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Abstract

This thesis introduces a continuous-time distributed algorithm designed to address a

range of matrix analysis and computation problems in networked systems. Focusing

initially on the Local-Equation Local-Variable (LELV) problem, the algorithm enables

nodes within the network to collaboratively tackle six specific challenges. These include

computing least-squares solutions to linear equations, determining the minimum-norm

least-squares solution, detecting solution existence, computing the Moore-Penrose in-

verse of a matrix and identifying full column or row rank matrices.

The algorithm, functioning as an affine, networked dynamical system, demonstrates

global exponential convergence, supported by an explicit lower bound on its conver-

gence rate. Furthermore, it offers deterministic guarantees for some problems while

ensuring convergence with probability one for others.

Extending the scope to include the Local-Equation Global-Variable (LEGV) prob-

lem, this thesis provides preliminary analysis, including equilibrium point analysis and

simulation of the algorithm to demonstrate convergence. While minimal in-depth ex-

ploration was conducted, these initial insights highlight the algorithm’s potential ap-

plicability in addressing LEGV challenges within distributed environments.

Overall, this thesis contributes a novel continuous-time distributed algorithm with

significant implications for matrix computation in networked systems. Through rig-

orous theoretical analysis and initial exploration, it lays the groundwork for further

research and practical applications in distributed computing settings.

viii



Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the proliferation of distributed systems and networked environments

has necessitated the development of algorithms that can operate efficiently across de-

centralized architectures. Traditional centralized computation models are increasingly

inadequate for handling the volume, velocity, and variety of data generated within these

complex systems. This is particularly evident in the domain of matrix analysis and

computation, where the need to process and analyze data distributed across multiple

nodes poses significant computational and coordination challenges.

The critical importance of consensus within networks, especially those characterized

by switching topologies and time-delays, has been well-documented. Foundational

research has highlighted the intricate dynamics of agent networks and underscored the

necessity for algorithms that can achieve consensus and perform complex computations

under these constraints. Innovations such as gossip algorithms and Zero-Gradient Sum

(ZGS) algorithms have marked significant strides toward addressing these challenges,

offering robust solutions for consensus in undirected networks and distributed convex

optimization, respectively.

However, this thesis is motivated by the observation that despite substantial ad-

vancements in distributed computing, there remains a critical gap in the development

and understanding of algorithms that are both versatile and efficient in solving a wide
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array of matrix-related problems in a distributed manner. The potential for such al-

gorithms to transform the computational landscape of networked systems drives the

research presented herein.

1.2 Literature Review

A seminal exploration in [1] emphasizes the critical importance of achieving consensus

within networks characterized by switching topologies and time-delays. Their work,

through continuous-time analysis, highlights the essential need for a deep understand-

ing of the real-world dynamics prevalent in agent networks. This foundational study

[1] sets a significant precedent for subsequent research in distributed systems, par-

ticularly in addressing the complexities associated with achieving agreement across

diverse network configurations. This foundational work is complemented by the devel-

opment of gossip algorithms [2] which offer a non-gradient-based approach to achieving

consensus in undirected networks with time-varying topologies. These contributions

collectively highlight the critical role of network structure and the choice of algorithms

in ensuring efficient consensus mechanisms. Ref [3], [4] delve into optimizing consensus

processes and online convex optimization, respectively. These works underscore the

role of network sparsification and time-varying constraints in enhancing algorithmic

efficiency and convergence rates, highlighting the critical balance between reducing

communication costs and maintaining robust consensus mechanisms across dynamic

networks. Ref [5] address distributed convex optimization by proposing Zero-Gradient

Sum (ZGS) algorithms for real-time networked systems, focusing on continuous-time

analysis to ensure adaptability and robustness in dynamic environments. This approach

is further expanded on by introducing a distributed dual averaging algorithm, linking
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convergence rates to network topology and the properties of the optimization func-

tions [6]. These studies underline the importance of considering network structure and

the nonlinear nature of optimization problems in the design of distributed algorithms.

Distributed estimation in wireless sensor networks (WSNs) through clustering illus-

trates the value of optimizing network structure for improved performance [7]. Their

approach to parameter estimation, emphasizing energy efficiency and fast convergence,

highlights the need for continuous-time analysis and algorithmic efficiency in real-time

data processing. The transition from centralized to distributed algorithms for solving

linear equations,[8] along with the scalability improvements offered by double-layered

network architectures [9], demonstrates the evolving strategies to address computa-

tional and scalability challenges in distributed settings. These contributions reveal

the continuous search for methods that optimize computational loads, ensure privacy,

and enhance resilience to network failures or changes. Additionally, [10], [11], delve

into algorithms for solving linear equations across networks, addressing the challenges

of under-determined, over-determined, and uniquely solvable systems. Futhermore,

[12] extend this discussion to constrained consensus and optimization, presenting algo-

rithms that navigate the complexities of time-varying connectivity and individual agent

constraints. These contributions underscore the versatility required of distributed algo-

rithms to handle varying system determinations and constraints efficiently. Also, [13]

explore the consensus problem in fractional-order singular multi-agent systems (FOS-

MASs), introducing a framework for achieving robust consensus despite uncertainties.

This work emphasizes the importance of considering the unique challenges posed by

fractional-order systems and the need for algorithms that can adapt to singularities and

time-varying network topology. The works in [14], [15], and [16] extend the discourse

on distributed convex optimization, particularly focusing on constraints, nonsmooth

optimization problems, and networked multi-agent systems. These studies highlight
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the importance of addressing convexity through innovative algorithmic approaches,

such as the augmented Lagrangian and primal-dual methods, emphasizing the role

of network topology in algorithm efficiency and convergence rates. Furthermore, the

exploration of non-smooth optimization problems within general linear multi-agent

systems underscores the complexity and necessity for methodological innovation in

tackling distributed optimization challenges. On agreement problems [17] and related

explorations into dynamic average consensus on synchronous communication networks

[18] contribute significantly to understanding how network structures and communica-

tion patterns influence consensus achievement. These studies underscore the critical

role of network topology, including directed graphs and strong connectivity, in ensuring

effective distributed decision-making and coordination. The introduction of consensus-

based linear and nonlinear filtering[19] and robust distributed sensor fusion by [20] en-

hances the understanding of distributed estimation and sensor data processing. These

works emphasize the necessity of consensus mechanisms in ensuring accurate and ef-

ficient data aggregation and estimation, pivotal for applications in sensor networks

and surveillance. Explorations into leaderless coordination [21] and asynchronous al-

gorithms for solving linear systems [22] broaden the perspective on distributed system

dynamics. They highlight the challenges and solutions related to time-dependent com-

munication, synchronization, and robustness against unpredictable network dynamics,

showcasing the importance of adaptable and resilient algorithmic strategies in dynamic

environments. The investigation of stability in continuous-time distributed consensus

algorithms [23] and the convergence properties of distributed algorithms for linear al-

gebraic equations [24] add depth to the discourse on the fundamental properties of

distributed systems. These studies provide critical insights into the conditions neces-

sary for ensuring stable and reliable consensus, essential for the design and analysis
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of distributed control and coordination mechanisms. Furthermore, [25], [26],[27] ex-

plore the dynamics of achieving consensus in multi-agent systems under conditions of

switching topology and directed graphs. The innovative approaches, such as the use

of delayed feedback and matrix limit definitions, highlight the evolving strategies to

enhance convergence rates and adapt to network changes, emphasizing the role of net-

work topology and communication patterns in consensus efficiency. The exploration of

distributed optimization in [27], [28], [29], provides a deep dive into the complexities of

solving convex optimization problems within networked environments. The introduc-

tion of methods like the transformed primal-dual method and Nesterov’s accelerated

approach showcases the push towards achieving faster convergence and optimizing re-

source allocation through innovative algorithmic solutions. The study on asynchronous

algorithms [22] and the consideration of dynamic average consensus in synchronous net-

works [18] add valuable perspectives on handling network dynamics and asynchronous

interactions. These contributions underscore the importance of designing algorithms

that are robust to time-varying network conditions and can adapt to the asynchronous

nature of real-world systems, highlighting the need for flexible and resilient solutions

in distributed computing. On energy efficiency and network topology optimization

[30] address the challenges of extending network lifetime and enhancing algorithmic

efficiency. The strategic optimization of network topology for energy conservation and

the acceleration of consensus mechanisms through network sparsification reflect the

growing emphasis on sustainability and cost-effectiveness in network design and oper-

ation. Improvements in distributed algorithms [31], focus on refining existing solutions

to achieve faster convergence, stability, and optimal solution verification. These studies

reflect the ongoing effort to refine distributed computing techniques, ensuring they are

adaptable to varied and complex network configurations while maintaining high effi-

ciency and accuracy. The exploration of event-triggered and asynchronous strategies in
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distributed networks, [32], and the decentralized optimization amidst communication

constraints [33], points to innovative approaches in reducing computational and com-

munication overhead. These strategies are pivotal in addressing the challenges posed

by asynchronous data exchange and dynamic network memberships, ensuring that dis-

tributed systems remain efficient and robust against changing conditions. [34]and the

application of consensus and cooperation mechanisms in multi-agent systems [35] offer

insights into the optimization of network topology and the analysis of node centrality.

These works delve into the structural aspects of networks, aiming to enhance consensus

efficiency and ensure equitable resource distribution across the network, emphasizing

the importance of network design in achieving efficient distributed systems. Enabling

nodes in a network to compute functions of node values through distributed strategies,

employing a discrete-time analysis framework [36]. The focus on linear equations and

the implication of optimization approaches to minimize differences between node val-

ues enhances our understanding of consensus mechanisms in directed networks. This

research contributes to the broader discourse on distributed computing by elucidat-

ing how networked systems can efficiently calculate and reach consensus on shared

functions. Leveraging the Laplacian matrix, a fundamental tool in graph theory that

encapsulates the network’s topology. By focusing on the spectral properties of the

Laplacian matrix, particularly the eigenvalues and their algebraic multiplicities, they

develop a novel method for weight matrix design that ensures finite-time consensus in

digraphs [37]. This methodology is groundbreaking as it provides a systematic way

to overcome the inherent challenges posed by the asymmetry of directed networks.

We can tackle the challenge of optimizing a sum of convex objective functions dis-

tributed across a network through a stochastic subgradient descent approach [38]. By

addressing the stochastic nature of gradients and employing weighted averaging of SSD

iterates, [38] advances our knowledge of convex optimization under distributed network
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constraints. The utilization of undirected graphs as communication models underpins

the decentralized execution of the SSD algorithm, showcasing a methodological innova-

tion in distributed optimization. Investigating the coordination of mobile autonomous

agents through nearest neighbor rules, showcasing how local interactions can lead to

emergent behavior without centralized control[39]. Their discrete-time analysis and use

of switched linear systems for stability and convergence analysis provide a foundational

framework for understanding the dynamics of decentralized systems. The application

of graph theoretic techniques underscores the role of simple, undirected graphs in cap-

turing the structural dynamics of agent coordination, highlighting the potential for

designing distributed control algorithms in autonomous agent networks. A study em-

phasized achieving system determinacy through this distributed stopping mechanism,

effectively navigating the complexities inherent in digraphs where unidirectional in-

formation flow can complicate consensus achievement. By employing linear iterative

processes, the research facilitates a structured approach to updating node values based

on weighted averages of neighboring nodes’ information [40]. This methodological in-

novation not only simplifies the consensus process but also ensures its deterministic

conclusion in a distributed setting.

The comprehensive examination of literature on matrix operations, distributed

computing frameworks, and network theory establishes a solid foundation for the de-

velopment of distributed computational methodologies. These seminal contributions

provide deep insights into the challenges of conducting matrix analyses in complex

networked systems, optimizing computational tasks across distributed entities, and

achieving adaptability and efficiency in dynamic and potentially asynchronous settings.

However, the focus of this thesis marks a significant expansion from these foundational

efforts, diverging in several essential aspects.
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First, whereas the literature often addresses consensus, optimization, and linear sys-

tems solving within narrower scopes, this body of work aims to encompass a broader

spectrum of matrix computations and analyses. This not only includes the Moore-

Penrose inverse but extends to encompass eigenvalue decomposition, matrix factoriza-

tion, rank detection, and other critical matrix operations crucial in distributed settings.

Such operations present unique computational challenges when the processing and data

are distributed across multiple nodes.

Second, the prior studies mainly focus on optimization problems, consensus mecha-

nisms, and solving linear equations, without fully engaging with the array of algorithms

required for comprehensive distributed matrix computation. This body of work aims

to fill this gap by developing and analyzing algorithms robust and versatile enough

for the varied mathematical properties and computational demands of different matrix

operations. Efforts include addressing data distribution complexities, ensuring algo-

rithmic convergence, and optimizing network-wide computational efforts—areas not

thoroughly explored in previous research.

Furthermore, this exploration delves into the impact of network dynamics on dis-

tributed matrix computations, investigating how topology, communication delays, and

agent failures affect the computations’ accuracy, stability, and efficiency. This focus

brings to light additional complexities compared to the general discussions of consensus

and optimization found in existing literature, necessitating maintaining computational

integrity amid changing network conditions and adapting algorithms to the network’s

structural nuances.

In conclusion, the existing literature provides a foundational backdrop for dis-

tributed computations and network dynamics understanding. However, the exploration

of this thesis ventures into broader territories, addressing a comprehensive range of

computational challenges across distributed matrix operations. By introducing novel
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algorithmic approaches tailored to the diverse needs of matrix analysis in distributed

networks, this work significantly contributes to the knowledge base, paving the way for

further advancements and applications in distributed computing and matrix theory.

1.3 Thesis Contributions

This thesis introduces a novel continuous-time distributed algorithm designed to em-

power nodes within a network to collaboratively solve six specific matrix analysis and

computation problems, each characterized by distinct subsets of problem data known

only to individual nodes. The versatility of this algorithm is demonstrated through

its application to a diverse set of problems, including but not limited to finding least-

squares solutions to systems of linear equations, computing the Moore-Penrose inverse

of a matrix, and determining the rank of a matrix.

A key innovation of this work is the algorithm’s ability to operate as an affine,

networked dynamical system, which is shown to be globally exponentially convergent.

An explicit lower bound on its convergence rate is derived, underscoring the algo-

rithm’s efficiency and the speed with which it can achieve consensus across a range of

matrix computation tasks. Furthermore, the algorithm distinguishes itself by offering

deterministic guarantees for certain problems and probabilistic assurances for others,

showcasing its adaptability and robustness in dynamic network environments.

The implications of this research are far-reaching, offering a scalable and efficient

framework for this work that can be seamlessly integrated into various network config-

urations. This work not only addresses a critical gap in the literature but also sets a

precedent for future research in distributed computing, paving the way for the devel-

opment of more advanced algorithms capable of tackling an even broader spectrum of

computational challenges in distributed settings.

9



1.4 Thesis Outline

This thesis explores the intersection of distributed computing and matrix analysis.

The opening chapter establishes the context by highlighting recent advancements in

distributed computing and emphasizing the critical role of matrix analysis in networked

systems. It then introduces the core contribution: a novel continuous-time distributed

algorithm designed to tackle six specific problems related to matrix analysis and compu-

tation. The chapter outlines the research objectives and presents the overall structure

of the thesis. It delves into existing literature to identify critical gaps that necessitate

a new algorithm, thereby establishing the significance of the proposed solution.

The subsequent chapter, Chapter 2 dives deep into the theoretical foundation of the

Local-Equation Local-Variable (LELV) approach for the distributed computing model

used in the thesis. It outlines the underlying assumptions and problem formulations.

Six distinct matrix analysis and computation problems are meticulously detailed, pro-

viding a framework for understanding the algorithm’s functionality. The chapter then

delves into the heart of the research, the design and operational logic of the proposed

algorithm. It presents mathematical derivations and proofs demonstrating the algo-

rithm’s ability to solve the defined problems with guaranteed deterministic solutions.

Furthermore, the chapter analyzes the algorithm to ensure its reliability across various

network conditions and time. It distinguishes between problems solved with deter-

ministic guarantees and those addressed probabilistically. The chapter concludes by

exploring potential extensions of the algorithm, hinting at its future development and

broader applications in distributed computing.

Chapter 3 introduces a novel algorithm specifically designed to address the chal-

lenges associated with the Local-Equation Global-Variable (LEGV) problem within

distributed computing environments. It emphasizes the significance of this problem

10



and formally defines its mathematical and computational framework. Focusing on the

algorithm design, the chapter details its scalability and adaptability to network dynam-

ics. A preliminary analysis is then conducted to evaluate the algorithm’s performance,

setting the stage for a more in-depth exploration in subsequent chapters.

The final chapters document the practical implementation of both the LELV and

LEGV algorithms. It details the computational setup, simulation designs, and chosen

parameters. The summary and results are then meticulously analyzed to demonstrate

the effectiveness of the algorithms in solving the targeted matrix analysis problems,

showcasing their performance and robustness mentioned in the conclusion.

11



Chapter 2

Local-Equation Local-Variable Problem

2.1 Introduction

This chapter delves into the ”Local-Equation Local-Variable Problem” within the con-

text of this thesis. The section introduces the foundational concepts and motivations

behind the study, setting the stage for a detailed exploration of the problem formula-

tion, algorithmic solutions, and comprehensive analyses.

2.2 Problem Formulation

In the pursuit of embarking on the exploration of the current work, tackling the chal-

lenge of efficiently and robustly performing a variety of matrix operations. These

operations, crucial across various fields such as signal processing and linear systems

resolution, present unique challenges in the context of network communications.

The broad domain of this work within network systems confronts substantial chal-

lenges. It involves not just the computation of Moore-Penrose inverses (MPI) but

extends to a wide array of matrix operations essential across numerous applications.

This exploration is rooted in a control-theoretic framework, employing a dynamical

system of differential equations to capture the distributed computations across a net-

work.
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The core of this investigation is articulated through a dynamical system model,

represented as:

ẋ(t) = Ax(t) + b, (2.1)

where ẋ(t) = [x(t); y(t); z(t);w(t)]⊤ denotes the state vector, encompassing the dis-

tributed computational state across the network nodes at time t. The dynamics of the

system are governed by:

A =



0 A⊤ 0 0

−A −Im 0 0

0 0 −In A⊤

A 0 −A 0


, b =



0

b

0

0


. (2.2)

One primary aspect of this investigation focuses on a control-theoretic model repre-

sented by a dynamical system of differential equations. Here, A represents the matrix

to be analysed, A⊤ denotes its transpose, and Im is the identity matrix of appropriate

dimensions. The vector b introduces an external input to the system, highlighting its

interaction with the environment.

Pros: The formulation’s strength lies in its ability to explicitly model the dis-

tributed nature of the problem, where each component of x(t)—namely, x(t), y(t),

z(t), and w(t)—has distinct physical meanings, representing what each node in the

network computes or knows.

Cons: A notable drawback of this formulation is the opaque insight into the sys-

tem’s internal dynamics, particularly how the network nodes interact and converge.
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Moreover, the presence of the forced term b adds a layer of complexity, necessitat-

ing further analysis to understand its influence on the system’s behavior and stability.

This model serves as a foundation for addressing a broad spectrum of matrix-related

problems within distributed networks.

Given the above, the goal of this paper is to design a continuous-time distributed

algorithm that enables the N nodes to cooperatively solve two types of matrix analysis

and computation problems. To define these two types of problems, let x∗ = {z ∈

Rn : ∥Az − b∥ = minx∈Rn ∥Ax − b∥} denote the set of least-squares solutions to (1),

R(A) ⊂ Rm denote the range of A, N(A) ⊂ Rn denote the nullspace of A, and

R(A)⊥ ⊂ Rm denote the orthogonal complement of the range of A. The first type

is concerned with the system of linear equations (1) and contains the following three

problems:

(P1) Each node i ∈ V wishes to find x∗
i ∈ Rni such that x∗ = [x∗T

1 x∗T
2 · · ·x∗T

N ]T ∈ Rn is

a least-squares solution to (1), i.e., x∗ ∈ X∗.

(P2) Each node i ∈ V wishes to find z∗i ∈ Rni such that z∗ = [z∗T1 z∗T2 · · · z∗TN ]T ∈ Rn is

the minimum-norm least-squares solution to (1), i.e., z∗ ∈ X∗ and ∥z∗∥ ≤ ∥x∗∥

for all x∗ ∈ X∗.

(P3) Each node i ∈ V wishes to detect whether a solution to (1) exists, i.e., whether

b ∈ R(A).

The second type is concerned only with matrix A in (1) and contains the following

three problems:

(P4) Each node i ∈ V wishes to compute A†
i ∈ Rni×m such that

A† = [A†T
1 A†T

2 · · ·A†T
N ]T ∈ Rn×m is the Moore-Penrose inverse of A.
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(P5) Each node i ∈ V wishes to detect whether A has full column rank, i.e., whether

rank(A) = n.

(P6) Each node i ∈ V wishes to detect whether A has full row rank, i.e., whether

rank(A) = m.

2.3 Algorithm Description

In distributed systems or computations, the LELV paradigm facilitates the division of

a global problem into smaller, manageable sub-problems that can be solved indepen-

dently by individual nodes or agents within the network. This approach is visually

represented in Figure (2.1), which abstractly illustrates the notion of local computa-

tions contributing to a global solution.

Figure 2.1: The Local-Equation Local Variable Problem.

The colored circles in the illustration symbolize distinct nodes in a network, each

tasked with a specific segment of the overarching computational endeavor. The col-

ored, diagonally divided blocks may be interpreted as matrices or data arrays, which

encapsulate the unique set of data that each node processes—termed as ‘local data’.
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Notably, the presence of zero-filled blocks indicates segments of the entire dataset that

are either irrelevant to particular nodes or simply not within their data jurisdiction.

Crucially, each node employs a local equation to resolve its allocated portion of the

grand problem, operating exclusively on local variables represented by the non-zero

elements of the colored blocks. Upon completion of these independent computations,

the individual solutions can be coalesced—signified by the equal sign transitioning into

aggregated blocks—to reconstruct the complete matrix or deduce the global solution

to the posed problem.

In the realm of numerical linear algebra, for instance, this could be akin to each

node calculating the solution to a local linear system Aixi = bi. Here, Ai embodies

a submatrix and xi, bi respectively stand for local portions of the ultimate solution

and right-hand side vectors. The conclusive solution x to the global system Ax = b is

ascertained by the synthesis of all local solutions xi.

Suppose each node i ∈ V updates these four state variables according to

ẋi(t) =
∑
j∈N i

AT
jiyj(t), (2.3)

ẏi(t) = −
∑
j∈N i

Aijxj(t)− yi(t) + bi, (2.4)

żi(t) = −zi(t) +
∑
j∈N i

AT
jiwj(t), (2.5)

ẇi(t) =
∑
j∈N i

Aijxj(t)−
∑
j∈N i

Aijzj(t), (2.6)
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Consider the dynamical system given in matrix form by the differential equation:



ẋ(t)

ẏ(t)

ż(t)

ẇ(t)


=



0 A⊤ 0 0

−A −Im 0 0

0 0 −In A⊤

A 0 −A 0





x(t)

y(t)

z(t)

w(t)


+



0

b

0

0


, (2.7)

where, [x(t); y(t); z(t);w(t)] represents the state vector of the system at time t, and b

is an external input vector to the system.

Given the differential equation system for a network of nodes, the aim is to com-

pute distributed matrix operations across the network. For this approach, a simplified

scenario with three nodes to develop and understand our approach, which can then be

generalized to an i-node system. In the realm of network science and engineering, the

conceptualization and analysis of networks as mathematical graphs provide a founda-

tional framework for understanding complex systems. This thesis delves into the study

of such networks, particularly focusing on those modeled as undirected, connected

graphs. Formally, we denote such a network by G = (V , E), where:

• V = {1, 2, . . . , N} represents the set of nodes within the network, encompassing a

total of N ≥ 2 distinct entities. These nodes could symbolize various components

depending on the network’s nature, ranging from routers in a communication

network to individuals in a social network.

• E ⊂ {{i, j} : i, j ∈ V , i ̸= j} constitutes the set of edges linking these nodes. An

edge {i, j} signifies a bidirectional, unweighted relationship between nodes i and

j, allowing for the flow of information or resources.
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Crucially, any two nodes i, j ∈ V are considered neighbors with the capability to

communicate directly if and only if {i, j} ∈ E . This neighborly relation is pivotal, as

it underlines the network’s connectivity and potential pathways for communication or

data transfer. The neighborhood of each node i ∈ V , denoted by Ni = {j ∈ V : {i, j} ∈

E}, encapsulates all direct connections of i, influencing the node’s role and significance

within the network.

For the purpose of this analysis, we assume that communications between neighbor-

ing nodes are instantaneous, delay-free, and devoid of errors. This idealized assumption

allows us to focus on the topological and structural aspects of the network, sidestep-

ping the complexities introduced by real-world communication imperfections. Such a

model serves as a valuable abstraction, enabling the investigation of fundamental prop-

erties and behaviors intrinsic to the network’s design. The study of network dynamics

and their intrinsic mathematical representations has increasingly gained prominence,

particularly in the context of understanding how complex network systems can solve

collective computational problems. A quintessential aspect of this exploration is the

association of a graph G = (V , E) with a system of linear equations, denoted by Ax = b.

This system not only encapsulates the computational tasks distributed across the net-

work but also mirrors the structural complexity and interconnectedness inherent to G.

The equation can be represented as:

Ax = b, (2.8)

where the matrix A ∈ Rm×n (with the precondition that A ̸= 0 to avoid trivial solu-

tions) and vectors x ∈ Rn and b ∈ Rm conform to a block partitioning that reflects the

network’s topology.
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In this formulation, each block Aij ∈ Rmi×nj ∀i, j ∈ V , with xi ∈ Rni and bi ∈

Rmi ∀i ∈ V , signifies the localized information or data known exclusively to specific

nodes or shared between directly connected neighbors. This granularity allows the

network to collectively address the computational challenge posed by Ax = b without

necessitating centralized data pooling or processing, thereby adhering to the decentral-

ized nature of G. The dimensions m and n aggregate the individual contributions of

all nodes, expressed as:

m =
∑
i∈V

mi, n =
∑
i∈V

ni, (2.9)

elucidating the cumulative scale of the system in terms of the network size and the

distribution of computational responsibilities.

Importantly, the distribution of Aij and bi across the nodes is meticulously designed

to mirror the network’s communication paths, ensuring that each node possesses only

a subset of the overall data, specifically:

• For every node i, the information regarding Aii and bi remains confined to i,

underscoring the localized knowledge principle critical for distributed computing.

• For any two distinct nodes i and j, the block Aij is accessible either to i or j if

there exists an edge {i, j} ∈ E , embodying the edge-induced sharing mechanism.

Conversely, Aij is set to 0 in the absence of a direct link, aligning with the graph’s

adjacency structure.

This intricate setup not only resonates with the concept of weighted adjacency and

Laplacian matrices, typically employed to encode graph connectivity, but also extends

the scope to more generalized data representations within network matrices. How-

ever, a notable constraint emerges from the reluctance or inability of nodes to divulge

their Aij’s and bi’s, attributed to security, privacy, or bandwidth considerations. Such

restrictions necessitate innovative approaches to distributed problem-solving, wherein
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nodes collaborate to deduce global solutions from their local data without explicit data

exchanges that could compromise the system’s integrity or operational efficiency.

Through this elaborate construct, the study aims to unravel methodologies and

algorithms capable of navigating the dual challenges of distributed data processing and

stringent communication constraints, ultimately fostering advancements in network-

driven computational paradigms.

By dissecting the intricate web of interactions and relationships, we can uncover

insights into network resilience, efficiency, and capacity for information dissemination,

all of which are crucial for the design and optimization of contemporary and future

networked systems.

2.4 Algorithm Analysis

The distributed algorithm’s design incorporates the dynamics of a specific matrix A,

facilitating efficient computation across the network. The structure of A suggests a

system with interconnected state variables, guiding the algorithm’s local computation

and communication steps.

2.4.1 SVD Basics

The full Singular Value Decomposition (SVD) offers an elegant methos for analyzing

matrices and solving systems of linear equations, including those that are underdeter-

mined or overdetermined. For matrix A ∈ Rm×n, SVD decomposes A as:

A = UΣV T
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where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a matrix

that contains the positive singular values of A. The Moore-Penrose inverse of A, denoted

as A†, can then be computed as:

A† = V Σ+UT

where Σ+ is obtained by taking the reciprocal of each non-zero element on the diagonal

of Σ, and transposing the matrix.

In this specific application, decomposition allows for the distributed computation

of the Moore-Penrose inverse by distributing parts of U , Σ, and V across the network

nodes. For a network of three nodes, each node is assigned a portion of the computation

related to U , Σ, and V . This setup models the initial case and provides insight into

how the approach scales with the number of nodes.

Generalizing to an i-node system, partitioning the computation such that each node

is responsible for a portion of the SVD computation, facilitating the distributed com-

putation. This method leverages the network’s distributed architecture to efficiently

compute the inverse, essential for solving the system of linear equations represented by

the initial differential equation system.

The efficacy of this approach in a distributed environment hinges on the network’s

ability to efficiently share and aggregate the computations performed by individual

nodes, highlighting the interplay between network topology and computational effi-

ciency.

Continuing exploration of the distributed computation of Moore-Penrose inverses

over networks, a critical step involves transforming the original system to reveal its full

dynamics and facilitate analytical insights. To achieve this, we apply a transformation
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that diagonalizes the model, enabling a clearer analysis of convergence behaviors and

equilibrium points. Specifically, the transformed system is given by:

˙̃x(t) = T−1AT x̃(t) + T−1b, (2.10)

where x̃(t) = T−1x(t) represents the state vector in the transformed space, and T is

the transformation matrix that diagonalizes A.

This transformation yields a system in the form ˙̃x(t) = Ãx̃(t) + b̃, where Ã =

T−1AT and b̃ = T−1b. This new formulation offers a comprehensive view into the

system’s dynamics, providing a platform for rigorous analysis of convergence rates and

the identification of equilibrium points.

Advantages:

• The diagonalized form Ã allows for a straightforward analysis of the system’s sta-

bility and convergence properties, making it possible to derive explicit conditions

under which the system will converge to the desired Moore-Penrose inverse.

• It facilitates a detailed examination of the system’s equilibrium points, offering

insights into the long-term behavior of the networked agents.

Limitations:

• One significant limitation of this approach is the loss of the direct physical in-

terpretation of the state variables in the transformed system. The variables in

x̃(t) may not correspond to quantities that each node in the network can directly

compute or interpret.

• Additionally, the presence of the forced term b̃ in the transformed system still

poses challenges, requiring careful consideration in the analysis to ensure that its

influence does not hinder achieving consensus or introduce instability.
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Incorporating this transformation into the problem formulation deepens the un-

derstanding of the system’s dynamics and paves the way for developing distributed

algorithms that are both efficient and robust. It underscores the trade-offs between

gaining analytical insights and retaining the physical meaning of the system’s variables,

highlighting the complexities inherent in the distributed computation.

2.4.2 Equilibrium Point Analysis

Following the mathematical modeling of this system, the next step was to identify its

equilibrium points. Equilibrium points play a vital role in understanding the steady-

state dynamics of the system, characterized by the cessation of state variable changes

over time.

The equilibrium points are determined by setting the time derivatives of the state

variables to zero in the system’s differential equations, resulting in a set of algebraic

equations as shown in (2.7) where A represents the dynamics of the system, I is the

identity matrix, and b is an external input vector. The state variables of the system

are denoted by x, y, z, and w.

By setting ẋ, ẏ, ż, and ẇ to zero, we derive the following equilibrium equations:

0 = ATy, (2.11)

0 = −Ax− y + b, (2.12)

0 = −z + ATw, (2.13)
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0 = Ax− Az. (2.14)

The derived equilibrium equations provide significant insights into the system’s behav-

ior:

• Equation (2.11): 0 = ATy

This equation implies that the vector y is orthogonal to the range of AT , which

means y lies in the null space of A. In the context of least squares problems, y

represents the error or residual vector, orthogonal to the column space of A.

• Equation (2.12): 0 = −Ax− y + b

Rearranging gives Ax+y = b. This equation states that Ax approximates b, with

y capturing the residual. This setup is typical in least squares solutions where

Ax is the projection of b onto the column space of A.

• Equation (2.13): 0 = −z + ATw

Rearranging to z = ATw, suggests that z is determined by how the vector w

(Lagrange multipliers) interacts with AT .

• Equation (2.14): 0 = Ax− Az

This equation indicates that the transformations of x and z by A are identical,

meaning x−z is in the kernel of A. This allows for an infinite number of solutions

if A is not of full rank, highlighting underdetermined characteristics of the system.

Analysis of Equilibrium Points and System Solutions

Given the system of equations Ax = b, where the range of A is defined as the span of

A’s columns, we explore the conditions under which solutions exist and the nature of

these solutions from the perspective of optimization and error minimization.
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Understanding the Equilibrium Points

The fundamental premise in linear algebra that a solution x such that Ax = b exists if

and only if b is within the range of A, guides the analysis of the system’s equilibrium

points:

1. The condition Ax = b indicates that, at equilibrium, for any b in the range of A,

there exists at least one solution x. This confirms the system’s ability to reach a

state of equilibrium given the appropriate conditions.

2. The variable y, representing minimized error, is orthogonal to the columns of A.

This signifies that y captures the component of b not representable by the column

space of A, characteristic of the least-squares solution.

3. The minimization criterion ∥Ax − b∥ suggests that x represents a least-squares

solution, optimizing the approximation of b through A’s column space when an

exact solution is unattainable.

4. The similarity in the role of z indicates the presence of multiple solutions that

minimize the representation error, pointing to the least-squares solution’s nature

under certain conditions.

5. The variable w, interpreted as a Lagrange multiplier, reflects the system’s sen-

sitivity to changes in b, providing insights into the constraints’ impact on the

solution.

Derivation from Least-Squares Interpretation to ATy = 0

The least-squares method minimizes the sum of squared residuals, aiming to solve the

optimization problem:
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min
x

∥Ax− b∥2. (2.15)

The residuals in this context are defined as y = b− Ax. The optimization leads us to

the normal equations:

ATAx = AT b, (2.16)

obtained by setting the gradient of the objective function with respect to x to zero.

This equation is pivotal in finding the least-squares solution.

An inherent aspect of the least-squares solution is the orthogonality principle, which

states that the residuals y are orthogonal to the column space of A. Mathematically,

this translates to the condition:

ATy = 0. (2.17)

This condition emerges because the dot product of y with any vector in the column

space of A equals zero, indicating that y lies in the left null space of A. The equation

ATy = 0 succinctly captures this relationship, highlighting the orthogonality of the

residuals to the space spanned by the columns of A.

Explanation of ATy = 0 in Terms of Orthogonality

The equation ATy = 0 plays a significant role in the geometric interpretation of the

least-squares method. It suggests that the residuals vector y, which is the difference

between the observed values b and the predictions Ax, is orthogonal, or perpendicular,

to the range space of A. Here, we delve into the implications of this orthogonality.
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Geometric Interpretation

The columns of the matrix A define its range space, which represents all possible linear

combinations of these columns. The condition ATy = 0 implies that the dot product

of the residuals vector y with any vector in the range space of A is zero. This can be

expressed as:

ATy = 0 =⇒ for all v ∈ R(A), yTv = 0, (2.18)

where R(A) denotes the column space of A. This condition signifies that y is perpen-

dicular to every vector in the range space of A, or equivalently, y is orthogonal to the

column space of A.

Implications of Orthogonality

This orthogonality principle is fundamental to the least-squares solution, indicating

that the best approximation of b by Ax results in a residuals vector y = b − Ax

that lies in a direction entirely orthogonal to the space spaned by the columns of

A. Therefore, the equation ATy = 0 encapsulates the essence of the least-squares

method, highlighting that the residuals are not only minimized in magnitude but also

geometrically orthogonal to the predictive space defined by A.

Derivation of the Least-Squares Problem from the Given Equation

The equation presented,

0 = −Ax− y + b, (2.19)

can be rearranged to highlight its connection to a least-squares formulation. By reor-

ganizing the equation, we obtain:
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Ax+ y = b. (2.20)

This equation indicates that y, the residual vector, is the difference between the ac-

tual outcomes b and the predictions made by the linear model Ax. The least-squares

method seeks to minimize these residuals, thus optimizing the fit between the model’s

predictions and the actual data.

Formulating the Least-Squares Problem

The essence of the least-squares problem is to find the parameter vector x that mini-

mizes the sum of squared residuals. This objective can be mathematically formulated

as:

min
x

∥Ax− b∥2. (2.21)

This minimization problem focuses on reducing the squared Euclidean norm of the

residual vector y = b−Ax. The squared norm ∥y∥2 = ∥Ax− b∥2 represents the sum of

the squares of the individual components of y, encapsulating the total error between

the model’s predictions and the actual observations.

Connecting to the Original Equation

From the initial equation, Axls+y = b, we see that minimizing ∥Ax− b∥2 is equivalent

to minimizing ∥y∥2, as y embodies the deviation of Ax from b. Thus, the process of

minimizing the residuals directly corresponds to addressing the least-squares problem,

aiming to find an optimal x that achieves this minimization. Therefore, the equation

0 = −Ax − y + b inherently leads to a least-squares problem where the goal is to

minimize the squared norm of the residuals, ∥Ax− b∥2.
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Minimum-Norm Interpretation of the Equilibrium Point 0 = Ax− Az

The equilibrium condition 0 = Ax− Az implies that the vectors x and z, upon trans-

formation by the matrix A, result in identical outcomes. This can be seen as:

Ax = Az, (2.22)

which further simplifies to indicate that the difference between x and z lies within the

null space of A, assuming A is nonzero.

Minimum-Norm Solution

In scenarios where multiple solutions exist, the minimum-norm solution is sought to

find the vector with the smallest Euclidean norm that satisfies the equation. Applying

this concept to this condition, if x is a known state vector, then selecting a z that

minimizes the deviation from x, under the constraint Ax = Az, aligns with seeking a

minimum-norm solution.

This interpretation emphasizes not just the existence of multiple solutions but the

preference for the solution with the least magnitude, particularly relevant in under-

determined systems or when optimizing for stability and efficiency in solutions. It

highlights the importance of considering the norm of potential solutions in the context

of linear equations and system dynamics.

Interpretation and Derivation of Equilibrium from the Lagrangian

Given the Lagrangian formulation:

L(z, w) = 1

2
∥z∥2 + wT (Axls − Az),
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where wT denotes the vector of Lagrange multipliers, xls the least-squares solution

of Ax = b, and 1
2
∥z∥2 aims to minimize the Euclidean norm of z, we explore the

optimization problem’s equilibrium conditions.

Optimization Conditions

• Differentiating with respect to z and setting the derivative equal to zero yields:

∇zL = z − ATw = 0 =⇒ z = ATw.

This indicates the optimal z in terms of the Lagrange multipliers, adhering to

the minimum-norm principle within the constrained optimization framework.

• Differentiation with respect to w enforces the constraints:

∇wL = Axls − Az = 0,

ensuring the solution respects the deviation of Az from the desired projection

Axls, effectively highlighting the adherence to the least-squares solution con-

straints.

2.4.3 Coordinate Transformation

The transformation to the x̃ domain using the SVD components enables a clearer

understanding of the system’s behavior and simplifies the control problem. Specifically,

the diagonalization through Σ highlights the dominant dynamics of the system, and

the partitioning of A′ into blocks with Σ, ΣT , and −I allows for an isolated analysis of

each dynamic component.
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Furthermore, the introduction of b̃ as a transformation of the original input vector

b by U−1 aligns the external inputs with the transformed system states, ensuring that

the control strategies designed in the x̃ domain are coherent and applicable to the

original system when transformed back. To find the transformed matrix Ã = T−1AT ,

we consider the given matrix A:

A =



0 AT 0 0

−A −Im 0 0

0 0 −In AT

A 0 −A 0


and the transformation matrix T defined as:

T =



V 0 0 0

0 U 0 0

0 0 V 0

0 0 0 U


Given T , its inverse T−1 is the transpose of T because T is orthogonal:
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T−1 = T T =



V T 0 0 0

0 UT 0 0

0 0 V T 0

0 0 0 UT


Applying the transformation Ã = T−1AT , we aim to simplify or understand the struc-

ture of A in a new basis defined by T . The transformed matrix Ã is then calculated

as follows:

Ã = T−1AT =



0 UTATV T 0 0

−AV UT −UUT 0 0

0 0 −V V T UATV T

AV UT 0 −AV UT 0


Substituting A = V ΣUT into the transformed matrix and considering the properties

of U , V , and Σ, we obtain:

The overall system order in the transformed domain is 2n + 2m, indicating the

comprehensive state representation that includes both the original states and addi-

tional states introduced by the transformation. Given the original system dynamics

represented by the matrix A and a vector b, we apply a transformation to simplify the

system’s representation for analysis. The transformed system dynamics are character-

ized by the equation:
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˙̃x = Ãx̃+ b̃

where

Ã =



0 ΣT 0 0

−Σ −Im 0 0

0 0 In ΣT

Σ 0 −Σ 0


, b̃ =



0

b̃

0

0


where, b̃ = U−1b. The matrix Σ represents the singular values from the Singular Value

Decomposition of a component matrix of A, and I is the identity matrix matching

the dimensions of Σ. The transformation employs matrices U and V , deriving from

the SVD, to facilitate the analysis and control design of the system by simplifying its

dynamics. The final equilibrium point dynamics is given by:



˙̃xi

˙̃yi

˙̃zi

˙̃wi


=



0 σi

−σi −1

0 0

0 0

0 0

σi 0

−1 σi

−σi 0





x̃i

ỹi

z̃i

w̃i


+



0

b̃i

0

0


(2.23)

Dynamics of Additional System Components

In addition to the primary dynamics facilitated by the singular values indexed by

i = 1, 2, . . . , r, the system’s higher order components, indexed by i = r + 1, . . . , n
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and i = r+ 1, . . . ,m, exhibit specific behaviors based on the absence of corresponding

singular values in these ranges. These components are critical for understanding the

full system dynamics in the transformed domain, particularly in scenarios where the

system is over-specified or under-specified.

Dynamics for i = r + 1, . . . , n , i.e., for the components beyond the rank r of the

matrix A:

• The states x̃i are static since they correspond to null singular values, implying:

˙̃xi = 0 =⇒ x̃i(t) = const = x̃i(0).

• For the z components, the dynamics show exponential decay:

˙̃zi = −z̃i =⇒ z̃i(t) = e−tz̃i(0),

reflecting the system’s ability to stabilize these components naturally over time.

Dynamics for i = r + 1, . . . ,m , i.e., for the additional components in the trans-

formed domain, which may exceed the rank r but are within the dimension m of A:

• The y components are influenced both by decay and external inputs:

˙̃yi = −ỹi + b̃i =⇒ ỹi(t) = e−tỹi(0) + b̃i,

which indicates a dynamic settling towards a state influenced by the transformed

input b̃i.
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• The w components remain constant throughout:

˙̃wi = 0 =⇒ w̃i(t) = const = w̃i(0).

2.4.4 Problem P1: Least-Squares Solution

Problem P1 entails each node finding a component of the least-squares solution to

Ax = b. Through distributed computation, nodes iteratively refine their state vari-

ables to converge towards the global least-squares solution, leveraging consensus-based

algorithms to minimize the collective residual error.

Theorem 1. For any initial states x(0), y(0), z(0), and w(0), the distributed algorithm

ensures that x(t) converges to a least-squares solution, x∗ ∈ X ∗, such that x∗ minimizes

∥Ax− b∥2.

Proof for Problem P1: Finding the Least-Squares Solution

Given a matrix A ∈ Rm×n and a vector b ∈ Rm, the least-squares problem aims to

minimize ∥Ax − b∥2 over x ∈ Rn. Utilizing the Singular Value Decomposition (SVD)

of A, we express A as A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal

matrices, and Σ ∈ Rm×n is a matrix that contains the positive singular values of A.

The minimization problem can then be rewritten using the SVD of A:

min
x∈Rn

∥UΣV Tx− b∥2.

By partitioning V and Σ into V = [V1|V2] and Σ =


Σr 0

0 0

, with V1 ∈ Rn×r

and Σr ∈ Rr×r representing a matrix that contains the positive singular values of A.
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and similarly partitioning U and b into U = [U1|U2] and b =


b1

b2

, the minimization

problem becomes:

min
x∈Rn

∥ΣrV
T
1 x− UT

1 b∥2 + ∥UT
2 b∥2.

The least-squares solution, xls, must satisfy:

xls = V


Σ−1

r UT
1 b

x̃2

 = V


Σ−1

r b̃1

x̃2

 ,

where x̃2 ∈ Rn−r can be any vector in the (n − r)-dimensional subspace, illustrating

the non-uniqueness of xls in the case of an underdetermined system or when A does

not have full column rank.Here, b̃1 = UT
1 b represents the projection of the vector b onto

the column space spanned by the columns of U1, and V is the orthogonal matrix from

the SVD of A.

This formulation highlights that the least-squares solution is directly influenced by

the singular values of A and the projection of b onto the column space of U1. The

vector x̃2 represents the freedom in the choice of solution within the null space of A,

emphasizing the multitude of solutions possible when A is rank-deficient.

2.4.5 Problem P2: Minimum-Norm Least-Squares Solution

Problem P2 focuses on achieving the minimum-norm least-squares solution. This objec-

tive is critical in scenarios with underdetermined systems, where multiple least-squares

solutions exist, and the solution with the smallest norm is preferred for its stability

and uniqueness properties.
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Theorem 2. For any initial states x(0), y(0), z(0), and w(0), the distributed algorithm

ensures that z(t) converges to the minimum-norm least-squares solution, z∗, such that

z∗ ∈ X ∗ and ∥z∗∥ ≤ ∥x∗∥ for all x∗ ∈ X ∗.

Proof for Problem P2: Finding the Minimum-Norm Least-Squares Solution

Given the least-squares problem minx∈Rn ∥Ax − b∥2 and the SVD of A = UΣV T , the

objective is to find the minimum-norm solution z that satisfies Axls = Az. We express

z in terms of the SVD components as z = V z̃. The goal is to minimize ∥z∥2 under the

constraint that Axls = Az, leading to:

min
z̃∈Rn

∥V z̃∥2 = z̃TV TV z̃ =

[
z̃T1 z̃T2

]
z̃1

z̃2

 = ∥z̃1∥2 + ∥z̃2∥2,

where z̃1 ∈ Rr represents the components associated with the non-zero singular values

of A, and z̃2 ∈ Rn−r pertains to the null space components. To achieve the minimum-

norm, we set z̃2 = 0, thereby minimizing the expression.

Under the constraint Axls = Az, we have:

U1ΣrV
T
1 [V1|V2]


x̃1

x̃2

 = U1ΣrV
T
1 [V1|V2]


z̃1

z̃2

 = U1Σrz̃1.

Hence, to minimize the norm and satisfy the constraint, z̃1 must be Σ−1
r UT

1 b. Therefore,

the minimum-norm solution is:
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
z̃1

z̃2

 =


Σ−1

r UT
1 b

0

 ,

and thus,

z = [V1|V2]


Σ−1

r UT
1 b

0

 = V1Σ
−1
r UT

1 b.

z = [V1|V2]


Σ−1

r b̃1

0

 = V1Σ
−1
r b̃1,

where b̃1 = UT
1 b is the projection of b onto the column space of A, represented by

the columns of U1. This approach leverages the structure of A’s SVD to efficiently

compute the minimum-norm least-squares solution z. This formulation demonstrates

that the minimum-norm least-squares solution, z, is achieved by the projection of the

vector b onto the column space of A through the inverse of the non-zero singular values

Σ−1
r , then transformed by the matrix V1. This ensures that z not only satisfies the

least-squares condition but also that its norm is minimized.

2.4.6 Problem P3: Detecting the Existence of Solutions

Problem P3 is concerned with determining whether a solution to Ax = b exists, es-

sentially verifying if b is in the range space of A, R(A). This verification is pivotal for

the nodes to determine the feasibility of finding a valid solution.
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Theorem 3. For any initial states x(0), y(0), z(0), and w(0), the distributed algorithm

ensures that y(t) converges 0 if, b ∈ R(A) and to a non-zero vector if b /∈ R(A) .

The approach to determine whether a solution exists utilizes the property of the

system at equilibrium and the behavior of the error vector y over time. Consider the

augmented system equation incorporating the error dynamics:

Axls + y = b,

where xls represents the least-squares solution. By decomposing A using Singular Value

Decomposition (SVD), we express A as A = UΣV T . Partitioning U , Σ, and V and

substituting into the equation gives:

(U1ΣrV
T
1 )([V1|V2]


x̃1

x̃2


T

+ [U1|U2]


ỹ1

ỹ2


T

= [U1|U2]


b̃1

b̃2


T

.

This simplifies to:

(U1ΣrΣ
−1
r b̃1) + U1ỹ1 + U2ỹ2 = U1b̃1 + U2b̃2.

For the system to be in equilibrium with zero error, it requires ỹ1 = 0 and ỹ2 = b̃2.

Thus, y = U2b̃2.

At equilibrium, considering the system dynamics and the property ATy = 0 due to

orthogonality, we analyze:

ATy = (V1ΣrU
T
1 )U2b̃2 = 0,
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indicating that UT
1 U2 = 0 by the properties of orthogonal matrices, ensuring that

y(∞) = 0 aligns with b being within the range space of A.

This implies that if y(∞) = 0 across all nodes, then collectively, the network

confirms the existence of a solution, as b lies in the column space of A. Therefore,

the distributed computation effectively validates that at least one solution to Ax = b

exists, satisfying the conditions for Theorem 3.

At equilibrium, the system reaches a state where ẏ(t) = 0, implying that −Ay(∞)+

b = 0 or Ay(∞) = b. The condition y(∞) = 0 implies that the system has successfully

reduced the residual error to zero, indicating that b is indeed within the range space

of A, R(A).

In conclusion, the exploration of Problems P1 to P3 within a distributed setting

showcases the profound capability of networked systems to collaboratively address com-

plex computational tasks. Through distributed algorithms, nodes can effectively com-

pute least-squares and minimum-norm solutions and verify the existence of solutions,

highlighting the potential for decentralized problem-solving in linear algebraic systems.

This investigation not only underscores the practical applications of such distributed

methodologies but also sets a foundation for future advancements in networked system

optimization and analysis.

2.4.7 Convergence Analysis

This subsection is dedicated to analyzing the convergence properties of the dynamical

system governed by the equation (2.23). By deriving the eigenvalues and eigenvectors

of the system matrix, we assess the stability and determine the convergence behavior

of the state variables x̃i, ỹi, z̃i, and w̃i.
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System Dynamics

The dynamical system can be described by the differential equation given in (2.23),

where the matrix structure suggests a partitioned approach to understanding the dy-

namics: 

˙̃xi

˙̃yi

˙̃zi

˙̃wi


=



0 σi

−σi −1

0 0

0 0

0 0

σi 0

−1 σi

−σi 0





x̃i

ỹi

z̃i

w̃i


+



0

b̃

0

0


.

Eigenvalue Analysis

The stability and convergence of the system heavily depend on the eigenvalues of the

matrix governing the dynamics. For the first block, which is representative of the entire

matrix dynamics, the eigenvalues are computed as follows:

λ1 = λ2 =

(
−1−

√
1− 4σ2

i

2

)
, λ3 = λ4 =

(
−1 +

√
1− 4σ2

i

2

)
.

The corresponding eigenvectors are:

V ′
1 , V

′
2 =



0

−1+
√

1−4σ2
i

2σi

0

0


, V ′

3 , V
′
4 =



0

−1−
√

1−4σ2
i

2σi

0

0


.
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Convergence and Stability Discussion

The eigenvalues indicate the rate at which the state variables converge to their steady

states. Negative real parts of all eigenvalues suggest that the system is stable and

converges to the equilibrium point. The eigenvectors provide insight into the specific

modes through which the system approaches stability. Convergence occurs as

t → ∞ if ℜ(λ) < 0 for all λ.

The more negative the real part of the eigenvalue, the faster the convergence. Thus,

analyzing these eigenvalues allows us to predict the behavior of the system under

various initial conditions and input scenarios.

2.5 Algorithm Extension

2.5.1 Problem P4: Computing the Moore-Penrose Inverse

We describe the continuous-time distributed algorithm that enables nodes to coopera-

tively compute the MPI. Each node updates its state based on local computations and

interactions with its neighbors, aiming to converge to the MPI.

Theorem 4. For any initial states x(0), y(0), z(0), and w(0), the distributed algorithm

z(t) ensures convergence to the Moore-Penrose Inverse of matrix A, denoted by A†.

This final state z(∞) at all nodes collectively represents A† in a distributed matrix

form.
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Proof of Convergence

The Moore-Penrose Inverse A† for a matrix A can be calculated using the Singular

Value Decomposition (SVD) of A, given by A = UΣV T . The inverse is expressed

as A† = V Σ†UT , where Σ† is the diagonal matrix consisting of the reciprocals of the

non-zero singular values of A, padded with zeros to match the dimensions of A.

The distributed computation of A† involves each node calculating its corresponding

portion of A† using the local segments of V , Σ, and U that each node maintains:

A† = [V1|V2]


Σ−1

r 0

0 0



UT
1

UT
2

 .

z(∞) = [V1|V2]


Σ−1

r 0

0 0



UT
1

UT
2

 ,

where V1 and U1 contain the components associated with the non-zero singular values

of A, and V2, U2 pertain to the null space components.

The initialization of each node with appropriate segments of U , V , and Σ allows for

the effective parallel computation of A†. Nodes utilize local data and cooperative inter-

actions with other nodes to iteratively refine their state towards the global objective,

converging to the distributed representation of A†.

Observation

The results confirm that the state of each node z(t) converges to a component of A†,

validating the effectiveness and robustness of the approach in computing the Moore-

Penrose Inverse in a distributed manner.
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The successful computation of A† across the network highlights the practical appli-

cability and efficiency of the distributed approach, showcasing the potential for scalable

matrix computations in decentralized network environments.

2.5.2 Problem P5: Detecting Full Column Rank

Problem P5 involves each node in the network determining whether the matrix A ∈

Rm×n possesses full column rank, i.e., rank(A) = n. This is crucial as it indicates

that the columns of A are linearly independent, which is essential for the uniqueness

of solutions in linear systems.

Theorem 5. Given a network represented as an undirected graph G = (V , E), and

assuming arbitrary initialization of the state variables x(0), y(0), z(0), and w(0) as

independent and identically distributed Gaussian random variables with zero mean and

unit variance, the distributed algorithm can ascertain if A has full column rank by

comparing the equilibrium states x(∞) and z(∞) of the network nodes.

Criterion for Detecting Full Column Rank

The nodes employ a continuous-time distributed algorithm with initial conditions as

mentioned. The algorithm allows the state variables x, y, z, and w to evolve towards

an equilibrium, aiming to analyze the convergence behavior of x and z.

• Criterion for Full Column Rank:

If x(∞) = z(∞) for all nodes i ∈ V , then matrix A has full column rank.

• Non-Full Column Rank Detection:

If x(∞) ̸= z(∞) for any node i ∈ V , then matrix A does not have full column

rank.
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This criterion implies that if the least-squares solution x(∞) is equivalent to the

minimum-norm least-squares solution z(∞) across the network, then A is uniquely

solvable for any arbitrary vector b, indicating that A has linearly independent columns

and possesses full column rank.

Outcome Classification:

• True Positive (TP): The condition x(∞) = z(∞) holds, correctly indicating

full column rank.

• True Negative (TN): The condition x(∞) ̸= z(∞) holds, correctly indicating

non-full column rank.

• False Positive (FP): The scenario where x(∞) ̸= z(∞) incorrectly suggests

full column rank is theoretically impossible due to the rigorous structure of the

distributed computation and matrix properties.

• False Negative (FN): Although statistically improbable (probability = 0), the

condition x(∞) = z(∞) might incorrectly suggest non-full column rank under

exceptional scenarios.

Implications and Computational Process

This method leverages the distributed computation capabilities of the network to de-

duce essential structural properties of A, particularly its column rank, through local

computations and inter-node communications. The outcome not only illuminates the

solvability and characteristics of linear systems associated with A but also underscores

the potency of distributed algorithms in matrix analysis and computation.

The analysis of the full column rank condition enhances understanding of the struc-

tural integrity and independence of A’s columns and serves as a crucial aspect of
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distributed matrix operations, reflecting the network’s ability to collaboratively solve

complex matrix-related problems effectively.

2.5.3 Problem P6: Detecting Full Row Rank

Problem P6 focuses on each node in a network determining whether the matrix A ∈

Rm×n has full row rank, i.e., rank(A) = m. This is significant as it indicates that the

rows of A are linearly independent, essential for covering the entire row space in linear

systems.

Theorem 6. Given a network modeled as an undirected graph G = (V,E), with the

vector b having independent and identically distributed entries with zero mean and unit

variance and arbitrary initial conditions x(0), y(0), z(0) and w(0), the distributed algo-

rithm enables nodes to determine if A has full row rank by examining the convergence

state of the error vector y(∞) across the network.

Criterion for Detecting Full Row Rank

The nodes employ a continuous-time distributed algorithm, allowing their state vari-

ables, particularly the error vector y, to evolve towards an equilibrium. The adjustment

process is critical to determining the full row rank status of A.

Criterion for Full Row Rank: If y(∞) = 0 for all nodes i ∈ V , then A has full

row rank.

Non-Full Row Rank Detection: If y(∞) ̸= 0 for any node i ∈ V , then A does not

have full row rank.
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Outcome Classification

• True Positive (TP): The condition y(∞) = 0 holds across all nodes, correctly

indicating full row rank.

• True Negative (TN): The condition y(∞) ̸= 0 holds for any node, correctly

indicating non-full row rank.

• False Positive (FP): As the detection algorithm is designed based on matrix

properties and distributed computation, the occurrence of y(∞) ̸= 0 suggesting

a full row rank is considered theoretically impossible.

• False Negative (FN): While statistically improbable (with probability ap-

proaching zero), fy(∞) = 0 might incorrectly suggest non-full row rank under

exceptional scenarios.

Implications and Computational Process

This method uses the distributed computational strength of the network to ascertain

important structural attributes of A, specifically its row rank, through localized com-

putations and peer-to-peer communication. The results not only shed light on the

characteristics and solvability of linear systems linked to A but also emphasize the

effectiveness of distributed algorithms in matrix analysis and computations.
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2.6 Additional Discussion

2.6.1 LELV Matrix Structure and Initialization

Given the matrix A, characterized by its block structure involving AT , −Im, and A,

the initialization phase accounts for this unique composition, setting the groundwork

for targeted local computations and interactions.

1. Local Data Interpretation: Each node interprets its portion of A, focusing on

the relevant segments −A, AT , and identity matrices. This step includes parsing

local information and preparing it for computation.

2. State Variable Initialization: Nodes initialize state variables corresponding

to their roles in the matrix structure, considering their contribution to either the

A or AT parts of the matrix.

3. Communication Channels: Establish communication protocols aligning with

the matrix’s block structure, ensuring nodes responsible for A and AT parts can

exchange necessary data.

2.6.2 Local Computation Reflecting Matrix Dynamics

The computation phase respects the matrix A’s structural dynamics, focusing on op-

erations relevant to the system’s interconnected nature.

1. Block-Specific Operations: Nodes execute computations based on their seg-

ment of A, processing either the AT , −A, or identity matrix components.

2. Intermediate State Updates: Calculate intermediate state updates reflecting

the influence of matrix dynamics, storing results for communication or further

computation.
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Chapter 3

Local-Equation Global-Variable Problem

3.1 Introduction

The LEGV paradigm represents a scenario where each node in a distributed system

solves a local equation while collectively contributing to the resolution of a global

variable. Illustrated in Figure (3.1), this schematic exemplifies the essence of LEGV

computations.

Figure 3.1: The Local-Equation Global-Variable Problem.

In the provided visual, the colored circles epitomize nodes, each of which is charged

with solving a local equation. Unlike the LELV model, where each node’s equation

pertains to entirely local variables, the LEGV framework stipulates that local compu-

tations are intimately tied to a global variable.
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The matrices, partitioned into blocks colored and marked with diagonals, symbolize

the local data each node works with, augmented by the addition operation indicating

the synthesis of local computations into a global variable. The zeros mean that seg-

ments of the entire dataset of particular nodes have no knowledge or contribution to

the global variable, aligning with the defining characteristic of the LEGV approach.

The additive contribution of a node’s data to the global computation.

The single grey block epresents the aggregation process where all local computations

and interactions are combined to form the global solution.

A practical interpretation of this could be as follows: consider the equation Ax = b,

where A is a matrix, x is the global variable vector, and b is the result vector. In

the LEGV context, each node computes a segment of A multiplied by the global x to

contribute to the corresponding segment of b. The collective contributions of all nodes’

computations yield the full vector b.

3.2 Problem Formulation

Motivation

In many real-world applications, such as sensor networks, distributed control systems,

and cooperative robotics, nodes are often required to work collectively to solve com-

plex problems that are inherently distributed. These applications demand efficient

algorithms that can handle not only the locality of data but also the global interde-

pendence of variables which influence the overall system dynamics.
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Challenges

The primary challenge in LEGV is to design an algorithm that efficiently integrates

the influence of global variables while respecting the computational constraints and

autonomy of local nodes. This integration must ensure that each node’s computa-

tions contribute meaningfully to the global system’s objectives without necessitating

excessive communication or central coordination, which could introduce bottlenecks or

vulnerabilities.

Objectives

The objectives of the LEGV problem can be summarized as follows:

• To develop a distributed algorithm that allows each node to process part of

the global data while ensuring that local computations align with global system

requirements.

• To guarantee that the algorithm converges to a solution that is both accurate

and efficient, leveraging the network’s topology and the nodes’ local data.

• To explore the stability and convergence properties of the proposed algorithm,

ensuring that it performs robustly under various network conditions and config-

urations.

3.3 Algorithm Description

The Local-Equation Global-Variable (LEGV) problem tackles distributed computa-

tions in a network graphed as an undirected and connected structure, representing

nodes and their interactions. The problem focuses on leveraging both local and global

data to achieve systemic solutions across the network.
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Matrix Formulation and System Dynamics

Consider a network modeled as an undirected, connected graph G = (V , E), where

V = {1, 2, . . . , N} represents the set of nodes and E ⊂ {{i, j} : i, j ∈ V , i ̸= j} denotes

the edges connecting these nodes. Each node i ∈ V has direct communication with

its neighbors j, provided {i, j} ∈ E , with the assumption that the communication is

error-free and instantaneous.

The nodes are associated with a structured matrix A and a vector b, partitioned as

follows:

A =



A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN


, b =



b1

b2

...

bN


where each matrix element Aij is set to zero, Aij = 0, if {i, j} /∈ E , ensuring that

elements are only non-zero if nodes i and j are connected by an edge in E . Each bi is

known only to node i, aligning the information distribution with the network structure.

The dimensions of A and b are defined by the network’s configuration, where the

sum of all individual node dimensions m1 +m2 + . . . +mN = m and n1 = n2 = . . . =

nN = n accommodate the full matrix A ∈ Rm×nN and vector b ∈ Rm. In which, each

Aij ∈ Rmi×nj knows bi ∈ Rm
i .

This arrangement allows each node to autonomously process its local data and

collaboratively solve the global equation Ax = b through coordinated computation

and communication within the graph.
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The dynamics of the distributed algorithm are governed by the following differential

equation, which dictates the evolution of the state variables x̂(t), x(t), y(t), ẑ(t), z(t),

and w(t) for each node in the network:



˙̂x(t)

ẋ(t)

ẏ(t)

˙̂z(t)

ż(t)

ẇ(t)



=



0 Ln 0 0 0 0

−Ln −Ln AT 0 0 0

0 −A −I 0 0 0

0 0 0 0 Ln 0

0 0 0 −Ln −I AT

0 A 0 0 −A 0





x̂(t)

x(t)

y(t)

ẑ(t)

z(t)

w(t)



+



0

0

b

0

0

0


where Ln is the Laplacian matrix reflecting the connectivity within the network, AT

represents the transpose of the matrix components associated with each node, and I

is the identity matrix corresponding to the dimensions of each state variable block.

3.3.1 Interpretation and Operational Impact

The system dynamics are specifically designed to ensure robust data processing and

interaction between nodes. Each node performs computations based on its part of A

and b and exchanges information with neighbors to refine its local state estimates. The
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global variables are updated based on collective inputs from all nodes, ensuring that

the system’s overall state evolves toward a solution that satisfies



∑
j∈N1

A1j

∑
j∈N2

A2j

∑
j∈N3

A3j

...

∑
j∈NN

ANj



x

︸ ︷︷ ︸
A

=



b1

b2

...

bN


︸ ︷︷ ︸

b

3.4 Algorithm Analysis

Instead of performing analysis for an arbitrary graph, in what follows, we condsider

a specific graph represented in Figure 3.2. Ths is purely for notation convenience

and is without loss of generality because results of the analysis are applicable to a

general graph with modification. Consider a network modeled as an undirected, 4-

node connected graph. Given the dynamics of the system represented by the state

vector derivative ˙̃x, the corresponding system matrix incorporating the specified Ln

and matrix A is:

1 2 3 4

Figure 3.2: A 4-node undirected graph used in the LEGV analysis.
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A =



A11 A12 0 0

A21 A22 A23 0

0 A32 A33 A34

0 0 A43 A44



x(t) =



x1

x2

x3

x4


, z(t) =



z1

z2

z3

z4


, w(t) =



w1

w2

w3

w4



y(t) =



y1

y2

y3

y4


, x̂(t) =



x̂1

x̂2

x̂3

x̂4


, ẑ(t) =



ẑ1

ẑ2

ẑ3

ẑ4


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Ln = L⊗ In,

Ln =



In −In 0 0

−In 2In −In 0

0 −In 2In −In

0 0 −In In


The system dynamics are expressed as:



˙̂x(t)

ẋ(t)

ẏ(t)

˙̂z(t)

ż(t)

ẇ(t)



=



0 Ln 0 0 0 0

−Ln −Ln AT 0 0 0

0 −A −Im 0 0 0

0 0 0 0 Ln 0

0 0 0 −Ln −InN AT

0 A 0 0 −A 0





x̂(t)

x(t)

y(t)

ẑ(t)

z(t)

w(t)



+



0

0

b

0

0

0



(3.1)

Equilibrium occurs when each derivative is set to zero:
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˙̂x(t) = 0 = Lnx(t) (3.2)

ẋ(t) = 0 = −Lnx̂(t)− Lnx(t) + ATy(t) (3.3)

ẏ(t) = 0 = −Ax(t)− y(t) + b (3.4)

˙̂z(t) = 0 = Lnz(t) (3.5)

ż(t) = 0 = −Lnẑ(t)− z(t) + ATw(t) (3.6)

ẇ(t) = 0 = Ax(t)− Az(t) (3.7)

This section details the mathematical foundations and implications of the dynamics

described by the differential equations governing the Local-Equation Global-Variable

(LEGV) problem, particularly focusing on the properties of the Laplacian matrix and

its effects on the system states.

3.4.1 Properties of the Laplacian Matrix

The Laplacian matrix L of any undirected connected graph is symmetric and positive

semi-definite (p.s.d.). This implies that all eigenvalues are real and non-negative, with

exactly one eigenvalue equal to zero. This zero eigenvalue corresponds to the eigenvec-

tor v which is the all-one vector, indicating total consensus among nodes in the absence

of external influences.

57



Fact 1:

Lv = λv = 0 where v =



1

1

...

1


In the context of the network system described, the Kronecker product of L with the

identity matrix In, denoted Ln = L⊗ In, results in n zero eigenvalues.

Fact 2:

Ln



x1

x2

...

xn


=



0

0

...

0


=⇒ x1 = x2 = · · · = xn

3.4.2 Implications for System Variables

Given that each xi converges to a common value x̄, as inferred from the properties of

Ln, the differential equation for (3.2) becomes:

Lnx(t) = 0 ⇒ x1 = x2 = x3 = x4 = x̄ (3.8)

Consequently, the equation for ẋ(t), (3.3) simplifies to:

0 = Lnx̂(t) + ATy(t) (3.9)
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and the dynamics of ẏ(t) (3.4) becomes:



A11 + A12

A21 + A22 + A23

A32 + A33 + A34

A43 + A44


x̄+



y1

y2

y3

y4


=



b1

b2

b3

b4


(3.10)

where

A =



A11 + A12

A21 + A22 + A23

A32 + A33 + A34

A43 + A44


Therefore,

Ax̄+ y = b (3.11)

Fact 2 and (3.5) implies that:

Lnz(t) = 0 ⇒ z1 = z2 = z3 = z4 = z̄ (3.12)
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Similarly, the implications for ż(t), (3.6) leads to:

Ln



ẑ1

ẑ2

ẑ3

ẑ4


+



z̄

z̄

z̄

z̄


= AT



w1

w2

w3

w4


(3.13)

and ultimately:

Ax̄ = Az̄ (3.14)

demonstrating that x̄ and z̄ represent the least squares and minimum-norm least-

squares solutions respectively. Premultiplying by [In In In In] as in equation (3.13).

[In, In, In, In]× Ln



ẑ1

ẑ2

ẑ3

ẑ4


+



z̄

z̄

z̄

z̄


= [In, In, In, In]× AT



w1

w2

w3

w4


(3.15)

Define A and N as follows:

AT = [In, In, In, In]× AT ,

N = [In, In, In, In]× Ln = 0
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This implies that

Nz̄ = ATw (3.16)

Similarly, if (3.3) is also premultiplied by [In In In In], we have:

0 =

[
In In In In

]
Lnx̂+

[
In In In In

]
ATy (3.17)

where:

[
In In In In

]
× Ln = 0 and

[
In In In In

]
× AT = AT

This implies that

ATy = 0. (3.18)

3.5 Additional Discussion

3.5.1 Comparison of Equilibrium Analysis between LELV and

LEGV

The analysis of equilibrium points in both Local-Equation Local-Variable (LELV) and

Local-Equation Global-Variable (LEGV) frameworks reveals similarities in the struc-

ture of their equations and the implications for system behavior.In both LELV and

LEGV, the equilibrium equations involve matrix operations that reflect interactions

between the state variables and the system matrix A.
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Observation 1

• LELV: 0 = ATy as in equation (2.11) indicates orthogonality between y and the

row space of A.

• LEGV: ATy = 0 as in equation (3.18) indicating that the vector y becomes

orthogonal to the row space of the augmented matrix A, which encompasses

both the influences of A and Ln, also suggesting orthogonality

Observation 2

• LELV Equation:

Equation (2.13) in the LELV framework indicates a direct transformation where

the variable w directly influences the state variable z through the matrix AT ,

without the involvement of additional network-specific matrices.

• LEGV Equation:

In the LEGV framework, the equation (3.16) introduces the matrix N , which

often incorporates elements like the Laplacian matrix reflecting network topology.

This matrix modulates how the aggregated or global variable representation z̄ is

affected by w through AT , suggesting a more complex interaction that takes the

entire network structure into account.

Observation 3

• LELV Equation:

In LELV, this equation (2.12) suggests a direct interaction between the system

matrix A, the state variable x, and the auxiliary variable y to balance the external
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input b. The equation emphasizes a straightforward linear relationship without

additional complexity from the network topology.

• LEGV Equation:

Similarly, in LEGV, equation (3.11) introduces the augmented matrix A, which

typically includes additional network-specific parameters such as the Laplacian

matrix. This equation deals with the global state variable x̄, reflecting a broader

interaction influenced by the network’s entire topology alongside the usual con-

tributions from y to match b.

Observation 4

• LEGV Equation:

In the LEGV framework, equation (3.14) suggests that the transformed states x̄

and z̄ by the augmented matrix A are equivalent at equilibrium. This equation

implies that x̄ and z̄ are respectively the least squares solution and the minimum

norm solution, transformed by the augmented matrix A, which includes network-

specific parameters.

• LELV Equation:

Conversely, in LELV, equation (2.14) represents a balance or cancellation of ef-

fects between two different transformations of the state variable x under the

matrix A. Similarly, x and z in this context represent the least squares solution

and the minimum norm solution, respectively, demonstrating that the difference

in their transformations through matrix A results in a null effect, indicating

equilibrium.
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We will resort to numerical simulation to demonstrate the correctness and effec-

tiveness of the proposed algorithm given in equation (3.1).
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Chapter 4

Simulation Results

4.1 Local-Equation Local-Variable (LELV)

1 2

34

5

Figure 4.1: A 5-node undirected graph used in the LELV simulations.

The application of the LELV algorithm within a control-theoretic framework on

a 5-node undirected graph was explored and represented by a 7 × 8 matrix A and a

vector b. This approach aimed to simulate the minimum-norm least-squares solution

(P2) across the network. The results illustrated the algorithm’s capability to efficiently

distribute the computation load across the network nodes, significantly enhancing the

system’s scalability and performance.
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4.2 Simulation Setup

Matrix and Vector Initialization

The LELV (Local-Equation Local-Variable) problem was simulated using MATLAB

to model the dynamics and interactions within a distributed system. Key simulation

parameters are described as follows:

• Matrix A: A matrix A ∈ Rm×n was generated to explore various computational

scenarios. The matrix dimensions and the rank were set to:

– m = 7 (number of rows)

– m1 = 1,m2 = 2,m3 = 1,m4 = 2,m5 = 1

– n = 8 (number of columns)

– n1 = 2, n2 = 1, n3 = 2, n4 = 1, n5 = 2

– Rank of A = 4

66



The matrix A is given by:

A =



1 2 3 0 0 1 0 0

6 8 10 12 2 2 0 2

3 4 5 6 1 1 0 1

0 0 4 5 6 7 0 3

8 2 0 2 16 4 0 0

4 1 0 1 8 2 0 0

0 0 8 10 12 14 0 6


Matrix A was structured to include specific properties such as sparsity or par-

ticular patterns that are relevant to the LELV problem. The rank condition

was chosen to test the algorithm’s effectiveness in scenarios of underdetermined

systems, where rank(A) < min(m,n).

• Vector b:The vector b is a 7 × 1 random vector where each element is drawn

from a standard normal distribution, representing external inputs to the system.

• The output matrix C is set as an identity matrix of size 2m+2n, facilitating the

observation of all state variables directly.

• The matrix D is a zero matrix matching the dimensions of C, indicating no direct

feedthrough from the input to the output, which is a common setup in state-space

representations where the system dynamics are emphasized.
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4.2.1 Initial Conditions for State Variables

State variables x, y, z, and w were initialized to study their evolution over the simula-

tion. The initialization aimed to examine:

• The impact of different starting values on x and w, which are sensitive to initial

conditions. Various initial states were tested to observe potential convergence

issues or dependencies.

• The behavior of y and z, which were expected to show convergence to a stable

solution regardless of their initial values, demonstrating the algorithm’s robust-

ness.

4.3 Simulation Results and Discussion

4.3.1 Results

Simulation outcomes were detailed through graphical representations showing the evo-

lution of x, y, z, and w. These plots provide insights into:

• Dependency on Initialization: Observations on how x and w reacted to dif-

ferent initial conditions, highlighting the need for careful selection of initial states

in practical deployments.

• Stability of y and z: Despite variations in initialization, both y and z converged

reliably, indicating the algorithm’s effectiveness in achieving consistent results.

4.3.2 Discussion

The behavior of the state variables underlines the necessity for a well-considered setup

in LELV problems, especially in complex network scenarios. The findings from this
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simulation guide the implementation of LELV algorithms in real-world applications,

emphasizing the importance of initial conditions and robust algorithmic design.

4.4 Conclusion and Insights

The simulation results for the Local-Equation Local-Variable (LELV) system over a

period of T = 0 : 0.001 : 10 seconds provided critical insights into the operational

dynamics and convergence behaviors under various conditions. The algorithm demon-

strated robustness and adaptability, showcasing its potential to handle network-based

challenges effectively.

As illustrated in Figures 4.2, 4.3, 4.4, 4.5, the dynamic responses of the state

variables exhibited notable trends:

• State Variable x(t):

– The plot indicates an initial transient response with some state variables

exhibiting oscillatory behavior which settles over time.

– After the initial period, the state variables appear to reach a steady state,

with x4(t) to x8(t) demonstrating relatively constant values.

• State Variable y(t):

– Similar to x(t), there is an initial transient period where all state variables

converge to steady state values relatively quickly.

– All state variables of y(t) stabilize near zero, indicating a reduction of the

error over time.

• State Variable z(t):
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– This plot also shows a transient response initially, with all states converging

to steady states.

– The variables z1(t) to z8(t) display a damped response, suggesting that the

system is stable and the least square solution is effectively minimizing the

norm.

• State Variable w(t):

– The initial response is quite pronounced with higher amplitude oscillations

compared to x(t), y(t), and z(t).

– The oscillations damp out, and the variables settle down to steady states,

indicating the system’s stabilization over time.

– The trends imply that the Lagrange multipliers are adjusting as the opti-

mization progresses towards a solution that satisfies all constraints.

The absence of sustained oscillatory behavior or divergence after the initial tran-

sient across all plots suggests that the system represented by the state variables is

stable. The convergence of the state variables towards constant values indicates that

any perturbations are being effectively managed by the system’s inherent properties or

control mechanisms.
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Figure 4.2: Time evolution of state variables x(t)

Figure 4.3: Time evolution of state variables y(t)
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Figure 4.4: Time evolution of state variables z(t)

Figure 4.5: Time evolution of state variables w(t)
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4.5 Local-Equation Global-Variable (LEGV)

Similarly, the LEGV algorithm was analyzed under different network scenarios to as-

sess its capability in global variable computation. The results confirmed that LEGV

effectively utilizes local computations to influence global outcomes, optimizing the use

of resources and processing time. The matrices and vectors for the simulation of the

Local-Equation Global-Variable (LEGV) problem are initialized as follows:

1 2 3

Figure 4.6: A 3-node undirected graph used in the LEGV simulations.

• Dimension Definitions:

– m = 3: Number of outputs or measurements.

– n = 1: Number of inputs or control variables per node.

– N = 3: Number of nodes in the network.

– nN = n×N : Total state dimension size, affected by both n and N .

• System Matrices:

– Matrix A ∈ Rm×nN is defined to encapsulate the system dynamics. In this

simulation setup, A is given as:

A =



1 2 0

3 4 5

0 6 7


.
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– The Laplacian matrix Ln represents the connectivity of the nodes within

the network. For a graph with N nodes, Ln is defined as:

Ln =



1 −1 0

−1 2 −1

0 −1 1


.

– Vector b ∈ Rm is initialized randomly to simulate various scenarios, using a

standard normal distribution:

b = randn(m, 1).

The matrices are structured to ensure that each node has access to local information

and can communicate with its neighbors according to the network’s topology, while

vector b provides the initial conditions for the simulation.

The simulation results for the Local-Equation Global-Variable (LEGV) system are

indicative of the system’s ability to reach and maintain a stable equilibrium. As shown

in Figure 4.7, the dynamic response and convergence behavior of the system were

captured over a simulation period, providing insights into the algorithm’s robustness

under various network conditions.

• State Variable x̂(t): The plot indicates an initial transient response with some

state variables exhibiting oscillatory behavior which settles over time. After the

initial period, the state variables appear to reach a steady state, demonstrating

relatively constant values.
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Figure 4.7: Simulation results for the LEGV algorithm.

• State Variable x(t): Similar to x̂(t), there is an initial transient period where

all state variables converge to steady state values relatively quickly. The variables

stabilize near zero, indicating a reduction of the error over time.

• State Variable y(t): The plot also shows a transient response initially, with

all states converging to steady states. The variables display a damped response,

suggesting that the system is stable.

• State Variable ẑ(t): The initial response is quite pronounced with higher am-

plitude oscillations compared to other state variables. The oscillations damp out,

and the variables settle down to steady states, indicating the system’s stabiliza-

tion over time.

• State Variable z(t): Exhibits behavior similar to ẑ(t), but with a slightly dif-

ferent transient response. The convergence to steady state suggests that the least

square solution is effectively minimizing the norm.
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• State Variable w(t): Shows the most complex behavior with higher ampli-

tude oscillations. The trend towards stabilization is indicative of the system’s

capability to handle perturbations and maintain equilibrium.

The absence of sustained oscillatory behavior or divergence after the initial tran-

sient across all plot suggests that the system represented by the state variables is stable.

The convergence of the state variables towards constant values indicates that any per-

turbations are being effectively managed by the system’s inherent properties or control

mechanisms.

4.6 State Variable Dependencies

The state variables for the LEGV problem are denoted by x̂(t), x(t), y(t), ẑ(t), z(t),

and w(t). Their behavior with respect to initial conditions can be summarized as

follows:

• State Variables Dependent on Initialization:

– x̂(t) and x(t): These state variables represent the system states and are

directly affected by the initial conditions. Any change in the initialization

of x̂(t) and x(t) will alter their trajectories over time.

– w(t): As a representation of Lagrange multipliers or dual variables, w(t) is

also sensitive to initial conditions, impacting the optimization dynamics of

the system.

• State Variables Independent of Initialization:

– y(t) and z(t): These variables tend to converge to a steady state that is

determined by the system dynamics and the graph topology, rather than by

their initial values.
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– ẑ(t): Similar to z(t), the state ẑ(t) eventually reaches an equilibrium that is

independent of its initial conditions, as it is designed to estimate a steady-

state that complies with the system’s constraints.
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Chapter 5

Summary and Conclusions

This thesis presents a novel continuous-time distributed algorithm for complex matrix

computations on networked systems. It addresses limitations in prior work concern-

ing distributed data and computations. The algorithm demonstrates robustness and

adaptability for diverse matrix operations, including Moore-Penrose inverse computa-

tion, matrix rank determination, and solving linear equations in distributed environ-

ments. Global exponential convergence is established through theoretical analysis and

simulations.

A key differentiation lies in the comprehensive analysis of Local-Equation Local-

Variable (LELV) problems. Local-Equation Global-Variable (LEGV) problems were

less extensively explored, presenting a promising avenue for future research, particu-

larly regarding algorithm performance optimization and network-wide computational

strategies.

Future work could also focus on developing robust termination criteria for the al-

gorithm, enhancing its practical applicability and efficiency.

In conclusion, this thesis contributes significantly to distributed matrix analysis

research and lays a foundation for advancements in distributed systems. It addresses

critical knowledge gaps and offers practical solutions for networked computational envi-

ronments, paving the way for more sophisticated and scalable computational methods.
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Chapter 6

Appendix

% MATLAB code f o r LELV s imu la t i on

c l o s e a l l ;

% New system dimensions r e f l e c t i n g the 7x8 matrix A

m = 7 ; % New d e f i n i t i o n based on A’ s row count

n = 8 ; % New d e f i n i t i o n based on A’ s column count

% New system matrix and vec to r r e f l e c t i n g the 5−node graph s c ena r i o

A = [1 2 3 0 0 1 0 0 ;

6 8 10 12 2 2 0 2 ;

3 4 5 6 1 1 0 1 ;

0 0 4 5 6 7 0 3 ;

8 2 0 2 16 4 0 0 ;

4 1 0 1 8 2 0 0 ;

0 0 8 10 12 14 0 6 ] ;

b = randn (m, 1 ) ; % Random vector b with m elements

% Display the rank o f matrix A

di sp ( [ ’Rank o f matrix A: ’ , num2str ( rank (A) ) ] ) ;

% Moore−Penrose pseudo inver se s o l u t i o n

xpinv = pinv (A) ∗b ;

% Since A i s now 7x8 , we don ’ t compute x l s as be f o r e because A’∗A i s not

i n v e r t i b l e

% Simulat ion time

T = 0 : 0 . 0 1 : 1 0 ;

% Adjust i n i t i a l s t a t e s i z e based on new system s t ru c tu r e
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% Here , X0 s i z e i s hypothet i ca l , assuming a system that can inco rpo ra t e

the 7x8 A matrix

X0 = randn (2∗m+2∗n , 1 ) ; % Adjusted s i z e f o r i n i t i a l s t a t e vec to r

% Adjusted Input s i g n a l

u = ones ( s i z e (T) ) ;

% Hypothet i ca l s ta te−space r ep r e s en t a t i on p l a c eho ld e r

AA = [ ze ro s (n) A’ z e ro s (n) z e ro s (n ,m) ;

−A −5∗eye (m) ze ro s (m, n) z e ro s (m) ;

z e r o s (n) z e ro s (n ,m) −5∗eye (n) A’ ;

A ze ro s (m) −A ze ro s (m) ] ;

B = [ z e ro s (n , 1 ) ; b ; z e r o s (n , 1 ) ; z e r o s (m, 1 ) ] ;

C = eye (2∗m+2∗n) ;

D = ze ro s (2∗m+2∗n , 1 ) ;

% Create system ob j e c t

sys = s s (AA, B, C, D) ;

% Simulate system response

X = ls im ( sys , u , T, X0) ’ ;

% Extract s t a t e v a r i a b l e s

x = X( 1 : n , : ) ;

y = X(n+1:n+m, : ) ;

z = X(n+m+1:n+m+n , : ) ;

w = X(n+m+n+1:end , : ) ;

% Extract f i n a l va lue s

f i n a l x = x ( : , end ) ;

f i n a l y = y ( : , end ) ;

f i n a l z = z ( : , end ) ;

f i n a l w = w( : , end ) ;

% Print f i n a l va lue s

d i sp ( ’ F ina l va lue s o f x : ’ ) ;

d i sp ( f i n a l x ) ;

d i sp ( ’ F ina l va lue s o f y : ’ ) ;
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di sp ( f i n a l y ) ;

d i sp ( ’ F ina l va lue s o f z : ’ ) ;

d i sp ( f i n a l z ) ;

d i sp ( ’ F ina l va lue s o f w: ’ ) ;

d i sp ( f i n a l w ) ;

% Plo t t i ng

f i g u r e ( ’ Color ’ , ’w ’ ) ;

c o l o r s = ’ rgbcmyk ’ ;

f i g u r e ( ’Name ’ , ’ State Var i ab l e s Over Time ’ ) ;

% Plot f o r x

f i g u r e ( ’Name ’ , ’ State Var iab le x over Time ’ , ’ Color ’ , ’w ’ ) ;

p l o t (T, x ) ;

t i t l e ( ’A Least Square So lu t i on x over Time ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State x ’ ) ;

l egend ( arrayfun (@( i ) s p r i n t f ( ’ x %d( t ) ’ , i ) , 1 : s i z e (x , 1 ) , ’ UniformOutput ’ ,

f a l s e ) ) ;

g r i d on ;

% Plot f o r y

f i g u r e ( ’Name ’ , ’ State Var iab le y over Time ’ , ’ Color ’ , ’w ’ ) ;

p l o t (T, y ) ;

t i t l e ( ’ Resu l t ing Error y over Time ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State y ’ ) ;

l egend ( arrayfun (@( i ) s p r i n t f ( ’ y %d( t ) ’ , i ) , 1 : s i z e (y , 1 ) , ’ UniformOutput ’ ,

f a l s e ) ) ;

g r i d on ;

% Plot f o r z

f i g u r e ( ’Name ’ , ’ State Var iab le z over Time ’ , ’ Color ’ , ’w ’ ) ;
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p lo t (T, z ) ;

t i t l e ( ’Minimum Norm Least Square So lu t i on z over Time ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State z ’ ) ;

l egend ( arrayfun (@( i ) s p r i n t f ( ’ z %d( t ) ’ , i ) , 1 : s i z e ( z , 1 ) , ’ UniformOutput ’ ,

f a l s e ) ) ;

g r i d on ;

% Plot f o r w

f i g u r e ( ’Name ’ , ’ State Var iab le w over Time ’ , ’ Color ’ , ’w ’ ) ;

p l o t (T, w) ;

t i t l e ( ’ Lagrange Mu l t i p l i e r w over Time ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State w ’ ) ;

l egend ( arrayfun (@( i ) s p r i n t f ( ’w %d( t ) ’ , i ) , 1 : s i z e (w, 1 ) , ’ UniformOutput ’ ,

f a l s e ) ) ;

g r i d on ;

Listing 6.1: LELV Algorithm Simulation Code

% MATLAB code f o r LEGV s imula t i on

c l e a r a l l ;

c l o s e a l l ;

% Def ine the dimensions and matr i ce s

m = 3 ;

n = 1 ;

N = 3 ;

nN = n ∗ N; % Total dimension s i z e a f f e c t e d by n and N

% Example matr i ce s

A = [1 2 0 ; 3 4 5 ; 0 6 7 ] ;
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b = randn (m, 1 ) ;

% Laplac ian matrix L n f o r a graph with N nodes ( as an example )

L n = [1 −1 0 ; −1 2 −1; 0 −1 1 ] ;

% Redef ine AA with the new s t ru c tu r e

AA = blkd iag ( z e r o s (nN) , −L n , z e ro s (m) , z e r o s (nN) , −eye (nN) , z e r o s (nN,m) )

+ . . .

[ z e r o s (nN) , L n , z e r o s (nN, m) , z e r o s (nN) , z e r o s (nN) , z e r o s (nN, m) ;

−L n , −L n , A’ , z e r o s (nN, m) , z e r o s (nN) , z e r o s (nN, m) ;

z e r o s (m, nN) , −A, −eye (m) , z e r o s (m, nN) , z e r o s (m, nN) , z e r o s (m) ;

z e r o s (nN) , z e r o s (nN) , z e r o s (nN, m) , z e r o s (nN) , L n , z e r o s (nN, m) ;

z e r o s (nN) , z e r o s (nN) , z e r o s (nN, m) , −L n , −eye (nN) , A’ ;

z e r o s (nN, m) , A, z e r o s (nN, m) , z e r o s (nN, m) , −A, ze ro s (nN, m) ] ;

B = [ z e ro s (nN, 1) ; z e r o s (nN, 1) ; b ; z e r o s (nN, 1) ; z e r o s (nN, 1) ; z e r o s (m,

1) ] ;

C = eye ( s i z e (AA, 1) ) ;

D = ze ro s ( s i z e (B) ) ;

% Simulat ion setup

sys = s s (AA, B, C, D) ;

T = 0 : 0 . 0 1 : 2 0 ;

X0 = randn ( s i z e (AA, 1) , 1) ;

u = ones ( s i z e (T) ) ;

% Simulate the system

X = ls im ( sys , u , T, X0) ’ ;

% Extract and p lo t the r e l e van t s t a t e s
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hat x = X( 1 :Nn, : ) ;

x = X( nN+1:2∗nN, : ) ;

y = X(2∗nN+1:2∗nN+m, : ) ;

hat z = X( 2∗nN+m+1:3∗nN+m, : ) ;

z = X( 3∗nN+m+1:4∗nN+m, : ) ;

w = X(4∗nN+m+1:end , : ) ;

% P lo t t i ng

f i g u r e ;

subplot (3 , 2 , 1) ;

p l o t (T, hat x ) ;

t i t l e ( ’ State \hat{x} ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;

subplot (3 , 2 , 2) ;

p l o t (T, x ) ;

t i t l e ( ’ State x ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;

subplot (3 , 2 , 3) ;

p l o t (T, y ) ;

t i t l e ( ’ State y ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;

subplot (3 , 2 , 4) ;

p l o t (T, hat z ) ;

t i t l e ( ’ State \hat{z} ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;
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subplot (3 , 2 , 5) ;

p l o t (T, z ) ;

t i t l e ( ’ State z ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;

subplot (3 , 2 , 6) ;

p l o t (T, w) ;

t i t l e ( ’ State w ’ ) ;

x l ab e l ( ’Time ( s ) ’ ) ;

y l ab e l ( ’ State Value ’ ) ;

Listing 6.2: LEGV Algorithm Simulation Code

85



References

[1] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520–1533, 2004.

[2] J. Lu, C. Y. Tang, P. R. Regier, and T. D. Bow, “Gossip algorithms for convex
consensus optimization over networks,” IEEE Transactions on Automatic Control,
vol. 56, no. 12, pp. 2917–2923, 2011.

[3] C. Asensio-Marco and B. Beferull-Lozano, “Accelerating consensus gossip algo-
rithms: Sparsifying networks can be good for you,” in 2010 IEEE International
Conference on Communications, pp. 1–5, 2010.

[4] X. Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex optimization
with time-varying coupled inequality constraints,” IEEE Transactions on Signal
Processing, vol. 68, pp. 731–746, 2020.

[5] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed convex opti-
mization: The continuous-time case,” IEEE Transactions on Automatic Control,
vol. 57, no. 9, pp. 2348–2354, 2012.

[6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Transactions on
Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.

[7] S.-H. Son, M. Chiang, S. Kulkarni, and S. Schwartz, “The value of clustering in
distributed estimation for sensor networks,” in 2005 International Conference on
Wireless Networks, Communications and Mobile Computing, vol. 2, pp. 969–974
vol.2, 2005.

[8] P. Wang, S. Mou, J. Lian, and W. Ren, “Solving a system of linear equations:
From centralized to distributed algorithms,” Annual Reviews in Control, vol. 47,
pp. 306–322, 2019.

[9] X. Wang, S. Mou, and B. D. O. Anderson, “Scalable, distributed algorithms for
solving linear equations via double-layered networks,” IEEE Transactions on Au-
tomatic Control, vol. 65, no. 3, pp. 1132–1143, 2020.

[10] M. Yang and C. Y. Tang, “A distributed algorithm for solving general linear
equations over networks,” in 2015 54th IEEE Conference on Decision and Control
(CDC), pp. 3580–3585, 2015.

86



[11] S. Mou and A. S. Morse, “A fixed-neighbor, distributed algorithm for solving a
linear algebraic equation,” in 2013 European Control Conference (ECC), pp. 2269–
2273, 2013.

[12] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization
in multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4,
pp. 922–938, 2010.

[13] H. Pan, X. Yu, and G. Wen, “Robust consensus of fractional-order singular uncer-
tain multi-agent system under undirected graph,” in 2018 IEEE 27th International
Symposium on Industrial Electronics (ISIE), pp. 1161–1166, 2018.

[14] H. Moradian and S. S. Kia, “Cluster-based distributed augmented lagrangian al-
gorithm for a class of constrained convex optimization problems,” Automatica,
vol. 129, p. 109608, 2021.

[15] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,” in
2012 50th Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton), pp. 593–600, 2012.

[16] Z. Deng and J. Luo, “Fully distributed algorithms for constrained nonsmooth
optimization problems of general linear multiagent systems and their application,”
IEEE Transactions on Automatic Control, vol. 69, no. 2, pp. 1377–1384, 2024.

[17] R. Saber and R. Murray, “Agreement problems in networks with directed graphs
and switching topology,” in 42nd IEEE International Conference on Decision and
Control (IEEE Cat. No.03CH37475), vol. 4, pp. 4126–4132 vol.4, 2003.

[18] M. Zhu and S. Martinez, “Dynamic average consensus on synchronous communi-
cation networks,” in 2008 American Control Conference, pp. 4382–4387, 2008.

[19] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano, “Consensus-
based linear and nonlinear filtering,” IEEE Transactions on Automatic Control,
vol. 60, no. 5, pp. 1410–1415, 2015.

[20] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion
based on average consensus,” in IPSN 2005. Fourth International Symposium on
Information Processing in Sensor Networks, 2005., pp. 63–70, 2005.

[21] L. Moreau, “Leaderless coordination via bidirectional and unidirectional time-
dependent communication,” in 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475), vol. 3, pp. 3070–3075 Vol.3, 2003.

[22] J. Lu and C. Y. Tang, “A distributed algorithm for solving positive definite lin-
ear equations over networks with membership dynamics,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 1, pp. 215–227, 2018.

87



[23] L. Moreau, “Stability of continuous-time distributed consensus algorithms,”
in 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat.
No.04CH37601), vol. 4, pp. 3998–4003 Vol.4, 2004.

[24] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving a linear
algebraic equation,” IEEE Transactions on Automatic Control, vol. 60, no. 11,
pp. 2863–2878, 2015.

[25] Z. Li, X. Liu, P. Lin, and W. Ren, “Consensus of linear multi-agent systems with
reduced-order observer-based protocols,” Systems and Control Letters, vol. 60,
no. 7, pp. 510–516, 2011.

[26] D. Kingston and R. Beard, “Discrete-time average-consensus under switching net-
work topologies,” in 2006 American Control Conference, pp. 6 pp.–, 2006.

[27] H. Moradian and S. S. Kia, “A study on accelerating average consensus algo-
rithms using delayed feedback,” IEEE Transactions on Control of Network Sys-
tems, vol. 10, no. 1, pp. 157–168, 2023.

[28] X. Zeng, J. Lei, and J. Chen, “Dynamical primal-dual nesterov accelerated method
and its application to network optimization,” IEEE Transactions on Automatic
Control, vol. 68, no. 3, pp. 1760–1767, 2023.

[29] S. S. Kia, J. Wei, and L. Chen, “Distributed optimal resource allocation using
transformed primal-dual method,” in 2023 American Control Conference (ACC),
pp. 198–203, 2023.

[30] C. Asensio-Marco and B. Beferull-Lozano, “Energy efficient consensus over di-
rected graphs,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4124–4128, 2018.

[31] X. Wang, S. Mou, and D. Sun, “Improvement of a distributed algorithm for solving
linear equations,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4,
pp. 3113–3117, 2017.

[32] W. Chen and W. Ren, “Event-triggered zero-gradient-sum distributed consensus
optimization over directed networks,” Automatica, vol. 65, pp. 90–97, 2016.

[33] R. Saha, S. Rini, M. Rao, and A. Goldsmith, “Decentralized optimization over
noisy, rate-constrained networks: How we agree by talking about how we disagree,”
in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5055–5059, 2021.

[34] E. Montijano, G. Oliva, and A. Gasparri, “Distributed estimation and control
of node centrality in undirected asymmetric networks,” IEEE Transactions on
Automatic Control, vol. 66, no. 5, pp. 2304–2311, 2021.

88



[35] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–
233, 2007.

[36] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation and consen-
sus using linear iterative strategies,” IEEE Journal on Selected Areas in Commu-
nications, vol. 26, no. 4, pp. 650–660, 2008.

[37] T. Charalambous and C. N. Hadjicostis, “Laplacian-based matrix design for finite-
time average consensus in digraphs,” in 2018 IEEE Conference on Decision and
Control (CDC), pp. 3654–3659, 2018.

[38] N. D. Sayin, Muhammed O.and Vanli, S. S. Kozat, and B. Tamer, “Stochastic sub-
gradient algorithms for strongly convex optimization over distributed networks,”
IEEE Transactions on Network Science and Engineering, vol. 4, no. 4, pp. 248 –
260, 2017.

[39] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile autonomous
agents using nearest neighbor rules,” IEEE Transactions on Automatic Control,
vol. 48, no. 6, pp. 988–1001, 2003.

[40] N. E. Manitara and C. N. Hadjicostis, “Distributed stopping for average consensus
in digraphs,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3,
pp. 957–967, 2018.

89


