also stratified based off class. For this
case, TI stratifies the decomposed final RF probability into the binary ”no” reports (o0) and
”yes” reports (o1). Note that since the classes are binary, the magnitudes will be the same
for both classifications but one will be a positive contribution and the other will be negative
and vice versa. Due to this, in order to assess predictor contribution to forecast skill the
entire testing sample was separated into two sub-samples, one with no reports and the other
with reports. Contribution to forecast skill was considered when there were negative average
contributions from a predictor (i.e. decreasing probabilities) for the class o0 in the no report
sample. Likewise, contribution to forecast skill was considered when there were positive
average contributions from a predictor (i.e. increasing probabilities) for the class o1 in the
yes report sample. Furthermore, considering that each RF model had different predictors
selected based off FPS, the predictors average contributions were grouped together based off
predictor-type (i.e. environment, storm-attribute, or lat/lon) and smoothing spatial scale
allowing for comparison of contributions to forecast probability despite the differences in in-
dividual predictors selected. Note that the convective-environment predictors were grouped
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with the the environment predictors for simplicity. The groups were simply the sum of the
average contributions from the predictors within that group. This is because a given final
prediction is the bias and sum of the individual predictors’ average contributions. It wouldn’t
make logical sense to discuss the grouped contributions as an average as this wouldn’t equate
to the final RF probability as if it was just from the predictors themselves.

To summarize all this information, stacked bar plots were chosen. Though it is not clear
which individual predictors are shown and groups can sometimes have only one predictor, it
summarizes the most important contribution information from the multiscale contributions
against the 80 km predictor contribution well. Lastly, since the CTLRF and EXPRF models
were trained with different predictors that were chosen by the FPS, a direct comparison of
contributions from the CTLRF and EXPRF models was not performed, but inferences were
made based off the skill differences and how the 80 km predictors that were selected for the
EXPRF model contributed against the multiscale predictors selected.

Results

RF Predictors Selected

Predictor selection for the RF models was based off the FPS method discussed in For-
ward predictor selection (FPS). Each characteristic RF model (i.e. CTLRF and EXPRF)
was built with predictors that yielded the highest BSS. For both periods and both CTLRF

FPS Random Forests CTLRF 12-12 and 20-00 UTC Models

Severe Hazard Predictors (24 hr) Predictors (4 hr)

Any Severe
uh25, sbcape, v500, wspd10m, T500, dbz1km,
mslp

uh25, dbz10c, sbcin, v850, mslp, u10m, T250

Wind colhail, wspd10m, T500, dbz1km, T2m, uh03, v10 colhail, v850, z500, T250, sbcin, Z250, lon

Hail uh25, wspd10m, mlcape90, lon, lat, Td2m uh25, mlcape180, lon, sbcin, u10, dbz10c, mslp

Tornado
colhail, v500, u500, dbz1km, wspd10m, mslp, sb-
cape

colhail, v500, u500, z700, sbcape, lat

Any Sig.Severe
uh25, v500, mlcape255, u500, mslp, T700, lon,
Td500

T850, T700, dbz1km, u250, Td2m

Sig. Wind uh25, lat, lon, mslp sbcin, z500, lat, uh25, mslp

Sig. Hail uh25, lon, mlcape90 mucape255, Td2m, dbz10c, Td850

Sig. Tornado z850, v500, lon
u500, mucin255, u700, u250, sbcin, lon, hlyc1km,
T850

Table 3: 24hr (left) and 4hr (right) CTLRF predictors selected from 45, 80 km predictors
after each iteration during forward predictor selection (FPS). Each predictor was attained
based off the iterative model with the highest brier skill score possessing said predictor.

and EXPRF models, the FPS selected predictors corresponding to environment, convective,
and storm-attribute fields. For all of the 24hr sub-significant severe weather hazards, the
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FPS Random Forests EXPRF

Hazard r = 80 km r = 240 km r = 560 km r = 1,520 km

Any (24 hr)
sbcape, wspd10m,
mslp, T500

uh25, colhail,
wspd10m

v10 v10, mlcin90

Wind (24 hr) colhail, T2m, sblcl
wsdp10m, T500,
dbz1km

uh03 sbcape

Hail (24 hr)
uh25, mlcape90,
dbz10c, sbcape, u500,
lon

Td2m, wspd10m pw mucape255mb

Tornado (24 hr) lon dbz1km, v250 uh25, Td700 v10m, Td500

Any sig. (24 hr) lon uh25, mslp hlcy3km, T700, u500
Td500, T250, ml-
cape90mb, Td700

Sig. Wind (24 hr) mslp, lon, lat uh25, hrprecip, sblcl - -

Sig. Hail (24 hr) uh25, lon - - dbz1km, v10m

Sig.Tornado (24
hr)

- - v10 z850, z500

Any (4 hr)
mlcape90, mucin255,
u10

dbz10c, wspd10m, col-
hail

- v10m, mslp

Wind (4 hr) - dbz10c, colhail v10, T2m T850, dbz10c, mslp

Hail (4 hr)
uh25, mlcape180,
sbcin, maxdbz10c,
u10m, z850

dbz10c Td2m -

Tornado (4 hr) maxspd10m, lat - u10 v700, z700

Any Sig. (4 hr)
mlcin180, mucape255,
lon

u500 mlcin180 mucin255, u850

Sig. Wind (4 hr) sbcin, z500 - mlcin90 -

Sig. Hail (4 hr)
mucape255, Td2m,
dbz1km, Td850

- - u10

Sig. Tornado (4 hr) - u10 - sbcin, T850, mlcin90

Table 4: 24hr and 4hr EXPRF predictors selected from 174, 80 km and multiscale predictors
after each iteration during forward predictor selection (FPS). Each predictor was attained
based off the iterative model with the highest brier skill score possessing said predictor.

EXPRF models utilized predictors representative of all larger spatial scales. In addition to
this, all other severe hazards used variations of the larger-scale predictors (Table 4). It was
also common for most of the sub-significant severe weather hazards (i.e., 24hr and 4hr any
severe, wind, and 24hr tornado) to utilize two or more larger-scale storm-attribute predictor
ranging between smoothing levels of 240 km and 560 km. Most frequent of which, was the
2-5 km maximum updraft helicity (maxuh25). However, it was more common for the fixed
80 km convective environment predictors to be selected (e.g., surface based CAPE, 90mb
mixed layer CAPE, 255mb most unstable CIN, etc.) over the larger-scale variations, espe-
cially for hail forecasts. Also unique to all the hail forecasts, was the substantial use of the
fixed 80 km convective and storm-attribute predictors over the larger-scale variations. For
the more synoptic influenced predictors (e.g., u and v winds, temperature (T), and dewpoint
temperature (Td) of varying pressure levels) the larger-scale variations were selected more
often.
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There also appeared to be more predictors selected for the EXPRF model that would
provide greater predictability of the afternoon severe weather (20-00 UTC) parameter space
(SBCAPE, MUCAPE255mb, SBCIN, etc.) than were selected for the CTLRFmodel (Table 3
right column and Table 4 bottom 8 rows)

CTLRF Verification

Qualitative Overview of Forecasts

Figure 4: CTLRF forecasts for May 18th, 2019. Filled contours are continuous probabilistic
forecast values contoured at 0.2% intervals between 0 and ≥ 60%. Red contour lines are
region of 80 km storm reports. Left set of 4 panels are for 24hr forecasts for: (a) any severe,
(b) wind, (c) hail forecasts, and (d) any sig. severe. Right set of panels for 4hr forecasts for:
(e) any severe, (f) wind, (g) hail, and (h) any sig. severe

A case study from May 18th, 2019 was used to assess a baseline of qualitative skill of
the CTLRF model in both forecast periods (Fig. 4). Based off radar images and the SPC
convective outlook regarding to this forecast period (not shown), the vast majority of the
severe weather impacts were due to a dual squall line event. One squall line evolved from
southeastern OK and moved across LA while the other moved across OK into southwest
and central MO over the 24hr period. Examining the CTLRF model forecasts for 24hr any
severe weather hazard, severe wind, severe hail, and any sig. severe (Fig. 4a-d) forecasts
were qualitatively skillful. Meanwhile in the 4hr period, there were some discrepancies that
promoted lower qualitative skill relative to the 24hr forecasts.

In particular, in the 24hr any severe and wind forecast, the majority of the probabilities
were within the report regions, especially the highest probabilities across northeast TX into
central AR (Fig. 4a,b). The 24hr hail probabilities were highest in a region of severe weather
reports. In addition to appreciable probabilities throughout OK and northern TX, where
scattered hail reports occurred (Fig. 4c). Meanwhile, though probabilities were low for 24hr
any sig. severe, the trend continued with appreciable forecast probabilities corresponding
to regions of reports. In the 4hr period, generally across all 3 forecast hazards (Fig. 4d-f),
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higher to the highest probabilities were embedded within regions of severe weather reports.
Furthermore, there was a greater tendency for over-forecasting, especially for any severe
hazard where the probability maxima in southeast OK lied outside of the main report axis
from northeastern TX stretching into central MO (Fig. 4e).

Although the 24hr forecasts were skillful, there were still some forecast errors to be
addressed. Among all three 24hr forecasts for any severe, wind, and hail; all had consistently
relatively higher probabilities across northern MO, into central IA outside of the report
regions (Fig. 4a-d). In addition, equal maximum hail probabilities were forecasted both
inside and outside of the region of hail reports in KS, most substantially in northeastern
KS (Fig. 4c) and for both 24hr any severe and wind, there was a substantial reduction
in probabilities across a large report swath in central MO (Fig. 4a,b). It was also true
that CTLRF forecast had one area forecasted with highest wind potential (Fig. 4b; highest
forecast probability swath).

Quantitative Overview of Forecasts

To establish a baseline for a quantitative investigation between the CTLRF and EXPRF

Figure 5: Forecast domain-wide BSS for CTLRF-based probabilistic forecasts for 24hr fore-
casts (dark green) and 4hr forecasts (light green)

models, Fig. 5 shows the BSS for the 24 hour and 4 hour CTLRF models forecasting all 8
severe weather hazards. Note the BSS shown here was calculated relative to the climatology
of the severe weather reports for each hazard, respectively from Eq. (2). In the 24hr period,
the CTLRF model forecasting any severe weather hazard boasts the highest skill relative to
all other hazards and periods (results similar to that in Loken et al., 2020). As expected
for the remaining hazards, skill decreased corresponding to sample size of the reports (e.g.,
there were more wind reports than there were hail and tornado reports; refer to Fig. 2).
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For the 4hr period, once again CTLRF forecasts for any severe weather hazard were the
most skillful. However, 4hr hail forecasts were more skillful than 4hr wind contrary to the
24hr hail. For the 24hr and 4hr significant severe weather hazards, the findings for the
sub-significant severe hazards translated into the 4 hour period with lower skill, especially
where sample size became quite small. Between the 24hr and 4hr CTLRF forecasts, the
24hr CTLRF models were more skillful forecasting all 8 severe weather hazards than the 4hr
models, demonstrated in the case study (see Fig. 4)

ROC curve diagrams give a graphical representation of the RF model’s ability to classify
different events at different probability thresholds. In Fig. 6, it was clear that all RF models

Figure 6: ROC curve plots for probability threshold every 3% with 24hr and 4hr AUC values
annotated adjacent to x-axis for a.) any severe hazard, b.) wind, c.) hail, d.) tornado, e.)
any significant severe, f.) significant wind, g.) significant hail, h.) significant wind, and i.)
significant tornado, 24hr forecasts (dark green line, with dark green triangles marking each
probability threshold) and 4h forecasts (same as 24hr except light green)

for both 24hr and 4hr periods were skillful in that they had an AUC > 0.7. However, for
the sub-significant severe weather hazards, the calculated AUC’s all lie above 0.9. This is
common for severe weather due to numerous trivial negatives (i.e. rare events). Since the
ROC curve utilizes POFD (which is a function of true negatives), a large number of true
negatives can heavily influence the AUC for these RF models (Loken et al., 2020). Despite
this issue, the ROC curve still demonstrated the RF models event detection from non-events
(i.e. higher POD rates than POFD rates; e.g.,Fig. 6a,d,g,etc.). Similar to what was seen in
the BSS results, AUC also agreed with the CTLRF model skill decreasing with severe weather
hazard sample size. However, there were some deviations from this big-picture trend. In
the 24hr vs 4hr tornado forecasts, the 4hr CTLRF model was better able to discern tornado
events than the 24hr. Possibly an artifact of the lower sample size in the 4hr period inflating
AUC. Just as in the BSS results, except for a couple nuances, the 24hr CTLRF models were
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also more skillful than the 4hr CTLRF models via AUC verification (Fig. 6). The AUC’s
for the 24hr and 4hr were also comparable to that of previous studies with most forecast
hazards attaining AUC’s greater than 0.9.(Fig. 6)

EXPRF vs. CTLRF Verification

Quantitative

Figure 7: Forecast domain-wide BSS (left) for 24hr CTLRF-based probabilities (dark green
bars) and 24hr EXPRF-based probabilities; 4hr CTLRF (light green) and 4hr EXPRF (light
blue). Two lines plotting the difference of BSS calculated using Eq. (3) for 24hr (dark cyan)
and 4hr (cyan). Difference of BS (right) calculated using Eq. (3) for 24hr (dark cyan) and
4hr (cyan) probabilistic forecasts. x-hatch mark denotes significance with a p-value ≤ 0.1.
Forward slash hatch denotes p-values greater than 0.1, but less than 0.2

For the 24hr forecast period, EXPRF had a higher BSS than CTLRF forecasting any
severe, wind, hail, tornado, any sig. severe, and sig. wind. In the 4hr period, this was
also true for any severe, wind, hail, tornado, any sig. severe, and sig, hail. CTLRF had a
higher BSS than EXPRF when forecasting 4hr sig. wind, 24hr sig. hail and both 24hr and
4hr sig. tornado. These results were based off Eq. (2) for each severe weather hazard and
period, respectively. In order to give a fair comparison of the model performance against
each other (Wilks, 2019), the BSS’s were calculated using Eq. (3) treating the reference BS
as the CTLRF BS. When the BSS of the EXPRF model was calculated with respect to
CTLRF model, the results were in agreement with what was found when calculated relative
to respective climatology, for the 24hr and 4hr forecast period (Fig. 7 left; line plots).

The EXPRF probabilistic forecasts with the most statistically significant differences from
the CTLRF probabilistic forecasts (i.e. > 90% confidence) were for 24hr any severe, wind,
and significant wind (Fig. 7 right). The EXPRF forecasts were also significant at a mini-
mum level of 80% significance for 4hr any severe and hail. Although CTLRF forecasts for
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Figure 8: Decomposition of brier score components among all 8 severe hazards. (left) each
row corresponds to (top to bottom) brier score, reliability, resolution for 24hr and 4hr CTLRF
and EXPRF probabilities (same color scheme as in BSS figure). (Right) is the difference
between EXPRF and CTLRF (brier score, reliability, resolution, and uncertainty). X-hatch
marks denote significance difference at a p-value ≤0.1 and forward-slash indicate a p-value
larger than 0.1, but smaller than 0.2. Last row, last column difference in climatology for the
same forecast period and hazard is zero.

24hr significant tornado were also statistically significant at this level, this was likely due to
bias in forecast probabilities over samples that were almost all ”no report”, and therefore of
negligible practical significance. Meanwhile, though the EXPRF forecast skill differences in
the 24hr period for tornadoes and any sig. severe weather hazard were positive, they were
not statistically significant suggesting larger sample sizes maybe needed to see a significant
difference. Additionally, EXPRF forecast skill differences in the 4hr period for wind and
hail were also positive, but EXPRF did not have significant advantage with these forecasts.
Overall, except for the vanishingly rare sig. tornadoes, all statistically significant differences
favor EXPRF over CTLRF.

While the BSS in Fig. 7 showed for which severe weather hazards and periods EXPRF

19



was more skillful overall, the BS components aided in distinguishing whether these differ-
ences in skill were due to differences in calibration error or resolution. The EXPRF forecasts
had statistically significant higher resolution for 24hr: any severe, wind, and any significant
severe hazard; 4hr windFig. 7 right column; 3rd row). This was an important metric to favor
the EXPRF model considering the calibration error was already small so not much further
improvement was needed, thus impacts on BS differences were greater with resolution than
were reliability. Although most of the significant differences in BSS between the EXPRF and
CTLRF forecasts were due to resolution, 24hr hail was mostly due to substantially lower cal-
ibration error (Fig. 7left and right column; 2nd row). Beyond any significant severe hazard,
the rest of the significant severe weather hazards resolution for both CTLRF and EXPRF
models were very small. Furthermore, when comparing the reliability and resolution of the
infrequent and significant hazards (e.g., sig. hail, sig. tornadoes) to their uncertainty, it was
quite clear that there was marginal to no advantage from either model (Fig. 8 left column;
last row), especially from significant tornadoes.

Figure 9: Attribute diagrams for (a) any severe weather, (b) wind, (c) hail, and (d) any sig.
severe. 24hr CTLRF (dark green; triangles correspond to probability bin), 24hr EXPRF
(dark blue), 4hr CTLRF (light green; circles correspond to probability bin), 4hr EXPRF
(light blue). Probability bins are [1%,[5-10%),[10-15%),...,100%] with plotted points rep-
resenting midpoint of probability bins. 5% intervals provided most smoothing all while
persevering important trends. Horizontal dashed line is climatological frequency, vertical
dashed line is climatological forecast probability, line that intersects these lines is the no
skill line. All points bounded by these values (grey area) indicative larger resolution than
magnitude of reliability, thus positive skill to BSS

From an attributes diagram perspective neither model was consistently more reliable. It
seemed this was mostly due to both EXPRF and CTLRF having an over-forecasting bias in
the middle range of forecast probabilities and an under-forecasting bias at higher forecast
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probabilities (e.g., Fig. 9a and b) which contributed to the higher resolution, but poorer
calibration. Thus, the calibration error was susceptible of going either way for both models.
For instance, EXPRF and CTLRF probabilities for 24hr any severe hazard (Fig. 9a) showed
well-calibrated forecasts below 20% forecast probabilities, but both over-forecasted between
the 20% and 30% forecast probability bins and under-forecasted forecast probabilities over
30%. For 4hr any severe hazard (Fig. 9b) both EXPRF and CTLRF forecasts under 20%
probability were marginally over-forecasted then under-forecasted for forecast probabilities
over 30%. Yet in the 24hr period for any severe weather, CTLRF corrected within the mid-
range of forecast probabilities while EXPRF was over-forecasting and then in the 4hr period
for any severe weather, both EXPRF and CTLRF were over-forecasting most of the forecast
probability range, but EXPRF was just slightly over-forecasting less. So the similarities dis-
cussed between the EXPRF and CTLRF attribute diagrams were consistent with the skill
differences primarily coming from resolution.

Figure 10: Performance diagrams for (a) any severe weather, (b) wind, (c) hail, and (d)
any sig. severe. 24hr CTLRF (dark green; triangles correspond to probability bin), 24hr
EXPRF (dark blue), 4hr CTLRF (light green; circles correspond to probability bin), 4hr
EXPRF (light blue). Probability bins are [1%,[3-6%),[6-9%),...,99%] with plotted points
representing midpoint of probability bins. Black dashed spikes from origin are constant lines
of bias; from top-left to bottom-right: 16, 3, 2, 1, 0.5, 0.1, 0.0

Performance diagrams provided an additional perspective on the skill differences between
EXPRF and CTLRF forecast performance. Compared to ROC curves the POFD is replaced
with SR therefore does not account for true negatives (trivial in severe weather forecast-
ing), which gives a different perspective of forecast skill and detectability over ROC curve
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diagrams. The diagrams showed most advantages for 24hr EXPRF any severe weather fore-
casts, with pronounced advantages in both 24hr and 4hr wind forecasts; but less pronounced
for both forecast periods for hail (Fig. 10a-c). For any sig. severe weather, there were some
advantages of EXPRF over CTLRF, but the curves were noisier corresponding to smaller
sample size (Fig. 10d).

When investigating the 24hr and 4hr EXPRF and CTLRF any severe weather probabilis-
tic forecast performance, EXPRF outperformed CTLRF forecasts at higher probabilities due
to forecasts having higher POD and lower FAR and consistently stayed closer to a higher
CSI level indicating overall better detection rates than CTLRF. Additionally, even at nearly
the same CSI level, EXPRF forecasts for most of the remaining forecast probabilities had
slightly higher POD and lower FAR which aided in the EXPRF 24hr any severe weather
forecasts having the most advantage overall. EXPRF wind and hail performance (Fig. 10b
and c) were the most different from each other with substantially greater detection rates in
the 24hr period, due to higher CSI, at the same forecast probability levels for high wind
probabilities with appreciable differences in the 4hr. While for hail, there weren’t nearly as
pronounced differences in both 24hr and 4hr forecasts. Interestingly, the 4hr EXPRF hail
forecasts still slightly edged CTLRF all while both attained higher POD and lower FAR
than both 24hr RF forecasts.

Case-Studies

Case 1: May 10, 2018

May 10th, 2018 demonstrated some features that were representative of the quantita-
tive results showed previously. EXPRF had higher any severe forecast probabilities that
corresponded to severe weather reports over NE (Fig. 11a), but also had slightly higher
probabilities than CTLRF down along western KS into northern TX. Just as seen in the
performance diagram at the higher probabilities, EXPRF forecasts had higher POD rela-
tive to the CTLRF (Fig. 10a). In the case of 24hr wind, there was a greater demonstra-
tion of EXPRF increasing and decreasing probabilities appropriately (Fig. 11b) with higher
wind probabilities in regions where wind reports occurred and broad swaths of decreased
probabilities where reports did not occur. However, just as seen in the reliability diagram
(Fig. 9b), the tendency to slightly overforecast at moderate probabilities relative to CTLRF
was demonstrated by the increased probabilities in eastern NE and western IA where no
reports occurred. Lastly, the 24hr EXPRF hail forecast decreased probabilities in a region
where reports occurred, but the large decrease in probabilities across western KS into the
panhandle of OK and parts of NE that did not receive reports, outweighed the decreased
probabilities within the reports region (Fig. 11c) thus, attributing to slightly higher BSS
relative to CTLRF. This partially reflected the well-calibrated lower probability EXPRF
forecasts that were seen in (Fig. 9c). Overall, this case reflected the positive BSS difference
in favor of EXPRF for any severe, wind, and hail (0.0484, 0.00225, 0.0441) for a modest
severe weather event.
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Figure 11: May 10th, 2018 12-12 UTC CTLRF probabilistic forecast map vs. difference
of EXPRF and CTLRF probabilistic forecast map. a.) Any severe weather probabilistic
forecast. Top panel: CTLRF probabilistic forecast. Filled contours are probabilities every
2%, black dots are 80 km gridded reports, and magenta contours outline 80 km reports for
readability purposes. Bottom panel: Probabilistic forecast difference (EXPRF - CTLRF)
where red filled contours are positive differences and blue filled contours are negative differ-
ences plotted every 0.03 units between -10 and 10 units Panel b.) same as a.) except for
24hr wind. Panel c.) same as a.) except for 24hr hail. Panel d.) same as a.) except for 24hr
any sig. severe

Case 2: May 18, 2019

In contrast to the first case, this case offers some insight to understand how RF skill for
any severe, wind, hail, and any sig. severe reflect a larger magnitude of the BSS results as
seen in Fig. 7 with exception to any severe hazard, corresponding to a robust severe weather
event. The 24hr EXPRF model had improvement in forecast skill for all four significantly
skilled forecast hazards in the 24 hour period (any severe, wind, hail, and any sig.severe; 3
shown in the figures). Although 24hr any. sig severe was not considered statistically signif-
icant, there was an appreciable increase in skill from the EXPRF forecast (i.e. relative to
CTLRF about 0.0300 units) as supported in the overall BSS results (Fig. 7).
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Figure 12: May 18th, 2019 12-12 UTC CTLRF probabilistic forecast map vs. difference
of EXPRF and CTLRF probabilistic forecast map. (a) Any severe weather probabilistic
forecast. Top panel: CTLRF probabilistic forecast. Filled contours are probabilities every
2%, black dots are 80 km gridded reports, and magenta contours outline 80 km reports for
readability purposes. Bottom panel: Probabilistic forecast difference (EXPRF - CTLRF)
where red filled contours are positive differences and blue filled contours are negative differ-
ences plotted every 0.03 units between -10 and 10 units Panel b.) same as a.) except for
24hr wind. Panel c.) same as a.) except for 24hr hail. Panel d.) same as a.) except for 24hr
any sig. severe

Substantial forecast improvements over the CTLRF forecasts were seen for 24hr any se-
vere, wind, hail, and any significant severe weather with a BSS difference of 0.0307, 0.0686,
0.0441, and 0.0300 relative to the CTLRF, respectively. Namely, these forecasts showed im-
provement due to much higher forecast probabilities within regions of reports, and decreased
probabilities across regions that did not have reports. This also reflected the higher POD
and lower FAR relative to the CTLRF forecasts that was demonstrated in the performance
diagrams (Fig. 10b-d)
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In particular, the 24hr wind forecast demonstrated two maximum region of probabil-
ities for severe winds, rather than just one as seen in the CTLRF forecast(Fig. 12b), all
while agreeing with the CTLRF forecasts on moderate probabilities across northern AR into
northeastern TX. This was representative of the higher resolution that was previously seen in
Fig. 8c and much higher CSI in Fig. 10b at moderate-high probabilities. In the 24hr EXPRF
hail forecasts (Fig. 12c), there was continued indication of higher resolution owing to higher
probabilities in the event of greater hail reports (compared to that of May 10th, 2018) which
also resulted in the lower reliability since there were several cases of over-forecasting relative
to CTLRF in-between the regions of severe reports.

RF Interpretability

Predictor Importance

Figure 13: Aggregate of average contributions from all 20 test cases from all predictors sorted
into groups based off meteorological characteristics and spatial length scale. Shown for no
severe weather reports sample. Blocks are color coded by predictor characteristic and spatial
length scale from smallest spatial scales to largest 12-12 UTC forecast period (left), 20-00
UTC forecast period (right). Values within blocks are sum of average contributions from
individual predictors within respective group.

As explained in the RF Physical Interpretation/TI Module section, predictors were
grouped based off predictor type and spatial smoothing. An extension of this was made
to make physical connections of the scales of motion the smoothing was representative of.
Thus, from herein the ”effective diameters” are represented as synoptic (1520 km), meso-α
(560 km), meso-β (240 km), or meso-γ (80 km) scale features related to storm-attributes or
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storm-environments. Importance was measured by the average contributions of the predictor
groups for a given probabilistic forecast with particular emphasis on the differences between
the multiscale and meso-γ predictors. In the following discussion, predictors were consid-
ered to be contributing skill to the forecast probabilities when they had a positive average
contribution in samples with a severe report, or a negative average contribution in samples
without a severe report. For both figures (Figs. 13 and 14) it was important to note the
y-axis scale relative to each other noting that when there were severe reports, contributions
were much higher. This observation holds true for both case studies because the ”bias”
terms is already near-zero and the forecast probability is zero-bounded. The purpose of this
section is to better understand the specific multi-scale features contributing the skill of the
EXPRF model.

Figure 14: Aggregate of average contributions from all 20 test cases from all predictors
sorted into groups based off meteorological characteristics and spatial length scale. Shown
for severe weather reports sample. Blocks are color coded by predictor characteristic and
spatial length scale from smallest spatial scales to largest 12-12 UTC forecast period (left),
20-00 UTC forecast period (right). Values within blocks are sum of average contributions
from individual predictors within respective group.

Overall at locations without a severe report, the storm-attribute predictors’ contribu-
tions to skill (i.e. reducing probability on average) mainly came from meso-γ predictors
for any severe, wind, and hail in the 24hr period (Fig. 13 left) and for hail in the 4hr pe-
riod (Fig. 13 right). larger-scale predictors, in particular meso-β scale storm-attribute and
synoptic scale environment for 24hr any-severe, actually increased forecast probability on
average at locations with out a severe report. The meso-β scale storm-attribute predictors
had a more dominant contribution to skill for any severe hazard and wind in the 4hr period
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(Fig. 13right), while environment predictors mainly contributed to the skill for any sig. se-
vere in both the 24hr and 4hr periods (Fig. 13 left, right).

The overall magnitudes of average contributions were much larger for locations with a
report (Fig. 14 left, right) compared to those locations with no severe reports (Fig. 13 left,
right) in part due to the already near-zero base rate (i.e., bias term) of the severe weather haz-
ards. All predictor groups contributed to skill in samples with a severe report (Fig. 14). For
several severe weather hazards (i.e. 24hr any severe; 4hr any severe, wind) the meso-β scale
storm-attribute predictors contributed to skill much more than the meso-γ storm-attribute
predictors (Fig. 14). For the other severe weather hazards (i.e. 24hr wind, hail; 4hr hail)
the larger-scale meso-β scale storm-attribute predictors did contribute positively, but not
as much as the meso-γ storm-attribute predictors. For the environment predictors there
were much greater contributions from the meso-γ predictors than the larger-scale predictors,
although the larger-scale environment predictors (e.g., synoptic) still contributed to further
increase forecast probabilities where severe weather was reported.

Figure 15: Example of 2-5km maximum updraft helicity with no smoothing (left) and with
240 km smoothing (right). Notice the substantial drop in magnitude, but key regions of max
helicity are retained. Report contour (black line) and 80 km reports.

The greater reliance on the meso-β scale storm-attribute predictors for at least several
variables, can be understood in terms of the location uncertainty of explicitly simulated
storms. In the case of the 80 km maxuh25 field (Fig. 15 left) there were substantial max-
ima’s within the report regions that would obviously benefit the forecast, but compared to
the smoothed maxuh25 field there was a benefit such that the key regions of higher maxuh25
were retained, spread out further (greater representation of accounting spatial uncertainty),
and noisier local maxima were smoothed out. In contrast to the storm-attribute predictors,
environment predictors may have small scale structures (e.g sharp gradients, local maxima)
that are related to more predictable synoptic scale features that may not be as beneficial
to smooth out. For instance, in Fig. 16a-d, it becomes more obvious as to why the multi-
scale smoothed environment predictors would be less likely to contribute to severe weather
probabilities especially at the 1520 km smoothing level. Particularly, the sbcape meso-β and
meso-α scale smoothing retained the shape of the instability plume, there was a loss of local
gradients and local maxima.
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Figure 16: Example of increasing spatial average of surface based CAPE with no smoothing
(a) 240 km smoothing (b), 560 km smoothing (c), and 1520 km smoothing (d). General
shape of instability plume remains, but local features and gradients are loss, especially by
1520 km smoothing. Report contour (black line) and 80 km reports.

Representative Case-Studies

Two case studies were selected to provide some physical understanding of the physical
features corresponding to different TI contributions from different severe weather hazards
and of different caliber of severe weather events.

Just as in the aggregate results, May 10th, 2018 had positive probability contributions
from the meso-β scale storm-attribute predictors for 24hr any severe hazard when there were
no reports (Fig. 17). Also, when there were severe reports, the meso-β scale storm-attribute
predictors contributed more on average to increasing skill than the meso-γ storm-attribute
predictors for 24hr any severe and wind, while the meso-γ storm-attribute predictors con-
tributed on average, more than the meso-β storm-attribute predictors for 24hr hail (Fig. 18).
Furthermore there were positive contributions coming from all multiscale predictors for 24hr
wind (Fig. 18) as seen in the aggregate when there were severe wind reports (Fig. 14).

Recall from Fig. 11 that the EXPRF advantage for 24hr any severe hazard on the May
10th, 2018 case resulted from an increase in forecast probability in the region of severe re-
ports in NE that outweighed increases in forecast probabilities down into northwestern TX.
The smoothing of the storm-attribute predictors provided a better focus on the region of
severe weather reports. In particular, the maxuh25 meso-β scale storm-attribute predictor
retained the more favorable region for severe weather after smoothing (Fig. 19a) as well as
the columnhail meso-β scale storm-attribute predictor (Fig. 19c), though less in magnitude
(Fig. 19f). The smoothed maxuh25 field most closely reflected the increased forecast prob-
abilities for 24hr any severe weather across NE where severe reports occurred (Fig. 19b).
Furthermore, the maxspd10m meso-α storm-attribute predictor (Fig. 19b) contributed the
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Figure 17: May 10th, 2018 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown for severe
weather reports sample. Blocks are color coded by predictor characteristic and spatial length
scale from smallest spatial scales to largest 12-12 UTC forecast period (left), 20-00 UTC
forecast period (right). Values within blocks are sum of average contributions from individual
predictors within respective group.

most positive forecast probabilities in the reports region (Fig. 19e), but the magnitude was
largest for the maxuh25 meso-β scale storm-attribute predictor. This was consistent with
what was demonstrated in Fig. 15

Recall from Fig. 11 that EXPRF advantage for 24hr wind on May 10th, 2018 resulted
from an increase in probability within the region of reports with several swaths of decreased
probabilities that, in combination, outweighed the increased wind probabilities outside of the
report regions and the deceased probabilities in the isolated cases (Fig. 11). As described
in the 24hr wind storm-attribute contributions, there were a couple of the multiscale storm-
attribute predictors contributing on average to forecast skill. A slight difference in this
case from the aggregate, was that the meso-γ storm-attribute predictors were marginally
contributing (though positive) whereas the meso-β and meso-α scale storm-attribute predic-
tors, on average, were dominating forecast skill. After checking forecast skill differences it
was important to understand these differences as this case had a higher BSS in favor of the
EXPRF 24hr wind all while showing primary contributions to forecast skill from multiscale
storm-attribute predictors.

Similar to the 24hr any severe case, the smoothed maxuh03 (Fig. 20a) used in 24hr wind,
retained the key regions of relatively higher maxuh03. Per contributions, the meso-α scale
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Figure 18: May 10th, 2018 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown for severe
weather reports sample. Blocks are color coded by predictor characteristic and spatial length
scale from smallest spatial scales to largest 12-12 UTC forecast period (left), 20-00 UTC
forecast period (right). Values within blocks are sum of average contributions from individual
predictors within respective group.

maxuh03 contributed on average the most to forecast skill even at the higher smoothing
level (Fig. 20d). In addition, the meso-β scale maxdbz1km maxima were associated with
positive contributions and even seemed to only contribute positively when values exceeded
approximately 56 dBZ (Fig. 20b and e). In addition to the aspects of the overall results that
could be understood using the May 10th, 2018 case, the May 18th, 2019 case demonstrated
how the large scale environment predictors also contributed to skill even while the storm-
attributes were dominant in 24hr any severe (Fig. 21 left). Consistent with what has been
the case for the aggregate, May 10th, 2018, and now May 18th, 2019 results, the meso-β
scale maxuh25 was a favorable predictor for retaining the key regions of simulated storms
all while reducing noisier and unimportant maxuh25 values in a large severe weather event
as such (Fig. 22). Considering this was such a large event, it made sense that there would
be greater contributions from the synoptic scale environment predictors. In addition, the
smoothing

The synoptic driven 90mb mlcin (Fig. 22b), inferred from the large-scale warm air ad-
vection that was evident in the synotpic scale v10m wind (Fig. 22f) seemed to contribute in
a way that corresponded to the large-scale flow pattern (suggested from the synoptic scale
v10m wind Fig. 22c). Though it was not obvious why there was a large area of positive
contributions across the entire reports region into an isolated region of reports (Fig. 22e),
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Figure 19: Top 3 contributing storm-attribute predictors when locations had severe weather
May 10th, 2018. From pre-processed 10 member ensemble following steps for pre-processing
as described in methods. (a) 240 km smoothed 2-5 maximum updraft helicity, (b) maximum
10m wind speed, (c) 240km smoothed columnhail, (d) corresponding contributions to (a),
(e) corresponding to (b), and (f) corresponding to (c). Contribution levels every 0.01 units
from -0.3,0.3

Figure 20: Top 3 contributing storm-attribute predictors when locations had severe wind
reports May 10th, 2018. From pre-processed 10 member ensemble following steps for pre-
processing as described in methods. (a) 560 km smoothed 0-3 maximum updraft helicity,
(b) maximum 1km dBZ, (c) maximum 10m windspeed, (d) corresponding contributions to
(a), (e) corresponding to (b), and (f) corresponding to (c). Contribution levels every 0.01
units from -0.3,0.3

this seemed to be a case of predictor interaction considering the positive contributions from
the synoptic scale 90mb mlcin seems to be directed in similar flow to that of the synoptic
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Figure 21: May 18th, 2019 case of average contributions from all predictors sorted into
groups based off meteorological characteristics and spatial length scale. Shown for severe
weather reports sample. Blocks are color coded by predictor characteristic and spatial length
scale from smallest spatial scales to largest 12-12 UTC forecast period (left) 20-00 UTC
forecast period (right). Values within blocks are sum of average contributions from individual
predictors within respective group.

v10m wind based off contributions (Fig. 22 e,f). Though, this would need further evaluation.

Summary and Discussion

When evaluating the impacts of multiscale predictors on RF-based probabilistic fore-
casts, it was evident that the EXPRF model often produced skillful forecasts relative to the
CTLRF. In several other case studies (not shown), the EXPRF forecasts had a tendency to
increase probabilities over the same areas CTLRF had issued appreciable probabilities, but
it was this consistent increase in forecast probabilities over regions associated with severe
reports that gave the EXPRF models a performance edge for several severe weather hazards
in terms of detection rates. Furthermore, the May 18th, 2019 case was the best example
of the EXPRF handling well a major severe weather event. What was not shown were the
raw severe weather reports demonstrating the two squall-lines mentioned. This was a rather
marked achievement for the EXPRF model to have forecasted both swaths of severe wind
reports (asserted from two regions of maximized wind probabilities and co-located wind re-
ports) that occurred across southeast OK into LA and southwest into central MO where
the CTLRF model only had one forecasted area; the more obvious squall line that moved
across southeast OK into LA. In addition, there was substantial support for the importance
of including predictors that directly incorporate flow-dependence as demonstrated by FPS
selection of the multiple larger scale predictors and the consistent physical implications of
the meso-β and meso-α scale storm-attribute predictor (i.e., maxuh25, maxuh03, columnhail,
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Figure 22: Top contributing storm-attribute predictors and Top 2 contributing environ-
ment predictors when locations had severe weather May 18th, 2019. From pre-processed 10
member ensemble following steps for pre-processing as described in methods. (a) 240 km
smoothed 2-5 maximum updraft helicity, (b) 1520 km smoothed 90mb mixed layer CIN, (c)
1520km smoothed v10m wind, (d) corresponding contributions to (a), (e) corresponding to
(b), and (f) corresponding to (c). Contribution levels every 0.01 units from -0.3,0.3

maxdbz1km, etc.) often times contributing on average, the most skill for a given forecast and
successfully reducing noisy regions and removing unimportant features that might otherwise
be considered important. Although, despite the advantage of the multiscale storm-attribute
predictors, in the case of hail forecasts, it seemed important to retain un-smoothed values
(which makes physical sense in terms of forecasting the most intense simulated storms). This
was true for environment predictors, in particular convective environment predictors, which
seemed to be more sensitive to the smoothing. This was demonstrated for most hazards
showing non-smoothed meso-γ scale convective environment predictors contributing more
than the smoothed convective environment predictors. This was again most true for hail
forecasts, but several other severe weather hazards demonstrated the need for the meso-γ
convective environment predictors. Overall, it was still shown that multiscale predictors
included into the random forest with the 80 km predictors, were beneficial and generally
improved over the RF’s without the multiscale predictors.

Conclusion

This thesis utilized two characteristically different random forest models (i.e. CTLRF and
EXPRF) to forecast 1200-1200 UTC next-day (24hr) and 2000-0000 short-term UTC (4hr)
for 8 individual severe weather hazards (any severe, wind, hail, tornadoes, and significant
counterparts). The predictors for both models came from the OU Map Lab produced 10-
member CONUS-domain convection-allowing ensemble forecasts during the 2018 and 2019
HWT SFE.
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Typically, the RF predictors are created in a couple of steps − spatial pre-processing
and temporal pre-processing. The spatial pre-processing step was the most critical part that
separated previous studies from this study. RF predictors are usually pre-processed to some
fixed grid (e.g., 80 km) during the spatial pre-processing step to reduce dimensionality. How-
ever, since it has been shown that features on all spatial scales contribute to severe weather
risk (e.g., Snellman, 1982), these spatial pre-processing methods to fixed grids can potentially
leave out important information about the large scale flow pattern in the RF predictors. In
order to test this, the EXPRF models were created via predictors that directly included
the larger scale of motions via a neighborhood averaging of the 80 km forecast variables at
increasingly larger spatial length scales. These scales effectively represented the meso-γ (80
km), meso-β (240 km), meso-α (560 km), and synoptic scales (1520 km). This larger-scale
pre-processing step was intended to account for the multiscale flow-dependence of severe
weather. To further simplify the RF models, in an objective way and to reduce redundancy
and/or noise associated with the multiscale predictors, a forward predictor selection (FPS)
method was utilized. This objectively selected which predictors were to be used for training
the RF models for the all eight severe weather hazards for the two different forecast periods.
After the spatial pre-processing step, all the predictors ensembles were aggregated and then
temporally aggregated. One of the study were to test whether the inclusion of the multiscale
predictors improved RF based probabilistic severe weather forecasts. Thus, the creation
of RF models with fixed 80 km predictors (i.e., CTLRF) and multiscale, flow-dependent
predictors (i.e., EXPRF) were tested against CTLRF to directly assess the impacts of the
multiscale predictors on RF-based probabilistic forecast skill. Following the demonstrated
impacts, it was necessary to then determine a physical understanding as to how the multi-
scale predictors contributed to the RF-based probabilistic forecast skill through use of TI.

The EXPRF and CTLRF models created were compared against each other using several
verification methods. It was found that for nearly all of the 24hr and 4hr forecasted severe
weather hazards, the EXPRF model had a higher BSS than the CTLRF model. Most of the
24hr sub-significant severe weather forecasts were significantly more skillful with EXPRF
than CTLRF. In general, both models had small calibration errors, but the CTLRF model
had greater reliability forecasting wind for both periods. Most of the EXPRF forecasts had
higher resolution (about an order of magnitude larger) than the CTLRF of which was signif-
icant for 24hr any severe and wind forecasts corresponding to two of the most significantly
skilled forecast hazards. In addition, performance diagrams which showed the significantly
more skilled EXPRF forecasts for both 24hr and 4hr, having generally higher CSI than the
CTLRF forecasts, especially for 24hr wind at higher forecast probabilities.

While forecast skill was generally improved overall for EXPRF relative to CTLRF as
stated previously, another goal of this study was to better understand how the multiscale
predictors can contribute to the RF-based forecast skill. To achieve this goal, the python-
based module tree interpreter was used to investigate the contributions of specific predictors
to the performance of the EXPRF model. Over all the cases, it was found that on average
when severe weather did not occur, the meso-γ scale storm-attribute predictors contributed
more to skill than the meso-β scale storm-attribute predictors for 24hr forecasts, but opposite
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was true for 4hr forecasts. When severe weather did occur, the meso-β scale storm-attribute
predictors contributed the most to skill in general. However, the meso-γ scale environment
predictors dominated environment-related contributions to forecast skill. Lastly, nearly all
of the multiscale storm-attribute and environment predictors on average were contributing
to forecast skill.

Two case studies were utilized to demonstrate the physical implications of the multiscale
predictors. It was found that the most attributable reason for the substantial contributions
of the meso-β storm-attribute predictor in general, was due to accounting for location un-
certainty of explicitly simulated storms similar to neighborhood-based CAM forecasts. The
meso-γ storm-attribute predictors were consistently contributing higher forecast probabili-
ties. On the contrary, for more environment based predictors with important implications
from sharp gradients (e.g. surface based CAPE, 2m-Temperature), the smoothing of those
predictors constituted the loss of valuable information of intensity and locations of said
gradients that can be associated with synoptically predictable features. In combination,
forecasting severe hazards with multiscale predictors does provide an advantage, especially
for explicitly resolved storms.

These results are promising in that the RF-based probabilistic forecasts of severe weather
are statistically significantly improved by the inclusion of multiscale predictors for several
severe weather hazard types/periods. Thus, it is confirmed that there are aspects of the
large scale flow pattern that are able to further improve the RF-based forecast if accounted
for in the RF predictors. However, this study was limited in some aspects. Sample size was
somewhat limited, the larger-scale dependence was represented by a simple averaging radius,
and predictors that were more representative of the different severe weather hazard types
could have been utilized (e.g. greater number of low-level shear predictors for tornadoes).
Future studies may benefit from using larger sample size to further optimize the spatial scales
across different lead times and severe hazard types, and yield more robust results related to
the rarer severe hazard types (e.g., tornado, and sig. severe). While the TI did provide some
physical justification for the benefit of the multiscale predictors, future work should also
continue to focus on the contributions from predictor-interactions when evaluating physical
impacts of multiscale predictors.
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